Sample records for measuring fuel contamination

  1. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  2. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  3. Revised procedure for the measurement of particulate matter in Naval JP5 aviation turbine fuel (F44; AVCAT) using the contaminated fuel detector (CFD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVea, G.G.; Power, A.J.

    1995-04-01

    USA Military Specification MIL-D-22612 provides a procedure for measurement of particulate levels in Naval aviation gas turbine engine JP5 fuel (F44; RAN AVCAT) using the contaminated fuel detector (CFD). Evaluation of this procedure within the specification has revealed significant shortcomings in the application of the theoretical principles upon which the method is based. CFD measurements have been compared to gravimetric results from ASTM D2276, which provides accurate determination of concentrations of particulate matter in JP5. Inaccuracies evident in the CFD readings have been found to relate to the high sensitivity of the CFD to variations in fuel particulate extinction coefficientsmore » (ECs) (relating to fuel sediment colour) and to an error in the application of light transmittance theory in the recommended method. This report demonstrates that accurate CFD determination of JP5 particulate concentrations depends on spectrophotometric measurement of a narrow range of ECs of particulate matter. A range of fuel sediments derived from Australian naval ship and shore fuel storages was studied. It was observed that the CFD plot, which is in light transmittance mode, in theory provides a curved line graph against the gravimetric test results, whereas MIL-D-22612 describes a straight line graph. It was concluded that this must be an approximation. However, conversion of light transmittance data derived from the CFD into the reciprocal logarithm to give light absorbance data was shown to give a straight line graph which corresponded well with the gravimetric results. This relationship depended on construction of the graph on the basis of a narrow range of known particulate ECs. The conversion to absorbance gave improved correlation for JP5 particulate measurements with gravimetric procedures, using the CFD.« less

  4. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    DOE PAGES

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less

  5. The Effect of Airborne Contaminants on Fuel Cell Performance and Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Pierre, Jean; Pasaogullari, Ugur; Cheng, Tommy

    The impact of contaminants on fuel cell performance was examined to document air filter specifications (prevention) and devise recovery procedures (maintenance) that are effective at the system level. Eight previously undocumented airborne contaminants were selected for detailed studies and characterization data was used to identify operating conditions that intensifying contamination effects. The use of many and complementary electrochemical, chemical and physical characterization methods and the derivation of several mathematical models supported the formulation of contamination mechanisms and the development of recovery procedures. The complexity of these contamination mechanisms suggests a shift to prevention and generic maintenance measures. Only two ofmore » the selected contaminants led to cell voltage losses after injection was interrupted. Proposed recovery procedures for calcium ions, a component of road de-icers, dessicants, fertilizers and soil conditioners, were either ineffective or partly effective, whereas for bromomethane, a fumigant, the cell voltage was recovered to its initial value before contamination by manipulating and sequencing operating conditions. However, implementation for a fuel cell stack and system remains to be demonstrated. Contamination mechanisms also led to the identification of membrane durability stressors. All 8 selected contaminants promote the formation of hydrogen peroxide, a known agent that can produce radicals that attack the ionomer and membrane molecular structure whereas the dehydrating effect of calcium ions on the ionomer and membrane increases their brittleness and favors the creation of pinholes under mechanical stresses. Data related to acetylene, acetonitrile and calcium ions are emphasized in the report.« less

  6. Update on the Us Army’s Fuel Contamination Detection Efforts

    DTIC Science & Technology

    2011-04-04

    Dual Eng flameout Contaminated with water and particulate 14 2009 C-130 USAF Jet Fuel Contamination with Fatty Acid Methyl Ester ( FAME ) BioFuel 15 20...DRNEN. WARRGHTER FOCUSED. Summary of Incidents • US Air Force – 2 - T-37 Super Absorbent Polymer 1 C 130 FAME Fatty Methyl Ester

  7. Overcoming bacterial contamination of fuel ethanol fermentations -- alterntives to antibiotics

    USDA-ARS?s Scientific Manuscript database

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is kn...

  8. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields: (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination; (2...

  9. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  10. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  11. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    DTIC Science & Technology

    2014-06-19

    product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or slugs of water in the fuel...methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel industry is...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18

  12. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  13. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  14. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    USGS Publications Warehouse

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  15. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  16. Inhibitors of biofilm formation by fuel ethanol contaminants

    USDA-ARS?s Scientific Manuscript database

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...

  17. Assessment of chemical and material contamination in waste wood fuels--A case study ranging over nine years.

    PubMed

    Edo, Mar; Björn, Erik; Persson, Per-Erik; Jansson, Stina

    2016-03-01

    The increased demand for waste wood (WW) as fuel in Swedish co-combustion facilities during the last years has increased the import of this material. Each country has different laws governing the use of chemicals and therefore the composition of the fuel will likely change when combining WW from different origins. To cope with this, enhanced knowledge is needed on WW composition and the performance of pre-treatment techniques for reduction of its contaminants. In this study, the chemical and physical characteristics of 500 WW samples collected at a co-combustion facility in Sweden between 2004 and 2013 were investigated to determine the variation of contaminant content over time. Multivariate data analysis was used for the interpretation of the data. The concentrations of all the studied contaminants varied widely between sampling occasions, demonstrating the highly variable composition of WW fuels. The efficiency of sieving as a pre-treatment measure to reduce the levels of contaminants was not sufficient, revealing that sieving should be used in combination with other pre-treatment methods. The results from this case study provide knowledge on waste wood composition that may benefit its management. This knowledge can be applied for selection of the most suitable pre-treatments to obtain high quality sustainable WW fuels. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Assessment of organic contaminants in emissions from refuse-derived fuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrostowski, J.; Wait, D.; Kwong, E.

    1985-09-01

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source Assessment Sampling System (SASS) was used to sample the stack gas; Level 1 methodology was used to analyze the organic-contaminant levels. Combustion efficiencies of 93 to 98 percent were achieved in the test burns. Combustion of the EcoFuel generated fewer organic emissions than combustion of coal at similar combustion temperatures. The fine particulate collected by the SASS train filter contained higher concentrations of extractable organics thanmore » the reactor fly ash and the SASS cyclone samples. Combustion of a toluene/EcoFuel mix generated a large number of benzene derivatives not seen in the combustion of pure EcoFuel. Polycyclic aromatic hydrocarbons were the dominant organic compounds contained in the XAD-2 resin extract from coal combustion. A number of different priority pollutants were identified in the samples collected.« less

  19. Influence of air contaminants on planar, self-breathing hydrogen PEM fuel cells in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Biesdorf, Johannes; Zamel, Nada; Kurz, Timo

    2014-02-01

    In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.

  20. Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240

    DTIC Science & Technology

    2015-11-05

    Undissolved Water in Aviation Turbine Fuels per ASTM D3240 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Joel Schmitigal... water ) in Aviation Turbine Fuels per ASTM D3240 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water , undissolved water , Aqua-Glo 16...Michigan 48397-5000 Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240 Joel Schmitigal Force

  1. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.

    Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.

  2. Survey of Contamination in Fuel Tanks of DD-963 Class Ships.

    DTIC Science & Technology

    1982-07-23

    and Identifly by block num0b.’) Diesel fuel Fuel sludge Bacteria Fuel contamination Cladosporium resinae Sludge composition assess sources of... resinae ) predominated. Viable sulfate reducers were sometimes present but rarely sulfide. Below pH 4 bacteria were rare and fungi and yeasts were numerous...but the variety tended to be restricted to C. resinae and Candida. Differences in viable microbial varieties present in these sludge categories are

  3. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    PubMed

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  4. Modeling bacterial contamination of fuel ethanol fermentation.

    PubMed

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  5. Evolution of Fuel-Air and Contaminant Clouds Resulting from a Cruise Missile Explosion Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, A S; Kul, A L

    2005-06-22

    A low-mach-number hydrodynamics model has been used to simulate the evolution of a fuel-air mixture and contaminant cloud resulting from the detonation of a cruise missile. The detonation has been assumed to be non-nuclear. The cloud evolution has been carried out to a time of 5.5 seconds. At this time the contaminant has completely permeated the initial fuel-air mixture cloud.

  6. Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates

    DTIC Science & Technology

    2016-12-01

    to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during

  7. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland

    NASA Astrophysics Data System (ADS)

    Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.

    2009-07-01

    The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.

  8. Army’s Evalution of Aviation Fuel Contaminants Using Electronic Sensors

    DTIC Science & Technology

    2012-04-13

    and free water contamination challenges, testing of mechanical integrity in response to pressure and material compatibility. 15. SUBJECT TERMS 16...4406 • Turbidity/photometers used in beer/ wine industry • Challenge – Being able to determine both particulate and water contamination...looking at real-time methods for determining fuel cleanliness • Some “re-inventing of the wheel” occurred • Products went to the field without

  9. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  10. Soil invertebrate community change over fuel-contaminated sites on a subantarctic island: An ecological field-based line of evidence for site risk assessment.

    PubMed

    Wasley, Jane; Mooney, Thomas J; King, Catherine K

    2016-04-01

    A number of fuel spills, of both recent and historic origins, have occurred on World Heritage-listed subantarctic Macquarie Island. Sites contaminated by mainly diesel fuels are undergoing remediation by the Australian Antarctic Division. The risks posed by these sites are being managed using a "weight of evidence" approach, for which this study provides a preliminary line of evidence for the ecological assessment component of this site management decision framework. This knowledge is pertinent, given the absence of environmental guidelines for fuel contaminants in subantarctic ecosystems. We provide a field-based, site-specific ecological risk assessment for soil invertebrate communities across the fuel spill sites, before the commencement of in situ remediation activities. Springtails (Collembola) were the most abundant taxa. Springtail community patterns showed only limited correlations with the level of fuel contamination at the soil surface, even when elevated levels occurred in the substratum layers. Of the environmental variables measured, community patterns were most strongly correlated with vegetation cover. We identify a suite of 6 species that contribute most to the community dynamics across these sites. A subset of these we propose as useful candidates for future development of single-species toxicity tests: Folsomotoma punctata, Cryptopygus caecus, Cryptopygus antarcticus and Parisotoma insularis. Findings from this study advance our understanding of soil invertebrate community dynamics within these contaminated sites, directly contributing to the improved management and restoration of the sites. Not only does this study provide an important line of evidence for the island's ecological risk assessment for fuel contaminants, it also enhances our understanding of the potential impact of fuels at other subantarctic islands. © 2015 SETAC.

  11. Fuel Cell System Contaminants Material Screening Data | Hydrogen and Fuel

    Science.gov Websites

    contaminants; solution conductivity; pH; total organic carbon (TOC); cyclic voltammetry (CV); membrane conductivity) and organics (measured as total organic carbon) in leachate solutions. Each plot shows the ) contaminants on voltage loss over time for each materials class. GCMS Summary: Top 4 Organic Compounds by

  12. Fuel Cell System Contaminants Material Screening Data: Text Version |

    Science.gov Websites

    explore the results of fuel cell system contaminants studies. Total Anions [IC] and Total Concentration of Elements [ICP] in Leachate Solutions Material Class Manufacturer Trade Name and Use Grade ICP Total (ppm ) IC Total (ppm) Total Organic Carbon (ppm) Solution Conductivity (µS/cm) Adhesives LORD 2-part

  13. Catalase measurement: A new field procedure for rapidly estimating microbial loads in fuels and water-bottoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passman, F.J.; Daniels, D.A.; Chesneau, H.F.

    1995-05-01

    Low-grade microbial infections of fuel and fuel systems generally go undetected until they cause major operational problems. Three interdependent factors contribute to this: mis-diagnosis, incorrect or inadequate sampling procedures and perceived complexity of microbiological testing procedures. After discussing the first two issues, this paper describes a rapid field test for estimating microbial loads in fuels and associated water. The test, adapted from a procedure initially developed to measure microbial loads in metalworking fluids, takes advantage of the nearly universal presence of the enzyme catalase in the microbes that contaminated fuel systems. Samples are reacted with a peroxide-based reagent; liberating oxygenmore » gas. The gas generates a pressure-head in a reaction tube. At fifteen minutes, a patented, electronic pressure-sensing device is used to measure that head-space pressure. The authors present both laboratory and field data from fuels and water-bottoms, demonstrating the excellent correlation between traditional viable test data (acquired after 48-72 hours incubation) and catalase test data (acquired after 15 min.-4 hours). We conclude by recommending procedures for developing a failure analysis data-base to enhance our industry`s understanding of the relationship between uncontrolled microbial contamination and fuel performance problems.« less

  14. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  15. Adaptations of indigenous bacteria to fuel contamination in karst aquifers in south-central Kentucky

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Agymang, Daniel T.; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  16. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  17. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  18. Resolving Bacterial Contamination of Fuel Ethanol Fermentations with Beneficial Bacteria – an Alternative to Antibiotic Treatment

    USDA-ARS?s Scientific Manuscript database

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly “stuck fermentations.” Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is kn...

  19. Biodegradation of effluent contaminated with diesel fuel and gasoline.

    PubMed

    Vieira, P A; Vieira, R B; de França, F P; Cardoso, V L

    2007-02-09

    We studied the effects of fuel concentration (diesel and gasoline), nitrogen concentration and culture type on the biodegradation of synthetic effluent similar to what was found at inland fuel distribution terminals. An experimental design with two levels and three variables (2(3)) was used. The mixed cultures used in this study were obtained from lake with a history of petroleum contamination and were named culture C(1) (collected from surface sediment) and C(2) (collected from a depth of approximately 30cm). Of the parameters studied, the ones that had the greatest influence on the removal of total petroleum hydrocarbons (TPH) were a nitrogen concentration of 550mg/L and a fuel concentration of 4% (v/v) in the presence of culture C(1). The biodegradability study showed a TPH removal of 90+/-2% over a process period of 49 days. Analysis using gas chromatography identified 16 hydrocarbons. The aromatic compounds did not degrade as readily as the other hydrocarbons that were identified.

  20. Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties.

    PubMed

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-06-01

    Fuel poverty affects 2.4 million UK homes leading to poor hygrothermal conditions and risk of mould and house dust mite contaminations, which in turn increases risk of asthma exacerbation. For the first time we assess how fuel poverty, occupants' risk perception and use of mechanical ventilation mediate the risk of mould contamination in social housing. Postal questionnaires were sent to 3867 social housing properties to collect adult risk perception, and demographic and environmental information on occupants. Participant details were linked to data pertaining to the individual properties. Multiple logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same housing estate. We used Structured Equation Modelling and Goodness of Fit analysis in mediation analyses to examine the role of fuel poverty, risk perception, use of ventilation and energy efficiency. Eighteen percent of our target social housing populations (671 households) were included into our study. High risk perception (score of 8-10) was associated with reduced risk of mould contamination in the bedrooms of children (OR 0.5 95% CI; 0.3-0.9) and adults (OR 0.4 95% CI; 0.3-0.7). High risk perception of living with inadequate heating and ventilation reduced the risk of mould contamination (OR 0.5 95% CI; 0.3-0.8 and OR 0.5 95% CI; 0.3-0.7, respectively). Participants living with inadequate heating and not heating due to the cost of fuel had an increased risk of mould contamination (OR 3.4 95% CI; 2.0-5.8 and OR 2.2 95% CI; 1.5-3.2, respectively). Increased risk perception and use of extractor fans did not mediate the association between fuel poverty behaviours and increased risk of mould contamination. Fuel poverty behaviours increased the risk of mould contamination, which corresponds with existing literature. For the first time we used mediation analysis to assess how this association maybe modified by occupant behaviours

  1. Effect of cationic contaminants on polymer electrolyte fuel cell performance

    NASA Astrophysics Data System (ADS)

    Qi, Jing; Wang, Xiaofeng; Ozdemir, M. Ozan; Uddin, Md. Aman; Bonville, Leonard; Pasaogullari, Ugur; Molter, Trent

    2015-07-01

    The effect of cationic contaminants on polymer electrolyte fuel cell (PEFC) performance is investigated via in-situ injection of dilute cationic salt solutions. Four foreign cations (K+, Ba2+, Ca2+, Al3+) are chosen as contaminants in this study due to their prevalence and chemical structure (e.g. valence), however contaminants that have already received extensive coverage in the literature like sodium and iron are excluded. It is found that the cells with Ba(ClO4)2 and Ca(ClO4)2 injection exhibit little cell performance change during the current hold test, and the cells with Al(ClO4)3 and KClO4 injection show larger cell performance changes, i.e. decreasing cell voltage and increasing cell resistance. These cells with in-situ contaminant injection have a tendency to recover a portion of the lost performance after the recovery test when switched back to supersaturated air. The degradation in cell performance with the presence of cationic contaminants is mainly due, in addition to the membrane resistance increase associated with replacing protons on the sulfonate groups, to the increase in mass transport resistance and decrease in electrochemical surface area.

  2. Application of bacteriophage endolysins to reduce Lactobacillus contamination during fuel ethanol fermentation

    USDA-ARS?s Scientific Manuscript database

    Bacterial contamination is a recurring problem in the fuel ethanol industry. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micronutrients required for optimal yeast growth. Antibiotics are frequent...

  3. Supercritical Fuel Measurements

    DTIC Science & Technology

    2012-09-01

    TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring

  4. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  5. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    PubMed

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p<0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  6. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    PubMed

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  7. Partitioning microbial respiration between jet fuel and native organic matter in an organic-rich long time-contaminated aquifer.

    PubMed

    Bugna, G C; Chanton, J P; Stauffer, T B; MacIntyre, W G; Libelo, E L

    2005-07-01

    The relative importance of jet fuel biodegradation relative to the respiration of natural organic matter in a contaminated organic-rich aquifer underlying a fire training area at Tyndall Air Force Base, Florida, USA was determined with isotopic measurements. Thirteen wells were sampled and analyzed for BTX (benzene, toluene, xylene), dissolved inorganic carbon (DIC) and CH4 concentrations, and delta13C and 14C of DIC. Results range from non-detectable to 3790 ppb, 1.4-24 mM, 0.2-776 microM, +5.8 per thousand to -22 per thousand, and from 52 to 99 pmc, respectively. Residual fuel was confined to two center wells underlying the fire training area. DIC and CH4 concentrations were elevated down-gradient of the contamination, but also at sites that were not in the apparent flow path of the contaminated groundwater. DIC exhibited greatest delta13C enrichment at highest DIC and CH4 concentrations indicating that CH4 production was an important respiration mode. Radiocarbon-depleted DIC was observed at sites with high hydrocarbon concentrations and down-gradient of the site. The results indicate that while natural attenuation was not rapidly reducing the quantity of free product overlying the aquifer at the site of contamination, it was at least constraining its flow away from the spill site. Apparently under the conditions of this study, BTX was degraded as rapidly as it was dissolved.

  8. Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria - An alternative to antibiotic treatment.

    PubMed

    Rich, Joseph O; Bischoff, Kenneth M; Leathers, Timothy D; Anderson, Amber M; Liu, Siqing; Skory, Christopher D

    2018-01-01

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is known that certain strains of lactic acid bacteria are capable of causing stuck fermentations, while other strains appear to be harmless. However, it was not previously known whether or how these strains interact one with another. In this study, more than 500 harmless strains of lactic acid bacteria were tested in a model system in combination with strains that cause stuck fermentations. Among these harmless strains, a group of beneficial strains was identified that restored ethanol production to near normal levels. Such beneficial strains may serve as an alternative approach to the use of antibiotics in fuel ethanol production. Published by Elsevier Ltd.

  9. Three-dimensional geologic modeling to determine the spatial attributes of hydrocarbon contamination, Noval Facility Fuel Farm, El Centro, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Mutch, S.; Padgett, D.

    An investigation was conducted at the Naval Air Facility located in El Centro (NAFEC), to determine the vertical and horizontal extent of hydrocarbon contamination at the facilities fuel farm. The fuel products are the result of tank and pipeline leakage, past tank cleaning, and past disposal of fuel dispensing and filter cleaning practices. Subsurface soil and groundwater data was collected via soil borings, monitoring wells, and CPT probes. Soil, groundwater, and analytical data were integrated using the LYNX geoscience modeling system (GMS). Interactive sessions with the data visualizer helped guide the modeling and identify data gaps. Modeling results indicate amore » continuous surface confining clay layer to a depth of about 12 to 15 ft. Groundwater is confined beneath this clay layer and monitoring wells indicate about 3 to 5 ft of artesian head. Hydrocarbon contamination is concentrated within this clay layer from about 5 to 12 ft below the ground surface. Residual fuel products located in the groundwater are attributed to slow leakage through the confirming clay layer. LYNX was also used to compute volumes of contaminated soil to aid in remediation cost analysis. Preliminary figures indicate about 60,000 yards[sup 3] of contaminated soil. Since the contamination is primarily confined to relatively impermeable clayey soils, site remediation will likely be ex-situ land farming.« less

  10. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft × 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallon...

  11. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method, or... in addition to the emissions measuring equipment. (b) The carbon balance procedure for measuring fuel consumption relates the carbon products in the exhaust to the amount of fuel burned during the test. This...

  12. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method, or... in addition to the emissions measuring equipment. (b) The carbon balance procedure for measuring fuel consumption relates the carbon products in the exhaust to the amount of fuel burned during the test. This...

  13. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method, or... in addition to the emissions measuring equipment. (b) The carbon balance procedure for measuring fuel consumption relates the carbon products in the exhaust to the amount of fuel burned during the test. This...

  14. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method, or... in addition to the emissions measuring equipment. (b) The carbon balance procedure for measuring fuel consumption relates the carbon products in the exhaust to the amount of fuel burned during the test. This...

  15. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  16. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE PAGES

    Huff, Kathryn

    2017-08-01

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  17. BIOGEOCHEMICAL EVIDENCE FOR MICROBIAL COMMUNITY CHANGE IN A JET FUEL HYDROCARBONS-CONTAMINATED AQUIFER

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, had been contaminated with JP-4 fuel hydrocarbons released after the crash of a tanker aircraft in October of 1988 Microbial biomass and community structure, associated with the aquifer sediments, were chara...

  18. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1992-01-01

    The backstreaming contamination in the Space Power Facility, Ohio, was measured using small size clean silicon wafers as contamination sensors placed at all measurement sites. Two ellipsometric models were developed to measure the oil film with the contamination film refractive index of DC 705: a continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. The island model improved the ellipsometric analysis quality parameter by up to two orders of magnitude. The continuous film model overestimated the oil volume by about 50 percent.

  19. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    NASA Astrophysics Data System (ADS)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and

  20. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    PubMed Central

    Gran-Scheuch, Alejandro; Fuentes, Edwar; Bravo, Denisse M.; Jiménez, Juan Cristobal; Pérez-Donoso, José M.

    2017-01-01

    Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems. PMID:28894442

  1. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  2. Monitoring of Free Water and Particulate Contamination of F-24 Fuel

    DTIC Science & Technology

    2016-04-20

    Reference herein to any specific commercial company, product , process, or service by trade name, trademark, manufacturer, or otherwise, does not...advertising or product endorsement purposes. Contracted Author As the author(s) is(are) not a Government employee(s), this document was only...14. ABSTRACT A study was conducted on the contaminant detection methods of fuel sensors which are capable of quantifying both free water (0

  3. Evaluation of Fatty Acid Methyl Ester (FAME) Contamination on the Thermal Stability Characteristics of Military Jet Fuels (JP-8 And JP-5)

    DTIC Science & Technology

    2013-12-01

    of increased contamination levels of FAME in Jet A, FAME material will likely be transported in the same conveyance as JP-5 – bringing with it the...is a blend of four common biodiesel (FAME) fuels from different feedstocks. All FAME contaminated fuels were prepared with this FAME material at a

  4. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    USDA-ARS?s Scientific Manuscript database

    Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...

  5. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing. Fuel flow is allowed for dilute testing. (b) The fuel flow...

  6. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel...

  7. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have a...

  8. A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements

    NASA Astrophysics Data System (ADS)

    Meier, Steven R.; Tveekrem, June L.; Keski-Kuha, Ritva A. M.

    1998-10-01

    In this article, a contamination-irradiation facility designed to measure contamination effects on far-ultraviolet optical surfaces is described. An innovative feature of the facility is the capability of depositing a contaminant, photopolymerizing the contaminant with far-ultraviolet light, and measuring the reflectance of the contaminated sample, all in situ. In addition to describing the facility, we present far-ultraviolet reflectance measurements for a contaminated mirror.

  9. Destruction of PCB Contaminated Fuel Oil in an Aluminum Melting Furnace

    NASA Astrophysics Data System (ADS)

    Sonksen, M. K.; Busch, Stephen P.

    1985-02-01

    Since the 1979 discovery that Alcoa Davenport Works' auxiliary fuel oil supply was contaminated with PCB's, facilities have been provided, and proven, to permit continued use of the oil in a production facility in an environmentally safe manner. This process has several significant benefits. These include energy conservation, with an overall savings of 2.3 × 1011 BTUs and the environmental benefit of destruction of the PCB. The process also eliminates the hazards of transport over long distances.

  10. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  11. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  12. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...

  13. Monopropellant thruster exhaust plume contamination measurements

    NASA Technical Reports Server (NTRS)

    Baerwald, R. K.; Passamaneck, R. S.

    1977-01-01

    The potential spacecraft contaminants in the exhaust plume of a 0.89N monopropellant hydrazine thruster were measured in an ultrahigh quartz crystal microbalances located at angles of approximately 0 deg, + 15 deg and + or - 30 deg with respect to the nozzle centerline. The crystal temperatures were controlled such that the mass adhering to the crystal surface at temperatures of from 106 K to 256 K could be measured. Thruster duty cycles of 25 ms on/5 seconds off, 100 ms on/10 seconds off, and 200 ms on/20 seconds off were investigated. The change in contaminant production with thruster life was assessed by subjecting the thruster to a 100,000 pulse aging sequence and comparing the before and after contaminant deposition rates. The results of these tests are summarized, conclusions drawn, and recommendations given.

  14. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    PubMed

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  15. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  16. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  17. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  18. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  19. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  20. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  1. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  2. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  3. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  4. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times andmore » species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.« less

  5. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 89.415 Section 89.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement...

  6. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 90.417 Section 90.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement...

  7. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 91.417 Section 91.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw...

  8. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J

    2010-08-01

    Experiments were designed to evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5 and B20). In experiments with additions of distilled water, all fuels supported biofilm formation. Changes in the water pH did not correlate with observations related to corrosion. In all exposures, aluminum 5052 was susceptible to pitting while stainless steel 304L exhibited passive behavior. Carbon steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5, B20, and B100.

  9. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobis cultivation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.; Gilbert, J. A.; Hill, G.

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samplesmore » (indicated by 'JW') was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.« less

  10. In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants

    DOEpatents

    Holman, Hoi-Ying N.

    2000-01-01

    The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.

  11. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  12. ASSESSMENT OF THE MICROBIAL POTENTIAL FOR NITRATE- ENHANCED BIOREMEDIATION OF A JP-4 FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A site that was contaminated with JP-4 jet fuel was characterized microbiologically to assess the feasibility of nitrate-enhanced bioremediation. The results of microcosm studies indicated that the mean pseudo zero-order rate constants for alkylbenzene biodegradation and NO3...

  13. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  14. Behaviour of conductivity improvers in jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dacre, B.; Hetherington, J.I.

    1995-05-01

    Dangerous accumulation of electrostatic charge can occur due to high speed pumping and microfiltration of fuel. This can be avoided by increasing the electrical conductivity of the fuel using conductivity improver additives. However, marked variations occur in the conductivity response of different fuels when doped to the same level with conductivity improver. This has been attributed to interactions of the conductivity improver with other fuel additives or fuel contaminants. The present work concentrates on the effects of fuel contaminants, in particular polar compounds, on the performance of the conductivity improver. Conductivity is the fuel property of prime interest. The conductivitymore » response of model systems of the conductivity improver STADIS 450 in dodecane has been measured and the effect on this conductivity of additions of model polar contaminants sodium naphthenate, sodium dodecyl benzene sulphonate, and sodium phenate have been measured. The sodium salts have been found to have a complex effect on the performance of STADIS 450, reducing the conductivity at low concentrations to a minimum value and then increasing the conductivity at high concentrations of sodium salts. This work has focused on characterising this minimum in the conductivity values and on understanding the reason for its occurrence. The effects on the minimum conductivity value of the following parameters are investigated: (a) time, (b) STADIS 450 concentration, (c) sodium salt concentration, (d) mixed sodium salts, (e) experimental method, (f) a phenol, (g) individual components of STADIS 450. The complex conductivity response of the STADIS 450 to sodium salt impurities is discussed in terms of possible inter-molecular interactions.« less

  15. Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Haack, Sheridan K.; Adriaens, Peter; Henry, Mark A.; Bradley, Paul M.

    1996-01-01

    Measurements of oxidation-reduction potential (Eh) and concentrations of dissolved hydrogen (H2) were made in a shallow groundwater system contaminated with solvents and jet fuel to delineate the zonation of redox processes. Eh measurements ranged from +69 to -158 mV in a cross section of the contaminated plume and accurately delineated oxic from anoxic groundwater. Plotting measured Eh and pH values on an equilibrium stability diagram indicated that Fe(III) reduction was the predominant redox process in the anoxic zone and did not indicate the presence of methanogenesis and sulfate reduction. In contrast, measurements of H2concentrations indicated that methanogenesis predominated in heavily contaminated sediments near the water table surface (H2 ∼ 7.0 nM) and that the methanogenic zone was surrounded by distinct sulfate-reducing (H2 ∼ 1-4 nM) and Fe(III)-reducing (H2 ∼ 0.1-0.8 nM) zones. The presence of methanogenesis, sulfate reduction, and Fe(III) reduction was confirmed by the distribution of dissolved oxygen, sulfate, Fe(II), and methane in groundwater. These results show that H2 concentrations were more useful for identifying anoxic redox processes than Ehmeasurements in this groundwater system. However, H2-based redox zone delineations are more reliable when H2 concentrations are interpreted in the context of electron-acceptor (oxygen, nitrate, sulfate) availability and the presence of final products [Fe(II), sulfide, methane] of microbial metabolism.

  16. The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils.

    PubMed

    Richardson, Elizabeth L; King, Catherine K; Powell, Shane M

    2015-04-01

    Terrestrial fuel spills in Antarctica commonly occur on ice-free land around research stations as the result of human activities. Successful spill clean-ups require appropriate targets that confirm contaminated sites are no longer likely to pose environmental risk following remediation. These targets are based on knowledge of the impacts of contaminants on the soil ecosystem and on the response of native biota to contamination. Our work examined the response of soil microbial communities to fuel contamination by measuring the abundance of genes involved in critical soil processes, and assessed the use of this approach as an indicator of soil health in the presence of weathered and fresh fuels. Uncontaminated and contaminated soils were collected from the site of remediation treatment of an aged diesel spill at Casey Station, East Antarctica in December 2012. Uncontaminated soil was spiked with fresh Special Antarctic Blend (SAB) diesel to determine the response of the genes to fresh fuel. Partly remediated soil containing weathered SAB diesel was diluted with uncontaminated soil to simulate a range of concentrations of weathered fuel and used to determine the response of the genes to aged fuel. Quantitative PCR (qPCR) was used to measure the abundance of rpoB, alkB, cat23, and nosZ in soils containing SAB diesel. Differences were observed between the abundance of genes in control soils versus soils containing weathered and fresh fuels. Typical dose-response curves were generated for genes in response to the presence of fresh fuel. In contrast, the response of these genes to the range of weathered fuel appeared to be due to dilution, rather than to the effect of the fuel on the microbial community. Changes in microbial genes in response to fresh contamination have potential as a sensitive measure of soil health and for assessments of the effect of fuel spills in polar soils. This will contribute to the development of remediation guidelines to assist in management

  17. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  18. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    NASA Astrophysics Data System (ADS)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  19. Contaminants | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    -Derived Contaminants Overview Materials Methods Data Tool Partners Publications System Contaminants using several screening methods. The materials are from different manufacturers, comprise different Characterization Methods A flowchart graphic that shows the experimental methods used in the system contaminants

  20. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.

    PubMed

    Freitas, Juliana G; Fletcher, Barbara; Aravena, Ramon; Barker, James F

    2010-01-01

    Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  1. Effects of ethanol-based fuel contamination: microbial community changes, production of regulated compounds, and methane generation.

    PubMed

    Nelson, Denice K; Lapara, Timothy M; Novak, Paige J

    2010-06-15

    Ethanol-based fuels are becoming more heavily used, increasing the likelihood of ethanol-based fuel spills during transportation and storage. Although ethanol is well-known to be readily biodegradable, very little is known about the effects that such a spill might have on an indigenous microbial community. Of particular concern is that ethanol contamination could stimulate the growth of organisms that can generate regulated compounds and/or produce explosive quantities of methane gas. A column-based study was performed to elucidate the potential impacts of ethanol-based fuel (E85) on the indigenous microbial community during a simulated fuel spill. A continuous dilute supply of E85 resulted in profound shifts in both the bacterial and archaeal communities. The shift was accompanied by the production of high concentrations of volatile fatty acids and butanol, a compound that is regulated in groundwater by some states. Results also indicated that a continuous feed of dilute E85 generated explosive levels of methane within one month of column operation. Quantitative PCR data showed a statistically significant increase in methanogenic populations when compared to a control column. The elevated population numbers correlated to areas of the column receiving a sustained carbon load. Toxicity data indicated that microbial growth was completely inhibited (as evidenced by absence of ethanol breakdown products) at ethanol levels above 6% (v/v). These data suggest that ethanol from ethanol-based fuel can be readily degraded, but can also produce metabolic products that are regulated as well as explosive levels of methane. The core of an E85 spill may serve as a long-term source of contamination as it cannot be degraded until significant dilution has occurred.

  2. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  3. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  4. Catalyst Substrates Remove Contaminants, Produce Fuel

    NASA Technical Reports Server (NTRS)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  5. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  6. Natural Attenuation of Fuel Hydrocarbon Contaminants: Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Guoping; Zheng, Chunmiao

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on themore » basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.« less

  7. Natural attenuation of fuel hydrocarbon contaminants: Hydraulic conductivity dependency of biodegradation rates in a field case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Guoping; Zheng, Chunmiao

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basismore » of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.« less

  8. 1st Fire Behavior and Fuels Conference: Fuels Management-How to Measure Success

    Treesearch

    Patricia L. Andrews

    2006-01-01

    The 1st Fire Behavior and Fuels Conference: Fuels Management -- How to Measure Success was held in Portland, Oregon, March 28-30, 2006. The International Association of Wildland Fire (IAWF) initiated a conference on this timely topic primarily in response to the needs of the U.S. National Interagency Fuels Coordinating Group (http://www.nifc.gov/).

  9. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  10. COMBINED LABORATORY/FIELD STUDY ON THE USE OF NITRATE FOR IN SITU BIOREMEDIATION OF A FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A pilot demonstration project was conducted at Eglin Air Force Base, FL, to compare the extent of bioremediation of a fuel-contaminated aquifer using sprinkler application with and without nitrate addition on two adjacent 30 m x 30 m cells. Target compound groups included both B...

  11. Assessment of intrinsic bioremediation of jet fuel contamination in a shallow aquifer, Beaufort, South Carolina

    USGS Publications Warehouse

    Chapelle, Frank; Landmeyer, J.E.; Bradley, P.M.

    1995-01-01

    Field and laboratory studies show that microorganisms indigenous to the ground-water system underlying Tank Farm C, Marine Corps Air Station Beaufort, S.C., degrade petroleum hydrocarbons under aerobic and anaerobic conditions. Under aerobic conditions, sediments from the shallow aquifer underlying the site mineralized radiolabeled (14C) toluene to 14CO2 with first-order rate constants of about -0.29 per day. Sediments incubated under anaerobic conditions mineralized radiolabeled toluene more slowly, with first-order rate constants of -0.001 per day. Although anaerobic rates of biodegradation are low, they are significant in the hydrologic and geochemical context of the site. Because of low hydraulic conductivities (1.9-9.1 feet per day) and low hydraulic gradients (about 0.004 feet per feet), ground water flows slowly (approximately 20 feet per year) at this site. Furthermore, aquifer sediments contain organic-rich peat that has a high sorptive capacity. Under these conditions, hydrocarbon contaminants have moved no further than 10 feet downgradient of the jet fuel free product. Digital solute-transport simulations, using the range of model parameters measured at the site, show that dissolved contaminants will be completely degraded before they are discharged from the aquifer into adjacent surface-water bodies. These results show that natural attenuation processes are containing the migration of soluble hydrocarbons, and that intrinsic bioremediation is a potentially effective remedial strategy at this site.

  12. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses.

    PubMed

    Boyd, Thomas J; Montgomery, Michael T; Cuenca, Richard H; Hagimoto, Yutaka

    2016-10-21

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal - or rather the absence of signal - is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14 C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making.

  13. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses

    PubMed Central

    Boyd, Thomas J.; Montgomery, Michael T.; Cuenca, Richard H.; Hagimoto, Yutaka

    2016-01-01

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal — or rather the absence of signal — is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making. PMID:27805601

  14. Understanding of ammonia transport in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Jung, Myunghee

    This dissertation investigates ammonia (NH3) as a fuel contaminant to the anode in Proton Exchange Membrane Fuel Cells (PEMFCs). Since NH 3 is fed to the anode in a gas phase and transferred to the cathode, the effect of a contaminant is distributed through MEA and quite complicated. This study is focused on the investigation of mechanism of NH3 transport and the isolation of multiple effects to degrade the performance of fuel cell. An External Reference Electrode (ERE) was employed to decouple the effect of individual electrode and explain the mechanism of NH3 contamination. A mechanism of NH3 transport is proposed and supported by data for various inlet conditions in a N2/N2 laboratory-scale fuel cell at Open Circuit Conditions (OCC). With a commercialized GORE(TM) PRIMEA RTM 5631 MEAs at 70°C, data were obtained utilizing a material balance technique, which uses an ion selective electrode (ISE) to determine the concentration of ammonium ion in the process streams. The results indicate that ammonia is not transported across the membrane when the feeds to both electrodes are dry. However, with humidified feeds ammonia was transported from the anode to the cathode. The data also indicate the water content of in the MEA is the critical factor that causes NH3 crossover in the MEA. Diffusion coefficients of NH3 in MEA are also calculated at different relative humilities. An ERE was developed for PEM fuel cell by using a NafionRTM strip which was used to understand contamination mechanism. The voltage of anode electrode relative to ERE was measured during a polarization curve. The data showed the measurement of individual electrode potential was extremely affected by the misalignment between two electrodes. We compare the overpotential measured from the reference electrode and the calculated overpotential from subtracting the cell voltages between neat hydrogen and a 25 ppm CO in H 2 stream at same current. The studies indicated that the overpotentials obtained from

  15. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE PAGES

    Opu, Md.; Bender, G.; Macomber, Clay S.; ...

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  16. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opu, Md.; Bender, G.; Macomber, Clay S.

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  17. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    PubMed

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  18. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  19. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  20. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement of reformulated gasoline... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline fuel parameters. (a) Sulfur. Sulfur content of gasoline and butane must...

  1. Growth, nutrient status, and photosynthetic response to diesel-contaminated soil of a cordgrass, Spartina argentinensis.

    PubMed

    Redondo-Gómez, Susana; Petenello, María C; Feldman, Susana R

    2014-02-15

    The present study was conduced to investigate the tolerance limits of Spartina argentinensis, which occurs in inland marshes of the Chaco-Pampean regions of Argentina, to diesel-contaminated soil. A glasshouse experiment was designed to investigate the effect of diesel fuel from 0% to 3% on growth and photosynthetic apparatus of S. densiflora by measuring gas exchange and photosynthetic pigments. We also performed chemical analysis of plant samples, and determined mycorrhizal index. Tiller and root biomasses declined with increasing diesel fuel concentration, as well as photosynthetic rate (A). Reductions in A could be accounted for by non-stomatal limitations. Mycorrhizal roots of S. argentinensis were reduced by the presence of diesel fuel, but did not affect its nutritional status; in fact, most element concentrations increased with diesel contamination. Despite the negative effect of diesel-contaminated soil, S. argentinensis continued growing, which could be useful management options for phytorremediation of diesel-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  3. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial.

    PubMed

    Coulon, Frédéric; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T; Paton, Graeme I

    2010-10-01

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  5. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    PubMed

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  6. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  7. Concentration measurements of biodiesel in engine oil and in diesel fuel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.

    2012-05-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  8. Empirical measurement and model validation of infrared spectra of contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay

    2015-05-01

    Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.

  9. A shielded measurement system for irradiated nuclear fuel measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, W.R.; Aumeier, S.E.; Klann, R.T.

    1999-07-01

    The US Department of Energy (DOE) is driving a transition toward dry storage of irradiated nuclear fuel (INF), toward characterization of INF for final disposition, and toward resumption of measurement-based material control and accountability (MC and A) efforts for INF. For these reasons, the ability to efficiently acquire radiological measurements of INF in a dry environment is important. The DOE has recently developed a guidance document proposing MC and A requirements for INF. The intent of this document is to encourage the direct measurement of INF on inventory within DOE. The guidance document reinforces and clarifies existing material safeguards requirementsmore » as they pertain to INF. Validation of nuclear material contents of non-self-protecting INF must be accomplished by direct measurement, application of validated burnup codes using qualified initial fissile content, burnup data, and age or by other valid means. The fuel units must remain intact with readable identification numbers. INF may be subject to periodic inventories with visual item accountability checks. Quantitative measurements may provide greater assurance of the integrity of INF inventories at a lower cost and with less personnel exposure than visual item accountability checks. Currently, several different approaches are used to measure the radiological attributes of INF. Although these systems are useful for a wide variety of applications, there is currently no relatively inexpensive measurement system that is readily deployable for INF measurements for materials located in dry storage. The authors present the conceptual design of a shielded measurement system (SMS) that could be used for this purpose. The SMS consists of a shielded enclosure designed to house a collection of measurement systems to allow measurements on spent fuel outside of a hot cell. The phase 1 SMS will contain {sup 3}He detectors and ionization chambers to allow for gross neutron and gamma-ray measurements. The

  10. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-11-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (I) removing the contaminant signal, (II) estimating the uncontaminated cosmological power spectrum and (III) debiasing the resulting estimates. For (I), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (II), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (II) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.

  11. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  12. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  13. Fuel film thickness measurements using refractive index matching in a stratified-charge SI engine operated on E30 and alkylate fuels

    NASA Astrophysics Data System (ADS)

    Ding, Carl-Philipp; Sjöberg, Magnus; Vuilleumier, David; Reuss, David L.; He, Xu; Böhm, Benjamin

    2018-03-01

    This study shows fuel film measurements in a spark-ignited direct injection engine using refractive index matching (RIM). The RIM technique is applied to measure the fuel impingement of a high research octane number gasoline fuel with 30 vol% ethanol content at two intake pressures and coolant temperatures. Measurements are conducted for an alkylate fuel at one operating case, as well. It is shown that the fuel volume on the piston surface increases for lower intake pressure and lower coolant temperature and that the alkylate fuel shows very little spray impingement. The fuel films can be linked to increased soot emissions. A detailed description of the calibration technique is provided and measurement uncertainties are discussed. The dependency of the RIM signal on refractive index changes is measured. The RIM technique provides quantitative film thickness measurements up to 0.9 µm in this engine. For thicker films, semi-quantitative results of film thickness can be utilized to study the distribution of impinged fuel.

  14. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    PubMed

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  15. Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.

    2008-01-01

    The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.

  16. Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yunfeng; St-Pierre, Jean

    2017-12-01

    Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.

  17. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    PubMed

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  18. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  19. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  20. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  1. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  2. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  3. Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel

    USGS Publications Warehouse

    Bradley, Paul M.; Aelion, C. Marjorie; Vroblesky, Don A.

    1992-01-01

    In 1975, the loss of approximately 83,000 gallons of JP-4 grade jet fuel resulted in contamination of the shallow aquifer near North Charleston, South Carolina. To identify those factors likely to influence microbial activity under denitrifying conditions, we examined the fate of amended NO3, the effect of pH, NO3, and PO4 on denitrification, and the variability of denitrification in sediments collected at the site. Denitrification (N2O-N production) accounted for 98% of the depletion of NO3-N under anaerobic conditions. Both carbon mineralization and denitrification rates increased asymptotically with increasing NO3 to a maximum at approximately 1 mM NO3. Addition of up to 1 mM PO4 did not significantly increase N2O and CO2 production. Denitrification rates were at least 38% lower at pH = 4 than observed at pH = 7. Comparison of samples with differing degrees of hydrocarbon contamination indicated that at least a tenfold variation in sediment denitrification occurs at the North Charleston site.

  4. In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh

    2005-09-01

    This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.

  5. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater.

  6. Fuels Management-How to Measure Success: Conference Proceedings

    Treesearch

    Patricia L. Andrews; Bret W. Butler

    2006-01-01

    Fuels management programs are designed to reduce risks to communities and to improve and maintain ecosystem health. The International Association of Wildland Fire initiated the 1st Fire Behavior and Fuels Conference to address development, implementation, and evaluation of these programs. The focus was on how to measure success. Over 500 participants from several...

  7. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less

  8. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T.H.; Holland, J.W.

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less

  9. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  10. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less

  11. Microbial contamination of fuel ethanol fermentations.

    PubMed

    Beckner, M; Ivey, M L; Phister, T G

    2011-10-01

    Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species-species interactions between D. bruxellensis and S. cerevisiae are still poorly understood. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. USE OF AROMATIC ACIDS AND PHOSPHOLIPID-ESTER-LINKED FATTY ACIDS FOR DELINEATION OF PROCESSES AFFECTING AN AQUIFER CONTAMINATED WITH JP-4 FUEL

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, has been contaminated with JP-4 fuel hydrocarbons released by the crash of a tanker aircraft in October of 1988. A comprehensive analysis of the inorganic and organic geochemical constituents and geomicrobio...

  13. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

    DTIC Science & Technology

    2014-01-24

    8, Automatic Particle Counter, cleanliness, free water, Diesel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF...aircraft, or up to 10 mg/L for product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or...published several methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel

  14. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  15. An assessment on the environmental contamination caused by the Fukushima accident.

    PubMed

    Song, Jin Ho

    2018-01-15

    The radiological releases from the damaged fuel to the atmosphere and into the cooling water in the Fukushima Daiich Nuclear Power Plant (FDNPP) accident are investigated. Atmospheric releases to the land and ocean mostly occurred during the first week after the accident whereas continuous release from the damaged fuel into the cooling water resulted in an accumulation of contaminated water in the plant during last six years. An evaluation of measurement data and analytical model for the release of radionuclides indicated that atmospheric releases were mainly governed by the volatility of the radionuclides. Using the measurement data on the contaminated water, the mechanism for the release of long-lived radionuclides into the cooling water was analyzed. It was found that the radioactivity concentrations of 90 Sr in the contaminated water in the Primary Containment Vessel (PCV) of unit 2 and unit 3 were consistently higher than that of 137 Cs and the radioactivity concentration of 90 Sr in the turbine building of unit 1 in year 2015 was higher than that in year 2011. It was also observed that the radioactivity concentration of long-lived radionuclides in the contaminated water in the FDNPP is still high even in year 2015. The activity ratio of 238 Pu/ 239+240 Pu for the contaminated water was in the range of 1.7-5.4, which was significantly different from the ratios from the soil samples representing the atmospheric releases of FDNPP. It is concluded that the release mechanisms into the atmosphere and cooling water are clearly different and there has been significant amount of long-lived radionuclides released into the contaminated water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  17. Comparison of Vehicle-Broadcasted Fuel Consumption Rates against Precise Fuel Measurements for Medium- and Heavy-Duty Vehicles and Engines

    DOE PAGES

    Pink, Alex; Ragatz, Adam; Wang, Lijuan; ...

    2017-03-28

    Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less

  18. Comparison of Vehicle-Broadcasted Fuel Consumption Rates against Precise Fuel Measurements for Medium- and Heavy-Duty Vehicles and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pink, Alex; Ragatz, Adam; Wang, Lijuan

    Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less

  19. Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2

    DOE PAGES

    Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.; ...

    2017-04-28

    High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less

  20. Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.

    High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less

  1. Potential for use of optical measurements to understand the fate of urban contaminants

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Downing, B. D.; Fleck, J.; Kraus, T. E.; Pellerin, B. A.; Corsi, S. R.

    2012-12-01

    Contamination associated with urban environments can dramatically affect aquatic ecosystems, yet our ability to gage its impact is hampered by the fact that contamination occurs episodically and we are often most interested in the effects in highly dynamic environments; ephemeral and dynamic systems require large numbers of samples to monitor, and the cost associated with characterizing the contribution of urban contaminants in an individual sample using conventional tracers can be prohibitively expensive. We propose that optical measurements may be used to help characterize urban contaminant fluxes in dynamic systems using in situ instruments as well as to assess the contribution of urban material to individual water samples using inexpensive lab-based measurements. We have used measurements of optical properties both in the laboratory and in situ at high temporal and spatial resolution to differentiate among sources of water, and as proxies for contaminants such as mercury (Hg), methylmercury, pharmaceuticals, and wastewater. These measurements include determination of spectral properties of absorbance, attenuation, fluorescence, and scatter in aqueous samples. We present examples of how such measurements can serve as tracers of urban-derived water sources, and provide information about source and biogeochemical processing. One example demonstrates how in situ fluorescence and scattering measurements were used to track the transport of Hg contamination into the San Francisco Estuary. We measured the tidally-driven exchange of Hg between the estuary and a tidal wetland over spring-neap in three different seasons. In situ measurements of scatter (turbidity) and fluorescent dissolved organic matter (FDOM) were highly related to total mercury concentrations, and we used these measurements to calculate flux into and out of the wetland. Another example in a dynamic river system illustrates how data collected at a high spatial resolution, again using in situ optical

  2. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    PubMed

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  3. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their

  4. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  5. Spent fuel burnup estimation by Cerenkov glow intensity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki

    1994-10-01

    The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to themore » declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.« less

  6. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  7. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  8. The effects of battlefield contaminants on PEMFC performance

    NASA Astrophysics Data System (ADS)

    Moore, Jon M.; Adcock, Paul L.; Lakeman, J. Barry; Mepsted, Gary O.

    The effects of contaminants on the performance of an air breathing proton exchange membrane fuel cell (PEMFC) were investigated, by introduction into oxidant air fed to the fuel cell. The impact of the common pollutants sulphur dioxide, nitrogen dioxide, carbon monoxide, propane and benzene and the chemical warfare agents, sarin, sulphur mustard, cyanogen chloride (CNCl) and hydrogen cyanide (HCN) were assessed. At the concentrations studied, the common contaminants had either no effect on performance or caused a reversible depression. The chemical warfare agents all seriously compromised the performance of the fuel cells in an irreversible manner.

  9. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    PubMed

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  10. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  11. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  12. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  13. Candida keroseneae sp. nov., a novel contaminant of aviation kerosene.

    PubMed

    Buddie, A G; Bridge, P D; Kelley, J; Ryan, M J

    2011-01-01

    To characterize and identify a novel contaminant of aviation fuel. Micro-organisms (yeasts and bacteria) were isolated from samples of aviation fuel. A yeast that proved to have been unrecorded previously was isolated from more than one fuel sample. This novel yeast proved to be a new species of Candida and is described here. Ribosomal RNA gene sequence analyses of internal transcribed spacer (ITS) regions (including 5·8S subunit) plus the 26S D1/D2 domains showed the strains to cluster within the Candida membranifaciens clade nearest to, but distinct from, Candida tumulicola. Phenotypic tests were identical for both isolates. Physiological and biochemical tests supported their position as a separate taxon. The yeast was assessed for its effect on the main constituent hydrocarbons of aviation fuel. Two strains (IMI 395605(T) and IMI 395606) belonging to the novel yeast species, Candida keroseneae, were isolated from samples of aircraft fuel (kerosene), characterized and described herein with reference to their potential as contaminants of aviation fuel. As a result of isolating a novel yeast from aviation fuel, the implications for microbial contamination of such fuel should be considered more widely than previously thought. © 2010 CAB International. Letters in Applied Microbiology © 2010 The Society for Applied Microbiology.

  14. Flight measurement of molecular contaminant deposition

    NASA Astrophysics Data System (ADS)

    Hall, David F.

    1994-10-01

    A spacecraft was instrumented with four temperature controlled quartz crystal microbalance (TQCM) contamination detectors. One TQCM, located inside the vehicle, recorded contaminant deposition that was orders of magnitude higher than did the three TQCMs located in various positions outside the vehicle. The deposition rate on the interior TQCM varied with the temperatures of interior spacecraft cavity surfaces. In particular, there is clear evidence of condensation on these surfaces and re-evaporation from these surfaces by previously outgassed contaminant molecules. The e-folding time constants of the deposition on two of the exterior TQCMs held at -50 degree(s)C are approximately 1.4 years, with extrapolated final equivalent thickness of the deposition in the 20 - 25 nm (200 - 250 angstroms) range. The third exterior TQCM, which has a significant field of view of a segmented thermal blanket, collected contamination at a greater rate. The data enable the ranking of the several contamination transport mechanisms at work and the drawing of general recommendations for spacecraft design.

  15. Volatile hydrocarbons and fuel oxygenates: Chapter 12

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.

    2014-01-01

    Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.

  16. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, JCH FUEL SOLUTIONS, INC., JCH ENVIRO AUTOMATED FUEL CLEANING AND MAINTENANCE SYSTEM

    EPA Science Inventory

    The verification testing was conducted at the Cl facility in North Las Vegas, NV, on July 17 and 18, 2001. During this period, engine emissions, fuel consumption, and fuel quality were evaluated with contaminated and cleaned fuel.

    To facilitate this verification, JCH repre...

  18. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick [Bromley, GB

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  20. Optical Measurements in a Combustor Using a 9-Point Swirl-Venturi Fuel Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.

    2007-01-01

    This paper highlights the use of two-dimensional data to characterize a multipoint swirl-venturi injector. The injector is based on a NASA-conceived lean direct injection concept. Using a variety of advanced optical diagnostic techniques, we examine the flows resultant from multipoint, lean-direct injectors that have nine injection sites arranged in a 3 x 3 grid. The measurements are made within an optically-accessible, jet-A-fueled, 76-mm by 76-mm flame tube combustor. Combustion species mapping and velocity measurements are obtained using planar laser-induced fluorescence of OH and fuel, planar laser scatter of liquid fuel, chemiluminescence from CH*, NO*, and OH*, and particle image velocimetry of seeded air (non-fueled). These measurements are used to study fuel injection, mixedness, and combustion processes and are part of a database of measurements that will be used for validating computational combustion models.

  1. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  2. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Treesearch

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  3. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  4. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Pascal, Jonathan; Lawes, Simon

    2017-09-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy.

  5. Identification of microorganisms isolated from jet fuel systems.

    PubMed

    Edmonds, P; Cooney, J J

    1967-03-01

    Seventy-two samples from jet aircraft fuel systems were examined for microbial contamination. Ten contaminated samples yielded 43 microorganisms which were classified into nine genera of bacteria and three genera of fungi. The predominant types, comprising about 37% of the isolated cultures, were identified as Bacillus spp. The remaining cultures were distributed among 11 genera, each of which represented 2 to 9% of the total isolates. Four cultures could not be assigned to a genus on the basis of the diagnostic criteria used. Only five isolates, in the genera Pseudomonas and Hormodendrum (Cladosporium), grew abundantly in a mineral salts solution with JP-4 fuel as the sole source of carbon. The presence of fuel utilizers in a fuel system may be a better index to potential problems that have been correlated with microbial contamination than the presence of aerobic sporeforming bacilli.

  6. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  7. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  8. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  9. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    PubMed

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    NASA Technical Reports Server (NTRS)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  11. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Hunkeler, Daniel; Höhener, Patrick; Zeyer, Josef

    2002-12-01

    A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO 3 and NH 4H 2PO 4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO 42- and higher concentrations of Fe(II) and CH 4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH 4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.

  12. A direct passive method for measuring water and contaminant fluxes in porous media

    NASA Astrophysics Data System (ADS)

    Hatfield, Kirk; Annable, Michael; Cho, Jaehyun; Rao, P. S. C.; Klammler, Harald

    2004-12-01

    This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.

  13. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  14. [A study of groundwater contamination with organic fuels and potential public health impact in Itaguaí, Rio de Janeiro State, Brazil].

    PubMed

    Silva, Rosimar Lima Brandão; Barra, Cristina Maria; Monteiro, Teófilo Carlos do Nascimento; Brilhante, Ogenis Magno

    2002-01-01

    Increasing attention is current focused on urban groundwater contamination with gasoline hydrocarbon compounds in Brazil. The compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) contained in fuels are highly toxic and can have severe public health consequences, besides posing the risk of intake from the water table by way of contamination. After two years of a steady gasoline storage tank leak, water samples from private household wells in the district of Brisa Mar, Itaguaí, Rio de Janeiro State, were analyzed and the concentration of BTEX compounds was evaluated. Two out of ten water samples from the study area presented BTEX concentrations above the National Water Quality Standard (Brazilian Health Ministry Ruling No. 1469/2000), in which the maximum permissible benzene concentration is 5 micro g.L-1. Four others wells were also contaminated with nitrate, responsible for the induction of methemoglobinemia. Natural attenuation (intrinsic biodegradation) mechanisms through electron acceptors was also investigated in this study.

  15. Fine fuel moisture measured and estimated in dead Andropogon virginicus in Hawaii

    Treesearch

    Francis M. Fujioka

    1976-01-01

    Fuel moisture estimates generated by the National Fire-Danger Rating System procedure were compared with actual fuel moisture measurements determined from laboratory analysis. Meteorological data required for the NFDRS procedure were collected at two heights to assess the effect of temperature and humidity lapse rates. Standard measurements gave the best results, but...

  16. Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study.

    PubMed

    Dadrasnia, Arezoo; Pariatamby, Agamuthu

    2016-03-01

    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead. © The Author(s) 2015.

  17. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    PubMed

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  18. ELLIPSOMETRIC MEASUREMENTS OF THE THERMAL STABILITY OF ALTERNATIVE FUELS

    PubMed Central

    Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith

    2017-01-01

    Thermal stability is an important characteristic of alternative fuels that must be evaluated before they can be used in aviation engines. Thermal stability refers to the degree to which a fuel breaks down when it is heated prior to combustion. This characteristic is of great importance to the effectiveness of the fuel as a coolant and to the engine’s combustion performance. The thermal stability of Sasol IPK, a synthetic alternative to Jet-A, with varying levels of naphthalene has been studied on aluminum and stainless steel substrates at 300 to 400 °C. This was conducted using a spectroscopic ellipsometer to measure the thickness of deposits left on the heated substrates. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects from a thin film to determine the film’s physical and optical properties. It was observed that, as would be expected, increasing the temperature minimally increased the deposit thickness for a constant concentration of naphthalene on both substrates. The repeatability of these measurements was verified using multiple trials at identical test conditions. Lastly, the effect of increasing the naphthalene concentration at a constant temperature was found to also minimally increase the deposit thickness. PMID:28966427

  19. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  20. Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-98):

    USGS Publications Warehouse

    Landmeyer, James E.; Chapelle, Francis H.; Bradley, Paul M.; Pankow, James F.; Church, Clinton D.; Tratnyek, Paul G.

    1998-01-01

    Methyl tert-butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert-butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.

  1. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae.

    PubMed

    Martin-Sanchez, Pedro M; Gorbushina, Anna A; Kunte, Hans-Jörg; Toepel, Jörg

    2016-07-01

    A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms.

  2. The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts.

    PubMed

    Abbott, D A; Ingledew, W M

    2005-11-01

    Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of > or =20 ml air l(-1) mash min(-1) showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.

  3. PIV measurement of internal structure of diesel fuel spray

    NASA Astrophysics Data System (ADS)

    Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.

  4. PIV measurement of internal structure of diesel fuel spray

    NASA Astrophysics Data System (ADS)

    Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.

  5. Validation of two innovative methods to measure contaminant mass flux in groundwater

    NASA Astrophysics Data System (ADS)

    Goltz, Mark N.; Close, Murray E.; Yoon, Hyouk; Huang, Junqi; Flintoft, Mark J.; Kim, Sehjong; Enfield, Carl

    2009-04-01

    The ability to quantify the mass flux of a groundwater contaminant that is leaching from a source area is critical to enable us to: (1) evaluate the risk posed by the contamination source and prioritize cleanup, (2) evaluate the effectiveness of source remediation technologies or natural attenuation processes, and (3) quantify a source term for use in models that may be applied to predict maximum contaminant concentrations in downstream wells. Recently, a number of new methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. However, none of these methods has been validated at larger than the laboratory-scale through a comparison of measured mass flux and a known flux that has been introduced into flowing groundwater. A couple of innovative flux measurement methods, the tandem circulation well (TCW) and modified integral pumping test (MIPT) methods, have recently been proposed. The TCW method can measure mass flux integrated over a large subsurface volume without extracting water. The TCW method may be implemented using two different techniques. One technique, the multi-dipole technique, is relatively simple and inexpensive, only requiring measurement of heads, while the second technique requires conducting a tracer test. The MIPT method is an easily implemented method of obtaining volume-integrated flux measurements. In the current study, flux measurements obtained using these two methods are compared with known mass fluxes in a three-dimensional, artificial aquifer. Experiments in the artificial aquifer show that the TCW multi-dipole and tracer test techniques accurately estimated flux, within 2% and 16%, respectively; although the good results obtained using the multi-dipole technique may be fortuitous. The MIPT method was not as accurate as the TCW method, underestimating flux by as much as 70%. MIPT method inaccuracies may be due to the fact that the method assumptions (two-dimensional steady

  6. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  7. Decision Analysis Using Value-Focused Thinking to Select Renewable Alternative Fuels

    DTIC Science & Technology

    2005-03-01

    39 3-9. Ground or Water Contaminant SDVF ................................................................42 3-10. Particulate...13. Ground or Water Contaminant SDVF ................................................................91 A-14. Renewable/Alternative SDVF...conventional fuels and other alternative fuels. Under optimal conditions, hydrogen would be produced from the electrolysis of water (Bechtold, 1997:32

  8. Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel

    DOEpatents

    Beyer, Norman S.; Lewis, Robert N.; Perry, Ronald B.

    1976-01-01

    The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.

  9. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  10. Temperature measuring analysis of the nuclear reactor fuel assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less

  11. Measurement of stress effects (scope for growth) and contaminant levels in mussels (Mytilus edulis) collected from the Irish Sea.

    PubMed

    Widdows, J; Donkin, P; Staff, F J; Matthiessen, P; Law, R J; Allen, Y T; Thain, J E; Allchin, C R; Jones, B R

    2002-05-01

    The objective of this research was to quantify the impact of pollution along the coastlines of the Irish Sea. Pollution assessment was based on the combined measurement of scope for growth (SFG), and chemical contaminants in the tissues of mussels (Mytilus edulis) collected from 38 coastal sites around the Irish Sea during June-July in 1996 and 1997. On the UK mainland coast, the SFG showed a general trend with a significant decline in water quality in the Liverpool and Morecambe Bay region. High water quality was recorded along the west coast of Wales, as well as southwest England and northwest Scotland (clean reference sites outside the Irish Sea). Along the coast of Ireland there was a similar trend with reduced SFG within the Irish Sea region. SFG was generally low north of Duncannon and then improved north of Belfast. The poor water quality on both sides of the Irish Sea is consistent with the prevailing hydrodynamics and the spatial distribution of contaminants associated with urban/ industrial development. The decline in SFG of mussels on both sides of the Irish Sea was associated with a general increase in contaminant levels in the mussels. Certain contaminants, including PAHs, TBT, sigmaDDT, Dieldrin, gamma-HCH, PCBs, and a few of the metals (Cd, Se, Ag, Pb), showed elevated concentrations. Many of these contaminants were particularly elevated in the coastal margins of Liverpool Bay, Morecambe Bay and Dublin Bay. A quantitative toxicological interpretation (QTI) of the combined tissue residue chemistry and SFG measurements indicated that at the majority of coastal sites, c. 50 to > 80% of the observed decline in SFG was due to PAHs as a result of fossil fuel combustion and oil spills. TBT levels were highest at major ports and harbours, but these concentrations only made a minor contribution to the overall reduction in SFG. At no sites were individual metals accumulated to concentrations that could cause a significant effect on SFG. The study identified

  12. Interference of avian guano in analyses of fuel-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, D.E.; Johnson, T.E.; Kreamer, D.K.

    1996-01-01

    Site characterization on Johnston Island, Johnston Atoll, Pacific Ocean, has yielded preliminary data that seabird guano can be an interference in three common petroleum hydrocarbon quantification methods. Volatiles from seabird guano were measured on a hydrocarbon-specific handheld vapor meter (catalytic detector) in concentrations as high as 256 ppm by volume total hydrocarbon. Analysis of guano solids produced measurable concentrations of total petroleum hydrocarbon (TPH) as diesel using both an immunoassay test and the EPA 8015 Modified Method. The testing was conducted on one surface sample of guano collected from a seabird roosting and nesting area. Source species were not identified.more » Positive hydrocarbon test results for guano raise concerns regarding the effectiveness of standard methods of petroleum-contaminated site characterization for Johnston island, other Pacific islands, and coastal areas with historic or contemporary seabird populations.« less

  13. Shock Tube Measurements for Liquid Fuels Combustion

    DTIC Science & Technology

    2006-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023631 TITLE: Shock Tube Measurements for Liquid Fuels Combustion ... COMBUSTION ARO Contract Number DAAD 19-01-1-0597 Principal Investigator: Ronald K. Hanson Mechanical Engineering Department Stanford University, Stanford CA...94305-3032 SUMMARY/OVERVIEW: We report results of basic research aimed at improving knowledge of the combustion behavior of diesel and jet-related

  14. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    PubMed

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  15. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  16. Measurement of carbon distribution in nuclear fuel pin cladding specimens by means of a secondary ion mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs

    1986-11-01

    Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.

  17. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  18. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  19. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    NASA Astrophysics Data System (ADS)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  20. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emily Snyder; John Drake; Ryan James

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer becamemore » the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of

  1. In Vitro Dissolution Tests of Plutonium and Americium Containing Contamination Originating From ZPPR Fuel Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William F. Bauer; Brian K. Schuetz; Gary M. Huestis

    2012-09-01

    Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dosemore » estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.« less

  2. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O 2 fuel mockup of a potassium-cooledmore » space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO 2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO 2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario was also simulated by

  3. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  4. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  5. High Temperature Hot Corrosion Control by Fuel Additives (Contaminated Fuels).

    DTIC Science & Technology

    1987-06-01

    ABSTRACT The potential of fuel additives to minimize corrosion of blade material in gas turbine engines has been analyzed by the following series of steps...INTRODUCTION High chrome steels and superalloys, which are used extensively for high temperature boilers and gas turbine (GT) engines and related...combustion gases onto turbine blades and other hot components. Among the factors expected to affect the corrosion resis

  6. Measurement and evaluation of fuels and technologies for passenger rail service in North Carolina.

    DOT National Transportation Integrated Search

    2012-08-01

    The purpose of this project is to measure a baseline for fuel use and emission rates on the rebuilt or replaced engines on each locomotive in the NCDOT Rail Division fleet, using ultra-low sulfur diesel (ULSD) fuel; measure real-world, in-use over...

  7. Measurement of Radioactive Contamination on Work Clothing of Workers Engaged in Decontamination Operations

    NASA Astrophysics Data System (ADS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya

    To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.

  8. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ``steer`` the drill bit in or out hazardous zones. During measurement-while-drilling,more » down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented.« less

  9. Evaluation of a biocidal turbine-fuel additive.

    DOT National Transportation Integrated Search

    1967-08-01

    Growth of microorganisms in water-contaminated, kerosene-type fuels is a widespread problem in aviation. One approach to the solution of this problem is the introduction into fuel of a chemical additive which could stop or retard growth of microbes. ...

  10. Measurement of radioactive contamination in the CCD’s of the DAMIC experiment

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D'Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.

    2016-05-01

    DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.

  11. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigenbrodt, Julia; Menlove, Howard Olsen

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improvemore » the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.« less

  12. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    NASA Astrophysics Data System (ADS)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  13. Biocidal treatment and preservation of liquid fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegert, W.

    1995-05-01

    Strict microbiological limit values are the result of damage caused by microorganisms in fuels. With MAR 71, a biocide based on methylenebisoxazolidine, a product is available which has been tested and approved by leading car manufacturers, the mineral oil industry, and NATO. Depending on the degree of microbiological contamination, different decontamination concepts are presented, and recommendations for the treatment of fuels which are contaminated when purchased are given. In order to avoid recontamination, planning principles or the new design of tanks are necessary. The possibility of convenient, economical and regular drainage is a key factor.

  14. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  15. Hydrogen Fuel Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of themore » development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.« less

  16. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  17. Occurrence of heterotrophic bacteria and fungi in an aviation fuel handling system and its relationship with fuel fouling.

    PubMed

    Ferrari, M D; Neirotti, E; Albornoz, C

    1998-01-01

    Clean, dry and contaminant-free fuel is necessary for safe and economical aircraft operation. Microbial growth in aviation fuel handling systems can alter the quality of the product. This paper reports the occurrence of heterotrophic bacteria and fungi in a handling system of jet A-1 aviation turbine fuel. A total of 350 samples were collected during 1990-1996. The aerobic microorganisms in fuel samples were mainly fungi, 85% of samples containing < or = 100 cfu/l (range 0 (< 1 cfu/l) to 2000 cfu/l). The predominant fungi were Cladosporium and Aspergillus. Water was observed mainly in samples extracted from the drainage pipes of two tanks used frequently as intermediate storage tanks. The aerobic heterotrophic microorganisms found in water samples were mostly bacteria, counts varying from 100 to 8.8 x 10(7) cfu/ml, with 85% of samples containing 10(4)-10(7) cfu/ml. There was a preponderance of Pseudomonas spp. Bacterial contaminants belonging to the genus Flavobacterium and Aeromonas were also identified. Sulphate reducing bacteria were detected in 80% of water samples. It was not possible to assign a maximum microbial contamination level above which maintenance is required and it is suggested that analysis of successive samples from the same site are necessary for this purpose. Microbial sludges produced in the laboratory and collected from a contaminated tank bottom were analysed chemically. The data are presented and discussed. Samples collected from the supply pipes of tanks and refueller trucks during the period surveyed always met the standard specifications.

  18. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A., E-mail: Azizov-EA@nrcki.ru

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel canmore » be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.« less

  19. Comparison of fresh fuel experimental measurements to MCNPX calculations using self-interrogation neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Charlton, William S.; Menlove, Howard O.; Swinhoe, Martyn T.

    2012-07-01

    A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four 235U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from 235U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15×15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective 235U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies.

  20. Comparison and harmonization of measuring methods for air contaminants in the working environment.

    PubMed

    Leichnitz, K

    1998-09-01

    The objective of this work was to demonstrate that the measurement of air contaminants in the workplace requires a special approach. Decisive in carrying out the measuring task is the quality of the sampling strategy, including selection of the appropriate measuring method. Methods developed at a national level may be more suitable for this purpose than methods described in international standards. Measurements of air contaminants in the workplace should always be the basis for the prevention and control of occupational hazards. Such measurements, therefore, are also an essential element of risk assessment. Industrial processes and chemical agents are myriad. Each manufacturing stage may apply different conditions (e.g., batch production or continuous process, temperature, pressure) and agents (e.g. a wide variety of chemical substances): In each of these stages, different job functions may be necessary and may be subject to different exposure conditions. Distance from emission sources and physical parameters, such as rates of release, air current, meteorological variations, also have a profound influence. The measuring task in the workplace is quite different in comparison to many others (e.g., blood or soil sample analysis). Firstly, the selection of sampling time and sampling location are crucial steps in air analysis. Transportation and storage of the samples, may however, also influence measuring results; interlaboratory tests show the existing problems. Generally, in analytics, the substance to be determined remains "well covered" in its matrix during sampling, transportation and storage. In air analysis, however, the contaminant is usually "torn" from its surrounding matrix (the air) and "forced" into the sorbent, where it finds a completely new environment; reactions yielding artefacts may take place. Several international organizations have issued guidelines and standards on measuring methods for air contaminants in the working environment, such as the

  1. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  2. The aftermath of the Fukushima nuclear accident: Measures to contain groundwater contamination.

    PubMed

    Gallardo, Adrian H; Marui, Atsunao

    2016-03-15

    Several measures are being implemented to control groundwater contamination at the Fukushima Daiichi Nuclear Plant. This paper presents an overview of work undertaken to contain the spread of radionuclides, and to mitigate releases to the ocean via hydrological pathways. As a first response, contaminated water is being held in tanks while awaiting treatment. Limited storage capacity and the risk of leakage make the measure unsustainable in the long term. Thus, an impervious barrier has been combined with a drain system to minimize the discharge of groundwater offshore. Caesium in seawater at the plant port has largely dropped, although some elevated concentrations are occasionally recorded. Moreover, a dissimilar decline of the radioactivity in fish could indicate additional sources of radionuclides intake. An underground frozen shield is also being constructed around the reactors. This structure would reduce inflows to the reactors and limit the interaction between fresh and contaminated waters. Additional strategies include groundwater abstraction and paving of surfaces to lower water levels and further restrict the mobilisation of radionuclides. Technical difficulties and public distrust pose an unprecedented challenge to the site remediation. Nevertheless, the knowledge acquired during the initial work offers opportunities for better planning and more rigorous decisions in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Energy Department Announces New Tools for Hydrogen Fueling Infrastructure

    Science.gov Websites

    state of the art in contamination detection and identifies the technical requirements for implementing a hydrogen contaminant detection device at a station. H2USA's Hydrogen Fueling Station Working Group and

  4. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  5. Development of self-interrogation neutron resonance densitometry (sinrd) to measure the fissile content in nuclear fuel

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne Marie

    The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The

  6. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol

    USGS Publications Warehouse

    Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.

    1995-01-01

    The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.

  7. Measuring low rates of erosion from forest fuel reduction operations

    Treesearch

    William J. Elliot; Ina Sue Miller

    2004-01-01

    A study was carried out to evaluate three methods for measuring low levels of hillside soil erosion associated with forest fuel management activities, and to measure erosion from cable logging and skid trails. The tipping bucket device with a sediment basin appears to be a better tool for this application than silt fences or rillmeter analysis. The greatest erosion...

  8. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  9. Air-atomizing splash-cone fuel nozzle reduces pollutant emissions from turbojet engines

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    Advantages of fuel nozzle over conventional pressure-atomizing fuel nozzles: simplicity of construction, ability to distribute fuel-air mixture uniformly across full height of combustor without using auxiliary air supply, reliability when using contaminated fuels, and durability of nozzle at high operating temperatures.

  10. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  11. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Hartmann, C.; Totemeier, A.; Holcombe, S.; Liverud, J.; Limi, M.; Hansen, J. E.; Navestad, E. AB(; )

    2018-01-01

    Lightbridge Corporation has developed a new Uranium-Zirconium based metallic fuel. The fuel rods aremanufactured via a co-extrusion process, and are characterized by their multi-lobed (cruciform-shaped) cross section. The fuel rods are also helically-twisted in the axial direction. Two experimental fuel assemblies, each containing four Lightbridge fuel rods, are scheduled to be irradiated in the Halden Boiling Water Reactor (HBWR) starting in 2018. In addition to on-line monitoring of fuel rod elongation and critical assembly conditions (e.g. power, flow rates, coolant temperatures, etc.) during the irradiation, several key parameters of the fuel will be measured out-of-core during interim inspections. An inspection measurement station for use in the irradiated fuel handling compartment at the HBWR has therefore been developed for this purpose. The multi-lobed cladding cross section combined with the spiral shape of the Lightbridge metallic fuel rods requires a high-precision guiding system to ensure good position repeatability combined with low-friction guiding. The measurement station is equipped with a combination of instruments and equipment supplied from third-party vendors and instruments and equipment developed at Institute for Energy Technology (IFE). Two sets of floating linear voltage differential transformer (LVDT) pairs are used to measure swelling and diameter changes between the lobes and the valleys over the length of the fuel rods. Eddy current probes are used to measure the thickness of oxide layers in the valleys and on the lobe tips and also to detect possible surface cracks/pores. The measurement station also accommodates gamma scans. Additionally, an eddy-current probe has been developed at IFE specifically to detect potential gaps or discontinuities in the bonding layer between the metallic fuel and the Zirconium alloy cladding. Potential gaps in the bonding layer will be hidden behind a 0.5-1.0 mm thick cladding wall. It has therefore been

  12. Holdup measurement for nuclear fuel manufacturing plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucker, M.S.; Degen, M.; Cohen, I.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  13. Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6.

    PubMed

    Cortés-Pérez, Sandra; Rodríguez-Zaragoza, Salvador; Mendoza-López, Ma Remedios

    2014-02-01

    Root exudation increases microbial activity, selecting bacterial and fungal communities that metabolize organic matter such as hydrocarbons. However, a strong contamination pulse of hydrocarbons around plant roots may reorganize the soil's microbial trophic structure toward amoebae feeding on bacteria. We conducted a microcosm experiment to elucidate the effect of Medicago sativa on the trophic structure of naked amoebae after a strong pulse of pollution (50,000 ppm of fuel oil no. 6, which is a mixture of long chains ranging from C10 to C28). Plants were seeded 24 h after contamination and species of amoebae in the microcosms were identified at 1, 30, and 60 days after pollution. Several species from three trophic groups of naked amoeba were still alive 24 h after the hydrocarbon pulse. Non-planted microcosms harbored three trophic groups after 60 days, while planted ones nourished four groups. The bacterivore group was the most diverse in all microcosms, followed by protist-eaters and omnivores. The quantity of amoebae was significantly higher (3.4×10(3) organisms/g soil) in the planted pots than in the non-planted ones (1.3×10(3) organisms/g soil after 30 days of pollution (P ≤ 0.01). The shortest hydrocarbon chains (C10-C14) disappeared or diminished in all microcosms, and the longest ones increased in the planted ones. M. sativa thus exerted a positive effect on species richness, quantity, and the composition of amoebae trophic groups in contaminated soil. This indirect effect on bacterial predators is another key factor underlying hydrocarbon assimilation by living organisms during phytoremediation.

  14. Quantitative FE-EPMA measurement of formation and inhibition of carbon contamination on Fe for trace carbon analysis.

    PubMed

    Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu

    2017-04-01

    Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  16. Bacteriophage endolysins expressed in yeast kill strains of Lactobacillus that contaminate fermentations

    USDA-ARS?s Scientific Manuscript database

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Species of Lactobacillus are the predominant contaminants that reduce ethanol yields and cause “stuck” fermentations, decreasing the profitability of biofuel production with expen...

  17. Army Demonstration of Light Obscuration Particle Counters for Monitoring Aviation Fuel Contamination

    DTIC Science & Technology

    2013-05-07

    Hydraulic industry has utilized this technology for decades and created a mature process •Hydraulic industry has developed recognized calibration ...Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas/Parker/Particle Solutions 19/17/12 U.S. Army 19...17/14/13* Diesel Fuel World Wide Fuel Charter 4th 18/16/13 DEF (AUST) 5695B 18/16/13 Bosch/Cummins 18/16/13 Donaldson 22/21/18 14/13/11 12/9/6 P ll

  18. Near and far field contamination modeling in a large scale enclosure: Fire Dynamics Simulator comparisons with measured observations.

    PubMed

    Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P

    2006-03-17

    The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.

  19. Light Obscuration Particle Counter Fuel Contamination Limits

    DTIC Science & Technology

    2015-10-08

    or up to 10 mg/L for product used as a diesel product for ground use (1). At a minimum free water and particulate by color (as specified in the...contamination is frequently used in the hydraulics/hydraulic fluid industry. In 1999 ISO adopted ISO 11171 Hydraulic fluid power — Calibration of automatic...particle counters for liquids, replacing ISO 4402, as an international standard for the calibration of liquid particle counters giving NIST

  20. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2018-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  1. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highwaymore » Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.« less

  2. FCRD Transmutation Fuels Handbook 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloysmore » containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about

  3. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis.

    PubMed

    Gilmour, Stuart; Miyagawa, Shoji; Kasuga, Fumiko; Shibuya, Kenji

    2016-01-01

    The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG), and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government's response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents. We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW), the Ministry of Agriculture, Forestry and Fishery (MAFF) and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137) of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products were released for areas at risk of

  4. Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey

    Treesearch

    Nicholas Skowronski; Kenneth Clark; Ross Nelson; John Hom; Matt Patterson

    2007-01-01

    We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were...

  5. Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV.

    PubMed

    Rodriguez, Douglas C; Anderson, Elaina; Anderson, Kevin K; Campbell, Luke W; Fast, James E; Jarman, Kenneth; Kulisek, Jonathan; Orton, Christopher R; Runkle, Robert C; Stave, Sean

    2013-12-01

    The gamma-ray spectrum of spent nuclear fuel in the 3-6 MeV energy range is important for active interrogation since gamma rays emitted from nuclear decay are not expected to interfere with measurements in this energy region. There is, unfortunately, a dearth of empirical measurements from spent nuclear fuel in this region. This work is an initial attempt to partially fill this gap by presenting an analysis of gamma-ray spectra collected from a set of spent nuclear fuel sources using a high-purity germanium detector array. This multi-crystal array possesses a large collection volume, providing high energy resolution up to 16 MeV. The results of these measurements establish the continuum count-rate in the energy region between 3 and 6 MeV. Also assessed is the potential for peaks from passive emissions to interfere with peak measurements resulting from active interrogation delayed emissions. As one of the first documented empirical measurements of passive emissions from spent fuel for energies above 3 MeV, this work provides a foundation for active interrogation model validation and detector development. © 2013 Elsevier Ltd. All rights reserved.

  6. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.

    PubMed

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-10-17

    In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  7. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  8. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    PubMed Central

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes. PMID:28903231

  9. Correlation between environmental relative moldiness index (ERMI) values in French dwellings and other measures of fungal contamination

    EPA Science Inventory

    The Environmental Relative Moldiness Index (ERMI) is a DNA-based metric developed to describe the fungal contamination in US dwellings. Our goal was to determine if the ERMI values in dwellings in north western France were correlated with other measures of fungal contamination. D...

  10. Contaminant and other elements in soil (CCQM-K127)

    NASA Astrophysics Data System (ADS)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  11. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  12. Method for in situ carbon deposition measurement for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  13. MicroRaman measurements for nuclear fuel reprocessing applications

    DOE PAGES

    Casella, Amanda; Lines, Amanda; Nelson, Gilbert; ...

    2016-12-01

    Treatment and reuse of used nuclear fuel is a key component in closing the nuclear fuel cycle. Solvent extraction reprocessing methods that have been developed contain various steps tailored to the separation of specific radionuclides, which are highly dependent upon solution properties. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. Our group has been investigating the use of optical spectroscopy for the on-line monitoring of actinides, lanthanides, and acid strength within fuel reprocessing streams. This paper willmore » focus on the development and application of a new MicroRaman probe for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid in solutions relevant to used nuclear fuel reprocessing. Previous research has successfully demonstrated the applicability on the macroscopic scale, using sample probes requiring larger solution volumes. In an effort to minimize waste and reduce dose to personnel, we have modified this technique to allow measurement at the microfluidic scale using a Raman microprobe. Under the current sampling environment, Raman samples typically require upwards of 10 mL and larger. Using the new sampling system, we can sample volumes at 10 μL or less, which is a scale reduction of over 1,000 fold in sample size. Finally, this paper will summarize our current work in this area including: comparisons between the macroscopic and microscopic probes for detection limits, optimized channel focusing, and application in a flow cell with varying levels of HNO 3, and UO 2(NO 3) 2.« less

  14. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third taskmore » to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.« less

  15. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation.

    PubMed

    Sessink, Paul J M; Leclercq, Gisèle M; Wouters, Dominique-Marie; Halbardier, Loïc; Hammad, Chaïma; Kassoul, Nassima

    2015-04-01

    Environmental contamination, product contamination and technicians exposure were measured following preparation of iv bags with cyclophosphamide using the robotic system CytoCare. Wipe samples were taken inside CytoCare, in the clean room environment, from vials, and prepared iv bags including ports and analysed for contamination with cyclophosphamide. Contamination with cyclophosphamide was also measured in environmental air and on the technicians hands and gloves used for handling the drugs. Exposure of the technicians to cyclophosphamide was measured by analysis of cyclophosphamide in urine. Contamination with cyclophosphamide was mainly observed inside CytoCare, before preparation, after preparation and after daily routine cleaning. Contamination outside CytoCare was incidentally found. All vials with reconstituted cyclophosphamide entering CytoCare were contaminated on the outside but vials with powdered cyclophosphamide were not contaminated on the outside. Contaminated bags entering CytoCare were also contaminated after preparation but non-contaminated bags were not contaminated after preparation. Cyclophosphamide was detected on the ports of all prepared bags. Almost all outer pairs of gloves used for preparation and daily routine cleaning were contaminated with cyclophosphamide. Cyclophosphamide was not found on the inner pairs of gloves and on the hands of the technicians. Cyclophosphamide was not detected in the stationary and personal air samples and in the urine samples of the technicians. CytoCare enables the preparation of cyclophosphamide with low levels of environmental contamination and product contamination and no measurable exposure of the technicians. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  17. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  18. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    PubMed

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  19. Quantitative characterization of crude oils and fuels in mineral substrates using reflectance spectroscopy: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de

    2016-08-01

    The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.

  20. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    PubMed

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  1. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, A S; Mueller, C J; Buchholz, B A

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}.more » Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.« less

  2. Measurement of fuel corrosion products using planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.

  3. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Group (WG) to develop proposed requirements for commercial electricity-measuring devices (including those used in sub- metering electricity at residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...

  4. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  5. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    PubMed

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  6. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    DOE PAGES

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U ( 232Th) decay rate of 5 (15) kg -1 d -1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Simore » – 32P or 210Pb – 210Bi sequences of b decays. The decay rate of 32Si was found to be 80 +110 -65 (95% CI). An upper limit of ~35 kg -1 d -1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less

  7. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  8. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis

    PubMed Central

    Gilmour, Stuart; Miyagawa, Shoji; Kasuga, Fumiko; Shibuya, Kenji

    2016-01-01

    Background The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG), and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government’s response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents. Methods and Findings We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW), the Ministry of Agriculture, Forestry and Fishery (MAFF) and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137) of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products

  9. Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement

    NASA Astrophysics Data System (ADS)

    Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe

    2017-11-01

    Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.

  10. Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors

    NASA Astrophysics Data System (ADS)

    Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.

    2015-03-01

    Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.

  11. America's Children and the Environment: Measures of Contaminants, Body Burdens, and Illnesses. Second Edition.

    ERIC Educational Resources Information Center

    Woodruff, Tracey J.; Axelrad, Daniel A.; Kyle, Amy D.; Nweke, Onyemaechi; Miller, Gregory G.

    Noting that children may be affected by environmental contaminants in ways quite different from the way adults are affected, this report is the second on trends in measures reflecting environmental factors that may affect the U.S. children's health and well-being. A list of measures and key findings begins the report, followed by five main…

  12. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  13. Characterization of microbial contamination in United States Air Force aviation fuel tanks.

    PubMed

    Rauch, Michelle E; Graef, Harold W; Rozenzhak, Sophie M; Jones, Sharon E; Bleckmann, Charles A; Kruger, Randell L; Naik, Rajesh R; Stone, Morley O

    2006-01-01

    Bacteria and fungi, isolated from United States Air Force (USAF) aviation fuel samples, were identified by gas chromatograph fatty acid methyl ester (GC-FAME) profiling and 16S or 18S rRNA gene sequencing. Thirty-six samples from 11 geographically separated USAF bases were collected. At each base, an above-ground storage tank, a refueling truck, and an aircraft wing tank were sampled at the lowest sample point, or sump, to investigate microbial diversity and dispersion within the fuel distribution chain. Twelve genera, including four Bacillus species and two Staphylococcus species, were isolated and identified. Bacillus licheniformis, the most prevalent organism isolated, was found at seven of the 11 bases. Of the organisms identified, Bacillus sp., Micrococcus luteus, Sphinogmonas sp., Staphylococcus sp., and the fungus Aureobasidium pullulans have previously been isolated from aviation fuel samples. The bacteria Pantoea ananatis, Arthrobacter sp., Alcaligenes sp., Kocuria rhizophilia, Leucobacter komagatae, Dietza sp., and the fungus Discophaerina fagi have not been previously reported in USAF aviation fuel. Only at two bases were the same organisms isolated from all three sample points in the fuel supply distribution chain. Isolation of previously undocumented organisms suggests either, changes in aviation fuel microbial community in response to changes in aviation fuel composition, additives and biocide use, or simply, improvements in isolation and identification techniques.

  14. Three-Dimensional Measurements of Fuel Distribution in High-Pressure, High- Temperature, Next-Generation Aviation Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.

    1998-01-01

    In our world-class, optically accessible combustion facility at the NASA Lewis Research Center, we have developed the unique capability of making three-dimensional fuel distribution measurements of aviation gas turbine fuel injectors at actual operating conditions. These measurements are made in situ at the actual operating temperatures and pressures using the JP-grade fuels of candidate next-generation advanced aircraft engines for the High Speed Research (HSR) and Advanced Subsonics Technology (AST) programs. The inlet temperature and pressure ranges used thus far are 300 to 1100 F and 80 to 250 psia. With these data, we can obtain the injector spray angles, the fuel mass distributions of liquid and vapor, the degree of fuel vaporization, and the degree to which fuel has been consumed. The data have been used to diagnose the performance of injectors designed both in-house and by major U.S. engine manufacturers and to design new fuel injectors with overall engine performance goals of increased efficiency and reduced environmental impact. Mie scattering is used to visualize the liquid fuel, and laser-induced fluorescence is used to visualize both liquid and fuel vapor.

  15. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  16. Rapid indentification of organic contaminants in pretreated waste water using AOTF near-IR spectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilert, A.J.; Danley, W.J.; Wang, Xiaolu

    1995-12-31

    A near-infrared analyzer utilizing state-of-the-art acousto-optic tunable filter (AOTF) spectrometry with digital wavelength control and high D* extended-range INGaAs TE-cooled detector provides excellent wavelength repeatability (better than 0.02 nm) and very high signal-to-noise ration. Because the AOTF dispersive element is completely solid-state (no-moving parts), as is the entire spectrometer, the instrument is small, rugged and very reliable. Using this spectrometer, methods employing chemometrics have been developed and applied to measure organic contaminants such as gasoline and a variety of jet fuels in water. Qualitative identification of contaminants was achieved with discriminant analysis software developed specifically for this task. Both themore » technique of grouping sample spectra into specific clusters based of Mahalanobis distances and that of matching each spectrum with the most representative member of the appropriate group of calibration spectra were used to identify contaminants. After initial classification, appropriate qualitative chemometric calibrations may be applied to more accurately assess the level of contamination. The instrument will be used to evaluate ground water supplies.« less

  17. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    PubMed

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  18. MIR Solar Array Return Experiment: Power Performance Measurements and Molecular Contamination Analysis Results

    NASA Technical Reports Server (NTRS)

    Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas

    2001-01-01

    A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.

  19. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  20. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  1. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  2. Measurements of the Fuel Mileage of a KC-135 Aircraft with and Without Winglets

    NASA Technical Reports Server (NTRS)

    Temanson, G. E.

    1982-01-01

    The KC-135A Winglet Flight Research and Demonstration Program was a joint effort of the Air Force, NASA and the Boeing Military Airplane Company to flight test winglets on the KC-135A. The primary objective of the program was to verify the cruise performance improvements predicted by analysis and wind tunnel tests. Flight test data were obtained for winglets positioned at 15 deg cant/-2 deg incidence, 0 deg cant/-4 deg incidence, 15 deg cant/-4 deg incidence and for winglets off (baseline). Both fuel mileage and drag measurements were obtained. The 15 deg cant/-4 deg incidence winglet configuration provided the greatest performance improvement. The flight test measured fuel mileage improvement for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The agreement between the fuel mileage and drag data was excellent.

  3. Measurement of total hemispherical emissivity of contaminated mirror surfaces

    NASA Technical Reports Server (NTRS)

    Facey, T. A.; Nonnenmacher, A. L.

    1989-01-01

    The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.

  4. Measurements of trace contaminants in closed-type plant cultivation chambers

    NASA Astrophysics Data System (ADS)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  5. MEASUREMENT OF THE RADIOACTIVE CONTAMINATION OF THE FOOD CHAIN (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevallier, A.; Schneider, R.

    ABS>The results obtained at the Laboratoire de Protection of 1'Institut de Physique Biologique, Strasbourg, from 1958 to 1960 on the contamination of food are tabulated. The methods used for the measurement of the total beta activity and for the radiochemical separations and determination of the elements isolated are described for milk and vegetables. The activities found in milk, vegetables, and animal skeletons are given in tabular form. (J.S.R.)

  6. Palliative effects of H2 on SOFCs operating with carbon containing fuels

    NASA Astrophysics Data System (ADS)

    Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.

    2017-12-01

    Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.

  7. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    NASA Astrophysics Data System (ADS)

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; Menlove, Howard O.; Flaska, Marek; Pozzi, Sara A.

    2017-07-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrument that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.

  8. Partitioning of Aromatic Constituents into Water from Jet Fuels.

    PubMed

    Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S

    2015-08-01

    A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.

  9. In situ measurement of radioactive contamination of bottom sediments.

    PubMed

    Zhukouski, A; Anshakou, O; Kutsen, S

    2018-04-30

    A gamma spectrometric method is presented for in situ radiation monitoring of bottom sediments with contaminated layer of unknown thickness to be determined. The method, based on the processing of experimental spectra using the results of their simulation by the Monte Carlo method, is proposed and tested in practice. A model for the transport of gamma radiation from deposited radionuclides 137 Cs and 134 Cs to a scintillation detection unit located on the upper surface of the contaminated layer of sediments is considered. The relationship between the effective radius of the contaminated site and the thickness of the layer has been studied. The thickness of the contaminated layer is determined by special analysis of experimental and thickness-dependent simulated spectra. The technique and algorithm developed are verified as a result of full-scale studies performed with the submersible gamma-spectrometer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Inhibitors of biofilm formation by biofuel fermentation contaminants

    USDA-ARS?s Scientific Manuscript database

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, L. fermentum, and L. plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A var...

  11. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  12. Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods.

    PubMed

    Verschave, S H; Levecke, B; Duchateau, L; Vercruysse, J; Charlier, J

    2015-06-15

    Assessing levels of pasture larval contamination is frequently used to study the population dynamics of the free-living stages of parasitic nematodes of livestock. Direct quantification of infective larvae (L3) on herbage is the most applied method to measure pasture larval contamination. However, herbage collection remains labour intensive and there is a lack of studies addressing the variation induced by the sampling method and the required sample size. The aim of this study was (1) to compare two different sampling methods in terms of pasture larval count results and time required to sample, (2) to assess the amount of variation in larval counts at the level of sample plot, pasture and season, respectively and (3) to calculate the required sample size to assess pasture larval contamination with a predefined precision using random plots across pasture. Eight young stock pastures of different commercial dairy herds were sampled in three consecutive seasons during the grazing season (spring, summer and autumn). On each pasture, herbage samples were collected through both a double-crossed W-transect with samples taken every 10 steps (method 1) and four random located plots of 0.16 m(2) with collection of all herbage within the plot (method 2). The average (± standard deviation (SD)) pasture larval contamination using sampling methods 1 and 2 was 325 (± 479) and 305 (± 444)L3/kg dry herbage (DH), respectively. Large discrepancies in pasture larval counts of the same pasture and season were often seen between methods, but no significant difference (P = 0.38) in larval counts between methods was found. Less time was required to collect samples with method 2. This difference in collection time between methods was most pronounced for pastures with a surface area larger than 1 ha. The variation in pasture larval counts from samples generated by random plot sampling was mainly due to the repeated measurements on the same pasture in the same season (residual variance

  13. Laser absorption-scattering technique applied to asymmetric evaporating fuel sprays for simultaneous measurement of vapor/liquid mass distributions

    NASA Astrophysics Data System (ADS)

    Gao, J.; Nishida, K.

    2010-10-01

    This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.

  14. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no.more » 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)« less

  15. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    DTIC Science & Technology

    2016-11-01

    A.; Weinstein, M. P.; Lohmann, R. Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a tidal river. Environ. Sci...FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

  16. Biogeochemical assessment of natural attenuation of JP-4-contaminated ground water in the presence of fluorinated surfactants.

    PubMed

    Levine, A D; Libelo, E L; Bugna, G; Shelley, T; Mayfield, H; Stauffer, T B

    1997-12-22

    The biogeochemistry of the natural attenuation of petroleum-contaminated ground water was investigated in a field study. The focus of the study was a fire training site located on Tyndall Air Force Base in Florida. The site has been used by the Air Force for approximately 11 years in fire fighting exercises. An on-site above-ground tank of JP-4 provided fuel for setting controlled fires for the exercises. Various amounts of water and aqueous film forming foams (AFFF) were applied to extinguish the fires. The sources of contamination included leaks from pipelines transporting the fuel, leaks from an oil/water separator and runoff and percolation from the fire fighting activities. Previous investigations had identified jet fuel contamination at the site, however, no active remediation efforts have been conducted to date. The goal of this study was to use biogeochemical monitoring data to delineate redox zones within the site and to identify evidence of natural attenuation of JP-4 contamination. In addition to identifying several hydrocarbon metabolites, fluorinated surfactants (AFFF) were detected down-gradient of the hydrocarbon plume.

  17. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less

  18. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    DOE PAGES

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; ...

    2017-01-05

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less

  19. Measuring the Multiplication of Spent Fuel Assemblies – It’s easier than you think!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph

    This is a set of eight slides which advertise how easy it can be to measure the multiplication of a spent fuel assembly. A robust (fission chambers), rapid (under 15 minutes), direct (multiplication is measured, not photons from fission fragments) measurement of multiplication is possible.

  20. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  1. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  2. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  3. Environmental Education in Brazil: Preventive Measures to Avoid Contamination with U and Th

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Pastura, Valeria Fonseca da; Wieland, Patricia

    2008-08-07

    Aiming at increasing awareness of radiation health effects, environmental issues and preventive measures, the Nuclear Energy National Commission (CNEN) launched in 2004 an education and public outreach programme for mine workers, students, teachers, governmental leaders, labor representatives and members of communities nearby small mining sites at the North and Northeast regions. Many Brazilian conventional mines present a significant risk of exposure to radiation due to Uranium and Thorium. CNEN inspects the mines but there are several small mining sites dedicated to open pit short term mineral extraction, called 'garimpagem', that are of difficult control. Therefore, information at large about preventivemore » measures to avoid contamination during exploration, transportation and storage is necessary. CNEN developed an educational campaign which includes a series of open seminars, talks, folders, booklets and posters. The objective of this paper is to present the Brazilian educational campaign to avoid contamination risks at those small mineral exploration sites and its results. This campaign is a joint task that receives collaboration of other organizations such as federal police, schools and universities.« less

  4. Environmental Education in Brazil: Preventive Measures to Avoid Contamination with U and Th

    NASA Astrophysics Data System (ADS)

    da Silva Pastura, Valéria Fonseca; Wieland, Patricia

    2008-08-01

    Aiming at increasing awareness of radiation health effects, environmental issues and preventive measures, the Nuclear Energy National Commission (CNEN) launched in 2004 an education and public outreach programme for mine workers, students, teachers, governmental leaders, labor representatives and members of communities nearby small mining sites at the North and Northeast regions. Many Brazilian conventional mines present a significant risk of exposure to radiation due to Uranium and Thorium. CNEN inspects the mines but there are several small mining sites dedicated to open pit short term mineral extraction, called "garimpagem", that are of difficult control. Therefore, information at large about preventive measures to avoid contamination during exploration, transportation and storage is necessary. CNEN developed an educational campaign which includes a series of open seminars, talks, folders, booklets and posters. The objective of this paper is to present the Brazilian educational campaign to avoid contamination risks at those small mineral exploration sites and its results. This campaign is a joint task that receives collaboration of other organizations such as federal police, schools and universities.

  5. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  6. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  7. Integration of analytical and biological measurements for assessing the effects of contaminants present at a Great Lakes area of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is a challenge. Instrumental analyses of site waters provide insights into the occurrence of contaminants, but provide little information about possible effects. Biological measur...

  8. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  9. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, David J.; Feld, Sam H.

    1986-01-01

    A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  10. Measuring spent fuel assembly multiplication in borated water with a passive neutron albedo reactivity instrument

    NASA Astrophysics Data System (ADS)

    Tobin, Stephen J.; Peura, Pauli; Bélanger-Champagne, Camille; Moring, Mikael; Dendooven, Peter; Honkamaa, Tapani

    2018-07-01

    The performance of a passive neutron albedo reactivity (PNAR) instrument to measure neutron multiplication of spent nuclear fuel in borated water is investigated as part of an integrated non-destructive assay safeguards system. To measure the PNAR Ratio, which is proportional to the neutron multiplication, the total neutron count rate is measured in high- and low-multiplying environments by the PNAR instrument. The integrated system also contains a load cell and a passive gamma emission tomograph, and as such meets all the recommendations of the IAEA's recent ASTOR Experts Group report. A virtual spent fuel library for VVER-440 fuel was used in conjunction with MCNP simulations of the PNAR instrument to estimate the measurement uncertainties from (1) variation in the water boron content, (2) assembly positioning in the detector and (3) counting statistics. The estimated aggregate measurement uncertainty on the PNAR Ratio measurement is 0.008, to put this uncertainty in context, the difference in the PNAR Ratio between a fully irradiated assembly and this same assembly when fissile isotopes only absorb neutrons, but do not emit neutrons, is 0.106, a 13-sigma effect. The 1-sigma variation of 0.008 in the PNAR Ratio is estimated to correspond to a 3.2 GWd/tU change in assembly burnup.

  11. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  12. Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, L.

    1995-01-01

    The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and tomore » plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project.« less

  13. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.

    2018-06-01

    Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.

  14. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.

    PubMed

    Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich

    2011-01-15

    In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).

  15. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  16. STS-1 mission contamination evaluation approach

    NASA Technical Reports Server (NTRS)

    Jacobs, S.; Ehlers, H.; Miller, E. R.

    1980-01-01

    The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight.

  17. [Perceived risks of food contaminants].

    PubMed

    Koch, Severine; Lohmann, Mark; Epp, Astrid; Böl, Gaby-Fleur

    2017-07-01

    Food contaminants can pose a serious health threat. In order to carry out adequate risk communication measures, the subjective risk perception of the public must be taken into account. In this context, the breadth of the topic and insufficient terminological delimitations from residues and food additives make an elaborate explanation of the topic to consumers indispensable. A representative population survey used language adequate for lay people and a clear definition of contaminants to measure risk perceptions with regard to food contaminants among the general public. The study aimed to assess public awareness of contaminants and the perceived health risks associated with them. In addition, people's current knowledge and need for additional information, their attitudes towards contaminants, views on stakeholder accountability, as well as compliance with precautionary measures, such as avoiding certain foods to reduce health risks originating from contaminants, were assessed. A representative sample of 1001 respondents was surveyed about food contaminants via computer-assisted telephone interviewing. The majority of respondents rated contaminants as a serious health threat, though few of them spontaneously mentioned examples of undesirable substances in foods that fit the scientific or legal definition of contaminants. Mercury and dioxin were the most well-known contaminants. Only a minority of respondents was familiar with pyrrolizidine alkaloids. The present findings highlight areas that require additional attention and provide implications for risk communication geared to specific target groups.

  18. Post-Contamination Vapour Hazards from Military Vehicles Contaminated with Thickened and Unthickened GD

    DTIC Science & Technology

    1979-02-01

    The residual vapour hazards from four types of military vehicles previously contaminated with either thickened or unthickened GD have been measured...magnitude of these hazards have been investigated and an assessment made of their relevance to contamination control. It was found that on permeable... contamination had been applied were ineffective in reducing the subsequent vapour hazard; the vapour hazard arising from thickened GD contamination was less

  19. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  20. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  1. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    NASA Astrophysics Data System (ADS)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  2. Development of inexpensive metal macrocyclic complexes for use in fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.

    Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

  3. Antineutrino Monitoring of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Huber, Patrick; Kopp, Joachim

    2017-11-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries worldwide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this paper, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear-waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to reverify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in contaminated areas such as the Hanford site in Washington state.

  4. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...

  5. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites.

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...

  6. Photo-assisted removal of fuel oil hydrocarbons from wood and concrete.

    PubMed

    Popova, Inna E; Kozliak, Evguenii I

    2008-08-01

    A novel photo-treatment to decontaminate building structural elements polluted with fuel oil hydrocarbons as a result of spillage and/or a catastrophic flood was examined. A proof-of-concept study evaluating the photocatalytic removal of hydrocarbons (n-hexadecane and fuel oil #2) from contaminated wood (southern yellow pine) and concrete was conducted using scintillation counting (with (14)C-labeled n-hexadecane) and gas chromatography. Contaminated samples were irradiated by UV or fluorescent light in the absence or presence of a photocatalyst, TiO(2). As a result of the treatment, under various scenarios, up to 80-98% of the originally applied n-hexadecane was removed, within a wide range of contaminant concentrations (4-250 mg/g wood). The essential treatment time increased from 1-7 days for low concentrations to several weeks for high concentrations. Mass balance experiments showed that the only product formed from (14)C-labeled n-hexadecane in detectable amounts was (14)CO(2). For low amounts of applied hydrocarbon (4-20 mg/g wood), the overall process rate was limited by the contaminant transport/mobility whereas for high n-hexadecane concentrations (150-250 mg/g, corresponding to 50-80% filling of wood pores), the key factor was the photochemical reaction. Photodegradation experiments conducted with standard heating fuel oil #2 (a representative real-world contaminant) resulted in a significant (up to 80%) photochemical removal of mid-size hydrocarbons (C(13)-C(17)) in 3 weeks whereas heavier hydrocarbons (> C(17)) were not affected; light hydrocarbons (< C(12)) were removed by evaporation. These results point toward a promising technique to reclaim wooden and concrete structures contaminated with semi-volatile chemicals.

  7. Assessment of soil-gas contamination at three former fuel-dispensing sites, Fort Gordon, Georgia, 2010—2011

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were

  8. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  9. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Burton, J.; Sindler, P.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less

  10. Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California

    Treesearch

    D. A. Roberts; P.E. Dennison; S. Peterson; S. Sweeney; J. Rechel

    2006-01-01

    Dynamic changes in live fuel moisture (LFM) and fuel condition modify fire danger in shrublands. We investigated the empirical relationship between field-measured LFM and remotely sensed greenness and moisture measures from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the...

  11. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  12. Rapid measurement and prediction of bacterial contamination in milk using an oxygen electrode.

    PubMed

    Numthuam, Sonthaya; Suzuki, Hiroaki; Fukuda, Junji; Phunsiri, Suthiluk; Rungchang, Saowaluk; Satake, Takaaki

    2009-03-01

    An oxygen electrode was used to measure oxygen consumption to determine bacterial contamination in milk. Dissolved oxygen (DO) measured at 10-35 degrees C for 2 hours provided a reasonable prediction efficiency (r > or = 0.90) of the amount of bacteria between 1.9 and 7.3 log (CFU/mL). A temperature-dependent predictive model was developed that has the same prediction accuracy like the normal predictive model. The analysis performed with and without stirring provided the same prediction efficiency, with correlation coefficient of 0.90. The measurement of DO is a simple and rapid method for the determination of bacteria in milk.

  13. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene

  14. MEASURING CONTAMINANT RESUSPENSION RESULTING FROM SEDIMENT CAPPING

    EPA Science Inventory

    This Sediment Issue summarizes two studies undertaken at marine sites by the National Risk Management Research Laboratory of U.S. EPA to evaluate the resuspension of surface materials contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) b...

  15. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation.

    PubMed

    Rich, Joseph O; Leathers, Timothy D; Bischoff, Kenneth M; Anderson, Amber M; Nunnally, Melinda S

    2015-11-01

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grind corn fuel ethanol facility. Among eight sites sampled in the facility, the combined liquefaction stream and yeast propagation tank were consistently contaminated, leading to contamination of early fermentation tanks. Among 768 contaminants isolated, 92% were identified as Lactobacillus sp., with the most abundant species being Lactobacillus plantarum, Lactobacillus casei, Lactobacillus mucosae, and Lactobacillus fermentum. Seven percent of total isolates showed the ability to form biofilms in pure cultures, and 22% showed the capacity to significantly inhibit ethanol production. However, these traits were not correlated. Ethanol inhibition appeared to be related to acetic acid production by contaminants, particularly by obligately heterofermentative species such as L. fermentum and L. mucosae. Published by Elsevier Ltd.

  16. Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells.

    PubMed

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David E; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E

    2016-09-20

    The effects of bromomethane (BrCH 3 ), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm -2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br - , which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br - and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss.

  17. Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells

    PubMed Central

    Baturina, Olga; Ramaker, David E.; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E.

    2016-01-01

    The effects of bromomethane (BrCH3), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm−2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br−, which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br− and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss. PMID:27695133

  18. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE PAGES

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; ...

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  19. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  20. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, D.J.; Feld, S.H.

    1984-02-22

    A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  1. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  2. Effects of Heterogeneities, Sampling Frequencies, Tools and Methods on Uncertainties in Subsurface Contaminant Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; McNab, W. W.

    2007-12-01

    Long-term monitoring (LTM) is particularly important for contaminants which are mitigated by natural processes of dilution, dispersion, and degradation. At many sites, LTM can require decades of expensive sampling at tens or even hundreds of existing monitoring wells, resulting in hundreds of thousands, or millions of dollars per year for sampling and data management. Therefore, contaminant sampling tools, methods and frequencies are chosen to minimize waste and data management costs while ensuring a reliable and informative time-history of contaminant measurement for regulatory compliance. The interplay play between cause (i.e. subsurface heterogeneities, sampling techniques, measurement frequencies) and effect (unreliable data and measurements gap) has been overlooked in many field applications which can lead to inconsistencies in time- histories of contaminant samples. In this study we address the relationship between cause and effect for different hydrogeological sampling settings: porous and fractured media. A numerical model has been developed using AMR-FEM to solve the physicochemical processes that take place in the aquifer and the monitoring well. In the latter, the flow is governed by the Navier-Stokes equations while in the former the flow is governed by the diffusivity equation; both are fully coupled to mimic stressed conditions and to assess the effect of dynamic sampling tool on the formation surrounding the monitoring well. First of all, different sampling tools (i.e., Easy Pump, Snapper Grab Sampler) were simulated in a monitoring well screened in different homogeneous layered aquifers to assess their effect on the sampling measurements. Secondly, in order to make the computer runs more CPU efficient the flow in the monitoring well was replaced by its counterpart flow in porous media with infinite permeability and the new model was used to simulate the effect of heterogeneities, sampling depth, sampling tool and sampling frequencies on the

  3. [Disinfectants and main sanitary and preventive measures for protection of ventilation and air-conditioning systems from Legionella contamination].

    PubMed

    Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A

    2008-01-01

    The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.

  4. Analysis and Derivation of Allocations for Fiber Contaminants in Liquid Bipropellant Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, N. M; ibrahim, K. Y.

    2012-01-01

    An analysis was performed to identify the engineering rationale for the existing particulate limits in MSFC-SPEC-164, Cleanliness of Components for Use in Oxygen, Fuel, and Pneumatic Systems, determine the applicability of this rationale to fibers, identify potential risks that may result from fiber contamination in liquid oxygen/fuel bipropellant systems, and bound each of these risks. The objective of this analysis was to determine whether fiber contamination exceeding the established quantitative limits for particulate can be tolerated in these systems and, if so, to derive and recommend quantitative allocations for fibers beyond the limits established for other particulate. Knowledge gaps were identified that limit a complete understanding of the risk of promoted ignition from an accumulation of fibers in a gaseous oxygen system.

  5. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less

  6. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    USGS Publications Warehouse

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  7. PREIRRADIATION MEASUREMENTS OF PIQUA FUEL ELEMENTS NO. P-1111, P-1113, P- 1114, AND P-1120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbell, H.J.

    1962-11-01

    Results of preirradiation measurements and tests performed during the processing and assembly of the individual fuel cylinders contained in Piqua Fuel Elements No. P-1111, P-1113, P-1114, and P-1120 are presented. A description of the techniques and equipment used in obtaining the data is also included. (auth)

  8. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  9. Detection and measurement of surface contamination by multiple antineoplastic drugs using multiplex bead assay

    PubMed Central

    Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Pretty, Jack; Debord, D Gayle; Connor, Thomas H; Snawder, John

    2015-01-01

    Objectives Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. Methods In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0–1000 ng/ml for 5-fluorouracil, 0–100 ng/ml for paclitaxel, and 0–2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. Results There was no significant cross reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm2 with a limit of quantitation (LOQ) of 2.8 ng/cm2, the LOD for paclitaxel was 0.57 ng/cm2 with an LOQ of 2.06 ng/cm2, and the LOD for doxorubicin was 0.0036 ng/cm2 with an LOQ of 0.013 ng/cm2. Conclusion The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs. PMID:25293722

  10. Induced Contamination Predictions for JAXA's MPAC&SEED Devices

    NASA Technical Reports Server (NTRS)

    Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron

    2008-01-01

    Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.

  11. Assessing the potential for conversion to biomass fuels in interior Alaska.

    Treesearch

    Nancy Fresco; F. Stuart Chapin

    2009-01-01

    In rural Alaskan communities, high economic, social, and ecological costs are associated with fossil fuel use for power generation. Local concerns regarding fuel prices, environmental contamination, and the effects of global climate change have resulted in increased interest in renewable energy sources. In this study, we assessed the feasibility of switching from...

  12. MODELING NATURAL ATTENUATION OF FUELS WITH BIOPLUME III

    EPA Science Inventory

    A natural attenuation model that simulates the aerobic and anaerobic biodegradation of fuel hydrocarbons was developed. The resulting model, BIOPLUME III, demonstrates the importance of biodegradation in reducing contaminant concentrations in ground water. In hypothetical simulat...

  13. Defining the Operational Conditions for High Temperature Polymer Fuel Cells in Naval Environments

    DTIC Science & Technology

    2008-12-31

    benefits of both Proton Exchange Membrane Fuel Cells ( PEMFCs ) and phosphoric acid fuel cell technologies: a solid polymer electrolyte, the PBI...membrane, but with higher temperature (160°C) operation. PBI membrane technology is far less developed than that for PEMFCs , but it is rapidly emerging as...how air contaminants affect the properties of proton exchange membrane fuel cells ( PEMFCs ). PEMFCs operate at 80 °C, and are the present choice of fuel

  14. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  15. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  16. Method using gas chromatography to determine the molar flow balance for proton exchange membrane fuel cells exposed to impurities

    NASA Astrophysics Data System (ADS)

    Bender, G.; Angelo, M.; Bethune, K.; Dorn, S.; Thampan, T.; Rocheleau, R.

    An understanding of the potentially serious performance degradation effects that trace level contaminants can cause in proton exchange membrane fuel cells (PEMFCs) is crucial for the successful deployment of PEMFC for commercial applications. An experimental and analytic methodology is described that employs gas chromatography (GC) to accurately determine the concentration of impurity species in the fuel and oxidant streams of a PEMFC. In this paper we further show that the accurate determination of the contaminant concentrations at the anode and cathode inlets and outlets provides a means to quantify reactions of contaminants within the cell and to identify diffusive mass transport across the membrane. High data accuracy down to sub-ppm contaminant levels is required and was achieved by addressing several challenges pertaining to experimental setup and data analysis which are both discussed in detail. The application of the methodology is demonstrated using carbon monoxide and toluene which were injected into the cell at concentrations between 1 and 10 ppm and 20 and 60 ppm, respectively. Both impurities were observed to react in the fuel cell: carbon monoxide to carbon dioxide, and toluene to methylcyclohexane. For both contaminants closure of the molar flow balances to within 3% was achieved even at the low contaminant concentrations. This allowed the extent of both reactions at the applied operating conditions to be quantified. The presented methodology is shown to be a valuable tool for investigating the effects and reactions of trace contaminants in fuel cells and for providing critical insights into the mechanisms responsible for the associated performance degradation.

  17. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  18. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  19. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory.

    PubMed

    ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R

    2008-06-01

    The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.

  20. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    PubMed

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements

    NASA Astrophysics Data System (ADS)

    Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.

    2007-06-01

    Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.

  2. Direct Fuel Injector Temporal Measurements

    DTIC Science & Technology

    2014-10-01

    ignition timing, and oxides of nitrogen emissions from biodiesel -fueled engines”. Transactions of the Asabe, 50(4): 1123-1128, 2007. 20. Postrioti...SAE Technical Paper 2003-01-0768, 2003, doi:10.4271/2003- 01-0768. 21. Bittle, J., Knight, B., and Jacobs, T., “The Impact of Biodiesel on

  3. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What’s New

    EPA Science Inventory

    This presentation will cover new research and concerns regarding drinking water disinfection by-products (DBPs) and other emerging environmental contaminants, such as perfluorooctanoic acid (PFOA), pharmaceuticals, perchlorate, benzotriazoles, fuel additives (e.g., ethylene dibro...

  4. Understanding Our Energy Footprint: Undergraduate Chemistry Laboratory Investigation of Environmental Impacts of Solid Fossil Fuel Wastes

    ERIC Educational Resources Information Center

    Berger, Michael; Goldfarb, Jillian L.

    2017-01-01

    Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…

  5. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    USDA-ARS?s Scientific Manuscript database

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  6. Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.

    2017-10-01

    Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Haem peroxidase activity in Daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater.

    PubMed

    Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda

    2003-10-01

    A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

  8. Preliminary investigation of uncombusted auto fuel vapor dispersion within a residential garage microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansari, A.; Streicher, J.J.; Huber, A.H.

    1993-01-01

    Evaporative emissions from vehicles in an attached garage may represent a significant source of indoor pollution and human exposure. A pilot field study was undertaken to investigate potential in-house dispersion of evaporative emissions of uncombusted fuels from a vehicle parked inside an attached garage. In a set of experiments using sulfur hexafluoride tracer gas, the multizonal mass balance model, CONTAM88, was used to predict interzonal air flow rates and SF6 concentration distributions within the garage and house. Several experiments were included to evaluate the effect of meteorology and mechanical mixing mechanisms on the dispersion of automobile fuel vapor. Measurements indicatedmore » that approximately three percent of the garage maximum concentration was measured in a room adjacent to the garage. The model successfully predicted garage concentrations under well mixed conditions, but underpredicted the measured concentrations within various rooms of the house, in which mixing was incomplete. Multizonal mass balance models such as CONTAM88 may be useful in approximating contaminant concentrations at various locations within the house.« less

  9. Development and calibration of the shielded measurement system for fissile contents measurements on irradiated nuclear fuel in dry storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, W. R.; Jensen, B. A.

    2002-05-31

    In recent years there has been a trend towards storage of Irradiated Nuclear Fuel (INF) in dry conditions rather than in underwater environments. At the same time, the Department of Energy (DOE) has begun encouraging custodians of INF to perform measurements on INF for which no recent fissile contents measurement data exists. INF, in the form of spent fuel from Experimental Breeder Reactor 2 (EBR-II), has been stored in close-fitting, dry underground storage locations at the Radioactive Scrap and Waste Facility (RSWF) at Argonne National Laboratory-West (ANL-W) for many years. In Fiscal Year 2000, funding was obtained from the DOEmore » Office of Safeguards and Security Technology Development Program to develop and prepare for deployment a Shielded Measurement System (SMS) to perform fissile content measurements on INF stored in the RSWF. The SMS is equipped to lift an INF item out of its storage location, perform scanning neutron coincidence and high-resolution gamma-ray measurements, and restore the item to its storage location. The neutron and gamma-ray measurement results are compared to predictions based on isotope depletion and Monte Carlo neutral-particle transport models to provide confirmation of the accuracy of the models and hence of the fissile material contents of the item as calculated by the same models. This paper describes the SMS and discusses the results of the first calibration and validation measurements performed with the SMS.« less

  10. Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities

    NASA Astrophysics Data System (ADS)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toi, Kohei; Tsubota, Youichi

    2014-05-01

    Alpha particles are monitored for detecting nuclear fuel material (i.e., plutonium and uranium) at nuclear fuel facilities. Currently, for monitoring the airborne contamination of nuclear fuel, only energy information measured by Si-semiconductor detectors is used to distinguish nuclear fuel material from radon daughters. In some cases, however, such distinguishing is difficult when the radon concentration is high. In addition, a Si-semiconductor detector is generally sensitive to noise. In this study, we developed a new alpha-particle imaging system by combining a Si-PM array, which is insensitive to noise, with a Ce-doped Gd3Al2Ga3O12(GAGG) scintillator, and evaluated our developed system's fundamental performance. The scintillator was 0.1-mm thick, and the light guide was 3.0 mm thick. An 241Am source was used for all the measurements. We evaluated the spatial resolution by taking an image of a resolution chart. A 1.6 lp/mm slit was clearly resolved, and the spatial resolution was estimated to be less than 0.6-mm FWHM. The energy resolution was 13% FWHM. A slight distortion was observed in the image, and the uniformity near its center was within ±24%. We conclude that our developed alpha-particle imaging system is promising for plutonium detection at nuclear fuel facilities.

  11. Air Force Groundwater Contamination Cleanup: An Evaluation of the Pump- and-Treat Method.

    DTIC Science & Technology

    1988-09-01

    Other contaminants commonly detected at Air Force installations are benzene, mercury , pesticides, polychlori- nated biphenyls (PCBs), and Toxaphene...the air base experienced a 3000 gallon fuel (JP-4) spill at Fire Training Area 5 and contracted the DETOX company to conduct cleanup operations. After...several months of pumping, DETOX estimated that only 300 gallons of the fuel had been recovered. Wright-Patterson Air Force Base, unsatisfied with

  12. Skylab experiment performance evaluation manual. Appendix S: Experiment T027 contamination measurement sample array (MSFC)

    NASA Technical Reports Server (NTRS)

    Tonetti, B. B.

    1973-01-01

    Analyses for Experiment T027, Contamination Measurement Sample Array (MSFC), to be used for evaluating the performance of the Skylab corrollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  13. Benefits of barrier fuel on fuel cycle economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect ofmore » fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs.« less

  14. The contamination mechanism and behavior of amide bond containing organic contaminant on PEMFC

    DOE PAGES

    Cho, Hyun -Seok; Das, Mayukhee; Wang, Heli; ...

    2015-02-03

    In this paper, a study is presented of the effects of an organic contaminant containing an amide bond (-CONH-), ε-caprolactam, on polymer electrolyte membrane fuel cells (PEMFCs). The ε-caprolactam has been detected in leachates from polyphthalamide materials that are being considered for use as balance-of-plant structural materials for PEMFCs. Contamination effects from ε-caprolactam in Nafion membranes are shown to be controlled by temperature. A possible explanation of the temperature effect is the endothermic ring-opening reaction of the amide bond (-NHCO-) of the cyclic ε-caprolactam. UV-vis and ATR-IR spectroscopy studies confirmed the presence of open ring structure of ε-caprolactam in membranes.more » The ECSA and kinetic current for the ORR of the Pt/C catalyst were also investigated and were observed to decrease upon contamination by the ε-caprolactam. By comparison of the CVs of ammonia and acetic acid, we confirmed the adsorption of carboxylic acid (-COOH) or carboxylate anion (-COO-) onto the surface of the Pt. In conclusion, a comparison of in situ voltage losses at 80°C and 50°C also revealed temperature effects, especially in the membrane, as a result of the dramatic increase in the HFR.« less

  15. The Collection of Ice in Jet A-1 Fuel Pipes

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas C.

    Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon

  16. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  17. Measurement of surface contamination by certain antineoplastic drugs using high-performance liquid chromatography: applications in occupational hygiene investigations in hospital environments.

    PubMed

    Rubino, F M; Floridia, L; Pietropaolo, A M; Tavazzani, M; Colombi, A

    1999-01-01

    Within the context of continuing interest in occupational hygiene of hospitals as workplaces, the authors report the results of a preliminary study on surface contamination by certain antineoplastic drugs (ANDs), recently performed in eight cancer departments of two large general hospitals in Milan, Italy. Since reliable quantitative information on the exposure levels to individual drugs is mandatory to establish a strong interpretative framework for correctly assessing the health risks associated with manipulation of ANDs and rationally advise intervention priorities for exposure abatement, two automated analytical methods were set up using reverse-phase high-performance liquid chromatography for the measurement of contamination by 1) methotrexate (MTX) and 2) the three most important nucleoside analogue antineoplastic drugs (5-fluorouracil 5FU, Cytarabin CYA, Gemcytabin GCA) on surfaces such as those of preparation hoods and work-benches in the pharmacies of cancer wards. The methods are characterized by short analysis time (7 min) under isocratic conditions, by the use of a mobile phase with a minimal content of organic solvent and by high sensitivity, adequate to detect surface contamination in the 5-10 micrograms/m2 range. To exemplify the performance of the analytical methods in the assessment of contamination levels from the target analyte ANDs, data are reported on the contamination levels measured on various surfaces (such as on handles, floor surfaces and window panes, even far from the preparation hood). Analyte concentrations corresponding to 0.8-1.5 micrograms of 5FU were measured on telephones, 0.85-28 micrograms/m2 of CYA were measured on tables, 1.2-1150 micrograms/m2 of GCA on furniture and floors. Spillage fractions between 1-5% of the used ANDs (daily use 5FU 7-13 g; CYA 0.1-7.1 g; GCA 0.2-5 g) were measured on the disposable polythene-backed paper cover sheet of the preparation hood.

  18. Progress on Establishing the Feasibility of Lead Slowing Down Spectroscopy for Direct Measurement of Plutonium in Used Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.

    2012-07-19

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT continues to support a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10%more » typical of today’s confirmatory assay methods. An LSDS is comprised of a stack of lead (typically 1-6 m3) in which materials to be measured are placed in the lead and a pulse of neutrons is injected. The neutrons in this pulse lose energy due to inelastic and (subsequently) elastic scattering and the average energy of the neutrons decreases as the time increases by a well-defined relationship. In the interrogation energy region (~0.1-1000 eV) the neutrons have little energy spread (~30%) about the average neutron energy. Due to this characteristic, the energy of the (assay) neutrons can then be determined by measuring the time elapsed since the neutron pulse. By measuring the induced fission neutrons emitted from the used fuel, it is possible to determine isotopic-mass content by unfolding the unique structure of isotopic resonances across the interrogation energy region. This paper will present efforts on the development of time-spectral analysis algorithms, fast neutron detector advances, and validation and testing measurements.« less

  19. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOEpatents

    Liu, Di-Jia [Naperville, IL

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  20. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  1. Heat transfer and pressure measurements for the SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  2. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    PubMed

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  3. Sensor system for fuel transport vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics ofmore » the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.« less

  4. Shuttle on-orbit contamination and environmental effects

    NASA Technical Reports Server (NTRS)

    Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.

    1985-01-01

    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.

  5. A Metagenomic Analysis of Microbial Contamination in Aviation Fuels

    DTIC Science & Technology

    2009-03-01

    classification by the RDP Classifier, sequences similar to members of the Acidobacteria, Actinobacteria , Bacteroidetes, Chloroflexi, Cyanobacteria... Actinobacteria 85 63 4 152 Bacteroidetes 5 0 0 5 Chloroflexi 7 0 0 7 Cyanobacteria 56 0 0 56 Deinococcus-Thermus 2 0 0 2 Firmicutes 83 99 2 184...Members of the Proteobacteria, Firmicutes and Actinobacteria were represented in all three fuel types; in Jet A and Biodiesel they were the only

  6. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  7. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    spill site. Benzene, indicative of ground-water contamination by a fuel substance, occurs in an area northeast of the bulk-fuel storage area. Analysis of a variety of chemical, physical, and biologic characteristics of water on the Base indicate that there is a measurable affect on ground-water quality from landfills, the seepage lagoon, and the waste-treatment plant.

  8. Yeast Derived LysA2 Can Control Bacterial Contamination in Ethanol Fermentation.

    PubMed

    Kim, Jun-Seob; Daum, M Angela; Jin, Yong-Su; Miller, Michael J

    2018-05-24

    Contamination of fuel-ethanol fermentations continues to be a significant problem for the corn and sugarcane-based ethanol industries. In particular, members of the Lactobacillaceae family are the primary bacteria of concern. Currently, antibiotics and acid washing are two major means of controlling contaminants. However, antibiotic use could lead to increased antibiotic resistance, and the acid wash step stresses the fermenting yeast and has limited effectiveness. Bacteriophage endolysins such as LysA2 are lytic enzymes with the potential to contribute as antimicrobials to the fuel ethanol industries. Our goal was to evaluate the potential of yeast-derived LysA2 as a means of controlling Lactobacillaceae contamination. LysA2 intracellularly produced by Pichia pastoris showed activity comparable to Escherichia coli produced LysA2. Lactic Acid Bacteria (LAB) with the A4α peptidoglycan chemotype (L-Lys-D-Asp crosslinkage) were the most sensitive to LysA2, though a few from that chemotype were insensitive. Pichia -expressed LysA2, both secreted and intracellularly produced, successfully improved ethanol productivity and yields in glucose (YPD60) and sucrose-based (sugarcane juice) ethanol fermentations in the presence of a LysA2 susceptible LAB contaminant. LysA2 secreting Sacharomyces cerevisiae did not notably improve production in sugarcane juice, but it did control bacterial contamination during fermentation in YPD60. Secretion of LysA2 by the fermenting yeast, or adding it in purified form, are promising alternative tools to control LAB contamination during ethanol fermentation. Endolysins with much broader lytic spectrums than LysA2 could supplement or replace the currently used antibiotics or the acidic wash.

  9. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  10. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  11. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  12. The long-term problems of contaminated land: Sources, impacts and countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  13. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.

    PubMed

    Jampasri, Kongkeat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Ounjai, Puey; Kumsopa, Acharaporn

    2016-10-02

    Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils.

  14. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  15. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  16. Heat transfer and pressure measurements for the SSME fuel-side turbopump

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.

    1990-01-01

    A measurement program is currently underway at the Calspan-UB Research Center (CUBRC) which utilizes the Rocketdyne two-state fuel-side turbine with the engine geometric configuration reproduced. This is a full two-state turbine for which the vane rows and the blades are the engine hardware currently used on the Space Shuttle turbopump. A status report is provided for the experimental program and a description of the instrumentation and the measurements to be performed. The specific items that will be illustrated and described are as follows: (1) the gas flow path, (2) the heat-flux instrumentation, (3) the surface-pressure instrumentation, (4) the experimental conditions for which data will be obtained, and (5) the specific measurements that will be performed.

  17. Laboratory Evaluation of Light Obscuration Particle Counters used to Establish use Limits for Aviation Fuel

    DTIC Science & Technology

    2015-12-01

    markings are indicated, follow agency authorization procedures , e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information. 13. SUPPLEMENTARY...Contamination in Distillate Fuels (Visual Inspection Procedures ), as a final check of fuel to ensure aviation fuel is clear and bright before flight...Laboratories at the Detroit Arsenal. The online procedure for evaluating the light obscuration particle counters was modified from the concepts found

  18. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique

  19. Extraction behavior of metallic contaminants and soil constituents from contaminated soils.

    PubMed

    Tokunaga, S; Park, S W; Ulmanu, M

    2005-06-01

    With an aim of developing an effective remediation technology for soils contaminated by heavy metals and metalloids, the extraction behavior of metallic contaminants as well as those of soil constituents was studied on a laboratory scale. Three contaminated soils collected from a former metal recycling plant were examined. These three soils were found to be contaminated by As, Cu, Pb, Sb, Se and Zn as compared to the non-contaminated soil. The pH-dependent extraction behavior of various elements from the soils was measured in a wide pH range and categorized into three groups. Hydrochloric acid (HCl), H2SO4, H3PO4, HNO3, sodium citrate, sodium tartrate, disodium dihydrogen ethylenediaminetetraacetate and diethylenetriaminepentaacetic acid were evaluated as extractants for removing contaminants from the soils. Extraction behavior of the soil constituents was also studied. The efficiency of the extraction was evaluated by the Japanese content and leaching tests. The stabilization of Pb remaining in the soil after the extraction process was conducted by the addition of iron(III) and calcium chloride.

  20. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    DOE PAGES

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less

  1. Phenol-selective mass spectrometric analysis of jet fuel.

    PubMed

    Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott

    2017-08-21

    Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.

  2. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  3. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    NASA Astrophysics Data System (ADS)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  4. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  5. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  6. Measurement of air contamination in different wards of public sector hospital, Sukkur.

    PubMed

    Memon, Badaruddin AllahDino; Bhutto, Gul Hassan; Rizvi, Wajid Hussain

    2016-11-01

    The aim of this study was to evaluate and assess the index of bacterial contamination in different wards of the Public Sector Hospital of Sukkur (Teaching) Pakistan; whether or not the air contamination was statistically different from the acceptable level using active and passive sampling. In addition to this main hypothesis, other investigations included: occurrence of the most common bacteria, whether or not the bacterial contamination in the wards was a persistent problem and identification of the effective antibiotics against the indentified bacteria. The evidence sought based on the One Sample T test suggests that there is a (statistically) significant difference between the observed (higher) than the acceptance level (p<0.01), the result based on One-Way ANOVA suggests that the contamination problem was persistent as there was no significant difference among observed contamination of all three visits at (p>0.01) and the result of antibiotic susceptibility test highlights sensitivity and resistance level of antibiotics for the indentified bacteria.

  7. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  8. Phytoremediation of Metal-Contaminated Soil for Improving Food Safety

    NASA Astrophysics Data System (ADS)

    Shilev, Stefan; Benlloch, Manuel; Dios-Palomares, R.; Sancho, Enrique D.

    The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

  9. Fuel system technology overview

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1980-01-01

    Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.

  10. In situ bioremediation of an underground diesel fuel spill: A case history

    NASA Astrophysics Data System (ADS)

    Frankenberger, W. T.; Emerson, K. D.; Turner, D. W.

    1989-05-01

    In the winter months of 1983, approximately 1000 gallons of diesel fuel had flowed along an asphalt parking lot of a commercial establishment towards a surface drain near an open creek. Investigations led to the discovery of an underground storage tank leaking diesel fuel. Exploratory borings showed that contamination was near the surface horizon and the capillary zone of the water table. Hydrocarbon quantities ranged up to 1500 mg/kg of soil. The plume continued to move in an eastward direction toward the surface water of the creek. A laboratory study indicated relatively high numbers of hydrocarbon-oxidizing organisms relative to glucose-utilizing microorganisms in the unsaturated vadose zone. Bioreclamation was initiated in April 1984 by injecting nutrients (nitrogen and phosphorus) and hydrogen peroxide and terminated in October 1984 upon no detection (<1 mg/kg) of hydrocarbons. A verification boring within the vicinity of the contaminated plume confirmed that residual contamination had attained background levels. The monitoring program was terminated in January 1987.

  11. Biocidal Properties of Anti-Icing Additives for Aircraft Fuels

    PubMed Central

    Neihof, R. A.; Bailey, C. A.

    1978-01-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol. PMID:646356

  12. Ground penetrating radar imaging and time-domain modelling of the infiltration of diesel fuel in a sandbox experiment

    NASA Astrophysics Data System (ADS)

    Bano, Maksim; Loeffler, Olivier; Girard, Jean-François

    2009-10-01

    Ground penetrating radar (GPR) is a non-destructive method which, over the past 10 years, has been successfully used not only to estimate the water content of soil, but also to detect and monitor the infiltration of pollutants on sites contaminated by light non-aqueous phase liquids (LNAPL). We represented a model water table aquifer (72 cm depth) by injecting water into a sandbox that also contains several buried objects. The GPR measurements were carried out with shielded antennae of 900 and 1200 MHz, respectively, for common mid point (CMP) and constant offset (CO) profiles. We extended the work reported by Loeffler and Bano by injecting 100 L of diesel fuel (LNAPL) from the top of the sandbox. We used the same acquisition procedure and the same profile configuration as before fuel injection. The GPR data acquired on the polluted sand did not show any clear reflections from the plume pollution; nevertheless, travel times are very strongly affected by the presence of the fuel and the main changes are on the velocity anomalies. We can notice that the reflection from the bottom of the sandbox, which is recorded at a constant time when no fuel is present, is deformed by the pollution. The area close to the fuel injection point is characterized by a higher velocity than the area situated further away. The area farther away from the injection point shows a low velocity anomaly which indicates an increase in travel time. It seems that pore water has been replaced by fuel as a result of a lateral flow. We also use finite-difference time-domain (FDTD) numerical GPR modelling in combination with dielectric property mixing models to estimate the volume and the physical characteristics of the contaminated sand.

  13. Assessment of molecular contamination in mask pod

    NASA Astrophysics Data System (ADS)

    Foray, Jean Marie; Dejaune, Patrice; Sergent, Pierre; Gough, Stuart; Cheung, D.; Davenet, Magali; Favre, Arnaud; Rude, C.; Trautmann, T.; Tissier, Michel; Fontaine, H.; Veillerot, M.; Avary, K.; Hollein, I.; Lerit, R.

    2008-04-01

    Context/ study Motivation: Contamination and especially Airbone Molecular Contamination (AMC) is a critical issue for mask material flow with a severe and fairly unpredictable risk of induced contamination and damages especially for 193 nm lithography. It is therefore essential to measure, to understand and then try to reduce AMC in mask environment. Mask material flow was studied in a global approach by a pool of European partners, especially within the frame of European MEDEA+ project, so called "MUSCLE". This paper deals with results and assessment of mask pod environment in term of molecular contamination in a first step, then in a second step preliminary studies to reduce mask pod influence and contamination due to material out gassing. Approach and techniques: A specific assessment of environmental / molecular contamination along the supply chain was performed by all partners. After previous work presented at EMLC 07, further studies were performed on real time contamination measurement pod at different sites locations (including Mask manufacturing site, blank manufacturing sites, IC fab). Studies were linked to the main critical issues: cleaning, storage, handling, materials and processes. Contamination measurement campaigns were carried out along the mask supply chain using specific Adixen analyzer in order to monitor in real time organic contaminants (ppb level) in mask pods. Key results would be presented: VOC, AMC and humidity level on different kinds of mask carriers, impact of basic cleaning on pod outgassing measurement (VOC, NH3), and process influence on pod contamination... In a second step, preliminary specific pod conditioning studies for better pod environment were performed based on Adixen vacuum process. Process influence had been experimentally measured in term of molecular outgassing from mask pods. Different AMC experimental characterization methods had been carried out leading to results on a wide range of organic and inorganic

  14. Evaluating the performance and mapping of three fuel classification systems using Forest Inventory and Analysis surface fuel measurements

    Treesearch

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2013-01-01

    Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...

  15. Measuring nonpolar organic contaminant partitioning in three Norwegian sediments using polyethylene passive samplers.

    PubMed

    Allan, Ian J; Ruus, Anders; Schaanning, Morten T; Macrae, Kenneth J; Næs, Kristoffer

    2012-04-15

    Freely dissolved pore water concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), penta- and hexachlorobenzene (PeCB and HCB), octachlorostyrene (OCS), p,p'-DDE and p,p'-DDD were measured in bottom sediments from three sites in Norway. Sediments were from Aker Brygge, site of a former shipyard in the inner part of Oslofjord, Frierfjord in the Grenlandsfjord area, impacted during the 50 year-long activity of a magnesium smelter plant, and from Kristiansand harbour, site with high industrial activity. Low density polyethylene (LDPE) membrane samplers were exposed to these sediments in laboratory incubation under constant and low-level agitation for periods of 1, 2, 6, 13, 23 and 50 days. Freely dissolved pore water concentrations were estimated from contaminant masses accumulated and sampling rates obtained from the measurement of kinetics of dissipation of performance reference compounds (PRCs). Marked differences in freely dissolved PAH concentrations and resulting organic carbon-normalised sediment-pore water partition coefficients, logK(TOC), between these three sediments could be observed despite the generally similar total sediment concentrations. In contrast with the PAH data, partitioning of PCBs and other organochlorine compounds (OCs) was relatively similar in all three sediments. For sediments from Frierfjord and Kristiansand, logK(TOC) values were lower for PCBs/OCs than for PAHs, indicating higher availability. Similar partitioning of PAHs and PCBs/OCs was found for sediments from Aker Brygge. No simple logK(oc)-logK(ow) relationships could model these data successfully. These results support the notion that the assessment of the risk posed by these compounds present in sediments in most cases requires actual measurement of contaminant availability. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  17. Laboratory Measurements of Gas Phase Pyrolysis Products from Southern Wildland Fuels using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.

    2017-12-01

    Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.

  18. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone

    NASA Astrophysics Data System (ADS)

    Khan, Naima A.; Johnson, Michael D.; Carroll, Kenneth C.

    2018-03-01

    Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.

  19. Fate of virginiamycin through the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process wa...

  20. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    PubMed

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  1. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater

    PubMed Central

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu

    2017-01-01

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997) was observed between the Cr(VI) concentration (2.5–60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations. PMID:29076985

  2. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    PubMed

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  3. Contamination effects study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The in-situ optical surface measurement system is a facility designed to study the deleterious effects of particulate materials on the surface reflectivities of optical materials in the vacuum ultraviolet (VUV). This arrangement is designed to simulate the on-orbit effects of contamination and degradation of optical surfaces. This simulation is accomplished through the use of non-coherent VUV sources illuminating optical surfaces located in a high vacuum chamber. Several sources of contamination are employed. The reflectivity is measured both at the specular reflection as well as at two scattered positions, forward and reverse. The system components are described and an operating procedure is given.

  4. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  6. Development of molten carbonate fuel cells for power generation

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  7. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  8. Fuel Cell Measurements with Cathode Catalysts of Sputtered Pt3 Y Thin Films.

    PubMed

    Lindahl, Niklas; Eriksson, Björn; Grönbeck, Henrik; Lindström, Rakel Wreland; Lindbergh, Göran; Lagergren, Carina; Wickman, Björn

    2018-05-09

    Fuel cells are foreseen to have an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this study, highly active sputtered thin films of platinum alloyed with yttrium (Pt 3 Y) are deposited on commercial gas diffusion layers and their performance in a proton exchange membrane fuel cell is measured. After acid pretreatment, the alloy is found to have up to 2.5 times higher specific activity than pure platinum. The performance of Pt 3 Y is much higher than that of pure Pt, even if all of the alloying element was leached out from parts of the thin metal film on the porous support. This indicates that an even higher performance is expected if the structure of the Pt 3 Y catalyst or the support could be further improved. The results show that platinum alloyed with rare earth metals can be used as highly active cathode catalyst materials, and significantly reduce the amount of platinum needed, in real fuel cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fuel temperature counter

    Treesearch

    John R. Murray; Charles W. Philpot

    1963-01-01

    Fuel temperature is and has always been difficult to measure. To understand better the problem of fire and fire weather behavior, it is important to measure this variable. We have developed for field use a new fuel temperature counter which can be used to obtain such measurements quickly and easily. This electronic recording instrument is easy to construct and operate...

  10. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less

  11. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  12. Assessing three fuel classification systems and their maps using Forest Inventory and Analysis (FIA) surface fuel measurements

    Treesearch

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2015-01-01

    Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...

  13. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight

  14. On the man-made contamination on ULF measurements: evidence for disturbances related to an electrified DC railway

    NASA Astrophysics Data System (ADS)

    Villante, U.; Piancatelli, A.; Palangio, P.

    2014-09-01

    An analysis of measurements performed at L'Aquila (Italy) during a deep minimum of solar and magnetospheric activity (2008-2010) allowed for the evaluation of possible contamination of the ultralow-frequency (ULF) spectrum (f ≈ 1-500 mHz) from artificial disturbances, practically in absence of natural signals. In addition, the city evacuation and the interruption of all industrial and social activities after the strong earthquake of 6 April 2009 allowed also for the examination of possible changes of the contamination level under remarkably changed environmental conditions. Our analysis reveals a persistent, season-independent, artificial signal, with the same characteristics in the H and Z components, that affects during daytime hours the entire spectrum; such contamination persists after the city evacuation. We speculate that the DC electrified railway (located ≈ 33 km from the Geomagnetic Observatory of L'Aquila, it maintained the same train traffic after the earthquake) is responsible for the observed disturbances.

  15. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    PubMed Central

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  16. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica.

    PubMed

    Crockett, Alan B; White, Gregory J

    2003-07-01

    Winter Quarters Bay (WQB) is a small embayment located adjacent to McMurdo Station, the largest research base in Antarctica. The bay is approximately 250 m wide and long, with a maximum depth of 33 m. Historically, trash from the McMurdo Station was piled on the steep shoreline of WQB, doused with fuel and ignited. That practice has ceased, and the adjacent land area has been regraded to cover the residual waste. The bottom of WQB remains littered with drums, equipment, tanks, tires, cables, and other objects, especially the southeastern side of the bay where dumping took place. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. The objectives of this study were to map the distribution of organic contaminants in WQB, assess the toxicity of WQB sediments using a simple microbial test, and determine correlations between toxicity and contaminant levels. The study suggests that adverse ecological effects have occurred from one or more of the contaminants found in WQB but the source of the toxic impacts to bay sediments remains unknown. Whole sediment toxicity was only correlated with oil-equivalent while solvent extracts of sediments were correlated with PAHs and oil-equivalent. The authors recommend that an integrated research plan be developed that focuses on determining what additional information is needed to make informed decisions on possible remediation of WQB.

  17. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  18. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  19. Influence of long-term diesel fuel pollution on nitrite-oxidising activity and population size of nitrobacter spp in soil.

    PubMed

    Deni, Jamal; Penninckx, Michel J

    2004-01-01

    Previous investigations have shown that ammonia oxidation is not inhibited by diesel fuel in a soil with a long history of contamination contrary to a non-contaminated soil. As a consequence, ammonia oxidation does not constitute a Limited step in nitrification process (Appl. Environ. Microbiol. 65 (1999) 4008). Moreover, this type of soil also has had the opportunity to develop an abundant microbial population able to metabolise the diesel hydrocarbons. Whether the properties of soil with a long history of diesel fuel contamination may affect the activity of nitrite-oxidising bacteria was investigated. It was observed that re-exposure of soil to diesel fuel apparently stimulated the proliferation of nitrite-oxidising bacteria, as determined by most probable number (MPN) culture technique and MPN-polymerase chain reaction technique. The potential of nitrite-oxidising activity in soil treated with diesel fuel was about 4 times higher than in the control without addition. In the presence of diesel fuel and ammonium, the potential nitrite-oxidising activity was 40% higher than in presence of ammonium only. However, in the presence of hydrocarbon only, low proliferation of Nitrobacter was observed, probably because the heterotrophic bacteria were strongly limited by lack of nitrogen and did not produce sufficient organic metabolites that could be used by the Nitrobacter cells.

  20. Comprehensive environmental review following the pork PCB/dioxin contamination incident in Ireland.

    PubMed

    Marnane, Ian

    2012-10-26

    In December 2008 the Irish Government made a decision to recall all Irish pork and bacon products from pigs slaughtered in Ireland since September 1 2008 as a result of polychlorinated biphenyl contamination identified during routine monitoring of Irish pork products. 30000 tonnes of returned product were subsequently destroyed, as well as 170000 pigs and 5700 cattle, with a cost to date to the Irish exchequer in excess of €120 million, as well as reputational damage to the Irish agriculture and food industries. The source of the contamination was traced to an animal feed production facility which was using the hot gases from the combustion of contaminated fuel oil to dry animal feed. This review examines the events which led to the contamination of the feed, the associated environmental monitoring investigations that followed, and also the lessons learned from this incident.

  1. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    PubMed

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  2. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offsetmore » of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest

  3. Femtosecond Broad-Band Sum Frequency Generation Spectroscopy: Measurements of Ethanol Fuel Cell Catalysis

    DTIC Science & Technology

    2012-12-03

    The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302... REPORT Femtosecond Broad-Band Sum Frequency Generation Spectroscopy: Measurements of Ethanol Fuel Cell Catalysis 14. ABSTRACT 16. SECURITY

  4. [Contamination by lead and cadmium during smoke drying of cereals].

    PubMed

    Woggon, H; Malkus, Z

    1978-01-01

    Direct drying of cereals with diesel oil as a fuel does not increase the lead and cadmium contents. From the viewpoint of food hygiene and in the interest of the consumer's protection, however, it is recommendable to abandon this kind of drying since previous studies have shown that it involves the risk of contamination by cancerogenic hydrocarbons.

  5. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    NASA Astrophysics Data System (ADS)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  6. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  7. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.

    PubMed

    Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying

    2015-03-01

    To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Behavior or Nonmetallic Materials in Shale Oil Derived Jet Fuels and in High Aromatic and High Sulfur Petroleum Fuels

    DTIC Science & Technology

    1978-07-01

    degrades thermal stability and forms undesirable sulfur dioxide emissions . Although the original premises for controlling total sulfur may not still...eliminate corrosive trace contamination, presence of surfactants which deactivate filter/ separators, carry-over of refinery processing materials, and...increase raw vapor emissions from ground fuel handling facilities and during refueling operations. Controlling raw vapor emissions is difficult at 3

  9. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  10. Assessment of contaminant levels and trophic relations at a World Heritage Site by measurements in a characteristic shorebird species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwemmer, Philipp, E-mail: schwemmer@ftz-west.uni-kiel.de; Covaci, Adrian, E-mail: adrian.covaci@uantwerpen.be; Das, Krishna, E-mail: krishna.das@ulg.ac.be

    2015-01-15

    The River Elbe is responsible for influxes of contaminants into the Wadden Sea World Heritage Site. We investigated levels of polychlorinated biphenyls (PCBs), oxychlordane (OxC), hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ-HCHs), dichlorodiphenyltrichloroethane (DDT) and its metabolites, and polybrominated diphenyl ethers (PBDEs) in blood and feathers from Eurasian oystercatchers (Haematopus ostralegus; n=28) at the Elbe and compared it with a non-riverine site about 90 km further north. (1) Mean levels of all contaminants in feathers and serum were significantly higher at the river (∑PCBs: 27.6 ng/g feather, 37.0 ng/ml serum; ∑DDTs: 5.3 ng/g feather, 4.4 ng/ml serum) compared with the non-riverinemore » site (∑PCBs: 6.5 ng/g feather, 1.2 ng/ml serum; ∑DDTs: 1.4 ng/g feather, 0.5 ng/ml serum). Mean ∑HCH and HCB levels were <1.8 ng/g in feather and <1.8 ng/ml in serum at both sites. (2) Levels of most detectable compounds in serum and feathers were significantly related, but levels were not consistently higher in either tissue. (3) There was no significant relationship between trophic level in individual oystercatchers (expressed as δ15N) or the degree of terrestrial feeding (expressed as δ13C) and contaminant loads. (4) PBDEs were not detected in significant amounts at either site. The results of this study indicate that the outflow from one of Europe′s largest river systems is associated with significant historical contamination, reflected by the accumulation of contaminants in body tissues in a coastal benthivore predator. - Highlights: • Contaminants in Oystercatchers from the Elbe river and a non-riverine site were measured. • Mean levels of contaminants were higher at the river than at the non-riverine site. • Levels of most contaminants in serum and feathers were significantly related. • No relationship between trophic level (δ15N) and contaminant level was found. • One of Europe′s largest river systems is

  11. Impact of urine preservation methods and duration of storage on measured levels of environmental contaminants.

    PubMed

    Hoppin, Jane A; Ulmer, Ross; Calafat, Antonia M; Barr, Dana B; Baker, Susan V; Meltzer, Helle M; Rønningen, Kjersti S

    2006-01-01

    Collection of urine samples in human studies involves choices regarding shipping, sample preservation, and storage that may ultimately influence future analysis. As more studies collect and archive urine samples to evaluate environmental exposures in the future, we were interested in assessing the impact of urine preservative, storage temperature, and time since collection on nonpersistent contaminants in urine samples. In spiked urine samples stored in three types of urine vacutainers (no preservative, boric acid, and chlorhexidine), we measured five groups of contaminants to assess the levels of these analytes at five time points (0, 24, 48, and 72 h, and 1 week) and at two temperatures (room temperature and 4 degrees C). The target chemicals were bisphenol A (BPA), metabolites of organophosphate (OP), carbamate, and pyrethroid insecticides, chlorinated phenols, and phthalate monoesters, and were measured using five different mass spectrometry-based methods. Three samples were analyzed at each time point, with the exception of BPA. Repeated measures analysis of variance was used to evaluate effects of storage time, temperature, and preservative. Stability was summarized with percent change in mean concentration from time 0. In general, most analytes were stable under all conditions with changes in mean concentration over time, temperature, and preservative being generally less than 20%, with the exception of the OP metabolites in the presence of boric acid. The effect of storage temperature was less important than time since collection. The precision of the laboratory measurements was high allowing us to observe small differences, which may not be important when categorizing individuals into broader exposure groups.

  12. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites.

    PubMed

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G

    2015-08-01

    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. Published 2015 SETAC. This article is a US Government work and is in the public domain in the USA.

  13. Microbial denitrogenation of fossil fuels.

    PubMed

    Benedik, M J; Gibbs, P R; Riddle, R R; Willson, R C

    1998-09-01

    The microbial degradation of nitrogen compounds from fossil fuels is important because of the contribution these contaminants make to the formation of nitrogen oxides (NOx) and hence to air pollution and acid rain. They also contribute to catalyst poisoning during the refining of crude oil, thus reducing process yields. We review the current status of microbial degradation of aromatic nitrogen compounds and discuss the potential of microbial processes to alleviate these problems.

  14. Alternative Fuels Data Center

    Science.gov Websites

    Liquefied Natural Gas (LNG) Measurement LNG is measured in motor fuel gallon equivalents. One gallon of LNG is the equivalent of one gallon of motor fuel. (Reference House Bill 26, 2017, and Ohio

  15. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  16. Progress in fuel systems to meet new fuel economy and emissions standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.

  17. CO2 Radiocarbon Analysis to Quantify Organic Contaminant Degradation, MNA, and Engineered Remediation Approaches

    DTIC Science & Technology

    2014-12-18

    carbon backbone). This may be analytically relevant where soil gas is sampled under anaerobic conditions. However, at the soil:air interface, methane is...of the ambient CO2 on-site coming from the fossil end-member (i.e. the contaminant). Sampling , processing and analysis of soil gas 14CO2 and 14CH4...gasoline service station having fuel-contaminated soil and groundwater. The SVE system ran for ~3 months prior to sampling . Soil gas and groundwater

  18. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, T.; Muller, E.; Federici, E.

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for fivemore » cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free

  19. EFFECT OF NITRATE-BASED BIOREMEDIATION ON CONTAMINANT DISTRIBUTION AND SEDIMENT TOXICITY-COLUMN STUDY

    EPA Science Inventory

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...

  20. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  1. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost themore » same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)« less

  2. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  3. Geophysical monitoring of organic contaminants in sediments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Jennings, J.

    2016-12-01

    Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.

  4. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  5. A duplex PCR-based assay for measuring the amount of bacterial contamination in a nucleic acid extract from a culture of free-living protists.

    PubMed

    Marron, Alan O; Akam, Michael; Walker, Giselle

    2013-01-01

    Cultures of heterotrophic protists often require co-culturing with bacteria to act as a source of nutrition. Such cultures will contain varying levels of intrinsic bacterial contamination that can interfere with molecular research and cause problems with the collection of sufficient material for sequencing. Measuring the levels of bacterial contamination for the purposes of molecular biology research is non-trivial, and can be complicated by the presence of a diverse bacterial flora, or by differences in the relative nucleic acid yield per bacterial or eukaryotic cell. Here we describe a duplex PCR-based assay that can be used to measure the levels of contamination from marine bacteria in a culture of loricate choanoflagellates. By comparison to a standard culture of known target sequence content, the assay can be used to quantify the relative proportions of bacterial and choanoflagellate material in DNA or RNA samples extracted from a culture. We apply the assay to compare methods of purifying choanoflagellate cultures prior to DNA extraction, to determine their effectiveness in reducing bacterial contamination. Together with measurements of the total nucleic acid concentration, the assay can then be used as the basis for determining the absolute amounts of choanoflagellate DNA or RNA present in a sample. The assay protocol we describe here is a simple and relatively inexpensive method of measuring contamination levels in nucleic acid samples. This provides a new way to establish quantification and purification protocols for molecular biology and genomics in novel heterotrophic protist species. Guidelines are provided to develop a similar protocol for use with any protistan culture. This assay method is recommended where qPCR equipment is unavailable, where qPCR is not viable because of the nature of the bacterial contamination or starting material, or where prior sequence information is insufficient to develop qPCR protocols.

  6. Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear

    PubMed Central

    Green, Jennifer S.; Teachman, Bethany A.

    2012-01-01

    We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390

  7. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and

  8. A statistical method to calculate blood contamination in the measurement of salivary hormones in healthy women.

    PubMed

    Behr, Guilherme A; Patel, Jay P; Coote, Marg; Moreira, Jose C F; Gelain, Daniel P; Steiner, Meir; Frey, Benicio N

    2017-05-01

    Previous studies have reported that salivary concentrations of certain hormones correlate with their respective serum levels. However, most of these studies did not control for potential blood contamination in saliva. In the present study we developed a statistical method to test the amount of blood contamination that needs to be avoided in saliva samples for the following hormones: cortisol, estradiol, progesterone, testosterone and oxytocin. Saliva and serum samples were collected from 38 healthy, medication-free women (mean age=33.8±7.3yr.; range=19-45). Serum and salivary hormonal levels and the amount of transferrin in saliva samples were determined using enzyme immunoassays. Salivary transferrin levels did not correlate with salivary cortisol or estradiol (up to 3mg/dl), but they were positively correlated with salivary testosterone, progesterone and oxytocin (p<0.05). After controlling for blood contamination, only cortisol (r=0.65, P<0.001) and progesterone levels (r=0.57, P=0.002) displayed a positive correlation between saliva and serum. Our analyses suggest that transferrin levels higher than 0.80, 0.92 and 0.64mg/dl should be avoided for testosterone, progesterone and oxytocin salivary analyses, respectively. We recommend that salivary transferrin is measured in research involving salivary hormones in order to determine the level of blood contamination that might affect specific hormonal salivary concentrations. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Assessment of restoration measures efficiency for soil contamination in Mediterranean Ecosystem. The case study of Guadiamar Green Corridor in the context of RECARE project

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara

    2017-04-01

    Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of

  10. Empirical calibration of uranium releases in the terrestrial environment of nuclear fuel cycle facilities.

    PubMed

    Pourcelot, Laurent; Masson, Olivier; Saey, Lionel; Conil, Sébastien; Boulet, Béatrice; Cariou, Nicolas

    2017-05-01

    In the present paper the activity of uranium isotopes measured in plants and aerosols taken downwind of the releases of three nuclear fuel settlements was compared between them and with the activity measured at remote sites. An enhancement of 238 U activity as well as 235 U/ 238 U anomalies and 236 U are noticeable in wheat, grass, tree leaves and aerosols taken at the edge of nuclear fuel settlements, which show the influence of uranium chronic releases. Further plants taken at the edge of the studied sites and a few published data acquired in the same experimental conditions show that the 238 U activity in plants is influenced by the intensity of the U atmospheric releases. Assuming that 238 U in plant is proportional to the intensity of the releases, we proposed empirical relationships which allow to characterize the chronic releases on the ground. Other sources of U contamination in plants such as accidental releases and "delayed source" of uranium in soil are also discussed in the light of uranium isotopes signatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  12. Evaluation of Sediment Contamination in Pearl Harbor

    DTIC Science & Technology

    1992-06-01

    petroleum hydrocarbons , and silver are present at sufficiently ele- vated sediment concentrations to cause environmental concern. Overall sediment qual...application and drydock cleanup procedures were used. 17 Hydrocarbons Hydrocarbon contaminants include all petroleum -based fuel products such as diesel...150 180 lSC0  c150 170 420 710 900 E Organotins 356 34 27 25 37 21 21 s0 23 33 91 44 (ppb) E Petroleum Hydrocarbons 50 300 290 C50 400 230 54 50 72

  13. Harmonisation of microbial sampling and testing methods for distillate fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, G.C.; Hill, E.C.

    1995-05-01

    Increased incidence of microbial infection in distillate fuels has led to a demand for organisations such as the Institute of Petroleum to propose standards for microbiological quality, based on numbers of viable microbial colony forming units. Variations in quality requirements, and in the spoilage significance of contaminating microbes plus a tendency for temporal and spatial changes in the distribution of microbes, makes such standards difficult to implement. The problem is compounded by a diversity in the procedures employed for sampling and testing for microbial contamination and in the interpretation of the data obtained. The following paper reviews these problems andmore » describes the efforts of The Institute of Petroleum Microbiology Fuels Group to address these issues and in particular to bring about harmonisation of sampling and testing methods. The benefits and drawbacks of available test methods, both laboratory based and on-site, are discussed.« less

  14. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.

    PubMed

    Basso, Thiago Olitta; Gomes, Fernanda Sgarbosa; Lopes, Mario Lucio; de Amorim, Henrique Vianna; Eggleston, Gillian; Basso, Luiz Carlos

    2014-01-01

    Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.

  15. Selecting enhancing solutions for electrokinetic remediation of dredged sediments polluted with fuel.

    PubMed

    Rozas, F; Castellote, M

    2015-03-15

    In this paper a procedure for selecting the enhancing solutions in electrokinetic remediation experiments is proposed. For this purpose, dredged marine sediment was contaminated with fuel, and a total of 22 different experimental conditions were tested, analysing the influence of different enhancing solutions by using three commercial non-ionic surfactants, one bio-surfactant, one chelating agent, and one weak acid. Characterisation, microelectrophoretic and electrokinetic remediation trials were carried out. The results are explained on the basis of the interactions between the fuel, the enhancing electrolytes and the matrix. For one specific system, the electrophoretic zeta potential, (ζ), of the contaminated matrix in the solution was found to be related to the electroosmotic averaged ζ in the experiment and not to the efficiency in the extraction. This later was correlated to a parameter accounting for both contributions, the contaminant and the enhancing solution, calculated on the basis of differences in the electrophoretic ζ in different conditions which has allowed to propose a methodology for selection of enhancing solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.« less

  17. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  18. 76 FR 58813 - Guidance for Industry; Measures to Address the Risk for Contamination by Salmonella Species in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ...The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled ``Guidance for Industry: Measures to Address the Risk for Contamination by Salmonella Species in Food Containing a Pistachio-Derived Product as an Ingredient.'' The guidance clarifies for manufacturers who produce foods containing a pistachio- derived product as an ingredient that there is a risk that Salmonella species may be present in the incoming pistachio-derived product, and recommends measures to address that risk.

  19. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    PubMed

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  20. Revelations of an overt water contamination.

    PubMed

    Singh, Gurpreet; Kaushik, S K; Mukherji, S

    2017-07-01

    Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.