These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Effects of scale on internal blast measurements  

NASA Astrophysics Data System (ADS)

This paper presents a comparative study between large and small-scale internal blast experiments with the goal of using the small-scale analog for energetic performance evaluation. In the small-scale experiment, highly confined explosive samples <0.5 g were subjected to the output from a PETN detonator while enclosed in a 3-liter chamber. Large-scale tests up to 23 kg were unconfined and released in a chamber with a factor of 60,000 increase in volume. The comparative metric in these experiments is peak quasi-static overpressure, with the explosive sample expressed as sample energy/chamber volume, which normalizes measured pressures across scale. Small-scale measured pressures were always lower than the large-scale measurements, because of heat-loss to the high confinement inherent in the small-scale apparatus. This heat-loss can be quantified and used to correct the small-scale pressure measurements. In some cases the heat-loss was large enough to quench reaction of lower energy samples. These results suggest that small-scale internal blast tests do correlate with their large-scale counterparts, provided that heat-loss to confinement can be measured, and that less reactive or lower energy samples are not quenched by heat-loss.

Granholm, R.; Sandusky, H.; Lee, R.

2014-05-01

2

High-speed measurement of firearm primer blast waves  

E-print Network

This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

Courtney, Michael; Eng, Jonathan; Courtney, Amy

2012-01-01

3

Rapid miniature fiber optic pressure sensors for blast wave measurements  

NASA Astrophysics Data System (ADS)

Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

2013-02-01

4

Free-air atomic blast pressure and thermal measurements  

Microsoft Academic Search

Measurements of blast overpressure and thermal radiation flux were carried out at high altitudes during both Mike and King shots of Operation Ivy by means of parachute-borne telemetering canisters. For each shot six canisters were dropped from each of two B-29 aircraft. Telemetered data were recorded from 10 of the 12 canisters at Mike shot and from 8 of the

N. A. Haskell; J. O. Vann; P. R. Gast

1963-01-01

5

MEASUREMENT OF FREE AIR ATOMIC BLAST PRESSURES  

Microsoft Academic Search

BS>Peak free-air overpressure versus time measurements in the 10-to-2 ; psi range were obtained as a function of distance directly over a nuclear burst ; at a low scaled height. This information was to be used to establish the points ; in space at which the reflected and direct shock waves merge into a single shock ; wave and to

N. A. Haskell; J. A. Fava; R. M. Brubaker

1958-01-01

6

Mabs monograph, air blast instrumentation, 1943-1993 measurement techniques and instrumentation. Volume 1. The nuclear era. 1945-1963. Technical report, 17 September 1992-31 May 1994  

SciTech Connect

Blast wave measurement techniques and instrumentation developed by Military Applications of Blast Simulators (MABS) participating countries to study blast phenomena during the nuclear era are summarized. Passive and active gages both mechanical self-recording and electronic systems deployed on kiloton and megaton explosive tests during the period 1945-1963 are presented. The country and the year the gage was introduced are included with the description. References are also provided. Volume 2 covers measurement techniques and instrumentation for the period 1959-1993 and Volume 3 covers structural target and gage calibration from 1943 to 1993.

Reisler, R.E.; Keefer, J.H.; Ethridge, N.H.

1995-03-01

7

High spatial resolution measurements of ram accelerator gas dynamic phenomena  

NASA Technical Reports Server (NTRS)

High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

1992-01-01

8

Measurement of Blast Waves from Bursting Pressureized Frangible Spheres  

NASA Technical Reports Server (NTRS)

Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

Esparza, E. D.; Baker, W. E.

1977-01-01

9

Measurement of blast waves from bursting pressureized frangible spheres  

NASA Technical Reports Server (NTRS)

Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

Esparza, E. D.; Baker, W. E.

1977-01-01

10

An ultra-fast fiber optic pressure sensor for blast event measurements  

NASA Astrophysics Data System (ADS)

Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

2012-05-01

11

On-line ultrasonic system for measuring thickness of the copper stave in the blast furnace  

NASA Astrophysics Data System (ADS)

The blast furnace is used make molten iron from sintered ore and the cokes in the steel industry. Recently, the copper stave cooling system placed on inner face of the blast furnace body to protect the steel shell from heat. In the high temperature environment, the wear between the stave and the material makes the cooling stave thinning by the downward movement of the materials in the blast furnace. It was impossible to access the copper stave with the ultrasonic sensor for measuring thickness because the copper stave is covered with the steel shell and there is backing refractory between the stave and the steel shell. The unique ultrasonic sensor which can approach the cooling stave through the cooling line was developed to measure thickness. The thickness can be measured with portable ultrasonic thickness sensor and can be monitored continuously with embedded sensors.

Choi, Sang-Woo; Kim, Dohoon

2012-05-01

12

Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.  

PubMed

It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures. PMID:21994064

Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

2012-01-01

13

Simultaneous Measurements of Temperature and Iron-Slag Ratio at Taphole of Blast Furnace  

NASA Astrophysics Data System (ADS)

As the initial process in an integrated steel-making plant, molten iron is produced in a blast furnace. The molten iron has a temperature between 1700 K and 1900 K. The outflow stream discharged from a taphole comprises the molten iron and slag (which is a mixture of molten oxides). Monitoring of the stream temperature is important because it has information on the thermal condition inside the blast furnace. A newly developed simultaneous measurement technique for temperature and iron-slag ratio is reported. A monochromatic CCD camera with a short exposure time is used to obtain a thermal image of the rapidly moving stream. The thermal image has a marble-like pattern caused by the physical separation of the iron and slag and their different optical properties. Iron thermometry is realized by automatically detecting the peak of the iron gray-level distribution on a histogram. Meanwhile, the thermal radiance of the semitransparent slag varies as a function of the thickness. The slag temperature is calculated from the maximum gray level, presuming that the emissivity of the slag is constant at a thick slag part. The slag ratio is measured by counting the number of pixels on the histogram. A field test was carried out at an operating blast furnace. The iron temperature, slag temperature, and slag ratio were successfully measured. This multiple image measurement is expected to be the new information source for stable blast furnace operation.

Sugiura, M.; Shinotake, A.; Nakashima, M.; Omoto, N.

2014-07-01

14

Simultaneous Measurements of Temperature and Iron-Slag Ratio at Taphole of Blast Furnace  

NASA Astrophysics Data System (ADS)

As the initial process in an integrated steel-making plant, molten iron is produced in a blast furnace. The molten iron has a temperature between 1700 K and 1900 K. The outflow stream discharged from a taphole comprises the molten iron and slag (which is a mixture of molten oxides). Monitoring of the stream temperature is important because it has information on the thermal condition inside the blast furnace. A newly developed simultaneous measurement technique for temperature and iron-slag ratio is reported. A monochromatic CCD camera with a short exposure time is used to obtain a thermal image of the rapidly moving stream. The thermal image has a marble-like pattern caused by the physical separation of the iron and slag and their different optical properties. Iron thermometry is realized by automatically detecting the peak of the iron gray-level distribution on a histogram. Meanwhile, the thermal radiance of the semitransparent slag varies as a function of the thickness. The slag temperature is calculated from the maximum gray level, presuming that the emissivity of the slag is constant at a thick slag part. The slag ratio is measured by counting the number of pixels on the histogram. A field test was carried out at an operating blast furnace. The iron temperature, slag temperature, and slag ratio were successfully measured. This multiple image measurement is expected to be the new information source for stable blast furnace operation.

Sugiura, M.; Shinotake, A.; Nakashima, M.; Omoto, N.

2014-08-01

15

Investigation of atmospheric blasts by fast radiometry  

NASA Astrophysics Data System (ADS)

Blasts and detonations release large amount of energy in short time duration. Some of this energy is released through radiation in the whole optical spectrum. Measurement of this radiation may serve as a base for investigation of the blast phenomena. A fast multispectral radiometer that operates in proper chosen spectral bands provides extensive information on the physical processes that govern the blast. This information includes the time dependence of the temperature, area of the blast as-well-as of the aerosols and gases that are generated. Analysis of this data indicates the order of the detonation and provides good estimation on the masses and types of the high-explosives (HE) materials and their casing. This paper presents the methodology and instrumentation of fast multispectral radiometry in application to the blast measurement and analysis in a Near-ground Explosion Test (NET). In NET, the flash radiation of the blast was measured for two HE materials: TNT and composition B (CB). The investigation includes charges of different masses (0.25 - 20.0 kg) and of various casing materials (steel, Al, PVC), thickness (2 - 6 mm) and various casing type (open on both face ends and hermetically closed). Analysis of the data demonstrates the power of fast radiometry methodology and reveals the governing characteristics of atmospheric blasts.

Ben-Dov, R.; Bushlin, Y.; Devir, A. D.; Lessin, A. B.; Mendelewicz, I.; Shvebelman, M.

2014-06-01

16

An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion  

ERIC Educational Resources Information Center

In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

2012-01-01

17

Energy components in rock blasting  

Microsoft Academic Search

Ten production blasts and one single-hole confined blast have been monitored in two quarries in order to assess the measurable forms of energy in which the energy delivered by the explosive is transformed in rock blasting. The seismic field from seismographs readings, the initial velocity of the blasted rock face obtained from high-speed video camera records, and the fragment size

José A. Sanchidrián; Pablo Segarra; Lina M. López

2007-01-01

18

Evaluation of the performance of the blast analysis and measurement system  

NASA Astrophysics Data System (ADS)

In the years since the introduction of the C-weighted day-night average sound level (DNL) to assess the noise of military explosives, Army practice has evolved to incorporate linear peak sound-pressure level into the evaluation of military training noise. Although the DNL remains as the method of choice for National Environmental Policy Act (NEPA) documentation and for land-use planning, peak level is used by firing range operators for day-to-day complaint management. Several different monitoring system designs are being used at Army installations to provide range operators with real-time feedback on blast noise levels in nearby residential areas. One of these, the Blast Analysis and Measurement (BLAM) system, is a modified version of a sonic boom monitor designed by the U.S. Air Force. Data collected from two BLAM units located near a 120-mm tank gunnery range were evaluated in terms of hit rate and false-alarm rate over a range of 94 to 140 decibels linear peak. Hit- and false-alarm rates are compared with hit- and false-alarm rates reported for other blast noise monitoring system designs.

Luz, George A.

2001-05-01

19

Rock blasting environmental impacts  

SciTech Connect

The rock blasting environmental impacts such as: flyrock, ground vibrations, air-blast, and/or noise, dust and fumes are identified and mentioned. Some comments on the correction factors that might be taken into consideration to calculate the initial velocity and the maximum projection of the rock fragments are mentioned as well. The blast fumes causes, its alleviation and protective measures are identified, described and discussed. To mitigate, minimize and/or avoid blast fumes, the AN/FO, Al/AN/FO and S/AN/FO dry blasting agents optimum equations are developed, discussed and recommended.

Agreda, C. [Peruvian Mining Research Co., Lima (Peru)

1995-12-31

20

MEASUREMENTS OF MOLTEN STEEL/FLUX INTERFACE PHENOMENA IN THIN SLAB CASTING  

E-print Network

MEASUREMENTS OF MOLTEN STEEL/FLUX INTERFACE PHENOMENA IN THIN SLAB CASTING By Joseph W. Shaver B trials investigating meniscus behavior and defects in thin-slab casting were conducted at Nucor Steel of the steel. Metal level and meniscus measurements were made during ordinary casting operation. Nailboards

Thomas, Brian G.

21

Air blast measurements at 20 and 40 km distance from detonating 10 and 20 ton high explosive charges  

Microsoft Academic Search

Air blast overpressure measurements have been made at 20 and 40 km distance from the detonation of 10 and 20 ton high explosive charges at Alvdalen Shooting Range in Sweden. Temperatures and wind velocities were also measured. Simple rules were set up and methods elaborated to avoid complaints, and damage to buildings outside the Alvdalen Shooting Range.

T. Eriksson; B. Selin; I. Aseborn

1993-01-01

22

Air blast measurements at 20 and 40 km distance from detonating 10 and 20 ton high explosive charges  

NASA Astrophysics Data System (ADS)

Air blast overpressure measurements have been made at 20 and 40 km distance from the detonation of 10 and 20 ton high explosive charges at Alvdalen Shooting Range in Sweden. Temperatures and wind velocities were also measured. Simple rules were set up and methods elaborated to avoid complaints, and damage to buildings outside the Alvdalen Shooting Range.

Eriksson, T.; Selin, B.; Aseborn, I.

1993-02-01

23

P. ZEEMAN. 2014 Measurements concerning Radiation Phenomena in the magnetic Field (Mesures relatives au phnomne Zeeman). -  

E-print Network

382 P. ZEEMAN. 2014 Measurements concerning Radiation Phenomena in the magnetic Field (Mesures relatives au phénomène Zeeman). - P. 197. La source de lumière est une étincelle donnée par une bobine d indécises. E. PERREAU. H.-P. CADY.- The electrolysis and electrolytic conductivity of certain substances

Paris-Sud XI, Université de

24

Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles  

NASA Astrophysics Data System (ADS)

Spatially and temporally resolved temperature measurements behind an expanding blast wave are made using picosecond (ps) N2 coherent anti-Stokes Raman scattering (CARS) following laser flash heating of mixtures containing aluminum nanoparticles embedded in ammonium-nitrate oxidant. Production-front ps-CARS temperatures as high as 3600 ± 180 K—obtained for 50-nm-diameter commercially produced aluminum-nanoparticle samples—are observed. Time-resolved shadowgraph images of the evolving blast waves are also obtained to determine the shock-wave position and corresponding velocity. These results are compared with near-field blast-wave theory to extract relative rates of energy release for various particle diameters and passivating-layer compositions.

Roy, Sukesh; Jiang, Naibo; Stauffer, Hans U.; Schmidt, Jacob B.; Kulatilaka, Waruna D.; Meyer, Terrence R.; Bunker, Christopher E.; Gord, James R.

2013-05-01

25

Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements  

NASA Technical Reports Server (NTRS)

Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring- experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 meters per second. Its amplitude reaches 3 x 10 (exp 14) el per square meters in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M = 6.7 Northridge earthquake. The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 second period band, a result consistent with previous observations and numerical model predictions. The 300 second band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce ionospheric perturbations that are above the detection threshold of the GPS technique. By sensing derivative signals, which can be detected over a relatively broad region, it appears that GPS might be particularly useful for source characterization within the first acoustic quiet zone where infrasound would probably be ineffective. This suggests that dual-frequency GPS monitoring could contribute to Comprehensive Nuclear Test Ban Treaty verification.

Calais, Eric; Minster, J. Bernard; Hofton, Michelle A.; Hedlin, Michael A. H.

1998-01-01

26

Measuring the velocities of particles in a shot-blasting chamber  

NASA Astrophysics Data System (ADS)

This paper presents a method for measuring the velocity of a flow of particles accelerated on a shot-blasting wheel and then expanding into space at a wide angle of approximately 45°. The method uses the pulsed nature of the flow characteristic for turbo machinery with a finite number of wheel blades and calculates the velocity from the time shift between the particles hitting two targets at a known distance. This method does not depend on the material properties of the particles; however, a large number of particles is required for a successful measurement. The impacts are detected with a microphone covered by a steel membrane, making the exposed parts cheap and easily replaceable. This makes the method suitable for industrial test-and-development purposes, including the efficiencies of acceleration measurements. A cross-correlation of the signals was used, but the characteristic cycle (one rotation of the wheel) had to be determined beforehand by overlapping and averaging several cycles in order to compensate for the fact that different particles would be hitting the targets.

Bombek, G.; Hribernik, A.

2010-08-01

27

Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena  

SciTech Connect

As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

2007-01-01

28

Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure  

SciTech Connect

Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switches by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.

Not Available

1985-04-01

29

Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.  

PubMed

The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment. PMID:23145587

Lo, Kam W; Ferguson, Brian G

2012-11-01

30

Computer assisted blast design and assessment tools  

SciTech Connect

In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing; evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.

Cameron, A.R. [Golder Associates Ltd., Sudbury, Ontario (Canada); Kleine, T.H. [Golder Associates Inc., Seattle, WA (United States); Forsyth, W.W. [Golder Associates Ltd., Vancouver, British Columbia (Canada)

1995-12-31

31

Measurement of gas-switching related diffusion phenomena in horizontal MOCVD reactors using biacetyl luminescence  

NASA Astrophysics Data System (ADS)

The fading of concentration profiles due to diffusion, occuring after gas source switching in MOCVD growth, was simulated by biacetyl luminescence experiments. In particular the influence of thermally induced memory cells on the concentration transients was investigated. Biacetyl molecules were used instead of macroscopic particles (for instance TiO 2) because not only can the flow patterns thus be visualized, but also a more realistic simulation of diffusion phenomena is obtained. It is shown that memory cells give rise to an increase of the residence times of gases inside the reactor. For typical MOCVD conditions, increases of several seconds were measured. The influence on interface sharpness of a GaAs/AlGaAs heterojunction is discussed. Residence times were recorded as a function of the most important hydrodynamic parameters in the MOCVD process, both at atmospheric pressure and at low pressure.

Visser, E. P.; Govers, C. A. M.; Giling, L. J.

1990-05-01

32

Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.  

PubMed

A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications. PMID:23434996

Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

2013-02-20

33

Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?  

NASA Astrophysics Data System (ADS)

We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these students such difficulties may be a significant barrier to understanding important wave phenomena such as interference and diffraction.

Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

2013-12-01

34

Social enquiry and the measurement of natural phenomena: the degradation of irrigation water in the Argolid Plain, Greece  

Microsoft Academic Search

Attempts to formulate appropriate policies for the management of agricultural systems are constrained by the limitations of acquiring information about changes in the natural system across space and through time. The adoption of natural science techniques to measure the transformation of natural phenomena requires considerable investment in time and expertise and may not always be capable of providing information about

M. Lemon; R. Seaton

1994-01-01

35

Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor  

SciTech Connect

Mean velocity field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics design (Gas-Turbine-Modular Helium Reactor). The datawere obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered as a benchmark for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The primary objective of this paper is to document the experiment and present a sample of the data set that has been established for this standard problem. Present results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flowin the lower plenum consists of multiple jets injected into a confined crossflow—with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3D) particle image velocimetry (PIV) system was used to collect the data. Inlet-jet Reynolds numbers (based on the hydraulic diameter of the jet and the timemean average flow rate) are approximately 4300 and 12,400. Uncertainty analysis and a discussion of the standard problem are included. The measurements reveal complicated flow patterns that include several large recirculation zones, reverse flow near the simulated reflector wall, recirculation zones in the upper portion of the plenum and complex flow patterns around the support posts. Data include three-dimensional PIV images of flow planes, data displays along the coordinate planes (slices) and presentations that describe the component flows at specific regions in the model.

Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink

2010-02-01

36

The Evolution of Structural Order as a Measure of Thermal History of Coke in the Blast Furnace  

NASA Astrophysics Data System (ADS)

Investigations were carried out on cokes heat treated in the laboratory and on cokes extracted from the experimental blast furnace (EBF) raceway and hearth. X-ray diffraction (XRD) measurements were performed to investigate changes in structural order ( L c), chemical transformations in coke ash along with comparative thermodynamic equilibrium studies and the influence of melt. Three data processing approaches were used to compute L c values as a function of temperature and time and linear correlations were established between L c and heat treatment temperatures during laboratory investigations. These were used to estimate temperatures experienced by coke in various regions of EBF and estimated raceway temperatures were seen to follow the profile of combustion peak. The MgAl2O4 spinel was observed in coke submerged in slag during laboratory studies and in cokes found further into the raceway. Coke in contact with hot metal showed XRD peaks corresponding to presence of Fe3Si. The intensity of SiO2 peak in coke ash was seen to decrease with increasing temperature and disappeared at around 1770 K (1500 °C) due to the formation of SiC. This study has shown that the evolution of structural order and chemical transformations in coke could be used to estimate its thermal history in blast furnaces.

Lundgren, Maria; Khanna, Rita; Ökvist, Lena Sundqvist; Sahajwalla, Veena; Björkman, Bo

2014-04-01

37

Investigation of combustion phenomena associated with the flow of hot propellant gases. I. Spectroscopic temperature measurements inside the muzzle flash of a rifle  

Microsoft Academic Search

The spatial and temporal temperature distribution in the muzzle blast field of a rifle of caliber 7.62mm was determined by evaluation of the radiation emitted by the muzzle flash. In the primary flash directly adjacent to the muzzle a maximum gas temperature of 1645 K was observed by means of emission- absorption measurements of both continuum and discrete radiation. The

G. Klingenberg; H. Mach

1976-01-01

38

Charging phenomena in dielectric/semiconductor heterostructures during x-ray photoelectron spectroscopy measurements  

NASA Astrophysics Data System (ADS)

The determination of the valence band offset (VBO) by x-ray photoelectron spectroscopy (XPS) is commonly performed using the so-called Kraut's method that was developed for VBO determination in semiconductor/semiconductor heterojunctions. Although the physical model, which is the basis of the method, can be safely extended to dielectric/semiconductor (D/S) heterojunctions, in these systems a careful evaluation of the experimental results is necessary due to the differential charging phenomena originating at D/S interface during x-ray bombardment. As a consequence, precise determination of the VBO requires an accurate calibration of the energy scale in order to remove artifacts induced by the progressive charging of the oxide during the XPS measurement. In this work a detailed analysis of the band alignment between e-beam evaporated amorphous HfO2 films and Si substrates is reported. The HfO2/Si heterojunction was selected as a prototype for this study since HfO2 based dielectrics have already been implemented as gate dielectrics in real devices and have been the subject of a wide number of publications providing controversial results in terms of VBO values. A clear dependence of the binding energy of the Hf 4f and O 1s core lines on the thickness of the HfO2 film is identified. The time evolution of these signals indicates that different steady states are reached after prolonged x-ray bombardment depending on the thickness of the HfO2 films. On the basis of the original work of Iwata et al. [J. App. Phys. 79, 6653 (1996)], a rigorous method to remove these artifacts and empirically determine the real band offsets in D/S heterojunctions is proposed and validated by comparison with internal photoemission and photoconductivity data obtained on the same set of samples.

Perego, M.; Seguini, G.

2011-09-01

39

Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?  

ERIC Educational Resources Information Center

We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these…

Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L

2012-01-01

40

Nuclear Blast  

MedlinePLUS

... including blinding light, intense heat (thermal radiation), initial nuclear radiation, blast, fires started by the heat pulse and ... time, and is the main source of residual nuclear radiation. Fallout from a nuclear explosion may be carried ...

41

Near-Sun solar wind consequences of solar structure and dynamic phenomena observed by radio scintillation measurements  

NASA Technical Reports Server (NTRS)

Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.

Woo, Richard

1994-01-01

42

BLAST: THE REDSHIFT SURVEY  

SciTech Connect

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed approx =8.7 deg{sup 2} centered on Great Observatories Origins Deep Survey-South at 250, 350, and 500 mum. In Dye et al., we presented the catalog of sources detected at 5sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z = 1, in the sense that there is a large increase in the space density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.

Eales, Stephen; Dye, Simon; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Raymond, Gwenifer [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Devlin, Mark J.; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia PA, 19104 (United States); Hughes, David H. [Instituto Nacional de AstrofIsica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Netterfield, Calvin B.; Viero, Marco P. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Patanchon, Guillaume [Universite Paris Diderot, Laboratoire APC, 10, rue Alice Domon et Leonie Duquet 75205 Paris (France); Siana, Brian [California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States)

2009-12-20

43

A study of noise phenomena in microwave components using an advanced noise measurement system.  

PubMed

A novel 9 GHz measurement system with thermal noise limited sensitivity has been developed for studying the fluctuations in passive microwave components. The noise floor of the measurement system is flat at offset frequencies above 1 kHz and equal to -193 dBc/Hz. The developed system is capable of measuring the noise in the quietest microwave components in real time. We discuss the results of phase and amplitude noise measurements in precision voltage controlled phase shifters and attenuators. The first reliable experimental evidences regarding the intrinsic flicker phase noise in microwave isolators are also presented. PMID:18244113

Ivanov, E N; Tobar, M E; Woode, R A

1997-01-01

44

A geophysical shock and air blast simulator at the National Ignition Facility  

NASA Astrophysics Data System (ADS)

The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

2014-09-01

45

A geophysical shock and air blast simulator at the National Ignition Facility.  

PubMed

The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes. PMID:25273784

Fournier, K B; Brown, C G; May, M J; Compton, S; Walton, O R; Shingleton, N; Kane, J O; Holtmeier, G; Loey, H; Mirkarimi, P B; Dunlop, W H; Guyton, R L; Huffman, E

2014-09-01

46

Lidar and radar measurements of the melting layer: observations of dark and bright band phenomena  

NASA Astrophysics Data System (ADS)

Multi-wavelength lidar measurements in the melting layer revealing the presence of dark and bright bands have been performed by the University of BASILicata Raman lidar system (BASIL) during a stratiform rain event. Simultaneously radar measurements have been also performed from the same site by the University of Hamburg cloud radar MIRA 36 (35.5 GHz), the University of Hamburg dual-polarization micro rain radar (24.15 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Measurements from BASIL and the radars are illustrated and discussed in this paper for a specific case study on 23 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS). Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE. Measurements and model results are found to confirm and support the conceptual microphysical/scattering model elaborated by Sassen et al. (2005).

Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E. G.; Peters, G.; Dufournet, Y.

2012-05-01

47

Porcine head response to blast.  

PubMed

Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740?kPa peak incident overpressure with scaled durations from 1.3 to 6.9?ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30?s and the remaining two recovered within 8?min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390?kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830?kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G's and were well correlated with peak incident overpressure (R(2)?=?0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation. PMID:22586417

Shridharani, Jay K; Wood, Garrett W; Panzer, Matthew B; Capehart, Bruce P; Nyein, Michelle K; Radovitzky, Raul A; Bass, Cameron R 'dale'

2012-01-01

48

Interferometric measurement technique for the temperature field of axisymmetric buoyant phenomena.  

PubMed

A method is described to measure the temperature field of axisymmetric laminar thermals, plumes, and starting plume caps in a liquid. The sample liquid is placed in a Mach-Zender interferometer, and an infinite-fringe interferogram is recorded on photographic film. By comparison with a bar pattern interferogram, the fringe shift field was measured to an accuracy of +/-0.02. The Bockasten series approximation of the Abel transformation was applied to the fringe shift field to obtain the radial refractive index variation field, which in turn could be related to the temperature variation field through an empirical relationship. Temperature accuracies in the range of +/-0.05 to +/-0.5 degrees C were obtained. The radial temperature profile of the plume was found to be monotonically decreasing, while the cap had a local maximum offset from the axis. PMID:20203867

Boxman, R L; Shlien, D J

1978-09-01

49

Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement  

NASA Technical Reports Server (NTRS)

Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

Rhim, Won-Kyu; Ishikawa, Takehiko

2000-01-01

50

Precision measurement of the proton electric to magnetic form factor ratio with BLAST  

E-print Network

We have measured ... in the South Hall Ring of the MIT-Bates Linear Accelerator Facility. This experiment used a polarized electron beam, a pure hydrogen internal polarized target, and the symmetric Bates Large Acceptance ...

Crawford, Christopher Blair

2005-01-01

51

MICRO-METER MEASUREMENT OF CRACKS TO COMPARE BLAST AND ENVIRONMENTAL EFFECTS.  

E-print Network

, Reinforced Earth Co. Atlanta, GA ABSTRACT: Concern over construction vibration-induced cracking has led to development of a new approach to vibration monitoring called autonomous crack measurement (ACM. This comparison is displayed in real time via the Internet without human interaction. Graphic display through

52

RESEARCH PAPERS : Ionospheric signature of surface mine blasts from Global Positioning System measurements  

Microsoft Academic Search

Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in

Eric Calais; J. Bernard Minster; Michelle Hofton; Michael Hedlin

1998-01-01

53

Measurement of tensor analyzing powers in elastic electron deuteron scattering with BLAST  

E-print Network

This work reports a precision measurement of deuteron tensor analyzing powers T20 and T21 at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range of 2:15 to 4:5 fm¡1 ...

Zhang, Chi, Ph. D. Massachusetts Institute of Technology

2006-01-01

54

Effect of Meteorological Phenomena in Measures of Background Radiation X and Gamma Rays in São José dos Campos, SP, Brazil  

NASA Astrophysics Data System (ADS)

The objective of this work was to perform a study on the influence of meteorological phenomena on the background radiation X and gamma rays in São José dos Campos, SP, Brazil on the last three years. For this, we performed the monitoring of the integrated radiations and also of the main meteorological parameters (rainfall, relative humidity, temperature and pressure) daily without interruptions and time resolution of one minute. Measurements of X and gamma radiation in the range of energies from 30 keV to 10 MeV, were carried out using a scintillator crystal of sodium iodide activated with Tallium [NaI(Tl)] coupled to a photomultiplier, with energy resolution of 15%. Rainfall, atmospheric pressure, temperature, and relative humidity were recorded using sensors coupled to a five-channel specific data logger. By correlating the data from the measurements of intensity of X and gamma radiations with the meteorological parameters, it was found that atmospheric precipitation with or without electric discharges phenomenon that was affected more in the spectrum of background radiation profile. Some of the reasons why these changes occur in the background profile are due the presence of environmental radon gas that is drawn to the surface during the occurrences of local rainfall. During dry periods, the spectra of X and gamma radiations showed a daily cycle (24 hour). In relation to relative humidity, temperature and pressure, it was found that these parameters had negligible influence on the profile changes of the background radiation in São José dos Campos, SP, Brazil.

Gomes, Marcelo; Spjeldvik, Walther; Gusev, Anatoly; Alves, Mauro; Martin, Inacio; Pinto, Marcos; Ferro, Marco A.; Concei, Flavio

55

Fluctuation phenomena  

SciTech Connect

Fluctuation phenomena are the ''tip of the iceberg'' revealing the existence, behind even the most quiescent appearing macroscopic states, of an underlying world of agitated, ever-changing microscopic processes. While the presence of these fluctuations can be ignored in some cases, e.g. if one is satisfied with purely thermostatic description of systems in equilibrium, they are central to the understanding of other phenomena, e.g. the nucleation of a new phase following the quenching of a system into the co-existence region. This volume contains a collection of review articles, written by experts in the field, on the subject of fluctuation phenomena. Some of the articles are of a very general nature discussing the modern mathematical formulation of the problems involved, while other articles deal with specific topics such as kinetics of phase transitions and conductivity in solids. The juxtaposition of the variety of physical situations in which fluctuation phenomena play an important role is novel and should give the reader an insight into this subject.

Montroll, E.W.; Lebowitz, J.L.

1986-01-01

56

Transport Phenomena.  

ERIC Educational Resources Information Center

Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

McCready, Mark J.; Leighton, David T.

1987-01-01

57

Experiences with computer systems in blast furnace operation control at Rautaruukki  

SciTech Connect

Low energy consumption, together with high productivity and stable blast furnace operation, has been achieved at Rautaruukki's Raahe Steel Works as a result of the efficient use of computer technology in process control and improvements in raw materials quality. The blast furnace supervision system is designed to support the decision-making in medium and long-term process control. The information presenting the blast furnace operation phenomena is grouped so that little time is needed to obtain the current state of the process. Due to the complexity of the blast furnace process, an expert system to guide and diagnose the short and medium-term blast furnace operation has been developed.

Inkala, P.; Karppinen, A. (Rautaruukki Oy, Raahe (Finland). Raahe Steel Works); Seppanen, M. (Rautaruukki Oy Engineering, Oulu (Finland))

1994-09-01

58

Blast investigation by fast multispectral radiometric analysis  

NASA Astrophysics Data System (ADS)

Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

2011-06-01

59

Quasi-elastic laser scattering for measuring inhomogeneous interfacial tension in non-equilibrium phenomena with convective flows.  

PubMed

An inhomogeneous distribution of interfacial tension can induce different types of non-equilibrium spontaneous motion at the interface by convective flow, or by the solutal Marangoni effect. Several applications of the quasi-elastic laser scattering (QELS) method used to study these effects are presented here. The relationship between the interfacial tension and the non-equilibrium phenomena has been verified experimentally for each application. In a water/nitrobenzene oscillatory system with continuous surfactant addition to the interface, the local adsorption of surfactants at the interface has been demonstrated and shown to be strongly related to the presence of electrolytes. In a donor/membrane/acceptor system, the dual-beam QELS method shows that surfactant adsorption at the membrane/acceptor interface is responsible for oscillations in the electric potential. The differences in the adsorption/desorption behavior of metal complex catalysts between air/liquid and liquid/liquid interfaces were considered in the propagating chemical waves of the Belousov-Zhabotinsky reaction. We successfully measured the distribution of interfacial tension around a self-propelled camphor boat and an alcohol droplet floating on an aqueous phase, and compared the mechanisms of their motion. PMID:25007928

Nomoto, Tomonori; Toyota, Taro; Fujinami, Masanori

2014-01-01

60

Maerz, N. H., and Zhou, W., 1998. Optical digital fragmentation measuring systems -inherent sources of error. FRAGBLAST, The International Journal for Blasting and Fragmentation, Vol. 2, No. 4, pp. 415-  

E-print Network

, Rock Mechanics and Explosives Research Center, University of Missouri-Rolla Wei Zhou, Department distributions allows evaluations of explosive, blast design, detonator performance, crusher and milling a brief history of the evolution of measuring systems. Whereas the standard of measurement is currently

Maerz, Norbert H.

61

Structural blast design  

E-print Network

Blast design is a necessary part of design for more buildings in the United States. Blast design is no longer limited to underground shelters and sensitive military sites, buildings used by the general public daily must ...

Kieval, Tamar S. (Tamar Shoshana), 1980-

2004-01-01

62

Noise and blast  

NASA Technical Reports Server (NTRS)

Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.

Hodge, D. C.; Garinther, G. R.

1973-01-01

63

Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment  

SciTech Connect

The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

2005-09-01

64

Porcine Head Response to Blast  

PubMed Central

Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740?kPa peak incident overpressure with scaled durations from 1.3 to 6.9?ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30?s and the remaining two recovered within 8?min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390?kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830?kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2?=?0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation. PMID:22586417

Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. 'Dale'

2012-01-01

65

Modern BLAST Programs  

NASA Astrophysics Data System (ADS)

The Basic Local Alignment Search Tool (BLAST) is arguably the most widely used program in bioinformatics. By sacrificing sensitivity for speed, it makes sequence comparison practical on huge sequence databases currently available. The original version of BLAST was developed in 1990. Since then it has spawned a variant of specialized programs. This chapter surveys the development of BLAST and BLAST-like programs for homology search, discusses alignment statistics that are used in assessment of reported matches in BLAST, and provides the reader with guidance to select appropriate programs and set proper parameters to match research requirements.

Ma, Jian; Zhang, Louxin

66

Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements  

Microsoft Academic Search

The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing

Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

2007-01-01

67

Porcine head response to blast  

E-print Network

Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational ...

Nyein, Michelle K.

68

Detonation wave phenomena in bubbled liquid  

NASA Astrophysics Data System (ADS)

Shock wave propagation was investigated in two phase media consisting of diluted glycerin (85%) and reactive gas bubbles. To understand these complex phenomena, we first performed a numerical analysis and experimental studies of single bubbles containing a reactive gas-mixture. For the two-phase mixtures, a needle matrix bubble-generator enabled us to produce a homogeneous bubble distribution with a size dispersion less than 5%. The void fraction ?0 was varied over one order of magnitude, ?0=0.2-2%. It was found that there exists a critical value of shock strength above which bubble explosion starts. Once a bubble explodes, it stimulates the adjacent bubbles to explode due to emission of a blast wave; this process is followed by a series of similar events. A steady detonationlike wave propagates as a precurser with a constant velocity which is much higher than that of the first wave. To study the structure of the detonation wave the measured pressured profiles were averaged by superimposing 50 shots.

Gülhan, A.; Beylich, A. E.

1990-07-01

69

Directed Relativistic Blast Wave  

E-print Network

A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

Andrei Gruzinov

2007-04-23

70

Controlled blasting and its implications for the NNWSI project exploratory shaft  

SciTech Connect

This report reviews controlled blasting techniques for shaft sinking. Presplitting and smooth blasting are the techniques of principal interest. Smooth blasting is preferred for the Nevada Nuclear Waste Storage Investigations exploratory shaft. Shaft damage can be monitored visually or by peak velocity measurements and refractive techniques. Damage into the rock should be limited to 3 ft. 40 refs., 22 figs., 7 tabs.

Van Eeckhout, E.M.

1987-09-01

71

Blast furnace reactions  

Microsoft Academic Search

Vast a dvances h ave b een m ade in blast-furnace t echnology d uring t he p ast two decades through p lant t rials and plant d evelopments a ssisted by research to provide b etter u nderstanding of physical and chemical w orkings of the blast f urnace. T he f ields of research have i ncluded

E. T. Turkdogan

1978-01-01

72

Toxicology of blast overpressure  

Microsoft Academic Search

Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that

Nabil M. Elsayed

1997-01-01

73

Lightweight blast shield  

DOEpatents

A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

Mixon, Larry C. (Madison, AL); Snyder, George W. (Huntsville, AL); Hill, Scott D. (Toney, AL); Johnson, Gregory L. (Decatur, AL); Wlodarski, J. Frank (Huntsville, AL); von Spakovsky, Alexis P. (Huntsville, AL); Emerson, John D. (Arab, AL); Cole, James M. (Huntsville, AL); Tipton, John P. (Huntsville, AL)

1991-01-01

74

Removal of phosphate from aqueous solution with blast furnace slag  

Microsoft Academic Search

Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential

Ensar Oguz

2004-01-01

75

Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling  

NASA Astrophysics Data System (ADS)

Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.

Chandra, N.; Ganpule, S.; Kleinschmit, N. N.; Feng, R.; Holmberg, A. D.; Sundaramurthy, A.; Selvan, V.; Alai, A.

2012-09-01

76

Littoral blasts: Pumice-water heat transfer and the conditions for steam explosions when pyroclastic flows enter the ocean  

E-print Network

Littoral blasts: Pumice-water heat transfer and the conditions for steam explosions when June 2007; accepted 26 July 2007; published 16 November 2007. [1] Steam explosions, or littoral blasts, phenomena. The development of steam explosions rather than passive steam production is related to the rate

Manga, Michael

77

BLAST+: architecture and applications  

PubMed Central

Background Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. Results We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. Conclusion The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications. PMID:20003500

2009-01-01

78

New blast weapons.  

PubMed

Over the last decade a large number of weapon systems have appeared that use blast as their primary damage mechanism. This is a notable trend; until recently very few warheads relied on blast as their primary output. Most warheads in service use explosives to drive metal such as fragments and shaped charge jets to engage targets. New technologies are now being integrated into warheads that claim to have enhanced blast performance. Blast weapons could have been designed to fill a gap in capability; they are generally used for the attack of 'soft' targets including personnel, both in the open and within protective structures. With the increased number and range of these weapons, it is likely that UK forces will have to face them in future conflicts. This paper briefly describes fuel-air explosive blast weapons and reviews a range of enhanced blast weapons that have been developed recently. The paper concludes with a brief discussion on the reasons why enhanced blast technologies may be proliferating and how this could affect the Defence Medical Services. PMID:11307681

Dearden, P

2001-02-01

79

Copper staves in the blast furnace  

SciTech Connect

Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

Helenbrook, R.G. [ATSI, Inc., Amherst, NY (United States); Kowalski, W. [Thyssen Stahl AG, Duisburg (Germany); Grosspietsch, K.H. [Preussag Stahl AG, Saltzgitter (Germany); Hille, H. [MAN GHH AG, Oberhausen (Germany)

1996-08-01

80

[Blast lung injuries].  

PubMed

In armed conflicts and during terrorist attacks, explosive devices are a major cause of mortality. The lung is one of the organs most sensitive to blasts. Thus, today it is important that every GP at least knows the basics and practices regarding treatment of blast victims. We suggest, following a review of the explosions and an assessment of the current threats, detailing the lung injuries brought about by the explosions and the main treatments currently recommended. PMID:20933166

Clapson, P; Pasquier, P; Perez, J-P; Debien, B

2010-09-01

81

ESF BLAST DESIGN ANALYSIS  

SciTech Connect

The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

E.F. fitch

1995-03-13

82

Containment of blast phenomena in underground electrical power plants  

Microsoft Academic Search

Gas explosion accidents in electrical power plants can be originated by electrical faults in components containing oil for insulation, such as transformers, junction boxes, etc. A ground discharge can cause the pyrolysis of part of the oil and the production of a gaseous mixture, which can generate fires or deflagrations in contact with air. A deflagration gives rise to a

F. Chillè; A. Sala; F. Casadei

1998-01-01

83

A 12-hour case study of auroral phenomena in the midnight sector - F layer and 6300-A measurements  

Microsoft Academic Search

A constant local midnight flight by the AFGL airborne ionospheric observatory from Goose Bay, Labrador to Fairbanks, Alaska, stayed under the midnight sector of the auroral oval for nine hours on December 9, 1971. These airborne observations were supplemented by auroral photographs from the DMSP satellite and by particle flux measurements from the Isis 2 satellite. A band of enhanced

C. P. Pike; J. A. Whalen; J. Buchau

1977-01-01

84

Blast Loading Experiments of Surrogate Models for Tbi Scenarios  

NASA Astrophysics Data System (ADS)

This study aims to characterize the interaction of explosive blast waves through simulated anatomical models. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical PMMA shells housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory test cell setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head near material interfaces due to impedance mismatches. In addition, significant relative displacement was observed between the interacting materials suggesting large strain values of nearly 5%. Further quantitative results were obtained through shadowgraph imaging of the blasts confirming a separation of time scales between blast interaction and bulk movement. These results lead to the conclusion that primary blast effects could cause TBI occurrences.

Alley, M. D.; Son, S. F.

2009-12-01

85

Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity  

Microsoft Academic Search

Ultrasonic transmission measurements allow the continuous monitoring of the setting of both mortar and concrete samples, which is important to determine for instance the formwork removal time. However, aspects such as the cause of the low initial velocity, the relation between the velocity and the setting times and the effect of cement type or cement replacing additives are still under

Nicolas Robeyst; Elke Gruyaert; Christian U. Grosse; Nele De Belie

2008-01-01

86

Energy release protection for pressurized systems. I - Review of studies into blast and fragmentation  

NASA Astrophysics Data System (ADS)

Studies of blast and fragmentation hazards associated with a pressure system rupture are presented. Areas of concern related to blast hazards include the system energy (prior to its explosive failure), chemical characteristics of the media contained within a bursting pressure system, secondary explosions, and energy release. Such aspects of blast effect as height of the burst (in an above-the-ground explosion), dimensional effects of the explosive, multiple explosions, burning rate of the explosive, dynamic pressure, reflected pressure, and confinement (for explosions within an enclosed structure) are discussed. Also treated are hazards from fragments or missiles ejected (fragmentation hazards), including initial frament velocity, velocity retardation, range, blast-generated fragments (from adjacent structures), and media and soil ejection. Mathematical treatments and graphs representing the individual aspects of the blast and fragmentation phenomena are included.

Brown, S. J.

1985-12-01

87

Pseudo-schlieren CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends  

NASA Astrophysics Data System (ADS)

1A pseudo-schlieren technique is applied to the interferometric computed tomography (CT) measurement of three-dimensional (3-D) shock waves discharged from a square open end and a pair of circular open ends in a shock tube experiment. The experiment is performed for incident shock Mach numbers of 2.0 and 2.2 in nitrogen gas under supersonic post shock flow conditions at the open end. The 3-D density-gradient distributions are evaluated from the CT data of the 3-D density distributions, and are depicted in gray-scale CT images of the gradient magnitude and in pseudo-color CT images of the gradient component. The resultant pseudo-schlieren CT images clearly illustrate the 3-D flow features of shock waves, contact surfaces, and the other sharp density fronts. Their image characteristics and meaning in gas dynamics are discussed in comparison with the pseudo-color images of the density. We demonstrate that the pseudo-schlieren CT technique is a useful tool for studying 3-D problems in shock dynamics.

Maeno, K.; Kaneta, T.; Morioka, T.; Honma, H.

2005-11-01

88

External Resource: Having a Solar Blast  

NSDL National Science Digital Library

In Data Analysis and Measurement: Having a Solar Blast!, students will learn how NASA researchers study the Sun. They will learn how satellite technology plays a pivotal role in helping NASA researchers understand the Sun-Earth connection. Students will l

1900-01-01

89

Compound 49b protects against blast-induced retinal injury  

PubMed Central

Aim To determine whether Compound 49b, a novel beta-adrenergic receptor agonist, can prevent increased inflammation and apoptosis in mice after exposure to ocular blast. Methods Eyes of C57/BL6 mice were exposed to a blast of air from a paintball gun at 26 psi (?0.18 MPa). Eyes were collected 4 hours, 24 hours, and 72 hours after blast exposure. In a subset of mice, Compound 49b eyedrops (1 mM) were applied within 4 hours, 24 hours, or 72 hours of the blast. Three days after blast exposure, all mice were sacrificed. One eye was used to measure levels of retinal proteins (TNF?, IL-1?, Bax, BcL-xL, caspase 3, and cytochrome C). The other eye was used for TUNEL labeling of apoptotic cells, which were co-labeled with NeuN to stain for retinal ganglion cells. Results We found that ocular exposure to 26 psi air pressure led to a significant increase in levels of apoptotic and inflammatory mediators within 4 hours, which lasted throughout the period investigated. When Compound 49b was applied within 4 hours or 24 hours of blast injury, levels of apoptotic and inflammatory mediators were significantly reduced. Application of Compound 49b within 72 hours of blast injury reduced levels of inflammatory mediators, but not to untreated levels. Conclusions Ocular blast injury produces a significant increase in levels of key inflammatory and apoptotic markers in the retina as early as 4 hours after blast exposure. These levels are significantly reduced if a beta-adrenergic receptor agonist is applied within 24 hours of blast exposure. Data suggest that local application of beta-adrenergic receptor agonists may be beneficial to reduce inflammation and apoptosis. PMID:23899290

2013-01-01

90

An assessment of the current state-of-the-art of incapacitation by air-blast.  

PubMed

Target vulnerability methodology requires a criticality measure for all international components which contribute to a system or to a system's weapon effectiveness, including that of the human target. Such measures have been developed for personnel targets and for kinetic energy penetrators; however, there is presently no generally accepted quantitative measure of incapacitation to infantry or crew personnel from the prime blast threat. Vulnerability analysts presently use lethality data derived from Lovelace Foundation research to infer an incapacitation level for blast, but these criteria are not very realistic in that they tend to underestimate casualty production from blast threats. Thus, a generalized criteria for estimating incapacitation to military personnel from air blast overpressures is urgently needed to provide vulnerability analysts a realistic measure of blast effectiveness as well as to establish a common base for comparing incapacitation to personnel from blast and from kinetic energy threat mechanisms. PMID:6952674

Kokinakis, W; Rudolph, R R

1982-01-01

91

The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice.  

PubMed

Current experimental models of blast injuries used to study blast-induced neurotrauma (BINT) vary widely, which makes the comparison of the experimental results extremely challenging. Most of the blast injury models replicate the ideal Friedländer type of blast wave, without the capability to generate blast signatures with multiple shock fronts and refraction waves as seen in real-life conditions; this significantly reduces their clinical and military relevance. Here, we describe the pathophysiological consequences of graded blast injuries and BINT generated by a newly developed, highly controlled, and reproducible model using a modular, multi-chamber shock tube capable of tailoring pressure wave signatures and reproducing complex shock wave signatures seen in theater. While functional deficits due to blast exposure represent the principal health problem for today's warfighters, the majority of available blast models induces tissue destruction rather than mimic functional deficits. Thus, the main goal of our model is to reliably reproduce long-term neurological impairments caused by blast. Physiological parameters, functional (motor, cognitive, and behavioral) outcomes, and underlying molecular mechanisms involved in inflammation measured in the brain over the 30 day post-blast period showed this model is capable of reproducing major neurological changes of clinical BINT. PMID:21074615

Cernak, Ibolja; Merkle, Andrew C; Koliatsos, Vassilis E; Bilik, Justin M; Luong, Quang T; Mahota, Theresa M; Xu, Leyan; Slack, Nicole; Windle, David; Ahmed, Farid A

2011-02-01

92

Macro-mechanical modeling of blast-wave mitigation in foams. Part II: reliability of pressure measurements  

NASA Astrophysics Data System (ADS)

A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range 1.25le {M}_s le 1.7 and foam column heights in the range 100-450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.

Britan, A.; Liverts, M.; Shapiro, H.; Ben-Dor, G.

2013-02-01

93

Micro-blast waves using detonation transmission tubing  

NASA Astrophysics Data System (ADS)

Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < ? {p}/{p}_0 ? 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

2013-07-01

94

Neural networks for the identification and control of blast furnace hot metal quality  

Microsoft Academic Search

The operation and control of blast furnaces poses a great challenge because of the difficult measurement and control problems associated with the unit. The measurement of hot metal composition with respect to silica and sulfur are critical to the economic operation of blast furnaces. The measurement of the compositions require spectrographic techniques which can be performed only off line. An

V. R Radhakrishnan; A. R Mohamed

2000-01-01

95

Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor  

SciTech Connect

This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scale flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)

Boxx, I.; Stoehr, M.; Meier, W. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft-und Raumfahrt (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany); Carter, C. [Air Force Research Laboratory (AFRL)/PRAS, 1950 Fifth St, Wright-Patterson AFB, OH (United States)

2010-08-15

96

CRCHD E-blast  

Cancer.gov

CRCHD E-blast CRCHD Web Site Updates The Center to Reduce Cancer Health Disparities (CRCHD) has recently updated some of its web pages! Please take the time to browse through these updates. Site updates include: The CRCHD 2011 Annual Report, a newly

97

CRCHD E-blast  

Cancer.gov

CRCHD E-blast CRCHD Web Site Updates The Center to Reduce Cancer Health Disparities (CRCHD) has recently updated some of its Web pages! Please take the time to browse through these updates. Site updates include: 2013 Annual Report to the Nation on

98

Cytogenetic and DNA-flow cytometric studies of separated blasts.  

PubMed

With Percoll density gradients, blasts from peripheral blood and bone marrow could be separated with a significant enrichment, and very often with a high degree of purity. This allowed a study of selected cases, where the separated sample exhibited chromosome abnormalities and/or an abnormal DNA content distribution (as measured by DNA-flow cytometry). The anomalies were shown to be associated with the separated blast fraction. PMID:3866120

Berneman, Z N; De Bock, R; Van Alsenoy, L; Vingerhoets, W; Van den Bergh, M; Dumon, J; Peetermans, M

1985-01-01

99

Crystallization phenomena in slags  

NASA Astrophysics Data System (ADS)

The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending the temperature range of observed crystallization. The effect of changing the gas atmosphere surrounding the sample has been studied. The presence of water vapor increased the nucleation rate and crystal growth rate significantly when compared to experiments carried out in a dry atmosphere. With an atmosphere of Argon and Argon-3% Hydrogen mixture, the incubation time for crystallization was increased with several minutes. The crystal growth rate in these atmospheres was also drastically reduced compared to an atmosphere of normal air. Significant numbers of bubbles were formed during the initial melting of mold slag samples and the melting rate of the slag was found to be related to the rate of bubble generation and to the rate of heat transport.

Orrling, Carl Folke

2000-09-01

100

Teaching optical phenomena with Tracker  

NASA Astrophysics Data System (ADS)

Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

Rodrigues, M.; Simeão Carvalho, P.

2014-11-01

101

Evaluation of heat flux through blast furnace shell with attached sensors  

SciTech Connect

Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

1996-12-31

102

Idaho National Laboratory Experimental Program to Measure the Flow Phenomena in a Scaled Model of a Prismatic Gas-Cooled Reactor Lower Plenum for Validation of CFD Codes  

SciTech Connect

The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that will be presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal developing, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet velocity profiles is also presented.

Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

2008-09-01

103

Characterising the acceleration phase of blast wave formation  

NASA Astrophysics Data System (ADS)

Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

Fox, T. E.; Robinson, A. P. L.; Schmitz, H.; Pasley, J.

2014-10-01

104

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15

105

Determination of explosive blast loading equivalencies with an explosively driven shock tube  

SciTech Connect

Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

Jackson, Scott I [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory

2009-01-01

106

Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere  

SciTech Connect

The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

Chen, C.W. [Diwan College of Management, Tainan (Taiwan)

2005-09-01

107

Performance of blasting caps  

NASA Technical Reports Server (NTRS)

Common blasting caps are made from an aluminum shell in the form of a tube which is closed at both ends. One end, which is called the output end, terminates in a principal side or face, and contains a detonating agent which communicates with a means for igniting the detonating agent. The improvement of the present invention is a flat, steel foil bonded to the face in a position which is aligned perpendicularly to the longitudinal axis of the tube.

Bement, Laurence J. (inventor); Schimmel, Morry L. (inventor); Perry, Ronnie B. (inventor)

1993-01-01

108

Manual for the prediction of blast and fragment loadings on structures  

SciTech Connect

The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blast and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.

Not Available

1980-11-01

109

Science and Paranormal Phenomena  

E-print Network

In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ``historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ``paranormal phenomena'' might --- but need not --- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be {\\it defined} as contradicting physics.

H. Pierre Noyes

1999-06-03

110

Science and Paranormal Phenomena  

SciTech Connect

In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

Noyes, H. Pierre

1999-06-03

111

Science and Paranormal Phenomena  

E-print Network

In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ``historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ``paranormal phenomena'' might --- but need not --- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be {\\it defined} as contradicting physics.

Noyes, H P

1999-01-01

112

Implementation of the exploding wire technique to study blast-wave-structure interaction  

NASA Astrophysics Data System (ADS)

The effort invested in improving our understanding of the physics of high-energy explosion events has been steadily increasing since the latter part of the twentieth century. Moreover, the dramatic increase in computer power over the last two decades has made the numerical simulation approach the dominant tool for investigating blast phenomena and their effects. However, field tests, on both large and small scales, are still in use. In the current paper, we present an experimental tool to better resolve and study the blast-structure interaction phenomenon and to help validate the numerical simulations of the same. The experimental tool uses an exploding wire technique to generate small-scale cylindrical and spherical blast waves. This approach permits safe operation, high repeatability, and the use of advanced diagnostic systems. The system was calibrated using an analytical model, an empirical model, and numerical simulation. To insure that spherical blast geometry was achieved, a set of free air blast experiments was done in which high-speed photography was used to monitor the blast structure. A scenario in which an explosion occurred in the vicinity of a structure demonstrated the system's capabilities. Using this simple but not trivial configuration showed unequivocally the effectiveness of this tool. From this comparison, it was found that at early times of blast-structure interaction, the agreement between the two sets of results was very good, but at later times incongruences appeared. Effort has been made to interpret this observation. Furthermore, by using similitude analysis, the results obtained from the small-scale experiments can be applied to the full-scale problem. We have shown that an exploding wire system offers an inexpensive, safe, easy to operate, and effective tool for studying phenomena related to blast-wave-structure interactions.

Ram, O.; Sadot, O.

2012-11-01

113

Investigation of blast-induced traumatic brain injury  

PubMed Central

Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

Ludwigsen, John S.; Ford, Corey C.

2014-01-01

114

A Three-Dimensional Numerical Investigation into the Interaction of Blast Waves with Bomb Shelters  

Microsoft Academic Search

This study investigates the behavior of blast wave by employing the finite volume method to solve the associated three-dimensional, time-dependent, inviscous flow Euler equations. The numerical results are shown to be in good agreement with the experimental results obtained from shock tube flow studies. The results also identify the complex phenomena of flow structures, pressure distributions, and different types of

Chang-Hsien Tai; Jyh-Tong Teng; Shi-Wei Lo; Chia-Wei Liu

2005-01-01

115

Blast furnace injection symposium: Proceedings  

SciTech Connect

These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

NONE

1996-12-31

116

Computer systems for controlling blast furnace operations at Rautaruukki  

SciTech Connect

Energy accounts for a significant portion of the total blast furnace production costs and, to minimize energy consumption, both technical and economical aspects have to be considered. Thus, considerable attention has been paid to blast furnace energy consumption and productivity. The most recent furnace relines were in 1985 and 1986. At that time, the furnaces were modernized and instrumentation was increased. After the relines, operation control and monitoring of the process is done by a basic automation systems (DCS`s and PLC`s) and a supervision system (process computer). The supervision system is the core of the control system combining reports, special displays, trends and mathematical models describing in-furnace phenomena. Low energy consumption together with high productivity and stable blast furnace operation have been achieved due to an improvement in raw materials quality and implementation of automation and computer systems to control blast furnace operation. Currently, the fuel rate is low and productivity is in excess of 3.0 tonnes/cu meter/day, which is one of the highest values achieved anywhere for long-term operation.

Inkala, P.; Karppinen, A. [Rautaruukki Oy, Raahe (Finland); Seppanen, M. [Rautaruukki Oy Engineering, Oulu (Finland)

1995-08-01

117

Modeling of Laser-generated Radiative Blast Waves  

SciTech Connect

We simulate experiments performed with the Falcon laser at Lawrence Livermore National Laboratory to generate strong, cylindrically diverging blast waves of relevance to astrophysics. In particular, we are interested in producing and modeling radiative shocks. We compare numerical simulations with the data and with an analytic approximation to blast-wave propagation with a radiative-loss term included. Our goal is to develop a laboratory setting for studying radiative shocks of relevance to supernova remnants, gamma-ray burst afterglows, and other high-energy astrophysics phenomena. We will show that a good degree of agreement exists between the experimental data and the numerical simulations, demonstrating that it is indeed possible to generate radiative shocks in the laboratory using tabletop femtosecond lasers. In addition, we show how we can determine the energy-loss rate from the blast-wave evolution. This analytic method is independent of the exact mechanism of radiative cooling and is scalable to both the laboratory and astrophysical radiative blast waves. (c) 2000 The American Astronomical Society.

Keilty, K. A.; Liang, E. P.; Ditmire, T.; Remington, B. A.; Shigemori, K.; Rubenchik, A. M.

2000-08-01

118

The effect of particle feed rate on the plastic media blast jet  

Microsoft Academic Search

Paint removal from military aircraft is often done by plastic media blasting (PMB): the use of plastic grit in a conventional blast jet. However, there is some concern that PMB will cause damage. To help in evaluating this possibility, a time of flight'' meter is used to measure particle velocity in the jet, as a function of air pressure, distance

M. J. McIntosh

1992-01-01

119

Fractal Geometry and Spatial Phenomena A Bibliography  

E-print Network

Fractal Geometry and Spatial Phenomena A Bibliography January 1991 Mark MacLennan, A. Stewart. MEASUREMENT ISSUES........................................................... 8 II.1 ESTIMATION OF FRACTAL DIMENSION - GENERAL ISSUES .......... 8 II.2 ESTIMATION OF FRACTAL DIMENSION FOR CURVES/PROFILES ... 9 II.3

California at Santa Barbara, University of

120

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

SciTech Connect

The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated.

William S. McPhee

1999-05-31

121

Understanding the Physics of changing mass phenomena  

NASA Astrophysics Data System (ADS)

Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee jumper. These phenomena are also interesting as topics for challenging student projects, and used as such by Dutch high school students. I will take these phenomena as the context in which I like to demonstrate the possibilities of ICT in the learning process of physics. Especially dynamical modeling enables us to describe these phenomena in an elegant way and with knowledge of high school mathematics. Furthermore tools for video-analysis and data from measurements with sensors allow us to study the phenomena in experiments. This example demonstrates the level of implementation of ICT in Physics Education in The Netherlands [1].

Ellermeijer, A. L.

2008-05-01

122

30 CFR 77.1300 - Explosives and blasting.  

Code of Federal Regulations, 2010 CFR

...UNDERGROUND COAL MINES Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled, charged,...

2010-07-01

123

Imaging of snapping phenomena  

PubMed Central

Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

2012-01-01

124

Blast furnace slags as sorbents of phosphate from water solutions  

Microsoft Academic Search

The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be

Bruno Kostura; Hana Kulveitová; Juraj Leško

2005-01-01

125

Wave Phenomena Simulations  

NSDL National Science Digital Library

This resource contains interactive wave motion simulations for students in introductory physics classes. The various simulations model phenomena such as wave superposition, reflection, and refraction, as well as the interference of waves, the Doppler effect, the superposition of sine waves, and the various intensities of spherical waves.

Taylor, Barney

2003-10-10

126

Transport phenomena in nanofluidics  

Microsoft Academic Search

The transport of fluid in and around nanometer-sized objects with at least one characteristic dimension below 100nm enables the occurrence of phenomena that are impossible at bigger length scales. This research field was only recently termed nanofluidics, but it has deep roots in science and technology. Nanofluidics has experienced considerable growth in recent years, as is confirmed by significant scientific

Reto B. Schoch; Jongyoon Han; Philippe Renaud

2008-01-01

127

Solar cosmic ray phenomena  

Microsoft Academic Search

This review attempts to present an integrated view of the several types of solar cosmic ray phenomena. The relevant large and small scale properties of the interplanetary medium are first surveyed, and their use in the development of a quantitative understanding of the cosmic ray propagation processes summarised. Solar cosmic ray events, in general, are classified into two phenomenological categories:

K. G. McCracken; U. R. Rao

1970-01-01

128

Blast From the Past  

NSDL National Science Digital Library

A recently recovered deep-sea core supports theories that an asteroid collided with the earth 65 million years ago, around the time of the extinction of the dinosaurs. The Smithsonian Institution National Museum of Natural History's new site, Blast from the Past, contains details on this cataclysmic event. Colorful graphics provide conceptual illustrations of the asteroid impact and aftermath, accompanied by photographs of the deep-sea core. Text summaries, followed by bibliographic references, describe the asteroid hypothesis, the Cretaceous/Tertiary (K/T) boundary, and the utility of deep-sea cores. With links to other paleobiological sites and related museum exhibits, this site is a useful resource for those wanting to know more about fateful asteroid impacts.

129

Blast Loading Experiments of Developed Surrogate Models for TBI Scenarios  

NASA Astrophysics Data System (ADS)

This study aims to characterize the interaction of explosive blast waves through simulated anatomical systems. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical PMMA shells followed by SLA prototyped skulls housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted with the simple geometries to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head due to impedance mismatches. Results from the strain correlations added to the theory of internal shearing between tissues.

Alley, Matthew; Son, Steven

2009-06-01

130

Model for small arms fire muzzle blast wave propagation in air  

NASA Astrophysics Data System (ADS)

Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

Aguilar, Juan R.; Desai, Sachi V.

2011-11-01

131

Some nonlinear optical phenomena  

NASA Astrophysics Data System (ADS)

Some nonlinear optical phenomena are investigated, especially stimulated scattering, from the point of view of the kinetic theory of radiation (i.e., photon transport theory). Kinetic theory provides a perspective, different from Maxwell's wave theory, from which an examination of these complex matters may proceed with some advantages: (i) considerable mathematical simplication in some instances, (ii) clear and natural separation of microscopic versus macroscopic nonlinearities, (iii) kinetic theory couples the radition field nonlinearly to a formally exact description of the matter field, and (iv) it is believed that the mathematical model provided by kinetic theory is perhaps better suited for numerical studies of the effect of diverse nonlinear optical phenomena upon laser-fusion implosion dynamics than Maxwell's wave theory. Although the main emphasis is upon stimulated scattering, the incorporation of other nonlinearities into the kinetic model is discussed briefly.

Hammouda, Boualem; Osborn, Richard K.

1981-09-01

132

Lunar transient phenomena  

NASA Astrophysics Data System (ADS)

Lunar transient phenomena (LTP) sightings are classified into five categories: brightenings, darkenings, reddish colorations, bluish colorations, and obscurations. There is evidence that the remaining LTP's are of lunar origin. A substantial number of sightings are independently confirmed. They have been recorded on film and spectrograms, as well as with photoelectric photometers and polarization equipment. It suggested that the LTP's may be gentle outgassings of less-than-volcanic proportions.

Cameron, W. S.

1991-03-01

133

Spectroscopic diagnostics in a colliding-blast-wave experiment  

SciTech Connect

Visible spectral lines from [ital n]=3, [Delta][ital n]=0 transitions in N[sup +] and N[sup 2+] ions are used for measuring the plasma electron density and temperature in a region of two colliding blast waves, propagating through a 1.5--10-Torr nitrogen atmosphere. The blast waves originate at the tips of two aluminum rods irradiated with two beams of the Naval Research Laboratory (NRL) Pharos-III 1.054-[mu]m-wavelength Nd:glass laser operated at an energy of 200--430 J for each beam in 5-ns pulses. An electron density in the colliding-blast-wave region of [ital N][sub [ital e

Elton, R.C.; Billings, D.; Manka, C.K.; Griem, H.R.; Grun, J.; Ripin, B.H. (Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States)); Resnick, J. (Research Support Instruments, Inc., Alexandria, Virginia 22314 (United States))

1994-02-01

134

Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities  

NASA Astrophysics Data System (ADS)

Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, ?, as a function of time for comparison with radiation-hydrodynamics simulations.

Moore, A. S.; Gumbrell, E. T.; Lazarus, J.; Hohenberger, M.; Robinson, J. S.; Smith, R. A.; Plant, T. J. A.; Symes, D. R.; Dunne, M.

2008-02-01

135

Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.  

PubMed

Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379

Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

2008-02-01

136

Blast noise impacts on sleep  

NASA Astrophysics Data System (ADS)

Firing large guns during the hours of darkness is essential to combat readiness for the military. At the same time most people are particularly sensitive to noise when sleeping or trying to fall asleep. Laboratory studies done by Griefahn [J. Sound and Vib. 128, 109-119 (1989)] and Luz [see Luz et al., ERDC/CERL, TR-04-26 (2004)] suggest that a time period at night may exist where people are more tolerant to large weapon impulse noise (blast noise) and therefore, are less likely to be awakened from noise events. In the fall of 2004, a field study was conducted around a military installation to determine if such a time period(s) exists. Noise monitors were set up inside and outside of residents homes to record noise levels from live military training activities and actimeters were worn by participants sleeping their natural environment to measure sleep disturbance and awakening. The method and results of this study will be presented. [Work supported by US Army Engineer Research and Development Center CERL.

Nykaza, Edward T.; Pater, Larry L.

2005-04-01

137

Environmental effects of blast induced immissions  

SciTech Connect

The subject of the paper is blasting vibrations as sources of environmental molestations including acceptance level, complaint level and damage level, as well. In addition, the paper shows a comparison of international regulations and their problematical aspects. In consideration of blast induced immissions the subject shows that human annoyance has become an important place in blasting works. It provides a solution proposal how to minimize environmental effects of blasting works.

Schillinger, R.R. [Schillinger GmbH, Noerdlingen (Germany)

1996-12-01

138

7 CFR 3201.78 - Blast media.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Designated Items § 3201.78 Blast media. (a) Definition. Abrasive particles...preference for qualifying biobased blast media. By that date, Federal agencies...

2013-01-01

139

7 CFR 3201.78 - Blast media.  

...2014-01-01 2014-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Designated Items § 3201.78 Blast media. (a) Definition. Abrasive particles...preference for qualifying biobased blast media. By that date, Federal agencies...

2014-01-01

140

Galactic Acceleration Phenomena  

NASA Astrophysics Data System (ADS)

I will review the current status of our observational knowledge of prominent classes of particle accelerators in the Galaxy, especially shell-type supernova remnants (SNRs) and pulsar wind nebulae. I will highlight in particular the contribution of the recent improvement in sensitivity of very-high-energy (VHE) gamma-ray observations, which are currently the most direct probe of particle acceleration in the Galaxy up to energies of several hundreds of TeV. Shell-type SNRs have long been proposed as sources of the Galactic cosmic rays, through Fermi acceleration at their outer blast waves. In recent years, X-ray observations have revealed very thin, non-thermal rims in many young SNRs, and I will discuss the implications of these observations of synchrotron emission from accelerated electrons, in particular for magnetic field amplification and the maximum accelerated particle energy attainable in these shock waves. I will then review the current status of the evidence for high-energy nuclei in these objects, especially in view of recent VHE gamma-ray observations. I will summarise current uncertainties and outline prospects for future progress through greater multi-wavelength studies. As a result of the survey of the Galactic plane in VHE gamma-rays undertaken by the HESS experiment, the most numerous class of identified Galactic VHE sources is currently that of pulsar wind nebulae (PWNe), also known as plerionic SNRs. In these objects, the VHE gamma-ray emission is generally thought to be dominantly leptonic, and I will outline the complementarity between the results of these observations and the better-known X-ray observations of synchrotron emission. I will discuss the evolutionary problems posed by the large observed sizes of several of the new gamma-ray pulsar wind nebulae, and outline prospects for progress in our understanding of these objects.

Gallant, Y. A.

2006-08-01

141

Discriminating quarry blasts from earthquakes in Vértes Hills (Hungary) by using the Fisher-Shannon method  

NASA Astrophysics Data System (ADS)

The Fisher-Shannon information (FS) plane, defined by the Fisher information measure (FIM), and the Shannon entropy power, N x , is a robust tool for investigating the complex dynamics of time series. In the FS plane, earthquakes and quarry blasts measured in Vértes Hills (Hungary) are significantly discriminated from each other. Furthermore, the results of the receiving-operating characteristics (ROC) analysis reveal that FIM is a classifier more efficient than N x in discriminating earthquakes from quarry blasts.

Telesca, Luciano; Lovallo, Michele; Kiszely, Márta Marótiné; Toth, László

2011-10-01

142

MULTISCALE PHENOMENA IN MATERIALS  

SciTech Connect

This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

A. BISHOP

2000-09-01

143

Blast waves in rotating media.  

NASA Technical Reports Server (NTRS)

The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.

Rossner, L. F.

1972-01-01

144

Blasting Rocks and Blasting Cars Applied Engineering  

ScienceCinema

June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

LBNL

2009-09-01

145

Blasting Rocks and Blasting Cars Applied Engineering  

SciTech Connect

June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

LBNL

2008-07-02

146

A miniature pressure sensor for blast event evaluation  

NASA Astrophysics Data System (ADS)

Traumatic brain injury (TBI) is a great potential threat to people who deal with explosive devices. Protection from TBI has attracted more and more interest. Great efforts have been taken to the studies on the understanding of the propagation of the blast events and its effect on TBI. However, one of the biggest challenges is that the current available pressure sensors are not fast enough to capture the blast wave especially the transient period. This paper reports an ultrafast pressure sensor that could be very useful for analysis of the fast changing blast signal. The sensor is based on Fabry-Perot (FP) principle. It uses a 45º angle polished fiber sitting in a V-groove on a silicon chip. The endface of the angle polished fiber and the diaphragm which is lifted off on the side wall of the V-groove form the FP cavity. The sensor is very small and can be mounted on different locations of a helmet to measure blast pressure simultaneously. The tests were conducted at Natick Soldier Research, Development, and Engineering Center (NSRDEC) in Natick, MA. The sensors were mounted in a shock tube, side by side with the reference sensors, to measure a rapidly increased pressure. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors and their response time is comparable.

Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

2011-06-01

147

Shock wave reflection phenomena  

NASA Astrophysics Data System (ADS)

The present publication encompasses shock-wave reflection phenomena in a review of their phenomenological aspects in a range of flow types. Oblique shock-wave reflections are analyzed by means of expressions from the two- and three-shock theories with illustrations of the transition boundaries from regular and Mach reflection. Shock-wave reflection is further reviewed for such cases as unsteady, steady, and pseudosteady flows with criteria for the formation and termination of these reflection cases. Experimental results are compared to analytical predictions, and the governing equations are treated with additional expressions and modifications that describe viscous and real gas effects. It is expected that the work in this volume can lead to the development of numerical codes for the prediction of regular reflection as well as single- and double-Mach reflection.

Ben-Dor, Gabi

148

Weld pool phenomena  

SciTech Connect

During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

David, S.A.; Vitek, J.M.; Zacharia, T. [Oak Ridge National Lab., TN (United States); DebRoy, T. [Pennsylvania State Univ., University Park, PA (United States)

1994-09-01

149

Anomalous Light Phenomena vs. Bioelectric Brain Activity  

NASA Astrophysics Data System (ADS)

We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

Teodorani, M.; Nobili, G.

150

A Three-Dimensional Numerical Investigation into the Interaction of Blast Waves with Bomb Shelters  

NASA Astrophysics Data System (ADS)

This study investigates the behavior of blast wave by employing the finite volume method to solve the associated three-dimensional, time-dependent, inviscous flow Euler equations. The numerical results are shown to be in good agreement with the experimental results obtained from shock tube flow studies. The results also identify the complex phenomena of flow structures, pressure distributions, and different types of reflected waves for closed-ended and open-ended bomb shelters.

Tai, Chang-Hsien; Teng, Jyh-Tong; Lo, Shi-Wei; Liu, Chia-Wei

151

Drill and Blast Tunneling Practices  

Microsoft Academic Search

High-performance drill and blast methods for tunnel construction require that each of the individual working elements that constitute the construction process are optimized and considered as a system of sequential and parallel activities. The advantage of integrating the logistic backup systems facilitates an increase in performance. To achieve increased production, it is necessary to improve the drilling, explosive loading, temporary

Gerhard Girmscheid; Cliff Schexnayder

2002-01-01

152

The Next Generation BLAST Experiment  

NASA Astrophysics Data System (ADS)

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flights from Antarctica in 2010 and 2012. We present the next-generation BLASTPol instrument (BLAST-TNG) that will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5-m carbon fiber mirror that is 40% wider than the BLASTPol mirror and 3000 polarization sensitive detectors. BLAST-TNG will observe in three bands at 250, 350, and 500 ?m. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn-coupled submillimeter detector arrays. The liquid helium cooled cryostat will have a 28-day hold time and will utilize a closed-cycle 3He refrigerator to cool the detector arrays to 270 mK. This will enable a detailed mapping of more targets with higher polarization resolution than any other submillimeter experiment to date. BLAST-TNG will also be the first balloon-borne telescope to offer shared risk observing time to the community. This paper outlines the motivation for the project and the instrumental design.

Galitzki, Nicholas; Ade, Peter A. R.; Angilè, Francesco E.; Ashton, Peter; Beall, James A.; Becker, Dan; Bradford, Kristi J.; Che, George; Cho, Hsiao-Mei; Devlin, Mark J.; Dober, Bradley J.; Fissel, Laura M.; Fukui, Yasuo; Gao, Jiansong; Groppi, Christopher E.; Hillbrand, Seth; Hilton, Gene C.; Hubmayr, Johannes; Irwin, Kent D.; Klein, Jeffrey; van Lanen, Jeff; Li, Dale; Li, Zhi-Yun; Lourie, Nathan P.; Mani, Hamdi; Martin, Peter G.; Mauskopf, Philip; Nakamura, Fumitaka; Novak, Giles; Pappas, David P.; Pascale, Enzo; Pisano, Giampaolo; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Stanchfield, Sara; Tucker, Carole; Ullom, Joel N.; Underhill, Matthew; Vissers, Michael R.; Ward-Thompson, Derek

153

Analysis Of Plunging Phenomena In Water Reservoirs  

Microsoft Academic Search

Two analyses of plunging phenomena in reservoirs are presented, one based upon a simple energy conserving flow and the other upon a gradually varied two-layer system. The various types of interfacial profiles are described and the depth at the plunge point is determined. The predicted plunge depth agrees reasonably well with the laboratory measurements of SINGH and SHAH (1971).

S. B. Savage; J. Brimberg

1975-01-01

154

Surface assessment and modification of concrete using abrasive blasting  

NASA Astrophysics Data System (ADS)

Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to approximate the 3-D concrete surface profiles. The errors were reduced when a weighted average of the four linear profiles approximated the corresponding 3-D parameter. The following chapter considers the parametric and sensitivity of concrete surface topography measurements. The weighted average of the four 2-D profiles consistently resulted in underestimation of the corresponding 3-D parameters: the dispersion of surface elevations (Sq) and the roughness (Sa). Results indicated the 3-D parameter, Sq, had the least sensitivity to data point reduction. The final chapter investigated surface modification using dry ice and sand blasting. The overall objective was to evaluate the change in the 3-D surface roughness (Sa) following blasting as functions of mix design and as induced by freeze-thaw cycling, and to compare the results obtained using dry ice with those obtained using sand as the blasting media. In general, sand blasting produced larger changes in Sa compared to dry ice blasting for the concrete mix designs considered. The primary mechanism responsible for altering the surface topography of the concrete was the scaling of the superficial cement paste layer on the exposed surface, which was due to freeze-thaw cycling. The largest relative change in roughness following blasting occurred in the control samples, which had not undergone freeze-thaw cycling.

Millman, Lauren R.

155

Discrimination of earthquakes and quarry blasts in the eastern Black Sea region of Turkey  

NASA Astrophysics Data System (ADS)

In recent years, a large number of quarry blasts have been detonated in the eastern Black Sea region. When these blasts are recorded by seismic stations, they contaminate the regional earthquake catalog. It is necessary to discriminate quarry blast records from the earthquake catalogs in order to determine the real seismicity of the region. Earthquakes and quarry blasts can be separated through different methods. These methods should be applied concurrently in order to safely distinguish these events. In this study, we discriminated quarry blasts from earthquakes in the eastern Black Sea region of Turkey. We used 186 seismic events recorded by the Karadeniz Technical University and Bogaziçi University Kandilli Observatory Earthquake Research Institute stations which are Trabzon, Espiye, Pazar, Borçka, Ayd?ntepe, and Gümü?hane between years of 2002 and 2010. For the discrimination of quarry blasts from earthquakes, we used both, statistical methods (calculation of the maximum ratio of S to P waves (S/P), complexity ( C)) and spectral methods (spectrogram calculation). These methods included measuring the maximum amplitude S/P, C, spectral ratio, and time-frequency analysis. We especially relied on two-dimensional time-frequency analysis methods to discriminate quarry blasts from earthquakes in Turkey. As a result of this study, 68 % of the examined seismic events were determined to be quarry blasts and 32 % to be earthquakes. The earthquakes occurring on land are related to small faults and the blasts are concentrated in large quarries. Nearly 40 % of the earthquakes occurred in the Black Sea, most of them are related to the Black Sea thrust belt, where the largest earthquake was observed in the time period studied. The areas with the largest earthquake potential in the eastern Black Sea region are in the sea.

Y?lmaz, ?eyda; Bayrak, Yusuf; Ç?nar, Hakan

2013-04-01

156

Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.  

PubMed

An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336?kPa, 0.84?ms, and 86.5?kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death. PMID:24558968

Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

2014-07-01

157

Measurement of the electric form factor of the neutron at low momentum transfers using a vector polarized deuterium gas target at BLAST  

E-print Network

Elastic form factors are fundamental quantities that characterize the electromagnetic structure of the nucleon. High precision measurements of these quantities are essential in understanding the structure of hadronic matter. ...

Ziskin, Vitaliy

2005-01-01

158

The Balloon-borne Large Aperture Submillimeter Telescope: BLAST  

E-print Network

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 microns. The optical design is based on a 2m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30"; post-flight pointing reconstruction to ~5" rms is achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test-flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100-hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in June 2005; and a 250-hour, circumpolar-flight from McMurdo Station, Antarctica, in December 2006.

E. Pascale; P. A. R. Ade; J. J. Bock; E. L. Chapin; J. Chung; M. J. Devlin; S Dicker; M. Griffin; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; J. Klein; C. J. MacTavish; G. Marsden; P. G. Martin; T. G. Martin; P. Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; M. Rex; D. Scott; C. Semisch; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; D. V. Wiebe

2007-11-21

159

GENERAL VIEW OF TURBOBLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

GENERAL VIEW OF TURBO-BLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND HOT BLAST STOVES (RIGHT). - Republic Iron & Steel Company, Youngstown Works, Haselton Blast Furnaces, West of Center Street Viaduct, along Mahoning River, Youngstown, Mahoning County, OH

160

Looking east at blast furnace no. 5 between the hot ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Looking east at blast furnace no. 5 between the hot blast stoves (left) and the dustcatcher (right). - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

161

9. LOOKING NORTH AT TRESTLE, HOIST HOUSE No. 1, BLAST ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

9. LOOKING NORTH AT TRESTLE, HOIST HOUSE No. 1, BLAST FURNACE No. 1, AND HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

162

Looking southeast at blast furnaces no. 5 and no. 6 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

163

INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

164

Looking southwest at blast furnaces no. 5 and no. 6 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

165

30 CFR 57.6306 - Loading, blasting, and security.  

Code of Federal Regulations, 2012 CFR

...device, all persons shall leave the blast area except persons in a blasting shelter or other location that protects them from concussion (shock wave), flying material, and gases. (f) Before firing a blast— (1) Ample warning shall be given to...

2012-07-01

166

30 CFR 56.6306 - Loading, blasting, and security.  

Code of Federal Regulations, 2013 CFR

...device, all persons shall leave the blast area except persons in a blasting shelter or other location that protects them from concussion (shock wave), flying material, and gases. (f) Before firing a blast— (1) Ample warning shall be given to...

2013-07-01

167

30 CFR 56.6306 - Loading, blasting, and security.  

Code of Federal Regulations, 2012 CFR

...device, all persons shall leave the blast area except persons in a blasting shelter or other location that protects them from concussion (shock wave), flying material, and gases. (f) Before firing a blast— (1) Ample warning shall be given to...

2012-07-01

168

30 CFR 57.6306 - Loading, blasting, and security.  

Code of Federal Regulations, 2013 CFR

...device, all persons shall leave the blast area except persons in a blasting shelter or other location that protects them from concussion (shock wave), flying material, and gases. (f) Before firing a blast— (1) Ample warning shall be given to...

2013-07-01

169

30 CFR 77.1910 - Explosives and blasting; general.  

...2014-07-01 2014-07-01 false Explosives and blasting; general. 77.1910...Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a...charging and blasting. (b) All explosive materials, detonators, and any...

2014-07-01

170

30 CFR 77.1910 - Explosives and blasting; general.  

Code of Federal Regulations, 2010 CFR

...circuits shall be disconnected or removed from the blasting area before charging and blasting. (b) All explosive materials, detonators, and any other related blasting material employed in the development of any slope or shaft shall be stored,...

2010-07-01

171

30 CFR 77.1304 - Blasting agents; special provisions.  

...Blasting agents; special provisions. (a) Sensitized ammonium nitrate blasting agents, and the components thereof prior to mixing...Circular 8179, “Safety Recommendations for Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions....

2014-07-01

172

30 CFR 77.1304 - Blasting agents; special provisions.  

Code of Federal Regulations, 2013 CFR

...Blasting agents; special provisions. (a) Sensitized ammonium nitrate blasting agents, and the components thereof prior to mixing...Circular 8179, “Safety Recommendations for Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions....

2013-07-01

173

30 CFR 75.1310 - Explosives and blasting equipment.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Explosives and blasting equipment. 75.1310 Section...SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only...

2013-07-01

174

30 CFR 75.1310 - Explosives and blasting equipment.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Explosives and blasting equipment. 75.1310 Section...SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only...

2012-07-01

175

30 CFR 75.1310 - Explosives and blasting equipment.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Explosives and blasting equipment. 75.1310 Section...SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only...

2011-07-01

176

30 CFR 75.1310 - Explosives and blasting equipment.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310 Section...SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only...

2010-07-01

177

30 CFR 75.1310 - Explosives and blasting equipment.  

...2014-07-01 2014-07-01 false Explosives and blasting equipment. 75.1310 Section...SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only...

2014-07-01

178

Effects of decoupling and simultaneous detonation on blast vibrations  

SciTech Connect

The need for blast vibration monitoring can be attributed to a combination of three factors: structural damage, blast design and human annoyance. Traditionally, vibration damage criteria are prescribed in terms of peak particle velocity (PPV), as measured or predicted in the ground surrounding a blast. The PPV in the vicinity of a blasthole is strongly influenced by the quantity of the explosive per delay. In general, the existing prediction models give reliable results but fall short of addressing the change in PPV when the charge is decoupled and/or distributed. Therefore, a study was designed with the following objectives: To develop a model for prediction of PPV when an explosive charge is decoupled and to examine the adequacy of the existing models in predicting the PPV, when more than one hole is initiated on the same delay number. Blasting experiments were conducted on large boulders of quartzite and a rock-like material called Hydro-Stone. The blast vibrations were monitored with OMNI PROBE 1200. It was observed that PPV decreased with a reduction in coupling ratio, which can be accounted for by incorporating a decay factor into a standard prediction equation. The PPV generated by the simultaneous firing of multiple holes was less than the predicted values. The measured PPV at any one point was found to be less than double the PPV for a single blasthole. When the number of blastholes fired simultaneously exceeded four, the increase in the PPV at any one point was significant. This provided a quantitative explanation to the common observation of minimum damage produced by the simultaneous firing of perimeter holes in mining operations.

Singh, S.P. [Laurentian Univ., Sudbury, Ontario (Canada); Lamond, R.D. [Royal Oak Mines Inc., Timmins, Ontario (Canada). Timmins Div.

1995-12-31

179

Reactions of sinter in a lead blast furnace  

Microsoft Academic Search

Measurements of the composition of the condensed phases derived from the sinter feed to a commercial lead blast furnace are\\u000a presented. No significant reaction was detected at a level in the furnace above about 3 m from the tuyeres, at which the measured\\u000a temperature was about 800 ?C. The reaction zone was predominantly in a region 1 m to 2

David R. Morris; Brent R. Amero; Philip G. Evans; William Petruk; D. R. Owens

1983-01-01

180

Measuring-off of Time Intervals: Correlations Between Peculiarities of Their Estimation and Parameters of EEG Phenomena, and Influence of the Subjects' Personality Features  

Microsoft Academic Search

In 76 healthy persons (right-handed men and women), we recorded background EEG and event-related potentials from the C3 and C4 sites; tests were performed within the framework of an experimental situation requiring internal measuring-off of the time intervals. To limit the interval, the tested person had to push a button; he\\/she did not know the precise value of the interval,

I. N. Konareva; V. B. Pavlenko

2002-01-01

181

Lidar and radar measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study: observations of dark and bright band phenomena  

NASA Astrophysics Data System (ADS)

During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.

di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.

2011-11-01

182

ON DETECTING TRANSIENT PHENOMENA  

SciTech Connect

Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

Belanger, G., E-mail: gbelanger@sciops.esa.int [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, Villanueva de la Canada (Madrid) (Spain)

2013-08-10

183

Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor  

NASA Astrophysics Data System (ADS)

Traumatic brain injury (TBI, also called intracranial injury) is a high potential threat to our soldiers. A helmet structural health monitoring system can be effectively used to study the effects of ballistic/blast events on the helmet and human skull to prevent soldiers from TBI. However, one of the biggest challenges lies in that the pressure sensor installed inside the helmet system must be fast enough to capture the blast wave during the transient period. In this paper, an ultrafast optical fiber sensor is presented to measure the blast signal. The sensor is based on a Fabry-Pérot (FP) interferometeric principle. An FP cavity is built between the endface of an etched optical fiber tip and the silica thin diaphragm attached on the end of a multimode optical fiber. The sensor is small enough to be installed in different locations of a helmet to measure blast pressure simultaneously. Several groups of tests regarding multi-layer blast events were conducted to evaluate the sensors' performance. The sensors were mounted in different segments of a shock tube side by side with the reference sensors, to measure a rapidly increasing pressure. The segments of the shock tube were filled with different media. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors. In addition, the home-made shock tube could provide a good resource to study the propagation of blast event in different media.

Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Hongtao; Niezrecki, Christopher; Wang, Xingwei

2011-06-01

184

27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...  

...Table of separation distances of ammonium nitrate and blasting agents from explosives or...Table of separation distances of ammonium nitrate and blasting agents from explosives or...donor when barricaded (ft.) Ammonium nitrate Blasting agent Minimum thickness...

2014-04-01

185

27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...  

Code of Federal Regulations, 2012 CFR

...Table of separation distances of ammonium nitrate and blasting agents from explosives or...Table of separation distances of ammonium nitrate and blasting agents from explosives or...donor when barricaded (ft.) Ammonium nitrate Blasting agent Minimum thickness...

2012-04-01

186

27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...  

Code of Federal Regulations, 2013 CFR

...Table of separation distances of ammonium nitrate and blasting agents from explosives or...Table of separation distances of ammonium nitrate and blasting agents from explosives or...donor when barricaded (ft.) Ammonium nitrate Blasting agent Minimum thickness...

2013-04-01

187

27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...  

Code of Federal Regulations, 2011 CFR

...Table of separation distances of ammonium nitrate and blasting agents from explosives or...Table of separation distances of ammonium nitrate and blasting agents from explosives or...donor when barricaded (ft.) Ammonium nitrate Blasting agent Minimum thickness...

2011-04-01

188

27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...  

Code of Federal Regulations, 2010 CFR

...Table of separation distances of ammonium nitrate and blasting agents from explosives or...Table of separation distances of ammonium nitrate and blasting agents from explosives or...donor when barricaded (ft.) Ammonium nitrate Blasting agent Minimum thickness...

2010-04-01

189

Simulation of the Reflected Blast Wave froma C-4 Charge  

SciTech Connect

The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

Howard, W M; Kuhl, A L; Tringe, J W

2011-08-01

190

Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma.  

PubMed

There is strong evidence that primary blast injuries can cause neuropathological alterations in the brain. Clinical findings from war veterans indicating evidence of diffuse axonal injury have been corroborated by numerous primary blast models in animals. However, the effect of a subclinical blast (blast with no obvious sign of external trauma or lung injury) as a contributing factor to the neurological symptoms and neuropathology is less clear. Our group recently developed a model of low-level primary blast and characterized aberrant expression of white matter cytoskeletal proteins in the cortex and hippocampus following a subclinical wave shock exposure. Here we examined the susceptibility of the corpus callosum following subclinical blast. We also demonstrate that white matter dysfunction is associated with neurobehavioral deficits associated with anxiety and stress in rats. Anesthetized male Sprague-Dawley rats (~300 g) were exposed to a primary blast (approx. 28 kPa), below the threshold required to induce pulmonary trauma. Rats were evaluated on three behavioral outcome measures; the rotarod, the light/dark box and open field anxiety test. We used Western blotting to examine expression and degradation of axonally expressed ?II-spectrin, NF200 and voltage-gated sodium channels (VGSC) in the corpus callosum. Acute slice preparations were used for electrophysiological analysis of evoked compound action potentials (CAPs) in the corpus callosum. There was evidence of ?II-spectrin degradation in the corpus callosum at 48 h post-injury detectable up to 14 days post-injury, as well as increased heavy neurofilament expression. A reduction in VGSC expression was observed at 48 h post-blast as well as a reduction in the interaction between ankyrin G and intact ?II-spectrin. Blast exposed rats had significantly lower rotarod latency times relative to sham rats (p=0.002). Increased anxiety-related and stress-related behavior were observed in blast rats relative to sham animals as indicated by the increased frequency of fecal droppings (p=0.029) and reduced exploratory activity (p=0.036) in the open-field test. Blast rats had fewer transitions and time spent in lit sections of the light/dark box. Electrophysiological recordings from the corpus callosum indicated greater deficits in unmyelinated fibers of the corpus callosum relative to myelinated fibers characterized by reduced CAP amplitude response at 14 days post-injury. Analysis of the relationship between stimulation distance to evoked response indicated an underlying abnormality in N1 myelinated fibers at close stimulation distances. Collectively, our results indicate that subclinical blast exposure can result in persistent neurological changes in cerebral white matter occurring in parallel with detectable neurobehavioral deficits. PMID:23238347

Park, Eugene; Eisen, Rebecca; Kinio, Anna; Baker, Andrew J

2013-04-01

191

Procedure for calculating drilling and blasting parameters and experience of blasting in constrained material  

Microsoft Academic Search

Tight-face blasting is a production method which provides an improvement in drilling and blasting (DAB) indices and it involves the fact that the blasted volume over the breaking front is 'overloaded' by constrained material. The constraining material used is previously broken rock mass which has an acoustic stiffness several times less than the material being broken and a capacity to

N. I. Semenyakin; V. V. Arshavskii; A. S. Bykovtsev; V. N. Oparin; V. B. Vil'chinskii

1993-01-01

192

Serum-Based Protein Biomarkers in Blast-Induced Traumatic Brain Injury Spectrum Disorder  

PubMed Central

The biological consequences of exposure to explosive blast are extremely complex. Serum protein biomarkers in blast-induced traumatic brain injury (bTBI) can aid in determining injury severity, monitoring progress, and predicting outcome. Exposure to blast results in varying degrees of physical injury. Explosive blast can also induce psychological stress that can contribute to or amplify the extent of physical damage. Given the complexity, scale of injury, and variety of symptoms, bTBI may be best described as a spectrum disorder. In this focused review, we summarize the status of serum protein biomarkers in bTBI in the context of the classification and pathological changes of other forms of TBI. Finally, we recommend specific and easily implementable measures to accelerate serum protein biomarker discovery and validation in bTBI. PMID:22783223

Agoston, Denes V.; Elsayed, Mohammad

2012-01-01

193

Photographs of Blast Effects on Structures  

NSDL National Science Digital Library

This photograph collection shows a wood-frame house located 1,100 meters from ground zero, exposed to a nuclear blast at the Nevada Test Site. The test was Upshot-Knothole Annie, a 16 Kt tower shot, on March 17, 1953. Exposure to thermal radiation was 25 cal/cm2, about one-quarter of that experienced at ground zero in Hiroshima. The blast over pressure was 5 psi, and the blast wave created surface winds of 160 mph.

Griffith, Christopher

194

BLAST FURNACE GRANULAR COAL INJECTION SYSTEM  

Microsoft Academic Search

Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem

1999-01-01

195

Teaching undergraduate nurses nursing phenomena.  

PubMed

Nursing phenomena, complex and dynamic conceptual building blocks, are the basis of our nursing language. Students have difficulty understanding what nursing phenomena are and how to link them to practice and research. The authors describe incremental experiential learning strategies that were used to help students learn and apply the basic concepts of their nursing language. PMID:20010266

Hemman, Eileen A; Fought, Sharon Gavin

2010-01-01

196

Radial gas flow in the upper shaft and its influence on blast furnace performance  

SciTech Connect

Knowledge of and control of gas flow in the upper shaft and over the blast furnace radius is an important factor for constant optimization of blast furnace performance in terms of fuel consumption and productivity. Radial gas flow in the blast furnace is generally controlled by the radial distribution of burden and coke. However, there are other influencing variables which determine radial gas flow, in particular central gas flow: (a) Increased sinter degradation displaces the cohesive zone downwards, constricting the gas flow between the dead man and the cohesive zone. This hinders central gas flow. (b) Lower coke strengths also lead to deterioration in gas flow between the dead man and the cohesive zone and hence to decline in central gas flow. (c) Decreasing coke layers in the blast furnace hinder central gas flow. (d) Increasing coal injection rates produce higher coke degradation in the blast furnace and hence also hinder central gas flow. (e) High coal rates and lower CSR values lead to shortening of combustion zone, which hinders the gas flow to the blast furnace center. (f) Finally, increasing hot metal-slag levels divert the gas to the outside. As the significance of the question of the central gas flow is growing,and because radial gas flow at Thyssen Stahl AG can only be measured sporadically with an in-burden probe, an inclined probe (inclination 35{degree}) just above the stock line was developed for simultaneous temperature measurement and gas sampling at 9 points along the radius.

Beppler, E.; Kowalski, W.; Langner, K.; Wachsmuth, H. [Thyssen Stahl AG, Duisburg (Germany)

1996-12-31

197

The Role of Family Phenomena in Posttraumatic Stress in Youth  

PubMed Central

Topic Youth face trauma that can cause posttraumatic stress (PTS). Purpose 1). To identify the family phenomena used in youth PTS research; and 2). Critically examine the research findings regarding the relationship between family phenomena and youth PTS. Sources Systematic literature review in PsycInfo, PILOTS, CINAHL, and MEDLINE. Twenty-six empirical articles met inclusion criteria. Conclusion Measurement of family phenomena included family functioning, support, environment, expressiveness, relationships, cohesion, communication, satisfaction, life events related to family, parental style of influence, and parental bonding. Few studies gave clear conceptualization of family or family phenomena. Empirical findings from the 26 studies indicate inconsistent empirical relationships between family phenomena and youth PTS, though a majority of the prospective studies support a relationship between family phenomena and youth PTS. Future directions for leadership by psychiatric nurses in this area of research and practice are recommended. PMID:21344778

Deatrick, Janet A.

2010-01-01

198

Structure response and damage produced by ground vibration from surface mine blasting  

SciTech Connect

Direct measurements were made of ground-vibration-produced structure responses and damage in 76 homes for 219 production blasts. These results were combined with damage data from nine other blasting studies, including the three analyzed previously for Bureau of Mines Bulletin 656. Safe levels of ground vibration from blasting range from 0.5 to 2.0 in/sec peak particle velocity for residential-type structures. The damage threshold values are functions of the frequencies of the vibration transmitted into the residences and the types of construction. Particularly serious are the low-frequency vibrations that exist in soft foundation materials and/or result from long blast-to-residence distances. These vibrations produce not only structure resonances but also excessive levels of displacement and strain. Threshold damage was defined as the occurrence of cosmetic damage; that is, the most superficial interior cracking of the type that develops in all homes independent of blasting. Homes with plastered interior walls are more susceptible to blast-produced cracking than gypsum wallboard. Structure response amplification factors were measured. Typical values were 1.5 for structures as a whole (racking) and 4 for midwalls, at their respective resonance frequencies. For blast vibrations above 40 Hz, all amplification factors for frame residential structures were less than unity. The human response and annoyance problem from ground vibration is aggravated by wall rattling, secondary noises, and the presence of airblast. Approximately 5 to 10% of the neighbors will judge peak particle velocity levels of 0.5 to 0.75 in/sec as less than acceptable (i.e., unacceptable) based on direct reactions to the vibration. Even lower levels cause psychological response problems, and thus social, economic, and public relations factors become critical for continued blasting.

Siskind, D.E.; Stagg, M.S.; Kopp, J.W.; Dowding, C.H.

1980-01-01

199

Modeling and simulation of heat transfer phenomena during investment casting  

Microsoft Academic Search

Determining the heat transfer phenomena during casting processes is an important parameter for measuring the overall performance of process. It gives information about the properties of the metal being casted and its possible behavior in the mold during casting process. Improper determination of heat transfer phenomena and use of improper molding materials and casting conditions leads to defects such as

M.M.A. Rafique; J. Iqbal

2009-01-01

200

Background to plastic media blasting  

NASA Astrophysics Data System (ADS)

Chemical strippers based on active phenolic components in a chlorinated solvent have been the traditional method for removing of paints and coatings from aircraft. With the recent recognition of the environmental and health concerns of chlorinated solvents and the problem disposing of phenols there have been some major developments in paint removal technology. One of the first techniques developed to replace chemical strippers and now one of the most widely used techniques for paint removal from aircraft was plastic media blasting (PMB). The PMB technique is similar to traditional grit blasting (slag, sand alumina or carborundum) techniques used on steel and other metals (based on grits) but using polymer based media that are softer and less aggressive. Plastic media are ranked by hardness and density as well as chemical composition.

Foster, Terry

1995-04-01

201

ScalaBLAST 2.0: Rapid and robust BLAST calculations on multiprocessor systems  

SciTech Connect

BLAST remains one of the most widely used tools in computational biology. The rate at which new sequence data is available continues to grow exponentially, driving the emergence of new fields of biological research. At the same time multicore systems and conventional clusters are more accessible. ScalaBLAST has been designed to run on conventional multiprocessor systems with an eye to extreme parallelism, enabling parallel BLAST calculations using over 16,000 processing cores with a portable, robust, fault-resilient design. ScalaBLAST 2.0 source code can be freely downloaded from http://omics.pnl.gov/software/ScalaBLAST.php.

Oehmen, Christopher S.; Baxter, Douglas J.

2013-03-15

202

Blast94: Bromine latitudinal air/sea transect 1994. Report on oceanic measurements of methyl bromide and other compounds. Technical memo  

SciTech Connect

Methyl bromide (CH3Br) is of particular interest because it is both produced and consumed in the ocean, thus allowing the ocean to act as a buffer for CH3Br in the atmosphere. The main objective of the two NOAA/CMDL Bromine Latitudinal Air/Sea Transect Expeditions has been to resolve the discrepancy in previously reported data for oceanic CH3Br, and to extend the understanding of the distribution and cycling of CH3Br between the atmosphere and ocean. This was pursued by making frequent, shipboard measurements of CH3Br in the surface water and the marine atmosphere along the cruise tracks and by obtaining depth profiles of CH3Br at selected stations. Secondary objectives included obtaining atmospheric and surface water data for other methyl halides, most notably CH3Cl, CH3I, CH2Br2, and CHBr3.

Lobert, J.M.; Butler, J.H.; Geller, L.S.; Yvon, S.A.; Montzka, S.A.

1996-02-01

203

The Next Generation BLAST Experiment  

E-print Network

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flights from Antarctica in 2010 and 2012. We present the next-generation BLASTPol instrument (BLAST-TNG) that will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and ~3000 polarization sensitive detectors. BLAST-TNG will observe in three bands at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid he...

Galitzki, Nicholas; Angilè, Francesco E; Ashton, Peter; Beall, James A; Becker, Dan; Bradford, Kristi J; Che, George; Cho, Hsiao-Mei; Devlin, Mark J; Dober, Bradley J; Fissel, Laura M; Fukui, Yasuo; Gao, Jiansong; Groppi, Christopher E; Hillbrand, Seth; Hilton, Gene C; Hubmayr, Johannes; Irwin, Kent D; Klein, Jeffrey; Van Lanen, Jeff; Li, Dale; Li, Zhi-Yun; Lourie, Nathan P; Mani, Hamdi; Martin, Peter G; Mauskopf, Philip; Nakamura, Fumitaka; Novak, Giles; Pappas, David P; Pascale, Enzo; Pisano, Giampaolo; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Stanchfield, Sara; Tucker, Carole; Ullom, Joel N; Underhill, Matthew; Vissers, Michael R; Ward-Thompson, Derek

2014-01-01

204

Adapting blasting technologies to the characteristics of rock masses in order to improve blasting results and reduce blasting vibrations  

Microsoft Academic Search

The complex interrelations between rock properties and variable technological drilling and blasting parameters is statistically analysed. The blastability of rock mass is defined by means of the acoustic impedance of the rock and the block size in situ.In addition, an equation derived from a statistical consideration facilitates an approximate determination of the specific blasting effect, Sg. For this purpose the

B. Müller

1997-01-01

205

Misconceptions of Emergent Semiconductor Phenomena  

NASA Astrophysics Data System (ADS)

The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were observed across the phenomena. Overall, the presence and prevalence of both general and emergent misconceptions indicates that learners have limited understandings of the physical and emergent mechanisms for the phenomena. Even though additional work is required, the identification of specific misconceptions can be utilized to enhance semiconductor and PV course content. Specifically, changes can be made to curriculum in order to limit the formation of misconceptions as well as promote conceptual change.

Nelson, Katherine G.

206

Recreation of Natural Optical Phenomena  

NASA Astrophysics Data System (ADS)

This project was undertaken to study and fully understand optical atmospheric phenomena. Research was done on the structure and formation of colorful atmospheric phenomena including, but not limited to, primary, secondary, and supernumerary rainbows, halos, parhelia, and glories. This study also undertakes an attempt to create some of these phenomena. Using hand-made epoxy crystals for ice, a round bottom flask as a water droplet, and a high-powered halogen lamp for sunlight, primary, secondary, and supernumerary rainbows and halos were created and photographed.

Paonessa, Tiffany; Sheldon, Peter

2009-03-01

207

Distribution of blood-brain barrier disruption in primary blast injury.  

PubMed

Traumatic brain injury (TBI) resulting from explosive-related blast overpressure is a topic at the forefront of neurotrauma research. Compromise of the blood-brain barrier (BBB) and other cerebral blood vessel dysfunction is commonly reported in both experimental and clinical studies on blast injury. This study used a rifle primer-driven shock tube to investigate cerebrovascular injury in rats exposed to low-impulse, pure primary blast at three levels of overpressure (145, 232, and 323 kPa) and with three survival times (acute, 24, and 48 h). BBB disruption was quantified immunohistochemically by measuring immunoglobulin G (IgG) extravasation with image analysis techniques. Pure primary blast generated small lesions scattered throughout the brain. The number and size of lesions increased with peak overpressure level, but no significant difference was seen between survival times. Despite laterally directed blast exposure, equal numbers of lesions were found in each hemisphere of the brain. These observations suggest that cerebrovascular injury due to primary blast is distinct from that associated with conventional TBI. PMID:23568152

Yeoh, Stewart; Bell, E David; Monson, Kenneth L

2013-10-01

208

Electromechanical phenomena in semiconductor nanostructures  

NASA Astrophysics Data System (ADS)

Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the measurements and calculations of the bulk electromechanical coefficients remain challenging. Much of the literature has focused on InGaN/GaN, AlGaN/GaN, ZnMgO/ZnO, and ZnCdO/ZnO quantum wells, and InAs/GaAs and AlGaN/AlN quantum dots for their optoelectronic properties; and work on the bending of nanowires have been mostly for GaN and ZnO nanowires. We hope the present review article will stimulate further research into the field of electromechanical phenomena and help in the development of applications.

Lew Yan Voon, L. C.; Willatzen, M.

2011-02-01

209

Ordering Phenomena in Undercooled Alloys  

SciTech Connect

Much of the work performed under this grant was devoted to using modern ideas in kinetics to understand atom movements in metallic alloys far from thermodynamic equilibrium. Kinetics arguments were based explicitly on the vacancy mechanism for atom movements. The emphasis was on how individual atom movements are influenced by the local chemical environment of the moving atom, and how atom movements cause changes in the local chemical environments. The author formulated a kinetic master equation method to treat atom movements on a crystal lattice with a vacancy mechanism. Some of these analyses [3,10,16] are as detailed as any treatment of the statistical kinetics of atom movements in crystalline alloys. Three results came from this work. Chronologically they were (1) A recognition that tracking time dependencies is not necessarily the best way to study kinetic phenomena. If multiple order parameters can be measured in a material, the ''kinetic path'' through the space spanned by these order parameters maybe just as informative about the chemical factors that affect atom movements [2,3,5-7,9-11,14-16,18,19,21,23,24,26,36,37]. (2) Kinetic paths need not follow the steepest gradient of the free energy function (this should be well-known), and for alloys far from equilibrium the free energy function can be almost useless in describing kinetic behavior. This is why the third result surprised me. (3) In cluster approximations with multiple order parameters, saddle points are common features of free energy functions. Interestingly, kinetic processes stall or change time scale when the kinetic path approaches a state at a saddle point in the free energy function, even though these states exist far from thermodynamic equilibrium. The author calls such a state a ''pseudostable'' (falsely stable) state [6,21,26]. I have also studied these phenomena by more ''exact'' Monte Carlo simulations. The kinetic paths showed features similar to those found in analytical theories. The author found that a microstructure with interfaces arranged in space as a periodic minimal surface is a probably an alloy at a saddle point in its free energy function [21,26,37].

Fultz, Brent

1997-07-17

210

Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing  

NASA Astrophysics Data System (ADS)

Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (?-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models successfully predict blast wave rise times at medium distances in a homogeneous atmosphere, although rise time predictions are shorter than what was measured in an inhomogeneous atmosphere. Atmospheric turbulence, absent in the models, may be the primary cause of this difference in rise times at longer distances. Results from the measurements and models indicate that bats located within approximately 200 m of the detonation of 0.57kg of C-4 will be exposed to audible levels of high-frequency energy, but whether those levels could be damaging to bat hearing cannot be established at this time.

Loubeau, Alexandra

211

Zinc recovery from blast furnace flue dust  

Microsoft Academic Search

Blast furnace flue dusts are a mixture of oxides expelled from the top of the blast furnace, whose major components are iron oxides. They also contain zinc, silicon, magnesium and other minor element oxides in lesser amounts. The direct recycling of flue dust is not usually possible since it contains some undesirable elements (zinc and alkaline metals) that can cause

B. Asadi Zeydabadi; D. Mowla; M. H. Shariat; J. Fathi Kalajahi

1997-01-01

212

Existing and prospective blast-furnace conditions  

SciTech Connect

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15

213

Color changing photonic crystals detect blast exposure  

PubMed Central

Blast-induced traumatic brain injury (bTBI) is the “signature wound” of the current wars in Iraq and Afghanistan. However, with no objective information of relative blast exposure, warfighters with bTBI may not receive appropriate medical care and are at risk of being returned to the battlefield. Accordingly, we have created a colorimetric blast injury dosimeter (BID) that exploits material failure of photonic crystals to detect blast exposure. Appearing like a colored sticker, the BID is fabricated in photosensitive polymers via multi-beam interference lithography. Although very stable in the presence of heat, cold or physical impact, sculpted micro- and nano-structures of the BID are physically altered in a precise manner by blast exposure, resulting in color changes that correspond with blast intensity. This approach offers a lightweight, power-free sensor that can be readily interpreted by the naked eye. Importantly, with future refinement this technology may be deployed to identify soldiers exposed to blast at levels suggested to be supra-threshold for non-impact blast-induced mild TBI. PMID:21040795

Cullen, D. Kacy; Xu, Yongan; Reneer, Dexter V.; Browne, Kevin D.; Geddes, James W.; Yang, Shu; Smith, Douglas H.

2010-01-01

214

Calculation and Analysis of Liquid Holdup in Lower Blast Furnace by Model Experiments  

NASA Astrophysics Data System (ADS)

A hydromechanics experiment on the countercurrent flow of gas and liquid simulating the flow conditions in the lower blast furnace was carried out. A cold model of a packed bed with various packing materials and liquids was used to study the holdup of liquid. Correlations for static holdup, dynamic holdup, and total holdup were obtained. A good agreement was found between the calculated and experimental data. A mathematical model simulating the flow fields was applied to study the effect of liquid holdup in blast furnace. The results of the model calculation show that static holdup is the determinant of the total holdup of molten materials when the blast furnace works in stable condition. The slag phase generally reaches flooding holdup ahead of the hot metal. The radial distribution of gas flow is almost not influenced by the holdup of molten materials, but it has a greater influence on the pressure drop. The size of coke has far greater influence on static holdup than liquid properties does. The study is useful for acquiring a deeper understanding of the complex phenomena in the blast furnace and for determining appropriate operational actions under different production conditions.

Xiong, Wei; Bi, Xue-Gong; Wang, Guo-Qiang; Yang, Fu

2012-06-01

215

On the Propagation and Interaction of Spherical Blast Waves  

NASA Technical Reports Server (NTRS)

The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

Kandula, Max; Freeman, Robert

2007-01-01

216

Simplified simulation of the transient behavior of temperatures in the upper shaft of the blast furnace  

SciTech Connect

The blast furnace is the principal process in the world for production of iron for primary steelmaking. The furnace acts as a huge countercurrent heat exchange and chemical reactor with complicated heat and mass transfer phenomena and chemical reactions. The flows of burden and gas in the blast furnace shaft strongly affect the fuel economy of the process. An optimal gas flow distribution, which is obtained by controlling the burden distribution, leads to a high utilization degree of the reducing gas, smooth burden descent, and little wear of the furnace lining. Here, a one-dimensional dynamic model of the upper part of the blast furnace shaft is applied to study the evolution of gas and burden temperatures, mainly in order to shed light on the transient phenomena after charging dumps of burden. The effects of irregularities in the burden descent and charging are also studied briefly. The simulations demonstrate that the temperatures of the burden layers in the lower part of the simulated region assume a quasi-steady state, indicating that the changes in the top gas temperature experienced immediately after a dump of burden arise primarily because of heat transfer between the gas and the dump. These results support the idea that such temporary changes can be interpreted in terms of distribution of the dumps on the burden surface.

Saxen, H. [Aabo Akademi Univ. (Finland)

1998-06-01

217

Comprehensive report to Congress: Clean Coal Technology Program: Blast furnace granulated coal injection system demonstration project: A project proposed by: Bethlehem Steel Corporation  

SciTech Connect

Bethlehem Steel Corporation (BSC), of Bethlehem, Pennsylvania, has requested financial assistance from DOE for the design, construction, and operation of a 2800-ton-per-day blast furnace granulated coal injection (BFGCI) system for each of two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. BFGCI technology involves injecting coal directly into an iron-making blast furnace and subsequently reduces the need for coke on approximately a pound of coke for pound of coal basis. BFGCI also increases blast furnace production. Coke will be replaced with direct coal injection at a rate of up to 400 pounds per NTHM. The reducing environment of the blast furnace enables all of the sulfur in the coal to be captured by the slag and hot metal. The gases exiting the blast furnace are cleaned by cyclones and then wet scrubbing to remove particulates. The cleaned blast furnace gas is then used as a fuel in plant processes. There is no measurable sulfur in the off gas. The primary environmental benefits derived from blast furnace coal injection result from the reduction of coke requirements for iron making. Reduced coke production will result in reduced releases of environmental contaminants from coking operations. 5 figs.

Not Available

1990-10-01

218

Visualization of explosion phenomena using a high-speed video camera with an uncoupled objective lens by fiber-optic  

NASA Astrophysics Data System (ADS)

Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.

Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo

2008-11-01

219

[Study on quantificational analysis method for the non-crystalline content in blast furnace slag].  

PubMed

Quantificational analysis method for the non-crystalline and crystalline contents in blast furnace slag was studied by means of X-ray diffraction. The process of quantificational analysis method includes standard samples preparation, samples preparation, X-ray diffraction measurement and data treatment. The data treatment includes integration areas of non-crystalline curve and crystalline peaks in certain diffraction angle range, linear fitting and quantificational coefficient determination. The preparation methods of standard samples for X-ray diffraction of blast furnace slag were proposed, including 100% crystalline sample and 100% non-crystalline sample. The 100% crystalline sample can be obtained by heating blast furnace slag for 12 h at 1 000-1 200 degrees C, and the 100% non-crystalline sample can be obtained by quenching the molten slag with enough water. The X-ray diffraction method of quantificational analysis of non-crystalline content in blast furnace slag was proposed with the 100% non-crystalline and 100% crystalline standard samples, and the quantificational coefficient can be obtained by linear regression on the integration areas of non-crystalline curve and crystalline peaks of X-ray diffraction in the 2-theta range 20 degrees-40 degrees. This method is suitable for the blast furnace slag with the non-crystalline content over 80%. The non-crystalline and crystalline contents of original blast furnace slag are obtained by combining the X-ray diffraction results and mathematical treatment, and this method is suitable for the blast furnace slag with the non-crystalline content over 90%, whose process includes preparing the 100% crystalline standard sample by heating blast furnace slag for 12 h at 1000-1200 degrees C, samples preparation with the 0.02 interval in the 0-0.1 mass ratio range of 100% crystalline to original slag, X-ray diffraction measurement of the samples prepared and data treatment using iterative linear regression. The quantificational analysis method for blast furnace slag can be applied to various kinds of blast furnace slag from different steel plants. PMID:18479048

Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian

2008-02-01

220

Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet  

NASA Astrophysics Data System (ADS)

To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.

Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.

2011-08-01

221

Critical velocity phenomena and the LTP. [Lunar Transient Phenomena  

NASA Technical Reports Server (NTRS)

When the relative velocity between magnetized plasma and neutral gas exceeds a critical value, the gas-plasma interaction is dominated by collective phenomena which rapidly excite and ionize the neutrals. The interaction of the solar wind with a large cloud (between 10 to the 24th and 10 to the 28th power neutrals) vented from the moon should be of this type. Line radiation from such an interaction can yield an apparent lunar surface brightness rivaling reflected sunlight levels over small areas, if the kinetic-energy flow density of the gas is sufficiently high. The aberrated solar-wind flow past the moon would enhance the visibility of such interactions near the lunar sunrise terminator, supporting the statistical studies which indicate that the 'Lunar Transient Phenomena' (anomalous optical phenomena on the moon) are significantly correlated with the position of the terminator on the lunar surface.

Srnka, L. J.

1977-01-01

222

In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity.  

PubMed

The novel non-thermal CoBlast process has been used recently to create a hydroxyapatite coating on metallic substrates with improved biological response compared to an uncoated implant. In this study, we compared the biological effect of coatings deposited by this process and the industrial standard technique - plasma-spray. Physicochemical properties of these two coatings have been found to be significantly different in that CoBlast HA is less rough but more hydrophilic than the plasma-spray HA as evidenced by data obtained from profilometry and goniometry. Mesenchymal stem cell attachment and adhesion are enhanced on CoBlast HA. Analysis by a combination of EDX and ICP suggests that the higher crystallinity retained by the CoBlast HA result in slower coating dissolution. Detailed in vitro evaluation reveals that plasma-spray HA might induce slightly faster cell proliferation and earlier osteogenic differentiation, but CoBlast HA becomes equivalent to it by the late osteogenic stage. PCR array facilitated the identification of differentially regulated genes involved in various functional aspects of in vitro osteogenesis by the CoBlast HA coating. The expression level of the functional protein products of these genes are in agreement with the PCR data. Coating metallic screws with HA significantly improves the in vivo osseointegration. By measuring of removal force using torque measurement instrument and analyzing the patterns found in X-ray images it is demonstrated that the two HA coatings elicit comparable osseointegration. Using simulated impaction model, CoBlast HA is shown to maintain better performance in cell attachment and mineralization than plasma-spray HA, especially following significant impactions. This might indicate a potentially greater osteoconductivity of CoBlast HA coating in shear-stress associated surgical applications. Collectively, it was demonstrated that CoBlast HA is an effective alternative to plasma-spray HA coating and a promising replacement for specialized surgical applications. PMID:21801828

Tan, Fei; Naciri, Mariam; Dowling, Denis; Al-Rubeai, Mohamed

2012-01-01

223

Novel QCD Phenomena  

SciTech Connect

I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.

Brodsky, Stanley J.; /SLAC

2007-07-06

224

Neuro-Glial and Systemic Mechanisms of Pathological Responses in Rat Models of Primary Blast Overpressure Compared to "Composite" Blast  

PubMed Central

A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined “composite” blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast), but negligible skull movement upon peak overpressure exposure off-axis (primary blast). Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, soluble intercellular adhesion molecule-1, and L-selectin along with neurotrophic factor nerve growth factor-beta were increased in serum within 6?h post-blasts and persisted for 7?days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2) were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast set-ups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release, particularly when primary blast impacted rats with unprotected body. PMID:22403567

Svetlov, Stanislav I.; Prima, Victor; Glushakova, Olena; Svetlov, Artem; Kirk, Daniel R.; Gutierrez, Hector; Serebruany, Victor L.; Curley, Kenneth C.; Wang, Kevin K. W.; Hayes, Ronald L.

2012-01-01

225

Critical phenomena in complex networks  

E-print Network

The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.

S. N. Dorogovtsev; A. V. Goltsev; J. F. F. Mendes

2007-04-30

226

ScalaBLAST 2.0: rapid and robust BLAST calculations on multiprocessor systems  

PubMed Central

Motivation: BLAST remains one of the most widely used tools in computational biology. The rate at which new sequence data is available continues to grow exponentially, driving the emergence of new fields of biological research. At the same time, multicore systems and conventional clusters are more accessible. ScalaBLAST has been designed to run on conventional multiprocessor systems with an eye to extreme parallelism, enabling parallel BLAST calculations using >16 000 processing cores with a portable, robust, fault-resilient design that introduces little to no overhead with respect to serial BLAST. Availability: ScalaBLAST 2.0 source code can be freely downloaded from http://omics.pnl.gov/software/ScalaBLAST.php. Contact: christopher.oehmen@pnl.gov PMID:23361326

Oehmen, Christopher S.; Baxter, Douglas J.

2013-01-01

227

Observations of cometary plasma wave phenomena  

NASA Technical Reports Server (NTRS)

The ICE plasma wave investigation utilized very long electric antennas (100 m tip-to-tip) and a very high sensitivity magnetic search coil to obtain significant local information on plasma physics phenomena occurring in the distant pickup regions of Comet Giacobini-Zinner and Comet Halley; and information on the processes that developed in the coma and tail of Giacobini-Zinner. The ICE plasma wave measurements associated with both comet encounters are summarized, and high sensitivity ICE observations are related to corresponding measurements from the other Halley spacecraft.

Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.; Ip, W.-H.; Smith, E. J.

1986-01-01

228

Observations of cometary plasma wave phenomena  

NASA Astrophysics Data System (ADS)

The ICE plasma wave investigation utilized very long electric antennas (100 meters tip-to-tip) and a very high sensitivity magnetic search coil to obtain: (1) significant local information on plasma physics phenomena occurring in the distant pickup regions of comet Giacobini-Zinner and comet Halley, and (2) information on the processes that developed in the coma and tail of Giacobini-Zinner. The authors summarize ICE plasma wave measurements associated with both comet encounters and relate the very high sensitivity ICE observations to corresponding measurements from the other Halley spacecraft.

Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.; Ip, W.-H.; Smith, E. J.

1986-12-01

229

Microgravity Transport Phenomena Experiment (MTPE) Overview  

NASA Technical Reports Server (NTRS)

The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics that occur upon application of chemical, thermal, or electrical driving potentials. Image proces

Mason, Larry W.

1999-01-01

230

Transport Phenomena and Materials Processing  

NASA Astrophysics Data System (ADS)

An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer programs and publications relevant to transport phenomena in materials processing

Kou, Sindo

1996-10-01

231

Partnering and the WCI blast furnace reline  

SciTech Connect

In 1993, WCI Steel entered into a partnership agreement to perform a blast furnace reline. The reline included a complete rebrick from the tuyere breast to the furnace top including the tapholes. Also included was the replacement of the Paul Wurth top equipment from the receiving hoppers through the gearbox and distribution chute, a skip incline replacement, and installation of tilting runners and a casthouse roof. The bustle pipe and hot blast main were repaired. One stove was also replaced. The reline was accomplished in 36 days, wind to wind, which allowed for 29 days of construction inside the blast furnace proper.

Musolf, D.W. [WCI Steel, Inc., Warren, OH (United States)

1997-11-01

232

CO{sub 2} pellet blasting studies  

SciTech Connect

Initial tests with CO{sub 2} pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO{sub 2} pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO{sub 2} blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report.

Archibald, K.E.

1997-01-01

233

Discovery Potential for New Phenomena  

E-print Network

We examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. We first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. We then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales. [Summary Report of the New Phenomena Working Group. To appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics - Snowmass96, Snowmass, CO, 25 June - 12 July 1996.

Stephen Godfrey; JoAnne L. Hewett; Lawrence E. Price

1997-04-10

234

Hydrocortisone in culture protects the blast cells in acute myeloblastic leukemia from the lethal effects of cytosine arabinoside  

SciTech Connect

The blast cells in acute myeloblastic leukemia (AML) respond to many of the same regulatory mechanisms that control normal hemopoiesis. These include the growth factors that bind to membrane receptors and steroid hormones or vitamins that have intracellular receptors. The authors report the effects in culture of the steroid glucocorticoid hydrocortisone on freshly explanted AML blasts from patients and on two continuous AML cell lines. Only small changes in clonogenic cell numbers in suspension cultures were seen in the presence of hydrocortisone. The most striking effect of the hormone was on the sensitivity of blasts cells to cytosine arabinoside (ara-C). In contrast to the response of AML blast cells to retinoic acid, a ligand for intracellular steroid receptors that sensitizes some blast populations to ara-C, hydrocortisone reduced the toxic effects of the drug. The protective action of hydrocortisone was not mediated through the cell cycle since exposure of blasts to hydrocortisone did not affect the percentage of cells in DNA synthesis as measured with the tritiated thymidine (3HTdR) suicide technique. The hydrocortisone effect could be demonstrated using a pulse (20 min) exposure protocol. Blasts pulsed with increasing specific activities of 3HTdR showed the usual response pattern with an initial loss in plating efficiency to about 50% of control, followed by a plateau, regardless of whether the cells had been exposed to hydrocortisone. Control blasts exposed to increasing ara-C concentrations gave very similar dose-response curves; in striking contrast, blast cells cultured in hydrocortisone, then pulsed with ara-C did not lose colony-forming ability even though the same population was sensitive to 3HTdR.

Yang, G.S.; Wang, C.; Minkin, S.; Minden, M.D.; McCulloch, E.A. (Ontario Cancer Institute, University of Toronto (Canada))

1991-07-01

235

Helmet liner evaluation to mitigate head response from primary blast exposure.  

PubMed

Head injury resulting from blast loading, including mild traumatic brain injury, has been identified as an important blast-related injury in modern conflict zones. A study was undertaken to investigate potential protective ballistic helmet liner materials to mitigate primary blast injury using a detailed sagittal plane head finite element model, developed and validated against previous studies of head kinematics resulting from blast exposure. Five measures reflecting the potential for brain injury that were investigated included intracranial pressure, brain tissue strain, head acceleration (linear and rotational) and the head injury criterion. In simulations, these measures provided consistent predictions for typical blast loading scenarios. Considering mitigation, various characteristics of foam material response were investigated and a factor analysis was performed which showed that the four most significant were the interaction effects between modulus and hysteretic response, stress-strain response, damping factor and density. Candidate materials were then identified using the predicted optimal material values. Polymeric foam was found to meet the density and modulus requirements; however, for all significant parameters, higher strength foams, such as aluminum foam, were found to provide the highest reduction in the potential for injury when compared against the unprotected head. PMID:24559088

Lockhart, Philip A; Cronin, Duane S

2015-05-01

236

Underwater blast response of free-standing sandwich plates with metallic lattice cores  

Microsoft Academic Search

The underwater blast response of free-standing sandwich plates with a square honeycomb core and a corrugated core has been measured. The total momentum imparted to the sandwich plate and the degree of core compaction are measured as a function of (i) core strength, (ii) mass of the front face sheet (that is, the wet face) and (iii) time constant of

G. J. McShane; V. S. Deshpande; N. A. Fleck

2010-01-01

237

Effect of Blast Design on Crack Response C.H. Dowding  

E-print Network

University ABSTRACT: This case history describes the instrumentation of a house near an aggregate quarry some 11 velocity transducers and 3 crack sensors measured excitation and response for each blast. Dynamic response of these cracks was compared to various measures of ground and/or structure motion

238

Performance testing of lead free primers: blast waves, velocity variations, and environmental testing  

E-print Network

Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

Courtney, Elya; Summer, Peter David; Courtney, Michael

2014-01-01

239

Theory of dynamic critical phenomena  

Microsoft Academic Search

An introductory review of the central ideas in the modern theory of dynamic critical phenomena is followed by a more detailed account of recent developments in the field. The concepts of the conventional theory, mode-coupling, scaling, universality, and the renormalization group are introduced and are illustrated in the context of a simple example-the phase separation of a symmetric binary fluid.

P. C. Hohenberg; B. I. Halperin

1977-01-01

240

Critical phenomena in atmospheric precipitation  

E-print Network

LETTERS Critical phenomena in atmospheric precipitation OLE PETERS1,2,3 * AND J. DAVID NEELIN3 1 critical value, an order parameter increases as a power law. At criticality, order-parameter fluctuations and order parameter are coupled, the critical point can become an attractor, and self-organized criticality

Loss, Daniel

241

Discovery potential for new phenomena  

SciTech Connect

The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales.

Godfrey, S. [Carleton Univ., Ottawa, Ontario (Canada). Ottawa Carleton Inst. for Physics; Hewett, J.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Price, L.E. [Argonne National Lab., IL (United States). High Energy Physics Div.

1997-03-01

242

Burst phenomena in solar flares  

Microsoft Academic Search

Solar flares are rapid dissipative processes in which the energy accumulated in the magnetic field is released in the forms of plasma heating, explosive plasma flows with flare shock generations, particle accelerations, and emissions in a very broad range of frequencies ranging from radio waves up to gamma-rays. As solar flares and related phenomena influence not only the processes in

P. Kotrc; Yu. A. Kupryakov; J. Jurcák

2002-01-01

243

Graphene tests of Klein phenomena  

E-print Network

Graphene is characterized by chiral electronic excitations. As such it provides a perfect testing ground for the production of Klein pairs (electron/holes). If confirmed, the standard results for barrier phenomena must be reconsidered with, as a byproduct, the accumulation within the barrier of holes.

Stefano De Leo; Pietro Rotelli

2012-02-07

244

URANIUM PYROPHORICITY PHENOMENA AND PREDICTION  

Microsoft Academic Search

We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission

Martin G. Plys; Michael Epstein; Boro Malinovic

245

Affective phenomena - descriptive and theoretical  

Microsoft Academic Search

Reviews the work of 15 researchers (1910-1911), in the field of affective phenomena. The topics covered include a critical review of work in the field of affective psychology in the past 10 years, the theory of pleasure, the theory of empirical \\

H. N. Gardiner

1911-01-01

246

Transport phenomena in material processing  

Microsoft Academic Search

Research activity related to material processing and manufacturing has been substantially increased in recent years. This increase is largely motivated by the growing sophistication in the nature of modern processes and the continuing quest for better productivity and less cost in the industry. Researchers in the heat transfer community have contributed significantly to gaining fundamental understanding of the transport phenomena

M. Charmichi; M. K. Chyu; Y. Joshi; S. M. Walsh

1990-01-01

247

Nuclear pairing: basic phenomena revisited  

E-print Network

I review the phenomena associated with pairing in nuclear physics, most prominently the ubiquitous presence of odd-even mass differences and the properties of the excitation spectra, very different for even-even and odd-A nuclei. There are also significant dynamical effects of pairing, visible in the inertias associated with nuclear rotation and large-amplitude shape deformation.

G. F. Bertsch

2012-03-25

248

Blast furnace supervision and control system  

SciTech Connect

On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

1997-12-31

249

Perfluorocarbon vapor tagging of blasting cap detonators  

DOEpatents

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

1981-01-01

250

Economical solutions to blast mitigation on bridges  

E-print Network

Mitigating the energy created from a blast has been a topic of utmost importance in the terrorism-feared world of today. Main targets of concern are passageways that are significant to a specific area, such as bridges. ...

DeRogatis, Austin (Austin Patrick)

2008-01-01

251

Blasting for fill rock, McMurdo<  

NSF Publications Database

... considered importation of fill materials. Import of such materials was found to be prohibitively ... material greater distances than from the Blast Site No. 2 area. Question 5: How much fill material ...

252

Breakdown phenomena in high power klystrons  

SciTech Connect

In the course of developing new high peak power klystrons at SLAC, high electric fields in several regions of these devices have become an important source of vacuum breakdown phenomena. In addition, a renewed interest in breakdown phenomena for nanosecond pulse, multi-megavolt per centimeter fields has been sparked by recent R and D work in the area of gigawatt RF sources. The most important regions of electrical breakdown are in the output cavity gap area, the RF ceramic windows, and the gun ceramic insulator. The details of the observed breakdown in these regions, experiments performed to understand the phenomena and solutions found to alleviate the problems will be discussed. Recently experiments have been performed on a new prototype R and D klystron. Peak electric fields across the output cavity gaps of this klystron exceed 2 MV/cm. The effect of peak field duration (i.e. pulse width) on the onset of breakdown have been measured. The pulse widths varied from tens of nanoseconds to microseconds. Results from these experiments will be presented. The failure of ceramic RF windows due to multipactor and puncturing was an important problem to overcome in order that our high power klystrons would have a useful life expectancy. Consequently many studies and tests were made to understand and alleviate window breakdown phenomena. Some of the results in this area, especially the effects of surface coatings, window materials and processing techniques and their effects on breakdown will be discussed. Another important source of klystron failure in the recent past at SLAC has been the puncturing of the high voltage ceramic insulator in the gun region. A way of alleviating this problem has been found although the actual cause of the puncturing is not yet clear. The ''practical'' solution to this breakdown process will be described and a possible mechanism for the puncturing will be presented. 9 refs., 5 figs., 3 tabs.

Vlieks, A.E.; Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Hoyt, E.W.; Lebacqz, J.V.; Lee, T.G.

1988-03-01

253

A Blast To Chase  

NASA Astrophysics Data System (ADS)

Possibly similar to what our own Milky Way looks like, Messier 100 [1] is a grand design spiral galaxy that presents an intricate structure, with a bright core and two prominent arms, showing numerous young and hot massive stars as well as extremely hot knots (HII regions). Two smaller arms are also seen starting from the inner part and reaching towards the larger spiral arms. The galaxy, located 60 million light-years away, is slightly larger than the Milky Way, with a diameter of about 120 000 light-years. The galaxy was the target of the FORS1 multi-mode instrument on ESO's Very Large Telescope, following the request of ESO astronomers Dietrich Baade and Ferdinando Patat, who, with their colleagues Lifan Wang (Lawrence Berkeley National Laboratory, US) and Craig Wheeler (University of Texas, Austin, US), performed detailed observations of the newly found supernova SN 2006X [2]. SN 2006X was independently discovered early February by Japanese amateur astronomer Shoji Suzuki and Italian astronomer Marco Migliardi. Found on 4 February as the 24th supernova of the year, it had a magnitude 17, meaning it was 1000 times fainter than the galaxy. It was soon established that this was another example of a Type-Ia supernova [3], observed before it reached its maximum brightness. The supernova indeed brightened up by a factor 25 in about two weeks. ESO PR Photo 08b/06 ESO PR Photo 08b/06 SN 2006X in Messier 100 (VIMOS and FORS/VLT) Since SN 2006X became so bright and since it is located inside the very much studied Messier 100 galaxy, there is no doubt that a great wealth of information will be collected on this supernova and, possibly, on the system that exploded. As such, SN 2006X may prove an important milestone in the study of Type Ia supernovae. This is particularly important as these objects are used to measure the expansion of the universe because they all have about the same intrinsic luminosity. This is not the first supernova ever found in Messier 100. Indeed, this is one of the most prolific galaxies as far as supernovae are concerned. Since 1900, four others have been discovered in it: SN 1901B, SN 1914A, SN 1959E, and SN 1979C. Recent observations with ESA's XMM-Newton space observatory have shown quite surprisingly that SN 1979C is still as bright in X-ray light as it was 25 years ago. In visible light, however, SN 1979C has since then faded by a factor 250. SN 1979C belongs to the class of Type II supernovae and is the result of the explosion of a star that was 18 times more massive than our Sun. High resolution images and their captions are available on this page.

2006-02-01

254

Creating successful blast furnace refractory systems  

SciTech Connect

Successful lifetimes of the refractories utilized in the blast furnace are dependent on a variety of external factors such as operation, geometry, cooling capability, configuration and arrangement, as well as refractory properties. These external factors, as well as the properties required to withstand the main mechanisms of wear, combine to create the successful refractory system. These significant factors and properties are reviewed with the intention of providing guidelines required for successful refractory performance in the blast furnace.

Dzermejko, A.J. [UCAR Carbon Co., Inc., Columbia, TN (United States)

1995-07-01

255

Blast furnace repairs, relines and modernizations  

Microsoft Academic Search

Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%\\/year while fuel rate decreased 1%\\/year.

J. A. Carpenter; D. E Swanson; R. F. Chango

1994-01-01

256

Quality of coal for blast furnace injection  

SciTech Connect

CANMET Energy Technology Centre (CETC) has been involved in a research program to evaluate the suitability of various coals for blast furnace injection. The primary objectives of this program are to provide essential information on coal combustion in the blast furnace and to establish proper criteria for evaluating and selecting coals for blast furnace injection. The program comprises three parts. Parts one and two have been completed. To date, the program has encompassed both a theoretical assessment of cooling and coke replacement characteristics of coals using CETC`s computer model and an experimental determination of the combustibility of coals of different ranks and particle sizes as well as the influence of oxygen enrichment on burnout. The experimental part was conducted in CETC`s pilot-scale injection unit that simulates blast furnace blowpipe-tuyere conditions. Part three now being developed will incorporate results of experimental trials into a blast furnace raceway model in order to predict total combustibility of coals at different blast furnace operating conditions. This paper describes CETC`s facility and methodology of work, and presents and discusses results.

Hutny, W.P.; Giroux, L.; MacPhee, J.A.; Price, J.T. [CANMET Energy Technology Centre/Natural Resources Canada, Ottawa, Ontario (Canada)

1996-12-31

257

Neuropathology of explosive blast traumatic brain injury.  

PubMed

During the conflicts of the Global War on Terror, which are Operation Enduring Freedom (OEF) in Afghanistan and Operation Iraqi Freedom (OIF), there have been over a quarter of a million diagnosed cases of traumatic brain injury (TBI). The vast majority are due to explosive blast. Although explosive blast TBI (bTBI) shares many clinical features with closed head TBI (cTBI) and penetrating TBI (pTBI), it has unique features, such as early cerebral edema and prolonged cerebral vasospasm. Evolving work suggests that diffuse axonal injury (DAI) seen following explosive blast exposure is different than DAI from focal impact injury. These unique features support the notion that bTBI is a separate and distinct form of TBI. This review summarizes the current state of knowledge pertaining to bTBI. Areas of discussion are: the physics of explosive blast generation, blast wave interaction with the bony calvarium and brain tissue, gross tissue pathophysiology, regional brain injury, and cellular and molecular mechanisms of explosive blast neurotrauma. PMID:22836523

Magnuson, John; Leonessa, Fabio; Ling, Geoffrey S F

2012-10-01

258

Ultra Safe And Secure Blasting System  

SciTech Connect

The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

Hart, M M

2009-07-27

259

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources  

E-print Network

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100-hour flight from northern Sweden in June 2005 (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W 75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 um BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

M. D. P. Truch; P. A. R. Ade; J. J. Bock; E. L. Chapin; M. J. Devlin; S. Dicker; M. Griffin; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; J. Klein; G. Marsden; P. G. Martin; P. Mauskopf; C. B. Netterfield; L. Olmi; E. Pascale; G. Patanchon; M. Rex; D. Scott; C. Semisch; C. Tucker; G. S. Tucker; M. P. Viero; D. V. Wiebe

2008-03-31

260

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.  

PubMed Central

The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily. PMID:9254694

Altschul, S F; Madden, T L; Schaffer, A A; Zhang, J; Zhang, Z; Miller, W; Lipman, D J

1997-01-01

261

Blast Mitigation by Water Mist, (3) Mitigation of Confined and Unconfined Blasts.  

National Technical Information Service (NTIS)

This is the third in a series of reports focusing on numerical simulations of blasts and blast mitigation. This report uses the models developed in the first two to specifically examine the effect of water mists consisting of sub-50-micron droplets on bla...

D. Schwer, K. Kailasanath

2006-01-01

262

Accretion Disks and Eruptive Phenomena  

E-print Network

This paper describes eruptive phenomena in pre-main sequence stars. The eruptions of FU Orionis stars have much in common with outbursts in other accreting systems, such as dwarf novae and some symbiotic stars. These common features are best understood as increases in the rate material flows through an accretion disk. The spectroscopic properties, decay of the light curves, and outflow phenomena suggest that these outbursts arise from thermal instabilities in the disk. Available data and estimates for recurrence times indicate that young stars can accrete much, perhaps all, of their mass in FU Ori accretion events. Future observations can test this notion and place better constraints on the importance of eruptive events in the early life of a low mass star.

Scott J. Kenyon

1999-04-02

263

Statistical phenomena in particle beams  

SciTech Connect

Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

Bisognano, J.J.

1984-09-01

264

A Mechanism Model for Raceway Formation and Variation in a Blast Furnace  

NASA Astrophysics Data System (ADS)

In this article, a previous mechanical model is extended to predict raceway penetration in a blast furnace (BF) and to dynamically illustrate how raceway penetration varies over time after the blast velocity varies based on Newton's second law. The model is validated by industrial measurements, and more precise predictions have been obtained using the present model. Moreover, the effects of combustion reactions on the raceway shape and size are taken into account in the present model. The mechanism for raceway formation and variation revealed by the present model is as follows: Fast movements of packed bed above a raceway roof due to blast blowing rate variation make raceway size vary rapidly and form its prototype; combustion reactions modify raceway size and shape, and they maintain its stability.

Guo, Jing; Cheng, Shusen; Zhao, Hongbo; Pan, Hongwei; Du, Pengyu; Teng, Zhaojie

2013-06-01

265

Chemical changes of lakes within the Mount St. Helens blast zone  

SciTech Connect

Differences in the dissolved chemistry of lakes devastated by the 18 May 1980 eruption of Mount St. Helens are attributable to location relative to the lateral blast trajectory of the eruption and to the emplacement of mineral deposits. Elemental enrichment ratios of pre- and posteruption measurements for Spirit Lake and comparisons of the chemical concentrations and elemental ratios for lakes inside and outside the blast zone reflect the influences of the dissolution of magmatic and lithic deposits. The pH changes were minor because of buffering by carbonic acid and reactions involving mineral alteration, dissolved organics, and biological processes.

Wissmar, R.C.; Devol, A.H.; Nevissi, A.E.; Sedell, J.R.

1982-01-01

266

Histologic and biomechanical evaluation of 2 resorbable-blasting media implant surfaces at early implantation times.  

PubMed

This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces. PMID:23964778

Marin, Charles; Bonfante, Estevam A; Jeong, Ryan; Granato, Rodrigo; Giro, Gabriela; Suzuki, Marcelo; Heitz, Claiton; Coelho, Paulo G

2013-08-01

267

Dynamic critical phenomena in fractals  

NASA Astrophysics Data System (ADS)

Dynamic critical phenomena are investigated, via the spin-flip kinetic Ising model, on two finitely ramified fractals: the Sierpinski gasket (SG) and the Koch curve. We show, using the Kawasaki inequality, that the dynamic critical exponent of the SG satisfies z>=df, the lower bound forming the conventional value. We also formulate a lower bound for the characteristic decay time. For the Koch curve we show exactly that z=2df=dw, where dw is the random-walk dimension.

Luscombe, James H.; Desai, Rashmi C.

1985-07-01

268

Coherent phenomena in photonic crystals  

Microsoft Academic Search

We study the spontaneous emission, the absorption and dispersion properties\\u000aof a ${\\\\bf \\\\Lambda}$-type atom where one transition interacts near resonantly\\u000awith a double-band photonic crystal. Assuming an isotropic dispersion relation\\u000anear the band edges, we show that two distinct coherent phenomena can occur.\\u000aFirst, the spontaneous emission spectrum of the adjacent free space transition\\u000aobtains `dark lines' (zeroes in

D. G. Angelakis; E. Paspalakis; P. L. Knight

2001-01-01

269

Coherent phenomena in photonic crystals  

Microsoft Academic Search

We study the spontaneous emission, absorption, and dispersion properties of a Lambda-type atom where one transition interacts near resonantly with a double-band photonic crystal. Assuming an isotropic dispersion relation near the band edges, we show that two distinct coherent phenomena can occur. First the spontaneous emission spectrum of the adjacent free-space transition obtains ``dark lines'' (zeros in the spectrum). Second,

D. G. Angelakis; E. Paspalakis; P. L. Knight

2001-01-01

270

Mathematical Modeling of Diverse Phenomena  

NASA Technical Reports Server (NTRS)

Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

Howard, J. C.

1979-01-01

271

Functional imaging of mucociliary phenomena  

Microsoft Academic Search

We present a technique for the investigation of mucociliary phenomena on trachea explants under conditions resembling those\\u000a in the respiratory tract. Using an enhanced reflection contrast, we detect simultaneously the wave-like modulation of the\\u000a mucus surface by the underlying ciliary activity and the transport of particles embedded in the mucus layer. Digital recordings\\u000a taken at a speed of 500 frames

M. Ryser; A. Burn; Th. Wessel; M. Frenz; J. Ri?ka

2007-01-01

272

30 CFR 77.1910 - Explosives and blasting; general.  

Code of Federal Regulations, 2012 CFR

...the excavation is too shallow to retain blasted material. (f) Where it is impracticable to prepare primers in the blasting area, primers may be prepared on the surface and carried into the shaft in specially constructed, insulated,...

2012-07-01

273

30 CFR 77.1910 - Explosives and blasting; general.  

Code of Federal Regulations, 2011 CFR

...the excavation is too shallow to retain blasted material. (f) Where it is impracticable to prepare primers in the blasting area, primers may be prepared on the surface and carried into the shaft in specially constructed, insulated,...

2011-07-01

274

SCHOLARLY PAPERS Is Construction Blasting Still Abnormally Dangerous?  

E-print Network

has been applied to damages caused by flying debris, e.g., rocks, soil, or other material, being cast Database subject headings: Construction; Blasting; Liability; Negligence; Soil mechanics; Vibration; Subsurface environment. Author keywords: Construction blasting; Liability; Causation; Negligence; Soil

275

3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

276

1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. 4 FROM CRAWFORD STREET IN THE CITY OF DUQUESNE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

277

EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

278

13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE No. 1, AND HOIST HOUSE No. 1. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

279

VIEW LOOKING NORTHWEST WITH OPENHEARTH TO LEFT WITH BLAST FURNACE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

VIEW LOOKING NORTHWEST WITH OPEN-HEARTH TO LEFT WITH BLAST FURNACE NO. 2 AND CAST HOUSE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

280

58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED No. 3 IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

281

56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

282

INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG RUNNERS & GATES IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

283

55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX WITH LADLE HOUSE AND IRON DESULPHERIZATION BUILDING ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

284

70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE STOCKHOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

285

DETAIL VIEW OF BLAST FURNACE NO. 3 AREA BELOW BUSTLE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

DETAIL VIEW OF BLAST FURNACE NO. 3 AREA BELOW BUSTLE PIPE, CINDER NOTCH IN CENTER, SLAG RUNNER IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

286

INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSEUP, IRON ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSE-UP, IRON NOTCH IN CENTER. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

287

59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING NORTHEAST. THE LADLE HOUSE IS ON THE RIGHT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

288

7. LOOKING EAST AT HOIST HOUSE No. 1 AND BLAST ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

7. LOOKING EAST AT HOIST HOUSE No. 1 AND BLAST FURNACE No. 1, WITH ORE YARD AND ORE BRIDGES IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

289

68. DETAIL OF COOLING WATER PIPES FOR DOROTHY SIX BLAST ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

68. DETAIL OF COOLING WATER PIPES FOR DOROTHY SIX BLAST FURNACE. INTERIOR OF CAST HOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

290

30 CFR 56.6605 - Isolation of blasting circuits.  

Code of Federal Regulations, 2013 CFR

...STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead...tracks, and shall be protected from sources of stray or static electricity. Blasting circuits shall be protected from any...

2013-07-01

291

30 CFR 57.6605 - Isolation of blasting circuits.  

Code of Federal Regulations, 2013 CFR

...STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting...tracks, and shall be protected from sources of stray or static electricity. Blasting circuits shall be protected from any...

2013-07-01

292

Use of probabilistic methods in evaluating blast performance of structures  

E-print Network

The social and political climate of the modern world has lead to increased concern over the ability of engineered structures to resist blast events which may be incurred during terrorist attacks. While blast resistance ...

Gillis, Andrew Nicholas

2011-01-01

293

6. Photocopy of a drawing of the lead blast furnace ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

294

31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE STOCKING TRESTLE LOOKING EAST. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

295

EXPERIMENTAL STUDIES OF MITIGATION MATERIALS FOR BLAST INDUCED TBI  

E-print Network

The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods ...

Young, Laurence Retman

296

Blast overpressure relief using air vacated buffer medium  

E-print Network

Blast waves generated by intense explosions cause damage to structures and human injury. In this thesis, a strategy is investigated for relief of blast overpressure resulting from explosions in air. The strategy is based ...

Avasarala, Srikanti Rupa

2009-01-01

297

Computational modeling of blast-induced traumatic brain injury  

E-print Network

Blast-induced TBI has gained prominence in recent years due to the conflicts in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head; no injury thresholds have been established ...

Nyein, Michelle K. (Michelle Kyaw)

2010-01-01

298

30 CFR 816.64 - Use of explosives: Blasting schedule.  

...and reasonable in order to protect the public health and safety or welfare. (2) All blasting shall be conducted between sunrise and sunset, unless nighttime blasting is approved by the regulatory authority based upon a showing by the operator...

2014-07-01

299

29 CFR 1926.909 - Firing the blast.  

...Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting...through the danger zone so as to stop traffic during blasting operations....

2014-07-01

300

The design, implementation, and evaluation of mpiBLAST  

Microsoft Academic Search

mpiBLAST is an open-source parallelization of BLAST that achieves superlinear speed-up by segmenting a BLAST database and then having each node in a computational cluster search a unique portion of the database. Database segmentation permits each node to search a smaller portion of the database, eliminating disk I\\/O and vastly improving BLAST performance. Because database segmentation does not create heavy

Aaron E. Darling; Lucas Carey; Wu-chun Feng

2003-01-01

301

Mesh considerations for finite element blast modelling in biomechanics  

Microsoft Academic Search

Finite element (FE) modelling is a popular tool for studying human body response to blast exposure. However, blast modelling is a complex problem owing to more numerous fluid–structure interactions (FSIs) and the high–frequency loading that accompanies blast exposures. This study investigates FE mesh design for blast modelling using a sphere in a closed-ended shock tube meshed with varying element sizes

Matthew B. Panzer; Barry S. Myers; Cameron R. Bass

2011-01-01

302

Improving scaling methods to estimate eruption energies from volcanic crater structures using blast experiments  

NASA Astrophysics Data System (ADS)

In an ongoing effort to understand the relevant processes behind the formation of volcanic crater-, maar-, and diatreme structures, experiments producing craters with radii exceeding one meter were conducted at University at Buffalos Geohazards Field Station. A chemical explosive was used as energy source for the tests, and detonated in prepared test beds made from several stratified, compacted aggregates. The amount of explosive, as well as its depth of burial were varied in the twelve experiments. The detonations were recorded by a diverse set of sensors including high-speed/high-definition cameras, seismic and electric field sensors, normal- and infrasound microphones. Morphology and structures were documented after each blast by manual measurements and semi-automated photogrammetry. After all blasts were complete the structures excavated and analyzed. The measured sensor signals were evaluated and related to blast energies, depths of burial and crater morphologies. Former experiments e.g. performed by Goto et al. (2001; Geophys. Res. Lett. 28, 4287-4290) considered craters of single blasts at a given lateral position and found empirical relationships emphasizing the importance of length scaling with the cube root of the blasts energy E. For example the depth of burial producing the largest crater radius--the ';optimal' depth--is proportional to E1/3, as is the corresponding radius. Resembling natural processes creating crater and diatreme structures the experiments performed here feature several blasts at one lateral position. The dependencies on E1/3 could be roughly confirmed. Also the scaled depth correlated with the sensor signals capturing the blasts dynamics. However, significant scatter was introduced by the pre-existing morphologies. Using a suitable re-definition for the charges depth of burial (';eruption depth'), accounting for a pre-existing (crater) morphology, the measured dependencies of morphology and blast dynamics on E can be improved significantly. Correlating the distribution of material confining the charge, and its distance to the latter, this volume-centric defined effective depth could provide means to relate ejecta distribution and eruption dynamics to the involved eruption energies and pre-eruptive settings.

Sonder, I.; Graettinger, A. H.; Valentine, G.; Schmid, A.; Zimanowski, B.; Majji, M.; Ross, P.; White, J. D.; Taddeucci, J.; Lube, G.; Kueppers, U.; Bowman, D. C.

2013-12-01

303

A Genetic Algorithm Evolving Charging Programs in the Ironmaking Blast Furnace  

Microsoft Academic Search

In the ironmaking blast furnace, the distribution of the charged burden plays an important role because it influences the gas distribution in the shaft and the shape and the position of the cohesive zone. Because of enormous mechanical wear and high temperatures and pressure, the possibilities to reliably measure the distribution in real time are severely limited. Even though devices

Frank Pettersson; Henrik Saxén; Jan Hinnelä

2005-01-01

304

Underwater blast response of free-standing sandwich plates with metallic lattice cores  

E-print Network

-standing sandwich plates with a square honeycomb core and a corrugated core has been measured. The total momentumUnderwater blast response of free-standing sandwich plates with metallic lattice cores G.J. Mc 19 May 2010 Accepted 29 May 2010 Available online 12 June 2010 Keywords: Sandwich structures Lattice

Fleck, Norman A.

305

Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications  

SciTech Connect

A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

2009-03-15

306

15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. 2 IN LOWER CENTER OF PHOTO AT THE BASE OF HOT BLAST STOVES. HOIST HOUSE No. 2 IS ON THE LEFT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

307

VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) SHARING THE SAME CAST HOUSE WITH BLAST FURNACE NO. 1. ORE BRIDGE & BLOWER HOUSE TO RIGHT, HULETT CAR DUMPER IS IN LEFT FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

308

Abrasive Blasting Agents: Designing Studies to Evaluate Relative Risk  

Microsoft Academic Search

Workers exposed to respirable crystalline silica used in abrasive blasting are at increased risk of developing a debilitating and often fatal fibrotic lung disease called silicosis. The National Institute for Occupational Safety and Health (NIOSH) recommends that silica sand be prohibited as abrasive blasting material and that less hazardous materials be used in blasting operations. However, data are needed on

Ann Hubbs; Mark Greskevitch; Eileen Kuempel; Fernando Suarez; Mark Toraason

2005-01-01

309

Gram-range explosive blast scaling and associated materials response  

E-print Network

Gram-range explosive blast scaling and associated materials response M. J. Hargather1 , G. S. Laboratory-scale gram-range explosive blast testing of materials is shown to be feasible. Blast loading from different explosive compounds is coupled to a witness plate through the air by way of a shock wave of known

Settles, Gary S.

310

Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

Crelling, J.C.

1995-12-31

311

Modelling human eye under blast loading.  

PubMed

Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues. PMID:23521031

Esposito, L; Clemente, C; Bonora, N; Rossi, T

2015-02-01

312

Attenuation Analysis of Quarry Blast Vibrations  

NASA Astrophysics Data System (ADS)

In this study we analyzed seismograms created by rock quarry blasts and the effect of rock composition and structure on the attenuation of seismic energy. Luck Stone, a well-known rock quarry company in Virginia, provided the seismic database with the goal of analyzing rates of attenuation at their Boscobel and Leesburg sites, which consist of different rock types (granite and diabase, respectively). Over the years, the sites where these quarries are located have become progressively more residential. As a result, public awareness of quarry blasting has increased, and vibrations in residential areas are increasingly reported. Luck Stone operates seismometers throughout the region and closely monitors vibrations. We analyzed changes in amplitude and frequency content of quarry blast seismograms using power spectra, and compare the rate of attenuation with the propagation distance and local rock type. Our results improve the understanding of how these different rocks types attenuate energy and may help quarries develop specific approaches to further diminish blast vibrations at these locations. We also briefly discuss a comparison of the quarry blast data with attenuation of seismic energy from local earthquakes in similar rock types.

Brooks, T.; Courtier, A. M.

2009-12-01

313

Planar blast scaling with condensed-phase explosives in a shock tube  

SciTech Connect

Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.

Jackson, Scott L [Los Alamos National Laboratory

2011-01-25

314

Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury.  

PubMed

Blast-induced traumatic brain injury (TBI) is the signature insult in combat casualty care. Survival with neurological damage from otherwise lethal blast exposures has become possible with body armor use. We characterized the neuropathologic alterations produced by a single blast exposure in rats using a helium-driven shock tube to generate a nominal exposure of 35 pounds per square inch (PSI) (positive phase duration ? 4 msec). Using an IACUC-approved protocol, isoflurane-anesthetized rats were placed in a steel wedge (to shield the body) 7 feet inside the end of the tube. The left side faced the blast wave (with head-only exposure); the wedge apex focused a Mach stem onto the rat's head. The insult produced ? 25% mortality (due to impact apnea). Surviving and sham rats were perfusion-fixed at 24 h, 72 h, or 2 weeks post-blast. Neuropathologic evaluations were performed utilizing hematoxylin and eosin, amino cupric silver, and a variety of immunohistochemical stains for amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), ED1, and rat IgG. Multifocal axonal degeneration, as evidenced by staining with amino cupric silver, was present in all blast-exposed rats at all time points. Deep cerebellar and brainstem white matter tracts were most heavily stained with amino cupric silver, with the morphologic staining patterns suggesting a process of diffuse axonal injury. Silver-stained sections revealed mild multifocal neuronal death at 24 h and 72 h. GFAP, ED1, and Iba1 staining were not prominently increased, although small numbers of reactive microglia were seen within areas of neuronal death. Increased blood-brain barrier permeability (as measured by IgG staining) was seen at 24 h and primarily affected the contralateral cortex. Axonal injury was the most prominent feature during the initial 2 weeks following blast exposure, although degeneration of other neuronal processes was also present. Strikingly, silver staining revealed otherwise undetected abnormalities, and therefore represents a recommended outcome measure in future studies of blast TBI. PMID:21449683

Garman, Robert H; Jenkins, Larry W; Switzer, Robert C; Bauman, Richard A; Tong, Lawrence C; Swauger, Peter V; Parks, Steven A; Ritzel, David V; Dixon, C Edward; Clark, Robert S B; Bayir, Hülya; Kagan, Valerian; Jackson, Edwin K; Kochanek, Patrick M

2011-06-01

315

Coherent Phenomena in Photonic Crystals  

E-print Network

We study the spontaneous emission, the absorption and dispersion properties of a ${\\bf \\Lambda}$-type atom where one transition interacts near resonantly with a double-band photonic crystal. Assuming an isotropic dispersion relation near the band edges, we show that two distinct coherent phenomena can occur. First, the spontaneous emission spectrum of the adjacent free space transition obtains `dark lines' (zeroes in the spectrum). Second, the atom can become transparent to a probe laser field coupling to the adjacent free space transition.

Angelakis, D G; Knight, P L

2001-01-01

316

Coherent Phenomena in Photonic Crystals  

E-print Network

We study the spontaneous emission, the absorption and dispersion properties of a ${\\bf \\Lambda}$-type atom where one transition interacts near resonantly with a double-band photonic crystal. Assuming an isotropic dispersion relation near the band edges, we show that two distinct coherent phenomena can occur. First, the spontaneous emission spectrum of the adjacent free space transition obtains `dark lines' (zeroes in the spectrum). Second, the atom can become transparent to a probe laser field coupling to the adjacent free space transition.

D. G. Angelakis; E. Paspalakis; P. L. Knight

2000-09-26

317

Vapor explosion phenomena: Scaling considerations  

SciTech Connect

Past safety analyses considered the hazard from vapor explosions in a conservative manner where engineering judgment and conservative analyses were used to estimate the likelihood of nuclear reactor containment failure from explosion-induced missile generation [alpha-mode failure]. However, recent safety analyses may require less conservative methods to determine the hazard from vapor explosions; thus one may need to consider more detailed scaling of vapor explosion phenomena. This paper proposes particular scaling considerations for vapor explosions based on recent experimental results and that vapor explosions with prototypic reactor fuel material may be less of a hazard.

Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

1996-08-01

318

Gravitational anomaly and transport phenomena.  

PubMed

Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid. PMID:21797593

Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco

2011-07-01

319

A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage.  

PubMed

We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4 psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E; Rex, Tonia S

2012-06-01

320

Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research.  

PubMed

Traumatic brain injury caused by explosive or blast events is traditionally divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury phase represents the response of brain tissue to the initial blast wave. Among the four phases of bTBI, there is a remarkable paucity of information about the cause of primary bTBI. On the other hand, 30 years of research on the medical application of shockwaves (SW) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by supersonic flow. The resultant tissue injury includes several features observed in bTBI, such as hemorrhage, edema, pseudoaneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation, are all important factors in determining the extent of SW-induced tissue and cellular injury. Herein we describe the requirements for the adequate experimental set-up when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI. PMID:21332411

Nakagawa, Atsuhiro; Manley, Geoffrey T; Gean, Alisa D; Ohtani, Kiyonobu; Armonda, Rocco; Tsukamoto, Akira; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Tominaga, Teiji

2011-06-01

321

Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.  

PubMed

This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile. PMID:22559580

Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

2012-04-01

322

A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage  

PubMed Central

We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

2012-01-01

323

Observations of Cometary Plasma Wave Phenomena  

NASA Astrophysics Data System (ADS)

The ICE plasma wave investigation utilized very long electric antennas (90 meters tip-to-tip) and a very high sensitivity magnetic search coil to obtain: (1) significant local information on plasma physics phenomena occurring in the distant pickup regions of comet Giacobini-Zinner and comet P/Halley, and (2) information on the processes that developed in the coma and tail of Giacobini-Zinner. Since ICE traversed cometary regions that complemented those sampled by Vega and Sakigake, it is important to compare observations from the three missions that carried dedicated wave instruments. Here we summarize ICE plasma wave measurements associated with both comet encounters and relate the very high sensitivity ICE observations to corresponding measurements from the other Halley spacecraft.

Scarfe, F. L.; Coroniti, V. F.; Kennel, C. F.; Gurnett, D. A.; Ip, W. H.; Smith, E. J.

1987-11-01

324

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29

325

Increase in the productivity of blast-furnace stoves  

SciTech Connect

The Novolipetsk combine proposed sending a cold blast through a special 150-mm-diameter pipe passing through an igniter opening into the combustion chamber. To evaluate the efficiency the stove performance in which some of the cold blast was directed to the combustion chamber was compared against that of unmodified stoves. This blast-delivery system was found to increase consumption of blast-furnace gas during the first stage, reduce time required to bring the dome up to prescribed temperatures, shorten the stove-heating period, and increase blast-heating temperature by 10-15/degree/.

Solomentsev, S.L.; Chernobrivets, B.F.; Sigmund, V.K.; Basukinskii, S.M.; Beremblyum, G.B.; Nakhaev, P.E.; Serpevskii, S.L.

1988-03-01

326

Single Pass Streaming BLAST on FPGAs*†  

PubMed Central

Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828

Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom

2008-01-01

327

Process control techniques for the Sidmar blast furnaces  

SciTech Connect

The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

1995-12-01

328

LTC American`s, Inc. vacuum blasting machine: Baseline report  

SciTech Connect

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing focused on two main areas of exposure: dust and noise.

NONE

1997-07-31

329

The design, implementation, and evaluation of mpiBLAST  

SciTech Connect

mpiBLAST is an open-source parallelization of BLAST that achieves superlinear speed-up by segmenting a BLAST database and then having each node in a computational cluster search a unique portion of the database. Database segmentation permits each node to search a smaller portion of the database, eliminating disk I/O and vastly improving BLAST performance. Because database segmentation does not create heavy communication demands, BLAST users can take advantage of low-cost and efficient Linux cluster architectures such as the bladed Beowulf. In addition to presenting the software architecture of mpiBLAST we present a detailed performance analysis of mpiBLAST to demonstrate its scalability.

Darling, A. E. (Aaron E.); Carey, L. (Lucas); Feng, W. C. (Wu-Chun)

2003-01-01

330

The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts  

Microsoft Academic Search

Ground vibrations arising from excavation with blasting is one of the fundamental problems in the mining industry. Therefore,\\u000a the prediction of ground vibration components plays an important role in the minimization of environmental complaints. In\\u000a this study, 582 events were recorded during limestone production at a quarry (Akyol Quarry) during a period of time. The blasting\\u000a parameters of these shots

Umit Ozer; Ali Kahriman; Mehmet Aksoy; Deniz Adiguzel; Abdulkadir Karadogan

2008-01-01

331

Percolation phenomena by computer simulation  

SciTech Connect

The microstructure of cement-based materials is determined by the chemical nature and amounts of the original constituents, and the succeeding chemical hydration process. An aspect of the microstructure that is important in determining properties is how these products are arranged topologically in space. In particular, how each product phase becomes connected or disconnected (percolation threshold) plays a large role in such important properties of these porous materials as ionic diffusion, electrical conductivity, and fluid permeability. We use computer models to determine the important percolation thresholds in portland cement-based materials, covering connectivity phenomena from length scales of micrometers to meters. We show how the overall behavior of this material, from processing to final use, may be described by its percolation thresholds.

Garboczi, E.J.; Bentz, D.P. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

1995-12-31

332

Relaxation phenomena in cryogenic electrolytes  

NASA Astrophysics Data System (ADS)

Proposed is a scenario for the development of observed relaxation phenomena in a cryogenic electrolyte with the structure of "liquid hydrogen + injected ions." Ions of one sign are generated in the bulk of liquid hydrogen in the presence of external field E? by a stationary radioactive source of ± ions at the bottom of a vessel. After accumulation near the free surface of the liquid with a finite density ns the ions can break its stability producing a pulse of ion current to the collector located above the liquid surface. The outlined process is periodically repeated. Its period contains information on the ion mobility and, which is most interesting, on dissociation (association) processes occurring in a system of charged particles placed in an external field. The cryogenic problem is a good model for dissociation in the presence of external field occurring in normal electrolytes without any external ion sources.

Shikin, V.; Chikina, I.; Nazin, S.

2013-06-01

333

48 Optical Illusions & Visual Phenomena  

NSDL National Science Digital Library

Have you ever wondered how different optical illusions work? This fun, informative, and very cool website developed by ophthalmologist Dr. Michael Bach of the University of Freiburg's Medical School introduces 48 interactive visual illusions and phenomena. The illusions are animated and accompanied by explanations that help visitors make sense of their perceptual responses. Major illusion categories include: Motion & Time, Luminance & Contrast, Colour, Cognitive, and more. The site is still in progress, and Dr. Bach encourages both general feedback, and additional scientific information for improving the illusion explanations. The second site, also from Professor Bach, presents site users with an interactive, online Visual Acuity Test. Note: The Contrast component of the Test has yet to be implemented.

334

Superfluid analogies of cosmological phenomena  

E-print Network

Superfluid 3He-A gives example of how chirality, Weyl fermions, gauge fields and gravity appear in low emergy corner together with corresponding symmetries, including Lorentz symmetry and local SU(N). This supports idea that quantum field theory (Standard Model or GUT) is effective theory describing low-energy phenomena. * Momentum space topology of fermionic vacuum provides topological stability of universality class of systems, where above properties appear. * BCS scheme for 3He-A incorporates both ``relativistic'' infrared regime and ultraviolet ``transplanckian'' range: subtle issues of cut-off in quantum field theory and anomalies can be resolved on physical grounds. This allows to separate ``renormalizable'' terms in action, treated by effective theory, from those obtained only in ``transPlanckian'' physics. * Energy density of superfluid vacuum within effective theory is ~ E_{Planck}^4. Stability analysis of ground state beyond effective theory leads to exact nullification of vacuum energy: equilibrium...

Volovik, G E

2001-01-01

335

PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena  

NASA Astrophysics Data System (ADS)

Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed according to the standards of the journal. The selection of papers in this issue aims to bring together recent developments and findings, even though it consists of only a fraction of the impressive developments in recent years which have affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete geometry, among others. The special issue begins with four review papers: Integrable models in nonlinear optics and soliton solutions Degasperis [1] reviews integrable models in nonlinear optics. He presents a number of approximate models which are integrable and illustrates the links between the mathematical and applicative aspects of the theory of integrable dynamical systems. In particular he discusses the recent impact of boomeronic-type wave equations on applications arising in the context of the resonant interaction of three waves. Hamiltonian PDEs: deformations, integrability, solutions Dubrovin [2] presents classification results for systems of nonlinear Hamiltonian partial differential equations (PDEs) in one spatial dimension. In particular he uses a perturbative approach to the theory of integrability of these systems and discusses their solutions. He conjectures universality of the critical behaviour for the solutions, where the notion of universality refers to asymptotic independence of the structure of solutions (at the point of gradient catastrophe) from the choice of generic initial data as well as from the choice of a generic PDE. KP solitons in shallow water Kodama [3] presents a survey of recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. A large variety of exact soliton solutions of the KP equation are presented and classified. The study includes numerical analysis of the stability of the found solution as well as numerical simulations of the initial value problems which indicate that a certain class of initial waves approach asymptotically these exact solutions

Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

2010-10-01

336

Attachment and suggestion-related phenomena.  

PubMed

This study uses a new classification of suggestion-related phenomena and investigates the relationship between attachment styles and reaction to suggestion. The authors used 3 traditional experimental tasks: a stimulus-misinformation task, an inkblot perception task, and a subjective estimation of a nonexistent difference task. A measure of adult attachment was also taken. Participants with a high attachment insecurity as opposed to those with a low one were less influenced by suggestions in the recall phase of the memory task. Results are discussed within the framework of suggestion models, the dual models of social behavior, and the adult attachment model. Implications of findings are limited to simple suggestion rather than the more complex set of responses related to hypnotizability. PMID:24568326

Rotaru, Tudor-?tefan; Dafinoiu, Ion

2014-01-01

337

Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury  

SciTech Connect

In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).

Moss, W C; King, M J; Blackman, E G

2011-01-21

338

Spike morphology in blast-wave-driven instability experiments  

SciTech Connect

The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 {mu}m thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 {mu}m and a wavelength of 71 {mu}m. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A. [Department of Atmospheric, Oceanic and Space Science, Center for Radiative Shock Hydrodynamics, University of Michigan, 2455 Hayward Street, Ann Arbor, Michigan 48109 (United States); Hansen, J. F.; Miles, A. R. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Plewa, T. [Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, Florida 32306 (United States); Hearn, N. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States); Knauer, J. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

2010-05-15

339

Droplet Breakup Mechanisms in Air-blast Atomizers  

NASA Astrophysics Data System (ADS)

Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

2011-11-01

340

The AutoBlast Interrupter Switch  

Microsoft Academic Search

An air interrupter switch may be defined as a nonautomatic air switch which combines the functions of a disconnecting switch with the ability to interrupt current up to a predetermined magnitude. It primarily differs in function from a circuit breaker in that it cannot interrupt overload or short-circuit currents. General specifications for interrupter switches are proposed. The Auto-Blast interrupter switch

E. A. Williams; W. G. Harlow

1943-01-01

341

Blast Mitigation Using Water - A Status Report.  

National Technical Information Service (NTIS)

The need to mitigate the effects of blast waves has been heightened by the recent incident with the USS Cole. In the spirit of one of the findings of the DoD USS Cole Commission, that there is a need for, 'More responsive application of currently availabl...

K. Kailasanath, P. A. Tatem, J. Mawhinney

2002-01-01

342

The radiological management of bomb blast injury.  

PubMed

A need to understand the nature and patterns of bomb blast injury, particularly in confined spaces, has come to the fore with the current worldwide threat from terrorism. The purpose of this review article is to familiarize the radiologist with the imaging they might expect to see in a mass casualty terrorist event, illustrated by examples from two of the main institutions receiving patients from the London Underground tube blasts of 7 July 2005. We present examples of injuries that are typical in blast victims, as well as highlighting some blast sequelae that might also be found in other causes of multiple trauma. This should enable the radiologist to seek out typical injuries, including those that may not be initially clinically apparent. Terror-related injuries are often more severe than those seen in other trauma cases, and multi-system trauma at distant anatomical sites should be anticipated. We highlight the value of using a standardized imaging protocol to find clinically undetected traumatic effects and include a discussion on management of multiple human and non-human flying fragments. This review also discusses the role of radiology in the management and planning for a mass casualty terrorist incident and the optimal deployment of radiographic services during such an event. PMID:17145257

Hare, S S; Goddard, I; Ward, P; Naraghi, A; Dick, E A

2007-01-01

343

Methods of Intensifying Blast-Furnace Operation  

Microsoft Academic Search

In 1871, famous metallurgist Henri Bessemer became the first to proclaim the benefits of increasing the operating pressure in blast furnaces [1]. The underlying assumption here was that increasing furnace pressure would raise the temperature of the products of fuel combustion in the tuyere hearths. Forty-four years later, a paper written by P. M. Esmanski for the Ekaterinoslav Mining Institute

I. E. Sperkach; I. F. Kurunov

2005-01-01

344

Cosmic Blasts Much More Common, Astronomers Discover  

NASA Astrophysics Data System (ADS)

A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. http://www.nrao.edu/

2006-08-01

345

Acute Blast Injury Reduces Brain Abeta in Two Rodent Species  

PubMed Central

Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The ?-amyloid (A?) peptide associated with the development of Alzheimer’s disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain A? following experimental blast injury using enzyme-linked immunosorbent assays for A? 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain A? levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the ?-secretase, ?-site APP cleaving enzyme 1, and the ?-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering A? production may not be effective for treating acute blast injury to the brain. PMID:23267342

De Gasperi, Rita; Gama Sosa, Miguel A.; Kim, Soong Ho; Steele, John W.; Shaughness, Michael C.; Maudlin-Jeronimo, Eric; Hall, Aaron A.; DeKosky, Steven T.; McCarron, Richard M.; Nambiar, Madhusoodana P.; Gandy, Sam; Ahlers, Stephen T.; Elder, Gregory A.

2012-01-01

346

Nonlinear dynamics of drops and bubbles and chaotic phenomena  

Microsoft Academic Search

Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to

Eugene H. Trinh; L. G. Leal; Z. C. Feng; R. G. Holt

1994-01-01

347

NANOINDENTATION-INDUCED DEFECTINTERFACE INTERACTIONS: PHENOMENA, METHODS AND  

E-print Network

NANOINDENTATION-INDUCED DEFECT±INTERFACE INTERACTIONS: PHENOMENA, METHODS AND LIMITATIONS W. W and produce material instabilities is essential to the accurate measure of ¯ow and fracture by nanoindentation. In particular the elasticity analyses have been shown to work well in the nanoindentation regime for many

Volinsky, Alex A.

348

Patterns in Blast Injuries to the Hand  

PubMed Central

Blast injuries to the hand are not just a wartime phenomenon but also quite common in rural communities throughout northern California. The purpose of this study is to review our experience with blast injuries in the community and review the most common patterns in an attempt to identify the pathomechanics of the hand injury and the reconstructive procedures that are required. This is a retrospective study of blast injuries to the hand treated between 1978 and 2006. Medical records, X-rays, and photos were reviewed to compile standard patient demographics and characterize the injury pattern. Explosives were classified based on their rate of decomposition. Reconstructive solutions were reviewed and characterized based on whether damaged tissues were repaired or replaced. Sixty-two patients were identified with blast injuries to their hand. Patients were predominantly male (92%) with an average age of 27 years. Firecrackers were the most commonly encountered explosives. Thirty-seven patients were identified as holding a low explosive in their dominant hand and were used for characterization of the injury pattern. The apparent pattern of injury was hyperextension and hyperabduction of the hand and digits. Common injuries were metacarpophalangeal and interphalangeal joint hyperextension with associated soft tissue avulsion, hyperabduction at the web spaces with associated palmar soft tissue tears, and finger disarticulation amputations worse at radial digits. Given the mechanisms of injury with tissue loss, surgical intervention generally involved tissue replacement rather than tissue repair. Blast injuries to the hand represent a broad spectrum of injuries that are associated with the magnitude of explosion and probably, the proximity to the hand. We were able to identify a repetitive pattern of injury and demonstrate the predominant use for delayed tissue replacement rather than microsurgical repair at the acute setting. PMID:18780004

Buntic, Rudolf F.; Brooks, Darrell

2008-01-01

349

Physics of IED Blast Shock Tube Simulations for mTBI Research  

PubMed Central

Shock tube experiments and simulations are conducted with a spherical gelatin filled skull–brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic improvised explosive device blast profiles obtained from full scale field tests. The response of the skull–brain surrogate is monitored using pressure and strain measurements. Fluid–structure interaction is modeled using a combination of computational fluid dynamics (CFD) simulations for the air blast, and a finite element model for the structural response. The results help to understand the physics of wave propagation, from air blast into the skull–brain. The presence of openings on the skull and its orientation does have a strong effect on the internal pressure. A parameter study reveals that when there is an opening in the skull, the skull gives little protection and the internal pressure is fairly independent on the skull stiffness; the gelatin shear stiffness has little effect on the internal pressure. Simulations show that the presence of pressure sensors in the gelatin hardly disturbs the pressure field. PMID:21960984

Mediavilla Varas, Jesus; Philippens, M.; Meijer, S. R.; van den Berg, A. C.; Sibma, P. C.; van Bree, J. L. M. J.; de Vries, D. V. W. M.

2011-01-01

350

A model for estimating the viscosity of blast furnace slags with optical basicity  

NASA Astrophysics Data System (ADS)

Viscosity is an important physical property of blast furnace slags and has a great influence on blast furnace operations. Because of time consumption and difficulties encountered during high temperature experimental measurement, viscosity data are also limited, so a reasonable and accurate estimation model is required to provide the data for controlling and optimizing the blast furnace process. In the present study a viscosity model was proposed for blast furnace slags. In the model the activation energy was calculated by the optical basicity corrected for cations required for the charge compensation of AlO{4/5-}, and the temperature dependence was described by the Weymann-Frenkel equation. The estimated viscosity values of the CaO-Al2O3-SiO2, CaO-Al2O3-SiO2-MgO, and CaO-Al2O3-SiO2-MgO-TiO2 systems fit well with experiment data, with the mean deviation less than 25%.

Hu, Xiao-jun; Ren, Zhong-shan; Zhang, Guo-hua; Wang, Li-jun; Chou, Kuo-chih

2012-12-01

351

22 CFR 121.11 - Military demolition blocks and blasting caps.  

Code of Federal Regulations, 2011 CFR

...false Military demolition blocks and blasting caps. 121.11 Section 121.11 Foreign Relations...11 Military demolition blocks and blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not...

2011-04-01

352

22 CFR 121.11 - Military demolition blocks and blasting caps.  

Code of Federal Regulations, 2012 CFR

...false Military demolition blocks and blasting caps. 121.11 Section 121.11 Foreign Relations...11 Military demolition blocks and blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not...

2012-04-01

353

22 CFR 121.11 - Military demolition blocks and blasting caps.  

Code of Federal Regulations, 2013 CFR

...false Military demolition blocks and blasting caps. 121.11 Section 121.11 Foreign Relations...11 Military demolition blocks and blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not...

2013-04-01

354

22 CFR 121.11 - Military demolition blocks and blasting caps.  

Code of Federal Regulations, 2010 CFR

...false Military demolition blocks and blasting caps. 121.11 Section 121.11 Foreign Relations...11 Military demolition blocks and blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not...

2010-04-01

355

22 CFR 121.11 - Military demolition blocks and blasting caps.  

...false Military demolition blocks and blasting caps. 121.11 Section 121.11 Foreign Relations...11 Military demolition blocks and blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not...

2014-04-01

356

30 CFR 816.68 - Use of explosives: Records of blasting operations.  

...except those described in § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects. (f) Type of material blasted. (g) Sketches of the blast pattern including number of...

2014-07-01

357

30 CFR 817.68 - Use of explosives: Records of blasting operations.  

...except those described in § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects. (f) Type of material blasted. (g) Sketches of the blast pattern including number of...

2014-07-01

358

77 FR 31878 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Blasting...  

Federal Register 2010, 2011, 2012, 2013

...Request; Blasting Operations and Use of Explosives Standard ACTION: Notice...Blasting Operations and Use of Explosives Standard,'' to the Office of Management...INFORMATION: The Blasting and Use of Explosives Standard at 29 CFR part 1926,...

2012-05-30

359

29 CFR 1926.904 - Storage of explosives and blasting agents.  

...2014-07-01 2014-07-01 false Storage of explosives and blasting agents. 1926.904 Section...FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a)...

2014-07-01

360

29 CFR 1926.904 - Storage of explosives and blasting agents.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Storage of explosives and blasting agents. 1926.904 Section...FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a)...

2012-07-01

361

29 CFR 1926.904 - Storage of explosives and blasting agents.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Storage of explosives and blasting agents. 1926.904 Section...FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a)...

2010-07-01

362

29 CFR 1926.904 - Storage of explosives and blasting agents.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Storage of explosives and blasting agents. 1926.904 Section...FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a)...

2011-07-01

363

29 CFR 1926.904 - Storage of explosives and blasting agents.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Storage of explosives and blasting agents. 1926.904 Section...FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.904 Storage of explosives and blasting agents. (a)...

2013-07-01

364

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

SciTech Connect

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31

365

Optical phenomena in the open air  

NASA Astrophysics Data System (ADS)

Objects readily observed by everyone in the open air constitute fascinating phenomena. However, details on the origin of such phenomena like rainbows, halos, glories, lightning and northern lights often stay in the background whereas the combination of both observation and background knowledge will open an even more fascinating view. This article summarises the underlying physical principles of these phenomena and addresses the characteristics they have in common as well as their main differences.

Fantz, U.

2004-02-01

366

Data acquisition and simulation of natural phenomena  

Microsoft Academic Search

Virtual natural phenomena obtained through mathematical-physical modeling and simulation as well as graphics emulation can\\u000a meet the user’s requirements for sensory experiences to a certain extent but they can hardly have the same accurate physical\\u000a consistency as real natural phenomena. The technology for data acquisition and natural phenomena simulation can enable us\\u000a to obtain multi-dimensional and multi-modal data directly from

QinPing Zhao

2011-01-01

367

Bleed Hole Flow Phenomena Studied  

NASA Technical Reports Server (NTRS)

Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

1997-01-01

368

1997 Oxford University Press 33893402Nucleic Acids Research, 1997, Vol. 25, No. 17 Gapped BLAST and PSI-BLAST: a new generation of  

E-print Network

and PSI-BLAST: a new generation of protein database search programs Stephen F. Altschul*, Thomas L. Madden-Specific Iterated BLAST (PSI- BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI

Batzoglou, Serafim

369

A Multisite Study of the Relationships between Blast Exposures and Symptom Reporting in a Post-Deployment Active Duty Military Population with Mild Traumatic Brain Injury.  

PubMed

Abstract Explosive devices have been the most frequent cause of traumatic brain injury (TBI) among deployed contemporary U.S. service members. The purpose of this study was to examine the influence of previous cumulative blast exposures (that did or did not result in TBI) on later post-concussion and post-traumatic symptom reporting after sustaining a mild TBI (MTBI). Participants were 573 service members who sustained MTBI divided into four groups by number of blast exposures (1, 2, 3, and 4-10) and a nonblast control group. Post-concussion symptoms were measured using the Neurobehavioral Symptom Inventory (NSI) and post-traumatic stress disorder (PTSD) symptoms using the Post-traumatic Checklist-Civilian version (PCL-C). Results show groups significantly differed on total NSI scores (p<0.001), where symptom endorsement increased as number of reported blast exposures increased. Total NSI scores were significantly higher for the 3- and 4-10 blast groups compared with the 1- and 2-blast groups with effect sizes ranging from small to moderate (d=0.31 to 0.63). After controlling for PTSD symptoms using the PCL-C total score, NSI total score differences remained between the 4-10-blast group and the 1- and 2-blast groups, but were less pronounced (d=0.35 and d=0.24, respectively). Analyses of NSI subscale scores using PCL-C scores as a covariate revealed significant between-blast group differences on cognitive, sensory, and somatic, but not affective symptoms. Regression analyses revealed that cumulative blast exposures accounted for a small but significant amount of the variance in total NSI scores (4.8%; p=0.009) and total PCL-C scores (2.3%; p<0.001). Among service members exposed to blast, post-concussion symptom reporting increased as a function of cumulative blast exposures. Future research will need to determine the relationship between cumulative blast exposures, symptom reporting, and neuropathological changes. PMID:25036531

Reid, Matthew W; Miller, Kelly J; Lange, Rael T; Cooper, Douglas B; Tate, David F; Bailie, Jason; Brickell, Tracey A; French, Louis M; Asmussen, Sarah; Kennedy, Jan E

2014-12-01

370

Electrocardiographic changes following primary blast injury to the thorax.  

PubMed

Profound physiological changes occur following primary blast exposure but the contribution of cardiac arrhythmias is unknown. Thirteen rats, under intravenous anaesthesia, were exposed to a blast wave directed at the thorax (Group II); 10 other animals underwent abdominal blast (Group III) and nine animals acted as controls (Group I). Animals were monitored before, during and after blast exposure. Group II animals demonstrated apnoea, bradycardia and hypotension. No significant physiological changes were seen in Groups I or III. Group II displayed a variety of ECG disturbances, from ventricular extrasystoles to ventricular fibrillation. All abnormalities reverted to sinus rhythm within minutes except in fatally injured animals. These ECG changes probably result from stress wave injury. Significant disturbances might account for some fatalities following primary blast exposure and may exacerbate the triad of apnoea, bradycardia and hypotension. Such observations may have important consequences for the management of blast casualties. PMID:11346922

Guy, R J; Watkins, P E; Edmondstone, W M

2000-01-01

371

Modelling the structural response of GLARE panels to blast load  

Microsoft Academic Search

This paper deals with the structural response of fully-clamped quadrangular GLARE panels subjected to an intense air-blast load using the commercial finite element software, LS-DYNA. A cohesive tie-break algorithm is implemented to model interfacial debonding between adjacent plies. The blast loads was simulated using a ConWep blast algorithm and a multi-material ALE formulation with fluid–structure interaction to determine the performance

C. Soutis; G. Mohamed; A. Hodzic

2011-01-01

372

A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network  

PubMed Central

Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856

Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir

2014-01-01

373

BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION  

SciTech Connect

Over the course of two flights, the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) made resolved maps of seven nearby (<25 Mpc) galaxies at 250, 350, and 500 mum. During its 2005 June flight from Sweden, BLAST observed a single nearby galaxy, NGC 4565. During the 2006 December flight from Antarctica, BLAST observed the nearby galaxies NGC 1097, NGC 1291, NGC 1365, NGC 1512, NGC 1566, and NGC 1808. We fit physical dust models to a combination of BLAST observations and other available data for the galaxies observed by Spitzer. We fit a modified blackbody to the remaining galaxies to obtain total dust mass and mean dust temperature. For the four galaxies with Spitzer data, we also produce maps and radial profiles of dust column density and temperature. We measure the fraction of BLAST detected flux originating from the central cores of these galaxies and use this to calculate a 'core fraction', an upper limit on the 'active galactic nucleus fraction' of these galaxies. We also find our resolved observations of these galaxies give a dust mass estimate 5-19 times larger than an unresolved observation would predict. Finally, we are able to use these data to derive a value for the dust mass absorption coefficient of kappa = 0.29 +- 0.03 m{sup 2} kg{sup -1} at 250 mum. This study is an introduction to future higher-resolution and higher-sensitivity studies to be conducted by Herschel and SCUBA-2.

Wiebe, Donald V.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Rex, Marie [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de AstrofIsica Optica y Electronica, Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Martin, Peter G. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Olmi, Luca [Istituto di Radioastronomia, Largo E. Fermi 5, I-50125, Firenze (Italy); Patanchon, Guillaume [Laboratoire APC, 10, rue Alice Domon et Leonie Duquet 75205 Paris (France)

2009-12-20

374

Preparation of Aluminum Coatings by Atmospheric Plasma Spraying and Dry-Ice Blasting and Their Corrosion Behavior  

NASA Astrophysics Data System (ADS)

Aluminum coating, as an example of spray coating material with low hardness, was deposited by atmospheric plasma spraying while dry-ice blasting was applied during the deposition process. The deposited coatings were characterized in terms of microstructure, porosity, phase composition, and the valence states. The results show that the APS aluminum coatings with dry-ice blasting present a porosity of 0.35 ± 0.02%, which is comparable to the bulk material formed by the mechanical compaction. In addition, no evident oxide has been detected, except for the very thin and impervious oxide layer at the outermost layer. Compared to plasma-sprayed Al coatings without dry-ice blasting, the adhesion increased by 52% for Al substrate using dry-ice blasting, while 25% for steel substrate. Corrosion behavior of coated samples was evaluated in 3.5 wt.% NaCl aqueous using electrochemistry measurements. The electrochemical results indicated that APS Al coating with dry-ice blasting was more resistant to pitting corrosion than the conventional plasma-sprayed Al coating.

Dong, Shu-Juan; Song, Bo; Zhou, Gen-Shu; Li, Chang-Jiu; Hansz, Bernard; Liao, Han-Lin; Coddet, Christian

2013-10-01

375

Possible relationships between solar activity and meteorological phenomena  

NASA Technical Reports Server (NTRS)

A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

Bandeen, W. R. (editor); Maran, S. P. (editor)

1975-01-01

376

Mechanisms of Hearing Loss after Blast Injury to the Ear  

PubMed Central

Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction. PMID:23840874

Cho, Sung-Il; Gao, Simon S.; Xia, Anping; Wang, Rosalie; Salles, Felipe T.; Raphael, Patrick D.; Abaya, Homer; Wachtel, Jacqueline; Baek, Jongmin; Jacobs, David; Rasband, Matthew N.; Oghalai, John S.

2013-01-01

377

Mechanisms and Treatment of Blast Induced Hearing Loss  

PubMed Central

The main objective of this study is to provide an overview of the basic mechanisms of blast induced hearing loss and review pharmacological treatments or interventions that can reduce or inhibit blast induced hearing loss. The mechanisms of blast induced hearing loss have been studied in experimental animal models mimicking features of damage or injury seen in human. Blast induced hearing loss is characterized by perforation and rupture of the tympanic membrane, ossicular damage, basilar membrane damage, inner and outer hair cell loss, rupture of round window, changes in chemical components of cochlear fluid, vasospasm, ischemia, oxidative stress, excitotoxicity, hematoma, and hemorrhage in both animals and humans. These histopathological consequences of blast exposure can induce hearing loss, tinnitus, dizziness, and headache. The pharmacological approaches to block or inhibit some of the auditory pathological consequences caused by blast exposure have been developed with antioxidant drugs such as 2,4-disulfonyl ?-phenyl tertiary butyl nitrone (HXY-059, now called HPN-07) and N-acetylcysteine (NAC). A combination of antioxidant drugs (HPN-07 and NAC) was administered to reduce blast induced cochlear damage and hearing loss. The combination of the antioxidant drugs can prevent or treat blast induced hearing loss by reducing damage to the mechanical and neural component of the auditory system. Although information of the underlying mechanisms and treatment of blast induced hearing loss are provided, further and deep research should be achieved due to the limited and controversial knowledge. PMID:24653882

2012-01-01

378

13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH SAWDUST HOPPER. BLASTING TUB HAS DOUBLE WALLS OF 3/4' THICK STEEL ARMOR PLATE. CHARGE TO BE TESTED IS BURIED IN SAWDUST WITH FLAME RESISTANT CHEMICALS. ELEVATOR BEHIND TUB CARRIES SAWDUST BACK TO TOP OF SAWDUST HOPPER AFTER TEST IS COMPLETED AND SAWDUST IN BLASTING TUB HAS BEEN SIFTED FOR SHELL FRAGMENTS. LOUVERS IN WALLS ARE HINGED FREELY SO THEY OPEN TO RELIEVE BLAST PRESSURE DURING A TEST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

379

EMERGENT PHENOMENA IN GENETIC PROGRAMMING LEE ALTENBERG  

E-print Network

1 EMERGENT PHENOMENA IN GENETIC PROGRAMMING LEE ALTENBERG Institute of Statistics and Decision and algorith- mic properties of the tree-structured representation, both the genetics and representation can various emergent phenomena, pri- mary of which is adaptation. In genetic programming, because of the inde

Fernandez, Thomas

380

Thermoelectric phenomena via an interacting particle system  

E-print Network

Thermoelectric phenomena via an interacting particle system Christian Maes and Maarten H. van for thermoelectric phenomena in terms of an interacting particle system, a lattice electron gas dynamics, a standard reference is [1]. We present an interacting particle system for the standard thermoelectric

Maes, Christian

381

Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact  

SciTech Connect

A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target response description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.

Hatch-Aguilar, T; Najjar, F; Szymanski, E

2011-03-24

382

Further shock tunnel studies of scramjet phenomena  

NASA Technical Reports Server (NTRS)

Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

1986-01-01

383

Shougang No. 2 blast furnace enlargement  

SciTech Connect

Shougang is expanding to become a 10 million ton/year steel plant in 1995. In 1990, the capacity of Shougang No. 2 blast furnace was enlarged from 1,327 to 1,726 cu meters. The project consisted of building a new furnace on the old site while maintaining the operation of the old furnace. The project was completed in 188 calendar days, 3 days ahead of schedule. Shougang has a large, comprehensive technical force that includes design, construction and production. Most of the equipment and instrumentation, both mechanical and electrical, were fabricated by Shougang personnel. The future increase in capacity of No. 1, 3 and 4 blast furnaces will exceed that of No. 2 furnace.

Wang, Z.Z. (Shougang Iron and Steel Corp., Beijing (China))

1994-09-01

384

A Phased Array Approach to Rock Blasting  

SciTech Connect

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01

385

Unstable blast shocks in dilute granular flows.  

PubMed

Shocks and blasts can be readily obtained in granular flows be they dense or dilute. Here, by examining the propagation of a blast shock in a dilute granular flow, we show that such a front is unstable with respect to transverse variations of the density of grains. This instability has a well-defined wavelength which depends on the density of the medium and has an amplitude which grows as an exponential of the distance traveled. These features can be understood using a simple model for the shock front, including dissipation which is inherent to granular flows. While this instability bears much resemblance to that anticipated in gases, it is distinct and has special features we discuss here. PMID:23767525

Boudet, J F; Kellay, H

2013-05-01

386

Unstable blast shocks in dilute granular flows  

NASA Astrophysics Data System (ADS)

Shocks and blasts can be readily obtained in granular flows be they dense or dilute. Here, by examining the propagation of a blast shock in a dilute granular flow, we show that such a front is unstable with respect to transverse variations of the density of grains. This instability has a well-defined wavelength which depends on the density of the medium and has an amplitude which grows as an exponential of the distance traveled. These features can be understood using a simple model for the shock front, including dissipation which is inherent to granular flows. While this instability bears much resemblance to that anticipated in gases, it is distinct and has special features we discuss here.

Boudet, J. F.; Kellay, H.

2013-05-01

387

Metal sorption on blast-furnace slag  

Microsoft Academic Search

The removal of Cu, Ni and Zn-ions from water solution by ungranulated blast-furnace slag has been studied depending on contact time, initial ion concentration, pH and solution temperature. The polymineral composition and the slag specific properties determine its high sorption activity in metal salts solutions. In the range of the concentrations studied (10?4–10?3 M), the sorption data for Cu2+, Ni2+

S. V. Dimitrova

1996-01-01

388

Blast furnace injection developments in British Steel  

SciTech Connect

British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

Jukes, M.H.

1996-12-31

389

Separation and quantitation of hazardous wastes from abrasive blast media.  

PubMed

A sample of glass bead abrasive blasting material (ABM) waste, received from Robins Air Force Base (Georgia), was examined to determine whether the waste could be rendered nonhazardous by separating paint contaminants from the ABM. The sample was analyzed with size distribution and toxicity characteristics leaching procedure. A Microtrac analyzer was used to measure the size of fine particles (-325 Tyler mesh), and scanning electron microscopy analysis was performed to identify the nature of the contaminants in the ABM waste. Tests using froth flotation, magnetic separation, desliming, and acid washing were conducted to develop a process for removing the contaminants. A pilot plant test using the developed process rendered 82.1% or the ABM waste material nonhazardous. PMID:11417633

Hwang, J Y; Jeong, M L

2001-01-01

390

Mathematics needed for Introduction to Transport Phenomena  

NSDL National Science Digital Library

A collection of math problems based on skills needed to successfully complete homework problems in an introductory course in Transport Phenomena. These problems do not introduce any new material for those who have taken Freshman Calculus classes and a sophomore level Differential Equations class. At Purdue University in the required Transport Phenomena course for MSE undergrads (MSE 340), I give a problem set like this the first day of classes in order to make clear the level of mathematical skill needed for the rest of the semester. I have found that it reduces difficulties with math later in the semester, allowing the students to focus on the transport phenomena.

Krane, Matthew J.

2007-10-12

391

Synchronization Phenomena and Epoch Filter of Electroencephalogram  

NASA Astrophysics Data System (ADS)

Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

Matani, Ayumu

392

Blast mines: physics, injury mechanisms and vehicle protection.  

PubMed

Since World War II, more vehicles have been lost to land mines than all other threats combined. Anti-vehicular (AV) mines are capable of disabling a heavy vehicle, or completely destroying a lighter vehicle. The most common form of AV mine is the blast mine, which uses a large amount of explosive to directly damage the target. In a conventional military setting, landmines are used as a defensive force-multiplier and to restrict the movements of the opposing force. They are relatively cheap to purchase and easy to acquire, hence landmines are also potent weapons in the insurgents' armamentarium. The stand-offnature of its design has allowed insurgents to cause significant injuries to security forces in current conflicts with little personal risk. As a result, AV mines and improvised explosive devices (IEDs) have become the most common cause of death and injury to Coalition and local security forces operating in Iraq and Afghanistan. Detonation of an AV mine causes an explosive, exothermic reaction which results in the formation of a shockwave followed by a rapid expansion of gases. The shockwave is mainly reflected by the soillair interface and fractures the soil cap overthe mine. The detonation products then vent through the voids in the soil, resulting in a hollow inverse cone which consists of the detonation gases surrounded by the soil ejecta. It is the combination of the detonation products and soil ejecta that interact with the target vehicle and cause injury to the vehicle occupants. A number of different strategies are required to mitigate the blast effects of an explosion. Primary blast effects can be reduced by increasing the standoff distance between the seat of the explosion and the crew compartment. Enhancement of armour on the base of the vehicle, as well as improvements in personal protection can prevent penetration of fragments. Mitigating tertiary effects can be achieved by altering the vehicle geometry and structure, increasing vehicle mass, as well as developing new strategies to reduce the transfer of the impulse through the vehicle to the occupants. Protection from thermal injury can be provided by incorporating fire resistant materials into the vehicle and in personal clothing. The challenge for the vehicle designer is the incorporation of these protective measures within an operationally effective platform. PMID:20397600

Ramasamy, A; Hill, A M; Hepper, A E; Bull, A M J; Clasper, J C

2009-12-01

393

Experimental review of diffractive phenomena  

E-print Network

A review is given of the measurements of the hard diffractive interactions in recent years from two high-energy colliders, the HERA $ep$ collider and the Tevatron $p\\bar{p}$ collider. The structure of the diffractive exchange in terms of partons, the factorisation properties and the ratio of diffractive to non-diffractive cross sections are discussed.

L. Favart

2005-01-20

394

Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth  

NASA Astrophysics Data System (ADS)

The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.

Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing

2014-10-01

395

Compare pilot-scale and industry-scale models of pulverized coal combustion in an ironmaking blast furnace  

NASA Astrophysics Data System (ADS)

In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in aspects of model developments and model capability. The model development is discussed in terms of model formulation, their new features and geometry/regions considered. The model capability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in practice.

Shen, Yansong; Yu, Aibing; Zulli, Paul

2013-07-01

396

Anomalous Nuclear Phenomena Assocoated with Ultrafast Processes  

NASA Astrophysics Data System (ADS)

Quantum physics predicts the existence of an underlying sea of zero-point energy at every point in the universe. A minority of physicists accept it as real energy which we cannot directly sense since it is the same everywhere, even inside our bodies and measuring devices. If the zero-point energy is real, there is the possibility that it can be tapped as a source of power or be harnassed to generate a propulsive force for space travel. However if some asymmetric variation of the Casimir force could be identified one could in effect sail through space as if propelled by a kind of quantum fluctuation wind. In our previous papers, anomalous excess heat and localized nuclear reactions on the surface of electrodes in electrolysis cells have been observed. A physical model of transient vortex dynamics with torsion coherence with the zero point energy has been proposed by Xingliu Jiang based on the ultrafast processes of triple phases area of tip effect on the electrode surface. Considering the large equiverlent capacitance of electrochemical double layer, it is presumed that the double layer can exhibit nonlinear electrical response with spatial and temporal variations confined to microscopic areas by tip effect. Experimental results of transient processes with ultrafast phenomena with nanosecond duration in electrical discharge systems including electrolysis cells and corona discharge have been presented.

Jiang, Xingliu; Zhou, Xiaoping; Liu, Chun; Wang, Liying; Zhang, Zhongliang

2007-04-01

397

Nanoscale phenomena in synthetic functional oxide heterostructures.  

PubMed

This paper reviews nanoscale phenomena such as polarization relaxation dynamics and piezoelectric characterization in model ferroelectric thin films and nanostructures using voltage-modulated scanning force microscopy. Using this technique we show the three-dimensional reconstruction of the polarization vector in lead zirconate titanate (PZT) thin films. Second, the time-dependent relaxation of remanent polarization in epitaxial PZT ferroelectric thin films, containing a uniform two-dimensional grid of 90 degrees domains (c-axis in the plane of the film), has been investigated extensively. The 90 degrees domain walls preferentially nucleate the 180 degrees reverse domains during relaxation. Relaxation occurs through the nucleation and growth of reverse 180 degrees domains, which subsequently coalesce and consume the entire region as a function of relaxation time. In addition we also present results on investigation of the relaxation phenomenon on a very local scale, where pinning and bowing of domain walls has been observed. We also show how this technique is used for obtaining quantitative information on piezoelectric constants and by engineering special structures, and how we realize ultrahigh values of piezoconstants. Last, we also show direct hysteresis measurements on nanoscale capacitors, where there is no observable loss of polarization in capacitors as small as 0.16 microm2 in area. PMID:12533230

Nagarajan, V; Ganpule, C S; Stanishevsky, A; Liu, B T; Ramesh, R

2002-08-01

398

Basic ablation phenomena during laser thrombolysis  

NASA Astrophysics Data System (ADS)

This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

1997-05-01

399

Blast furnace lining and cooling technology: experiences at Corus IJmuiden  

SciTech Connect

This article describes the blast furnace lining and cooling concept as originally developed and applied by Hoogovens (Corus IJmuiden). The technology has also been applied by Danieli Corus in all its blast furnace projects executed in the last 25 years. The technology has helped Corus increase its PCI rate to over 200 kg/thm. 4 refs., 13 figs., 1 tab.

Stokman, R.; van Stein Cellenfels, E.; van Laar, R.

2004-11-01

400

5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, AND No. 6, WITH ORE YARD IN THE FOREGROUND. BUILDING ON THE LEFT IS THE CENTRAL BOILER HOUSE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

401

A new approach to oxygen enriched high temperature blast generation  

SciTech Connect

When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

Queille, P.H.; Macauley, D.

1996-12-31

402

EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE NO. 3 (JANE FURNACE)/ORE BRIDGE TO THE RIGHT, WITH SINTERING PLANT CONVEYORS & TRANSFER HOUSE IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

403

17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 LOOKING EAST. THE BUSTLE PIPE IS VISIBLE ACROSS THE CENTER OF THE IMAGE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

404

Blast-furnace performance with coal-dust injection  

SciTech Connect

For the blast furnace shop at OAO Alchevskii Metallurgicheskii Kombinat (AMK) the injection of pulverized fuel is promising. Preliminary steps toward its introduction are underway, including analytical research. In this context, blast furnace performance when using pulverized coal is calculated in this study.

G.G. Vasyura [OAO Alchevskii Metallurgicheskii Kombinat, Alchevsk (Russian Federation)

2007-07-01

405

General view of blast furnace "A"; looking southeast; The building ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

General view of blast furnace "A"; looking southeast; The building to the right is the crucible steel building - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

406

Optimization of an Automatic Blast Furnace through Integrated Simulation Modeling  

Microsoft Academic Search

The objective of this study was to develop an integrated simulation model of an automatic blast furnace in a full-scale steelmaking factory. The integrated simulation model introduces a set of optimizing alternatives through sensitivity analysis. The simulation model is built by considering all major and detailed operations and interacting systems of the blast furnace workshop. The workshop is composed two

Ali Azadeh; S. Farid Ghaderi

2006-01-01

407

Blast Impact on Aluminum Foam Composite Sandwich Panels  

Microsoft Academic Search

Sandwich aluminum foam structures are being considered for energy absorption applications, crashworthiness, protection of transformer housings, and structural safety. Blast loading is one such phenomenon that is a potential threat to such structures. This study examines LS-DYNA modeling for aluminum foam sandwich composites subjected to blast loads. The sandwich composite was designed using polymer composite facesheets and aluminum foam as

Rajan Sriram; Uday K. Vaidya

408

VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING SKIP HOIST, DUST CATCHER AND STOCK BINS IN THE FOREGROUND. #2 CASTING SHED IS TO THE LEFT, HOT BLAST MAIN IS ON THE RIGHT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

409

Repeated blast exposures cause brain DNA fragmentation in mice.  

PubMed

The pathophysiology of blast-induced traumatic brain injury (TBI) and subsequent behavioral deficits are not well understood. Unraveling the mechanisms of injury is critical to derive effective countermeasures against this form of neurotrauma. Preservation of the integrity of cellular DNA is crucial for the function and survival of cells. We evaluated the effect of repeated blast exposures on the integrity of brain DNA and tested the utility of cell-free DNA (CFD) in plasma as a biomarker for the diagnosis and prognosis of blast-induced polytrauma. The results revealed time-dependent breakdown in cellular DNA in different brain regions, with the maximum damage at 24 h post-blast exposures. CFD levels in plasma showed a significant transient increase, which was largely independent of the timing and severity of brain DNA damage; maximum levels were recorded at 2 h after repeated blast exposure and returned to baseline at 24 h. A positive correlation was observed between the righting reflex time and CFD level in plasma at 2 h after blast exposure. Brain DNA damage subsequent to repeated blast was associated with decreased mitochondrial membrane potential, increased release of cytochrome C, and up-regulation of caspase-3, all of which are indicative of cellular apoptosis. Shock-wave-induced DNA damage and initiation of mitochondrial-driven cellular apoptosis in the brain after repeated blast exposures indicate that therapeutic strategies directed toward inhibition of DNA damage or instigation of DNA repair may be effective countermeasures. PMID:24074345

Wang, Ying; Arun, Peethambaran; Wei, Yanling; Oguntayo, Samuel; Gharavi, Robert; Valiyaveettil, Manojkumar; Nambiar, Madhusoodana P; Long, Joseph B

2014-03-01

410

Evaluation of the power of the distributed blast type explosive  

Microsoft Academic Search

Many works have been done on power evaluation of explosives and some evaluation methods presented. However, because of the differences of the explosion characteristics between distributed blast and common condensed explosive, a more reasonable way for evaluating the power of distributed blast is needed. In the paper, for a given range in space, a TNT equivalency method is proposed. Both

Huang Rui; Yang Lizhong; Chen Wanghua; Liu Jiacong; Fan Weicheng

2002-01-01

411

The balloon-borne large aperture submillimeter telescope (BLAST)  

Microsoft Academic Search

This thesis presents a description of the instrumentation and Galactic science from the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). BLAST was designed to conduct large area submillimeter surveys to constrain the star formation history of the high-redshift universe and to probe the earliest stages of star formation within our own galaxy. It operates on a balloon platform at an altitude

Christopher Semisch; J. J. Bock; E. L. Chapin; J. Chung; M. J. Devlin; S. Dicker; M. Griffin; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; J. Klein; C. J. MacTavish; G. Marsden; P. G. Martin; T. G. Martin; P. Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; M. Rex; D. Scott; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; D. V. Wiebe

2007-01-01

412

Pressurized water model of the blast furnace hearth drainage  

Microsoft Academic Search

In the process of making iron, the liquid level at the blast furnace hearth is one important effect to consider in the operation. The liquid level is check in order to have a smooth running process. Many numerical methods have been done and analyzed in order to have an understanding of the liquid behavior inside the blast furnace. All numerical

Pedro Alvarez

2011-01-01

413

Experimental Studies of Mitigation Materials for Blast Induced Tbi  

NASA Astrophysics Data System (ADS)

The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. Our hypothesis is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were dynamically loaded using a small scale blast produced by an explosive driven shock tube housing gram-scale explosive charges. The transmitted blast profiles were analyzed for variations in impulse characteristics and frequency components as compared to standard free field profiles. The results showed a rounding effect of the transmitted blast profile for all samples with the effects of the high density fillers surpassing all others tested. These results lead to a conclusion that low porosity, high density materials offer superior attenuation by reducing air blast features and spatially distributing the transmitted wave.

Alley, M. D.; Son, S. F.; Christou, G.; Goel, R.; Young, L.

2009-12-01

414

Blunt Trauma From Blast-Induced Building Debris.  

National Technical Information Service (NTIS)

Protecting people from blast effects is a primary focus of current research. While direct blast effects can be injurious (e.g., causing ear drum damage or, in the case of more severe pressures, lung damage), the primary injury mechanism for occupants of a...

D. Bogosian, H. D. Avanessian

2004-01-01

415

Blast-related traumatic brain injury research gaps”  

Microsoft Academic Search

The DoD Blast Injury Research Program was established at the direction of Congress in the FY 2006 National Defense Authorization Act to coordinate and manage the medical research efforts and programs of the DoD relating to the prevention, mitigation, and treatment of blast injuries. The Secretary of Defense has designated the Secretary of the Army as the Executive Agent (EA)

M. J. Leggieri

2009-01-01

416

Blast Shocks in Quasi-Two-Dimensional Supersonic Granular Flows  

Microsoft Academic Search

In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and

J. F. Boudet; J. Cassagne; H. Kellay

2009-01-01

417

AZIMUTHAL VARIATION OF RADIATION OF SEISMIC ENERGY FROM CAST BLASTS  

E-print Network

AZIMUTHAL VARIATION OF RADIATION OF SEISMIC ENERGY FROM CAST BLASTS D. Craig Pearson Brian W. Stump VARIATION OF RADIATION OF SEISMIC ENERGY FROM CAST BLASTS D. Craig Pearson and Brian W. Stump Los Alamos network of three-component seismic sensors were deployed around a large cast shot in the Black Thunder

418

Pathways toward understanding Macroscopic Quantum Phenomena  

NASA Astrophysics Data System (ADS)

Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a measure of quantumness here and pick out these somewhat counter-intuitive examples to show that there are blind spots worthy of our attention and issues which we need to analyze closer. Our purpose is to try to remove the stigma that quantum only pertains to micro, in order to make way for deeper probes into the conditions whereby quantum features of macroscopic systems manifest.

Hu, B. L.; Suba?i, Y.

2013-06-01

419

Cascade PSI-BLAST web server: a remote homology search tool for relating protein domains  

E-print Network

Cascade PSI-BLAST web server: a remote homology search tool for relating protein domains R. Bhadra1 PSI-BLAST where we perform PSI-BLAST for many `generations', initiating searches from new homologues as well. Such a rigorous propagation through generations of PSI-BLAST employs effectively the role

Srinivasan, N.

420

Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations  

Microsoft Academic Search

As explosive blasts continue to cause casualties in both civil and military environments, there is a need to identify the dynamic interaction of blast loading with structures, to know the shock mitigating mechanisms and, most importantly, to identify the mechanisms of blast trauma. This paper examines the air-blast simulation using Arbitrary Lagrangian Eulerian (ALE) multi-material formulation. It will explain how

Mehdi Sotudeh Chafi; Ghodrat Karami; Mariusz Ziejewski

2009-01-01

421

Bayesian nonparametric learning of complex dynamical phenomena  

E-print Network

The complexity of many dynamical phenomena precludes the use of linear models for which exact analytic techniques are available. However, inference on standard nonlinear models quickly becomes intractable. In some cases, ...

Fox, Emily Beth

2009-01-01

422

A technique for creating new visual phenomena  

E-print Network

This paper outlines a technique for creating new visual phenomena by proposing a systematic method of using existing media in novel manners. The technique involve s the random and purposeful manipulation of person-media ...

Ritter, Donald

1988-01-01

423

Classifying prion and prion-like phenomena.  

PubMed

The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena. PMID:24549098

Harbi, Djamel; Harrison, Paul M

2014-01-01

424

Ambroise August Liébeault and psychic phenomena.  

PubMed

Some nineteenth-century hypnosis researchers did not limit their interest to the study of the conventional psychological and behavioral aspects of hypnosis, but also studied and wrote about psychic phenomena such as mental suggestion and clairvoyance. One example, and the topic of this paper, was French physician Ambroise August Liébeault (1823-1904), who influenced the Nancy school of hypnosis. Liébeault wrote about mental suggestion, clairvoyance, mediumship, and even so-called poltergeists. Some of his writings provide conventional explanations of the phenomena. Still of interest today, Liébeault's writings about psychic phenomena illustrate the overlap that existed during the nineteenth-century between hypnosis and psychic phenomena--an overlap related to the potentials of the mind and its subconscious activity. PMID:19862897

Alvarado, Carlos S

2009-10-01

425

Recent improvements in casthouse practices at the Kwangyang blast furnaces  

SciTech Connect

POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

1997-12-31

426

Note: A table-top blast driven shock tube.  

PubMed

The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test. PMID:21198058

Courtney, Michael W; Courtney, Amy C

2010-12-01

427

Note: A table-top blast driven shock tube  

NASA Astrophysics Data System (ADS)

The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

Courtney, Michael W.; Courtney, Amy C.

2010-12-01

428

A Multiagent Approach to Modelling Complex Phenomena  

Microsoft Academic Search

Designing models of complex phenomena is a difficult task in engineering that can be tackled by composing a number of partial\\u000a models to produce a global model of the phenomena. We propose to embed the partial models in software agents and to implement\\u000a their composition as a cooperative negotiation between the agents. The resulting multiagent system provides a global model

Francesco Amigoni; Viola Schiaffonati

2008-01-01

429

Reproductive phenomena of a sexual buffelgrass plant  

E-print Network

lines apomictic lines. 21 22 REPRODUCTIVE PHENOMENA OF A SEXUAL BUFFELGRASS PLANT INTRODUCTION Buffelgrass, Pennisetum ciliare (L. ) Link, is a polymorphic, perennial, warm-season, bunch grass with a native range extending from Africa to India... lines apomictic lines. 21 22 REPRODUCTIVE PHENOMENA OF A SEXUAL BUFFELGRASS PLANT INTRODUCTION Buffelgrass, Pennisetum ciliare (L. ) Link, is a polymorphic, perennial, warm-season, bunch grass with a native range extending from Africa to India...

Taliaferro, Charles Millard

2012-06-07

430

Clustering and other exotic phenomena in nuclei  

Microsoft Academic Search

.   Nuclei feature a rich variety of many-body phenomena. Especially the clustering of nucleons, which leads to molecule like\\u000a structures, and halos formed by weakly bound nucleons are regarded as exotic phenomena that standard many-body methods like\\u000a the shell\\u000a model have difficulties to describe. On the other hand cluster models that build in such structures explicitly use very simplistic\\u000a effective

T. Neff; H. Feldmeier

2008-01-01

431

An Econophysics Model for the Migration Phenomena  

E-print Network

Knowing and modelling the migration phenomena and especially the social and economic consequences have a theoretical and practical importance, being related to their consequences for development, economic progress (or as appropriate, regression), environmental influences etc. One of the causes of migration, especially of the interregional and why not intercontinental, is that resources are unevenly distributed, and from the human perspective there are differences in culture, education, mentality, collective aspirations etc. This study proposes a new econophysics model for the migration phenomena.

Gheorghiu, Anca

2012-01-01

432

Induction Phenomena in Photosynthesis of Isolated Spinach Chloroplasts  

Microsoft Academic Search

IN a number of papers concerning the induction phenomena during photosynthesis1-5 I have determined the interrelationship between time and photo-synthetic intensity as expressed by the photosynthesis time-curve. The sample plants used were mainly various species of moss4. In most cases the rate of photosynthesis was measured in terms of uptake of carbon dioxide ; but in a few cases the

Knud Vejlby

1960-01-01

433

Human head-neck computational model for assessing blast injury.  

PubMed

A human head finite element model (HHFEM) was developed to study the effects of a blast to the head. To study both the kinetic and kinematic effects of a blast wave, the HHFEM was attached to a finite element model of a Hybrid III ATD neck. A physical human head surrogate model (HSHM) was developed from solid model files of the HHFEM, which was then attached to a physical Hybrid III ATD neck and exposed to shock tube overpressures. This allowed direct comparison between the HSHM and HHFEM. To develop the temporal and spatial pressures on the HHFEM that would simulate loading to the HSHM, a computational fluid dynamics (CFD) model of the HHFEM in front of a shock tube was generated. CFD simulations were made using loads equivalent to those seen in experimental studies of the HSHM for shock tube driver pressures of 517, 690 and 862 kPa. Using the selected brain material properties, the peak intracranial pressures, temporal and spatial histories of relative brain-skull displacements and the peak relative brain-skull displacements in the brain of the HHFEM compared favorably with results from the HSHM. The HSHM sensors measured the rotations of local areas of the brain as well as displacements, and the rotations of the sensors in the sagittal plane of the HSHM were, in general, correctly predicted from the HHFEM. Peak intracranial pressures were between 70 and 120 kPa, while the peak relative brain-skull displacements were between 0.5 and 3.0mm. PMID:23010219

Roberts, J C; Harrigan, T P; Ward, E E; Taylor, T M; Annett, M S; Merkle, A C

2012-11-15

434

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15

435

Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method  

NASA Astrophysics Data System (ADS)

Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

Khandelwal, Manoj; Monjezi, M.

2013-03-01

436

BLAST OBSERVATIONS OF THE SOUTH ECLIPTIC POLE FIELD: NUMBER COUNTS AND SOURCE CATALOGS  

SciTech Connect

We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg{sup 2} field near the South Ecliptic Pole at 250, 350, and 500 {mu}m. The median 1{sigma} depths of the maps are 36.0, 26.4, and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89, and 61 sources with S/N {>=}4 at 250, 350, 500 {mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance {>=}4{sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.

Valiante, Elisabetta; Braglia, Filiberto G.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo [Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Carol Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Olmi, Luca [Istituto di Radioastronomia, Largo E. Fermi 5, I-50125, Firenze (Italy); Patanchon, Guillaume [Laboratoire APC, 10, rue Alice Domon et Leonie Duquet 75205 Paris (France); Rex, Marie, E-mail: valiante@phas.ubc.c [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

2010-12-15

437

Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.  

SciTech Connect

U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

2008-04-01

438

The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion  

NASA Astrophysics Data System (ADS)

The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

Dewey, M. C.; Dewey, J. M.

2014-07-01

439

The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion  

NASA Astrophysics Data System (ADS)

The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

Dewey, M. C.; Dewey, J. M.

2014-11-01

440

MONITORING OF MENISCUS THERMAL PHENOMENA WITH THERMOCOUPLES IN CONTINUOUS CASTING OF STEEL  

E-print Network

MONITORING OF MENISCUS THERMAL PHENOMENA WITH THERMOCOUPLES IN CONTINUOUS CASTING OF STEEL B, VA 24502-4203 Keywords: Thermocouples, Sensors, Measurement, Continuous casting, Modeling, Level of transient heat conduction to investigate the potential capabilities of mold thermocouples to detect

Thomas, Brian G.

441

Impact and Blast Resistance of Sandwich Plates  

NASA Astrophysics Data System (ADS)

Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

442

BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND  

SciTech Connect

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg{sup 2}, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 mum sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 +- 0.59, 4.93 +- 0.34, and 2.27 +- 0.20 nW m{sup -2} sr{sup -1} at 250, 350, and 500 mum, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 mum-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z >= 1.2 increases with wavelength, with 60% from high-redshift sources at 500 mum. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 mum-faint sources than that for 24 mum-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 mum, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 mum-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.

Marsden, Gaelen; Chapin, Edward L.; Halpern, Mark; Ngo, Henry [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de AstrofIsica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Magnelli, Benjamin [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d'Astrophysique, Bat. 709, CEA-Saclay, F-91191 gif-sur-Yvette Cedex (France); Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Olmi, Luca [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, Puerto Rico 00931 (United States); Patanchon, Guillaume, E-mail: gmarsden@phas.ubc.c [Universite Paris Diderot, Laboratoire APC, 10, rue Alice Domon et Leonie Duquet 75205 Paris (France)

2009-12-20

443

Computational Modeling of Human Head Under Blast Shailesh Ganpule, Dr. Linxia Gu, Dr. Guoxin Cao, Dr.Namas Chandra  

E-print Network

of TBI Brain: macro scale e.g. Blast induced: Strain/stress, acceleration and deceleration Brain TBI: Head acceleration Blast TBI: not clear Explosive induced blast time P Compression Tension Blast;Presentation Objective: To understand role of helmet in blast induced Traumatic Brain Injury (TBI

Farritor, Shane

444

Traumatic brain injury produced by exposure to blasts, a critical problem in current wars: biomarkers, clinical studies, and animal models  

NASA Astrophysics Data System (ADS)

Traumatic brain injury (TBI) resulting from exposure to blast energy released by Improvised Explosive Devices (IEDs) has been recognized as the "signature injury" of Operation Iraqi Freedom and Operation Enduring Freedom. Repeated exposure to mild blasts may produce subtle deficits that are difficult to detect and quantify. Several techniques have been used to detect subtle brain dysfunction including neuropsychological assessments, computerized function testing and neuroimaging. Another approach is based on measurement of biologic substances (e.g. proteins) that are released into the body after a TBI. Recent studies measuring biomarkers in CSF and serum from patients with severe TBI have demonstrated the diagnostic, prognostic, and monitoring potential. Advancement of the field will require 1) biochemical mining for new biomarker candidates, 2) clinical validation of utility, 3) technical advances for more sensitive, portable detectors, 4) novel statistical approach to evaluate multiple biomarkers, and 5) commercialization. Animal models have been developed to simulate elements of blast-relevant TBI including gas-driven shock tubes to generate pressure waves similar to those produced by explosives. These models can reproduce hallmark clinical neuropathological responses such as neuronal degeneration and inflammation, as well as behavioral impairments. An important application of these models is to screen novel therapies and conduct proteomic, genomic, and lipodomic studies to mine for new biomarker candidates specific to blast relevant TBI.

Dixon, C. Edward

2011-06-01

445

NASA TEERM Project: Corn Based Blast Media  

NASA Technical Reports Server (NTRS)

Coatings removal is a necessary part of the maintenance, repair, and overhaul activities at many NASA centers and contractor support sites. Sensitive substrates, such as composites and thin aluminum alloys require special handling such as the use of chemical stripping, pneumatic hand sanding, or softer blast media. Type V, acrylic based PMB is commonly used to de-coat, strip, or de-paint the delicate substrates of the Solid Rocket Boosters (SRBs) currently used in support of the Shuttle and slated to be used in support of CxP.

Griffin, Chuck

2009-01-01

446

Fluid Flow Phenomena during Welding  

SciTech Connect

MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

Zhang, Wei [ORNL

2011-01-01

447

Simulations of Stochastic Biological Phenomena  

NSDL National Science Digital Library

This Teaching Resource provides lecture notes, slides, and a student assignment for a two-part lecture that introduces stochastic modeling of biological systems. The first lecture uses biological examples to present the concept of cell-to-cell variability and makes the connection between the variability of single-cell measurements and concepts from statistical mechanics and probability theory. This section makes the point that for low copy number of a species, the usual differential equation formalism is no longer applicable and needs to be replaced by a probabilistic approach based on the so-called Master Equation. As an example, a simple model of gene transcription is discussed in detail, the different contributions to the relevant Master Equation are highlighted, and the equation itself is derived. The second lecture describes how, for more complex and biologically interesting applications, direct solution of the Master Equation becomes difficult. Gillespie’s algorithm, which is used in most cases of biological interest, is then introduced as a practical alternative. The lecture delves into the crux of Gillespie’s algorithm, which entails the drawing of two random numbers at each time step. It establishes the corresponding formalism, details the connection between chemical rate constants and Gillespie rates, and culminates in a description and explanation of a core MATLAB program for the transcriptional model considered in the first lecture. This core program, written for a single cell, is expanded by the students in the homework assignment to consider both transcription and translation.

Fernand Hayot (New York;Mount Sinai School of Medicine REV)

2011-09-27

448

[Update: blast and explosion trauma].  

PubMed

In recent decades, acoustic shock and explosion traumas have increased in frequency in the general population. Beside the use of fireworks and firearms, airbag ignitions and explosions caused by terror or suicidal acts are also relevant. Depending on duration and strength of the sound pressure affecting the human ear, isolated inner ear damage or additional ear drum perforation and interruption of the middle ear ossicle chain can result. By means of otoscopy, pure tone audiometry, measurement of otoacoustic emissions, and other neurootological examinations, the severity of the trauma can be determined. With prompt and adequate therapy, permanent hearing loss can be minimized. In particular, the measurement of otoacoustic emissions allows conclusions to be made on the functionality of the outer hair cells which are damaged first in most cases. Histological investigations on noise-exposed cochleas show extensive damage to the outer hair cells in the frequency range between 1.0 and 4.0 kHz, which correlates well with audiometric measurements. PMID:21769579

van de Weyer, P S; Praetorius, M; Tisch, M

2011-08-01

449

Polarization phenomena in quantum chromodynamics  

SciTech Connect

The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron helicity retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

Brodsky, S.J.

1994-03-01

450

Experimental Studies of Mitigation Materials for Blast Induced TBI  

NASA Astrophysics Data System (ADS)

The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are known or expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. The theory applied to this research is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were loaded according to a small scale blast produced by an explosive driven shock tube housing gram-range charges. The transmitted blast profiles were analyzed for variations in impulse characteristics a