Science.gov

Sample records for measurement system applied

  1. Thermal diffusivity measurement system applied to polymers

    NASA Astrophysics Data System (ADS)

    Abad, B.; Díaz-Chao, P.; Almarza, A.; Amantia, D.; Vázquez-Campos, S.; Isoda, Y.; Shinohara, Y.; Briones, F.; Martín-González, M. S.

    2012-06-01

    In the search for cleaner energy sources, the improvement of the efficiency of the actual ones appears as a primary objective. In this way, thermoelectric materials, which are able to convert wasted heat into electricity, are reveal as an interesting way to improve efficiency of car engines, for example. Cost-effective energy harvesting from thermoelectric devices requires materials with high electrical conductivities and Seebeck coefficient, but low thermal conductivity. Conductive polymers can fulfil these conditions if they are doped appropriately. One of the most promising polymers is Polyaniline. In this work, the thermal conductivity of the polyaniline and mixtures of polyaniline with nanoclays has been studied, using a new experimental set-up developed in the lab. The novel system is based on the steady-state method and it is used to obtain the thermal diffusivity of the polymers and the nanocomposites.

  2. a New Method for Measuring Macroparticulate Systems Applied to Measuring Syneresis of Renneted Milk Gels.

    NASA Astrophysics Data System (ADS)

    Maynes, Jonathan R.

    Syneresis is an integral part of cheese manufacture. The rate and extent of syneresis affect the properties of cheese. There are many factors that affect syneresis, but measured results vary because of inaccuracies in measuring techniques. To better control syneresis, an accurate mathematical description must be developed. Current mathematical models describing syneresis are limited because of inherent error in measuring techniques used to develop them. Developing an accurate model requires an accurate way to measure syneresis. The curd becomes a particle in a whey suspension when the coagulum is cut. The most effective technique to measure particle size, without interference, is with light. Approximations to rigorous Maxwellian theory render useable results for a variety of particle sizes. Assumptions of Fraunhofer diffraction theory relate absorption to the cross sectional area of a particle that is much larger than the wavelength of light being used. By applying diffraction theory to the curd-whey system, this researcher designed a new apparatus to permit measurement of large particle systems. The apparatus was tested, and calibrated, with polyacrylic beads. Then the syneresis of curd was measured with this apparatus. The apparatus was designed to measure particles in suspension. Until some syneresis takes place, curd does not satisfy this condition. Theoretical assumptions require a monolayer of scattering centers. The sample container must be thin enough to preclude stacking of the particles. This presents a unique problem with curd. If the coagulum is cut in the sample cell, it adheres to the front and back surfaces and does not synerese. The curd must be coagulated and cut externally and transferred to the sample cell with a large amount of whey. This measurement technique has other limitations that may be overcome with commercially available accessories.

  3. Film thickness measurement techniques applied to micro-scale two-phase flow systems

    SciTech Connect

    Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt

    2010-05-15

    Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

  4. Evaluation of Dimensional Measurement Systems Applied to Statistical Control of the Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Villeta, M.; Sanz-Lobera, A.; González, C.; Sebastián, M. A.

    2009-11-01

    The implantation of Statistical Process Control, SPC designated in short, requires the use of measurement systems. The inherent variability of these systems influences on the reliability of measurement results obtained, and as a consequence of it, influences on the SPC results. This paper investigates about the influence of the uncertainty of measurement on the analysis of process capability. It looks for reducing the effect of measurement uncertainty, to approach the capability that the productive process really has. In this work processes centered at a nominal value as well as off-center processes are raised, and a criterion is proposed that allows validate the adequacy of the dimensional measurement systems used in a SPC implantation.

  5. Implementation of the remote measuring system for addiction patients in rehabilitation applying vital sensor

    PubMed Central

    Lim, Myung-Jae; Lee, Ki-Young; Kwon, Young-Man

    2014-01-01

    Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients’ condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals. As addiction patients are on the rise in terms of drug addiction, including alcohol and narcotics, behavioural addiction attributable to the exposure to games, gambling, Internet and mobile communications and shopping is also becoming a problem. That is why it is difficult to collect data for the daily addiction status, which causes difficulties in systematic management and accurate diagnosis. Therefore, this paper suggests a remote measuring system to collect continuous condition data, which monitors the addiction patients via the vital sign measuring sensor within u-Zone. That is, the system collects their condition information from the sensors measuring heart rate, body temperature and acceleration, based on which the specialists determine the patient's emotional state. These data are expected to become the basis of diagnosing and managing addiction patients. PMID:26019608

  6. Counter measures applied on levee system: Effects on flood map and probability of failure

    NASA Astrophysics Data System (ADS)

    Tekle, Shewandagn; Mazzoleni, Maurizio; Dottori, Francesco; Brandimarte, Luigia

    2014-05-01

    Historical records have shown that people living in the flood plain areas surrounded by levees are increased over the time around the world.. However, the effectiveness of different counter measures on increasing levee efficiency, and their environmental and economical consequences on the urbanized flood prone area, are not yet well exploited. The present research proposes a methodology to investigate the effects of two different counter measures on the estimation of the probability of levee failure due to overtopping and the consequent flood extent. The case study was performed in 98km-braided reach of Po River, Italy, between the cross-sections of Cremona and Borgoforte. The adopted methodology was divided into four core categories. Firstly, reliability analysis, expressed in terms of fragility curve, of the levee system in case of overtopping was performed using the geotechnical and geometrical data of the levee considering the grass cover quality as a stochastic variable to account the uncertainties associated to it. In order to estimate the fragility curves for all sections, a Monte Carlo framework was introduced. Secondly, 1D hydrodynamic model was implemented to estimate the water level in the river in case of a synthetic flood event of 200year return period. The information of the water level was used as hydraulic load into the previous fragility curves. Then, a levee breach modeli was introduced to address the uncertainties related to the location, size and development of the breaches. Finally, a 2D hydrodynamic model CA2D_S,based on the cellular automata approach in semi-inertial formulation for flux computation, was implementd. CA2D - SCENARI (CA2D_S) is a version of the CA2D model specifically designed to simulate levee breach scenarios in low land areas. The previous methodological steps were repeated for each countermeasure scenario and the results from CA2D, expressed in terms of flood extent, were compared and analyzed. The analysis showed that

  7. In-place recalibration technique applied to a capacitance-type system for measuring rotor blade tip clearance

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1978-01-01

    The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.

  8. A novel image processing and measurement system applied to quantitative analysis of simulated tooth root canal shape

    NASA Astrophysics Data System (ADS)

    Yong, Tao; Yong, Wei; Jin, Guofan; Gao, Xuejun

    2005-02-01

    Dental pulp is located in root canal of tooth. To modern root canal therapy, "Root canal preparation" is the main means to debride dental pulp infection. The shape of root canal will be changed after preparation, so, when assessing the preparation instruments and techniques, the root canal shaping ability especially the apical offset is very important factor. In this paper, a novel digital image processing and measurement system is designed and applied to quantitative analysis of simulated canal shape. By image pretreatment, feature extraction, registration and fusion, the variation of the root canals' characteristics (before and after preparation) can be accurately compared and measured, so as to assess the shaping ability of instruments. When the scanning resolution is 1200dpi or higher, the registration and measurement precision of the system can achieve 0.021mm or higher. The performance of the system is tested by a series of simulated root canals and stainless steel K-files.

  9. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG

    NASA Astrophysics Data System (ADS)

    Janjarasjitt, Suparerk; Loparo, Kenneth A.

    2013-10-01

    A complex system analysis has been widely applied to examine the characteristics of an electroencephalogram (EEG) in health and disease, as well as the dynamics of the brain. In this study, two complexity measures, the correlation dimension and the spectral exponent, are applied to electrocorticogram (ECoG) data from subjects with epilepsy obtained during different states (seizure and non-seizure) and from different brain regions, and the complexities of ECoG data obtained during different states and from different brain regions are examined. From the computational results, the spectral exponent obtained from the wavelet-based fractal analysis is observed to provide information complementary to the correlation dimension derived from the nonlinear dynamical-systems analysis. ECoG data obtained during seizure activity have smoother temporal patterns and are less complex than data obtained during non-seizure activity. In addition, significant differences between these two ECoG complexity measures exist when applied to ECoG data obtained from different brain regions of subjects with epilepsy.

  10. Experimental measurement of noise-removal techniques for Compton backscatter imaging systems as applied to the detection of landmines

    NASA Astrophysics Data System (ADS)

    Wehlburg, Joseph C.; Keshavmurthy, Shyam P.; Dugan, Edward T.; Jacobs, Alan M.

    1996-05-01

    The measurement and removal of noise from images created using lateral migration backscatter radiography (LMBR) a form of Compton backscatter imaging (CBI) is applied to the detection and identification of landmines. The photons that interact with the landmine produce the signal component of interest. The signal is corrupted by both quantum and structured noise. The structured noise is due to photon interaction with non-mine material. Due to the strong response of all detectors to soil surface features and other buried objects, image enhancement methods are essential for landmine identification. A four detector system is used to generate the LMBR/CB images. The inner two detectors are uncollimated and positioned to optimally detect first scattered photons. The outer detectors are collimated to detect photons that have had two or more scatterings. The difference between the collimated and uncollimated detector responses to the different types of landmine image masking phenomena, form the basis of the image enhancement and landmine identification procedures. The surface feature information is obtained by the uncollimated detectors. The collimated detector signal contains information about the surface features as well as the buried objects. Using images from these two sets of detectors the surface objects can be analyzed for possible landmines and then removed. The buried objects can then be resolved. The measurements and image enhancements demonstrate that it is possible to detect 12' plastic landmines at a buried of 3' under simulated battlefield conditions.

  11. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  12. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect

    Keebler, P. F.; Phipps, K. O.

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  13. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  14. A multi-layer, closed-loop system for continuous measurement of soil CO2 concentrations and its isotopic signature applied in a beech and a pine forest

    NASA Astrophysics Data System (ADS)

    Jochheim, Hubert; Wirth, Stephan

    2016-04-01

    We present a setup of measurement devices that allows the application of the soil CO2 gradient approach for CO2 efflux calculation in combination with the analysis of isotopic signature (δ13C). Vertical profiles of CO2 concentrations in air-filled pores of soil were measured using miniature NDIR sensors within a 16-channel closed-loop system where equilibrium with soil air can be achieved using hydrophobic, gas-permeable porous polypropylene tubes circulating gas using peristaltic pumps. A 16-position multiplexer allows the connection to an isotopic CO2 analyser. This setup was applied at two ICP Forest intensive monitoring sites, a beech and a pine forest on sandy soils located in Brandenburg, Germany. CO2 concentrations in air-filled pores of soils were measured on top of soil surface, below the humus layer, and in 10cm, 20cm, 30cm and 100 cm depths every 30 min. At both sites, soil moisture and temperature were measured continuously in the respective soil depths in identical time intervals. Isotopic signatures of soil CO2 was detected by measurement campaigns. After three years of measurements, our results provided evidence for distinct seasonal dynamics and vertical gradients of soil CO2 concentration and δ13C values. Varying impacts of soil temperature and moisture on CO2 concentration were revealed, highlighting its impact on soil physical and soil biological controls. Higher levels of CO2 concentration and a more distinct seasonal dynamics were detected at the beech site compared to the pine site. The collected data provide a suitable database for calculation of CO2 efflux and modelling of soil respiration.

  15. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  16. Operational neuroscience: neurophysiological measures in applied environments.

    PubMed

    Kruse, Amy A

    2007-05-01

    There is, without question, an interest within the military services to understand, account for, and adapt to the cognitive state of the individual warfighter. As the field of neuroscience has matured through investments from numerous government agencies, we are on the cusp of being able to move confidently from the lab into the field--and deepen our understanding of the cognitive issues embedded in the warfighting environment. However, as we edge closer to this integration--it is critical for researchers in this arena to understand the landscape they are entering-reflected not only in the challenges of each task or operational environment but also in the individual differences intrinsic to each warfighter. The research papers in this section cover this spectrum, including individual differences and their prediction of adaptability to high-stress environments, the influence of sleep-deprivation on neurophysiological measures of stimulus categorization, neurophysiological measures of stress in the training environment and, finally, real-time neural measures of task engagement, mental workload and vigilance. It is clear from this research, and other work detailed in this supplement, that the judicious use of neuroscience, cognitive psychology, and physiology in the applied environment is desirable for both researchers and operators. In fact, we suggest that these investigations merit a field designation unto their own: Operational Neuroscience. It is our hope that the discussion of this new field of study will galvanize others to increase the confidence and utility of this research through their own investigations. PMID:17547320

  17. Module systems applied to biomass

    SciTech Connect

    Jenkins, B.M.

    1983-12-01

    Applications of cotton moduling equipment to biomass have been tested in California. A module of chopped rice straw was made to determine physical characteristics of straw modules. A module system for tree prunings using a heavy duty module builder was tested extensively in 1983. Total direct costs to module, transport 8 km (5 mi), store, cut, tubgrind, and haul chips 50 km (30 mi) to a cogeneration plant is estimated to be $26.64/t ($24.17/t).

  18. Applied mathematics of chaotic systems

    SciTech Connect

    Jen, E.; Alber, M.; Camassa, R.; Choi, W.; Crutchfield, J.; Holm, D.; Kovacic, G.; Marsden, J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objectives of the project were to develop new mathematical techniques for describing chaotic systems and for reexpressing them in forms that can be solved analytically and computationally. The authors focused on global bifurcation analysis of rigid body motion in an ideal incompressible fluid and on an analytical technique for the exact solution of nonlinear cellular automata. For rigid-body motion, they investigated a new completely integrable partial differential equation (PDE) representing model motion of fronts in nematic crystals and studied perturbations of the integrable PDE. For cellular automata with multiple domain structures, the work has included: (1) identification of the associated set of conserved quantities for each type of domain; (2) use of the conserved quantities to construct isomorphism between the nonlinear system and a linear template; and (3) use of exact solvability methods to characterize detailed structure of equilibrium states and to derive bounds for maximal transience times.

  19. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joe

    1991-01-01

    Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.

  20. Bioelectric Signal Measuring System

    NASA Astrophysics Data System (ADS)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  1. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Devicea)

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Ido, T.; Kurachi, M.; Makino, R.; Nishiura, M.; Kato, S.; Nishizawa, A.; Hamada, Y.

    2014-11-01

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (˜20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  2. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  3. H-measures and variants applied to parabolic equations

    NASA Astrophysics Data System (ADS)

    Antonic, Nenad; Lazar, Martin

    2008-07-01

    Since their introduction H-measures have been mostly used in problems related to propagation effects for hyperbolic equations and systems. In this study we give an attempt to apply the H-measure theory to other types of equations. Through a number of examples we present how do the differences between parabolic and hyperbolic equations reflect in the properties of H-measures corresponding to the solutions. Secondly, we apply the H-measures to the Schrödinger equation, where we succeed in proving a propagation property. However, our conclusion is that a variant of H-measures should be sought which would be better suited to parabolic problems. We propose such a variant, show some fundamental properties and illustrate its applicability by some examples. In particular, we show that the variant provides new information in a number of situations where the original H-measures did not. Finally, we describe how the new variant can be used in small amplitude homogenisation of parabolic equations.

  4. Thermodynamic Laws Applied to Economic Systems

    ERIC Educational Resources Information Center

    González, José Villacís

    2009-01-01

    Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

  5. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  6. Applied mathematics analysis of the multibody systems

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kar, A. K.; Tacgin, E.

    2012-08-01

    A methodology is developed for the analysis of the multibody systems that is applied on the vehicle as a case study. The previous study emphasizes the derivation of the multibody dynamics equations of motion for bogie [2]. In this work, we have developed a guide-way for the analysis of the dynamical behavior of the multibody systems for mainly validation, verification of the realistic mathematical model and partly for the design of the alternative optimum vehicle parameters.

  7. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  8. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  9. Close Range Digital Photogrammetry Applied to Topography and Landslide Measurements

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Cheng; Huang, Wei-Che

    2016-06-01

    Landslide monitoring is a crucial tool for the prevention of hazards. It is often the only solution for the survey and the early-warning of large landslides cannot be stabilized. The objective of present study is to use a low-cost image system to monitor the active landslides. We adopted the direct linear transformation (DLT) method in close range digital photogrammetry to measure terrain of landslide at the Huoyen Shan, Miaoli of central Taiwan and to compare measured results with e-GPS. The results revealed that the relative error in surface area was approximately 1.7% as comparing the photogrammetry with DLT method and e-GPS measurement. It showed that the close range digital photogrammetry with DLT method had the availability and capability to measure the landslides. The same methodology was then applied to measure the terrain before landslide and after landslide in the study area. The digital terrain model (DTM) was established and then was used to calculate the volume of the terrain before landslide and after landslide. The volume difference before and after landslides was 994.16 m3.

  10. Phase-Measuring System

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1986-01-01

    System developed and used at Langley Research Center measures phase between two signals of same frequency or between two signals, one of which is harmonic multiple of other. Simple and inexpensive device combines digital and analog components to give accurate phase measurements. One signal at frequency f fed to pulse shaper, produces negative pulse at time t4. Pulse applied to control input of sample-and-hold module 1. Second signal, at frequency nf, fed to zero-crossover amplifier, producing square wave at time t. Signal drives first one-shot producing narrow negative pulse at t1. Signal then drives second one-shot producing narrow positive pulse at time t2. This pulse used to turn on solid-state switch and reset integrator circuit to zero.

  11. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  12. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  13. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  14. Fluorescent Protein Biosensors Applied to Microphysiological Systems

    PubMed Central

    Senutovitch, Nina; Vernetti, Lawrence; Boltz, Robert; DeBiasio, Richard; Gough, Albert; Taylor, D. Lansing

    2015-01-01

    This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPS). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and microphysiological systems in real-time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high content screening (HCS). FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein (GFP), dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental

  15. Combinatorial materials research applied to the development of new surface coatings: VIII: Overview of the high-throughput measurement systems developed for a marine coating workflow

    NASA Astrophysics Data System (ADS)

    Chisholm, Bret J.; Stafslien, Shane J.; Christianson, David A.; Gallagher-Lein, Christy; Daniels, Justin W.; Rafferty, Crystal; Wal, Lyndsi Vander; Webster, Dean C.

    2007-11-01

    A combinatorial workflow has been produced for the development of novel, environmental-friendly marine coatings. A particularly challenging aspect of the workflow development was the selection and development of high-throughput screening methods that allow for some degree of prediction of coating performance in the aquatic environment of interest. The high-throughput screening methods currently in place include measurements of surface energy, viscoelastic properties, pseudobarnacle adhesion, and a suite of biological assays based on various marine organisms. An experiment involving a series of fouling-release coatings was used to correlate high-throughput screening data to data obtained from ocean site immersion testing. The results of the experiment showed that both bacterial biofilm surface coverage and storage modulus at 30 °C showed a good correlation with barnacle adhesion strength and a fair correlation with fouling rating, but surface energy and pseudobarnacle adhesion did not correlate with the results from ocean site testing.

  16. Performance Measurement Analysis System

    Energy Science and Technology Software Center (ESTSC)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  17. Speckle photography applied to measure deformations of very large structures

    NASA Astrophysics Data System (ADS)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  18. FUNDAMENTAL COMBUSTION RESEARCH APPLIED TO POLLUTION FORMATION. VOLUME 3. SUPPORT STUDIES: MEASUREMENT STUDIES

    EPA Science Inventory

    The report, one of four volumes describing research performed under EPA's Fundamental Combustion Research (FCR) Applied to Pollution Formation Program, gives results of three studies related to measurement system evaluations. Section I documents an evaluation of the performance a...

  19. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  20. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  1. Pressure Measurement Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the $600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  2. Applied methods of testing and evaluation for IR imaging system

    NASA Astrophysics Data System (ADS)

    Liao, Xiao-yue; Lu, Jin

    2009-07-01

    Different methods of testing and evaluation for IR imaging system are used with the application of the 2nd and the 3rd generation infrared detectors. The performance of IR imaging system can be reflected by many specifications, such as Noise Equivalent Temperature Difference (NETD), Nonuniformity, system Modulation Transfer Function (MTF), Minimum Resolvable Temperature Difference (MRTD), and Minimum Detectable Temperature Difference (MRTD) etc. The sensitivity of IR sensors is estimated by NETD. The sensitivity of thermal imaging sensors and space resolution are evaluated by MRTD, which is the chief specification of system. In this paper, the theoretical analysis of different testing methods is introduced. The characteristics of them are analyzed and compared. Based on discussing the factors that affect measurement results, an applied method of testing NETD and MRTD for IR system is proposed.

  3. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  4. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  5. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  6. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  7. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  8. Expert systems applied to spacecraft fire safety

    NASA Technical Reports Server (NTRS)

    Smith, Richard L.; Kashiwagi, Takashi

    1989-01-01

    Expert systems are problem-solving programs that combine a knowledge base and a reasoning mechanism to simulate a human expert. The development of an expert system to manage fire safety in spacecraft, in particular the NASA Space Station Freedom, is difficult but clearly advantageous in the long-term. Some needs in low-gravity flammability characteristics, ventilating-flow effects, fire detection, fire extinguishment, and decision models, all necessary to establish the knowledge base for an expert system, are discussed.

  9. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    SciTech Connect

    T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola

    2009-02-04

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.

  10. Applying Modeling Tools to Ground System Procedures

    NASA Technical Reports Server (NTRS)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  11. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  12. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  13. Multiple-aperture speckle method applied to local displacement measurements

    NASA Astrophysics Data System (ADS)

    Ángel, Luciano; Tebaldi, Myrian; Bolognini, Néstor

    2007-06-01

    The goal of this work is to analyze the measurement capability of the modified speckle photography technique that uses different multiple aperture pupils in a multiple exposure scheme. In particular, the rotation case is considered. A point-wise analysis procedure is utilized to obtain the fringes required to access to the local displacement measurements. The proposed arrangement allows simultaneous displaying in the Fourier plane several fringes system each one associated with different rotations. We experimentally verified that the local displacement measurements can be determined with a high precision and accuracy.

  14. EG G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  15. Applying QCVV protocols to real physical systems

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar

    As experimental systems move closer to realizing small-scale quantum computers with high fidelity operations, errors become harder to detect and diagnose. Verification and validation protocols are becoming increasingly important for detecting and understanding the precise nature of these errors. I will outline various methods and protocols currently used to deal with errors in experimental systems. I will also discuss recent advances in implementing high fidelity operations which will help to understand some of the tools that are still needed on the road to realizing larger scale quantum systems. Work partially supported by ARO under Contract W911NF-14-1-0124.

  16. Stress Measurement System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center and Stress Photonics developed an infrared-based stress measurement system for use in nondestructive evaluation of materials and structures. Stress Photonics commercialized the technology in the DeltaTherm 1000 system, used to compare designs and detect cracks in structures, especially for aging aircraft and bridges. The system combines digital signal processing technology with a special infrared camera to provide instantaneous thermal images and live differential images.

  17. Percolation theory applied to measures of fragmentation in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Paul, Gerald; Cohen, Reuven; Havlin, Shlomo; Borgatti, Stephen P.; Liljeros, Fredrik; Stanley, H. Eugene

    2007-04-01

    We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction q of nodes and the total number of pairs in the original fully connected network. We compare F with the traditional measure used in percolation theory, P∞ , the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erdős-Rényi and scale-free networks under various types of node removal strategies. The removal strategies are random removal, high degree removal, and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction q of nodes above percolation threshold, P∞≈(1-F)1/2 . For fixed P∞ and close to percolation threshold (q=qc) , we show that 1-F better reflects the actual fragmentation. Close to qc , for a given P∞ , 1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure F and the percolation measure P∞ for a real social network of workplaces linked by the households of the employees and find similar results.

  18. Percolation theory applied to measures of fragmentation in social networks.

    PubMed

    Chen, Yiping; Paul, Gerald; Cohen, Reuven; Havlin, Shlomo; Borgatti, Stephen P; Liljeros, Fredrik; Stanley, H Eugene

    2007-04-01

    We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction q of nodes and the total number of pairs in the original fully connected network. We compare F with the traditional measure used in percolation theory, P(infinity), the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erdos-Rényi and scale-free networks under various types of node removal strategies. The removal strategies are random removal, high degree removal, and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction q of nodes above percolation threshold, P(infinity) approximately (1-F)1/2. For fixed P(infinity) and close to percolation threshold (q=qc), we show that 1-F better reflects the actual fragmentation. Close to qc, for a given P(infinity), 1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure F and the percolation measure P(infinity) for a real social network of workplaces linked by the households of the employees and find similar results. PMID:17500961

  19. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  20. Pipeline rehabilitation using field applied tape systems

    SciTech Connect

    Reeves, C.R.

    1998-12-31

    Bare steel pipelines were first installed years before the turn of the century. Pipeline operators soon realized the lie of bare steel could be greatly enhanced by applying coatings. Thus began ``pipeline rehabilitation.`` Many of the older pipelines were exposed, evaluated, coated and returned to service. This procedure has reached new heights in recent years as coated pipelines of the twentieth century, having lived past their original design life, are now subject to coating failure. Many operator companies with pipelines thirty years or older are faced with ``replace or recondition.`` Considering the emphasis on cost restraints and environmental issues, replacing an existing pipeline is often not the best decision. Rehabilitation is a preferred solution for many operators.

  1. How Systems Thinking Applies to Education.

    ERIC Educational Resources Information Center

    Betts, Frank

    1992-01-01

    Seeds of public education's current failures are found in its past successes (transmitting culture and providing custodial care). Education is experiencing paradigm paralysis because of piecemeal reform approaches, failure to integrate solution ideas, and reductionist, boundary-limiting orientation. The old system is no longer adequate. Total…

  2. Exploitation of photogrammetry measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, De-Hai; Liang, Jin; Guo, Cheng; Liu, Jian-Wei; Zhang, Xiao-Qiang; Chen, Zhi-Xin

    2010-03-01

    A digital photogrammetry measurement system (XJTUDP) is developed in this work, based on close range industry. Studies are carried out on key technologies of a photogrammetry measurement system, such as the high accuracy measurement method of a marker point center based on a fitting subpixel edge, coded point design and coded point autodetection, calibration of a digital camera, and automatic image point matching algorithms. The 3-D coordinates of object points are reconstructed using colinear equations, image orientation based on coplanarity equations, direct linear transformation solution, outer polar-line constraints, 3-D reconstruction, and a bundle adjustment solution. Through the use of circular coded points, the newly developed measurement system first locates the positions of the camera automatically. Matching and reconstruction of the uncoded points are resolved using the outer polar-line geometry of multiple positions of the camera. The normal vector of the marker points is used to eliminate the error caused by the thickness of the marker points. XJTUDP and TRITOP systems are tested on the basis of VDI/VDE2634 guidelines, respectively. Results show that their precision is less than 0.1 mm/m. The measurement results of a large-scale waterwheel blade by XJTUDP show that this photogrammetry system can be applied to industrial measurements.

  3. Systems biology: the reincarnation of systems theory applied in biology?

    PubMed

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics. PMID:11589586

  4. Sneak analysis applied to process systems

    NASA Astrophysics Data System (ADS)

    Whetton, Cris

    Traditional safety analyses, such as HAZOP, FMEA, FTA, and MORT, are less than effective at identifying hazards resulting from incorrect 'flow' - whether this be flow of information, actions, electric current, or even the literal flow of process fluids. Sneak Analysis (SA) has existed since the mid nineteen-seventies as a means of identifying such conditions in electric circuits; in which area, it is usually known as Sneak Circuit Analysis (SCA). This paper extends the ideas of Sneak Circuit Analysis to a general method of Sneak Analysis applied to process plant. The methods of SA attempt to capitalize on previous work in the electrical field by first producing a pseudo-electrical analog of the process and then analyzing the analog by the existing techniques of SCA, supplemented by some additional rules and clues specific to processes. The SA method is not intended to replace any existing method of safety analysis; instead, it is intended to supplement such techniques as HAZOP and FMEA by providing systematic procedures for the identification of a class of potential problems which are not well covered by any other method.

  5. System safety as applied to Skylab

    NASA Technical Reports Server (NTRS)

    Kleinknecht, K. S.; Miller, B. J.

    1974-01-01

    Procedural and organizational guidelines used in accordance with NASA safety policy for the Skylab missions are outlined. The basic areas examined in the safety program for Skylab were the crew interface, extra-vehicular activity (EVA), energy sources, spacecraft interface, and hardware complexity. Fire prevention was a primary goal, with firefighting as backup. Studies of the vectorcardiogram and sleep monitoring experiments exemplify special efforts to prevent fire and shock. The final fire control study included material review, fire detection capability, and fire extinguishing capability. Contractors had major responsibility for system safety. Failure mode and effects analysis (FMEA) and equipment criticality categories are outlined. Redundancy was provided on systems that were critical to crew survival (category I). The five key checkpoints in Skylab hardware development are explained. Skylab rescue capability was demonstrated by preparations to rescue the Skylab 3 crew after their spacecraft developed attitude control problems.

  6. Spectral Selectivity Applied To Hybrid Concentration Systems

    NASA Astrophysics Data System (ADS)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  7. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  8. A productivity measurement system

    SciTech Connect

    Sweet, R.H.; Blain, D.A.

    1988-01-01

    The system for measuring productivity of the EG and G Idaho, Inc., Drafting Group was developed at the Idaho National Engineering Laboratory. The Productivity Measurement System, built on relational data base management software, provides up-to-date information on the productivity of the Drafting Group, the drafting units, and the individual Drafters. The system was developed using data collected in the Drafters Time and Activities Log and Task Baseline Agreement (TBA) that was input to the data base. Using these data, an average usage rate in hours per square foot of drawing, CAD and Manual, was established. This provided a benchmark for management reports that are depicted graphically for ease of trend analyses. In addition, the system provides each drafter an indicator as to where they stand in relation to their peers, and all of the information provided leads to more accurate drafting estimates. 11 figs.

  9. Radiometry spot measurement system

    NASA Technical Reports Server (NTRS)

    Chen, Harry H.; Lawn, Stephen J.

    1994-01-01

    The radiometry spot measurement system (RSMS) has been designed for use in the Diffusive And Radiative Transport in Fires (DARTFire) experiment, currently under development at the NASA Lewis Research Center. The RSMS can measure the radiation emitted from a spot of specific size located on the surface of a distant radiation source within a controlled wavelength range. If the spot is located on a blackbody source, its radiation and temperature can be measured directly or indirectly by the RSMS. This report presents computer simulation results used to verify RSMS performance.

  10. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  11. Chebyshev Expansion Applied to Dissipative Quantum Systems.

    PubMed

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich

    2016-05-19

    To determine the dynamics of a molecular aggregate under the influence of a strongly time-dependent perturbation within a dissipative environment is still, in general, a challenge. The time-dependent perturbation might be, for example, due to external fields or explicitly treated fluctuations within the environment. Methods to calculate the dynamics in these cases do exist though some of these approaches assume that the corresponding correlation functions can be written as a weighted sum of exponentials. One such theory is the hierarchical equations of motion approach. If the environment, however, is described by a complex spectral density or if its temperature is low, these approaches become very inefficient. Therefore, we propose a scheme based on a Chebyshev decomposition of the bath correlation functions and detail the respective quantum master equations within second-order perturbation theory in the environmental coupling. Similar approaches have recently been proposed for systems coupled to Fermionic reservoirs. The proposed scheme is tested for a simple two-level system and compared to existing results. Furthermore, the advantages and disadvantages of the present Chebyshev approach are discussed. PMID:26845380

  12. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  13. Measures Of Diffusion Regions Applied To PIC Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    The primary goal of the current NASA-MMS mission is to "identify and study diffusion regions during magnetic reconnection in Earth's magnetopause and magnetotail. Yet the term diffusion region is often misunderstood and can be ambiguous. Different conditions for a region to be a "diffusion region" are interpreted theoretically, related to each other and applied to PIC simulations of tail reconnection(a) (and to MMS measurements, if possible, at time of AGU). None of the conditions is both necessary and sufficient for topological reconnection to occur. During magnetic reconnection in a kinetic plasma key differences exist between the locations of diffusion regions in the electron fluid, the ion fluid and a single (MHD) fluid. (a)M.V. Goldman, D.L. Newman and G. Lapenta, Space Science Reviews, 2015

  14. Liquid Chromatography Applied to Space System

    NASA Astrophysics Data System (ADS)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Searching for signs of past or present life in our Solar System is a real challenge that stirs up the curiosity of scientists. Until now, in situ instrumentation was designed to detect and determine concentrations of a wide number of organic biomarkers. The relevant method which was and still is employed in missions dedicated to the quest of life (from Viking to ExoMars) corresponds to the pyrolysis-GC-MS. Along the missions, this approach has been significantly improved in terms of extraction efficiency and detection with the use of chemical derivative agents (e.g. MTBSTFA, DMF-DMA, TMAH…), and in terms of analysis sensitivity and resolution with the development of in situ high-resolution mass spectrometer (e.g. TOF-MS). Thanks to such an approach, organic compounds such as amino acids, sugars, tholins or polycyclic aromatic hydrocarbons (PAHs) were expected to be found. However, while there’s a consensus that the GC-MS of Viking, Huygens, MSL and MOMA space missions worked the way they had been designed to, pyrolysis is much more in debate (Glavin et al. 2001; Navarro-González et al. 2006). Indeed, (1) it is thought to remove low levels of organics, (2) water and CO2 could interfere with the detection of likely organic pyrolysis products, and (3) only low to mid-molecular weight organic molecules can be detected by this technique. As a result, researchers are now focusing on other in situ techniques which are no longer based on the volatility of the organic matter, but on the liquid phase extraction and analysis. In this line, micro-fluidic systems involving sandwich and/or competitive immunoassays (e.g. LMC, SOLID; Parro et al. 2005; Sims et al. 2012), micro-chip capillary electrophoreses (e.g. MOA; Bada et al. 2008), or nanopore-based analysis (e.g. BOLD; Schulze-Makuch et al. 2012) have been conceived for in situ analysis. Thanks to such approaches, molecular biological polymers (polysaccharides, polypeptides, polynucleotides, phospholipids, glycolipids

  15. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  16. Liquid Chromatography Applied to Space System

    NASA Astrophysics Data System (ADS)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Searching for signs of past or present life in our Solar System is a real challenge that stirs up the curiosity of scientists. Until now, in situ instrumentation was designed to detect and determine concentrations of a wide number of organic biomarkers. The relevant method which was and still is employed in missions dedicated to the quest of life (from Viking to ExoMars) corresponds to the pyrolysis-GC-MS. Along the missions, this approach has been significantly improved in terms of extraction efficiency and detection with the use of chemical derivative agents (e.g. MTBSTFA, DMF-DMA, TMAH…), and in terms of analysis sensitivity and resolution with the development of in situ high-resolution mass spectrometer (e.g. TOF-MS). Thanks to such an approach, organic compounds such as amino acids, sugars, tholins or polycyclic aromatic hydrocarbons (PAHs) were expected to be found. However, while there’s a consensus that the GC-MS of Viking, Huygens, MSL and MOMA space missions worked the way they had been designed to, pyrolysis is much more in debate (Glavin et al. 2001; Navarro-González et al. 2006). Indeed, (1) it is thought to remove low levels of organics, (2) water and CO2 could interfere with the detection of likely organic pyrolysis products, and (3) only low to mid-molecular weight organic molecules can be detected by this technique. As a result, researchers are now focusing on other in situ techniques which are no longer based on the volatility of the organic matter, but on the liquid phase extraction and analysis. In this line, micro-fluidic systems involving sandwich and/or competitive immunoassays (e.g. LMC, SOLID; Parro et al. 2005; Sims et al. 2012), micro-chip capillary electrophoreses (e.g. MOA; Bada et al. 2008), or nanopore-based analysis (e.g. BOLD; Schulze-Makuch et al. 2012) have been conceived for in situ analysis. Thanks to such approaches, molecular biological polymers (polysaccharides, polypeptides, polynucleotides, phospholipids, glycolipids

  17. Applying Bifactor Statistical Indices in the Evaluation of Psychological Measures.

    PubMed

    Rodriguez, Anthony; Reise, Steven P; Haviland, Mark G

    2016-01-01

    The purpose of this study was to apply a set of rarely reported psychometric indices that, nevertheless, are important to consider when evaluating psychological measures. All can be derived from a standardized loading matrix in a confirmatory bifactor model: omega reliability coefficients, factor determinacy, construct replicability, explained common variance, and percentage of uncontaminated correlations. We calculated these indices and extended the findings of 50 recent bifactor model estimation studies published in psychopathology, personality, and assessment journals. These bifactor derived indices (most not presented in the articles) provided a clearer and more complete picture of the psychometric properties of the assessment instruments. We reached 2 firm conclusions. First, although all measures had been tagged "multidimensional," unit-weighted total scores overwhelmingly reflected variance due to a single latent variable. Second, unit-weighted subscale scores often have ambiguous interpretations because their variance mostly reflects the general, not the specific, trait. Finally, we review the implications of our evaluations and consider the limits of inferences drawn from a bifactor modeling approach. PMID:26514921

  18. Applying the Implicit Association Test to Measure Intolerance of Uncertainty.

    PubMed

    Mosca, Oriana; Dentale, Francesco; Lauriola, Marco; Leone, Luigi

    2016-08-01

    Intolerance of Uncertainty (IU) is a key trans-diagnostic personality construct strongly associated with anxiety symptoms. Traditionally, IU is measured through self-report measures that are prone to bias effects due to impression management concerns and introspective difficulties. Moreover, self-report scales are not able to intercept the automatic associations that are assumed to be main determinants of several spontaneous responses (e.g., emotional reactions). In order to overcome these limitations, the Implicit Association Test (IAT) was applied to measure IU, with a particular focus on reliability and criterion validity issues. The IU-IAT and the Intolerance of Uncertainty Inventory (IUI) were administered to an undergraduate student sample (54 females and 10 males) with a mean age of 23 years (SD = 1.7). Successively, participants were asked to provide an individually chosen uncertain event from their own lives that may occur in the future and were requested to identify a number of potential negative consequences of it. Participants' responses in terms of cognitive thoughts (i.e., cognitive appraisal) and worry reactions toward these events were assessed using the two subscales of the Worry and Intolerance of Uncertainty Beliefs Questionnaire. The IU-IAT showed an adequate level of internal consistency and a not significant correlation with the IUI. A path analysis model, accounting for 35% of event-related worry, revealed that IUI had a significant indirect effect on the dependent variable through event-related IU thoughts. By contrast, as expected, IU-IAT predicted event-related worry independently from IU thoughts. In accordance with dual models of social cognition, these findings suggest that IU can influence event-related worry through two different processing pathways (automatic vs. deliberative), supporting the criterion and construct validity of the IU-IAT. The potential role of the IU-IAT for clinical applications was discussed. PMID:27451266

  19. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  20. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  1. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  2. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  3. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  4. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  5. Wind measurement system

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)

    1976-01-01

    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.

  6. Contour measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.; Deaton, E. T., Jr.; Campbell, R. A. (Inventor)

    1979-01-01

    A measurement system for measuring the departures from a straight line of discrete track sections of a track along a coal face in a mine employing a vehicle having a pair of spaced wheel assemblies which align with the track is presented. A reference arm pivotally connects between the wheel assemblies, and there is indicating means for measuring the angle of pivot between the arm and each of the wheel assemblies. The length of the device is less than the length of a track section, and thus when one of the wheel assemblies is on one track section and one is on an adjoining track section, the sum of the indicated angles will be indicative of the angle between track sections. Thus, from the length of a track section and angle, the departure of each track section from the line may be calculated.

  7. System for Measuring Capacitance

    NASA Technical Reports Server (NTRS)

    McNichol, Randal S. (Inventor)

    2001-01-01

    A system has been developed for detecting the level of a liquid in a tank wherein a capacitor positioned in the tank has spaced plates which are positioned such that the dielectric between the plates will be either air or the liquid, depending on the depth of the liquid in the tank. An oscillator supplies a sine wave current to the capacitor and a coaxial cable connects the capacitor to a measuring circuit outside the tank. If the cable is very long or the capacitance to be measured is low, the capacitance inherent in the coaxial cable will prevent an accurate reading. To avoid this problem, an inductor is connected across the cable to form with the capacitance of the cable a parallel resonant circuit. The impedance of the parallel resonant circuit is infinite, so that attenuation of the measurement signal by the stray cable capacitance is avoided.

  8. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  9. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  10. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  11. Airflow measurement techniques applied to radon mitigation problems

    SciTech Connect

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab.

  12. Certification methodology applied to the NASA experimental radar system

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Switzer, George F.; Bracalente, Emedio M.

    1994-01-01

    The objective of the research is to apply selected FAA certification techniques to the NASA experimental wind shear radar system. Although there is no intent to certify the NASA system, the procedures developed may prove useful to manufacturers that plan to undergo the certification process. The certification methodology for forward-looking wind shear detection radars will require estimation of system performance in several FAA-specified microburst/clutter scenarios as well as the estimation of probabilities of missed and false hazard alerts under general operational conditions. Because of the near-impossibility of obtaining these results experimentally, analytical and simulation approaches must be used. Hazard detection algorithms were developed that derived predictive estimates of aircraft hazard from basic radar measurements of weather reflectivity and radial wind velocity. These algorithms were designed to prevent false alarms due to ground clutter while providing accurate predictions of hazard to the aircraft due to weather. A method of calculation of the probability of missed and false hazard alerts has been developed that takes into account the effect of the various algorithms used in the system and provides estimates of the probability of missed and false alerts per microburst encounter under weather conditions found at Denver, Kansas City, and Orlando. Simulation techniques have been developed that permit the proper merging of radar ground clutter data (obtained from flight tests) with simulated microburst data (obtained from microburst models) to estimate system performance using the microburst/clutter scenarios defined by the FAA.

  13. Angular measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.

    1986-01-01

    A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).

  14. Angular measurement system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.; Kissel, R. R.

    1986-06-01

    A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).

  15. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  16. Applying expertise to data in the Geologist's Assistant expert system

    SciTech Connect

    Berkbigler, K.P.; Papcun, G.J.; Marusak, N.L.; Hutson, J.E.

    1988-01-01

    The Geologist's Assistant combines expert system technology with numerical pattern-matching and online communication to a large database. This paper discusses the types of rules used for the expert system, the pattern-matching technique applied, and the implementation of the system using a commercial expert system development environment. 13 refs., 8 figs.

  17. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  18. Applied research in the solar thermal-energy-systems program

    SciTech Connect

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  19. XML: How It Will Be Applied to Digital Library Systems.

    ERIC Educational Resources Information Center

    Kim, Hyun-Hee; Choi, Chang-Seok

    2000-01-01

    Shows how XML is applied to digital library systems. Compares major features of XML with those of HTML and describes an experimental XML-based metadata retrieval system, which is based on the Dublin Core and is designed as a subsystem of the Korean Virtual Library and Information System (VINIS). (Author/LRW)

  20. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  1. Population Health Measurement: Applying Performance Measurement Concepts in Population Health Settings

    PubMed Central

    Stoto, Michael A.

    2014-01-01

    Introduction: Whether the focus of population-health improvement efforts, the measurement of health outcomes, risk factors, and interventions to improve them are central to achieving collective impact in the population health perspective. And because of the importance of a shared measurement system, appropriate measures can help to ensure the accountability of and ultimately integrate the efforts of public health, the health care delivery sector, and other public and private entities in the community to improve population health. Yet despite its importance, population health measurement efforts in the United States are poorly developed and uncoordinated. Collaborative Measurement Development: To achieve the potential of the population health perspective, public health officials, health system leaders, and others must work together to develop sets of population health measures that are suitable for different purposes yet are harmonized so that together they can help to improve a community’s health. This begins with clearly defining the purpose of a set of measures, distinguishing between outcomes for which all share responsibility and actions to improve health for which the health care sector, public health agencies, and others should be held accountable. Framework for Population Health Measurement: Depending on the purpose of the analysis, then, measurement systems should clearly specify what to measure—in particular the population served (the denominator), what the critical health dimensions are in a measurement framework, and how the measures can be used to ensure accountability. Building on a clear understanding of the purpose and dimensions of population health that must be measured, developers can then choose specific measures using existing data or developing new data sources if necessary, with established validity, reliability, and other scientific characteristics. Rather than indiscriminately choosing among the proliferating data streams, this

  2. Predicting electrical measurements by applying scatterometry to complex spacer structures

    NASA Astrophysics Data System (ADS)

    Sendelbach, Matthew; Ayala, Javier; Herrera, Pedro

    2007-03-01

    The comparison of scatterometry measurements of complex spacer structures to electrical test measurements is discussed. Details of the NFET and PFET structures are presented, along with a summary of the scatterometry models used to represent the structures. Before comparison data are shown, a methodology and set of metrics are presented that assist in the analysis and interpretation of comparison data. The methodology, called Prediction Analysis, has its roots in TMU analysis, where both measurements are subject to error. But in Prediction Analysis, an "apples-to-apples" comparison of the measurements is not the goal, and the measurements may be reported in different units. The goal of Prediction Analysis is to analyze the components of error in a correlation and use this analysis to predict a measurement based on the knowledge of another measurement, such that the predicted measurement is bounded. This method is used in this work to determine how well scatterometry measurements of certain parameters correlate to electrical measurements of gate resistance, gate Lpoly, and transistor current Ion. Clear correlations are demonstrated, and physical explanations that explain these correlations are presented. Due to the correlations, the scatterometry measurements can be used as a predictor of electrical performance significantly before the electrical test occurs. Because of this, scatterometry can be a reliable measurement technique for improving spacer controls and reducing the mean time to detect (MTTD) some profile abnormalities.

  3. Improving the Validity of Quantitative Measures in Applied Linguistics Research

    ERIC Educational Resources Information Center

    Purpura, James E.; Brown, James Dean; Schoonen, Rob

    2015-01-01

    In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement…

  4. Ultrasonic measurement of applied stress in structural members

    NASA Astrophysics Data System (ADS)

    Mandracchia, Efrain A.

    1995-05-01

    In order to assess the structural integrity of bridges, an accurate and cost effective measurement technology is required to ensure their safe and reliable operation. Over 60,000 of the nation's steel highway bridges have been classified as structurally deficient. The objective of this paper is to assess the applicability of a new ultrasonic measurement technology as an effective measurement technique and viable tool for the structural engineering community. Laboratory tests comparing the ultrasonic and traditional strain gage measurement technique show a correlation coefficient of 0.993. Preliminary field test data collected on a portside crane compare both measurement technolgies. The resulting conclusion is that the ultrasonic technique is comparable in performance to the traditional strain gage measurment technolgy, and offers a portable, cost effective method for evaluating bridge, crane, and other types of structural members.

  5. Taking the Measure: Applying Reference Outputs to Collection Development.

    ERIC Educational Resources Information Center

    Moore, Carolyn M.; Mielke, Linda

    1986-01-01

    Presents preliminary results of Clearwater Public Library's study of the usefulness of "Output Measures for Public Libraries" as an indicator of reference performance, and the impact of collection development choices on reference output measures. Data on turnover rate, in-library use, reference fill rate, and reference transactions per capita are…

  6. Weak measurements applied to process monitoring using focused beam scatterometry

    NASA Astrophysics Data System (ADS)

    Brown, Thomas G.; Alonso, Miguel A.; Vella, Anthony; Theisen, Michael J.; Head, Stephen T.

    2014-04-01

    The capacity to measure nanoscale features rapidly and accurately is of central importance for the monitoring of manufacturing processes in the production of computer integrated circuits. Parameters of interest include, for example, trench depth, duty cycle, wall angle and oxide layer thickness. The measurement method proposed here uses focused beam scatterometry, in which the illumination consists of a focused field with a suitably tailored spatially-varying polarization distribution. In an analysis that is analogous to classical off-null measurements as well as weak measurements in quantum mechanics, we predict that four or more parameters can be measured and distinguished with an accuracy consistent with the needs laid out in the semiconductor roadmap.

  7. System theory as applied differential geometry. [linear system

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  8. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  9. Coordinate measuring system

    DOEpatents

    Carlisle, Keith

    2003-04-08

    An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.

  10. Differential correction method applied to measurement of the FAST reflector

    NASA Astrophysics Data System (ADS)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%–80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  11. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1987-01-01

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.

  12. Reflectance difference laser measurements applied to the study of the stress/strain state in materials

    NASA Astrophysics Data System (ADS)

    Saucedo-Zárate, Carlos H.; López-López, Maximo; Sánchez-López, Carlos; Correa-Figueroa, Jose Luis; Huerta-Ruelas, Jorge A.

    2009-09-01

    Development of experimental setup to study strain/stress state in materials emerges from a need to evaluate by a nondestructive and non-invasive technique the performance in new materials like semiconductor heterostructures, composite materials and alloys. The system was designed and built to be used as a multi-functional experimental setup. The main purpose is to characterize materials in elastic and plastic regime by reflectance difference laser measurements and strain gages. This system allows the generalization of results obtained from a theoretical model based in Finite Element Model and experimental measurements taken in finite specific points with strain gages. A NI™ platform is used for signal conditioning and processing. System built is described which includes an optical setup to measure reflectance difference laser (RDL), and a flexor which applies deformation in a link, with a micrometer. A correlation bigger than 0.95 was found between optical signal, strain gage signal, and finite element modeling.

  13. Conformity with the HIRF Environment Applied to Avionic System

    NASA Astrophysics Data System (ADS)

    Tristant, F.; Rotteleur, J. P.; Moreau, J. P.

    2012-05-01

    This paper presents the qualification and certification methodology applied to the avionic system for the HIRF and Lightning environment. Several versions of this system are installed in our legacy Falcon with different variations. The paper presents the compliance process taking into account the criticality and the complexity of the system, its installation, the level of exposition for EM environment and some solutions used by Dassault Aviation to demonstrate the compliance process.

  14. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  15. A new thoron atmosphere reference measurement system.

    PubMed

    Sabot, B; Pierre, S; Michielsen, N; Bondiguel, S; Cassette, P

    2016-03-01

    A new thoron reference ((220)Rn) in air measurement system is developed at the LNE-LNHB with the collaboration of the IRSN. This measurement system is based on a reference volume with an alpha detector which is able to directly measure thoron and its decay products at atmospheric pressure. In order to improve the spectrum quality of the thoron progenies, we have applied an electric field to catch the decay products on the detector surface. The developed system is a portative device which can be used to measure reference thoron atmosphere such as the BACCARA chamber at IRSN (Picolo et al., 1999). As this system also allows the measurement of radon ((222)Rn) in air, it was validated using the radon primary standards made at the LNE-LNHB. This thoron measurement system will be used, at IRSN, as a reference instrument in order to calibrate the thoron activity concentration in the BACCARA facility. PMID:26701661

  16. Applying systems engineering methodologies to the micro- and nanoscale realm

    NASA Astrophysics Data System (ADS)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  17. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  18. Managing Marginal School Employees: Applying Standards-Based Performance Measures

    ERIC Educational Resources Information Center

    Fields, Lynette; Reck, Brianne; Egley, Robert

    2006-01-01

    This book contains a collection of case studies that provide a variety of situations in managing or working with marginal employees in a school system. Managing Marginal School Employees will serve as a primary or companion text for administrator candidates or current administrators that include dilemmas for the student to think about, discuss,…

  19. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  20. Applying Sustainable Systems Development Approach to Educational Technology Systems

    ERIC Educational Resources Information Center

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  1. High precision zinc isotopic measurements applied to mouse organs.

    PubMed

    Moynier, Frédéric; Le Borgne, Marie

    2015-01-01

    We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility. PMID:26065372

  2. Mutual information measures applied to EEG signals for sleepiness characterization.

    PubMed

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value < 0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. PMID:25638417

  3. Verifying Anonymous Credential Systems in Applied Pi Calculus

    NASA Astrophysics Data System (ADS)

    Li, Xiangxi; Zhang, Yu; Deng, Yuxin

    Anonymous credentials are widely used to certify properties of a credential owner or to support the owner to demand valuable services, while hiding the user's identity at the same time. A credential system (a.k.a. pseudonym system) usually consists of multiple interactive procedures between users and organizations, including generating pseudonyms, issuing credentials and verifying credentials, which are required to meet various security properties. We propose a general symbolic model (based on the applied pi calculus) for anonymous credential systems and give formal definitions of a few important security properties, including pseudonym and credential unforgeability, credential safety, pseudonym untraceability. We specialize the general formalization and apply it to the verification of a concrete anonymous credential system proposed by Camenisch and Lysyanskaya. The analysis is done automatically with the tool ProVerif and several security properties have been verified.

  4. Applying modern measurements of Pleistocene loads to model lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Beard, E. P.; Hoggan, J. R.; Lowry, A. R.

    2011-12-01

    The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper

  5. A layered neural network model applied to the auditory system

    NASA Astrophysics Data System (ADS)

    Travis, Bryan J.

    1986-08-01

    The structure of the auditory system is described with emphasis on the cerebral cortex. A layered neural network model incorporating much of the known structure of the cortex is applied to word discrimination. The concepts of iterated maps and atrractive fixed points are used to enable the model to recognize words despite variations in pitch, intensity and duration.

  6. Associate of Applied Science Degree in Office Systems. Proposal.

    ERIC Educational Resources Information Center

    Gallaudet Coll., Washington, DC. School of Preparatory Studies.

    This proposal culminates a 5-year study of the possibility of awarding associate degrees at Gallaudet College, a private, liberal arts college for hearing impaired adults. The proposal outlines an Associate of Applied Science degree (AAS) in Office Systems at the School of Preparatory Studies. First, introductory material provides a brief history…

  7. Applied Information Systems Research Program (AISRP) Workshop 3 meeting proceedings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Workshop of the Applied Laboratory Systems Research Program (AISRP) met at the Univeristy of Colorado's Laboratory for Atmospheric and Space Physics in August of 1993. The presentations were organized into four sessions: Artificial Intelligence Techniques; Scientific Visualization; Data Management and Archiving; and Research and Technology.

  8. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  9. Spray momentum measuring system

    NASA Technical Reports Server (NTRS)

    Sheffield, E. W.

    1971-01-01

    Technique enables accurate prediction of erosion and cavitation produced by fluid spray. Method measures high velocity sprays produced by small orifices. Originally designed to determine oxidizer-injection patterns of liquid fueled rocket engines, technique is used with other liquids, or, with appropriate modification, with gases.

  10. Pollution Measuring System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.

  11. Applying remote sensing measurements of phenology to southern California vegetation

    NASA Astrophysics Data System (ADS)

    Willis, K. S.; Gillespie, T. W.

    2012-12-01

    Monitoring vegetation phenology can be used to assess the impacts of climate change on a localized region. This study aims to determine the most applicable remote sensing method for monitoring phenological changes in the largest urban National Park in the US: the Santa Monica Mountains of southern California. This is achieved by comparing the Normalized Difference Vegetation Index (NDVI), considered applicable to Mediterranean-type ecosystems due to the low amount of greenness present in the vegetation, with relative spectral mixture analysis (RMSA). RMSA is a technique developed to measure temporal changes in green vegetation (GV), nonphotosynthetic vegetation plus litter (NPV), and snow cover designed for the south-central US. This study analyzes areas of natural vegetation in the Santa Monica Mountains using MODIS imagery by comparing GV and NPV indices derived from RMSA with the classic NDVI. The phenological transition dates of focus here include: (1) greenup, the date of onset of photosynthetic activity; (2) maturity, the date at which plant green leaf area is maximum; (3) senescence, the date at which photosynthetic activity and green leaf area begin to rapidly decrease; (4) dormancy, the date at which physiological activity becomes near zero. Overall, this study tests the application of RMSA to a new environment, compares these results to those derived from NDVI, and provides insight regarding the impacts of climate change on southern California phenological cycles.

  12. Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings

    SciTech Connect

    Kadtke, J.B.; Bulsara, A.

    1997-12-01

    These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)

  13. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  14. Microbial ecology measurement system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  15. Human system interaction measures: An approach to improve system performance

    SciTech Connect

    Blackman, H.S.

    1990-01-01

    This paper presents an approach for the analysis of system performance. This approach is based upon a functional model of the system, and performance measures of that system. The paper also presents a model of total system performance which is composed of the following three parts: challenges (the challenge represented by the scenario), functions (the resources available to be applied to the challenge), and sequence (how resources are used to cope with the challenge). The approach and model are applied and presented in a civil aviation application. 2 figs.

  16. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  17. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    SciTech Connect

    Tarifeño-Saldivia, Ariel E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  18. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  19. Discrete Event Supervisory Control Applied to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  20. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  1. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  2. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  3. Systemic toxicity of dermally applied crude oils in rats

    SciTech Connect

    Feuston, M.H.; Mackerer, C.R.; Schreiner, C.A.; Hamilton, C.E.

    1997-12-31

    Two crude oils, differing in viscosity (V) and nitrogen (N) and sulfur (S) content, were evaluated for systemic toxicity, In the Crude I (low V, low N, low S) study, the material was applied to the clipped backs of rats at dose levels of 0, 30, 125, and 500 mg/kg. In the Crude II (high V, high N, moderate S) study, the oil was applied similarly at the same dose levels. The crude oils were applied for 13 wk, 5 d/wk. Exposure sites were not occluded. Mean body weight gain (wk 1-14) was significantly reduced in male rats exposed to Crude II; body weight gain of all other animals was not adversely affected by treatment. An increase in absolute (A) and relative (R) liver weights and a decrease in A and R thymus weights were observed in male and female rats exposed to Crude II at 500 mg/kg; only liver weights (A and R) were adversely affected in male and female rats exposed to Crude I. In general, there was no consistent pattern of toxicity for serum chemistry endpoints; however, more parameters were adversely affected in Crude II-exposed female rats than in the other exposed groups. A consistent pattern of toxicity for hematology endpoints was observed among male rats exposed to Crude I and male and female rats exposed to Crude II. Parameters affected included: Crudes I and II, red blood cell count, hemoglobin, and hematocrit, Crude II, platelet count. Microscopic evaluation of tissues revealed the following treatment-related findings: Crude I, treated skin, thymus, and thyroid; Crude II, bone marrow, treated skin, thymus, and thyroid. The LOEL (lowest observable effect level) for skin irritation and systemic toxicity (based on marginal effects on the thyroid) for both crude oils was 30 mg/kg; effects were more numerous and more pronounced in animals exposed to Crude II. Systemic effects are probably related to concentrations of polycyclic aromatic compounds (PAC) found in crude oil.

  4. Measurement of insulation layers using DTS system

    NASA Astrophysics Data System (ADS)

    Hruby, David; Kajnar, Tomas; Koudelka, Petr; Latal, Jan; Hurta, Jan; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2015-01-01

    Fiber optic distributed temperature sensing systems (DTS) are based on the principle of reflectometer and allow us to measure the temperature along the optical fiber. Optical fiber in these systems is used as a temperature sensor which can measure up to thousands of points simultaneously. DTS sensors use nonlinear phenomenon known as Raman scattering for temperature measurement. The advantages of this system include immunity to electromagnetic radiation, low cost of optical fiber, the possibility of measurement to a distance of 10 km and safe use in flammable or corrosive environments. The small size of optical fiber allows using in applications where the dimensions of the other sensors were problematic. A typical example of the DTS application is the fire detection in tunnels and buildings at risk, detection of water leaks on dikes and dams or monitoring of temperature in mine shafts. This article deals with the measurement of temperature transmission over various insulation layers using the DTS system. One of the problems of temperature transmission is that most of the sensors cannot measure the entire temperature profile but only allows a point measurement. This problem is solved by DTS systems with optical fibers. Optical fiber, due to its small size, can be applied among various insulation layers that were formed by rock wool. Three sensory layers formed by rings of multimode optical tightbuffered fiber with 50/125 micron core/cladding dimension were applied. The layers were linked together allowing a direct comparison of measured temperature. Rows of rings were placed on the margins and one was in the middle. Individual rings were linked together into the horizontal lines. Thus we were able to cover the whole surface of the insulation layers. Measurement was carried out in a closed air-conditioned room for 37 hours. Graphs with the progress of temperature at time and place were compiled from the measured data.

  5. Thermographic techniques applied to solar collector systems analysis

    SciTech Connect

    Eden, A.

    1980-02-01

    The use of thermography to analyze large solar collector array systems under dynamic operating conditions is discussed. The research at the Solar Energy Research Institute (SERI) in this area has focused on thermographic techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of infrared (IR) analysis as a qualitative analysis tool and operation and maintenance procedure when applied to large arrays. Thermographic analysis of most collector systems qualitatively showed relative temperature distributions that indicated balanced flow patterns. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

  6. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  7. Systems and methods for measuring component matching

    NASA Technical Reports Server (NTRS)

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)

    2006-01-01

    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  8. Computer aided coordinate measuring systems

    NASA Astrophysics Data System (ADS)

    Nastri, J. W.

    Sikorsky's computer-aided inspection system and equipment utilized to assure that manufactured parts meet drawing tolerance specifications are discussed. An overview of the system is given, and the software is described, including the monitor console routine and commands and the language commands. The system's three coordinate measuring machines are discussed, and the part inspection methods are described in stepwise fashion. System benefits and time savings items are detailed, including quick and accurate measurement of parts difficult to inspect by conventional methods, significant reduction in inspection time, a consistent baseline that highlights variances, and the use of personnel with lower skill levels to effectively inspect critical parts.

  9. Improved Methods for Identifying, Applying, and Verifying Industrial Energy Efficiency Measures

    NASA Astrophysics Data System (ADS)

    Harding, Andrew Chase

    Energy efficiency is the least expensive source of additional energy capacity for today's global energy expansion. Energy efficiency offers additional benefits of cost savings for consumers, reduced environmental impacts, and enhanced energy security. The challenges of energy efficiency include identifying potential efficiency measures, quantifying savings, determining cost effectiveness, and verifying savings of installed measures. This thesis presents three separate chapters which address these challenges. The first is a paper presented at the 2014 industrial energy technology conference (IETC) that details a compressed air system project using the systems approach to identify cost effective measures, energy intensity to project savings, and proper measurement and verification (M&V) practices to prove that the savings were achieved. The second is a discussion of proper M&V techniques, how these apply to international M&V protocols, and how M&V professionals can improve the accuracy and efficacy of their M&V activities. The third is an energy intensity analysis of a poultry processing facility at a unit operations level, which details the M&V practices used to determine the intensities at each unit operation and compares these to previous works.

  10. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  11. Method of error analysis for phase-measuring algorithms applied to photoelasticity.

    PubMed

    Quiroga, J A; González-Cano, A

    1998-07-10

    We present a method of error analysis that can be applied for phase-measuring algorithms applied to photoelasticity. We calculate the contributions to the measurement error of the different elements of a circular polariscope as perturbations of the Jones matrices associated with each element. The Jones matrix of the real polariscope can then be calculated as a sum of the nominal matrix and a series of contributions that depend on the errors associated with each element separately. We apply this method to the analysis of phase-measuring algorithms for the determination of isoclinics and isochromatics, including comparisons with real measurements. PMID:18285900

  12. Applying principles of health system strengthening to eye care

    PubMed Central

    Blanchet, Karl; Patel, Daksha

    2012-01-01

    Understanding Health systems have now become the priority focus of researchers and policy makers, who have progressively moved away from a project-centred perspectives. The new tendency is to facilitate a convergence between health system developers and disease-specific programme managers in terms of both thinking and action, and to reconcile both approaches: one focusing on integrated health systems and improving the health status of the population and the other aiming at improving access to health care. Eye care interventions particularly in developing countries have generally been vertically implemented (e.g. trachoma, cataract surgeries) often with parallel organizational structures or specialised disease specific services. With the emergence of health system strengthening in health strategies and in the service delivery of interventions there is a need to clarify and examine inputs in terms governance, financing and management. This present paper aims to clarify key concepts in health system strengthening and describe the various components of the framework as applied in eye care interventions. PMID:22944762

  13. Applying principles of health system strengthening to eye care.

    PubMed

    Blanchet, Karl; Patel, Daksha

    2012-01-01

    Understanding health systems have now become the priority focus of researchers and policy makers, who have progressively moved away from a project-centred perspectives. The new tendency is to facilitate a convergence between health system developers and disease-specific programme managers in terms of both thinking and action, and to reconcile both approaches: one focusing on integrated health systems and improving the health status of the population and the other aiming at improving access to health care. Eye care interventions particularly in developing countries have generally been vertically implemented (e.g. trachoma, cataract surgeries) often with parallel organizational structures or specialised disease specific services. With the emergence of health system strengthening in health strategies and in the service delivery of interventions there is a need to clarify and examine inputs in terms governance, financing and management. This present paper aims to clarify key concepts in health system strengthening and describe the various components of the framework as applied in eye care interventions. PMID:22944762

  14. Foot Plantar Pressure Measurement System: A Review

    PubMed Central

    Razak, Abdul Hadi Abdul; Zayegh, Aladin; Begg, Rezaul K.; Wahab, Yufridin

    2012-01-01

    Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis. PMID:23012576

  15. Wavelet excited measurement of system transfer function.

    PubMed

    Olkkonen, H; Olkkonen, J T

    2007-02-01

    This article introduces a new method, which is referred to as the wavelet excitation method (WEM), for the measurement of the system transfer function. Instead of commonly used impulse or sine wave excitations, the method uses a sequential excitation by biorthogonal symmetric wavelets. The system transfer function is reconstructed from the output measurements. In the WEM the signals can be designed so that if N different excitation sequences are used and the excitation rate is f, the sampling rate of the analog-to-digital converter can be reduced to f/N. The WEM is especially advantageous in testing systems, where high quality impulse excitation cannot be applied. The WEM gave consistent results in transfer function measurements of various multistage amplifiers with the linear circuit analysis (SPICE) and the sine wave excitation methods. The WEM makes available new high speed sensor applications, where the sampling rate of the sensor may be considerably lower compared with the system bandwidth. PMID:17578145

  16. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  17. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  18. System engineering applied to VLTI: a scientific success

    NASA Astrophysics Data System (ADS)

    Haguenauer, P.; Alonso, J.; Bourget, P.; Gitton, Ph.; Morel, S.; Poupar, S.; Schuhler, Nicolas

    2014-07-01

    The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory. After the first fringes obtained in 2011 with the commissioning instrument VINCI and with siderostats, the VLTI has seen an important number of systems upgrades, paving the path towards reaching the infrastructure level and scientific results it had been designed for. The current status of the VLTI operation all year round with up to four telescopes simultaneously and real imaging capability demonstrates the powerful interferometric infrastructure that has been delivered to the astronomical community. Reaching today's level of robustness and operability of the VLTI has been a long journey, with a lot of lessons learned and gained experience. In 2007, the Paranal Observatory recognized the need for a global system approach for the VLTI, and a dedicated system engineering team was set to analyse the status of the interferometer, identify weak points and area where performances were not met, propose and apply solutions. The gains of this specific effort can be found today in the very good operability level with faster observations executions, in the decreased downtime, in the improved performances, and in the better reliability of the different systems. We will present an historical summary of the system engineering effort done at the VLTI, showing the strategy used, and the implemented upgrades and technical solutions. Improvements in terms of scientific data quality will be highlighted when possible. We will conclude on the legacy of the VLTI system engineering effort, for the VLTI and for future systems.

  19. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  20. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2013-05-28

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  1. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  2. Integration of optical measurement methods with flight parameter measurement systems

    NASA Astrophysics Data System (ADS)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  3. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  4. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  5. Hyperspectral imaging applied to complex particulate solids systems

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2008-04-01

    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  6. Applying of digital signal processing to optical equisignal zone system

    NASA Astrophysics Data System (ADS)

    Maraev, Anton A.; Timofeev, Aleksandr N.; Gusarov, Vadim F.

    2015-05-01

    In this work we are trying to assess the application of array detectors and digital information processing to the system with the optical equisignal zone as a new method of evaluating of optical equisignal zone position. Peculiarities of optical equisignal zone formation are described. The algorithm of evaluation of optical equisignal zone position is applied to processing on the array detector. This algorithm enables to evaluate as lateral displacement as turning angles of the receiver relative to the projector. Interrelation of parameters of the projector and the receiver is considered. According to described principles an experimental set was made and then characterized. The accuracy of position evaluation of the equisignal zone is shown dependent of the size of the equivalent entrance pupil at processing.

  7. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  8. Statistically Comparing Three Optical Cd Measurement Systems

    NASA Astrophysics Data System (ADS)

    Acree, David A.; Lee, Chen-Show

    1989-07-01

    The rapid technological change in the VLSI industry has resulted in a constant upgrading of measurement equipment. One question to be asked is whether the upgrades recommended really improve the measurement system. Precise measurement equipment is one of the most important components in the next generation of VLSI technology. A systematic approach to measurement equipment upgrades in one micron technology can save much grief and remove uncertainty. In order to compare three optical CD measurement systems simultaneously, a statistically designed systematic approach was employed. The major contributors of variation were identified and quantified. The precision of each optical CD system was then compared. Findings from the study showed the upgraded system reduced variability associated with machine repeatability by a third, but only reduced overall measurement variation by a tenth. The same methods used here can apply in most cases where one piece of equipment is evaluated or several are compared. Vendor claims can be easily tested through the approach described. Reductions in measurement variation associated with an upgrade can be actually quantified allowing management to weigh benefits against costs.

  9. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  10. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  11. Measuring and Maximising Research Impact in Applied Social Science Research Settings. Good Practice Guide

    ERIC Educational Resources Information Center

    Stanwick, John; Hargreaves, Jo

    2012-01-01

    This guide describes the National Centre for Vocational Education Research (NCVER) approach to measuring impact using examples from its own case studies, as well as showing how to maximise the impact of applied social science research. Applied social science research needs to demonstrate that it is relevant and useful both to public policy and…

  12. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  13. Ground-truth measurement systems

    NASA Technical Reports Server (NTRS)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  14. A Method to Apply Friction Modifier in Railway System

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kosuke; Suda, Yoshihiro; Iwasa, Takashi; Fujii, Takeshi; Tomeoka, Masao; Tanimoto, Masuhisa; Kishimoto, Yasushi; Nakai, Takuji

    Controlling the friction between wheel and rail is direct and very effective measures to improve the curving performances of bogie trucks, because the curving performances of bogie truck depend much on friction characteristics. Authors have proposed a method, “friction control”, which utilizes friction modifier (KELTRACKTM HPF) with onboard spraying system. With the method, not only friction coefficient, but also friction characteristics are able to be controlled as expected. In this paper, results of fundamental experiments are reported which play an important role to realize the new method.

  15. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  16. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  17. Database mining applied to central nervous system (CNS) activity.

    PubMed

    Pintore, M; Taboureau, O; Ros, F; Chrétien, J R

    2001-04-01

    A data set of 389 compounds, active in the central nervous system (CNS) and divided into eight classes according to the receptor type, was extracted from the RBI database and analyzed by Self-Organizing Maps (SOM), also known as Kohonen Artificial Neural Networks. This method gives a 2D representation of the distribution of the compounds in the hyperspace derived from their molecular descriptors. As SOM belongs to the category of unsupervised techniques, it has to be combined with another method in order to generate classification models with predictive ability. The fuzzy clustering (FC) approach seems to be particularly suitable to delineate clusters in a rational way from SOM and to get an automatic objective map interpretation. Maps derived by SOM showed specific regions associated with a unique receptor type and zones in which two or more activity classes are nested. Then, the modeling ability of the proposed SOM/FC Hybrid System tools applied simultaneously to eight activity classes was validated after dividing the 389 compounds into a training set and a test set, including 259 and 130 molecules, respectively. The proper experimental activity class, among the eight possible ones, was predicted simultaneously and correctly for 81% of the test set compounds. PMID:11461760

  18. Simulation program of nonlinearities applied to telecommunication systems

    NASA Technical Reports Server (NTRS)

    Thomas, C.

    1979-01-01

    In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.

  19. Tailored Excitation for Multivariable Stability-Margin Measurement Applied to the X-31A Nonlinear Simulation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Burken, John J.

    1997-01-01

    Safety and productivity of the initial flight test phase of a new vehicle have been enhanced by developing the ability to measure the stability margins of the combined control system and vehicle in flight. One shortcoming of performing this analysis is the long duration of the excitation signal required to provide results over a wide frequency range. For flight regimes such as high angle of attack or hypersonic flight, the ability to maintain flight condition for this time duration is difficult. Significantly reducing the required duration of the excitation input is possible by tailoring the input to excite only the frequency range where the lowest stability margin is expected. For a multiple-input/multiple-output system, the inputs can be simultaneously applied to the control effectors by creating each excitation input with a unique set of frequency components. Chirp-Z transformation algorithms can be used to match the analysis of the results to the specific frequencies used in the excitation input. This report discusses the application of a tailored excitation input to a high-fidelity X-31A linear model and nonlinear simulation. Depending on the frequency range, the results indicate the potential to significantly reduce the time required for stability measurement.

  20. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  1. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  2. PEMS (PORTABLE EMISSONS MEASUREMENT SYSTEM)

    EPA Science Inventory

    PEMS is a generic term that encompasses all portable emissions measurement systems. Two EPA-developed examples are ROVER (Real-time On-Vehicle Emissions Reporter) for on-highway applications, and SPOT (Simple Portable On-vehicle Tester) for non-road applications. Now, however, ...

  3. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    SciTech Connect

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished from space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.

  4. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  5. Ultrasonic temperature measurements with fiber optic system

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Ma, Tong; Liu, Yuqian; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    Ultrasonic temperature measurements have been developed and widely applied in non-contact temperature tests in many industries. However, using optical fibers to build ultrasound generators are novel. This paper reports this new fiber optic ultrasonic system based on the generator of gold nanoparticles/polydimethylsiloxane (PDMS) composites. The optical acoustic system was designed to test the change of temperature on the aluminum plate and the temperature of the torch in the air. This paper explores the relationship between the ultrasonic transmission and the change of temperature. From the experimental results, the trend of ultrasonic speed was different in the aluminum plate and air with the change of temperature. Since the system can measure the average temperature of the transmission path, it will have significant influence on simulating the temperature distribution.

  6. An interferometric strain-displacement measurement system

    NASA Technical Reports Server (NTRS)

    Sharpe, William N., Jr.

    1989-01-01

    A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.

  7. Applying Multiple Computerized Text-Analytic Measures to Single Psychotherapy Cases

    PubMed Central

    MERGENTHALER, ERHARD; KÄCHELE, HORST

    1996-01-01

    The authors applied five different computer-assisted measures for the analysis of textual data to the transcripts of two brief psychotherapies. The five measures involved different computational procedures and were derived from different theoretical backgrounds. The two cases when compared did not show uniform results in their trends over time for any one method. However, examination and comparison of the five measurements for each case yielded convergent phenomena, which could then be validated by other data available for these cases. PMID:22700302

  8. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  9. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  10. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  11. Selected KSC Applied Physics Lab Responses to Shuttle Processing Measurement Requests

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2010-01-01

    The KSC Applied Physics Lab has been supporting Shuttle Ground Processing for over 20 years by solving problems brought to us by Shuttle personnel. Roughly half of the requests to our lab have been to find ways to make measurements, or to improve on an existing measurement process. This talk will briefly cover: 1) Centering the aft end of the External Tank between the Solid Rocket Boosters; 2) Positioning the GOX Vent Hood over the External Tank; 3) Remote Measurements of External Tank Damage; 4) Strain Measurement in the Orbiter Sling; and 5) Over-center Distance Measurement in an Over-center Mechanism.

  12. Applying Outcome Measurements: A Guide to Educational Outcome Measurements and Their Uses. Seminar No. 5.

    ERIC Educational Resources Information Center

    Glaser, Ezra

    This guide is essentially designed as a teaching aid for those who would inform planners, officials of educational ministries, school administrators, principals, and teachers about educational outcome measurements. In outline and graphic form, the guide presents topics for discussion in a seminar dealing with the application of outcome…

  13. Job Measurement Standards and Workload Planning in Distribution System Work.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1979

    1979-01-01

    This report describes methods and benefits of applying standard work measurement and planning techniques to water distribution system work. The three sections of the report discuss: a general work standards survey; application; and consideration of benefits. (CS)

  14. Thorough approach to measurement uncertainty analysis applied to immersed heat exchanger testing

    SciTech Connect

    Farrington, R B; Wells, C V

    1986-04-01

    This paper discusses the value of an uncertainty analysis, discusses how to determine measurement uncertainty, and then details the sources of error in instrument calibration, data acquisition, and data reduction for a particular experiment. Methods are discussed to determine both the systematic (or bias) error in an experiment as well as to determine the random (or precision) error in the experiment. The detailed analysis is applied to two sets of conditions in measuring the effectiveness of an immersed coil heat exchanger. It shows the value of such analysis as well as an approach to reduce overall measurement uncertainty and to improve the experiment. This paper outlines how to perform an uncertainty analysis and then provides a detailed example of how to apply the methods discussed in the paper. The authors hope this paper will encourage researchers and others to become more concerned with their measurement processes and to report measurement uncertainty with all of their test results.

  15. Issues to Consider When Measuring and Applying Socioeconomic Position Quantitatively in Immigrant Health Research

    PubMed Central

    Nielsen, Signe Smith; Hempler, Nana Folmann; Krasnik, Allan

    2013-01-01

    The relationship between migration and health is complex, yet, immigrant-related inequalities in health are largely influenced by socioeconomic position. Drawing upon previous findings, this paper discusses issues to consider when measuring and applying socioeconomic position in quantitative immigrant health research. When measuring socioeconomic position, it is important to be aware of four aspects: (1) there is a lack of clarity about how socioeconomic position should be measured; (2) different types of socioeconomic position may be relevant to immigrants compared with the native-born population; (3) choices of measures of socioeconomic position in quantitative analyses often rely on data availability; and (4) different measures of socioeconomic position have different effects in population groups. Therefore, caution should be used in the collection, presentation, analyses, and interpretation of data and researchers need to display their proposed conceptual models and data limitations as well as apply different approaches for analyses. PMID:24287857

  16. A novel framework for validating and applying standardized small area measurement strategies

    PubMed Central

    2010-01-01

    Background Local measurements of health behaviors, diseases, and use of health services are critical inputs into local, state, and national decision-making. Small area measurement methods can deliver more precise and accurate local-level information than direct estimates from surveys or administrative records, where sample sizes are often too small to yield acceptable standard errors. However, small area measurement requires careful validation using approaches other than conventional statistical methods such as in-sample or cross-validation methods because they do not solve the problem of validating estimates in data-sparse domains. Methods A new general framework for small area estimation and validation is developed and applied to estimate Type 2 diabetes prevalence in US counties using data from the Behavioral Risk Factor Surveillance System (BRFSS). The framework combines the three conventional approaches to small area measurement: (1) pooling data across time by combining multiple survey years; (2) exploiting spatial correlation by including a spatial component; and (3) utilizing structured relationships between the outcome variable and domain-specific covariates to define four increasingly complex model types - coined the Naive, Geospatial, Covariate, and Full models. The validation framework uses direct estimates of prevalence in large domains as the gold standard and compares model estimates against it using (i) all available observations for the large domains and (ii) systematically reduced sample sizes obtained through random sampling with replacement. At each sampling level, the model is rerun repeatedly, and the validity of the model estimates from the four model types is then determined by calculating the (average) concordance correlation coefficient (CCC) and (average) root mean squared error (RMSE) against the gold standard. The CCC is closely related to the intraclass correlation coefficient and can be used when the units are organized in groups and

  17. Effect of applied load on the nondestructive measurement of concrete strength

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, E.; Amjad, U.; Kundu, T.; Saadatmanesh, H.

    2014-03-01

    Nondestructive measurement of the concrete strength is an important topic of research. Among different nondestructive testing (NDT) methods the ultrasonic pulse velocity (UPV) technique is the most popular method for concrete strength estimation. While measuring concrete strength by this method almost all researchers have neglected the effect of applied stress or load on the concrete member. In this investigation attempts were made to properly incorporate the effect of the applied load on the strength prediction of concrete specimens from UPV value. To achieve this goal, 4 groups of concrete specimens with different values of final strength were made. Materials used for making cylindrical specimens of 3 inch diameter and 6 inch height included regular Portland cement, water and two types of aggregate - fine and coarse. After applying the load on the specimen in multiple steps - up to 70% of its failure strength fc'- the time of flight (TOF) value was measured for every loading step. The recorded results showed that applied load on the member has significant effect on the measured UPV value on concrete specimens. Therefore, to find the strength of the concrete from the UPV value, the applied load on the sample should be considered as an important factor that cannot be neglected.

  18. Integrated measurement system for miniature camera modules

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Nivala, Ilkka; Ryytty, Pasi; Saari, Hannu; Ojanen, Harri; Viinikanoja, Jarkko

    2006-04-01

    Particularly for miniature camera modules, manufactured in high volumes, characterization and measurement approaches are needed that provide information on camera key properties efficiently. An integrated measurement system named has been developed that uses images taken on specifically designed test chart targets, which are then automatically analysed by software. The chart combines target elements for measurement of optoelectronic conversion function, resolution, noise, uniformity, distortion and colour reproduction. The software applies machine vision to recognize the various target elements from the images, and to register analysis locations properly. The actual analysis methods conform with existing standards. The software includes graphical user interface, and in addition to the automatic analysis, also user-defined analysis can be flexibly done. The software supports modifications in the chart layout, batch analysis of images and storing the results in spreadsheet report format.

  19. Applying Statistical Models and Parametric Distance Measures for Music Similarity Search

    NASA Astrophysics Data System (ADS)

    Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph

    Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.

  20. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  1. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms.

    PubMed

    Khare, Siddharth M; Awasthi, Anjali; Venkataraman, V; Koushika, Sandhya P

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  2. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    PubMed Central

    Khare, Siddharth M.; Awasthi, Anjali; Venkataraman, V.; Koushika, Sandhya P.

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  3. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  4. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult and youth programs, described in 20 CFR part 666. The levels of performance for the farmworker... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What performance measures and standards...

  5. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult and youth programs, described in 20 CFR part 666. The levels of performance for the farmworker... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What performance measures and standards...

  6. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult and youth programs, described in 20 CFR part 666. The levels of performance for the farmworker... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What performance measures and standards...

  7. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    SciTech Connect

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  8. An Evaluative Measure for Outputs in Student-Run Public Relations Firms and Applied Courses

    ERIC Educational Resources Information Center

    Deemer, Rebecca A.

    2012-01-01

    A valid, reliable survey instrument was created to be used by public relations student-run firms and other applied public relations courses to gauge client satisfaction. A series of focus groups and pilot tests were conducted to ascertain themes, refine questions, and then to refine the entire instrument. Six constructs to be measured, including…

  9. A Method of Measuring the Costs and Benefits of Applied Research.

    ERIC Educational Resources Information Center

    Sprague, John W.

    The Bureau of Mines studied the application of the concepts and methods of cost-benefit analysis to the problem of ranking alternative applied research projects. Procedures for measuring the different classes of project costs and benefits, both private and public, are outlined, and cost-benefit calculations are presented, based on the criteria of…

  10. A method for measuring vertical forces applied to the upper limb during sit-to-stand.

    PubMed

    Turner, H C; Yate, R M; Giddins, G E B; Miles, A W

    2004-01-01

    The aim of this study was to develop a basic measurement system to estimate the vertical loading of the upper limb during the sit-to-stand activity, with a view to increasing the understanding of the loading of the wrist in daily living activities. A chair was adapted and instrumented with strain gauges and position sensors so that the force applied through the upper limbs to the arms of the chair could be calculated. Four aspects of the chair's geometry could be varied. A force plate was positioned on the floor between the legs of the chair to record the corresponding foot loading. Twenty normal subjects (22-56 years, mean 32.7 years) participated in a pilot study in which loading through the upper and lower limbs was recorded for a range of chair geometries. The vertical force transmitted through each upper limb was typically 20-30 per cent of bodyweight. The vertical upper limb load averaged across all subjects showed a small reduction when either the seat height or the height of the chair arms was increased. PMID:15648670

  11. Double-fiber electric current measurements applying thermal-lens-coupled magneto-optical effect in ferrofluid

    NASA Astrophysics Data System (ADS)

    Li, Hongjie; Chen, Xiaowei; Yuan, Suihua

    1998-08-01

    The optical current transformer (OCT) reported in the past decades is mainly based on the traditional principle of Faraday rotation effect. Presented is a new type of OCT based on a new physical effect, the thermal lens coupled magneto-optical effect in ferrofluid. The use of optical array in the measuring system made the instrument complicated and expensive. This paper proposes applying double fibers to detect the current-corresponding variation of light intensity of the diffraction rings to simplify the instrumental structure. The fluctuations of the laser beam were eliminated by differential optical paths. Results obtained showed a DC measurement accuracy of 1 percent with a dynamic range of 0-500 angstrom, extendible to 2000 angstrom. All experiments were computerized. The set-up can also be applied to measure AC currents with similar qualities to the DC case.

  12. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.

  13. Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte

    SciTech Connect

    Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.; Shaver, Jeremy M.; Windig, Willem

    2006-07-01

    Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as a part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.

  14. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  15. Local structural excitations in model glass systems under applied load

    NASA Astrophysics Data System (ADS)

    Swayamjyoti, S.; Löffler, J. F.; Derlet, P. M.

    2016-04-01

    The potential-energy landscape of a model binary Lennard-Jones structural glass is investigated as a function of applied external strain, in terms of how local structural excitations (LSEs) respond to the load. Using the activation relaxation technique and nudged elastic band methods, the evolving structure and barrier energy of such LSEs are studied in detail. For the case of a tensile/compressive strain, the LSE barrier energies generally decrease/increase, whereas under pure shear, it may either increase or decrease resulting in a broadening of the barrier energy distribution. It is found that how a particular LSE responds to an applied strain is strongly controlled by the LSE's far-field internal stress signature prior to loading.

  16. Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jarek

    2007-08-01

    Abstract—Lack of dynamic information in power system operations mainly attributes to the static modeling of traditional state estimation, as state estimation is the basis driving many other operations functions. This paper investigates the feasibility of applying Kalman filter techniques to enable the inclusion of dynamic modeling in the state estimation process and the estimation of power system dynamic states. The proposed Kalman-filter-based dynamic state estimation is tested on a multi-machine system with both large and small disturbances. Sensitivity studies of the dynamic state estimation performance with respect to measurement characteristics – sampling rate and noise level – are presented as well. The study results show that there is a promising path forward to implementation the Kalman-filter-based dynamic state estimation with the emerging phasor measurement technologies.

  17. Two methods of measuring muscle tone applied in patients with decerebrate rigidity.

    PubMed Central

    Tsementzis, S A; Gillingham, F J; Gordon, A; Lakie, M D

    1980-01-01

    Two methods were used to measure muscle tone in patients with decerebrate rigidity. In the first method forces of square waveform were applied and the calculated compliance of the joint was used as an index of rigidity. Oscillatory transients were seen at the same frequency as the physiological tremor. The range of normal variation in compliance was large and the values measured in the patients flucuated markedly which limited the value of this index. In the second method, where forces of sinusoidal waveform were employed, the resonant frequency of the joint was measured and used as an index of rigidity. This index proved reliable and reproducible. PMID:7354353

  18. Measurement and characterization of cylindrical surfaces by deflectometry applied to ballistic identification

    NASA Astrophysics Data System (ADS)

    Fantin, A. V.; Veiga, C.; Albertazzi, A.

    2011-05-01

    This paper describes an optical device that uses a new configuration of a technique known as deflectometry applied to ballistic identification. The main novelty is characterized by the use of a 45° conical mirror to measure the near cylindrical surface of the bullet. deflectometry is an optical technique sensitive to variations in topography and unevenness of a surface. This technique allows to identify and to measure the geometry of objects based on the distortions observed in a sequence of image patterns reflected on the surface of interest. The measurement by deflectometry is very sensitive to the surface local gradients and curvatures. In this paper it is applied to forensic ballistic in order to verify if a given bullet could be fired by a suspect weapon. Comparisons between images of bullets fired by the same weapon were made.

  19. Object-oriented fault tree models applied to system diagnosis

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.

  20. Applying Formal Verification Techniques to Ambient Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Benghazi, Kawtar; Visitación Hurtado, María; Rodríguez, María Luisa; Noguera, Manuel

    This paper presents a verification approach based on timed traces semantics and MEDISTAM-RT [1] to check the fulfillment of non-functional requirements, such as timeliness and safety, and assure the correct functioning of the Ambient Assisted Living (AAL) systems. We validate this approach by its application to an Emergency Assistance System for monitoring people suffering from cardiac alteration with syncope.

  1. STAIRS: A Storage and Retrieval System Applied in Online Cataloging.

    ERIC Educational Resources Information Center

    Poor, William

    1982-01-01

    Describes the use of IBM's Storage and Information Retrieval System (STAIRS) in the development of an online catalog for the Business and Technical Library of the Cummins Engine Company. The functions, advantages, and disadvantages of the system are outlined. A reference list and three sample searches are attached. (JL)

  2. Intelligent monitoring system applied to super long distance telerobotic tasks

    NASA Technical Reports Server (NTRS)

    Wakita, Yujin; Hirai, Shigeoki; Machida, Kazuo

    1994-01-01

    Time delay and small capacity of communication are the primary constraint in super long distance telerobotic systems such as astronautical robotic tasks. Intelligent telerobotics is thought to break this constraint. We aim to realize this super long distance telerobotic system with object handling knowledge base and intelligent monitoring. We will discuss physical and technical factors for this purpose.

  3. Applying an Activity System to Online Collaborative Group Work Analysis

    ERIC Educational Resources Information Center

    Choi, Hyungshin; Kang, Myunghee

    2010-01-01

    This study determines whether an activity system provides a systematic framework to analyse collaborative group work. Using an activity system as a unit of analysis, the research examined learner behaviours, conflicting factors and facilitating factors while students engaged in collaborative work via asynchronous computer-mediated communication.…

  4. Systems Biology Applied to Heart Failure With Normal Ejection Fraction

    PubMed Central

    Mesquita, Evandro Tinoco; Jorge, Antonio Jose Lagoeiro; de Souza, Celso Vale; Cassino, João Paulo Pedroza

    2014-01-01

    Heart failure with normal ejection fraction (HFNEF) is currently the most prevalent clinical phenotype of heart failure. However, the treatments available have shown no reduction in mortality so far. Advances in the omics sciences and techniques of high data processing used in molecular biology have enabled the development of an integrating approach to HFNEF based on systems biology. This study aimed at presenting a systems-biology-based HFNEF model using the bottom-up and top-down approaches. A literature search was conducted for studies published between 1991 and 2013 regarding HFNEF pathophysiology, its biomarkers and systems biology. A conceptual model was developed using bottom-up and top-down approaches of systems biology. The use of systems-biology approaches for HFNEF, a complex clinical syndrome, can be useful to better understand its pathophysiology and to discover new therapeutic targets. PMID:24918915

  5. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  6. EG&G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG&G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy`s Albuquerque Field Office. The contractor`s Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG&G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, ``Pay, Leave, and Allowances.`` Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  7. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  8. Applying New Network Security Technologies to SCADA Systems.

    SciTech Connect

    Hurd, Steven A.; Stamp, Jason E.; Duggan, David P.; Chavez, Adrian R.

    2006-11-01

    Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure %22traditional%22 IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators. 4This page intentionally left blank.

  9. Applying GIS technology to the Regional Information Sharing Systems database

    NASA Astrophysics Data System (ADS)

    Aumond, Karen L.

    1997-02-01

    The Regional Information Sharing Systems (RISS) program was formed as a partnership for information exchange between the federal government and state and local law enforcement. The six regional projects provide member law enforcement agencies in all 50 states with a broad range of intelligence and investigative support services. Recently, the existing RISS databases were redesigned to allow for connectivity among projects and the capability of a nationwide search of over 450,000 suspects. This relational database of intelligence information, along with a photographic imaging system, an operational `critical event' database, and GIS mapping are integrated components of RISSNET. The Geographical-Regional Information Sharing System (G-RISS) application is being prototypes by Graphic Data Systems Corporation at one RISS site, the Western States Information Network in Sacramento, California. G-RISS is a tool that will combine information from various law enforcement resources, map criminal activities to detect trends and assist agencies by being proactive to combat these activities.

  10. Applied estimation for hybrid dynamical systems using perceptional information

    NASA Astrophysics Data System (ADS)

    Plotnik, Aaron M.

    This dissertation uses the motivating example of robotic tracking of mobile deep ocean animals to present innovations in robotic perception and estimation for hybrid dynamical systems. An approach to estimation for hybrid systems is presented that utilizes uncertain perceptional information about the system's mode to improve tracking of its mode and continuous states. This results in significant improvements in situations where previously reported methods of estimation for hybrid systems perform poorly due to poor distinguishability of the modes. The specific application that motivates this research is an automatic underwater robotic observation system that follows and films individual deep ocean animals. A first version of such a system has been developed jointly by the Stanford Aerospace Robotics Laboratory and Monterey Bay Aquarium Research Institute (MBARI). This robotic observation system is successfully fielded on MBARI's ROVs, but agile specimens often evade the system. When a human ROV pilot performs this task, one advantage that he has over the robotic observation system in these situations is the ability to use visual perceptional information about the target, immediately recognizing any changes in the specimen's behavior mode. With the approach of the human pilot in mind, a new version of the robotic observation system is proposed which is extended to (a) derive perceptional information (visual cues) about the behavior mode of the tracked specimen, and (b) merge this dissimilar, discrete and uncertain information with more traditional continuous noisy sensor data by extending existing algorithms for hybrid estimation. These performance enhancements are enabled by integrating techniques in hybrid estimation, computer vision and machine learning. First, real-time computer vision and classification algorithms extract a visual observation of the target's behavior mode. Existing hybrid estimation algorithms are extended to admit this uncertain but discrete

  11. System configured for applying multiple modifying agents to a substrate

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2003-11-25

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  12. System Configured For Applying Multiple Modifying Agents To A Substrate.

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2005-11-08

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  13. Applied Space Systems Engineering. Chapter 17; Manage Technical Data

    NASA Technical Reports Server (NTRS)

    Kent, Peter

    2008-01-01

    Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.

  14. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented. PMID:22081235

  15. Generalized Statistical Thermodyanmics Applied to Small Material Systems

    NASA Astrophysics Data System (ADS)

    Cammarata, Robert

    2012-02-01

    When characterizing the behavior of small material systems, surface effects can strongly influence the thermodynamic behavior and need to be taken into account in a complete thermal physics analysis. Although there have been a variety of approached proposed to incorporate surface effects, they are often restricted to certain types of systems (e.g., those involving incompressible phases) and often invoke thermodynamics parameters that are often not well-defined for the surface. It is proposed that a generalized statistical mechanics based on the concept of thermodynamic availability (exergy) can be formulated from which the surface properties and their influence on system behavior can be naturally and rigorously obtained. This availability-based statistical thermodynamics will be presented and its use illustrated in a treatment of nucleation during crystallization.

  16. Integrated hydrogen/oxygen technology applied to auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Gerhardt, David L.

    1990-01-01

    The purpose of the Integrated Hydrogen/Oxygen Technology (IHOT) study was to determine if the vehicle/mission needs and technology of the 1990's support development of an all cryogenic H2/O2 system. In order to accomplish this, IHOT adopted the approach of designing Integrated Auxiliary Propulsion Systems (IAPS) for a representative manned vehicle; the advanced manned launch system. The primary objectives were to develop IAPS concepts which appeared to offer viable alternatives to state-of-the-art (i.e., hypergolic, or earth-storable) APS approaches. The IHOT study resulted in the definition of three APS concepts; two cryogenic IAPS, and a third concept utilizing hypergolic propellants.

  17. Multi-agent cooperative systems applied to precision applications

    SciTech Connect

    McKay, M.D.; Anderson, M.O.; Gunderson, R.W.; Flann, N.; Abbott, B.

    1998-03-01

    Regulatory agencies are imposing limits and constraints to protect the operator and/or the environment. While generally necessary, these controls also tend to increase cost and decrease efficiency and productivity. Intelligent computer systems can be made to perform these hazardous tasks with greater efficiency and precision without danger to the operators. The Idaho national Engineering and Environmental Laboratory and the Center for Self-Organizing and Intelligent Systems at Utah State University have developed a series of autonomous all-terrain multi-agent systems capable of performing automated tasks within hazardous environments. This paper discusses the development and application of cooperative small-scale and large-scale robots for use in various activities associated with radiologically contaminated areas, prescription farming, and unexploded ordinances.

  18. Applying programmable logic controllers to safety-related systems

    SciTech Connect

    Ruether, J.C. )

    1992-01-01

    Northern States Power Company (NSP) recently installed programmable logic controllers (PLCs) in two safety-related systems at its Prairie Island nuclear generating plant. The lessons learned during these applications at the 19-yr old two-unit plant may benefit similar projects. Prairie Island responded to the station black out (SBO) issue by upgrading its electrical distribution system. This included installing additional safeguard diesel generators (DGs), new 4160-V buses, and new 480-V buses. As part of this upgrade, PLCs were commercially dedicated for use in two safety-related applications: (1) bus load sequencer project, (2) 480-V voltage regulator project.

  19. Error behaviour of multistep methods applied to unstable differential systems

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    The problem of modelling a dynamic system described by a system of ordinary differential equations which has unstable components for limited periods of time is discussed. It is shown that the global error in a multistep numerical method is the solution to a difference equation initial value problem, and the approximate solution is given for several popular multistep integration formulae. Inspection of the solution leads to the formulation of four criteria for integrators appropriate to unstable problems. A sample problem is solved numerically using three popular formulae and two different stepsizes to illustrate the appropriateness of the criteria.

  20. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  1. Applying Tep Measurements to Assess the Response of Hastelloy to Long Time Aging

    NASA Astrophysics Data System (ADS)

    Ifergane, S.; Gelbstein, Y.; Dahan, I.; Pinkas, M.; Landau, A.

    2009-03-01

    Hastelloy C-276 service temperature is restricted due to precipitation of the intermetallic compound μ. Time-temperature curves indicate that the highest precipitation rate is obtained at about 870° C. Thermoelectric Power (TEP) measurements were applied to monitor the precipitation kinetics during aging at 870° C. The TEP was found to be well correlated with the amount of μ phase formed during aging and with the reduction in impact energy and ductility. It was demonstrated that TEP measurements could be used to monitor aging of Hastelloy C-276.

  2. Development of power system measurements

    NASA Astrophysics Data System (ADS)

    Hebner, R. E.

    1984-07-01

    The performance of ion counters like those used to measure the ions near dc transmission lines is described. The production rates of oxyfluorides in SF6 corona discharges, and the measurement of space charge associated with a pressboard interface in transformer oil are also studied. These studies cover the measurement of electric fields, the measurement of partial discharge phenomena, and the measurement of interfacial electrostatic field distribution and of space charge density.

  3. ZnSe-material phase mask applied to athermalization of infrared imaging systems.

    PubMed

    Feng, Bin; Shi, Zelin; Xu, Baoshu; Zhang, Chengshuo; Zhang, Xiaodong

    2016-07-20

    This paper reports a ZnSe-material phase mask that is applied to athermalization of a conventional infrared imaging system. Its principle, design, manufacture, measurement, and performance validation are successively discussed. This paper concludes that a ZnSe-material phase mask has a permissible manufacturing error 2.14 times as large as a Ge-material phase mask. By constructing and solving an optimization problem, the ZnSe-material phase mask is optimally designed. The optimal phase mask is manufactured and measured with a form manufacturing error of 1.370 μm and a surface roughness value of 9.926 nm. Experiments prove that the wavefront coding athermalized longwave infrared (LWIR) imaging system works well over the temperature range from -40°C to +60°C. PMID:27463928

  4. Speckle interferometry applied to asteroids and other solar system objects

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Hege, E. K.

    1985-01-01

    The application of speckle interferometry to asteroids and other solar system objects is discussed. The assumption of a triaxial ellipsoid rotating about its shortest axis is the standard model. Binary asteroids, 433 Eros, 532 Herculina, 511 Davida, and Pallas are discussed.

  5. System Identification and POD Method Applied to Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  6. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  7. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  8. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  9. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  10. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measure the mass, or density, and volume of each applied finish. (b) Determine the mass of each applied...) Determine the density and volume of each applied finish according to the criteria listed in paragraphs (c)(1) through (3) of this section: (1) Determine the density of each applied finish in pounds per gallon...

  11. Directional spectral emissivity measurement system

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)

    1992-01-01

    Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.

  12. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  13. Electromagnetic compatibility fundamentals applied to spacecraft radio communication systems

    NASA Technical Reports Server (NTRS)

    Haber, F.; Celebiler, M.; Weil-Malherbe, C.

    1971-01-01

    A design guide for minimizing electromagnetic interference in aerospace communication equipment for ground stations is presented. Specifically treated are the mechanisms of generating unwanted radio emissions that may affect station operations as well as other communications services, the mechanisms by which sensitive receivers become susceptible to interference, means for reducing interference, standard methods of measurement, and the problems of site selection. The sources of interference are viewed primarily as originating from communications transmitters aboard spacecraft and aircraft, ground transmitters within and outside the ground stations, and other electrical sources on the ground that are not intended to radiate.

  14. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  15. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  16. Experiences with Probabilistic Analysis Applied to Controlled Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Giesy, Daniel P.

    2004-01-01

    This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.

  17. A digital approach for phase measurement applied to delta-t tuneup procedure

    SciTech Connect

    Aiello, G.

    1993-05-01

    Beam energy and phase in a Linac are important parameters to be measured in order to tune the machine. They can be calculated by the time of flight of a beam bunch over a known distance between two locations, and by comparing the phase of a cavity to the beam phase. The phase difference between two signals must be measured in both cases, in order to get the information required. The electronics to be used for this measurement must meet stringent requirements: high bandwidth, good accuracy and resolutim have always been a challenge for classical analog solutions. A digital approach has been investigated, which provides a good resolution, accuracy independent on the phase difference value, good repeatability and reliability. Numerical analysis have been performed, showing the system`s optimal performance and limitations. A prototype has been tested in the laboratory, which confirm the predicted performance, and proves the system`s feasibility.

  18. Health System Measurement Project: Quality

    MedlinePlus

    ... on individual measures in the Surgical Care Improvement Project (SCIP). The composite measure is the proportion of ... appropriate processes of care, as defined by the project. These processes include, for example, timeliness of antibiotics ...

  19. Applying an integrated neuro-expert system model in a real-time alarm processing system

    NASA Astrophysics Data System (ADS)

    Khosla, Rajiv; Dillon, Tharam S.

    1993-03-01

    In this paper we propose an integrated model which is derived from the combination of a generic neuro-expert system model, an object model, and unix operating system process (UOSP) model. This integrated model reflects the strengths of both artificial neural nets (ANNs) and expert systems (ESs). A formalism of ES object, ANN object, UOSP object, and problem domain object is used for developing a set of generic data structures and methods. These generic data structures and methods help us to build heterogeneous ES-ANN objects with uniform communication interface. The integrated model is applied in a real-time alarm processing system for a non-trivial terminal power station. It is shown how features like hierarchical/distributed ES/ANN objects, inter process communication, and fast concurrent execution help to cope with real-time system constraints like, continuity, data variability, and fast response time.

  20. System And Method Of Applying Energetic Ions For Sterlization

    DOEpatents

    Schmidt, John A.

    2002-06-11

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  1. System and method of applying energetic ions for sterilization

    DOEpatents

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  2. The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chen, Jiahong; Zhao, Wenhua

    2016-02-01

    The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.

  3. Applying Real Options for Evaluating Investments in ERP Systems

    NASA Astrophysics Data System (ADS)

    Nakagane, Jun; Sekozawa, Teruji

    This paper intends to verify effectiveness of real options approach for evaluating investments in Enterprise Resource Planning systems (ERP) and proves how important it is to disclose shadow options potentially embedded in ERP investment. The net present value (NPV) method is principally adopted to evaluate the value of ERP. However, the NPV method assumes no uncertainties exist in the object. It doesn't satisfy the current business circumstances which are filled with dynamic issues. Since the 1990s the effectiveness of option pricing models for Information System (IS) investment to solve issues in the NPV method has been discussed in the IS literature. This paper presents 3 business cases to review the practical advantages of such techniques for IS investments, especially ERP investments. The first case is EDI development. We evaluate the project by a new approach with lighting one of shadow options, EDI implementation. In the second case we reveal an ERP investment has an “expanding option” in a case of eliminating redundancy. The third case describes an option to contract which is deliberately slotted in ERP development to prepare transferring a manufacturing facility.

  4. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOEpatents

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  5. An applied study using systems engineering methods to prioritize green systems options

    SciTech Connect

    Lee, Sonya M; Macdonald, John M

    2009-01-01

    For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective into how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.

  6. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  7. Approaches to risk-adjusting outcome measures applied to criminal justice involvement after community service.

    PubMed

    Banks, S M; Pandiani, J A; Bramley, J

    2001-08-01

    The ethic of fairness in program evaluation requires that measures of behavioral health agency performance be sensitive to differences in those agencies' caseload composition. The authors describe two traditional approaches to the statistical risk adjustment of outcome measures (stratification weighting and pre-post measurement) that are designed to account for differences in caseload composition and introduce a method that incorporates the strengths of both approaches. Procedures for deriving each of these measures are described in detail and demonstrated in the evaluation of a statewide system of community-based behavioral health care programs. This evaluation examines the degree to which service recipients get into trouble with the law after treatment. Three measures are recommended for inclusion in outcome-oriented "report cards," and the interpretation of each measure is discussed. Finally, the authors suggest formats for graphic and tabular presentation of the risk-adjusted evaluation for sharing findings with diverse stakeholder groups. PMID:11497020

  8. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  9. Van der Waals density functional applied to adsorption systems

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro

    2013-03-01

    The van der Waals density functional (vdW-DF) is a promising density functional to describe the van der Waals forces within density functional theory. However, despite the recent efforts, there is still room for further improvement, especially for describing molecular adsorption on metal surfaces. I will show that by choosing appropriate exchange and nonlocal correlation functionals, it is possible to calculate geometries and electronic structures for adsorption systems accurately within the framework of vdW-DF. Applicability of the present approach will be illustrated with its applications to graphene/metal, fullerene/metal, and water/graphene interfaces. This work is partly supported by a Grant-in-Aid for Scientific Research on Innovative Area (No. 23104501). AIMR was established by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  10. System Measures Thermal Noise In A Microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ngo, Kim Chi T.

    1994-01-01

    Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.

  11. Scanning Hall probe measurements of field distributions of a coated conductor under applied fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jaeun; Jung, Yonghwan; Lee, Jaeyoung; Lim, Sunme; Moo Lee, Sang; Jung, Ye Hyun; Youm, Dojun; Kim, Hosup; Ha, Hong Soo; Oh, Sangsoo

    2006-12-01

    We measured the field profiles near the surface of a coated conductor (CC) under various applied fields by using the scanning Hall probe method. The field, applied in the normal direction, was increased from zero to 171.5 Oe and then decreased to -58.8 Oe. We could not analyse our data completely by the direct use of Brandt's calculation but by a modification with unusual field dependences of the introduced parameters. Since Brandt's original calculation was based on homogeneous films, it was not suitable for CCs with coarse granular structures. The modified calculations with appropriate parameters are related to the coarse granular structures. Those parameters, D, Jc, and R, represent the three characteristics of the flux penetration network: the average distance of flux penetrations, the density of critical sheet currents, and the range of meandering of the flux penetration front, respectively. The external field dependences of these parameters were different from those of the classical critical state model.

  12. Dynamical systems analysis applied to working memory data.

    PubMed

    Gasimova, Fidan; Robitzsch, Alexander; Wilhelm, Oliver; Boker, Steven M; Hu, Yueqin; Hülür, Gizem

    2014-01-01

    In the present paper we investigate weekly fluctuations in the working memory capacity (WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure's performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions. PMID:25071657

  13. Applying axiomatic design to a medication distribution system

    NASA Astrophysics Data System (ADS)

    Raguini, Pepito B.

    As the need to minimize medication errors drives many medical facilities to come up with robust solutions to the most common error that affects patient's safety, these hospitals would be wise to put a concerted effort into finding methodologies that can facilitate an optimized medical distribution system. If the hospitals' upper management is looking for an optimization method that is an ideal fit, it is just as important that the right tool be selected for the application at hand. In the present work, we propose the application of Axiomatic Design (AD), which is a process that focuses on the generation and selection of functional requirements to meet the customer needs for product and/or process design. The appeal of the axiomatic approach is to provide both a formal design process and a set of technical coefficients for meeting the customer's needs. Thus, AD offers a strategy for the effective integration of people, design methods, design tools and design data. Therefore, we propose the AD methodology to medical applications with the main objective of allowing nurses the opportunity to provide cost effective delivery of medications to inpatients, thereby improving quality patient care. The AD methodology will be implemented through the use of focused stores, where medications can be readily stored and can be conveniently located near patients, as well as a mobile apparatus that can also store medications and is commonly used by hospitals, the medication cart. Moreover, a robust methodology called the focused store methodology will be introduced and developed for both the uncapacitated and capacitated case studies, which will set up an appropriate AD framework and design problem for a medication distribution case study.

  14. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  15. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  16. Mass properties measurement system: Dynamics and statics measurements

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.

  17. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  18. Optimized Chemical Separation and Measurement by TE TIMS Using Carburized Filaments for Uranium Isotope Ratio Measurements Applied to Plutonium Chronometry.

    PubMed

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Prohaska, Thomas

    2016-06-21

    An optimized method is described for U/Pu separation and subsequent measurement of the amount contents of uranium isotopes by total evaporation (TE) TIMS with a double filament setup combined with filament carburization for age determination of plutonium samples. The use of carburized filaments improved the signal behavior for total evaporation TIMS measurements of uranium. Elevated uranium ion formation by passive heating during rhenium signal optimization at the start of the total evaporation measurement procedure was found to be a result from byproducts of the separation procedure deposited on the filament. This was avoided using carburized filaments. Hence, loss of sample before the actual TE data acquisition was prevented, and automated measurement sequences could be accomplished. Furthermore, separation of residual plutonium in the separated uranium fraction was achieved directly on the filament by use of the carburized filaments. Although the analytical approach was originally tailored to achieve reliable results only for the (238)Pu/(234)U, (239)Pu/(235)U, and (240)Pu/(236)U chronometers, the optimization of the procedure additionally allowed the use of the (242)Pu/(238)U isotope amount ratio as a highly sensitive indicator for residual uranium present in the sample, which is not of radiogenic origin. The sample preparation method described in this article has been successfully applied for the age determination of CRM NBS 947 and other sulfate and oxide plutonium samples. PMID:27240571

  19. System Measures Loads In Bolts

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    1994-01-01

    Improved technique for ultrasonic nondestructive measurement of loads in bolts involves use of pulsed phase-locked loop interferometer. Provides for correction of errors and for automatic readout of loads in bolts. Actual bolt load measured, using transducers rebonded after bolts tightened. Calibration block and thermometer added. Technique applicable to critical fasteners in aerospace applications, nuclear reactors, petroleum and other chemical processing plants, steel bridges, and other structures.

  20. Radioactivity measurements applied to the dating and authentication of old wines

    NASA Astrophysics Data System (ADS)

    Hubert, Ph.; Perrot, F.; Gaye, J.; Médina, B.; Pravikoff, M. S.

    2009-09-01

    For many years the neutrino group in the CENBG has been involved in the development of low background γ-ray spectrometers, based on the use of HPGe crystals. When applied to radioactivity measurements of wine in bottles, it has been shown that besides the well-known isotope 40K, the wine contains also trace amounts of 137Cs (less than 1 Bq/l) with an activity depending on the vintage. This technique has thus led to the possibility to date the wine bottles of vintages between 1952 and ˜1980 and to verify the year written on the label or on the cork. Since the measurements do not require opening the bottle, the technique has also proved to be very useful for detecting counterfeit wines of the XIXth century and first half of the XXth century. To cite this article: Ph. Hubert et al., C. R. Physique 10 (2009).

  1. A digital approach for phase measurement applied to delta-t tuneup procedure

    SciTech Connect

    Aiello, G.

    1993-05-01

    Beam energy and phase in a Linac are important parameters to be measured in order to tune the machine. They can be calculated by the time of flight of a beam bunch over a known distance between two locations, and by comparing the phase of a cavity to the beam phase. The phase difference between two signals must be measured in both cases, in order to get the information required. The electronics to be used for this measurement must meet stringent requirements: high bandwidth, good accuracy and resolutim have always been a challenge for classical analog solutions. A digital approach has been investigated, which provides a good resolution, accuracy independent on the phase difference value, good repeatability and reliability. Numerical analysis have been performed, showing the system's optimal performance and limitations. A prototype has been tested in the laboratory, which confirm the predicted performance, and proves the system's feasibility.

  2. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    NASA Astrophysics Data System (ADS)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  3. Prediction of responders for outcome measures of Locomotor Experience Applied Post Stroke trial

    PubMed Central

    Dobkin, Bruce H. K.; Nadeau, Stephen E.; Behrman, Andrea L.; Wu, Samuel S.; Rose, Dorian K.; Bowden, Mark; Studenski, Stephanie; Lu, Xiaomin; Duncan, Pamela W.

    2015-01-01

    The Locomotor Experience Applied Post Stroke rehabilitation trial found equivalent walking outcomes for body weight-supported treadmill plus overground walking practice versus home-based exercise that did not emphasize walking. From this large database, we examined several clinically important questions that provide insights into recovery of walking that may affect future trial designs. Using logistic regression analyses, we examined predictors of response based on a variety of walking speed-related outcomes and measures that captured disability, physical impairment, and quality of life. The most robust predictor was being closer at baseline to the primary outcome measure, which was the functional walking speed thresholds of 0.4 m/s (household walking) and 0.8 m/s (community walking). Regardless of baseline walking speed, a younger age and higher Berg Balance Scale score were relative predictors of responding, whether operationally defined by transitioning beyond each speed boundary or by a continuous change or a greater than median increase in walking speed. Of note, the cutoff values of 0.4 and 0.8 m/s had no particular significance compared with other walking speed changes despite their general use as descriptors of functional levels of walking. No evidence was found for any difference in predictors based on treatment group. Clinical Trial Registration ClinicalTrials.gov; NCT00243919, “Locomotor Experience Applied Post Stroke Trial”; http://www.clinicaltrials.gov PMID:24805892

  4. Measures based on informational entropy applied to analysis of textural and spectral patterns of Brazilian Cerrado physiognomies

    NASA Astrophysics Data System (ADS)

    Leme de Matos, S. V.; Vicente, L. E.; Siqueira, J. R.; Filho, A. P.

    2011-12-01

    Brazilian Cerrado is a biodiversity hotspot characterized by different physiognomies distributed along a vegetational gradient. Cerrado physiognomies are distinguished by their spatial patterns. The objective of this research has been to evaluate the complexity (in the sense of heterogeneity) of textural and spectral patterns of Cerrado phytophysiognomies with the purpose of verifying which properties related to organization and dynamics those patterns could show. For that, images from Aster multispectral sensor were used to study Cerrado areas in conservation reserves at State of São Paulo (southeastern Brazil). Two complexity measures based on informational entropy - H/Hmax and LMC measures - were applied to physiognomy images and to the corresponding spectral response curves. H/Hmax is a measure which considers that high complexity value means that the system has more disorder. It hence enables identifying if a system is close to order or to disorder. The LMC measure provides a different interpretation considering that the highest complexity is situated between order and disorder, that is, maximum entropy is found in a state of intermediary heterogeneity. This assumption could be mathematically represented by a convex function of entropy. Results pointed out that both measures were very efficient in assigning greater values of complexity to more heterogeneous physiognomies. There was also a strong tendency that each physiognomy presents the same values of complexity at different localities, attributing a typical range of values for each one, regardless of its location.

  5. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  6. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  7. [Ultima ratio of the applied security measures in placing perpetrators in a psychiatric hospital].

    PubMed

    Hajdukiewicz, Danuta

    2006-01-01

    The meaning of articles on the main security measures concerned with placing the convict in a closed psychiatric unit is studied. Articles 93 & 94 section 1 of the penal code limit their application only as final measures--the ultima ratio. Art. 93 of the penal code pertains to the perpetrator of illegal actions in connection to their psychiatric illness, mental retardation, alcohol or other related substance addiction, along with a risk of the crime being committed once again, only when it will prevent the person from repeating the crime. The issues that need be considered are the following: psychic state of the perpetrator along with prediction of the risk of him repeating the act, but the liability evaluation and the degree of probability do not play any vital role. This is probably due to the fact that the measure described in art. 96 of the penal code has a limited time span (it cannot be any shorter than 3 months and longer than 2 years) and what is more; it can be applied instead of the punishment. Art. 94 section 1 of the penal code requires very precise evaluation of the risk of repetition in each case of a non-liable perpetrator guilty of conducting crime of serious social damage. This measure is not limited in time span, because it depends on the psychic state of the person under its influence. Henceforth it is considered as more restrictive. PMID:17068937

  8. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  9. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    EPA Science Inventory

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  10. Interferometric Rayleigh Scattering Measurement System

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel (Inventor); Danehy, Paul M. (Inventor); Lee, Joseph W. (Inventor)

    2008-01-01

    A method and apparatus for performing simultaneous multi-point measurements of multiple velocity components in a gas flow is described. Pulses of laser light are directed to a measurement region of unseeded gas to produce Rayleigh or Mie scattered light in a plurality of directions. The Rayleigh or Mie scattered light is collected from multiple directions and combined in a single collimated light beam. The Rayleigh or Mie scattered light is then mixed together with a reference laser light before it is passed through a single planar Fabry-Perot interferometer for spectral analysis. At the output of the interferometer, a high-sensitivity CCD camera images the interference fringe pattern. This pattern contains the spectral and spatial information from both the Rayleigh scattered light and the reference laser light. Interferogram processing software extracts and analyzes spectral profiles to determine the velocity components of the gas flow at multiple points in the measurement region. The Rayleigh light rejected by the interferometer is recirculated to increase the accuracy and the applicability of the method for measurements at high temperatures without requiring an increase in the laser energy.

  11. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  12. Design, construction, and testing of solution resistive divider applied in hundreds of kilovolts nanosecond pulse measurement

    NASA Astrophysics Data System (ADS)

    Ge, Ya-Feng; Li, Lee; Liu, Yun-Long; Li, Mingjia; Kang, Qiang

    2014-10-01

    The solution resistive divider is often used considering its excellent high-frequency and withstanding voltage characteristics. This paper develops a nanosecond pulse measurement system based on the CuSO4 solution resistive divider, which can be used to measure high voltage impulses with rise time of 50 ns and amplitude of 300 kV. The low-voltage arm of the newly designed solution resistive divider is composed of noninductive metal film resistors. The newly designed resistive divider combines the advantages of the conventional solution resistive divider and metal film resistive divider. The stray parameters of the resistive divider are theoretically calculated and the circuit simulation is studied. Besides, the square wave response characteristics of the resistive divider are studied in the experiments. Considering the effect of frequency on the surge impedance of the cable, a matching cable of the same type with the transmission cable instead of a common matching resistor is used to improve the matching effects. In order to reduce the effects of electromagnetic interference on the measurement results, some shielding measures are taken. The experimental results show that the measurement system has good response characteristics in the practical application.

  13. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Does this subpart apply to my...

  14. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Does this subpart apply to my...

  15. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Does this subpart apply to my...

  16. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Does this subpart apply to my...

  17. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Does this subpart apply to my...

  18. Comparison of transverse dental changes induced by the palatally applied Frog appliance and buccally applied Karad's integrated distalizing system

    PubMed Central

    Kaygisiz, Emine; Unver, Fatih; Tortop, Tuba

    2016-01-01

    Objective To compare the transverse dental changes induced by the palatally applied Frog appliance and buccally applied Karad's integrated distalizing system (KIDS). Methods We evaluated the pre- and post distalization orthodontic models of 39 patients, including 19 treated using the Frog appliance, which is palatally positioned (Frog group), and 20 treated using KIDS, which is buccally positioned (KIDS group). Changes in intermolar and interpremolar distances and the amount of maxillary premolar and molar rotation were evaluated on model photocopies. Wilcoxon and Mann-Whitney U tests were used for statistical evaluations. A p-value of < 0.05 was considered statistically significant. Results Significant distopalatal rotation of premolars and distobuccal rotation of molars were observed in Frog group (p < 0.05), while significant distopalatal rotation of molars (p < 0.05), with no significant changes in premolars, was observed in KIDS group. The amount of second premolar and first molar rotation was significantly different between the two groups (p < 0.05 and p < 0.001, respectively). Furthermore, expansion in the region of the first molars and second premolars was significantly greater in KIDS group than in Frog group (p < 0.001 for both). Conclusions Our results suggest that the type and amount of first molar rotation and expansion vary with the design of the distalization appliance used. PMID:27019824

  19. Tree canopy radiance measurement system

    NASA Technical Reports Server (NTRS)

    Caldwell, William; Vanderbilt, V. C.

    1989-01-01

    A system is described for obtaining both an estimate of the spatial mean bidirectional reflectance factor (BRF) for a tree canopy (displaying a horizontally heterogeneous foliage distribution) and the statistical significance of that estimate. The system includes a manlift supporting a horizontal beam 7 m long on which are mounted four radiometers. These radiometers may be pointed, and radiance data acquired, in any of 11 view directions in the principal plane of the sun. A total of 80 data points, acquired in 3 min, were used to estimate the BRF of a walnut orchard 5 m tall and detect true differences of 12 percent of the mean approximately 90 percent of the time.

  20. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth`s radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  1. Improving MTF measurements of under-sampled optical systems

    NASA Astrophysics Data System (ADS)

    LaVeigne, Joseph D.; Burks, Stephen D.

    2009-05-01

    The modulation transfer function (MTF) of optical systems is often derived by taking the Fourier transform (FT) of a measured line spread function. Recently, methods of performing Fourier transforms that are common in infrared spectroscopy have been applied to MTF calculations. Proper apodization and phase correction have been shown to improve MTF calculations in optical systems. In this paper these methods as well as another filtering algorithm based on phase are applied to under-sampled optical systems. Results, both with and without the additional processing are presented and the differences are discussed.

  2. Automatic blood pressure measuring system (M091)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.

  3. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  4. Comparison and Relative Utility of Inequality Measurements: As Applied to Scotland’s Child Dental Health

    PubMed Central

    Blair, Yvonne I.; McMahon, Alex D.; Macpherson, Lorna M. D.

    2013-01-01

    This study compared and assessed the utility of tests of inequality on a series of very large population caries datasets. National cross-sectional caries datasets for Scotland’s 5-year-olds in 1993/94 (n = 5,078); 1995/96 (n = 6,240); 1997/98 (n = 6,584); 1999/00 (n = 6,781); 2002/03 (n = 9,747); 2003/04 (n = 10,956); 2005/06 (n = 10,945) and 2007/08 (n = 12,067) were obtained. Outcomes were based on the d3mft metric (i.e. the number of decayed, missing and filled teeth). An area-based deprivation category (DepCat) measured the subjects’ socioeconomic status (SES). Simple absolute and relative inequality, Odds Ratios and the Significant Caries Index (SIC) as advocated by the World Health Organization were calculated. The measures of complex inequality applied to data were: the Slope Index of Inequality (absolute) and a variety of relative inequality tests i.e. Gini coefficient; Relative Index of Inequality; concentration curve; Koolman & Doorslaer’s transformed Concentration Index; Receiver Operator Curve and Population Attributable Risk (PAR). Additional tests used were plots of SIC deciles (SIC10) and a Scottish Caries Inequality Metric (SCIM10). Over the period, mean d3mft improved from 3.1(95%CI 3.0–3.2) to 1.9(95%CI 1.8–1.9) and d3mft = 0% from 41.1(95%CI 39.8–42.3) to 58.3(95%CI 57.8–59.7). Absolute simple and complex inequality decreased. Relative simple and complex inequality remained comparatively stable. Our results support the use of the SII and RII to measure complex absolute and relative SES inequalities alongside additional tests of complex relative inequality such as PAR and Koolman and Doorslaer’s transformed CI. The latter two have clear interpretations which may influence policy makers. Specialised dental metrics (i.e. SIC, SIC10 and SCIM10) permit the exploration of other important inequalities not determined by SES, and could be applied to many other types of disease where ranking of morbidity

  5. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  6. KRON's Method Applied to the Study of Electromagnetic Interference Occurring in Aerospace Systems

    NASA Astrophysics Data System (ADS)

    Leman, S.; Reineix, A.; Hoeppe, F.; Poiré, Y.; Mahoudi, M.; Démoulin, B.; Üstüner, F.; Rodriquez, V. P.

    2012-05-01

    In this paper, spacecraft and aircraft mock-ups are used to simulate the performance of KRON based tools applied to the simulation of large EMC systems. These tools aim to assist engineers in the design phase of complex systems. This is done by effectively evaluating the EM disturbances between antennas, electronic equipment, and Portable Electronic Devices found in large systems. We use a topological analysis of the system to model independent sub-volumes such as antennas, cables, equipments, PED and cavity walls. Each of these sub- volumes is modelled by an appropriate method which can be based on, for example, analytical expressions, transmission line theory or other numerical tools such as the full wave FDFD method. This representation associated with the electrical tensorial method of G.KRON leads to reasonable simulation times (typically a few minutes) and accurate results. Because equivalent sub-models are built separately, the main originality of this method is that each sub- volume can be easily replaced by another one without rebuilding the entire system. Comparisons between measurements and simulations will be also presented.

  7. Applying the common sense model to measure representations of arsenic contaminated well water.

    PubMed

    Severtson, Dolores J; Baumann, Linda C; Brown, Roger L

    2008-09-01

    Theory-based research is needed to understand how people respond to environmental health risk information. Both the common sense model (CSM) of self-regulation and the mental models approach propose that information shapes individuals' personal understandings that, in turn, influence their decisions and actions. We compare these frameworks and explain how the CSM was applied to describe and measure mental representations of arsenic contaminated well water. Educational information, key informant interviews, and environmental risk literature were used to develop survey items to measure dimensions of cognitive representations (identity, cause, timeline, consequences, control) and emotional representations. Surveys mailed to 1,067 private well users with moderate and elevated arsenic levels yielded an 84 % response rate (n = 897). Exploratory and confirmatory factor analyses of data from the elevated arsenic group identified a factor structure that retained the CSM representational structure and was consistent across moderate and elevated arsenic groups. The CSM has utility for describing and measuring representations of environmental health risks, thus supporting its application to environmental health risk communication research. PMID:18726811

  8. Testing of evaluation methods applied to raw infiltration data measured at very heterogeneous mountain forest soils

    NASA Astrophysics Data System (ADS)

    Jacka, Lukas; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    In order to obtain infiltration parameters and analytical expressions of the cumulative infiltration and infiltration rate, raw infiltration data are often evaluated using various infiltration equations. Knowledge about the evaluation variability of these equations in the specific case of extremely heterogeneous soils provides important information for many hydrological and engineering applications. This contribution presents an evaluation of measured data using five well-established physically-based equations and empirical equations, and makes a comparison of these procedures. Evaluation procedures were applied to datasets measured on three different sites of hydrologically important mountain podzols. A total of 47 single ring infiltration experiments were evaluated using these procedures. From the quality-of-fit perspective, all of the tested equations characterized most of the raw datasets properly. In a few cases, some of the physically-based equations led to poor fits of the datasets measured on the most heterogeneous site (characterized by the lowest depth of the organic horizon, and more bleached eluvial horizon than on the other tested sites). For the parameters evaluated on this site, the sorptivity estimates and the saturated hydraulic conductivity (Ks) estimates were distinctly different between the tested procedures.

  9. Air pollution simulation and geographical information systems (GIS) applied to Athens International Airport.

    PubMed

    Theophanides, Mike; Anastassopoulou, Jane

    2009-07-01

    This study presents an improved methodology for analysing atmospheric pollution around airports using Gaussian-plume numerical simulation integrated with Geographical Information Systems (GIS). The new methodology focuses on streamlining the lengthy analysis process for Airport Environmental Impact Assessments by integrating the definition of emission sources, simulating and displaying the results in a GIS environment. One of the objectives of the research is to validate the methodology applied to the Athens International Airport, "Eleftherios Venizelos", to produce a realistic estimate of emission inventories, dispersion simulations and comparison to measured data. The methodology used a combination of the Emission Dispersion and Modelling System (EDMS) and the Atmospheric Dispersion and Modelling system (ADMS) to improve the analysis process. The second objective is to conduct numerical simulations under various adverse conditions (e.g. scenarios) and assess the dispersion in the surrounding areas. The study concludes that the use of GIS in environmental assessments provides a valuable advantage for organizing data and entering accurate geographical/topological information for the simulation engine. Emissions simulation produced estimates within 10% of published values. Dispersion simulations indicate that airport pollution will affect neighbouring cities such as Rafina and Loutsa. Presently, there are no measured controls in these areas. In some cases, airport pollution can contribute to as much as 40% of permissible EU levels in VOCs. PMID:19731833

  10. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  11. Infrared/Ultrasonic Position-Measuring System

    NASA Technical Reports Server (NTRS)

    Roberson, Ricky J.

    1995-01-01

    System for measuring positions of sensors at designated points on body suit developed. Measuring system, body suit, and sensors incorporated into interactive virtual-reality system, wherein they provide feedback data on positions and orientations of various parts of wearer's body. Based on straightforward concept of computating three-dimensional coordinates of sensor from simultaneous measurements of distances of sensor from three locations, coordinates of which known.

  12. Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry

    NASA Astrophysics Data System (ADS)

    Zandt, Thorsten; Sabuga, Wladimir; Gaiser, Christof; Fellmuth, Bernd

    2015-10-01

    For the determination of the Boltzmann constant by dielectric-constant gas thermometry, the uncertainty of pressure measurements in helium up to 7 MPa has been decreased compared with previous achievements (Sabuga 2011 PTB-Mitt. 121 247-55). This was possible by performing comprehensive cross-float experiments with a system of six special pressure balances and the synchronization of their effective areas. It is now possible to measure a helium pressure of 7 MPa with a relative standard uncertainty of 1.0 ppm applying a 2 cm2 piston-cylinder unit, the calibration of which is traceable to the SI base units.

  13. Weighted measurement fusion Kalman estimator for multisensor descriptor system

    NASA Astrophysics Data System (ADS)

    Dou, Yinfeng; Ran, Chenjian; Gao, Yuan

    2016-08-01

    For the multisensor linear stochastic descriptor system with correlated measurement noises, the fused measurement can be obtained based on the weighted least square (WLS) method, and the reduced-order state components are obtained applying singular value decomposition method. Then, the multisensor descriptor system is transformed to a fused reduced-order non-descriptor system with correlated noise. And the weighted measurement fusion (WMF) Kalman estimator of this reduced-order subsystem is presented. According to the relationship of the presented non-descriptor system and the original descriptor system, the WMF Kalman estimator and its estimation error variance matrix of the original multisensor descriptor system are presented. The presented WMF Kalman estimator has global optimality, and can avoid computing these cross-variances of the local Kalman estimator, compared with the state fusion method. A simulation example about three-sensors stochastic dynamic input and output systems in economy verifies the effectiveness.

  14. High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method.

    PubMed

    Claus, Daniel

    2010-06-01

    This paper discusses the potential of the synthetic-aperture method in digital holography to increase the resolution, to perform high accuracy deformation measurement, and to obtain a three-dimensional topology map. The synthetic aperture method is realized by moving the camera with a motorized x-y stage. In this way a greater sensor area can be obtained resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. The depth of field can be increased by applying the extended depth of field method, which yields an in-focus reconstruction of all longitudinal object regions. Moreover, a topology map of the object can be obtained. PMID:20517390

  15. The iterative complex demodulation applied on short and long Schumann resonance measured sequences

    NASA Astrophysics Data System (ADS)

    Ondrášková, Adriena; Ševčík, Sebastián

    2014-12-01

    The precise determination of instantaneous frequency of Schumann resonance (SR) modes, with the possibility of application to relatively short signal sequences, seems to be important for detailed analysis of SR modal frequency variations. Contrary to commonly used method of obtaining modal frequencies by the Lorentz function fitting of DFT spectra, we employ the complex demodulation (CD) method in iterated form. Results of iterated CD method applied on short and long measured sequences are compared. Results for SR signals as well as the comparison with Lorentz function fitting are presented. Decrease of frequencies of all first four SR modes from the solar cycle maximum to solar cycle minimum has been found using also the CD method.

  16. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  17. The LEDA beam-position measurement system

    SciTech Connect

    Rose, C.R.; Gilpatrick, J.D.; Stettler, M.W.

    1997-08-01

    This paper describes the beam-position measurement system being developed for the Low Energy Demonstration Accelerator (LEDA) and the Accelerator Production of Tritium (APT) projects at Los Alamos National Laboratory. The system consists of a beam-position monitor (BPM) probe, cabling, down-converter module, position/intensity module, on-line error-correction system, and the necessary control system interfaces. The modules are built on the VXI-interface standard and are capable of duplex data transfer with the control system. Some of the key, system parameters are: position-measurement bandwidth of at least 180 kHz, the ability to measure beam intensity, a beam-position measurement accuracy of less than 1.25 percent of the bore radius, a beam-current dynamic range of 46 dB, a total system dynamic range in excess of 75 dB, and built-in on-line digital-system-error correction.

  18. Particle measurement systems and methods

    SciTech Connect

    Steele, Paul T.

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  19. Three-dimensional positron annihilation momentum measurement technique applied to measure oxygen-atom defects in 6H silicon carbide

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.

    A three-dimensional Positron Annihilation Spectroscopy System (3DPASS) capable to simultaneously measure three-dimensional electron-positron (e--e+) momentum densities measuring photons derived from e--e+ annihilation events was designed and characterized. 3DPASS simultaneously collects a single data set of correlated energies and positions for two coincident annihilation photons using solid-state double-sided strip detectors (DSSD). Positions of photons were determined using an interpolation method which measures a figure-of-merit proportional to the areas of transient charges induced on both charge collection strips directly adjacent to the charge collection strips interacting with the annihilation photons. The subpixel resolution was measured for both double-sided strip detectors (DSSD) and quantified using a new method modeled after a Gaussian point-spread function with a circular aperture. Error associated with location interpolation within an intrinsic pixel in each of the DSSDs, the subpixel resolution, was on the order of +/- 0.20 mm (this represents one-standard deviation). The subpixel resolution achieved was less than one twenty-fifth of the 25-mm2 square area of an intrinsic pixel created by the intersection of the DSSDs' orthogonal charge collection strips. The 2D ACAR and CDBAR response for single-crystal copper and 6H silicon carbide (6H SiC) was compared with results in the literature. Two additional samples of 6H SiC were irradiated with 24 MeV O+ ions, one annealed and one un-annealed, and measured using 3DPASS. Three-dimensional momentum distributions with correlated energies and coincident annihilation photons' positions were presented for all three 6H SiC samples. 3DPASS was used for the first experimental measurement of the structure of oxygen defects in bulk 6H SiC.

  20. Earth terminal measurement system operations manual (revised)

    NASA Astrophysics Data System (ADS)

    Wait, D. F.

    1983-01-01

    The Earth Terminal Measurement System (ETMS) was developed to make accurate measurements of Earth terminal parameters such as the figure of merit (G/T), antenna gain relative to a peproducible reference level, the noise equivalent flux (NEF), and noise ulterior flux (NUF). This manual includes the theory of the measurements, measurement procedures, measurement troubleshooting, interpretation of the results, and a discussion of the ETMS software.

  1. An investigation into the placement of force delivery systems and the initial forces applied by clinicians during space closure.

    PubMed

    Nattrass, C; Ireland, A J; Sherriff, M

    1997-05-01

    This in vitro investigation was designed to establish not only how clinicians apply forces for space closure when using the straight wire appliance and sliding mechanics, but also to quantify the initial force levels produced. A single typodont, with residual extraction space in each quadrant, was set up to simulate space closure using sliding mechanics. On two occasions, at least 2 months apart, 18 clinicians were asked to apply three force delivery systems to the typodont, in the manner in which they would apply it in a clinical situation. The three types of force delivery system investigated were elastomeric chain, an elastomeric module on a steel ligature, and a nickel-titanium closed coil spring. A choice of spaced or unspaced elastomeric chain produced by a single manufacturer was provided. The amount of stretch which was placed on each type of system was measured and, using an Instron Universal Testing Machine, the initial force which would be generated by each force delivery system was established. Clinicians were assessed to examine their consistency in the amount of stretch which each placed on the force delivery systems, their initial force application and their ability to apply equivalent forces with the different types of force delivery system. The clinicians were found to be consistent in their method of application of the force delivery systems and, therefore, their force application, as individuals, but there was a wide range of forces applied as a group. However, most clinicians applied very different forces when using different force delivery systems. When using the module on a ligature the greatest force was applied, whilst the nickel titanium coil springs provided the least force. PMID:9218110

  2. Feasibility analysis of digital single lens reflex applied in the field of aerospace measurement

    NASA Astrophysics Data System (ADS)

    Feng, Xinghao; Li, Manliang; Tang, Xuehai

    2015-10-01

    The mainstrean digital single lens reflex (DSLR) image has the characteristics of true color and high quality, this paper proposes apply DSLR to probe spacecraft in order to obtain better quality Color images. Firstly, the performance parameters of mainstream DSLR and industrial-grade optical detector are analysed and compared detailedly; Secondly, the performance and positioning ways etc. of optical detector and DSLR system integrated special telephoto lens are analysed and compared. Furthermore, some experiments have been done in different conditions. The experiments indicate that the performances of DSLR and optical detector are similar. In addition, DSLR has the advantage of small size, low cost and Easy positioning, which can be used to obtain the scene of spacecraft in the takeoff phase and part of reentry phase.

  3. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  4. Measurement of SIFT operating system overhead

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Butler, R. W.

    1985-01-01

    The overhead of the software implemented fault tolerance (SIFT) operating system was measured. Several versions of the operating system evolved. Each version represents different strategies employed to improve the measured performance. Three of these versions are analyzed. The internal data structures of the operating systems are discussed. The overhead of the SIFT operating system was found to be of two types: vote overhead and executive task overhead. Both types of overhead were found to be significant in all versions of the system. Improvements substantially reduced this overhead; even with these improvements, the operating system consumed well over 50% of the available processing time.

  5. Performance measurement for information systems: Industry perspectives

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Yoes, Cissy; Hamilton, Kay

    1992-01-01

    Performance measurement has become a focal topic for information systems (IS) organizations. Historically, IS performance measures have dealt with the efficiency of the data processing function. Today, the function of most IS organizations goes beyond simple data processing. To understand how IS organizations have developed meaningful performance measures that reflect their objectives and activities, industry perspectives on IS performance measurement was studied. The objectives of the study were to understand the state of the practice in IS performance techniques for IS performance measurement; to gather approaches and measures of actual performance measures used in industry; and to report patterns, trends, and lessons learned about performance measurement to NASA/JSC. Examples of how some of the most forward looking companies are shaping their IS processes through measurement is provided. Thoughts on the presence of a life-cycle to performance measures development and a suggested taxonomy for performance measurements are included in the appendices.

  6. A miniature all-solid-state calcium electrode applied to in situ seawater measurement

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Wang, You; Luo, Zhiyuan; Pan, Yiwen

    2013-12-01

    An all-solid-state miniature calcium ion selective electrode (ISE) based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT(PSS)) for continuous in situ measurement in seawater was studied. The electrode substrate was a platinum (Pt) wire of 0.5 mm diameter and PEDOT(PSS) was electropolymerized on one end of the Pt wire to act as the solid contact of this calcium ISE. The PEDOT(PSS) layer was covered with a calcium-selective poly(vinyl chloride) membrane, which contained ETH129 as calcium ionophore, potassium tetrakis-(p-chlorophenyl)borate as lipophilic anion and bis(2-ethylhexyl) sebacate as the plasticizer. Experiments using electrochemical impedance spectroscopy and reversed chronopotentiometry illustrated that electropolymerized PEDOT(PSS) decreased the resistance and improved the stability of the electrode. The sensors can work stably in the calcium ion concentration range of 10-6-10-1 mol L-1 with the slope of 27.7 mV/decade. Also Na+, K+ and Mg2+ can hardly interfere with the performance of the electrode. This electrode was applied to measure the calcium ion concentration of seawater samples. The experimental data showed that the electrode can resist the corrosion of seawater and its reproducibility was good (SD < 0.1 mM kg-1). The lifetime of such an electrode was at least six months. Because of the wire-shape and the small size of such a liquid junction free calcium electrode, it is pressure-resistant and easy to package and seal, therefore it is suitable for use in underwater equipment for in situ seawater measurement.

  7. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  8. Performance and accuracy investigations of two Doppler global velocimetry systems applied in parallel

    NASA Astrophysics Data System (ADS)

    Willert, Christian; Stockhausen, Guido; Klinner, Joachim; Lempereur, Christine; Barricau, Philippe; Loiret, Philippe; Raynal, Jean Claude

    2007-08-01

    Two Doppler global velocimetry systems were applied in parallel to assess their performance in wind tunnel environments. Both DGV systems were mounted on a common traverse surrounding the glass-walled 1.4 × 1.8 m2 test section of the wind tunnel. The traverse normally supports a three-component forward-scatter laser Doppler velocimetry system. The reproducible tip-vortex flow field generated by the blunt tip of an airfoil was chosen for this investigation and was precisely surveyed by LDA just prior to the DGV measurements. Both DGV systems shared the same continuous wave laser light source, laser frequency monitoring and fibre optic light sheet delivery system. The principal differences between the DGV implementations are with regard to the imaging configuration. One configuration relied on a single camera view that observed three successively operated light sheets. In the second configuration, three camera views simultaneously observed a single light sheet using a four-branch fibre imaging bundle. The imaging bundle system had all three viewpoints in a forward scattering arrangement which increased the scattering efficiency but reduced the frequency shift sensitivity. Since all three light sheet observation components were acquired onto the same image frame, acquisition times could be reduced to a minimum. On the other hand, the triple light sheet-single camera system observed two light sheets in forward scatter and one light sheet in backscatter. Although three separate images had to be recorded in succession, the image quality, spatial resolution and signal-to-noise ratio were superior to the imaging bundle system. Comparison of the DGV data with LDV measurements shows very good agreement to within 1-2 m s-1. The remaining discrepancy has a variety of causes, some are related to the reduced resolving power of the fibre imaging bundle system (graininess, smoothing), exact localization of the receiver head with respect to the scene, laser frequency drift or

  9. Measuring the ROI on Knowledge Management Systems.

    ERIC Educational Resources Information Center

    Wickhorst, Vickie

    2002-01-01

    Defines knowledge management and corporate portals and provides a model that can be applied to assessing return on investment (ROI) for a knowledge management solution. Highlights include leveraging knowledge in an organization; assessing the value of human capital; and the Intellectual Capital Performance Measurement Model. (LRW)

  10. Digital holography system for topography measurement

    NASA Astrophysics Data System (ADS)

    Amezquita, R.; Rincon, O. J.; Torres, Y. M.; Amezquita, S.

    2011-08-01

    The optical characteristics of Diffractive Optical Elements are determined by the properties of the photosensitive film on which they are produced. When working with photoresist plates, the most important property is the change in the plate's topography for different exposures. In this case, the required characterization involves a topographic measurement that can be made using digital holography. This work presents a digital holography system in which a hologram's phase map is obtained from a single recorded image. The phase map is calculated by applying a phase-shifting algorithm to a set of images that are created using a digital phase-shifting/tilteliminating procedure. Also, the curvatures, introduced by the imaging elements used in the experimental setup, are digitally compensated for using a polynomial fitting-method. The object's topography is then obtained from this modified phase map. To demonstrate the proposed procedure, the topography of patches exposed on a Shipley 1818 photoresist plate by microlithography equipment-which is currently under construction-is shown.

  11. Screw thread parameter measurement system based on image processing method

    NASA Astrophysics Data System (ADS)

    Rao, Zhimin; Huang, Kanggao; Mao, Jiandong; Zhang, Yaya; Zhang, Fan

    2013-08-01

    In the industrial production, as an important transmission part, the screw thread is applied extensively in many automation equipments. The traditional measurement methods of screw thread parameter, including integrated test methods of multiparameters and the single parameter measurement method, belong to contact measurement method. In practical the contact measurement exists some disadvantages, such as relatively high time cost, introducing easily human error and causing thread damage. In this paper, as a new kind of real-time and non-contact measurement method, a screw thread parameter measurement system based on image processing method is developed to accurately measure the outside diameter, inside diameter, pitch diameter, pitch, thread height and other parameters of screw thread. In the system the industrial camera is employed to acquire the image of screw thread, some image processing methods are used to obtain the image profile of screw thread and a mathematics model is established to compute the parameters. The C++Builder 6.0 is employed as the software development platform to realize the image process and computation of screw thread parameters. For verifying the feasibility of the measurement system, some experiments were carried out and the measurement errors were analyzed. The experiment results show the image measurement system satisfies the measurement requirements and suitable for real-time detection of screw thread parameters mentioned above. Comparing with the traditional methods the system based on image processing method has some advantages, such as, non-contact, easy operation, high measuring accuracy, no work piece damage, fast error analysis and so on. In the industrial production, this measurement system can provide an important reference value for development of similar parameter measurement system.

  12. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    NASA Astrophysics Data System (ADS)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  13. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  14. A Measurement System for Spectrographic Plates

    NASA Astrophysics Data System (ADS)

    Nylén, Per

    1982-02-01

    An analysis system for measurement and data processing of spectra, recorded on spectrographic plates, is described. The system uses diode arrays for line profile scanning and a television camera for survey. The positions are measured using a Heidenhain equipment, and a micro-computer guides and controls the system. The computer is programmed to support the operator with utility routines for data collection and processing and for operator guidance.

  15. Characterization of Multicrystalline Silicon Modules with System Bias Voltage Applied in Damp Heat

    SciTech Connect

    Hacke, P.; Kempe, M.; Terwilliger, K.; Glick, S.; Call, N.; Johnston, S.; Kurtz, S.

    2011-07-01

    As it is considered economically favorable to serially connect modules to build arrays with high system voltage, it is necessary to explore potential long-term degradation mechanisms the modules may incur under such electrical potential. We performed accelerated lifetime testing of multicrystalline silicon PV modules in 85 degrees C/ 85% relative humidity and 45 degrees C/ 30% relative humidity while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame. Negative bias applied to the active layer in some cases leads to more rapid and catastrophic module power degradation. This is associated with significant shunting of individual cells as indicated by electroluminescence, thermal imaging, and I-V curves. Mass spectroscopy results support ion migration as one of the causes. Electrolytic corrosion is seen occurring with the silicon nitride antireflective coating and silver gridlines, and there is ionic transport of metallization at the encapsulant interface observed with damp heat and applied bias. Leakage current and module degradation is found to be highly dependent upon the module construction, with factors such as encapsulant and front glass resistivity affecting performance. Measured leakage currents range from about the same seen in published reports of modules deployed in Florida (USA) and is accelerated to up to 100 times higher in the environmental chamber testing.

  16. First application close measurements applying the new hybrid integrated MEMS spectrometer

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Pügner, Tino; Knobbe, Jens; Schenk, Harald

    2013-05-01

    Grating spectrometers have been designed in many different configurations. Now potential high volume applications ask for extremely miniaturized and low cost systems. By the use of integrated MEMS (micro electro mechanical systems) scanning grating devices a less expensive single detector can be used in the NIR instead of the array detectors required for fixed grating systems. Meanwhile the design of a hybrid integrated MEMS scanning grating spectrometer has been drawn. The MEMS device was fabricated in the Fraunhofer IPMS own clean room facility. This chip is mounted on a small circuit board together with the detector and then stacked with spacer and mirror substrate. The spectrometer has been realized by stacking several planar substrates by sophisticated mounting technologies. The spectrometer has been designed for the 950nm - 1900nm spectral range and 9nm spectral resolution with organic matter analysis in mind. First applications are considered in the food quality analysis and food processing technology. As example for the use of a spectrometer with this performance the grill process of steak was analyzed. Similar measurement would be possible on dairy products, vegetables or fruit. The idea is a mobile spectrometer for in situ and on site analysis applications in or attached to a host system providing processing, data access and input-output capabilities, disregarding this would be a laptop, tablet, smart phone or embedded platform.

  17. The modeling of portable 3D vision coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Huang, Fengshan; Peng, Kai

    2005-02-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  18. Applying Systems Engineering to Implement an Evidence-based Intervention at a Community Health Center

    PubMed Central

    Tu, Shin-Ping; Feng, Sherry; Storch, Richard; Yip, Mei-Po; Sohng, HeeYon; Fu, Mingang; Chun, Alan

    2013-01-01

    Summary Impressive results in patient care and cost reduction have increased the demand for systems-engineering methodologies in large health care systems. This Report from the Field describes the feasibility of applying systems-engineering techniques at a community health center currently lacking the dedicated expertise and resources to perform these activities. PMID:23698657

  19. Using Microcomputers To Apply Statewide Standards for Schools and School Systems: Technological Changes over Five Years.

    ERIC Educational Resources Information Center

    Wu, Yi-Cheng; Hebbler, Stephen W.

    The Evaluation and Assessment Laboratory at the University of Alabama (Tuscaloosa) has contracted with the Georgia Department of Education (GDOE) to develop a microcomputer-based data management system for use in applying evaluation standards to schools and school systems. The Comprehensive Evaluation System (CES) was implemented statewide and has…

  20. Applied Systemic Theory and Educational Psychology: Can the Twain Ever Meet?

    ERIC Educational Resources Information Center

    Pellegrini, Dario W.

    2009-01-01

    This article reflects on the potential benefits of applying systemic theory to the work of educational psychologists (EPs). It reviews developments in systemic thinking over time, and discusses the differences between more directive "first order" versus collaborative "second order" approaches. It considers systemic theories and illustrates their…

  1. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    -magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  2. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  3. Computer-aided surface roughness measurement system

    SciTech Connect

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisition/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined.

  4. Measuring Fiscal Capacity of School Systems.

    ERIC Educational Resources Information Center

    Green, Harry A.

    Ways of measuring the fiscal capacity of school systems are examined in this paper, which presents a representative tax system model. Fiscal capacity is influenced by factors other than tax base size; the "ideal" model should address adjustments for variations in cost across communities and school systems. The first section examines the…

  5. Pair importance measures in systems analysis

    SciTech Connect

    Youngblood, R.; Xue, D.; Cho, N.

    1986-01-01

    Importance measures in systems unreliability (or unavailability) analysis provide useful information in identifying components which are critical with regard to the availability or reliability of a system. Various importance measures known in the reliability literature are defined for a single component. This paper extends previous work to define importance measures for a pair of components of the system (accident sequence, core damage frequency, or health risks as appropriate), and illustrates the usefulness of these pairwise importance measures in nuclear power plants. The pairwise importance measures are immediately applicable to risk-based evaluation of the technical specifications; in addition, pairwise importances could play an important role in systems interaction studies by highlighting pairs of events between which a coupling would be significant if it existed.

  6. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  7. Entropy Measurement for Biometric Verification Systems.

    PubMed

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach. PMID:26054080

  8. Restricted Modal Analysis Applied to Internal Annular Combustor Autospectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2007-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.

  9. Convective Effects During Diffusivity Measurements in Liquids with An Applied Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Yu Yu; Banish, R. Michael; Alexander, J. Iwan D.

    2003-01-01

    Convective contamination of self-diffusion experiments with an applied magnetic field is considered using a two-dimensional axisymmetric model. Constant, uniform, and an additional non-uniform heat fluxes are imposed along the sidewall of the cylinder while constant heat loss occurs through the top and bottom. In this model, due to a very small thermal Peclet number, convective heat transfer is neglected, and the flow is steady and inertialess. Time-dependent concentration is solved for various values of the mass Peclet number, Pe(sub m), (the ratio between the convective transport rate and the diffusive transport rate) and different magnetic field strengths represented by the Hartmann number Ha. Normalized values of these diffusivities vs. effective Pe(sub m) are presented for different imposed temperature profiles. In all cases, the diffusivity value obtained through the simulated measurement increases as the effective Pe(sub m) increases. The numerical results suggest that an additional periodic flux, or hot and cold spots, can significantly decrease the convective contamination in our geometry.

  10. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.

  11. An effective thermal conductivity measurement system

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Jordà, X.; Vellvehi, M.; Guraya, C.; Coleto, J.; Rebollo, J.

    2004-11-01

    In the technical literature, there is a lack of reliable thermal parameters and, often, it is necessary to do in situ measurements for every particular material. An effective thermal conductivity measurement system has been designed and implemented to provide reliable and accurate values for that thermal parameter. The thermal conductivity of a given material is deduced from thermal resistance differential measurements of two samples. All parts of the implemented system as well as practical and theoretical solutions are described, including a power controller circuit exclusively conceived for this application. Experimental considerations to reduce the measurement error are exposed, as well as some results obtained for three different materials.

  12. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  13. Photoplethysmographic measurements from central nervous system tissue

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.; Chang, S. H.; Maney, K.; George, K. J.; Langford, R. M.

    2007-10-01

    A new system for measuring the oxygen saturation of blood within tissue has been developed, for a number of potential patient monitoring applications. This proof of concept project aims to address the unmet need of real-time measurement of oxygen saturation in the central nervous system (CNS) for patients recovering from neurosurgery or trauma, by developing a fibre optic signal acquisition system for internal placement through small apertures. The development and testing of a two-wavelength optical fibre reflectance photoplethysmography (PPG) system is described together with measurements in rats and preliminary results from a clinical trial of the system in patients undergoing neurosurgery. It was found that good quality red and near-infrared PPG signals could be consistently obtained from the rat spinal cord (n=6) and human cerebral cortex (n=4) using the fibre optic probe. These findings justify further development and clinical evaluation of this fibre optic system.

  14. Automated phase/amplitude EHF measurement system

    NASA Astrophysics Data System (ADS)

    Potts, B. M.

    1981-05-01

    An automated, computer-controlled measurement system capable of conducting transmission and reflection measurements on components over the 40 to 47 GHz frequency range is described. The measurement system utilizes harmonic mixing in conjunction with a phase locked, dual channel receiver to downconvert signals in the 7 GHz bandwidth to a lower intermediate frequency (1 KHz) where phase and amplitude measurements are made. The system is capable of operating over a dynamic range in excess of 50 dB when used with an EHF source producing a minimum -10 dBm output. Following a description of the system and its operation, some performance characteristics are presented. The measurement system accuracy is demonstrated using two types of reference standards: (1) a rotary vane attenuator for the transmission measurements, and (2) a set of reduced-height waveguide VSWR standards for the return loss measurements. Results obtained using these standards have indicated that measurement accuracies of 0.25 dB and 3 deg are achievable over a 50 dB dynamic range.

  15. Analysis of measurement system as the mechatronics system

    NASA Astrophysics Data System (ADS)

    Giniotis, V.; Grattan, K. T. V.; Rybokas, M.; Bručas, D.

    2010-07-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  16. Active transmission isolation/rotor loads measurement system

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Defelice, J. J.

    1973-01-01

    Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.

  17. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  18. Differentiating between spatial and temporal effects by applying modern data analyzing techniques to measured soil moisture data

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias L.; Lischeid, Gunnar; Schindler, Uwe

    2013-04-01

    Large data sets containing time series of soil hydrological variables exist due to extensive monitoring work in the last decades. The interplay of different processes and influencing factors cause spatial and temporal patterns which contribute to the total variance. That implies that monitoring data sets contain information about the most relevant processes. That information can be extracted using modern data analysis techniques. Our objectives were (i) to decompose the total variance of an example data set of measured soil moisture time series in independent components and (ii) relate them to specific influencing factors. Soil moisture had been measured at 12 plots in an Albeluvisol located in Müncheberg, northeastern Germany, between May 1st, 2008 and July 1st, 2011. Each plot was equipped with FDR probes in 7 depths between 30 cm and 300 cm. Six plots were cultivated with winter rye and silage maize (Crop Rotation System I) and the other six with silage maize, winter rye/millet, triticale/lucerne and lucerne (Crop Rotation System II). We applied a principal component analysis to the soil moisture data set. The first component described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. Together they explained 80 % of the data set's total variance. An analysis of the first two components confirmed that measured plots showed similar signal damping extend in each depth. The fourth component revealed the impact of the two different crop rotation systems which explained about 4 % of the total variance and 13 % of the spatial variance of soil moisture data. That is only a minor fraction compared to small scale soil texture heterogeneity effects. Principal component analysis has proven to be a useful tool to extract less apparent signals.

  19. Preparation Measurements and Assessment of Roof Systems

    NASA Astrophysics Data System (ADS)

    Baláž, Richard; Bagoňa, Miloslav

    2014-11-01

    The Institute of Architectural Engineering at the Civil Engineering Faculty TU of Kosice, in its ongoing research, aims to monitor the physical properties of building envelope structures with emphasis placed on hydrothermal problems, at present. The research focuses on the assembly of equipment in climate chambers with their respective sample envelopes and fenestration systems, which are involved in a measuring experiment. The prime aim is to design a logical and transparent system for gathering, evaluating and storing hydrothermal related data. This contribution further illustrates the embedding system of measurement points in installed samples and the system of monitoring their physical properties over an annual period.

  20. SIMS: The SLAC Industrial Measurement System

    SciTech Connect

    Bell, B.; /SLAC

    2005-08-12

    The development of electronic sensors and of small powerful computers, and their integration together have led to the development of what has come to be known as Industrial Measurement Technology (IMT). Industrial Measurement Systems feature one or more electronic sensors and a computer with powerful software. The software has three essential components: data collection, data reduction and data analysis. In the field of industrial surveying, the IMT system is the automated theodolite system, but other systems such as the laser tracker are on the horizon.

  1. Wide field of view laser beacon system for three dimensional aircraft range measurements

    NASA Technical Reports Server (NTRS)

    Wong, E. Y.

    1982-01-01

    A system that measures accurately the distance from an aircraft to a helicoper for rotor noise flight testing was developed. The system measures the range and angles between two aircraft using laser optics. This system can be applied in collision avoidance, robotics and other measurement critical tasks.

  2. Measurements, modeling, control and simulation - as applied to the human left ventricle for purposeful physiological monitoring.

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.

    1971-01-01

    Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.

  3. Telemetric measurement system of beehive environment conditions

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech; Sawicki, Aleksander

    2014-11-01

    This work presents a measurement system of beehive environmental conditions. The purpose of the device is to perform measurements of parameters such as ambient temperature, atmospheric pressure, internal temperature, humidity and sound level. The measured values were transferred to the MySQL database, which is located on an external server, with the use of GPRS protocol. A website presents the measurement data in the form of tables and graphs. The study also shows exemplary results of environmental conditions measurements recorded in the beehive by hour cycle.

  4. EVALUATION OF A FTIR SOURCE MEASUREMENT SYSTEM

    EPA Science Inventory

    An initial evaluation was made of a prototype Fourier transform infrared spectrometer on its ability to measure mobile source emissions. This prototype represents the commercialization of research technology developed by the Ford Motor Co. The system utilizes a Mattson Instrument...

  5. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  6. Applying the Earth System Grid Security System in a Heterogeneous Environment of Data Access Services

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Lowe, Dominic; Norton, Peter; Pascoe, Stephen

    2010-05-01

    CEDA (Centre for Environmental Data Archival) based at STFC Rutherford Appleton Laboratory is host to the BADC (British Atmospheric Data Centre) and NEODC (NERC Earth Observation Data Centre) with data holdings of over half a Petabyte. In the coming months this figure is set to increase by over one Petabyte through the BADC's role as one of three data centres to host the CMIP5 (Coupled Model Intercomparison Project Phase 5) core archive of climate model data. Quite apart from the problem of managing the storage of such large volumes there is the challenge of collating the data together from the modelling centres around the world and enabling access to these data for the user community. An infrastructure to support this is being developed under the US Earth System Grid (ESG) and related projects bringing together participating organisations together in a federation. The ESG architecture defines Gateways, the web interfaces that enable users to access data and data serving applications organised into Data Nodes. The BADC has been working in collaboration with US Earth System Grid team and other partners to develop a security system to restrict access to data. This provides single sign-on via both OpenID and PKI based means and uses role based authorisation facilitated by SAML and OpenID based interfaces for attribute retrieval. This presentation will provide an overview of the access control architecture and look at how this has been implemented for CEDA. CEDA has developed an expertise in data access and information services over several years through a number of projects to develop and enhance these capabilities. Participation in CMIP5 comes at a time when a number of other software development activities are coming to fruition. New services are in the process of being deployed alongside services making up the system for ESG. The security system must apply access control across this heterogeneous environment of different data services and technologies. One strand

  7. An airborne spectrometer with three infrared lasers for trace gas measurements applied to convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.

    2012-12-01

    An infrared absorption spectrometer named SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been built for airborne simultaneous online measurements of trace gases. SPIRIT is based on two recent technological advances, leading to optimal performances and miniaturization: continuous wave quantum cascade lasers (CW-QCL) operating near room temperature coupled to a new, patented, multipass optical cell (Robert, Appl. Optics, 2007). An essential electronic development allows the sequential use of three QCLs with the same single cell. With judicious selected spectral micro-windows, this potentially leads to the measurements of at least four species at 0.7 Hz frequency. The first deployment of SPIRIT was made onboard the DLR Falcon-20 aircraft during the campaign associated to the EU SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project in Nov.-Dec. 2011 over Malaysia. In the present paper, the flight of 19 Nov. is presented in detail as an example of the SPIRIT performances, with CO, CO2, CH4 and N2O as measured species. The aircraft crossed four times the anvil of a severe thunderstorm from 11.3 km to 12.8 km altitude corresponding to a large convective system near Borneo island (6.0°N-115.5°E). During the crossing, carbon monoxide mixing ratios increase by 5 to 10 ppbv from the ambient cloud free environment to the anvil cloud correlated with an increase of CH4 mixing ratio. Using these observations, the fraction of boundary layer air contained in fresh convective outflow has been calculated. Other convection cases were detected, allowing for other fractions to be calculated, with results ranging between 0.15 and 0.55 and showing the variability of the mixing taking place during convective transport.

  8. Measurement of unsteady pressures in rotating systems

    NASA Technical Reports Server (NTRS)

    Kienappel, K.

    1978-01-01

    The principles of the experimental determination of unsteady periodic pressure distributions in rotating systems are reported. An indirect method is discussed, and the effects of the centrifugal force and the transmission behavior of the pressure measurement circuit were outlined. The required correction procedures are described and experimentally implemented in a test bench. Results show that the indirect method is suited to the measurement of unsteady nonharmonic pressure distributions in rotating systems.

  9. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  10. Navigational and Environmental Measurement System (NEMS)

    NASA Technical Reports Server (NTRS)

    Clem, T. D.

    1988-01-01

    The NEMS concept and design were initiated from the need to measure and record positional and environmental information during aircraft flights of developmental science research instrumentation. The unit was designed as a stand-alone system which could serve the needs of instruments whose developmental nature did not justify the cost and complexity of including these measurements within the instrument data system. Initially, the system was comprised of a Loran-C receiver and a portable IBM compatible computer recording position and time. Later, the system was interfaced with the Wallops aircraft inertial navigation system (INS), and various other sensors were supplied and shared by the Goddard science users. Real-time position mapping on video monitors was added for investigator's use and information. In 1987, the use of a Global Positioning System (GPS) receiver was included in some missions. A total configuration of the system and the various sensors which can be incorporated are shown.

  11. Continuous Odour Measurement with Chemosensor Systems

    NASA Astrophysics Data System (ADS)

    Boeker, Peter; Haas, T.; Diekmann, B.; Lammer, P. Schulze

    2009-05-01

    The continuous odour measurement is a challenging task for chemosensor systems. Firstly, a long term and stable measurement mode must be guaranteed in order to preserve the validity of the time consuming and expensive olfactometric calibration data. Secondly, a method is needed to deal with the incoming sensor data. The continuous online detection of signal patterns, the correlated gas emission and the assigned odour data is essential for the continuous odour measurement. Thirdly, a severe danger of over-fitting in the process of the odour calibration is present, because of the high measurement uncertainty of the olfactometry. In this contribution we present a technical solution for continuous measurements comprising of a hybrid QMB-sensor array and electrochemical cells. A set of software tools enables the efficient data processing and calibration and computes the calibration parameters. The internal software of the measurement systems microcontroller processes the calibration parameters online for the output of the desired odour information.

  12. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  13. Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires.

    PubMed

    McCOWAN; Hanser; Doyle

    1999-02-01

    Comparative analysis of nonhuman animal communication systems and their complexity, particularly in comparison to human language, has been generally hampered by both a lack of sufficiently extensive data sets and appropriate analytic tools. Information theory measures provide an important quantitative tool for examining and comparing communication systems across species. In this paper we use the original application of information theory, that of statistical examination of a communication system's structure and organization. As an example of the utility of information theory to the analysis of animal communication systems, we applied a series of information theory statistics to a statistically categorized set of bottlenose dolphin Tursiops truncatus, whistle vocalizations. First, we use the first-order entropic relation in a Zipf-type diagram (Zipf 1949 Human Behavior and the Principle of Least Effort) to illustrate the application of temporal statistics as comparative indicators of repertoire complexity, and as possible predictive indicators of acquisition/learning in animal vocal repertoires. Second, we illustrate the need for more extensive temporal data sets when examining the higher entropic orders, indicative of higher levels of internal informational structure, of such vocalizations, which could begin to allow the statistical reconstruction of repertoire organization. Third, we propose using 'communication capacity' as a measure of the degree of temporal structure and complexity of statistical correlation, represented by the values of entropic order, as an objective tool for interspecies comparison of communication complexity. In doing so, we introduce a new comparative measure, the slope of Shannon entropies, and illustrate how it potentially can be used to compare the organizational complexity of vocal repertoires across a diversity of species. Finally, we illustrate the nature and predictive application of these higher-order entropies using a preliminary

  14. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  15. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  16. Automated statistical modeling of analytical measurement systems

    SciTech Connect

    Jacobson, J J

    1992-08-01

    The statistical modeling of analytical measurement systems at the Idaho Chemical Processing Plant (ICPP) has been completely automated through computer software. The statistical modeling of analytical measurement systems is one part of a complete quality control program used by the Remote Analytical Laboratory (RAL) at the ICPP. The quality control program is an integration of automated data input, measurement system calibration, database management, and statistical process control. The quality control program and statistical modeling program meet the guidelines set forth by the American Society for Testing Materials and American National Standards Institute. A statistical model is a set of mathematical equations describing any systematic bias inherent in a measurement system and the precision of a measurement system. A statistical model is developed from data generated from the analysis of control standards. Control standards are samples which are made up at precise known levels by an independent laboratory and submitted to the RAL. The RAL analysts who process control standards do not know the values of those control standards. The object behind statistical modeling is to describe real process samples in terms of their bias and precision and, to verify that a measurement system is operating satisfactorily. The processing of control standards gives us this ability.

  17. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688

  18. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    PubMed Central

    Maranhão, Geraldo Neves De A.; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688

  19. Selected bibliography of OMEGA, VLF and LF techniques applied to aircraft navigation systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A bibliography is presented which includes references to the OMEGA navigation system, very low frequencies, time-frequency measurements, air traffic control, radio navigation, and applications of OMEGA.

  20. Creating a System for Data-Driven Decision-Making: Applying the Principal-Agent Framework

    ERIC Educational Resources Information Center

    Wohlstetter, Priscilla; Datnow, Amanda; Park, Vicki

    2008-01-01

    The purpose of this article is to improve our understanding of data-driven decision-making strategies that are initiated at the district or system level. We apply principal-agent theory to the analysis of qualitative data gathered in a case study of 4 urban school systems. Our findings suggest educators at the school level need not only systemic…

  1. 30 CFR 260.111 - What conditions apply to the bidding systems that MMS uses?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What conditions apply to the bidding systems that MMS uses? 260.111 Section 260.111 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL SHELF OIL AND GAS LEASING Bidding Systems General Provisions § 260.111...

  2. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.

    1981-01-01

    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  3. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  4. SOPC implementation for stereovision measurement system

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Lv, Naiguang; Deng, Wenyi; Zhao, Zhe

    2010-11-01

    Image processing is necessary for three-dimensional information recovering of stereovision measurement system and it is always bottleneck for real-time applications. In order to accelerate system computational power, the design of SOPC system which can fulfills image processing tasks parallel is discussed. As a part of high-speed stereovision measurement system, the application specific SOPC is designed as an embedded PCI board card of hosts PC. This paper focuses on three aspects. Firstly, Principles of SOPC system designing and SOPC features selecting are analyzed with measuring requirements under consideration. Then the realization of SOPC system is described in detail. The embedded processor, special IPs (Intelligent Properties), several custom logic modules are included in a single FPGA. All units are seamlessly integrated into the overall system using the system builder interface. The parallel processing is illustrated by examples. In the end, simulation and debugging results of SOPC system are introduced. Elements that influence running time are analyzed and final results are given. Experiment and test results show that all the functions needed were realized with much higher efficiency and processing speed in our SOPC system than conventional software.

  5. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  6. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  7. Measuring Performance with Library Automated Systems.

    ERIC Educational Resources Information Center

    OFarrell, John P.

    2000-01-01

    Investigates the capability of three library automated systems to generate some of the datasets necessary to form the ISO (International Standards Organization) standard on performance measurement within libraries, based on research in Liverpool John Moores University (United Kingdom). Concludes that the systems are weak in generating the…

  8. Time measurment system at the SSC

    SciTech Connect

    Arai, Yasuo

    1989-04-01

    A proposal of time measurement system at the SSC experiment is described. An example of a possible scheme for central tracking chambers is shown. Designs of a preamp/shaper/discri chip and a time digitizer chip are described. A method to distribute system clock and power/cooling problems are also discussed.

  9. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  10. Computerized system for measuring cerebral metabolism

    SciTech Connect

    McGlone, J.S.; Hibbard, L.S.; Hawkins, R.A.; Kasturi, R.

    1987-09-01

    A computerized stereotactic measurement system for evaluating rat brain metabolism was developed to utilize the large amount of data generated by quantitative autoradiography. Conventional methods of measurement only analyze a small percent of these data because these methods are limited by instrument design and the subjectiveness of the investigator. However, a computerized system allows digital images to be analyzed by placing data at their appropriate three-dimensional stereotactic coordinates. The system automatically registers experimental data to a standard three-dimensional image using alignment, scaling, and matching operations. Metabolic activity in different neuronal structures is then measured by generating digital masks and superimposing them on to experimental data. Several experimental data sets were evaluated and it was noticed that the structures measured by the computerized system, had in general, lower metabolic activity than manual measurements had indicated. This was expected because the computerized system measured the structure over its volume while the manual readings were taken from the most active metabolic area of a particular structure.

  11. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS).

    PubMed

    Steffen, Matthias; Heimann, Konrad; Bernstein, Nina; Leonhardt, Steffen

    2008-06-01

    Non-contact heart and lung activity monitoring would be a desirable supplement to conventional monitoring techniques. Based on the potential of non-contact magnetic induction measurements, requirements for an adequate monitoring system were estimated. This formed the basis for the development of the presented extendable multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Special focus was given to the dynamic behaviour and simultaneous multichannel measurements, so that the system allows for up to 14 receiver coils working simultaneously at 6 excitation frequencies. Moreover, a real-time software concept for online signal processing visualization in combination with a fast software demodulation is presented. Finally, first steps towards a clinical application are pointed out and technical performance as well as first in vivo measurements are presented. This paper covers some aspects previously presented in Steffen and Leonhardt (2007 Proc. 13th Int. Conf. on Electrical Bioimpedance and the 8th Conf. on Electrical Impedance Tomography, Graz 2007). PMID:18544830

  12. Coal face measurement system for underground use

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A measurement system was developed for the Eickhoff longwall shearer to determine the contour of the coal face as it mines coal. Contour data are obtained by an indirect measurement technique based on evaluating the motion of the shearer during mining. Starting from a known location, points along the coal face are established through a knowledge of the machines' positions and yaw movements as it moves past the coal face. The hardware and system operation procedures are described. The tests of system performance and their results are reported.

  13. Progress in optical strain measurement system development

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Qaqish, Walid

    1987-01-01

    A laser speckle strain measurement system has been built and tested for the NASA Lewis Research Center. The system is based on a speckle shift technique, which automatically corrects for error due to rigid body motion, and provides a near real time measure of strain. The first stage of a multiphase effort to develop an optical strain gauge capable of mapping in two dimensions the strain on the surface of a hot specimen is discussed. The objectives of this first phase have been to provide a noncontact, one-dimensional, differential strain gauge for experimental purposes, and to determine the maximum open air temperature limit of the system.

  14. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  15. Measurement system for laser bistatic lidar scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, Chin-Yuan

    2001-11-01

    We construct a bistatic polarimetric scattering system and improve the experimental techniques to contribute to the research of a mathematical model that describes the electromagnetic waves scattering characteristics from random rough surfaces, and to serve as a tool used to better describe wave interaction with random media. To accomplish the measurement both a horn antenna operating in the far field and a parabolic-dish antenna operating in the near-field focus mode are utilized. The transmitter for the active system is a linearly polarized, helium-neon laser operating in the red light region. The receiver measures both like- and cross-polarized returns, which helps assess the scattered radiation pattern. A flat metal plate is developed to calibrate the measuring facility. The system is automated and consists of a spherical frame over which the transmitter and receiver travel. The transmitter and receiver design, system automation, and system architecture are discussed. Experimental measurements for a target are presented to evaluate the accuracy, repeatability, and utility of the helium-neon laser measurement system.

  16. Undulator Long Coil Measurement System Tests

    SciTech Connect

    Wolf, Zachary; Levashov, Yurii; /SLAC

    2010-11-24

    The first and second field integrals in the LCLS undulators must be below a specified limit. To accurately measure the field integrals, a long coil system is used. This note describes a set of tests which were used to check the performance of the long coil system. A long coil system was constructed to measure the first and second field integrals of the LCLS undulators. The long coil measurements of the background fields were compared to field integrals obtained by sampling the background fields and numerically calculating the integrals. This test showed that the long coil has the sensitivity required to measure at the levels specified for the field integrals. Tests were also performed by making long coil measurements of short magnets of known strength placed at various positions The long coil measurements agreed with the known field integrals obtained by independent measurements and calculation. Our tests showed that the long coil measurements are a valid way to determine whether the LCLS undulator field integrals are below the specified limits.

  17. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  18. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  19. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  20. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  1. Noncontact dimensional measurement system using holographic scanning

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Rosso, Robert S.; Rowe, David M.

    1997-07-01

    Holographic scanning systems have been used for years in point-of-sale bar code scanners and other low resolution applications. These simple scanning systems could not successfully provide the accuracy and precision required to measure, inspect and control the production of today's high tech optical fibers, medical extrusions and electrical cables. A new class of instruments for the precision measurement of industrial processes has been created by the development of systems with a unique combination of holographic optical elements that can compensate for the wavelength drift in laser diodes, the application of proprietary post-processing algorithms, and the advancements in replication methods to fabricate low cost holographic scanning discs. These systems have improved upon the performance of traditional polygon mirror scanners. This paper presents the optical configuration and design features that have been incorporated into a holographic scanning inspection system that provides higher productivity, increased product quality and lower production costs for many manufacturers.

  2. Noninvasive ambulatory measurement system of cardiac activity.

    PubMed

    Pino, Esteban J; Chavez, Javier A P; Aqueveque, Pablo

    2015-08-01

    This work implements a noninvasive system that measures the movements caused by cardiac activity. It uses unobtrusive Electro-Mechanical Films (EMFi) on the seat and on the backrest of a regular chair. The system detects ballistocardiogram (BCG) and respiration movements. Real data was obtained from 54 volunteers. 19 of them were measured in the laboratory and 35 in a hospital waiting room. Using a BIOPAC acquisition system, the ECG was measured simultaneously to the BCG for comparison. Wavelet Transform (WT) is a better option than Empirical Mode Decomposition (EMD) for signal extraction and produces higher effective measurement time. In the laboratory, the best results are obtained on the seat. The correlation index was 0.9800 and the Bland-Altman limits of agreement were 0.7136 ± 4.3673 [BPM]. In the hospital waiting room, the best results are also from the seat sensor. The correlation index was 0.9840, and the limits of agreement were 0.4386 ± 3.5884 [BPM]. The system is able to measure BCG in an unobtrusive way and determine the cardiac frequency with high precision. It is simple to use, which means the system can easily be used in non-standard settings: resting in a chair or couch, at the gym, schools or in a hospital waiting room, as shown. PMID:26738057

  3. Applying Systems Theory to Systemic Change: A Generic Model for Educational Reform.

    ERIC Educational Resources Information Center

    Hansen, Joe B.

    Although educational reformers frequently use the words "system,""systemic change," and "systemic approach," many lack a fundamental understanding of the systems concept. This paper describes the application of systems theory to the problems of educational reform and educational assessment. It introduces basic concepts and principles and describes…

  4. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  5. The Art World's Concept of Negative Space Applied to System Safety Management

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Tools from several different disciplines can improve system safety management. This paper relates the Art World with our system safety world, showing useful art schools of thought applied to system safety management, developing an art theory-system safety bridge. This bridge is then used to demonstrate relations with risk management, the legal system, personnel management and basic management (establishing priorities). One goal of this presentation/paper is simply to be a fun diversion from the many technical topics presented during the conference.

  6. Smart measurement system for resistive (bridge) or capacitive sensors

    NASA Astrophysics Data System (ADS)

    Wang, Guijie; Meijer, Gerard C. M.

    1998-07-01

    A low-cost smart measurement system for resistive (bridge) and capacitive sensors is presented and demonstrated. The measurement system consists of three main parts: the sensor element, a universal transducer interface (UTI) and a microcontroller. The UTI is a sensor-signal-to-time converter, based on a period-modulated oscillator, which is equipped with front-ends for many types of resistive (bridge) and capacitive sensors, and which generates a microcontroller-compatible output signal. The microcontroller performs data acquisition of the output signals from the interface UTI, controls the working status of the UTI for a specified application and communicates with a personal computer. Continuous auto-calibration of the offset and the gain of the complete system is applied to eliminate many nonidealities. Experimental results show that the accuracy and resolution are 14 bits and 16 bits, respectively, for a measurement time of about 100 ms.

  7. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  8. Team Performance Assessment and Measurement: Theory, Methods, and Applications. Series in Applied Psychology.

    ERIC Educational Resources Information Center

    Brannick, Michael T., Ed.; Salas, Eduardo, Ed.; Prince, Carolyn, Ed.

    This volume presents thoughts on measuring team performance written by experts currently working with teams in fields such as training, evaluation, and process consultation. The chapters are: (1) "An Overview of Team Performance Measurement" (Michael T. Brannick and Carolyn Prince); (2) "A Conceptual Framework for Teamwork Measurement" (Terry L.…

  9. Applying velocity profiling technology to flow measurement at the Orinda water treatment plant

    SciTech Connect

    Metcalf, M.A.; Kachur, S.; Lackenbauer, S.

    1998-07-01

    A new type of flow measurement technology, velocity profiling, was tested in the South Channel of the Orinda Water Treatment Plant. This new technology allowed installation in the difficult hydraulic conditions of the South Channel, without interrupting plant operation. The advanced technology of velocity profiling enables flow measurements to be obtained in sites normally unusable by more traditional methods of flow rate measurement.

  10. Design of Astrometric Mission (JASMINE) by Applying Model Driven System Engineering

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyashita, H.; Nakamura, H.; Suenaga, K.; Kamiyoshi, S.; Tsuiki, A.

    2010-12-01

    We are planning space astrometric satellite mission named JASMINE. The target accuracy of parallaxes in JASMINE observation is 10 micro arc second, which corresponds to 1 nm scale on the focal plane. It is very hard to measure the 1 nm scale deformation of focal plane. Eventually, we need to add the deformation to the observation equations when estimating stellar astrometric parameters, which requires considering many factors such as instrument models and observation data analysis. In this situation, because the observation equations become more complex, we may reduce the stability of the hardware, nevertheless, we require more samplings due to the lack of rigidity of each estimation. This mission imposes a number of trades-offs in the engineering choices and then decide the optimal design from a number of candidates. In order to efficiently support such decisions, we apply Model Driven Systems Engineering (MDSE), which improves the efficiency of the engineering by revealing and formalizing requirements, specifications, and designs to find a good balance among various trade-offs.

  11. Laser Doppler Velocimeter particle velocity measurement system

    SciTech Connect

    Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

    1993-10-01

    This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

  12. The Holdup Measurement System II (HMSII)

    SciTech Connect

    Smith, S.E.; Gibson, J.S.; Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.

    1993-07-12

    A project is in progress that addresses two of the problems with existing holdup measurement technology: the need for compact instrumentation and a more efficient means of reducing the massive amounts of data to quantities of Special Nuclear Materials (SNM). The approach taken by the project utilizes the Miniature Modular MultiChannel Analyzer (M{sup 3}CA), a complete and truly portable gamma-ray spectroscopy system, under development at Los Alamos National Laboratory. The hardware is then integrated and automated by the Holdup Measurement System II (HMSII) software being developed by the Oak Ridge Y-12 Plant. Together they provide the hardware components, measurement control in the field, automated data acquisition, data storage and manipulation which simplify holdup measurements.

  13. The Holdup Measurement System II (HMSII)

    SciTech Connect

    Finch, T.L.; Gibson, J.S.; Smith, S.E.; Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Siebelist, R.; Sprinkle, J.K. Jr.

    1994-10-04

    A project is in progress that addresses two of problems with existing holdup measurement technology; the need for compact instrumentation and a more efficient means of reducing the massive amounts of data to quantities of Special Nuclear Materials (SNM). The approach taken by the project utilizes the Miniature Modular MultiChannel Analyzer (M{sup 3}CA) a complete and truly portable gamma-ray spectroscopy system, under development at Los Alamos National Laboratory. The hardware is then integrated and automated by the Holdup Measurement System II (HMSII) software being developed by the Oak Ridge Y-12 Plant. Together they provide the hardware components, measurement control in the field, automated data acquisition, data storage and manipulation which simplify holdup measurements.

  14. Differential Measurement Periodontal Structures Mapping System

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  15. Video integrated measurement system. [Diagnostic display devices

    SciTech Connect

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  16. Development of limb volume measuring system

    NASA Technical Reports Server (NTRS)

    Bhagat, P. K.; Kadaba, P. K.

    1983-01-01

    The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.

  17. Radiated microwave power transmission system efficiency measurements

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Brown, W. C.

    1975-01-01

    The measured and calculated results from determining the operating efficiencies of a laboratory version of a system for transporting electric power from one point to another via a wireless free space radiated microwave beam are reported. The system's overall end-to-end efficiency as well as intermediated conversion efficiencies were measured. The maximum achieved end-to-end dc-to-ac system efficiency was 54.18% with a probable error of + or - 0.94%. The dc-to-RF conversion efficiency was measured to be 68.87% + or - 1.0% and the RF-to-dc conversion efficiency was 78.67 + or - 1.1%. Under these conditions a dc power of 495.62 + or - 3.57 W was received with a free space transmitter antenna receiver antenna separation of 170.2 cm (67 in).

  18. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  19. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  20. Improving health, safety and energy efficiency in New Zealand through measuring and applying basic housing standards.

    PubMed

    Gillespie-Bennett, Julie; Keall, Michael; Howden-Chapman, Philippa; Baker, Michael G

    2013-08-01

    Substandard housing is a problem in New Zealand. Historically there has been little recognition of the important aspects of housing quality that affect people's health and safety. In this viewpoint article we outline the importance of assessing these factors as an essential step to improving the health and safety of New Zealanders and household energy efficiency. A practical risk assessment tool adapted to New Zealand conditions, the Healthy Housing Index (HHI), measures the physical characteristics of houses that affect the health and safety of the occupants. This instrument is also the only tool that has been validated against health and safety outcomes and reported in the international peer-reviewed literature. The HHI provides a framework on which a housing warrant of fitness (WOF) can be based. The HHI inspection takes about one hour to conduct and is performed by a trained building inspector. To maximise the effectiveness of this housing quality assessment we envisage the output having two parts. The first would be a pass/fail WOF assessment showing whether or not the house meets basic health, safety and energy efficiency standards. The second component would rate each main assessment area (health, safety and energy efficiency), potentially on a five-point scale. This WOF system would establish a good minimum standard for rental accommodation as well encouraging improved housing performance over time. In this article we argue that the HHI is an important, validated, housing assessment tool that will improve housing quality, leading to better health of the occupants, reduced home injuries, and greater energy efficiency. If required, this tool could be extended to also cover resilience to natural hazards, broader aspects of sustainability, and the suitability of the dwelling for occupants with particular needs. PMID:24045354

  1. Applications of fidelity measures to complex quantum systems.

    PubMed

    Wimberger, Sandro

    2016-06-13

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967

  2. Measuring the Accuracy of Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Swets, John A.

    1988-06-01

    Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially ``signals'' and ``noise.'' For then, analysis in terms of the ``relative operating characteristic'' of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.

  3. Implementing an Automated Antenna Measurement System

    NASA Technical Reports Server (NTRS)

    Valerio, Matthew D.; Romanofsky, Robert R.; VanKeuls, Fred W.

    2003-01-01

    We developed an automated measurement system using a PC running a LabView application, a Velmex BiSlide X-Y positioner, and a HP85l0C network analyzer. The system provides high positioning accuracy and requires no user supervision. After the user inputs the necessary parameters into the LabView application, LabView controls the motor positioning and performs the data acquisition. Current parameters and measured data are shown on the PC display in two 3-D graphs and updated after every data point is collected. The final output is a formatted data file for later processing.

  4. Dual strain gage balance system for measuring light loads

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W. (Inventor)

    1991-01-01

    A dual strain gage balance system for measuring normal and axial forces and pitching moment of a metric airfoil model imparted by aerodynamic loads applied to the airfoil model during wind tunnel testing includes a pair of non-metric panels being rigidly connected to and extending towards each other from opposite sides of the wind tunnel, and a pair of strain gage balances, each connected to one of the non-metric panels and to one of the opposite ends of the metric airfoil model for mounting the metric airfoil model between the pair of non-metric panels. Each strain gage balance has a first measuring section for mounting a first strain gage bridge for measuring normal force and pitching moment and a second measuring section for mounting a second strain gage bridge for measuring axial force.

  5. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2000-11-01

    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  6. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  7. Videogrammetric Model Deformation Measurement System User's Manual

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2002-01-01

    The purpose of this manual is to provide the user of the NASA VMD system, running the MDef software, Version 1.10, all information required to operate the system. The NASA Videogrammetric Model Deformation system consists of an automated videogrammetric technique used to measure the change in wing twist and bending under aerodynamic load in a wind tunnel. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two-dimensional coordinates of wing targets with fixed (and known) third dimensional coordinate, namely the span-wise location. The major consideration in the development of the measurement system was that productivity must not be appreciably reduced.

  8. Using Action Verbs as Learning Outcomes: Applying Bloom's Taxonomy in Measuring Instructional Objectives in Introductory Psychology

    ERIC Educational Resources Information Center

    Nevid, Jeffrey S.; McClelland, Nate

    2013-01-01

    We used a set of action verbs based on Bloom's taxonomy to assess learning outcomes in two college-level introductory psychology courses. The action verbs represented an acronym, IDEA, comprising skills relating to identifying, defining or describing, evaluating or explaining, and applying psychological knowledge. Exam performance demonstrated…

  9. Towards Sustainable Performance Measurement Frameworks for Applied Research in Canadian Community Colleges and Institutes

    ERIC Educational Resources Information Center

    Williams, Keith

    2014-01-01

    Applied Research (AR) in Canadian community colleges is driven by a mandate, via the collective voice of Colleges and Institutes Canada--a national voluntary membership association of publicly supported colleges and related institutions--to address issues of interest to industry, government, and/or community. AR is supported through significant…

  10. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  11. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  12. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  13. Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng

    2016-05-01

    Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

  14. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  15. CARS system for turbulent flame measurements

    NASA Technical Reports Server (NTRS)

    Antcliff, R. R.; Jarrett, O., Jr.; Rogers, R. C.

    1984-01-01

    Simultaneous nitrogen number density and rotational-vibrational temperatures were measured in a turbulent diffusion flame with a Coherent Anti-Stokes Raman Scattering (CARS) instrument. The fuel jet was diluted with nitrogen (20 percent by volume) to allow temperature measurements across the entire jet mixing region. These measurements were compared with fluid dynamics computations. The CARS system incorporated a neodymium YAG laser, an intensified silicon photodiode array detector, and unique dynamic range enhancement methods. Theoretical calculations were based on a parabolic Navier-Stokes computer code. The comparison of these techniques will aid their development in the study of complex flowfields.

  16. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  17. Machine Vision for High Precision Volume Measurement Applied to Levitated Containerless Materials Processing

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. C.; Schmidt, D. P.; Rogers, J. R.; Kelton, K. F.; Hyers, R. W.

    2005-01-01

    By combining the best practices in optical dilatometry with new numerical methods, a high-speed and high precision technique has been developed to measure volume of levitated, containerlessly processed samples with sub- pixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermo-physical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermo-ophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the sub-pixel locations of sample edges and, in turn produce high precision measurements.

  18. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  19. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  20. Reply to Comment on Shadow model for sub-barrier fusion applied to light systems' ''

    SciTech Connect

    Scalia, A. )

    1994-05-01

    This is a reply to the Comment on Shadow model for sub-barrier fusion applied to light systems.' '' We confirm the results of our paper. The claimed demonstration of the disagreement between the cross section derived from the shadow'' model and the low energy laboratory data is meaningless because it is based on a comparison which is incorrect.

  1. Embracing Connectedness and Change: A Complex Dynamic Systems Perspective for Applied Linguistic Research

    ERIC Educational Resources Information Center

    Cameron, Lynne

    2015-01-01

    Complex dynamic systems (CDS) theory offers a powerful metaphorical model of applied linguistic processes, allowing holistic descriptions of situated phenomena, and addressing the connectedness and change that often characterise issues in our field. A recent study of Kenyan conflict transformation illustrates application of a CDS perspective. Key…

  2. Toward a Blended Ontology: Applying Knowledge Systems to Compare Therapeutic and Toxicological Nanoscale Domains

    EPA Science Inventory

    Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the pu...

  3. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to... § 63.10(b)(1). (e) The reference to the periodic report required by § 63.152(c) of subpart G of...

  4. Colour measurements of all ceramic crown systems.

    PubMed

    Rosenstiel, S F; Porter, S S; Johnston, W M

    1989-09-01

    The objectives of this study were: (i) to determine variability among colour parameters of five different ceramic crown systems; and (ii) to measure the effect of using coloured luting agents on restoration colour. The crown systems studied were Cerestore, Dicor, Hi-Ceram, Renaissance, and Vitadur-N. Five crowns for each system were made according to manufacturer's instructions with the same nominal shade (Vita Lumin Vacuum A2) to fit an Ivorine central incisor tooth. Restoration thickness was adjusted to within +/- 0.1 mm (+/- 0.05 mm in the mid-facial area where colour measurements were to be made) with the aid of a dial calliper prior to glazing or, in the case of Dicor, surface staining. Where a core was part of the system this was fabricated to the minimum recommended thickness. The crowns were cemented using luting agents of five different colours in a randomly chosen sequence. The colour of each restoration/cement combination was measured three times using a small-area colorimeter (Minolta CR-121). The variance of each colour parameter (L*, a*, b*) was statistically compared for each crown system using an analysis of variance procedure, as was the effect of the cement. Observed differences were related to visual perception by using the colour difference formula. There were statistically significant differences among the variances of the crown systems and the cements, with significant interactions between crown systems and direction of colour and between cement and direction of colour. Restorations made with different ceramic crown systems had noticeably different colour despite having the same nominal shade. Changing the shade of the luting agent had a perceivable effect on Dicor crowns and, to a lesser extent, on Vitadur-N crowns but not on the other systems due, presumably, to the opacity of their core materials. PMID:2809851

  5. The system of blade's shape measuring

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Korotaev, Valery V.; Apehtin, Dmitri V.

    2015-02-01

    System that will allow visual and measuring control of blades is proposed. It based on triangulation method of measurement. This method implies using of elements described below: a receiving unit, source of structured light, processing and control unit, the monitor and power supply unit. Geometrical characteristics of the system are calculated. As a result we got numbers of receiving units and sources of structured light needed to monitor blade along its entire length. Theoretical error of system measurement is calculated. It depends on distance to the object, the base between receives unit and sources of structured light, resolution and physical size of image receive. Surface of blade is not flat this fact entails changing distance from object to receive unit. So the error of measurement will be different. The interval for researching was chosen from 90 to 130 mm. Error of measurement have steady upward trend from 0,08 to 0,017 mm all period between chosen distances. The physical model of control method is developed. As a result of its working picture of illuminated metal object was obtained. The program written in MatLab processes experimental picture, find lines of structure light and calculate dislocations of it. Then use this information to make a three-dimensional model of object.

  6. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  7. Measuring the Performance of Document Supply Systems.

    ERIC Educational Resources Information Center

    Line, Maurice B.

    Produced by Unesco as part of its program designed to help member states develop national information systems, including libraries, information services, and archives, this manual is a guide to document supply measurement techniques that are applicable to a wide range of countries. The first of seven chapters considers the objectives, nature, and…

  8. Aerosol Measurement and Processing System (AMAPS)

    Atmospheric Science Data Center

    2016-03-22

    Description:  Access aerosol data from MISR and MODIS Subset Level-2 MISR granules by parameter and by space/time region Extract MISR aerosol data for overflights of specific geographic regions or ground site ... or concerns. Details:  Aerosol Measurement and Processing System (AMAPS) Screenshot:  ...

  9. Automated electronic system for measuring thermophysical properties

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Jones, R. A.; Corwin, R. R.; Kramer, J. S.

    1975-01-01

    Phase-charge coatings are used to measure surface temperature accurately under transient heating conditions. Coating melts when surface reaches calibrated phase-charge temperature. Temperature is monitored by infrared thermometer, and corresponding elapsed time is recorded by electronic data-handling system.

  10. Modified read-out system of the beam phase measurement system for CSNS

    NASA Astrophysics Data System (ADS)

    Bai, Jiao-Ni; Zeng, Lei; Wang, Biao; Li, Peng; Li, Fang; Xu, Tao-Guang; Li, Zi-Gao

    2013-10-01

    The customized beam phase measurement system can meet the requirement of beam loss control of the radio-frequency quadrupole (RFQ). However, its read-out part cannot satisfy the requirement of China Spallation Neutron Source (CSNS). CSNS uses the Experimental Physics and Industrial Control System (EPICS) as its control system. So it is necessary to develop the EPICS read-out system consisting of EPICS IOC databases, driver support and OPIs. The new system has been successfully tested in the RFQ. In the future, it will be applied to the beam diagnostics of CSNS.

  11. Blade Vibration Measurement System for Unducted Fans

    NASA Technical Reports Server (NTRS)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  12. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  13. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  14. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area

  15. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  16. System for measuring radioactivity of labelled biopolymers

    SciTech Connect

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.

  17. SLYRB measures: natural invariant measures for chaotic systems

    NASA Astrophysics Data System (ADS)

    Hunt, Brian R.; Kennedy, Judy A.; Li, Tien-Yien; Nusse, Helena E.

    2002-08-01

    In many applications it is useful to consider not only the set that constitutes an attractor but also (if it exists) the asymptotic distribution of a typical trajectory converging to the attractor. Indeed, in the physics literature such a distribution is often assumed to exist. When it exists, it is called a “natural invariant measure”. The results by Lasota and Yorke, and by Sinai, Ruelle and Bowen represent two approaches both of which establish the existence of an invariant measure. The goal of this paper is to relate the “Lasota-Yorke measure” for chaotic attractors in one-dimensional maps and the “Sinai-Ruelle-Bowen measure” for chaotic attractors in higher-dimensional dynamical systems. We introduce the notion of “ SLYRB measure”. (We pronounce the term “SLYRB” as a single word “slurb”.) The SRB concept of measure can be motivated by asking how a trajectory from a typical initial point is distributed asymptotically. Similarly the SLYRB concept of measure can be motivated by asking what the average distribution is for trajectories of a large collection of initial points in some region not necessarily restricted to a single basin. The latter is analogous to ask where all the rain drops from a rain storm go and the former asks about where a single rain drop goes, perhaps winding up distributed throughout a particular lake.

  18. Apparatus for measuring internal friction Q factors in brittle materials. [applied to lunar samples

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Curnow, J. M.

    1976-01-01

    A flexural analog of the torsion pendulum for measuring the Young's modulus and the internal friction Q factor of brittle materials has been developed for Q greater than 10 to the 3rd measurements at a zero static stress and at 10 to the -7th strains of brittle materials in the Hz frequency range. The present design was motivated by the desire to measure Q in fragile lunar return samples at zero static stress to shed light on the anomalously low attenuation of seismic waves on the moon. The use of the apparatus is demonstrated with data on fused silica and on a terrestrial analog of lunar basalt.

  19. Automated multiscale measurement system for MEMS characterisation

    NASA Astrophysics Data System (ADS)

    Lyda, W.; Burla, A.; Haist, T.; Zimmermann, J.; Osten, W.; Sawodny, O.

    2010-05-01

    In former publications we presented an automated multiscale measurement system (AMMS) based on an adaptable active exploration strategy. The system is armed with several sensors linked by indicator algorithms to identify unresolved defects and to trigger finer resolved measurements. The advantage of this strategy in comparison to single sensor approaches is its high flexibility which is used to balance the conflict between measurement range, resolution and duration. For an initial proof of principle we used the system for inspection of microlens arrays. An even higher challenge for inspection systems are modern micro electro-mechanical systems (MEMS). MEMS consist of critical functional components which range from several millimeters down to micrometers and typically have tolerances in sub-micron scale. This contribution is focused on the inspection of MEMS using the example of micro calibration devices. This new class of objects has completely different surface characteristics and features hence it is necessary to adapted the components of the AMMS. Typical defects found on calibration devices are for example broken actuator combs and springs, surface cracks or missing features. These defects have less influence on the optical properties of the surface and the MEMS surface generates more complex intensity distributions in comparison microlense arrays. At the same time, the surface features of the MEMS have a higher variety and less periodicity which reduce the performance of currently used algorithms. To meet these requirements, we present new indicator algorithms for the automated analysis of confocal as well as conventional imaging data and show initial multiscale inspection results.

  20. Linescan Camera System for 100% Moisture Measurement

    SciTech Connect

    Hernandez, J E; Koo, J; Romero, C; Vigars, M; Newman, M; Dallum, G

    2006-10-11

    Lawrence Livermore National Laboratory (LLNL), in collaboration with ABB Industrial Systems, and under the sponsorship of the Department of Energy's (DOE) Office of Industrial Technologies (OIT), has developed a new method for measuring the moisture content of a paper web process on-line with 100% coverage of the sheet. The method uses InGaAs linear arrays with associated optics and electronics to continuously image the full width of the web and measure transmitted light at 1.45{micro} and another suitable reference wavelength between 1{micro} and 1.6{micro}. The method could also be used to measure paper basis weight, in addition to moisture, by adding additional hardware and optics to measure a third wavelength at 1.57{micro}. A patent (USP: 6355931), entitled ''System and method for 100% moisture and basis weight measurement of moving paper'', was granted by the US Patent Office on March 12, 2002 for this invention. A proof-of-concept prototype system was also developed and tested on several occasions at ABB's sensors development facility in Columbus, Ohio. Based on current experimental results, the system seems particularly suitable for detecting moisture variation on a paper web for medium and heavy weight products at the dry end as well as the press section of the machine. The prototype system was scheduled to be tested at a paper mill in the fall of 2001. The test had to be canceled as ABB was unable to provide the required field support for the test due to restructuring and down-sizing of their R&D organization.

  1. A Phantom Tissue System for the Calibration of Perfusion Measurements

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2008-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to simulate the nondirectional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent® to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on clearance of thermal energy. A heat flux gage measures the heat flux response of tissue when a thermal event (convective cooling) is applied. The blood perfusion and contact resistance are estimated by a parameter estimation code. From the experimental and analytical results, it was concluded that the probe displayed good measurement repeatability and sensitivity. The experimental perfusion measurements in the tissue were in good agreement with those of the CFD models and demonstrated the value of the phantom tissue system. PMID:19045509

  2. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E.; Kisner, Roger A.

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  3. MTF measurement of infrared optical systems

    NASA Astrophysics Data System (ADS)

    Lengwenus, Andre; Erichsen, Patrik

    2009-09-01

    Advances in electro-optic and infrared systems have led to new ways in modeling complex objectives for IR imaging devices. One important indicator for the performance of an imaging system is the modulation transfer function (MTF). In this contribution we disclose the main aspects of IR-MTF measurement and focus on the ImageMaster® Universal IR product line from Trioptics GmbH Germany. These devices cover the whole spectral range from SWIR to LWIR and can be configured to measure optical systems with focal lengths between 1 mm and 2000 mm. The instrument is fully automatized to a very high degree, so it is suitable for laboratory use as well as instruments designed for the high volume production environment.

  4. Measuring Entanglement in Condensed Matter Systems

    SciTech Connect

    Cramer, M.; Wunderlich, H.; Plenio, M. B.

    2011-01-14

    We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory, and a lower bound to the entanglement can be read off directly from the scattering cross section of neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.

  5. Applying the Ce-in-zircon oxygen geobarometer to diverse silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2012-12-01

    Zircon provides information on age, temperature, and composition of the magma from which it grew. In systems such as Mount St. Helens, where zircon is not coeval with the rest of the crystal cargo, it provides the only accessible record of the extended history of the magmatic system, including cycles of intrusion, crystallization and rejuvenation beneath an active volcano (Claiborne et al., 2010). The rare earth elements, which are present in measureable quantities in zircon, provide information about the composition of the magma from which zircon grew. Unique among the generally trivalent rare earth elements, cerium can exist as either trivalent or tetravalent, depending on the oxidation state of the magma. The tetravalent ion is highly compatible in zircon, in the site that usually hosts tetravalent zirconium, and so the amount of Cerium in zircon relative (relative to what would be expected of trivalent Ce) depends the oxidation state of the magma from which it grew. Trail et al. (2011) proposed a calibration based on experimental data that uses the Ce anomaly in zircon as a direct proxy for magma oxidation (fugacity), describing the relationship between Ce in zircon and magma oxygen fugacity as ln(Ce/Ce*)D = (0.1156±0.0050)xln(fO2)+(13860±708)/T-(6.125±0.484). For systems like Mount St. Helens, where the major minerals record only events in the hundreds to thousands of years leading to eruption, (including the Fe-Ti oxides traditionally relied upon for records of oxidation state of the magmas), this presents a novel approach for understanding more extended histories of oxidation of magmas in the tens and hundreds of thousands of years of magmatism at a volcanic center. This calibration also promises to help us better constrain conditions of crystallization in intrusive portions of volcanic systems, as well as plutonic bodes. We apply this new oxygen geobarometer to natural volcanic and plutonic zircons from a variety of tectonic settings, and compare to

  6. Structure and Measurement of Depression in Youth: Applying Item Response Theory to Clinical Data

    PubMed Central

    Cole, David A.; Cai, Li; Martin, Nina C.; Findling, Robert L; Youngstrom, Eric A.; Garber, Judy; Curry, John F.; Hyde, Janet S.; Essex, Marilyn J.; Compas, Bruce E.; Goodyer, Ian M.; Rohde, Paul; Stark, Kevin D.; Slattery, Marcia J.; Forehand, Rex

    2013-01-01

    Goals of the paper were to use item response theory (IRT) to assess the relation of depressive symptoms to the underlying dimension of depression and to demonstrate how IRT-based measurement strategies can yield more reliable data about depression severity than conventional symptom counts. Participants were 3403 clinic and nonclinic children and adolescents from 12 contributing samples, all of whom received the Kiddie Schedule of Affective Disorders and Schizophrenia for school-aged children. Results revealed that some symptoms reflected higher levels of depression and were more discriminating than others. Results further demonstrated that utilization of IRT-based information about symptom severity and discriminability in the measurement of depression severity can reduce measurement error and increase measurement fidelity. PMID:21534696

  7. APPLYING TEP MEASUREMENTS TO ASSESS THE AGING STAGE OF MARAGING 250 STEEL

    SciTech Connect

    Snir, Y.; Gelbstein, Y.; Pinkas, M.; Yeheskel, O.; Landau, A.

    2008-02-28

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 deg. C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni{sub 3}(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  8. Applying Tep Measurements to Assess the Aging Stage of Maraging 250 Steel

    NASA Astrophysics Data System (ADS)

    Snir, Y.; Pinkas, M.; Gelbstein, Y.; Yeheskel, O.; Landau, A.

    2008-02-01

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 °C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni3(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  9. HP-25 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The report should be useful to persons concerned with Air Pollution Measurement Studies of Stationary Industrial Sources. It gives detailed descriptions of 22 separate programs, written specifically for the Hewlett Packard Model HP-25 manually programmable pocket calculator. Each...

  10. International Dermatology Outcome Measures Initiative as Applied to Psoriatic Disease Outcomes: An Update.

    PubMed

    Merola, Joseph F; Armstrong, April W; Saraiya, Ami; Latella, John; Garg, Amit; Callis Duffin, Kristina; Gottlieb, Alice B

    2016-05-01

    Previous publications have described the International Dermatology Outcome Measures (IDEOM) group, comprising patients, physicians, health economists, participating pharmaceutical industry partners, payers, and regulatory agencies. The goal of IDEOM is to create patient-centered, validated measures of dermatologic disease progression and treatment efficacy for use in both clinical trials and clinical practice. We provide an update of IDEOM activities as of our 2015 IDEOM meeting in Washington, DC, USA. PMID:27134269

  11. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    NASA Astrophysics Data System (ADS)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  12. Intelligent user interface for expert systems applied to power plant maintenance and troubleshooting

    SciTech Connect

    Kock, C.G.; Isle, B.A.; Butler, A.W.

    1988-03-01

    A research and development project is under way to specify, design, construct, and evaluate a user interface system to meet the unique requirements of a delivery vehicle for a knowledge-based system applied to gas turbine electronics equipment maintenance and troubleshooting. The user interface is a portable device with text display, video and overlay graphics display, voice recognition and speech production, special-function keypad, and printer. A modular software structure based on a serial communications protocol between user interface device and expert system host computer provides flexibility, expandability, and a simple, effective user interface dialogue.

  13. Applying a microfacet model to polarized light scattering measurements of the Earth's surface

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith; Bradley, Christine; Diner, David; Xu, Feng; Chipman, Russell

    2015-09-01

    Representative examples from three-years of measurements from JPL's Ground-based Multiangle SpectroPolarimetric Imager (Ground-MSPI)[1] are compared to a model for the surface polarized bidirectional reflectance distribution matrix (BRDM). Ground-MSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire push-broom imagery of outdoor landscapes. The camera uses a photoelastic-modulator-based polarimetric imaging technique to measure linear Stokes parameters in three wavebands (470, 660, and 865 nm) with a +/-0.005 uncertainty in degree of linear polarization (DoLP). Comparisons between MSPI measurements, BRDM models, and common modifications to the model are made over a range of scattering angles determined from a fixed viewing geometry and varying sun positions over time. The BRDM model is comprised of a volumetric reflection term plus a specular reflection term of Fresnel-reflecting micro-facets. We consider modifications to this model using a shadowing function and two different micro-facet scattering density functions. We report the root-mean-square error (RMSE) between the Ground-MSPI measurements and BRDM model. The BRDM model predicts an angle of the linear polarization (AoLP) that is perpendicular to the scattering plane. This is usually, but not always, observed in Ground-MSPI measurements and in this work we offer explanations for some of the deviations from the model.

  14. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  15. Electro-optical spin measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    An electro-optical spin measurement system for a spin model in a spin tunnel includes a radio controlled receiver/transmitter, targets located on the spin model, optical receivers mounted around the perimeter of the spin tunnel and the base of the spin tunnel for receiving data from the targets, and a control system for accumulating data from the radio controlled receiver and receivers. Six targets are employed. The spin model includes a fuselage, wings, nose, and tail. Two targets are located under the fuselage of the spin model at the nose tip and tail. Two targets are located on the side of the fuselage at the nose tip and tail, and a target is located under each wing tip. The targets under the fuselage at the nose tip and tail measure spin rate of the spin model, targets on the side of the fuselage at the nose tip and tail measure angle of attack of the spin model, and the targets under the wing tips measure roll angle of the spin model. Optical receivers are mounted at 90 degree increments around the periphery of the spin tunnel to determine angle of attack and roll angle measurements of the spin model. Optical receivers are also mounted at the base of the spin tunnel to define quadrant and position of the spin model and to determine the spin rate of the spin model.

  16. A Computer-Mediated Instruction System, Applied to Its Own Operating System and Peripheral Equipment.

    ERIC Educational Resources Information Center

    Winiecki, Roger D.

    Each semester students in the School of Health Sciences of Hunter College learn how to use a computer, how a computer system operates, and how peripheral equipment can be used. To overcome inadequate computer center services and equipment, programed subject matter and accompanying reference material were developed. The instructional system has a…

  17. Gear Transmission Error Measurement System Made Operational

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2002-01-01

    A system directly measuring the transmission error between the meshing spur or helical gears was installed at the NASA Glenn Research Center and made operational in August 2001. This system employs light beams directed by lenses and prisms through gratings mounted on the two gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. The device is capable of resolution better than 0.1 mm (one thousandth the thickness of a human hair). The measured transmission error can be displayed in a "map" that shows how the transmission error varies with the gear rotation or it can be converted to spectra to show the components at the meshing frequencies. Accurate transmission error data will help researchers better understand the mechanisms that cause gear noise and vibration and will lead to The Design Unit at the University of Newcastle in England specifically designed the new system for NASA. It is the only device in the United States that can measure dynamic transmission error at high rotational speeds. The new system will be used to develop new techniques to reduce dynamic transmission error along with the resulting noise and vibration of aeronautical transmissions.

  18. Tailored Excitation for Frequency Response Measurement Applied to the X-43A Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2007-01-01

    An important aspect of any flight research project is assessing aircraft stability and flight control performance. In some programs this assessment is accomplished through the estimation of the in-flight vehicle frequency response. This estimation has traditionally been a lengthy task requiring separate swept sine inputs for each control axis at a constant flight condition. Hypersonic vehicles spend little time at any specific flight condition while they are decelerating. Accordingly, it is difficult to use traditional methods to calculate the vehicle frequency response and stability margins for this class of vehicle. A technique has been previously developed to significantly reduce the duration of the excitation input by tailoring the input to excite only the frequency range of interest. Reductions in test time were achieved by simultaneously applying tailored excitation signals to multiple control loops, allowing a quick estimate of the frequency response of a particular aircraft. This report discusses the flight results obtained from applying a tailored excitation input to the X-43A longitudinal and lateral-directional control loops during the second and third flights. The frequency responses and stability margins obtained from flight data are compared with preflight predictions.

  19. Measurement-induced phase transition in a quantum spin system

    NASA Astrophysics Data System (ADS)

    Dhar, Shrabanti; Dasgupta, Subinay

    2016-05-01

    Suppose a quantum system starts to evolve under a Hamiltonian from some initial state. When, for the first time, will an observable attain a preassigned value? To answer this question, one method often adopted is to make instantaneous measurements periodically and note down the serial number for which the desired result is obtained for the first time. We apply this protocol to an interacting spin system at zero temperature and show analytically that the response of this system shows a nonanalyticity as a function of the parameter of the Hamiltonian and the time interval of measurement. In contrast to quantum phase transitions, this type of phase transition is not a property of the ground state and arises from the Hamiltonian dynamics and quantum-mechanical nature of the measurement. The specific system studied is the transverse Ising chain, and the measurement performed is whether the total transverse magnetic moment (per site) is not equal to 1. The results for some other types of measurement are also discussed.

  20. Atomic oxygen-metal surface studies as applied to mass spectrometer measurements of upper planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Sjolander, G. W.

    1976-01-01

    The problem of atomic oxygen loss in mass spectrometer ion sources can be reduced to an understanding of the possible surface interactions between oxygen atoms and the metal surface of the ion source. Results are presented for an experimental study in which an atomic oxygen beam apparatus and a mass spectrometer were used to measure the oxygen atom reflection, recombination, general surface reaction, and occlusion probabilities on six different engineering surfaces as a function of atomic oxygen exposure. The materials studied are gold, Nichrome V, aluminum, titanium, silver, and platinum. The variation in measured reflection probability seems to occur with metals that form oxides, Nichrome V being stable in terms of reflection stability. Recombination is observed an all surfaces except aluminum and platinum. Variation in the complete set of measurements in a single experiment is the result of varying surface conditions.

  1. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  2. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  3. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  4. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  5. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  6. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  7. Sizing Up Earth: A Universal Method for Applying Eratosthenes' Earth Measurement.

    ERIC Educational Resources Information Center

    Makowski, George J.; Strong, William R.

    1996-01-01

    Shows that the experiment of the ancient Greek mathematician and geographer, Eratosthenes, can be replicated and used to teach geographic concepts. Eratosthenes calculated the most accurate ancient measurement of earth based on fundamental mathematics concepts and earth-sun relations. Includes instructions, illustrations, graphs, and historical…

  8. The Undefined Role of the Antecedent: Addressing the Measurement Quagmires in Applied Research

    ERIC Educational Resources Information Center

    Stichter, Janine Peck; Conroy, Maureen A.; Boyd, Brian A.

    2004-01-01

    In recent years, several investigators have examined trends in the antecedent research literature through discussion of key conceptual models considered to guide this research (Conroy & Stichter, 2003; Smith & Iwata, 1997; Smith, Iwata, & Michael, 2000) as well as related trends in measurement (Mahon, Shores, & Buske, 1999). Despite varied points…

  9. The pipette aspiration applied to the local stiffness measurement of soft tissues.

    PubMed

    Aoki, T; Ohashi, T; Matsumoto, T; Sato, M

    1997-01-01

    A simple method of identifying the initial slope of the stress-strain curve (i.e., Young's modulus of the soft tissue) by introducing the pipette aspiration technique is presented. The tissue was assumed to be isotropic and macroscopically homogeneous. Numerical simulations by the linear finite element analysis were performed for the axisymmetric model to survey the effects of friction at the tissue-pipette contact boundary, pipette cross-sectional geometry, relative size of the specimen to the pipette, and the layered inhomogeneity of the specimen tissue. The friction at the contact region had little effect on the measurement of Young's modulus. The configuration of the pipette was shown to affect the measurement for small pipette wall thickness. The measurement also depended on the relative size of the specimen to the pipette for relatively small specimens. The extent of the region contributing to the measurement was roughly twice the inside radius of the pipette. In this region, the maximum stress did not exceed the level of the aspiration pressure, with only minor exceptional locations. Calculation of strain energy components indicated that the major contributions to the deformation under pipette aspiration were by the normal extension and shear deformation in pipette axial direction. Experimental verification of the present method for the isotropic, homogeneous artificial material is also presented. PMID:9146811

  10. Structure and Measurement of Depression in Youths: Applying Item Response Theory to Clinical Data

    ERIC Educational Resources Information Center

    Cole, David A.; Cai, Li; Martin, Nina C.; Findling, Robert L.; Youngstrom, Eric A.; Garber, Judy; Curry, John F.; Hyde, Janet S.; Essex, Marilyn J.; Compas, Bruce E.; Goodyer, Ian M.; Rohde, Paul; Stark, Kevin D.; Slattery, Marcia J.; Forehand, Rex

    2011-01-01

    Our goals in this article were to use item response theory (IRT) to assess the relation of depressive symptoms to the underlying dimension of depression and to demonstrate how IRT-based measurement strategies can yield more reliable data about depression severity than conventional symptom counts. Participants were 3,403 children and adolescents…

  11. HP-65 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The handbook is intended for persons concerned with air pollution measurement studies of stationary industrial sources. It gives detailed descriptions of 22 different programs written specifically for the Hewlett Packard Model HP-65 card-programmable pocket calculator. For each p...

  12. Differential magnetometer method applied to measurement of geomagnetically induced currents in Southern African power networks

    NASA Astrophysics Data System (ADS)

    Matandirotya, Electdom; Cilliers, Pierre. J.; Van Zyl, Robert R.; Oyedokun, David T.; Villiers, Jean

    2016-03-01

    Geomagnetically induced currents (GICs) in conductors connected to the Earth are driven by an electric field produced by a time-varying magnetic field linked to magnetospheric-ionospheric current perturbations during geomagnetic storms. The GIC measurements are traditionally done on the neutral-to-ground connections of power transformers. A method of inferring the characteristics of GIC in power lines using differential magnetic field measurements is presented. Measurements of the GIC in the power lines connected to a particular power transformer are valuable in the verification of the modeling of GIC in the power transmission network. The differential magnetometer method (DMM) is an indirect method used to estimate the GIC in a power line. With the DMM, low-frequency GIC in the power line is estimated from the difference between magnetic field recordings made directly underneath the power line and at some distance away, where the magnetic field of the GIC in the transmission line has negligible effect. Results of the first application of the DMM to two selected sites of the Southern African power transmission network are presented. The results show that good quality GIC measurements are achieved through the DMM using Commercially-Off-The-Shelf magnetometers.

  13. Measurement and analysis of applied power, forces and material response in friction stir welding of aluminum alloy 6061

    NASA Astrophysics Data System (ADS)

    Avila, Ricardo E.

    The process of Friction Stir Welding (FSW) 6061 aluminum alloy is investigated, with focus on the forces and power being applied in the process and the material response. The main objective is to relate measurements of the forces and power applied in the process with mechanical properties of the material during the dynamic process, based on mathematical modeling and aided by computer simulations, using the LS-DYNA software for finite element modeling. Results of measurements of applied forces and power are presented. The result obtained for applied power is used in the construction of a mechanical variational model of FSW, in which minimization of a functional for the applied torque is sought, leading to an expression for shear stress in the material. The computer simulations are performed by application of the Smoothed Particle Hydrodynamics (SPH) method, in which no structured finite element mesh is used to construct a spatial discretization of the model. The current implementation of SPH in LS-DYNA allows a structural solution using a plastic kinematic material model. This work produces information useful to improve understanding of the material flow in the process, and thus adds to current knowledge about the behavior of materials under processes of severe plastic deformation, particularly those processes in which deformation occurs mainly by application of shear stress, aided by thermoplastic strain localization and dynamic recrystallization.

  14. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  15. System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2006-01-01

    System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.

  16. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    PubMed Central

    Roosjen, Peter P. J.; Clevers, Jan G. P. W.; Bartholomeus, Harm M.; Schaepman, Michael E.; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  17. A laboratory goniometer system for measuring reflectance and emittance anisotropy.

    PubMed

    Roosjen, Peter P J; Clevers, Jan G P W; Bartholomeus, Harm M; Schaepman, Michael E; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  18. Kiernan reentry measurements system on Kwajalein atoll

    SciTech Connect

    Roth, K.R.; Austin, M.E.; Frediani, D.J.; Knittel, G.H.; Mrstik, A.V.

    1989-01-01

    The Kiernan Reentry Measurements System (KREMS), located on Kwajalein Atoll in the Pacific, is the United States' most sophisticated and important research and development radar site. Consisting of four one-of-a-kind instrumentation radars, KREMS has played a major role for the past 25 years in the collection of data associated with ICBM testing. Furthermore, it has served as an important space-surveillance facility that provides an early U.S. view of many Soviet and Chinese satellite launches. Finally, the system is slated to play a key role in Strategic Defense Initiative experiments.

  19. Thermodynamics of Weakly Measured Quantum Systems

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-01

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  20. Thermodynamics of Weakly Measured Quantum Systems.

    PubMed

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399