Science.gov

Sample records for measuring fuel contamination

  1. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  2. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  3. Modeling Bacterial Contamination of Fuel Ethanol Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of antibiotic resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevi...

  4. Bacterial Contamination of Fuel Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial fuel ethanol is not produced under sterile, pure-culture conditions, and consequently bacterial contamination is a recurring problem. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micro...

  5. Rapid evaluation of fuel ethanol contaminant biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial production of fuel ethanol is not performed under sterile, pure-culture conditions. It has been well established that many bacteria contaminate this process and are responsible for a significant decrease in productivity. In response to this, producers often rely on antibiotics to control...

  6. Thermal treatment of fuel-contaminated soil

    SciTech Connect

    Not Available

    1988-10-01

    A patent has been issued for the apparatus and method for Low Temperature Thermal Stripping (LT/sup 3/) of volatile organic compounds (VOCs) from soil. LT/sup 3/ is a hazardous waste thermal treatment system and is used to clean up fuel-contaminated soil from leaking underground storage tanks. Representing a significant breakthrough in the treatment of polluted soil, LT/sup 3/ is a unique mix of proven techniques combined in an innovative way to provide an efficient cost-effective treatment method.

  7. Modeling bacterial contamination of fuel ethanol fermentation.

    PubMed

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. PMID:19148876

  8. Optical measurements on contaminated surfaces

    NASA Technical Reports Server (NTRS)

    Bonham, T. E.; Schmitt, R. J.; Linford, R. M. F.

    1975-01-01

    A bidirectional reflectometer system was developed for in situ measurements of the changes in spectral reflectance of surfaces contaminated with films of organic materials. The system permits experiments with films of controlled thickness in an environment that simulates the thermal, radiation, and vacuum conditions of space. The mechanical and optical construction of the reflectometer are discussed in detail, and actual data curves are used to illustrate its operation and performance.

  9. Reliability and Consistency of Surface Contamination Measurements

    SciTech Connect

    Rouppert, F.; Rivoallan, A.; Largeron, C.

    2002-02-26

    Surface contamination evaluation is a tough problem since it is difficult to isolate the radiations emitted by the surface, especially in a highly irradiating atmosphere. In that case the only possibility is to evaluate smearable (removeable) contamination since ex-situ countings are possible. Unfortunately, according to our experience at CEA, these values are not consistent and thus non relevant. In this study, we show, using in-situ Fourier Transform Infra Red spectrometry on contaminated metal samples, that fixed contamination seems to be chemisorbed and removeable contamination seems to be physisorbed. The distribution between fixed and removeable contamination appears to be variable. Chemical equilibria and reversible ion exchange mechanisms are involved and are closely linked to environmental conditions such as humidity and temperature. Measurements of smearable contamination only give an indication of the state of these equilibria between fixed and removeable contamination at the time and in the environmental conditions the measurements were made.

  10. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  11. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields: (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination; (2...

  12. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  13. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  14. Catalyst Substrates Remove Contaminants, Produce Fuel

    NASA Technical Reports Server (NTRS)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  15. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung; Choi, Jong-Ho; Zelenay, Piotr

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  16. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  17. Spectrograph Measures Contamination Of Optical Elements

    NASA Technical Reports Server (NTRS)

    Flint, Bruce K.; Fancy, Robert D.; Jarratt, Robert V., Jr.

    1989-01-01

    Scanning-monochromator spectrograph designed to measure contamination on surfaces of optical elements as function of time. Repeatedly exposes samples to environment, then measures their transmittances or reflectances over range of wavelengths. Intended for use at vacuum-ultraviolet wavelengths to evaluate effects of outgassing, heating, and cooling on optical instruments. Principle of operation also applicable to spectral monitoring of time-dependent contamination at other wavelengths and in laboratory, industrial, or other settings.

  18. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  19. Contaminant effects in solid oxide fuel cells

    SciTech Connect

    Maskalisk, N.J.; Ray, E.R.

    1992-09-01

    Two full scale (50-cm length) SOFCS, each representative of generator cells in the field, were electrically connected in series; then operated at 1000{degrees}C and 350 mA/cm{sup 2}. An initial run of approximately 150 hours served to establish baseline performance in 89% H{sub 2}, 11% H{sub 2}0 fuel at 85% fuel utilization and 4 stoichs, air. Then, for approximately 200 hours, a similar base-line was established for operation in simulated coal gas fuel. Finally, the fuel impurity components were sequentially added. The cumulative effect on performance as shown in Table 3. These data reveal no strong association of cell resistance with cell performance change in the cases of NH{sub 3} and HCI. When H{sub 2}S is added, resistance increases account for a minor part of the 0.06V decline observed for each cell over the first 24 hours. However, cell resistances thereafter change linearly, along with linearly declining voltages. In this latter phase, resistance accounts for a major part of each observed cell voltage decline. The same two SOFCs were subsequently continued in operation, but at a moderately higher temperature, 1025{degrees}C. As Figure 2 demonstrates, No. 1 cell tended to decline more slowly, and No. 2 cell continued to decline at the same rate as before, when it was operating at 1OOO{degrees}C. Later operation, without impurities, at 1025{degrees}C for 450 hours served to improve performance and stabilize the cells. When operation at 1000{degrees}C resumed, the cell resistance trend lines returned to approximately the original R vs. t slopes observed during 0-500 hours on test, signifying cessation of impurity-related voltage degradation.

  20. Contaminant effects in solid oxide fuel cells

    SciTech Connect

    Maskalisk, N.J.; Ray, E.R.

    1992-01-01

    Two full scale (50-cm length) SOFCS, each representative of generator cells in the field, were electrically connected in series; then operated at 1000{degrees}C and 350 mA/cm{sup 2}. An initial run of approximately 150 hours served to establish baseline performance in 89% H{sub 2}, 11% H{sub 2}0 fuel at 85% fuel utilization and 4 stoichs, air. Then, for approximately 200 hours, a similar base-line was established for operation in simulated coal gas fuel. Finally, the fuel impurity components were sequentially added. The cumulative effect on performance as shown in Table 3. These data reveal no strong association of cell resistance with cell performance change in the cases of NH{sub 3} and HCI. When H{sub 2}S is added, resistance increases account for a minor part of the 0.06V decline observed for each cell over the first 24 hours. However, cell resistances thereafter change linearly, along with linearly declining voltages. In this latter phase, resistance accounts for a major part of each observed cell voltage decline. The same two SOFCs were subsequently continued in operation, but at a moderately higher temperature, 1025{degrees}C. As Figure 2 demonstrates, No. 1 cell tended to decline more slowly, and No. 2 cell continued to decline at the same rate as before, when it was operating at 1OOO{degrees}C. Later operation, without impurities, at 1025{degrees}C for 450 hours served to improve performance and stabilize the cells. When operation at 1000{degrees}C resumed, the cell resistance trend lines returned to approximately the original R vs. t slopes observed during 0-500 hours on test, signifying cessation of impurity-related voltage degradation.

  1. Inhibitors of biofilm formation by fuel ethanol contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...

  2. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1993-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination in the Space Power Facility (SPF) near Sandusky, Ohio, the largest space simulation vacuum test chamber in the U.S.A. was measured. Small size clean silicon wafers as contamination sensors placed at all desired measurement sites were used. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet uniformly the silicon substrate, two analysis models were developed to measure the oil film: continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models for our case shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on samples exposed to the same vacuum runs.

  3. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  4. Contaminated sediment removal from a spent fuel storage canal

    SciTech Connect

    Geber, K R

    1993-01-01

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal.

  5. Monopropellant thruster exhaust plume contamination measurements

    NASA Technical Reports Server (NTRS)

    Baerwald, R. K.; Passamaneck, R. S.

    1977-01-01

    The potential spacecraft contaminants in the exhaust plume of a 0.89N monopropellant hydrazine thruster were measured in an ultrahigh quartz crystal microbalances located at angles of approximately 0 deg, + 15 deg and + or - 30 deg with respect to the nozzle centerline. The crystal temperatures were controlled such that the mass adhering to the crystal surface at temperatures of from 106 K to 256 K could be measured. Thruster duty cycles of 25 ms on/5 seconds off, 100 ms on/10 seconds off, and 200 ms on/20 seconds off were investigated. The change in contaminant production with thruster life was assessed by subjecting the thruster to a 100,000 pulse aging sequence and comparing the before and after contaminant deposition rates. The results of these tests are summarized, conclusions drawn, and recommendations given.

  6. MEASUREMENT OF CONTAMINATION IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Contamination of environmental samples and measurement system can be monitored through the systematic use of appropriate quality control (QC) blanks. uring the last decade, a proliferation of terms for these QC samples has taken place, making the specification of appropriate blan...

  7. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  8. Radioactive contamination at nuclear fuel cycle facilities. Final report

    SciTech Connect

    Bernhardt, D.E.; Grant, M.W.; Rich, D.C.; Jensen, C.M.; Macbeth, P.J.

    1982-01-01

    This report presents information to characterize uranium fuel cycle facilities (excluding reactors), levels of contamination at those facilities, and volumes and activity of wastes associated with their decontamination and decommissioning (DandD). It is one of a series of reports providing information to assist the U.S. Environmental Protection Agency in setting standards and guidelines for permissible residual levels of radioactivity from DandD. The categories of facilities covered by this report are: Uranium mines, Uranium mills, Uranium hexafluoride conversion plants, Fuel fabrication plants, including both low and high enriched uranium and mixed oxide facilities. Both active and inactive facilities are identified. The highest volumes of DandD waste (hundreds of millions of cubic meters) are associated with uranium mines, while the highest amounts of radioactivity are a result of DandD at fuel reprocessing plants.

  9. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  10. Chloride contamination effects on proton exchange membrane fuel cell performance and durability

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Haijiang; Qian, Weimin; Zhang, Shengsheng; Wessel, Silvia; Cheng, Tommy T. H.; Shen, Jun; Wu, Shaohong

    2011-08-01

    Chlorine is a major fuel contaminant when by-product hydrogen from the chlor-alkali industry is used as the fuel for proton exchange membrane (PEM) fuel cells. Understanding the effects of chlorine contamination on fuel cell performance and durability is essential to address fuel cell applications for the automotive and stationary markets. This paper reports our findings of chloride contamination effects on PEM fuel cell performance and durability, as our first step in understanding the effects of chlorine contamination. Fuel cell contamination tests were conducted by injecting ppm levels of contaminant into the fuel cell from either the fuel stream or the air stream. In situ and ex situ diagnosis were performed to investigate the contamination mechanisms. The results show that cell voltage during chloride contamination is characterized by an initial sudden drop followed by a plateau, regardless of which side the contaminant is introduced into the fuel cell. The drop in cell performance is predominantly due to increased cathode charge transfer resistance as a result of electrochemical catalyst surface area (ECSA) loss attributable to the blocking of active sites by Cl- and enhanced Pt dissolution.

  11. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  12. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendalow, Jacob S

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  13. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  14. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.

    PubMed

    Freitas, Juliana G; Fletcher, Barbara; Aravena, Ramon; Barker, James F

    2010-01-01

    Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded. PMID:20070380

  15. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool.

    PubMed

    Huang, Chun-Ping; Lin, Tzung-Yi; Chiao, Ling-Huan; Chen, Hong-Bin

    2012-09-30

    There were approximately 926 m(3) of water contaminated by fission products and actinides in the Taiwan Research Reactor's spent fuel pool (TRR SFP). The solid and ionic contaminants were thoroughly characterized using radiochemical analyses, scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES) in this study. The sludge was made up of agglomerates contaminated by spent fuel particles. Suspended solids from spent ion-exchange resins interfered with the clarity of the water. In addition, the ionic radionuclides such as (137)Cs, (90)Sr, U, and α-emitters, present in the water were measured. Various filters and cation-exchange resins were employed for water treatment trials, and the results indicated that the solid and ionic contaminants could be effectively removed through the use of <0.9 μm filters and cation exchange resins, respectively. Interestingly, the removal of U was obviously efficient by cation exchange resin, and the ceramic depth filter composed of diatomite exhibited the properties of both filtration and adsorption. It was found that the ceramic depth filter could adsorb β-emitters, α-emitters, and uranium ions. The diatomite-based ceramic depth filter was able to simultaneously eliminate particles and adsorb ionic radionuclides from water. PMID:22841295

  16. Environmental effects of soil contamination by shale fuel oils.

    PubMed

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak. PMID:24865504

  17. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  18. Advanced fuel hydrocarbon remediation national test location - biocell treatment of petroleum contaminated soils

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Biocells are engineered systems that use naturally occurring microbes to degrade fuels and oils into simpler, nonhazardous, and nontoxic compounds. Biocells are able to treat soils contaminated with petroleum based fuels and lubricants, including diesel, jet fuel, and lubricating and hydraulic oils. The microbes use the contaminants as a food source and thus destroy them. By carefully monitoring and controlling air and moisture levels, degradation rates can be increased and total treatment time reduced over natural systems.

  19. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  20. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    USGS Publications Warehouse

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  1. MEASURING CONTAMINANT RESUSPENSION RESULTING FROM SEDIMENT CAPPING

    EPA Science Inventory

    This Sediment Issue summarizes two studies undertaken at marine sites by the National Risk Management Research Laboratory of U.S. EPA to evaluate the resuspension of surface materials contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) b...

  2. Refinishing contamination floors in Spent Nuclear Fuels storage basins

    SciTech Connect

    Huang, F.F.; Moore, F.W.

    1997-07-11

    The floors of the K Basins at the Hanford Site are refinished to make decontamination easier if spills occur as the spent nuclear fuel (SNF) is being unloaded from the basins for shipment to dry storage. Without removing the contaminated existing coating, the basin floors are to be coated with an epoxy coating material selected on the basis of the results of field tests of several paint products. The floor refinishing activities must be reviewed by a management review board to ensure that work can be performed in a controlled manner. Major documents prepared for management board review include a report on maintaining radiation exposure as low as reasonably achievable, a waste management plan, and reports on hazard classification and unreviewed safety questions. To protect personnel working in the radiation zone, Operational Health Physics prescribed the required minimum protective methods and devices in the radiological work permit. Also, industrial hygiene safety must be analyzed to establish respirator requirements for persons working in the basins. The procedure and requirements for the refinishing work are detailed in a work package approved by all safety engineers. After the refinishing work is completed, waste materials generated from the refinishing work must be disposed of according to the waste management plan.

  3. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland

    NASA Astrophysics Data System (ADS)

    Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.

    2009-07-01

    The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.

  4. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  5. ENHANCED IN SITU ANAEROBIC BIOREMEDIATION OF FUEL-CONTAMINATED GROUND WATER

    EPA Science Inventory

    We have demonstrated the application of an enhanced in situ anaerobic bioremediation technology to clean up ground water contaminated with fuel hydrocarbons, particularly benzene, toluene, ethylbenzene, and xylenes (BTEX). The technology is based on introduction of electron acce...

  6. Automatic Measurement of Low Level Contamination on Concrete Surfaces

    SciTech Connect

    Tachibana, M.; Itoh, H.; Shimada, T.; Yanagihara, S.

    2002-02-28

    Automatic measurement of radioactivity is necessary for considering cost effectiveness in final radiological survey of building structures in decommissioning nuclear facilities. The RAPID (radiation measuring pilot device for surface contamination) was developed to be applied to automatic measurement of low level contamination on concrete surfaces. The RAPID has a capability to measure contamination with detection limit of 0.14 Bq/cm2 for 60Co in 30 seconds of measurement time and its efficiency is evaluated to be 5 m2/h in a normal measurement option. It was confirmed that low level contamination on concrete surfaces could be surveyed by the RAPID efficiently compared with direct measurement by workers through its actual application.

  7. Evolution of Fuel-Air and Contaminant Clouds Resulting from a Cruise Missile Explosion Scenario

    SciTech Connect

    Grossman, A S; Kul, A L

    2005-06-22

    A low-mach-number hydrodynamics model has been used to simulate the evolution of a fuel-air mixture and contaminant cloud resulting from the detonation of a cruise missile. The detonation has been assumed to be non-nuclear. The cloud evolution has been carried out to a time of 5.5 seconds. At this time the contaminant has completely permeated the initial fuel-air mixture cloud.

  8. Iron-contamination-induced performance degradation of an iron-fed fuel cell

    NASA Astrophysics Data System (ADS)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Tong, Zhong-Hua

    2014-02-01

    The iron-fed fuel cell is an effective technology to recover iron and electricity from acid mine drainage (AMD). However, this technology suffers from the problem of performance degradation which significantly reduces its power output during long-term operation. In this work, the performance degradation of iron-fed fuel cell is comprehensively evaluated with the objective to elucidate the mechanisms involved in such a phenomenon. The iron contamination is identified as the main cause responsible for the performance degradation of fuel cell. The iron contaminant is present in the form of α-FeO(OH), which is the main product recovered by the iron-fed fuel cell. Both the electrode and membrane are deteriorated by iron contamination, whereas the membrane deterioration is more significant. Fed-batch experiments demonstrate the performance loss of fuel cell due to contamination of membrane is more than 50% greater than the performance loss due to contamination of electrode. The α-FeO(OH) contaminant not only forms fouling layers on the surfaces of carbon electrode and membrane, but also migrates into the membrane to damage the membrane structure. As a result, both the charge transfer and mass transfer resistances of fuel cell are dramatically increased, which leads to delayed electro-oxidation kinetics of Fe(II).

  9. Surface contamination monitoring by the measurement of scattering distribution functions

    NASA Astrophysics Data System (ADS)

    Carosso, Paola A.; Pugel, Nancy J.

    1987-06-01

    This paper describes the use of Bidirectional Scattering Distribution Functions (BSDF) to quantify surface degradation, thus providing an effective method for contamination monitoring. This approach to contamination monitoring is based on the use of witness surfaces (mirrors or glass slides) located next to the critical surfaces. Contaminant accretion can be monitored during all phases of spacecraft fabrication, assembly, and testing. The method can be applied in other areas of contamination control such as monitoring of clean room environments. The BSDF can also prove extremely useful in establishing contamination control requirements and acceptability criteria. This paper describes the apparatus adopted to perform BSDF measurements and discusses some practical aspects of data collection. The results obtained in contamination monitoring programs performed at the NASA Goddard Space Flight Center are presented. Some possible new applications of this monitoring technique are also addressed.

  10. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  11. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITES CONTAMINATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. oreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gas...

  12. ASSESSMENT OF ORGANIC CONTAMINANTS IN EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTION

    EPA Science Inventory

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source ...

  13. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have...

  14. In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants

    DOEpatents

    Holman, Hoi-Ying N.

    2000-01-01

    The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.

  15. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have...

  16. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have...

  17. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a... period of the clock. (2) For Diesel engines only, if the mass of fuel consumed is measured by...

  18. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a... period of the clock. (2) For Diesel engines only, if the mass of fuel consumed is measured by...

  19. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have...

  20. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section... measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by the engine must be measured with equipment conforming to the following: (1) The fuel flow rate...

  1. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section... measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by the engine must be measured with equipment conforming to the following: (1) The fuel flow rate...

  2. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have...

  3. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  4. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C. P.

    1985-01-01

    A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.

  5. Toxicity of fuel-contaminated soil to Antarctic moss and terrestrial algae.

    PubMed

    Nydahl, Anna C; King, Catherine K; Wasley, Jane; Jolley, Dianne F; Robinson, Sharon A

    2015-09-01

    Fuel pollution is a significant problem in Antarctica, especially in areas where human activities occur, such as at scientific research stations. Despite this, there is little information on the effects of petroleum hydrocarbons on Antarctic terrestrial biota. The authors demonstrate that the Antarctic mosses Bryum pseudotriquetrum, Schistidium antarctici, and Ceratodon purpureus, and the Antarctic terrestrial alga Prasiola crispa are relatively tolerant to Special Antarctic Blend (SAB) fuel-contaminated soil (measured as total petroleum hydrocarbons). Freshly spiked soils were more toxic to all species than were aged soils containing degraded fuel, as measured by photosynthetic efficiency (variable fluorescence/maximum fluorescence [Fv/Fm]), pigment content, and visual observations. Concentrations that caused 20% inhibition ranged from 16,600 mg/kg to 53,200 mg/kg for freshly spiked soils and from 30,100 mg/kg to 56,200 mg/kg for aged soils. The photosynthetic efficiency of C. purpureus and S. antarctici was significantly inhibited by exposure to freshly spiked soils with lowest-observed-effect concentrations of 27,900 mg/kg and 40,400 mg/kg, respectively. Prasiola crispa was the most sensitive species to freshly spiked soils (Fv/Fm lowest-observed-effect concentration 6700 mg/kg), whereas the Fv/Fm of B. pseudotriquetrum was unaffected by exposure to SAB fuel even at the highest concentration tested (62,900 mg/kg). Standard toxicity test methods developed for nonvascular plants can be used in future risk assessments, and sensitivity data will contribute to the development of remediation targets for petroleum hydrocarbons to guide remediation activities in Antarctica. PMID:25891024

  6. Synergistic smart fuel for microstructure mediated measurements

    SciTech Connect

    Smith, James A.; Kotter, Dale K.; Ali, Randall A.

    2014-02-18

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using 'radiation hardened' sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  7. Synergistic smart fuel for microstructure mediated measurements

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Kotter, Dale K.; Ali, Randall A.; Garrett, Steven L.

    2014-02-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using "radiation hardened" sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  8. Synergistic Smart Fuel For Microstructure Mediated Measurements

    SciTech Connect

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using “radiation hardened” sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  9. Online Oxide Contamination Measurement and Purification Demonstration

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  10. Measurement Protocols for Optimized Fuel Assembly Tags

    SciTech Connect

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-11-01

    This report describes the measurement protocols for optimized tags that can be applied to standard fuel assemblies used in light water reactors. This report describes work performed by the authors at Pacific Northwest National Laboratory for NA-22 as part of research to identify specific signatures that can be developed to support counter-proliferation technologies.

  11. Contamination of in vivo bone-lead measurements

    NASA Astrophysics Data System (ADS)

    Todd, A. C.

    2000-01-01

    This paper addresses one aspect of the calibration of a 109 Cd-based K-shell x-ray fluorescence measurement system, namely the treatment of the calibration line intercept. Under circumstances of contamination, the intercept may warrant statistical treatment different from that currently performed. This paper proposes refinements to the existing method of subtracting the phantom calibration line intercept from in vivo responses in the calculation of in vivo concentrations. These refinements are recommended because the existing method can underestimate in vivo concentrations by a small amount under normal operating conditions. Contamination of the calibration standard matrix of plaster of Paris by both lead and non-lead contaminants is addressed.

  12. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  13. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  14. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  15. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The...

  16. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  17. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by...

  18. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The...

  19. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  20. 40 CFR 610.42 - Fuel economy measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Fuel economy measurement. 610.42 Section 610.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method,...

  1. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  2. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  3. A new technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1991-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination was measured in the Space Power Facility (SPF) near Sandusky, OH, the largest space simulation vacuum test chamber in the U.S.. Small clean silicon wafers placed at all desired measurement sites were used as contamination sensors. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet the silicon substrate uniformly, two analysis models were developed to measure the oil film: (1) continuous, homogeneous film; and (2) islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x-ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on examples exposed to the same vacuum runs.

  4. MEASUREMENT OF SURFACE ALPHA CONTAMINATION USING ELECTRET ION CHAMBERS

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Electret ion chambers (EICs) are known to be inexpensive, reliable, passive, integrating devices used for measurement of ionizing radiation. Their application for measurement of alpha contamination on surfaces was recently realized. This two-year project deals with the evaluation of electret ion chambers with different types of electrets and chambers for measurement of surface alpha contamination, their demonstration at U.S. Department of Energy (DOE) sites, a cost-benefit comparison with the existing methods, and the potential deployment at DOE sites. During the first year (FY98) of the project, evaluation of the EICS was completed. It was observed that EICS could be used for measurement of free release level of alpha contamination for transuranics (100 dpm/100 cm{sup 2} fixed). DOE sites, where demonstration of EIC technology for surface alpha contamination measurements could be performed, were also identified. During FY99, demonstration and deployment of EICS at DOE sites are planned. A cost-benefit analysis of the EIC for surface alpha contamination measurement will also be performed.

  5. Comparison of Contamination Model Predictions to LDEF Surface Measurements

    NASA Technical Reports Server (NTRS)

    Gordon, Tim; Rantanen, Ray; Pippin, Gary; Finckenor, Miria

    1998-01-01

    Contaminant deposition measurements have been made on species content and depth profiles on three experiments trays from the Long Duration Exposure Facility (LDEF), Auger, Argon sputtering, Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) analysis. The integrated spacecraft environment model (ISEM) was used to predict the deposition levels of the contaminants measured on the three trays. The details of the modeling and assumptions used are presented along with the predictions for the deposition on select surfaces on the trays. These are compared to the measured results. The trays represent surfaces that have a high atomic oxygen flux, and intermediate oxygen flux, and no oxygen flux. All surfaces received significant solar Ultraviolet flux. It appears that the atomic oxygen was the primary agent that caused significant deposition to occur. Surfaces that saw significant contaminant flux solar UV and no atomic oxygen did not show any appreciable levels of observable deposition. The implications of the atom ic oxygen interaction with contaminant deposits containing silicon contaminant sources is discussed. The primary contaminant sources are DC61104 adhesive and Z306 paint. The results and interpretation of the findings have a potential significant impact on spacecraft surfaces that are exposed to solar UV and atomic oxygen in low Earth orbit.

  6. Fuzzy measurement based image testing for oil particles contamination level

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhang, Xianming; Li, Chuan; Chen, Bin

    2010-11-01

    The oil contamination level testing is important for its using and maintenance which is the basement of the oil contamination control is required higher by the developing device system, and the testing method is urgently needed to be studied for improving the process method and the maintenance quality of the contaminated oil. To classify the level of particles contamination in lubricant, CCD imaging technology is used to capture microscopic digital image of the oil particles sample . The digital image was processed and segmented in order that the computer can recognize and understand the particle targets by using image testing algorithm to measure the sizes, amounts and distributions of particles. The oil contamination level can be measured effectively by the economical and convenient method in which there is little air bubble and bead leading to false particle targets. To improve the influence produced by the false particle targets, One method is that a series of dynamical image samples from the contaminated oil in the multi-period and the multi-state are captured and used to test the particle targets, and the further method is to employ the fuzzy measurement using Gaussian subjection function, which describes the distribution of the standard evidences and the distribution of the testing data, and the testing probabilities of the evidence are weighed by the matching degree of the two distributions, which is used to classify the oil particles contamination level .The test shows that the oil particles contamination level diagnosis reliability is improved and the diagnosis uncertainty is reduced. This method combining with other testing methods by using the multi-information fusion method will be further studied later.

  7. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement... parameters are the elapsed time measurement of the event and the weight or volume measurement....

  8. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement... parameters are the elapsed time measurement of the event and the weight or volume measurement....

  9. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  10. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect

    KURTZ, J.E.

    2000-05-10

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, and radiation surveys of the Cold Vacuum Drying Facility (CVD) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  11. Assessment of intrinsic bioremediation of jet fuel contamination in a shallow aquifer, Beaufort, South Carolina

    USGS Publications Warehouse

    Chapelle, Frank; Landmeyer, J.E.; Bradley, P.M.

    1995-01-01

    Field and laboratory studies show that microorganisms indigenous to the ground-water system underlying Tank Farm C, Marine Corps Air Station Beaufort, S.C., degrade petroleum hydrocarbons under aerobic and anaerobic conditions. Under aerobic conditions, sediments from the shallow aquifer underlying the site mineralized radiolabeled (14C) toluene to 14CO2 with first-order rate constants of about -0.29 per day. Sediments incubated under anaerobic conditions mineralized radiolabeled toluene more slowly, with first-order rate constants of -0.001 per day. Although anaerobic rates of biodegradation are low, they are significant in the hydrologic and geochemical context of the site. Because of low hydraulic conductivities (1.9-9.1 feet per day) and low hydraulic gradients (about 0.004 feet per feet), ground water flows slowly (approximately 20 feet per year) at this site. Furthermore, aquifer sediments contain organic-rich peat that has a high sorptive capacity. Under these conditions, hydrocarbon contaminants have moved no further than 10 feet downgradient of the jet fuel free product. Digital solute-transport simulations, using the range of model parameters measured at the site, show that dissolved contaminants will be completely degraded before they are discharged from the aquifer into adjacent surface-water bodies. These results show that natural attenuation processes are containing the migration of soluble hydrocarbons, and that intrinsic bioremediation is a potentially effective remedial strategy at this site.

  12. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  13. 26 CFR 48.4081-8 - Taxable fuel; measurement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Taxable fuel; measurement. 48.4081-8 Section 48.4081-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS... Taxable Fuel Taxable Fuel § 48.4081-8 Taxable fuel; measurement. (a) In general. Volumes of taxable...

  14. 26 CFR 48.4081-8 - Taxable fuel; measurement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Taxable fuel; measurement. 48.4081-8 Section 48.4081-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS... Taxable Fuel Taxable Fuel § 48.4081-8 Taxable fuel; measurement. (a) In general. Volumes of taxable...

  15. 26 CFR 48.4081-8 - Taxable fuel; measurement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Taxable fuel; measurement. 48.4081-8 Section 48.4081-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS... Taxable Fuel Taxable Fuel § 48.4081-8 Taxable fuel; measurement. (a) In general. Volumes of taxable...

  16. 26 CFR 48.4081-8 - Taxable fuel; measurement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Taxable fuel; measurement. 48.4081-8 Section 48.4081-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS... Taxable Fuel Taxable Fuel § 48.4081-8 Taxable fuel; measurement. (a) In general. Volumes of taxable...

  17. Fungal contamination of stored automobile-fuels in a tropical environment.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Rodríguez, Evelyn; Blanco, Rigoberto; Cordero, Ivannia; Segura, Daniel

    2010-01-01

    Because of the lack of reports, the base levels of microbial contamination on stored fuels are unknown in tropical regions and it is unclear whether these levels have some influence on fuel quality parameters. Therefore, fungal quality in automobile fuels stored across Costa Rican territory was evaluated during two years according to the standard ASTM D6974-04. For a total of 96 samples, counts and identification of molds and yeasts were performed on regular gas, premium gas and diesel taken from the bottom and superior part of the container tanks. The highest contamination was found on the bottom of the tanks, where an aqueous phase was usually identified, showing populations over the ones present in the hydrocarbon itself (up to 10(8) CFU/L). Diesel was the most contaminated fuel (up to 10(7) CFU/L); however, an alteration on the physicochemical parameters was not observed in any kind of fuel. Seventy-five mold strains were isolated, Penicillium sp. being the most common genus (45.8% of the samples), and ten yeast strains, from the genera Candida sp. and Rhodotorula sp. Four of the yeasts were able to grow on diesel as the sole carbon source, at concentrations ranging from 0.5% to 25%. Increasing the frequency of tank cleaning, adding antimicrobial agents and monitoring microbial populations are recommended strategies to improve microbial quality of stored fuels. PMID:21235191

  18. Holdup measurement for nuclear fuel manufacturing plants

    SciTech Connect

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  19. Distributed effects of calcium ion contaminant on polymer electrolyte fuel cell performance

    NASA Astrophysics Data System (ADS)

    Uddin, Md Aman; Wang, Xiaofeng; Park, Jaehyung; Pasaogullari, Ugur; Bonville, Leonard

    2015-11-01

    Distributed performance of a polymer electrolyte fuel cell (PEFC) is studied both in galvanostatic and potentiostatic mode during in-situ injection of Ca2+ in the air stream using a segmented cell. In the galvanostatic mode, segments near the inlet are affected first by the contaminant resulting in decreased current density. At the same time, despite the presence of contaminants, current density for the other segments increases in order to maintain constant total current. In the potentiostatic mode, all segments are affected by the contaminants simultaneously and the current density in all segments decreases with time. The performance of the downstream segments is lower than the upstream segments. During both tests, the contaminant is found to precipitate on both the cathode flow field and the cathode GDL surface. As the test progresses, the contaminant penetrates into the GDL and deposits, causing mass transport losses.

  20. In situ PEM fuel cell water measurements

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary; Davey, John R; Spendelow, Jacob S; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    Efficient PEM (Polymer Electrolyte Membrane) fuel cell performance requires effective water management. To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operations. High Frequency Resistance (HFR), AC Impedance and Neutron imaging were used to measure water content in operating fuel cells, with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable Gas Diffusion Layer (GDL) properties. High resolution neutron radiography was used to image fuel cells during a variety of conditions. The effect of specific operating conditions, including flow direction (co-flow or counter-flow) was examined. Counter-flow operation was found to result in higher water content than co-flow operation, which correlates to lower membrane resistivity. A variety of cells were used to quantify the membrane water in situ during exposure to saturated gases, during fuel cell operation, and during hydrogen pump operation. The quantitative results show lower membrane water content than previous results suggested.

  1. Bacterial contamination of automotive fuels in a tropical region: the case of Costa Rica.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Rodríguez-Cavallini, Evelyn; Blanco, Rigoberto

    2009-09-01

    Microbial contamination of fuel has been the cause of several problems in transportation and storage of these products. Due to the lack of previous studies related to these problems in Costa Rica, bacterial quality was evaluated biannually in automotive fuels stored in the four oil distribution facilities of the Costa Rican Petroleum Refinery (RECOPE). In 12 oil storage tanks, for a total of 96 samples, mesophilic, heterotrophic aerobic/facultative counts (ASTM D6974-04) and identification of bacteria presented in regular gas, premium gas and diesel from the bottom and superior part of the tanks were done; in the samples containing an aqueous phase, sulfate reducing bacteria (SRB) were also quantified by the most probable number technique (MPN), according to the ASTM D4412-84 standard. The higher contamination was shown at the bottom of the tanks (populations up to 10(4) UFC/l), especially if there was accumulated water, in which case populations reached 10(8) UFC/l. The most contaminated fuel was diesel (counts up to 10(4) UFC/l), whereas the less contaminated was premium gas. The less contaminated fuels were from the facilities of La Garita and Barranca, whereas the most contaminated were from Ochomogo. Nevertheless, the quantified populations did not cause significant alteration in quality physicochemical parameters in the samples analyzed. A total of 149 bacterial strains were isolated, 136 (91.3%) Gram positive and 13 (8.7%) Gram negative. The most frequent genera were Staphylococcus (24.0%), Micrococcus (21.9%), Bacillus (18.8%) and Kocuria (11.5%) among Gram positive bacteria and Pseudomonas (7.3%) among Gram negative bacteria. The majority of these genera have been found as fuel contaminants or even as degraders of this kind of products; nevertheless, some species for which their appearance or growth in hydrocarbons have not been described were found with low frequencies. SRB were present in counts up to 10(5) MPN/l in 42.9% of water containing samples

  2. Measurement of iron absorption from meals contaminated with iron

    SciTech Connect

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-12-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer.

  3. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-08-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum, (iii) debiasing the resulting estimates. For (i), we show that removing the best-fit contaminant (mode subtraction), and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a Quadratic Maximum Likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (1994, FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants is less severe than that commonly ignored due to the survey window.

  4. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft × 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallon...

  5. EFFECT OF NITRATE ADDITION ON BIORESTORATION OF FUEL-CONTAMINATED AQUIFER: FIELD DEMONSTRATION

    EPA Science Inventory

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. n infiltration gallery (30 ft X 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. urge wells recirculated three million gallons ...

  6. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A. ); Wilemski, G. )

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  7. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A.; Wilemski, G.

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  8. BIOGEOCHEMICAL EVIDENCE FOR MICROBIAL COMMUNITY CHANGE IN A JET FUEL HYDROCARBONS-CONTAMINATED AQUIFER

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, had been contaminated with JP-4 fuel hydrocarbons released after the crash of a tanker aircraft in October of 1988 Microbial biomass and community structure, associated with the aquifer sediments, were chara...

  9. Application of bacteriophage endolysins to reduce Lactobacillus contamination during fuel ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contamination is a recurring problem in the fuel ethanol industry. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micronutrients required for optimal yeast growth. Antibiotics are frequent...

  10. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...

  11. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  12. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  13. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Equilibrium adsorption isotherm and breakthrough data were used to assess feasibility of developing a granular activated carbon (GAC) adsorber for use as a sulfur removal subsystem in transportation fuel cell systems. Results suggest that an on-board GAC adsorber may not be attractive due to size and weight constraints. However, it may be feasible to install this GAC adsorber at methanol distribution stations, where space and weight are not a critical concern. Preliminary economic analysis indicated that the GAC adsorber concept will be attractive if the spent AC can be regenerated for reuse. These preliminary analyses were made on basis of very limited breakthrough data obtained from the bench-scale testing. Optimization on dynamic testing parameters and study on regeneration of spent AC are needed.

  14. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.

    PubMed

    Basílio, A C M; de Araújo, P R L; de Morais, J O F; da Silva Filho, E A; de Morais, M A; Simões, D A

    2008-04-01

    Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts. PMID:18188645

  15. Protozoa in Subsurface Sediments from Sites Contaminated with Aviation Gasoline or Jet Fuel

    PubMed Central

    Sinclair, James L.; Kampbell, Don H.; Cook, Mike L.; Wilson, John T.

    1993-01-01

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation gasoline source area undergoing H2O2 biotreatment. Samples were taken from the unsaturated zone to depths slightly below the floating free product in the saturated zone. Protozoa were found to occur in elevated numbers in the unsaturated zone, where fuel vapors mixed with atmospheric oxygen, and below the layer of floating fuel, where uncontaminated groundwater came into contact with fuel. The same trends were noted in the biotreatment area, except that numbers of protozoa were higher. Numbers of protozoa in some contaminated areas equalled or exceeded those found in surface soil. The abundance of protozoa in the biotreatment area was high enough that it would be expected to significantly reduce the bacterial community that was degrading the fuel. Little reduction in hydraulic conductivity was observed, and no bacterial fouling of the aquifer was observed during biotreatment. PMID:16348871

  16. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  17. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  18. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specifications of 40 CFR part 1065, subpart C, instead of those in this paragraph (b). ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow...

  19. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specifications of 40 CFR part 1065, subpart C, instead of those in this paragraph (b). ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow...

  20. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specifications of 40 CFR part 1065, subpart C, instead of those in this paragraph (b). ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow...

  1. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specifications of 40 CFR part 1065, subpart C, instead of those in this paragraph (b). ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow...

  2. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel...

  3. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect

    ELGIN, J.C.

    2000-10-02

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, radiation surveys of the Cold Vacuum Drying Facility (CVD), and radiation surveys of the Canister Storage Building (CSB) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  4. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect

    Krishnan, Gopala N.; Jayaweera, Palitha; Perez, Jordi; Hornbostel, M.; Albritton, John R.; Gupta, Raghubir P.

    2007-10-31

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700° to 900°C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700°, 750°, and 800°C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800°C. The electrical performance of SOFC

  5. Soil invertebrate community change over fuel-contaminated sites on a subantarctic island: An ecological field-based line of evidence for site risk assessment.

    PubMed

    Wasley, Jane; Mooney, Thomas J; King, Catherine K

    2016-04-01

    A number of fuel spills, of both recent and historic origins, have occurred on World Heritage-listed subantarctic Macquarie Island. Sites contaminated by mainly diesel fuels are undergoing remediation by the Australian Antarctic Division. The risks posed by these sites are being managed using a "weight of evidence" approach, for which this study provides a preliminary line of evidence for the ecological assessment component of this site management decision framework. This knowledge is pertinent, given the absence of environmental guidelines for fuel contaminants in subantarctic ecosystems. We provide a field-based, site-specific ecological risk assessment for soil invertebrate communities across the fuel spill sites, before the commencement of in situ remediation activities. Springtails (Collembola) were the most abundant taxa. Springtail community patterns showed only limited correlations with the level of fuel contamination at the soil surface, even when elevated levels occurred in the substratum layers. Of the environmental variables measured, community patterns were most strongly correlated with vegetation cover. We identify a suite of 6 species that contribute most to the community dynamics across these sites. A subset of these we propose as useful candidates for future development of single-species toxicity tests: Folsomotoma punctata, Cryptopygus caecus, Cryptopygus antarcticus and Parisotoma insularis. Findings from this study advance our understanding of soil invertebrate community dynamics within these contaminated sites, directly contributing to the improved management and restoration of the sites. Not only does this study provide an important line of evidence for the island's ecological risk assessment for fuel contaminants, it also enhances our understanding of the potential impact of fuels at other subantarctic islands. PMID:26202610

  6. The contamination of acoustic pressure measurements by sensor oscillations

    SciTech Connect

    Surry, J.; Kezele, D.; Risley, C.

    1996-04-01

    The significance of micromotion (sensor) noise contamination of low frequency, low level, ambient ocean acoustic measurements has been pursued experimentally and analytically. Oceanographic hydrophones are subject to small motions resulting from various phenomena; the present study focussed on a pressure-sensitive hydrophone exposed to vertical oscillations. While under such imposed motion, the responses from a pressure-sensitive hydrophone and a collocated accelerometer were analyzed relative to a stationary reference hydrophone. The imposed motion was vertical, colored noise (1 to 50 Hz) of various acceleration amplitudes (10 {mu}g to 10 mg), transmitted through an elastic isolation suspension. Formation of Frequency Response Functions between the measured transducer signals, demonstrated that a three component model of the hydrophone signal predicts the response-to-motion contamination of the acoustic signal. In the lower frequency range, the vertical motion through the static head gradient generates a signal similar to the response-to-acoustic signal, while in the upper frequency range, the hydrophone responds inertially to the motion. For acceleration greater than 30 {mu}g, these components masked the laboratory ambient sound, except in a narrow frequency band where the two motion related components canceled each other. The in-water acceleration sensitivity of the hydrophone was found to be higher than the measured in-air value, apparently due to two hydrodynamic effects: water mass loading predicted by a classical added-mass term and a greatly magnifying effect from an adjacent moving body. Extrapolating the results to a deep ocean environment, the hydrophone signals would be contaminated below 5 Hz. A spectral technique is demonstrated to remove both forms of motion contamination from laboratory data. {copyright} {ital 1996 American Institute of Physics.}

  7. ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Daniel T. Agymang; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  8. Preventive measures reducing superficial mycobiotic contamination of grain.

    PubMed

    Steponavičius, Dainius; Raila, Algirdas; Steponavičienė, Aušra; Lugauskas, Albinas; Kemzūraitė, Aurelija

    2012-01-01

    Search for the preventive measures reducing the accumulation of mycotoxin producers in food raw material was carried out. Active ventilation was used; the impact of the electro-chemically activated air (ozone) and electro-chemically activated water (anolyte) on the micromycetes prevailing in grain raw material for food (GRMF) was determined. The GRMF was dried by active ventilation using the ozone-air mixture. Ozone (concentration 1250 ppb) disinfects the surface of the raw material and creates conditions unfavourable for the increase of mycobiotic contamination in drying upper layers of the grain mound. Within 8 days the contamination of GRMF in a mound decreased by 50%, while in its lower layers - more than 3 times. Ventilation of the mound with the above-mentioned concentration of the ozone-air mixture has ceased the active functioning of Fusarium avenaceum, F. graminearum, F. poae, F. solani, F. tricinctum F. sporotrichioides micromycetes and has considerably retarded the development of Alternaria alternata and other fungi. Anolyte (0.05% of chlorine concentration) reduced the mycobiotic contamination of GRMF by almost 2.5 times. The optimal treatment duration is from 0.5 to 1 hour. The optimal technical parameters, allowing the use of these measures for the preparation of grain food safety technologies, were elaborated; they are designed for more efficient protection of human health against micromycetes and their toxic metabolites, which are abundantly produced and released into the environment. PMID:22742787

  9. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2016-01-01

    Galaxy clusters are a rich source of information for examining fundamental astrophysical processes and cosmological parameters, however, employing clusters as cosmological probes requires accurate mass measurements derived from cluster observables. We study dynamical mass measurements of galaxy clusters contaminated by interlopers, and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create a mock catalog from Multidark's publicly-available N-body MDPL1 simulation where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. The presence of interlopers in the catalog produces a wide, flat fractional mass error distribution, with width = 2.13. We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (width = 0.67). Remarkably, SDM applied to contaminated clusters is better able to recover masses than even a scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  10. Intra-Fuel Cell Stack Measurements of Transient Concentration Distributions

    SciTech Connect

    Partridge Jr, William P; Toops, Todd J; Green Jr, Johney Boyd; Armstrong, Timothy R.

    2006-01-01

    Intra-fuel-cell measurements are required to understand detailed fuel-cell chemistry and physics, validate models, optimize system design and control, and realize enhanced efficiency regimes; in comparison, conventional integrated fuel-cell supply and effluent measurements are fundamentally limited in value. Intra-reactor measurements are needed for all fuel cell types. This paper demonstrates the ability of a capillary-inlet mass spectrometer to resolve transient species distributions within operating polymer-electrolyte-membrane (PEM) fuel cells and at temperatures typical of solid-oxide fuel cells (SOFC). This is the first such demonstration of a diagnostic that is sufficiently minimally invasive as to allow measurements throughout an operating fuel cell stack. Measurements of transient water, hydrogen, oxygen and diluent concentration dynamics associated with fuel-cell load switching suggest oxygen-limited chemistry. Intra-PEM fuel cell measurements of oxygen distribution at various fuel-cell loads are used to demonstrate concentration gradients, non-uniformities, and anomalous fuel cell operation.

  11. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    SciTech Connect

    Cagnetta, P.J.; Laubacher, R.C.

    1995-12-31

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd{sup 3}) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon.

  12. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    SciTech Connect

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-07-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993.

  13. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    SciTech Connect

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F. ); MacNeill, J.J.; Ott, D.W. ); Machanoff, R.A. ); Adler, H.I. ); Phelps, T.J. )

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993.

  14. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  15. Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination

    NASA Astrophysics Data System (ADS)

    Andreas Schuler, J.; Lübbe, Henning; Hessler-Wyser, Aïcha; Van herle, Jan

    2012-09-01

    The stability of Nd-nickelate, considered as an alternative solid oxide fuel cell (SOFC) cathode material, was evaluated in this work on its tolerance towards contaminants. Symmetrical cells with Nd1.95NiO4+δ (NNO) electrodes sintered on gadolinia-doped ceria electrolyte supports were monitored over time-spans of 1000 h at 700 °C under polarization in an air-flux with deliberate chromium contamination. Impedance spectroscopy pointed out a polarization increase with time by the growth of the low frequency arc describing the electrode's oxygen reduction and incorporation processes. Post-test observations revealed polluted cathode regions with increasing amounts of Cr accumulations towards the electrolyte/cathode interface. Cr deposits were evidenced to surround active nickelate grain surfaces forming Nd-containing Cr oxides. In addition to exogenous Cr contamination, endogenous contamination was revealed. Silicon, present as impurity material in the raw NNO powder (introduced by milling during powder processing), reacts during sintering steps to form Nd-silicate phases, which decreases the active cathode surface. Nd-depletion of the nickelate, as a result of secondary phase formation with the contaminants Cr and Si (NdCrO4 and Nd4Si3O12), then triggers the thermally-induced decomposition of NNO into stoichiometric Nd2NiO4+δ and NiO. Summarized, the alternative Nd-nickelate cathode also suffers from degradation caused by pollutant species, like standard perovskites.

  16. Review of methods to measure internal contamination in an emergency.

    PubMed

    Youngman, M J

    2015-06-01

    In the event of a radiation emergency, people close to the site of the incident may be exposed to radiation by external exposure, or as a result of intakes of radioactive material. For these incidents it may be necessary to monitor members of the public both for external and internal contamination. This work reviews currently available equipment for the assessment of internal exposure following an emergency. It concentrates on incidents involving the spread of radioactive material and on contamination by radionuclides which emit penetrating radiation. It is essential that this monitoring is carried out as soon as possible so that people who have been exposed at a level which could have an effect on health can be identified and receive prompt medical assessment. Proposed action levels to identify people who need medical attention are reviewed to determine the required sensitivity of monitoring equipment. For releases containing gamma-ray emitting radionuclides the best means of measuring internal contamination is to use detectors placed close to the body (whole body or partial body monitoring). Laboratory based whole body monitors could be used but these may well be inconveniently located and so equipment which can be deployed to the site of an incident has been developed and these are described. The need for rapid selection and prioritisation of people for monitoring, methods to deal with potentially high numbers of contaminated people and the requirement for a means of rapidly interpreting monitoring information are also discussed.It has been found that for many types of incidents and scenarios, systems based on unshielded high-resolution detectors and hand-held instruments do have the required sensitivity to identify people who require medical assessment. PMID:25884230

  17. Measurement of total hemispherical emissivity of contaminated mirror surfaces

    NASA Technical Reports Server (NTRS)

    Facey, T. A.; Nonnenmacher, A. L.

    1989-01-01

    The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.

  18. A Model for Measurements of Lognormally Distributed Environmental Contaminants

    SciTech Connect

    Charles B. Davis, Danny Field, Thomas E. Gran

    2009-05-21

    This paper proposes a more nearly reasonable model for the actual measurement distribution, called here the “Davis Mixed Model” (DMM). The DMM is derived by multiplying the probability density function of unobservable actual concentrations (assumed LN) by the conditional density of measurements given the concentrations (assumed heteroscedastic normal), and then integrating to obtain the marginal distribution of the observable measurements. The DMM is complicated and analytically intractable; its probability density function (PDF) is itself an integral, for example, and closed-form expressions for percentiles, let alone estimators, do not exist. The DMM can be fit to data via Maximum Likelihood Estimation (MLE), however, and a fitted model can be used to generate data for evaluating the actual performance of candidate UTL or other estimation procedures. The Industrial Hygiene application motivating this work involves surface sampling surveys for removable beryllium (Be) contamination, with data from Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) analyses. Similar issues will arise quite generally with censored environmental data for other contaminants and analytical methods. The conclusions presented in this paper focus on the regions of the DMM parameter space arising in surveying numerous Department of Energy (DOE) facilities associated with the Nevada Test Site (NTS).

  19. 14. Protective measures for activities in Chernobyl's radioactively contaminated territories.

    PubMed

    Nesterenko, Alexey V; Nesterenko, Vassily B

    2009-11-01

    Owing to internally absorbed radionuclides, radiation levels for individuals living in the contaminated territories of Belarus, Ukraine, and Russia have been increasing steadily since 1994. Special protective measures in connection with agriculture, forestry, hunting, and fishing are necessary to protect the health of people in all the radioactively contaminated territories. Among the measures that have proven to be effective in reducing levels of incorporated radionuclides in meat production are food additives with ferrocyanides, zeolites, and mineral salts. Significant decreases in radionuclide levels in crops are achieved using lime/Ca as an antagonist of Sr-90, K fertilizers as antagonists of Cs-137, and phosphoric fertilizers that form a hard, soluble phosphate with Sr-90. Disk tillage and replowing of hayfields incorporating applications of organic and mineral fertilizers reduces the levels of Cs-137 and Sr-90 three- to fivefold in herbage grown in mineral soils. Among food technologies to reduce radionuclide content are cleaning cereal seeds, processing potatoes into starch, processing carbohydrate-containing products into sugars, and processing milk into cream and butter. There are several simple cooking techniques that decrease radionuclides in foodstuffs. Belarus has effectively used some forestry operations to create "a live partition wall," to regulate the redistribution of radionuclides into ecosystems. All such protective measures will be necessary in many European territories for many generations. PMID:20002058

  20. Stack contamination effects during small-scale combustion testing of synthetic fuels

    SciTech Connect

    Douglas, L.J.; Gibbon, G.A.; White, C.M.

    1984-01-01

    The Analytical Chemistry Branch at the Pittsburgh Energy Technology Center has undertaken the assessment of the possible environmental impact of substituting synfuels for petroleum-based fuels in utility and industrial boilers. The assessment is based on a study of results obtained from the analysis of trace organic compounds present in the exaust gases of a fully instrumented 20-hp firetube boiler. The stack gases from petroleum-based fuels, synfuels, and methanol combustion tests have been sampled and analyzed by combined gas chromatography/mass spectrometry. The stack gas sampled during the combustion of methanol showed the presence of saturated and aromatiic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol showed the presence of saturated and aromatic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol combustion but suggests contamination of the 20-hp combustor-exhaust system from earlier tests using petroleum or coal-derived fuels. The previously established exhaust stack protocol was reviewed by the Combustion Technology Branch and the Analytical Chemistry Branch. It was decided that a more exhaustive protocol was required. When this revised protocol was instituted, cross-contamination and memory effects disappeared, and sampling integrity was reestablished, thus allowing the analytical data to be properly interpreted. 5 references, 7 figures, 5 tables.

  1. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  2. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater. PMID:21404685

  3. Vertical geochemical profiling of an aquifer contaminated with JP-4 fuel

    SciTech Connect

    Fang, Jiasong; Barcelona, M.J.

    1996-12-31

    Soil samples were collected at a site contaminated with jet fuel at Wurtsmith Air Force Base, Michigan, and were analyzed for aromatic hydrocarbons, aromatic acid metabolites, and phospholipid ester-linked fatty acids (PLFA). Vertically, concentrations of alkylbenzenes (with C1-C4 substitutions) ranged from less than 1.0 to 21.69 {mu}g/kg away from water table to 2605.96 {mu}g/kg in samples taken at water table in the contaminated areas. Contaminant concentration decreased to less than 1.0 {mu}g/kg in downgradient zone. Aromatic acid metabolites identified include o-, m-, and p-toluic acid, 2,4-, 2,5-, 3,5-, 2,6- and 3,4- dimethylbenzoic acid, and 2,4,6-trimethylbenzoic acid. The contaminant profiles paralleled to the concentration profiles of alkylbenzenes, suggesting that the production of aromatic acid was associated with the microbial degradation of aromatic hydrocarbons. PLFA ranging from C{sub 12} to C{sub 20} were determined in soil samples, including saturated and monounsaturated fatty acids. The only polyenoic acid detected was 18:2w6, a biomarker for protozoa. The total microbial biomass calculated from PLFA showed varied profiles within wells at different depths as well as at different wells at similar depths indicating considerable microbial heterogeneity in the subsurface over depths or lateral distance. The PLFA profiles also suggested a dominant anaerobic and aerobic microbial community in the aquifer solids.

  4. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    PubMed Central

    2013-01-01

    Background Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive cell wall when exposed externally and provide a novel source of antimicrobials that are highly refractory to resistance development. Results The streptococcal phage LambdaSa2 (λSa2) endolysin demonstrated strong lytic activity towards 17 of 22 strains of lactobacilli, staphylococci or streptococci and maintained an optimal specific activity at pH 5.5 and in the presence of ≤ 5% ethanol (fermentation conditions) toward L. fermentum. Lactobacillus bacteriophage endolysins LysA, LysA2 and LysgaY showed exolytic activity towards 60% of the lactobacilli tested including four L. fermentum isolates from fuel ethanol fermentations. In turbidity reduction assays LysA was able to reduce optical density >75% for 50% of the sensitive strains and >50% for the remaining strains. LysA2 and LysgaY were only able to decrease cellular turbidity by <50%. Optimal specific activities were achieved for LysA, LysA2, and LysgaY at pH 5.5. The presence of ethanol (≤5%) did not reduce the lytic activity. Lysins were able to reduce both L. fermentum (BR0315-1) (λSa2 endolysin) and L. reuteri (B-14171) (LysA) contaminants in mock fermentations of corn fiber hydrolysates. Conclusion Bacteriophage lytic enzymes are strong candidates for application as antimicrobials to control lactic acid bacterial contamination in fuel ethanol fermentations. PMID:23390890

  5. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J

    2010-08-01

    Experiments were designed to evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5 and B20). In experiments with additions of distilled water, all fuels supported biofilm formation. Changes in the water pH did not correlate with observations related to corrosion. In all exposures, aluminum 5052 was susceptible to pitting while stainless steel 304L exhibited passive behavior. Carbon steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5, B20, and B100. PMID:20628927

  6. Contaminant discharge and uncertainty estimates from passive flux meter measurements

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; GuimarãEs da Luz, Joana AngéLica; Annable, Michael D.; Newman, Mark; Cho, Jaehyun; Peacock, Aaron; Stucker, Valerie; Ranville, James; Cabaniss, Steven A.; Rao, P. S. C.

    2012-02-01

    The passive flux meter (PFM) measures local cumulative water and contaminant fluxes at an observation well. Conditional stochastic simulation accounting for both spatial correlation and data skewness is introduced to interpret passive flux meter observations in terms of probability distributions of discharges across control planes (transects) of wells. An estimator of the effective number of independent data is defined and applied in the development of two significantly simpler approximate methods for estimating discharge distributions. One method uses a transformation of the t statistic to account for data skewness and the other method is closely related to the classic bootstrap. The approaches are demonstrated with passive flux meter data from two field sites (a trichloroethylene [TCE] plume at Ft. Lewis, WA, and a uranium plume at Rifle, CO). All methods require that the flux heterogeneity is sufficiently represented by the data and maximum differences in discharge quantile estimates between methods are ˜7%.

  7. Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Haack, Sheridan K.; Adriaens, Peter; Henry, Mark A.; Bradley, Paul M.

    1996-01-01

    Measurements of oxidation−reduction potential (Eh) and concentrations of dissolved hydrogen (H2) were made in a shallow groundwater system contaminated with solvents and jet fuel to delineate the zonation of redox processes. Eh measurements ranged from +69 to −158 mV in a cross section of the contaminated plume and accurately delineated oxic from anoxic groundwater. Plotting measured Eh and pH values on an equilibrium stability diagram indicated that Fe(III) reduction was the predominant redox process in the anoxic zone and did not indicate the presence of methanogenesis and sulfate reduction. In contrast, measurements of H2concentrations indicated that methanogenesis predominated in heavily contaminated sediments near the water table surface (H2 ∼ 7.0 nM) and that the methanogenic zone was surrounded by distinct sulfate-reducing (H2 ∼ 1−4 nM) and Fe(III)-reducing (H2 ∼ 0.1−0.8 nM) zones. The presence of methanogenesis, sulfate reduction, and Fe(III) reduction was confirmed by the distribution of dissolved oxygen, sulfate, Fe(II), and methane in groundwater. These results show that H2 concentrations were more useful for identifying anoxic redox processes than Ehmeasurements in this groundwater system. However, H2-based redox zone delineations are more reliable when H2 concentrations are interpreted in the context of electron-acceptor (oxygen, nitrate, sulfate) availability and the presence of final products [Fe(II), sulfide, methane] of microbial metabolism.

  8. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  9. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  10. Characterization and fingerprinting of soil and groundwater contamination sources around a fuel distribution station in Galicia (NW Spain).

    PubMed

    Balseiro-Romero, María; Macías, Felipe; Monterroso, Carmen

    2016-05-01

    Soil and groundwater contamination around a fuel distribution station in Tomiño (NW Spain) was evaluated. For this purpose, top and subsoil (up to 6.4 m) and groundwater were sampled around the station, approximately in a 60-m radius. Samples were analysed by HS-SPME-GC-MS to identify and quantify volatile fuel organic compounds (VFOC) (MTBE, ETBE and BTEX) and diesel range organics (DRO). Analysis and fingerprinting data suggested that the contamination of soil and groundwater was provoked by a fuel leak from underground storage tanks. This was reflected by hydrocarbon indices and principal component analysis, which discriminated a direct source of contamination of the subsoil samples around the station. The contaminants probably migrated from tank nearby soils to surrounding soils and leached to groundwater, following a SW direction. Irrigation with contaminated groundwater provoked a severe contamination of topsoils, which were enriched with the lightest components of gasoline and diesel. Fingerprinting also revealed the continuity of the leak, reflected by the presence of volatiles in some samples, which principally appeared in fresh leaks. MTBE was detected in a very high concentration in groundwater samples (up to 690 μg L(-1)), but it was not detected in fresh gasoline. This also evidenced an old source of contamination, probably starting in the mid-1990s, when the use of MTBE in gasoline was regulated. PMID:27080856

  11. Effects of several trace contaminants on fuel cell performance. [Theoretical study

    SciTech Connect

    Park, S M; O'Brien, T J

    1980-08-01

    The electrochemical reactivity of various trace contaminants in coal gas, i.e., Hg/HgS, PbS, CdS, Sn/SnCl/sub 2//SnCl/sub 4/, and TiO/sub 2/, in coal gas at the nickel anode and the nickel oxide cathode in a molten carbonate fuel cell have been examined thermodynamically. Calculations indicate that only SnCl/sub 4/ would undergo reduction at the cathode to SnCl/sub 2/. Other species would remain intact. Contaminants such as H/sub 2/S/SO/sub 2/ and HCl have also been included in the calculation. The results are consistent with the limited observations. Possible chemical interactions between contaminants and electrodes or electrolytes have been examined. Reactions of Sn/sup 2 +/, HgS, H/sub 2/S, and HCl with the nickel anode have negative free energies. Mercury would interact physically with the anode by forming an alloy. Reactions of Sn, SnCl/sub 2/, H/sub 2/S, and HCl with the nickel oxide cathode also have negative free energies. Reactions of Sn/sup 2 +/, HCl, H/sub 2/S, and SO/sub 2/ with carbonates have large negative free energies. Born's model of ion transfer was used to calculate the free energy charge for the transfer of ions from aqueous solution to the molten carbonate solution.

  12. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  13. Identification of Reprocessed Depleted Uranium in Contaminated Sediments From Cs-137 Activity Measurements

    NASA Astrophysics Data System (ADS)

    Arnason, J. G.; Bopp, R. F.

    2006-05-01

    Measurements of U series isotopes and fission products can be used to distinguish the relative contributions of natural and anthropogenic sources in U-contaminated sites. Anthropogenic sources include enriched uranium, depleted uranium (DU) byproduct from ore enrichment, and DU byproduct from spent fuel reprocessing. From 1958 to 1984 the National Lead industries plant in Colonie, New York, USA, emitted more than four metric tons of uranium as microscopic uranium oxide aerosols within a 1 km radius of the plant. Previous studies of a 3-m-long sediment core from Patroon Reservoir, located 1 km downstream of the plant, indicate that between 1.8 and 1.0 m depth, U concentrations are more than 100 times natural background and consist of 25 to 95 percent depleted uranium based on alpha spectroscopy. We measured 18 samples by gamma spectroscopy to better constrain the chronology of the core. Cesium-137 shows two activity peaks, one at approximately 2.0 m and another, broader peak between 1.5 and 1.0 m depth. The lower peak corresponds to the global fallout maximum of the mid 1960's and indicates a 5.5-6 cm/yr sedimentation rate that is consistent with the excess Pb-210 profile. In contrast, the upper Cs-137 peak corresponds to the interval containing DU, and suggests that there is a DU component derived from spent nuclear fuel. This hypothesis is consistent with a published report of U-236 detected in DU particles collected in air filters 15 km away at the Knolls Atomic Power Lab during the time of plant operation. It can be further tested through high resolution isotopic measurements of U-236 in the sediments themselves. Depleted uranium derived from spent fuel and containing U-236 will have higher total activity than DU derived from U ore and, as a result, could represent a greater hazard in the environment.

  14. Fuel droplet size measurements with a laser Doppler interferometer

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1985-07-01

    It is pointed out that the injection and atomization of liquid fuel into a gas turbine combustion system plays a major role in many key aspects of combustion system performance. Fuel droplet diameters represent one of the parameters which determine the burning rate. The present investigation is concerned with a commercially available laser Doppler interferometer which has been used by an American manufacturer of aircraft engines to measure fuel droplet size distributions downstream of several different fuel injectors and combinations of fuel injectors and combustor dome swirl cups. The considered instrument has a very small sample volume, which permits measurements of droplet size distributions and droplet Sauter Mean Diameters (SMD) at a large number of discrete points in the spray pattern. The design and the principles of operation of the droplet sizing interferometer (DSI) are discussed along with alignment procedures, test configurations, and test results.

  15. Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel

    SciTech Connect

    Pivovaroff, Dr. Michael J.; Ziock, Klaus-Peter; Harrison, Mark J; Soufli, Regina

    2014-01-01

    Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

  16. Three-dimensional geologic modeling to determine the spatial attributes of hydrocarbon contamination, Noval Facility Fuel Farm, El Centro, California

    SciTech Connect

    Johnson, C.; Mutch, S.; Padgett, D.; Roche, L. )

    1994-04-01

    An investigation was conducted at the Naval Air Facility located in El Centro (NAFEC), to determine the vertical and horizontal extent of hydrocarbon contamination at the facilities fuel farm. The fuel products are the result of tank and pipeline leakage, past tank cleaning, and past disposal of fuel dispensing and filter cleaning practices. Subsurface soil and groundwater data was collected via soil borings, monitoring wells, and CPT probes. Soil, groundwater, and analytical data were integrated using the LYNX geoscience modeling system (GMS). Interactive sessions with the data visualizer helped guide the modeling and identify data gaps. Modeling results indicate a continuous surface confining clay layer to a depth of about 12 to 15 ft. Groundwater is confined beneath this clay layer and monitoring wells indicate about 3 to 5 ft of artesian head. Hydrocarbon contamination is concentrated within this clay layer from about 5 to 12 ft below the ground surface. Residual fuel products located in the groundwater are attributed to slow leakage through the confirming clay layer. LYNX was also used to compute volumes of contaminated soil to aid in remediation cost analysis. Preliminary figures indicate about 60,000 yards[sup 3] of contaminated soil. Since the contamination is primarily confined to relatively impermeable clayey soils, site remediation will likely be ex-situ land farming.

  17. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  18. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  19. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout.

    PubMed

    Kashparov, V A; Lundin, S M; Zvarych, S I; Yoshchenko, V I; Levchuk, S E; Khomutinin, Y V; Maloshtan, I M; Protsak, V P

    2003-12-30

    The data obtained through a series of experiments were used to specify the correlation of activities of the fuel component radionuclides of Chernobyl fallout and to create the maps of the 30-km Chernobyl zone terrestrial density of contamination with 154Eu, 238Pu, 239+240Pu and 241Am (on 01.01.2000). In the year 2000, total inventories of the fuel component radionuclides in the upper 30-cm soil layer of the 30-km Chernobyl zone in Ukraine (outside the ChNPP industrial site, excluding the activity located in the radioactive waste storages and in the cooling pond) were estimated as: 90Sr--7.7 x 10(14) Bq; 137Cs--2.8 x 10(15) Bq; 154Eu--1.4 x 10(13) Bq; 238Pu--7.2 x 10(12) Bq; 239+240Pu--1.5 x 10(13) Bq; 241Am--1.8 x 10(13) Bq. These values correspond to 0.4-0.5% of their amounts in the ChNPP unit 4 at the moment of the accident. The current estimate is 3 times lower than the previous widely-cited estimates. Inventories of the fuel component radionuclides were also estimated in other objects within the 30-km zone and outside it. This allowed more accurate data to be obtained on the magnitude of a relative release of radionuclides in the fuel particles (FP) matrix during the Chernobyl accident outside the ChNPP industrial site. It amounts to 1.5+/-0.5% of these radionuclides in the reactor, which is 2 times lower than the previous estimates. Two-thirds of the radionuclides release in the FP was deposited on the territory of Ukraine. PMID:14630415

  20. Natural attenuation of fuel hydrocarbon contaminants: Hydraulic conductivity dependency of biodegradation rates in a field case study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-07-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  1. Natural Attenuation of Fuel Hydrocarbon Contaminants: Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-10-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  2. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  3. Application of an imaging plate system to the direct measurement of a fixed surface contamination.

    PubMed

    Hirota, Masahiro; Kimura, Keiji; Sato, Rumi; Koike, Yuya; Iimoto, Takeshi; Tanaka, Satoru

    2014-08-01

    An imaging plate (IP) system was used as an effective detector for direct measurement of radioactive surface contamination. The IP system displayed images designating the locations and extent of fixed surface contamination of uranyl acetate. The amount of radioactive waste produced during decontamination was reduced because the contaminated spots could be isolated; furthermore, creation of radioactive dust during removal of contamination was prevented because the contaminated spots could be removed without being pulverized. The images were used in efficiently and safely isolating the location of fixed surface contamination. The IP system surface contamination detection limit for uranyl acetate was 2.5 × 10 Bq cm, a value much lower than the surface contamination limit and the clearance level. PMID:24978288

  4. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  5. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  6. RESEARCH & DEVELOPMENT OF PREVENTION AND CONTROL MEASURES FOR MOLD CONTAMINATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency, Air Pollution Prevention and Control Division, Indoor Environment Management Branch has, since 1995, conducted research into controlling biological contamination in the indoor environment. In this paper four areas of research are discusse...

  7. Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel

    USGS Publications Warehouse

    Bradley, Paul M.; Aelion, C. Marjorie; Vroblesky, Don A.

    1992-01-01

    In 1975, the loss of approximately 83,000 gallons of JP-4 grade jet fuel resulted in contamination of the shallow aquifer near North Charleston, South Carolina. To identify those factors likely to influence microbial activity under denitrifying conditions, we examined the fate of amended NO3, the effect of pH, NO3, and PO4 on denitrification, and the variability of denitrification in sediments collected at the site. Denitrification (N2O-N production) accounted for 98% of the depletion of NO3-N under anaerobic conditions. Both carbon mineralization and denitrification rates increased asymptotically with increasing NO3 to a maximum at approximately 1 mM NO3. Addition of up to 1 mM PO4 did not significantly increase N2O and CO2 production. Denitrification rates were at least 38% lower at pH = 4 than observed at pH = 7. Comparison of samples with differing degrees of hydrocarbon contamination indicated that at least a tenfold variation in sediment denitrification occurs at the North Charleston site.

  8. In Vitro Dissolution Tests of Plutonium and Americium Containing Contamination Originating From ZPPR Fuel Plates

    SciTech Connect

    William F. Bauer; Brian K. Schuetz; Gary M. Huestis; Thomas B. Lints; Brian K. Harris; R. Duane Ball; Gracy Elias

    2012-09-01

    Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dose estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.

  9. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  10. The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts.

    PubMed

    Abbott, D A; Ingledew, W M

    2005-11-01

    Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of > or =20 ml air l(-1) mash min(-1) showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts. PMID:15782293

  11. Rapid evaluation of the antibiotic susceptibility of fuel ethanol contaminant biofilms.

    PubMed

    Rich, Joseph O; Leathers, Timothy D; Nunnally, Melinda S; Bischoff, Kenneth M

    2011-01-01

    Bacterial contaminants from commercial fuel ethanol production facilities were previously shown to form biofilms as mixed cultures under laboratory conditions. In this study, a rapid assay was developed to simultaneously compare isolates for their ability to form biofilms as pure cultures. A total of 10 strains were isolated from a dry-grind fuel ethanol plant that routinely doses with virginiamycin. These were identified by sequence analysis as six strains of Lactobacillus fermentum, two strains of L. johnsonii, and one strain each of L. mucosae and L. amylovorus. Isolates exhibited a range of susceptibility to virginiamycin in a planktonic assay, with MIC's (minimum inhibitory concentration) of ≤0.5-16 μg/ml. Even though all strains were isolated from a mixed culture biofilm, they varied greatly in their ability to form biofilms as pure cultures. Surprisingly, growth as biofilms did not appear to provide resistance to virginiamycin, even if biofilms were grown for 144 h prior to antibiotic challenge. PMID:20855199

  12. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  13. ASSESSMENT OF THE MICROBIAL POTENTIAL FOR NITRATE- ENHANCED BIOREMEDIATION OF A JP-4 FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A site that was contaminated with JP-4 jet fuel was characterized microbiologically to assess the feasibility of nitrate-enhanced bioremediation. The results of microcosm studies indicated that the mean pseudo zero-order rate constants for alkylbenzene biodegradation and NO3...

  14. COMBINED LABORATORY/FIELD STUDY ON THE USE OF NITRATE FOR IN SITU BIOREMEDIATION OF A FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A pilot demonstration project was conducted at Eglin Air Force Base, FL, to compare the extent of bioremediation of a fuel-contaminated aquifer using sprinkler application with and without nitrate addition on two adjacent 30 m x 30 m cells. Target compound groups included both B...

  15. On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Taylor, Jessie

    2016-07-01

    Line intensity mapping experiments seek to trace large-scale structures by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the “target” emission line of interest. We develop an approach to separate this “interloper” emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Because the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock–Paczynski test, but here the warping arises from assuming the wrong redshift rather than an incorrect cosmological model. We apply this to the case of a hypothetical [C ii] emission survey at z∼ 7 and find that the distinctive interloper anisotropy can, in principle, be used to separate strong foreground CO emission fluctuations. In our models, however, a significantly more sensitive instrument than currently planned is required, although there are large uncertainties in forecasting the high-redshift [C ii] emission signal. With upcoming surveys, it may nevertheless be useful to apply this approach after first masking pixels suspected of containing strong interloper contamination.

  16. On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Taylor, Jessie

    2016-07-01

    Line intensity mapping experiments seek to trace large-scale structures by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the “target” emission line of interest. We develop an approach to separate this “interloper” emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Because the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock–Paczynski test, but here the warping arises from assuming the wrong redshift rather than an incorrect cosmological model. We apply this to the case of a hypothetical [C ii] emission survey at z˜ 7 and find that the distinctive interloper anisotropy can, in principle, be used to separate strong foreground CO emission fluctuations. In our models, however, a significantly more sensitive instrument than currently planned is required, although there are large uncertainties in forecasting the high-redshift [C ii] emission signal. With upcoming surveys, it may nevertheless be useful to apply this approach after first masking pixels suspected of containing strong interloper contamination.

  17. Fuel economy measurement road test procedure. SAE standard

    SciTech Connect

    1995-06-01

    This SAE Standard incorporates driving cycles that produce fuel consumption data relating to urban, suburban, and interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers. The cycle forms the basis of a cold-start test procedure described in SAE J1256. This document provides uniform testing procedures for measuring the fuel economy of light duty vehicles (motor vehicles designed primarily for transportation of persons or property and rated at 4,500 kg (10,000 lb) or less) on suitable roads.

  18. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  19. A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Kulessa, B.; Ferguson, A. S.; Larkin, M. J.; Kulakov, L. A.; Kalin, R. M.

    2010-09-01

    There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

  20. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    NASA Astrophysics Data System (ADS)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  1. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  2. Fossil fuel conversion -- Measurement and modeling

    SciTech Connect

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1995-11-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifier and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifier (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas). Results are presented on the devolatilization of large coal particles; transport reactor modeling; fluidized bed model; nitrogen evolution from small and large coal particles; modeling of hydrogen cyanide and ammonia release during coal pyrolysis; oxidation rates for large coal particles at high pressures; advanced fixed-bed model development and evaluation; application of ACERC combustion and gasification codes to AFR diagnostic capabilities to systems of interest to METC; and submodel for lean premixed combustion of natural gas in industrial gas turbines.

  3. Statistics of Measurements of Automobile Fuel Efficiency

    NASA Astrophysics Data System (ADS)

    Bartlett, Albert A.

    2003-11-01

    In these days, with the growing need to worry about petroleum and the efficiency of our automobiles, there should be an increased interest, especially among physics students, in the miles per gallon (MPG) of cars. There should also be interest in the accuracy of single and multiple measurements of the MPG of a car. These topics are covered here in this report of a series of measurements that span 16 years.

  4. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  5. Gamma densitometer for measuring Pu density in fuel tubes

    SciTech Connect

    Winn, W.G.

    1982-01-01

    A fuel-gamma-densitometer (FGD) has been developed to examine nondestructively the uniformity of plutonium in aluminum-clad fuel tubes at the Savannah River Plant (SRP). The monitoring technique is ..gamma..-ray spectroscopy with a lead-collimated Ge(Li) detector. Plutonium density is correlated with the measured intensity of the 208 keV ..gamma..-ray from /sup 237/U (7d) of the /sup 241/Pu (15y) decay chain. The FGD measures the plutonium density within 0.125- or 0.25-inch-diameter areas of the 0.133- to 0.183-inch-thick tube walls. Each measurement yields a density ratio that relates the plutonium density of the measured area to the plutonium density in normal regions of the tube. The technique was used to appraise a series of fuel tubes to be irradated in an SRP reactor. High-density plutonium areas were initially identified by x-ray methods and then examined quantitatively with the FGD. The FGD reliably tested fuel tubes and yielded density ratios over a range of 0.0 to 2.5. FGD measurements examined (1) nonuniform plutonium densities or hot spots, (2) uniform high-density patches, and (3) plutonium density distribution in thin cladding regions. Measurements for tubes with known plutonium density agreed with predictions to within 2%. Attenuation measurements of the 208-keV ..gamma..-ray passage through the tube walls agreed to within 2 to 3% of calculated predictions. Collimator leakage measurements agreed with model calculations that predicted less than a 1.5% effect on plutonium density ratios. Finally, FGD measurements correlated well with x-ray transmission and fluoroscopic measurements. The data analysis for density ratios involved a small correction of about 10% for ..gamma..-shielding within the fuel tube. For hot spot examinations, limited information for this correction dictated a density ratio uncertainty of 3 to 5%.

  6. An underwater neutron coincidence counter for measurement of spent fuels

    SciTech Connect

    Staples, P.; Halbig, J.; Lestone, J.; Sprinkle, J.

    1999-07-01

    An underwater neutron coincident counter has been designed and constructed for the measurement of spent nuclear fuel--the spent-fuel coincident counter (SFCC). The SFCC is a medium-detection-efficiency design that incorporates an ionization chamber (IC) for gamma-ray dose evaluation from the spent nuclear fuel. The absolute neutron detection efficiency is 14.5% for {sup 252}Cf sources. The SFCC is hermetically sealed, as it is installed {approximately}5 m below water level in a spent-fuel storage pond. There are 20 {sup 3}He tubes arranged within a polyethylene ring in a single band. There is an inner ring of 6.8 cm of lead to provide shielding from the fission product gamma rays. A single IC is primarily used to determine the dose impinging upon the {sup 3}He tubes and to determine the appropriate operational parameters to avoid gamma-ray pile effects in the {sup 3}He tubes. To further minimize gamma-ray pileup effects, each {sup 3}He tube is connected to a PDT110A preamplifier. The single and double neutron count rates, in addition to the IC measurement information from the SFCC, are used to determine the Pu mass of the spent-fuel assemblies and the decay heat and for classification of the assembly type. This information is required such that safety criteria are met for the safe packaging of the spent-fuel assemblies.

  7. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Kučák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  8. Characterization of Alpha Contamination in Lanthanum Trichloride Scintillators Using Coincidence Measurements

    SciTech Connect

    Milbrath, Brian D.; Runkle, Robert C.; Hossbach, Todd W.; Kaye, William R.; Lepel, Elwood A.; McDonald, Benjamin S.; Smith, Leon E.

    2005-08-01

    The commercial availability of LaCl3:Ce scintillators has been much anticipated due to their significantly lower resolution relative to NaI(Tl). Our investigation of these scintillators in regards to the effect of their improved resolution for coincidence gamma-ray measurement applications revealed that the scintillators had a large, internal alpha contamination affecting the gamma-ray energy range from 1700-3000 keV. One passive method of identifying contaminants relies on exploiting coincident signatures. Aided by a coincidence lookup library developed at PNNL, we determined that the parent contaminant is Ac-227 via an alpha-gamma coincidence measurement. In this paper, we characterize the level of contamination and describe our coincidence measurement technique. The Ac-227 concentration was approximately 0.13 ppt. We demonstrate that this coincidence technique measures minimum detectable activities much lower than singles gamma-ray spectroscopy. We also discuss gamma- and beta-contamination in these scintillators.

  9. Solubility measurement of uranium in uranium-contaminated soils

    SciTech Connect

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

  10. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  11. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  12. Checking Contamination during Storage of Carbonaceous Chondrites for Micro FTIR Measurements

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    2008-01-01

    We examined organic contamination by Fourier transform infrared micro spectroscopic (micro FTIR) measurements of carbonaceous chondrite samples. Carbonaceous chondrites, Tagish Lake (C2), Murchison (CM2) and Moss (CO3), and some mineral powder samples pressed on aluminum plates were measured by micro FTIR before and after storage in several containers with silicone rubber mat. During storage, samples did not touch directly anything except the holding aluminum plates. The carbonaceous chondrites containing hydrous minerals (Tagish Lake and Murchison) pressed on aluminum plates and measured by transmission-reflection micro FTIR measurements were found to be contaminated during storage after only one day, as revealed by an increase of approximately 2965 /cm and approximately 1260 /cm peaks. The Moss meteorite which contains no hydrous minerals, did not show an increase of these peaks, indicating no organic contamination. This difference is probably related to the differing mineralogy and physical properties (including porosity and permeability) of these chondrites. Hydrous minerals such as antigorite, muscovite, montmorillonite and silica gel showed organic contamination by the same infrared measurements, while anhydrous materials such as SiO2 and KBr showed no contamination. These results indicate importance of surface OH groups for the organic contamination. Organic contamination was found on silica gel samples pressed on aluminum plates when they were stored within containers including silicone rubber, silicone grease or adhesive tape. Long path gas cell FTIR measurements for silicone rubber indicated methylsiloxane oligomers were released from the silicone rubber. In-situ heating infrared measurements on the contaminated antigorite and Tagish Lake showed decrease of the 1262 /cm (Si-CH3) and 2963 /cm (CH3) peaks from room temperature to 200-300 C indicating desorption of volatile contaminants. These results indicate that careful preparation and storage are

  13. A technique to measure fuel oil viscosity in a fuel power plant.

    PubMed

    Delgadillo, Miguel Angel; Ibargüengoytia, Pablo H; García, Uriel A

    2016-01-01

    The viscosity measurement and control of fuel oil in power plants is very important for a proper combustion. However, the conventional viscometers are only reliable for a short period of time. This paper proposes an on-line analytic viscosity evaluation based on energy balance applied to a piece of tube entering the fuel oil main heater and a new control strategy for temperature control. This analytic evaluation utilizes a set of temperature versus viscosity graphs were defined during years of analysis of fuel oil in Mexican power plants. Also the temperature set-point for the fuel oil main heater output is obtained by interpolating in the corresponding graph. Validation tests of the proposed analytic equations were carried out in the Tuxpan power plant in Veracruz, Mexico. PMID:26652127

  14. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  15. Tests gauge LED sensors for fuel-dye measurements

    SciTech Connect

    Ozanich, Richard M.; Lucke, Richard B.; Melville, Angela M.; Wright, Bob W.

    2009-10-19

    The goal of this work was to develop a low cost, robust sensor to allow direct measurement of Solvent Red 164 dye concentration in off-road fuel at refineries and fuel terminals. Optical absorption sensors based on light emitting diodes (LEDs) are rugged, low-cost, have low power consumption, and can be designed to be intrinsically safe.LED-based systems have been used in a variety of chemical detection applications including heavy metals, pH, CO2, and O2. The approach for this work was to develop a sensor that could be mounted on a pipeline sight glass, precluding the need for direct contact of the sensor with the fuel. Below is described the design and testing of three different LED/photodiode sensors utilizing reflectance spectrometry for the measurement of dye concentration.

  16. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

  17. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

  18. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. PMID:27388419

  19. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    PubMed

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications. PMID:25189807

  20. Space Shuttle contamination measurements from flights STS-1 through STS-4

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.; Jacobs, S.; Leger, L. J.; Miller, E.

    1983-01-01

    Results of contamination measurements performed on the initial four flights of the Space Shuttle Orbiter are summarized and compared with requirements contained in the Space Shuttle Flight and Ground System Specifications and those formulated by the Contamination Requirements Definition Group. In general, the results of measurements carried out with the induced environment contamination monitor indicate that molecular fluxes, deposition rates, and average counts of particulates are within the requirements and close to predicted values. Among the exceptions, were such special circumstances as water dumps, payload bay door closures, and RCS engine, APU, and flash evaporator operations which led to molecular and particulate contamination levels exceeding the limits. In cases where these circumstances would interfere with sensitive payload operations, careful mission planning to preclude a contamination source by operational limitation should be done to avoid losses.

  1. In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels

    SciTech Connect

    Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

    2009-08-01

    Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

  2. Passive Time Coincidence Measurements with HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth M; Hausladen, Paul; Mihalczo, John T

    2008-01-01

    Passive time coincidence measurements have been performed on highly enriched uranium (HEU) oxide fuel pins at the Idaho National Laboratory Power Burst Facility. These experiments evaluate HEU detection capability using passive coincidence counting when utilizing moderated 3He tubes. Data acquisition was performed with the Nuclear Material Identification System (NMIS) to calculate the neutron coincidence time distributions. The amounts of HEU measured were 1 kg, 4 kg, and 8 kg in sealed 55-gallon drums. Data collected with the 3He tubes also include passive measurement of 31 kg of depleted uranium (DU) in order to determine the ability to distinguish HEU from DU. This paper presents results from the measurements.

  3. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    NASA Astrophysics Data System (ADS)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and

  4. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  5. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  6. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  7. Forensic applications of stable isotope analysis: case studies of the origins of water in mislabeled beer and contaminated diesel fuel.

    PubMed

    Papesch, Wolfgang; Horacek, Micha

    2009-06-01

    This paper describes the use of oxygen (18O) isotope analysis of water contained in two different materials--beer and diesel fuel--involved in the resolution of two separate cases. In the first case study, it was possible to demonstrate that a sample of beer labelled as premium brand in fact belonged to a cheap brand. The second case related to the contamination of diesel fuel from a service station. The diesel fuel contained visible amounts of water, which caused vehicles that had been filled up with it to become defective. For insurance purposes, it was necessary to determine the source of water. The delta18O values for the water of nearly all samples of diesel was close to the delta18O of local tap water at the filling station. PMID:19606593

  8. Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.

    2008-01-01

    The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.

  9. Novel Sensors For Measuring Fuel Flow And Level

    NASA Astrophysics Data System (ADS)

    Goodyer, E. N.

    1989-03-01

    This presentation will discuss a novel sensing method for measuring fuel flow which was developed for the Ford Motor Co by Sira Ltd. The fuel flow sensor uses an optical technique based on detecting light scattered from particles carried in the flowing fuel. Two off axis light sources illuminate the fuel flow region. As particles move with the fuel some light is scattered normal to the fuel flow direction. The scattered light is focused onto a course beam splitter which then directs the light onto two matched detectors. The course beam splitter has 5 linear reflecting grooves per mm each with an included angle of 1351. As a particle that is smaller than the groove width moves across the field of view the effect is to focus scattered light from the particle alternately onto each of the two detectors. Each detector therefore receives optical modulation which is in antiphase to that received by the other detector. The difference of the two detector signals is then used. Also presented will be a new design for an optically based steering wheel position. The sensor is now in full scale production and is manufactured by First Inertia Switch Ltd. An assembly consisting of a number of parallel light guides, each 0.25mm wide, views the light reflected from a black and white striped tape that is stuck to the steering column. The signals from the detectors that are mounted remotely at the end of the light guides are interpreted by a PLA device to give rotational information. The sensor offers a higher resolution than traditional similar sensors while maintaining a low manufacturing cost.

  10. Evaluation of soil-washing technology: Results of bench-scale experiments on petroleum-fuels contaminated soils

    SciTech Connect

    Loden, M.E.

    1991-06-01

    The U.S. Environmental Protection Agency through its Risk Reduction Engineering Laboratory's Releases Control Branch has undertaken research and development efforts to address the problem of leaking underground storage tanks (USTs). Under this effort, EPA is currently evaluating soil washing technology for cleaning up soil contaminated by the release of petroleum products from leaking underground storage tanks. Soil washing is a dynamic physical process which remediates contaminated soil via two mechanisms--particle separation and dissolution of the contaminants into the washwater. As a result of the washing process, a significant fraction of the contaminated soil is cleaned and can be returned into the original excavation or used as cleaned secondary fill or aggregate material. Since the contaminants are more concentrated in the fine soil fractions, their separation and removal from the bulk soil increases the overall effectiveness of the process. Subsequent treatment will be required for the spent washwaters and the fine soil fractions. The soil washing program evaluated the effectiveness of soil washing technology in removing petroleum products (unleaded gasoline, diesel/home heating fuel, and waste crankcase oil) from an EPA-developed Synthetic Soil Matrix (SSM) and from actual site soils. Operating parameters such as contact time, washwater volume, rinsewater volume, washwater temperature, and effectiveness of additives were investigated.

  11. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  12. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  13. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    SciTech Connect

    Jones, S.C.

    1997-06-01

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO{sub 2} laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm{sup 2} area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm{sup 2}. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites.

  14. Biosurfactants and increased bioavailability of sorbed organic contaminants: Measurements using a biosensor

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.; Applegate, B.; Saylor, G.S.

    1993-12-31

    Bioremediation of sites contaminated with hydrophobic materials that sorb onto the soil matrix is very difficult due to reduced microbial (bio)availability. Following biosurfactant addition, we have measured an increase in contaminant bioavailability by using a lux biosensor. Direct microbial bioavailability was determined by using a genetically engineered microbial bioreporter strain of Pseudomonas putida. This strain was engineered so the lux genes, which code for light production, are transcriptionally fused with genes that code for contaminant degradation and are thus induced in the presence of specific compounds. By using a bioreporter we can quantify the actual microbial bioavailability of the contaminants and compare it to concentrations measured by other analytical methods (e.g. gas chromatograph). It is possible that these values are not equal to each other. Thus, bioremediation rates may not be accurately predicted if bioavailability is not considered.

  15. Integration of analytical and biological measurements for assessing the effects of contaminants present at a Great Lakes area of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is a challenge. Instrumental analyses of site waters provide insights into the occurrence of contaminants, but provide little information about possible effects. Biological measur...

  16. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  17. VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS

    SciTech Connect

    Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

    2011-03-01

    A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

  18. Petite sismique measurements at the Spent Fuel Test - Climax

    SciTech Connect

    Zucca, J.J.

    1984-09-01

    In May 1984, a petite sismique estimate of the deformation modulus (E) was carried out at the Spent Fuel Test - Climax (SFT-C) at the Nevada Test site. The first part of the experiment was to repeat an earlier suite of measurements that were taken before the spent fuel was emplaced to see if any changes had resulted from heating the rock mass. The results of this measurement indicate a decrease in the modulus. However, these results are suspect in view of the findings in the second part of the experiment, which was designed to minimize the effects due to spurious resonances in the source and geophone locations. These effects were thought to bias the earlier measurements. The measurements indicate that the rock acts as a low-pass filter to the propagating wavefield. Furthermore, it is noted that the blow from a hammer is not a purely impulsive source. Therefore, depending on the type of source used and the distance away from the source, a different peak frequency and, hence, E could be measured for the same rock mass. Unless these effects are somehow factored out of a petite sismique survey, the value of E obtained could be severely biased. 20 figures.

  19. Effect of Safety Measures on Bacterial Contamination Rates of Blood Components in Germany

    PubMed Central

    Walther-Wenke, Gabriele; Däubener, Walter; Heiden, Margarethe; Hoch, Jochen; Hornei, Britt; Volkers, Peter; von König, Carl Heinz Wirsing

    2011-01-01

    Summary Requirements for bacterial testing of blood components on a defined quantity as part of routine quality control were introduced in Germany by the National Advisory Committee Blood of the German Federal Ministry of Health in 1997. The philosophy was to establish standardized methods for bacterial testing. Numerous measures to reduce the risk of bacterial contamination were implemented into the blood donation and manufacturing processes between 1999 and 2002. German Blood establishments performed culture-based bacterial testing on random samples of platelet concentrates (PCs), red blood cells (RBCs) and fresh frozen plasma (FFP) and reported data out of the production periods 1998, 2001 and 2005/2006. While the bacterial contamination rate of apheresis PCs remained nearly unchanged, it decreased by 70% for pooled PCs to a rate of 0.158% in the last observation period. Leukocyte-depleted RBCs with diversion of the initial blood volume showed a contamination rate of 0.029% which is significantly lower than that of RBCs without leukocyte depletion and diversion (0.157%). The contamination rate of plasma decreased by 80%. Preventive measures resulted in a significant reduction of bacterial contamination of blood components. Long-term monitoring with standardized methods for bacteria testing supports evaluation of the cumulative effect of contamination reducing measures. PMID:22016691

  20. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  1. SOIL-GAS MEASUREMENT FOR DETECTION OF SUBSURFACE ORGANIC CONTAMINATION

    EPA Science Inventory

    The Lockheed Gas Analysis System (LGAS) grab-sampling method and the PETREX Static Surface Trapping Pyrolysis/Mass Spectrometry (SST-Py/MS) passive sampling technique for soil-gas measurement have been field tested at the Pittman Lateral near Henderson, Nevada. This site has unco...

  2. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  3. TRISO fuel compact thermal conductivity measurement instrument development

    NASA Astrophysics Data System (ADS)

    Jensen, Colby

    Thermal conductivity is an important thermophysical property needed for effectively predicting fuel performance. As part of the Next Generation Nuclear Plant (NGNP) program, the thermal conductivity of tri-isotropic (TRISO) fuel needs to be measured over a temperature range characteristic of its usage. The composite nature of TRISO fuel requires that measurement be performed over the entire length of the compact in a non-destructive manner. No existing measurement system is capable of performing such a measurement. A measurement system has been designed based on the steady-state, guarded-comparative-longitudinal heat flow technique. The system as currently designed is capable of measuring cylindrical samples with diameters ˜12.3-mm (˜0.5″) with lengths ˜25-mm (˜1″). The system is currently operable in a temperature range of 400 K to 1100 K for materials with thermal conductivities on the order of 10 W/m/K to 70 W/m/K. The system has been designed, built, and tested. An uncertainty analysis for the determinate errors of the system has been performed finding a result of 5.5%. Finite element modeling of the system measurement method has also been accomplished demonstrating optimal design, operating conditions, and associated bias error. Measurements have been performed on three calibration/validation materials: SS304, 99.95% pure iron, and inconel 625. In addition, NGNP graphite with ZrO2 particles and NGNP AGR-2 graphite matrix only, both in compact form, have been measured. Results from the SS304 sample show agreement of better than 3% for a 300--600°C temperature range. For iron between 100--600°C, the difference with published values is <8% for all temperatures. The maximum difference from published data for inconel 625 is 5.8%, near 600°C. Both NGNP samples were measured from 100--800°C. All results are presented and discussed. Finally, a discussion of ongoing work is included as well as a brief discussion of implementation under other operating

  4. Two-pulse rapid remote surface contamination measurement.

    SciTech Connect

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-11-01

    This project demonstrated the feasibility of a 'pump-probe' optical detection method for standoff sensing of chemicals on surfaces. Such a measurement uses two optical pulses - one to remove the analyte (or a fragment of it) from the surface and the second to sense the removed material. As a particular example, this project targeted photofragmentation laser-induced fluorescence (PF-LIF) to detect of surface deposits of low-volatility chemical warfare agents (LVAs). Feasibility was demonstrated for four agent surrogates on eight realistic surfaces. Its sensitivity was established for measurements on concrete and aluminum. Extrapolations were made to demonstrate relevance to the needs of outside users. Several aspects of the surface PF-LIF physical mechanism were investigated and compared to that of vapor-phase measurements. The use of PF-LIF as a rapid screening tool to 'cue' more specific sensors was recommended. Its sensitivity was compared to that of Raman spectroscopy, which is both a potential 'confirmer' of PF-LIF 'hits' and is also a competing screening technology.

  5. America's Children and the Environment: Measures of Contaminants, Body Burdens, and Illnesses. Second Edition.

    ERIC Educational Resources Information Center

    Woodruff, Tracey J.; Axelrad, Daniel A.; Kyle, Amy D.; Nweke, Onyemaechi; Miller, Gregory G.

    Noting that children may be affected by environmental contaminants in ways quite different from the way adults are affected, this report is the second on trends in measures reflecting environmental factors that may affect the U.S. children's health and well-being. A list of measures and key findings begins the report, followed by five main…

  6. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Philip H.; SDO HMI Team

    2016-05-01

    The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) measures sets of filtergrams which are converted into velocity and magnetic field maps each 45-seconds with its front camera and each 12 minutes with its side camera. In addition to solar phototspheric motions the velocity measurements include a direct component from the line-of-sight component of the SDO orbit. Since the magnetic field is computed as the difference between the velocity measured in left and right circular polarization the orbit velocity is canceled only if the celocity is properly calibrated. When the orbit component of the velocity is subtracted for each pixel the remaining "solar" velocity shows a residual signal which is equal to about 2% of the c. +- 3000 m/s orbit velocity in a nearly linear relationship. This implies an error in our knowledge of some of the details of as-built filter components. The model instrument transmission profile is required for calibration of all HMI level 1.5 “observable” quantities. This systematic error is very likely the source of 12- and 24-hour variations in most HMI data products. Over the years since launch a substantial effort has been dedicated to understanding the origin of this problem. While the instrument as presently calibrated (Couvidat et al. 2012 and 2016) meets all of the “Level-1” mission requirements it fails to meet the stated goal of 10 m/s accuracy for velocity data products and some not stated but generally assumed goals for other products. For the velocity measurements this has not been a significant problem since the prime HMI goals of obtaining data for helioseismology are not affected by this systematic error. However the orbit signal leaking into the magnetograms and vector magnetograms degrades the ability to accomplish some of the mission science goals at the expected levels of accuracy. This poster presents the current state of understanding of the source of this systematic error and

  7. Microbial interactions with organic contaminants in soil: definitions, processes and measurement.

    PubMed

    Semple, Kirk T; Doick, Kieron J; Wick, Lukas Y; Harms, Hauke

    2007-11-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. PMID:17881105

  8. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  9. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  10. [Methodological Approaches to the Organization of Counter Measures Taking into Account Landscape Features of Radioactively Contaminated Territories].

    PubMed

    Kuznetsov, V K; Sanzharova, N I

    2016-01-01

    Methodological approaches to the organization of counter measures are considered taking into account the landscape features of the radioactively contaminated territories. The current status and new requirements to the organization of counter measures in the contaminated agricultural areas are analyzed. The basic principles, objectives and problems of the formation of counter measures with regard to the landscape characteristics of the territory are presented; also substantiated are the organization and optimization of the counter measures in radioactively contaminated agricultural landscapes. PMID:27245009

  11. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    SciTech Connect

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  12. UQ and Decision Making for Groundwater Contamination: A Measure-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Mattis, S. A.; Dawson, C.; Butler, T.

    2014-12-01

    The movement of contaminant plumes in underground aquifers is highly dependent on many hydrogeological parameters. We model the transport with an advection, diffusion, reaction system requiring the specification of porosity, flow direction, flow speed, dispersivities, and effects of geochemical reactions. It is often prohibitively expensive or impossible to make accurate and reliable measurements of these parameters in the field. It is also difficult to know the position and shape of a contaminant plume at a given time or the exact details of the source of the contamination, e.g. size, location, origin time, and magnitude. If decisions are to be made regarding contaminant remediation strategies or predictions of future contaminant concentrations in and near water-supply wells, then these uncertain hydrogeological and source parameters need to be analyzed and estimated. We utilize a measure-theoretic framework to formulate and solve the physics-based stochastic inverse problem to quantify the uncertainty for these parameters. We solve the model using both analytical and finite element solutions. We define quantities of interest (QoI) for the groundwater contaminant problem in terms of observable field measurements. We develop adjoint problems to compute accurate and reliable a posteriori error estimates of the QoIs. The adjoint solutions are also useful in the solution of the inverse problem. The measure-theoretic formulation and solution of the inverse problem and modeling framework define a solution as a probability measure on the parameter domain. In the typical case where the number of output quantities is less than the number of parameters, the inverse of the map from parameters to data defines a type of generalized contour map where the geometry plays a pivotal role in determining an optimal set of QoI. We determine and analyze solutions for geometrically distinct QoI defining reduced-dimension set-valued inverses for this measure-theoretic inverse framework.

  13. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole

  14. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  15. Environmental Measurement-While-Drilling System for Real-Time Field Screening of Contaminants

    SciTech Connect

    Bishop, L.B.; Lockwood, G.J.; Normann, R.A.; Selph, M.M.; Williams, C.V.

    1999-02-22

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. An alternative screening technology, Environmental Measurement-While-Drilling (EMWD), could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real time measurements provided by an EMWD system enable on-the-spot decisions to be made regarding sampling strategies. The system also enhances worker safety and provides the added flexibility of being able to steer a drill bit in or out of hazardous zones.

  16. Reducing uncertainty in ecological risk assessment: The pros of measuring contaminant exposures

    SciTech Connect

    Burris, J.A.; Pease, A.

    1995-12-31

    Wildlife species (mammals, birds and reptiles) are primarily exposed to contamination in soils via ingestion of food. Uncertainties in risk analyses for this pathway are largely associated with the estimation of the amount of contamination in food items. The benefits of measuring contaminant concentrations in food items are examined based on comparison of risk results with and without measurements of exposure. At two hazardous waste sites, plants and earthworms were analyzed for metals and organics. Site-specific bioaccumulation factors (BAFs) were calculated and compared to literature reported values. In general, the metals concentrations in plant samples were higher than those predicted by literature values with the exception of cadmium and copper. Metal concentrations measured in invertebrates (worms) were lower than those predicted by literature values with the exception of arsenic. Literature BAFs did not adequately predict concentrations of barium, mercury or copper in invertebrate tissue. In the ecological risk assessments for both of the sites, if site-specific measurements were used, risks for wildlife species were not predicted. However if literature BAF values were used, unacceptable risks were predicted. The higher estimates of risks were associated with overestimates of dietary exposures of lead, cadmium, chromium, copper and zinc. Measurement of contaminant exposures provided for a more realistic and cost-effective estimate of ecological risks. The effect of using the empirical data on the magnitude of risks were evaluated including decisions concerning remediation. A cost-benefit analysis will be provided comparing the costs of measurement of exposures versus remediation.

  17. Fuel Cell Cathode Contamination: Comparison of Prevention Strategies and their Viability

    NASA Astrophysics Data System (ADS)

    Tejaswi, Arjun

    Fuel cells are a major area of research in ongoing efforts to find alternate sources of energy. Today these efforts have become ever the more necessary in the face of spiraling costs of conventional sources of energy and concerns about global warming. Most fuel cells consume hydrogen to produce, for the most part, only water in their exhaust. They are also capable of achieving significantly higher efficiencies than conventional automobile internal combustion engines. Since cost still remains one of the most intractable challenges to the advent of fuel cells, it is imperative that every effort be made to lower the costs of fuel cell production, operation and maintenance as well as improving overall efficiency. The air circulation system of a fuel cell is designed to provide oxygen to the cathode of the fuel cell. Air taken from the surroundings, however, often contains pollutants including dust, SO2, NO 2 and various other gases. These gases may severely degrade various components of system, especially for polymer electrolyte membrane (PEM) type fuel cells, including the catalyst, membrane electrode assembly and other components. Moreover, these pollutants may lead to specific behavior based on ambient air composition at the test site thereby confusing researchers. In order to address these issues, this study seeks to identify these pollutants and examine the mitigation strategies to mitigate them. Also discussed is whether these pollutants have an effect debilitating enough to justify the extra cost and potential parasitic losses associated with these mitigation strategies. Adsorptive filtration is identified as the most appropriate cathode side air quality system for fuel cells. Performance of cathode side fuel cell filters are examined under varying relative humidity, temperature, air flow rate and pollutant concentration conditions. An estimated filter survival time under realistic conditions is also suggested.

  18. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment. PMID:22667663

  19. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  20. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Measurement of reformulated gasoline fuel parameters. 80.46 Section 80.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline...

  1. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Measurement of reformulated gasoline fuel parameters. 80.46 Section 80.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.46 Measurement of reformulated gasoline...

  2. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  3. MOLECULAR CHARACTERIZATION OF MICROBIAL COMMUNITIES IN A JP-4 FUEL CONTAMINATED SOIL

    EPA Science Inventory

    In this study, lipid biomarker characterization of the bacterial and eukaryotic communities was combined with PCR-DGGE analysis of the eubacterial community to evaluate correlation between JP-4 fuel concentration and community structure shifts. Vadose, capillary fringe and satur...

  4. Modeling the Fate of Groundwater Contaminants Resulting from Leakage of Butanol-blended Fuel

    EPA Science Inventory

    The poster demonstrates the integration of MODFLOW2000 and modified RT3D, simulating flow and transport of remediation process results from leakage of Butanol and Benzene contained in alternative fuels.

  5. Cryogenic BRDF measurements at 10.6 micrometers and 0.63 micrometers on contaminated mirrors

    NASA Astrophysics Data System (ADS)

    Seiber, B. L.; Bryson, R. J.; Bertrand, W. T.; Wood, B. E.

    1995-02-01

    Effects of contaminants on optical surface are concern for space-based systems. Many systems contain cryogenic optical systems that operate at temperatures where gases condense. This study presents experimental results of the effects of condensed gases and spacecraft contaminants on highly polished (superpolished) mirror surfaces cooled, under vacuum to temperatures near 16 K and 70 K. After condensing contaminants on the mirror, the change in the bidirectional reflectance distribution function (BRDF) was obtained at wavelengths of 10.6 and 0.6328 um for various contaminant thicknesses up to 15 um. For a mirror surface of 16 K, BRDF changes for the following contaminant films were obtained: air, N2, O2, H2O, CO, CO2, and Ar. For a mirror surface near 70 K, the BRDF changes from condensed films of the following outgassing effluents were measured: RS12M polycyanate, Nusil CV2500 silicone, Solithane 113/Cl 13-300 urethane, RTVS60 silicone, and 1120. In addition, using measured optical properties and the thin-film interference theory-based computer program CALCRT, the spectral reflectance of an 80 K aluminum mirror was calculated for H2O, CO and RTV560. This report was sponsored by the Ballistic Missile Defense Organization (BMDO) through Johns Hopkins Applied Physics Laboratory (JHU/APL) and by the Jet Propulsion Laboratory (JPL) Space Environmental Effects Program.

  6. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    NASA Technical Reports Server (NTRS)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  7. Dynamic measurements of ultraviolet-enhanced silica contamination by photoluminescence-based diagnostic

    SciTech Connect

    Pereira, Alexandre; Quesnel, Etienne; Reymermier, Maryse

    2009-01-01

    The ultraviolet-enhanced (UV-enhanced) contamination of optical components leads to an untimely aging of sealed laser systems, photolithography, and synchrotron installations. The laser-induced deposition of organic films on silica substrates and coatings significantly reduces their transmission and degrades their optical functions. In this paper, measurements of organic contaminant films growth under 213 nm laser irradiation performed on silica Corning 7980 grade ArF are reported. We present an in situ contaminant layer growth diagnostic based on silica photoluminescence measurements. The purpose was to determine the photodeposition kinetics as a function of controlled environmental conditions and fluence and to find out the experimental conditions in which the growth of contamination films was significantly reduced. We then demonstrated that with a low partial pressure of oxygen, the growth of carbonaceous films is drastically reduced during UV laser irradiation whereas with water and nitrogen it was not the case. We also proposed a physical modeling of the UV-enhanced silica contamination processes.

  8. Potential for use of optical measurements to understand the fate of urban contaminants

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Downing, B. D.; Fleck, J.; Kraus, T. E.; Pellerin, B. A.; Corsi, S. R.

    2012-12-01

    Contamination associated with urban environments can dramatically affect aquatic ecosystems, yet our ability to gage its impact is hampered by the fact that contamination occurs episodically and we are often most interested in the effects in highly dynamic environments; ephemeral and dynamic systems require large numbers of samples to monitor, and the cost associated with characterizing the contribution of urban contaminants in an individual sample using conventional tracers can be prohibitively expensive. We propose that optical measurements may be used to help characterize urban contaminant fluxes in dynamic systems using in situ instruments as well as to assess the contribution of urban material to individual water samples using inexpensive lab-based measurements. We have used measurements of optical properties both in the laboratory and in situ at high temporal and spatial resolution to differentiate among sources of water, and as proxies for contaminants such as mercury (Hg), methylmercury, pharmaceuticals, and wastewater. These measurements include determination of spectral properties of absorbance, attenuation, fluorescence, and scatter in aqueous samples. We present examples of how such measurements can serve as tracers of urban-derived water sources, and provide information about source and biogeochemical processing. One example demonstrates how in situ fluorescence and scattering measurements were used to track the transport of Hg contamination into the San Francisco Estuary. We measured the tidally-driven exchange of Hg between the estuary and a tidal wetland over spring-neap in three different seasons. In situ measurements of scatter (turbidity) and fluorescent dissolved organic matter (FDOM) were highly related to total mercury concentrations, and we used these measurements to calculate flux into and out of the wetland. Another example in a dynamic river system illustrates how data collected at a high spatial resolution, again using in situ optical

  9. Skylab experiment performance evaluation manual. Appendix S: Experiment T027 contamination measurement sample array (MSFC)

    NASA Technical Reports Server (NTRS)

    Tonetti, B. B.

    1973-01-01

    Analyses for Experiment T027, Contamination Measurement Sample Array (MSFC), to be used for evaluating the performance of the Skylab corrollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  10. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  11. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  12. A direct passive method for measuring water and contaminant fluxes in porous media

    NASA Astrophysics Data System (ADS)

    Hatfield, Kirk; Annable, Michael; Cho, Jaehyun; Rao, P. S. C.; Klammler, Harald

    2004-12-01

    This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.

  13. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    SciTech Connect

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  14. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  15. Measurement of the effects of particulate contamination on X-ray reflectivity

    NASA Technical Reports Server (NTRS)

    Slane, P.; Mclaughlin, E. R.; Schwartz, D. A.; Van Speybroeck, L. P.; Bilbro, J. W.

    1989-01-01

    Because particles of sizes larger than a few tenths microns adversely affect high resolution X-ray telescopes by scattering and absorbing X-rays, the cleanliness required to maintain the about 1 percent overall calibration precision desired for the Advanced X-ray Astrophysics Facility (AXAF) is being investigated. At the grazing angles used for the AXAF mirrors, each particle shadows a surface area about 100 times its geometric area, necessitating glass occlusion specifications much more stringent than typically stipulated for visible-light particulate contamination. On test flats coated with gold, controlled levels of contamination have been deposited spanning the range from 5 x 10 to the -5th to 0.005 fractional area covered, and the absorption component of extinction has been measured over a range of grazing angles and X-ray energies to verify the predicted effects of particulate contamination.

  16. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  17. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  18. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites.

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...

  19. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...

  20. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  1. INTRINSIC BIOREMEDIATION OF FUEL CONTAMINATION IN GROUND WATER AT A FIELD SITE

    EPA Science Inventory

    A spill of gasoline occurred at an automobile service station in 1986. ily phase residue in the subsurface has continued for the past eight years to release water soluble fuel hydrocarbons into the aquifer. he site was characterized for implementation of in@ic remediation. he sub...

  2. INTRINSIC BIOREMEDIATION OF FUEL CONTAMINATION IN GROUND WATER AT A FIELD SITE

    EPA Science Inventory

    A spill of gasoline occurred at an automobile service station in 1986. Oily phase residue in the subsurface has continued for the past 8 yr to release water soluble fuel hydrocarbons into the aquifer. The site was characterized for implementation of intrinsic remediation. The sub...

  3. Measurement of 90Sr in contaminated Fukushima soils using liquid scintillation counter.

    PubMed

    Kavasi, N; Sahoo, S K; Arae, H; Yoshida, S; Sorimachi, A; Tokonami, S

    2015-11-01

    A method based on liquid scintillation counting system has been developed for the measurement of (90)Sr in Fukushima soil samples due to contamination of (134)Cs and (137)Cs. Three soil samples were collected within 30 km radius from the Fukushima Daiichi Nuclear Power Plant (FDNPP). Activity concentration of (134)Cs and (137)Cs were measured using a gamma spectroscopy system with high-purity germanium detector. (90)Sr contamination is little elevated but comparable with the background contamination level that originated from atmospheric nuclear weapon tests, whereas radiocesium contamination has increased significantly. Activity concentration of (90)Sr in the soil samples varied in the range of 10.4±0.6-22.0±1.2 Bq kg(-1). Activity concentrations of (134)Cs and (137)Cs in the soil samples were in the range of 28.2±0.2-56.3±0.2 kBq kg(-1) and 35.2±0.1-70.2±0.2 kBq kg(-1), respectively (reference date for decay correction is 1 December 2011). PMID:25956786

  4. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their

  5. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank, to simulate internal temperature gradients encountered in commercial airplane wing tanks. Two low-temperature situations were observed. Where the bulk of the fuel is above the specification freezing point, pumpout of the fuel removes all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depends on the fuel temperature near these surfaces. Where the bulk of the fuel is at or below the freezing point, pumpout ceases when solids block the pump inlet, and the unpumpable fraction depends on the overall average temperature.

  6. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  7. Optical fiber sensor system for oil contamination measurement based on 3D fluorescence spectrum parameterization

    NASA Astrophysics Data System (ADS)

    Shang, Liping; Shi, Jinshan

    2000-10-01

    In recent years oil contamination in water is more serious and destroys the mode of life and relation to water body environments. Excitation fluorescence method is one of the main approaches to monitor oil contamination on line. But average intensity of oil fluorescence only indicates its density, not indicates the type of contamination oil. Two-dimensional fluorescence spectrum is more difficult to determine the kind of oil, because the different oil has fluorescence spectrum overlapping to a great extent. In this paper, the 3D fluorescence spectrum parameterization is introduced. It can extract several characteristic parameters to measure the kid of oil to be measured. A prototype of optical fiber 3D fluorescence spectrum meter we developed carries out the identification of different oil types, such as crude oil, diesel oil and kerosene. The experiment arrangement conceived to measure pulse xenon lamp induced of oil component in water. The experiment results state clearly that the 3D fluorescence spectrum parameterization and software are successful to measure oil density and identify the type of oil in situ.

  8. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    PubMed

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. PMID:21288552

  9. First Results of Scanning Thermal Diffusivity Microscope (STDM) Measurements on Irradiated Monolithic and Dispersion Fuel

    SciTech Connect

    T. K. Huber; M. K. Figg; J. R. Kennedy; A. B. Robinson; D. M. Wachs

    2012-07-01

    The thermal conductivity of the fuel material in a reactor before and during irradiation is a sensitive and fundamental parameter for thermal hydraulic calculations that are useds to correctly determine fuel heat fluxes and meat temperatures and to simulate performance of the fuel elements during operation. Several techniques have been developed to measure the thermal properties of fresh fuel to support these calculations, but it is crucial to also investigate the change of thermal properties during irradiation.

  10. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  11. RADIATIVE PROPERTY MEASUREMENTS OF OXY-FUEL FLAMES

    SciTech Connect

    Clinton R. Bedick; Stephen K. Beer; Kent H. Casleton; Benjamin T. Chorpening; David W. Shaw; M. Joseph Yip

    2011-03-01

    As part of the DOE Existing Plants, Emissions and Capture (EPEC) program, oxy-combustion is being investigated as a method to simplify carbon capture and reduce the parasitic energy penalties associated with separating CO2 from a dilute flue gas. Gas-phase radiation heat transfer in boilers becomes significant when shifting from air-firing to oxycombustion, and must be accurately represented in models. Currently, radiative property data are not widely available in the literature for conditions appropriate to this environment. In order to facilitate the development and validation of accurate oxy-combustion models, NETL conducted a series of studies to measure radiation properties of oxy-fuel flames at adiabatic flame temperatures of 1750 - 1950K, and product molar concentrations ranging from 95% CO2 to 100% steam, determined by equilibrium calculations. Transmission coefficients were measured as a function of wavelength using a mid-IR imaging spectrometer and a blackbody radiation source. Additionally, flame temperatures were calculated using data collected within CO2 and H2O absorption bands. Experimental results were compared to two statistical narrowband models and experimental data from literature sources. These comparisons showed good overall agreement, although differences between the models and experimental results were noted, particularly for the R branch of the 2.7 μm H2O band.

  12. ISSUES IN UNDERSTANDING DERMAL EXPOSURES RESULTING FROM CONTACT WITH CONTAMINATED SURFACES, MEASURING SURFACE CONTAMINATION, AND CHARACTERIZING TRANSFERS

    EPA Science Inventory

    Although monitoring for surface contamination in work with radioactive materials and dermal monitoring of pesticide exposure to agricultural workers have been standard practice for 50 years, regular surface sampling and dermal monitoring methods have only been applied to indust...

  13. Characterization and solubility measurements of uranium-contaminated soils to support risk assessment

    SciTech Connect

    Elless, M.P.; Armstrong, A.Q.; Lee, S.Y.

    1997-05-01

    Remediation of uranium-contaminated soils is considered a high priority by the US Department of Energy because these soils, if left untreated, represent a hazard to the environment and human health. Because the risk to human health is a function of the solubility of uranium in the soils, the objectives of this work are to measure the uranium solubility of two contaminated soils, before and after remedial treatment, and determine the health risk associated with these soils. Two carbonate-rich, uranium-contaminated soils from the US Department of Energy Fernald Environmental Management Project facility near Cincinnati, Ohio, as well as two nearby background soils were characterized and their uranium solubility measured in a 75-d solubility experiment using acid rain, groundwater, lung serum, and stomach acid simulants. Results show that the soluble uranium levels of each soil by each simulant are greatly influenced by their contamination source term. Risk calculations and biokinetic modeling based on the solubility data show that the risks from the soil ingestion and groundwater ingestion pathways are the predominant contributors to the total carcinogenic risk, whereas the risk from the soil inhalation pathway is the smallest contributor to this risk. However, kidney toxicity was the greater health concern of the Fernald Environmental Management Project soils, primarily from undiluted ingestion of the groundwater solution following contact with the contaminated soils. Sensitivity analyses indicate that uranium solubility is a key parameter in defining kidney toxicity; therefore, without proper consideration of the solubility of radionuclides/metals in untreated and treated soils, important factors may be overlooked which may result in soil cleanup goals or limits which are not protective of human health and the environment.

  14. Development of water quality criteria for diesel fuel No. 2 for remediating contaminated groundwater

    SciTech Connect

    Kangas, M.J.; Proctor, D.M.; Trowbridge, K.R.

    1994-12-31

    Site-specific ambient water quality criteria (AWQC) were developed as benchmarks for back-calculating safe levels of diesel fuel No. 2 as a petroleum mixture in groundwater that could migrate to Fish Creek north of Butler, Indiana. Three types of AWQC were considered relevant according to State-modified US Environmental Protection Agency procedures: An Acute Aquatic Criterion (AAC); A Chronic Aquatic Criterion (CAC); and A Terrestrial Life Cycle Safe Concentration (TLSC). The AAC is the maximum concentration considered protective for aquatic life exposed in the zone of discharge-induced mixing and outside the zone of initial dilution. The remaining criteria applies to all areas of a stream outside the mixing zone. The CAC is intended to protect aquatic life from chronic toxic effects under a four-day average exposure. The TLSC is developed to protect terrestrial organisms that may experience a four-day average exposure to surface water as a result of consumption of aquatic organisms and water from the creek. Scientifically valid toxicological data on the water soluble fraction of diesel fuel and site-specific resident and surrogate species information were used for criterion development. An AAC of 11.4 mg/L was derived as the benchmark for back-calculating a safe level of diesel fuel in groundwater based on modeled groundwater and surface water flow from the spill area to the creek. Uncertainties and limitations of developing benchmark concentrations for mixtures are presented.

  15. Trimethylbenzoic acids as metabolite signatures in the biogeochemical evolution of an aquifer contaminated with jet fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Namocatcat, J. A.; Fang, J.; Barcelona, M. J.; Quibuyen, A. T. O.; Abrajano, T. A.

    2003-12-01

    Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with JP-4 fuel hydrocarbons. Changes in the composition of trimethylbenzoic acids and the distribution and concentration profiles exhibited by 2,4,6- and 2,3,5-trimethylbenzoic acids temporally and between multilevel wells reflect processes indicative of an actively evolving contaminant plume. The concentration levels of trimethylbenzoic acids were 3-10 orders higher than their tetramethylbenzene precursors, a condition attributed to slow metabolite turnover under sulfidogenic conditions. The observed degradation of tetramethylbenzenes into trimethylbenzoic acids obviates the use of these alkylbenzenes as non-labile tracers for other degradable aromatic hydrocarbons, but provides rare field evidence on the range of high molecular weight alkylbenzenes and isomeric assemblages amenable to anaerobic degradation in situ. The coupling of actual tetramethylbenzene loss with trimethylbenzoic acid production and the general decline in the concentrations of these compounds demonstrate the role of microbially mediated processes in the natural attenuation of hydrocarbons and may be a key indicator in the overall rate of hydrocarbon degradation and the biogeochemical evolution of the KC-135 aquifer.

  16. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    SciTech Connect

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee; Daniel Wachs

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.

  17. MIR Solar Array Return Experiment: Power Performance Measurements and Molecular Contamination Analysis Results

    NASA Technical Reports Server (NTRS)

    Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas

    2001-01-01

    A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.

  18. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol

    USGS Publications Warehouse

    Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.

    1995-01-01

    The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.

  19. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  20. USE OF AROMATIC ACIDS AND PHOSPHOLIPID-ESTER-LINKED FATTY ACIDS FOR DELINEATION OF PROCESSES AFFECTING AN AQUIFER CONTAMINATED WITH JP-4 FUEL

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, has been contaminated with JP-4 fuel hydrocarbons released by the crash of a tanker aircraft in October of 1988. A comprehensive analysis of the inorganic and organic geochemical constituents and geomicrobio...

  1. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    SciTech Connect

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  2. Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batch leaching tests.

    PubMed

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmen

    2016-03-01

    Volatile fuel compounds such as fuel oxygenates (FO) (MTBE and ETBE) and BTEX (benzene, toluene, ethylbenzene and xylene) are some of the most soluble components of fuel. Characterizing the leaching potential of these compounds is essential for predicting their mobility through the soil profile and assessing the risk of groundwater contamination. Plant root exudates can play an important role in the modification of contaminant mobility in soil-plant systems, and such effects should also be considered in leaching studies. Artificially spiked samples of A and B horizons from an alumi-umbric Cambisol were leached in packed-columns and batch experiments using Milli-Q water and plant root exudates as leaching agents. The leaching potential and rate were strongly influenced by soil-contaminant interactions and by the presence of root exudates. Organic matter in A horizon preferably sorbed the most non-polar contaminants, lowering their leaching potential, and this effect was enhanced by the presence of root exudates. On the other hand, the inorganic components of the B horizon, showed a greater affinity for polar molecules, and the presence of root exudates enhanced the desorption of the contaminants. Column experiments resulted in a more realistic protocol than batch tests for predicting the leaching potential of volatile organic compounds in dissimilar soils. PMID:26619047

  3. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  4. Interim measure conceptual design for remediation of source area contamination at Agra, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-07-31

    This document presents a conceptual design for the implementation of a non-emergency interim measure (IM) at the site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Agra, Kansas. The IM is recommended to mitigate localized carbon tetrachloride contamination in the vadose zone soils at the former CCC/USDA facility and eliminate ongoing soil-to-groundwater contamination. The objectives of this IM conceptual design report include the following: 1. Obtain written acknowledgement from the Kansas Department of Health and the Environment (KDHE) that remediation on the former CCC/USDA property is required. 2. Provide information (IM description, justification for the IM, and project schedule) that the KDHE can include in a pending fact sheet. 3. Obtain KDHE approval for the IM conceptual design, so that the CCC/USDA can initiate a formal request for access to the privately owned property and proceed with preparation of a remedial design plan (RDP). Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2006) have demonstrated that soil and groundwater at the Agra site are contaminated with carbon tetrachloride. The levels in groundwater exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The soil and groundwater contamination identified at the former CCC/USDA facility currently poses no unacceptable health risks.

  5. MEASUREMENT OF TRITIUM DURING VOLOXIDATION OF ZIRCALOY-2 FUEL HULLS

    SciTech Connect

    Crowder, M.; Laurinat, J.; Stillman, J.

    2010-10-14

    A straightforward method to evaluate the tritium content of Zircaloy-2 cladding hulls via oxidation of the hull and capture of the volatilized tritium in liquids has been demonstrated. Hull samples were heated in air inside a thermogravimetric analyzer (TGA). The TGA was rapidly heated to 1000 C to oxidize the hulls and release absorbed tritium. To capture tritium, the TGA off-gas was bubbled through a series of liquid traps. The concentrations of tritium in bubbler solutions indicated that tritiated water vapor was captured nearly quantitatively. The average tritium content measured in the hulls was 19% of the amount of tritium produced by the fuel, according to ORIGEN2 isotope generation and depletion calculations. Published experimental data show that Zircaloy-2 oxidation follows an Arrhenius model, and that an initial, nonlinear oxidation rate is followed by a faster, linear rate after 'breakaway' of the oxide film. This study demonstrates that the linear oxidation rate of Zircaloy samples at 974 C is faster than predicted by the extrapolation of data from lower temperatures.

  6. Qualification of helium measurement system for detection of fuel failures in a BWR

    NASA Astrophysics Data System (ADS)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  7. The aftermath of the Fukushima nuclear accident: Measures to contain groundwater contamination.

    PubMed

    Gallardo, Adrian H; Marui, Atsunao

    2016-03-15

    Several measures are being implemented to control groundwater contamination at the Fukushima Daiichi Nuclear Plant. This paper presents an overview of work undertaken to contain the spread of radionuclides, and to mitigate releases to the ocean via hydrological pathways. As a first response, contaminated water is being held in tanks while awaiting treatment. Limited storage capacity and the risk of leakage make the measure unsustainable in the long term. Thus, an impervious barrier has been combined with a drain system to minimize the discharge of groundwater offshore. Caesium in seawater at the plant port has largely dropped, although some elevated concentrations are occasionally recorded. Moreover, a dissimilar decline of the radioactivity in fish could indicate additional sources of radionuclides intake. An underground frozen shield is also being constructed around the reactors. This structure would reduce inflows to the reactors and limit the interaction between fresh and contaminated waters. Additional strategies include groundwater abstraction and paving of surfaces to lower water levels and further restrict the mobilisation of radionuclides. Technical difficulties and public distrust pose an unprecedented challenge to the site remediation. Nevertheless, the knowledge acquired during the initial work offers opportunities for better planning and more rigorous decisions in the future. PMID:26789364

  8. Measurement of radioactive contamination in the CCD’s of the DAMIC experiment

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D’Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.

    2016-05-01

    DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.

  9. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    SciTech Connect

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pb –210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.

  10. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    DOE PAGESBeta

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pbmore » –210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less

  11. A stable isotope dilution method for measuring bioavailability of organic contaminants

    PubMed Central

    Delgado-Moreno, Laura; Gan, Jay

    2014-01-01

    Methods for determining bioavailability of organic contaminants suffer various operational limitations. We explored the use of stable isotope labeled references in developing an isotope dilution method (IDM) to measure the exchangeable pool (E) of pyrene and bifenthrin as an approximation of their bioavailability in sediments. The exchange of deuterated bifenthrin or pyrene with its native counterpart was completed within 48 h. The derived E was 38–82% for pyrene and 28–59% for bifenthrin. Regression between E and the sum of rapid and slow desorption fractions obtained from sequential desorption showed a slope close to 1.0. The ability of IDM to predict bioavailability was further shown from a strong relationship (r2 > 0.93) between E and bioaccumulation into Chironomus tentans. Given the abundance of stable isotope labeled references and their relatively easy analysis, the IDM has the potential to become a readily adoptable tool for estimating organic contaminants bioaccessibility in various matrices. PMID:23434573

  12. Emissions Measurements from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1998-01-01

    The present experimental study examines NO(x) and CO emissions associated with alternative fuel injector geometries. These injectors mix fuel and air to differing extents and thus create different local equivalence ratios upstream of flame ignition and stabilization. Two of the devices studied are lobed fuel injectors, in which mixing of reactants is associated with stream wise vorticity generation and straining of fuel-air interfaces, while the third is a non-lobed fuel injector which creates relatively little fuel-air mixing prior to ignition.Results show that one lobed injector geometry appears to produce locally lean premixed flame structures, resulting in low NO. emissions when compared with non-lobed injector emissions. The other lobed injector geometry appears to produce a local fuel-air mixture which is closer to stoichiometric conditions, with NO(x) emissions that are actually higher than for the non-lobed injector. For both lobed injector geometries examined here, CO emissions become high for over-all lean operating conditions, consistent with premixed combustion behavior. The present study demonstrates the importance of control of the local equivalence ratio in minimizing burner emissions.

  13. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  14. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  15. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobis cultivation.

    SciTech Connect

    White, J.; Gilbert, J. A.; Hill, G.; Hill, E.; Huse, S. M.; Weightman, A. J.; Mahenthiralingam, E.

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by 'JW') was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  16. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation.

    PubMed

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M; Weightman, Andrew J; Mahenthiralingam, Eshwar

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  17. Correlation between environmental relative moldiness index (ERMI) values in French dwellings and other measures of fungal contamination

    EPA Science Inventory

    The Environmental Relative Moldiness Index (ERMI) is a DNA-based metric developed to describe the fungal contamination in US dwellings. Our goal was to determine if the ERMI values in dwellings in north western France were correlated with other measures of fungal contamination. D...

  18. Experimental benchmark of MCNPX calculations against self-interrogation neutron resonance densitometry (SINRD) fresh fuel measurements

    SciTech Connect

    Menlove, Howard O; Swinhoe, Martyn T; La Fleur, Adrienne M; Charlton, William S; Lee, S Y; Tobin, S J

    2010-01-01

    We have investigated the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) to measure the {sup 235}U concentration in a PWR 15 x 15 fresh LEU fuel assembly in air. Different measurement configurations were simulated in Monte Carlo N-Particle eXtended transport code (MCNPX) and benchmarked against experimental results. The sensitivity of SINRD is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,j) reaction peaks in fission chamber. Due to the low spontaneous fission rate of {sup 238}U (i.e. no curium in the fresh fuel), {sup 252}Cf sources were used to self-interrogate the fresh fuel pins. The resonance absorption of these neutrons in the fresh fuel pins can be measured using {sup 235}U fission chambers placed adjacent to the assembly. We used ratios of different fission chambers to reduce the number of unknowns we are trying measure because the neutron source strength and detector-fuel assembly coupling cancel in the ratios. The agreement between MCNPX results and experimental measurements confirms the accuracy of the MCNPX models used. The development of SINRD to measure the fissile content in spent fuel is important to the improvement of nuclear safeguards and material accountability. Future work includes the use of this technique to measure the fissile content in LWR spent fuel in water.

  19. Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells.

    PubMed

    Hedbavna, Petra; Rolfe, Stephen A; Huang, Wei E; Thornton, Steven F

    2016-01-01

    This is the first study demonstrating the biodegradation of phenolic compounds and their organic metabolites in contaminated groundwater using bioelectrochemical systems (BESs). The phenols were biodegraded anaerobically via 4-hydroxybenzoic acid and 4-hydroxy-3-methylbenzoic acid, which were retained by electromigration in the anode chamber. Oxygen, nitrate, iron(III), sulfate and the electrode were electron acceptors for biodegradation. Electro-active bacteria attached to the anode, producing electricity (~1.8mW/m(2)), while utilizing acetate as an electron donor. Electricity generation started concurrently with iron reduction; the anode was an electron acceptor as thermodynamically favorable as iron(III). Acetate removal was enhanced by 40% in the presence of the anode. However, enhanced removal of phenols occurred only for a short time. Field-scale application of BESs for in situ bioremediation requires an understanding of the regulation and kinetics of biodegradation pathways of the parent compounds to relevant metabolites, and the syntrophic interactions and carbon flow in the microbial community. PMID:26512868

  20. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory.

    PubMed

    ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R

    2008-06-01

    The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements. PMID:18558810

  1. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  2. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  3. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  4. Method for Detection of Trace Metal and Metalloid Contaminants in Coal-Generated Fuel Gas Using Gas Chromatography/Ion Trap Mass Spectrometry

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-07-15

    There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH3), phosphine (PH3), and hydrogen selenide (H2Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed.

  5. Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash.

    PubMed

    Rasmussen, Mary L; Koziel, Jacek A; Jane, Jay-lin; Pometto, Anthony L

    2015-06-01

    Ozonation of uncooked corn mash from the POET BPX process was investigated as a potential disinfection method for reducing bacterial contamination prior to ethanol fermentation. Corn mash (200 g) was prepared from POET ground corn and POET corn slurry and was ozonated in 250 mL polypropylene bottles. Lactic and acetic acid levels were monitored daily during the fermentation of ozonated, aerated, and nontreated corn mash samples to evaluate bacterial activity. Glycerol and ethanol contents of fermentation samples were checked daily to assess yeast activity. No yeast supplementation, no addition of other antimicrobial agents (such as antibiotics), and spiking with a common lactic acid bacterium found in corn ethanol plants, Lactobacillus plantarum, amplified the treatment effects. The laboratory-scale ozone dosages ranged from 26-188 mg/L, with very low estimated costs of $0.0008-0.006/gal ($0.21-1.6/m(3)) of ethanol. Ozonation was found to decrease the initial pH of ground corn mash samples, which could reduce the sulfuric acid required to adjust the pH prior to ethanol fermentation. Lactic and acetic acid levels tended to be lower for samples subjected to increasing ozone dosages, indicating less bacterial activity. The lower ozone dosages in the range applied achieved higher ethanol yields. Preliminary experiments on ozonating POET corn slurry at low ozone dosages were not as effective as using POET ground corn, possibly because corn slurry samples contained recycled antimicrobials from the backset. The data suggest additional dissolved and suspended organic materials from the backset consumed the ozone or shielded the bacteria. PMID:25966035

  6. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis

    PubMed Central

    Gilmour, Stuart; Miyagawa, Shoji; Kasuga, Fumiko; Shibuya, Kenji

    2016-01-01

    Background The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG), and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government’s response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents. Methods and Findings We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW), the Ministry of Agriculture, Forestry and Fishery (MAFF) and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137) of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products

  7. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  8. Detection and measurement of surface contamination by multiple antineoplastic drugs using multiplex bead assay

    PubMed Central

    Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Pretty, Jack; Debord, D Gayle; Connor, Thomas H; Snawder, John

    2015-01-01

    Objectives Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. Methods In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0–1000 ng/ml for 5-fluorouracil, 0–100 ng/ml for paclitaxel, and 0–2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. Results There was no significant cross reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm2 with a limit of quantitation (LOQ) of 2.8 ng/cm2, the LOD for paclitaxel was 0.57 ng/cm2 with an LOQ of 2.06 ng/cm2, and the LOD for doxorubicin was 0.0036 ng/cm2 with an LOQ of 0.013 ng/cm2. Conclusion The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs. PMID:25293722

  9. Optical Measurements in a Combustor Using a 9-Point Swirl-Venturi Fuel Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.

    2007-01-01

    This paper highlights the use of two-dimensional data to characterize a multipoint swirl-venturi injector. The injector is based on a NASA-conceived lean direct injection concept. Using a variety of advanced optical diagnostic techniques, we examine the flows resultant from multipoint, lean-direct injectors that have nine injection sites arranged in a 3 x 3 grid. The measurements are made within an optically-accessible, jet-A-fueled, 76-mm by 76-mm flame tube combustor. Combustion species mapping and velocity measurements are obtained using planar laser-induced fluorescence of OH and fuel, planar laser scatter of liquid fuel, chemiluminescence from CH*, NO*, and OH*, and particle image velocimetry of seeded air (non-fueled). These measurements are used to study fuel injection, mixedness, and combustion processes and are part of a database of measurements that will be used for validating computational combustion models.

  10. Determination of 137Cs contamination depth distribution in building structures using geostatistical modeling of ISOCS measurements.

    PubMed

    Boden, Sven; Rogiers, Bart; Jacques, Diederik

    2013-09-01

    Decommissioning of nuclear building structures usually leads to large amounts of low level radioactive waste. Using a reliable method to determine the contamination depth is indispensable prior to the start of decontamination works and also for minimizing the radioactive waste volume and the total workload. The method described in this paper is based on geostatistical modeling of in situ gamma-ray spectroscopy measurements using the multiple photo peak method. The method has been tested on the floor of the waste gas surge tank room within the BR3 (Belgian Reactor 3) decommissioning project and has delivered adequate results. PMID:23722072

  11. Elimination of directional wave spectrum contamination from noise in elevation measurements

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Swift, R. N.; Scott, J. F.

    1985-01-01

    The Surface Contour Radar (SCR) is a 36-GHz computer-controlled airborne radar which generates a false-color-coded elevation map of the sea surface below the aircraft in real time, and can routinely produce ocean directional wave spectra with post-flight data processing which have much higher angular resolution than pitch-and-roll buoys. The SCR range measurements are not error-free and the resulting errors in the elevations corrupt the directional wave spectrum. This paper presents a technique for eliminating that contamination.

  12. Synergistic smart fuel for in-pile nuclear reactor measurements

    SciTech Connect

    Smith, J.A.; Kotter, D.K.; Ali, R.A.; Garrett, S.L.

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  13. An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors

    SciTech Connect

    Aprile, E.; Yoon, T.; Loose, A.; Goetzke, L. W.; Zelevinsky, T.

    2013-09-15

    We have developed an atom trap trace analysis (ATTA) system to measure Kr in Xe at the part per trillion (ppt) level, a prerequisite for the sensitivity achievable with liquid xenon dark matter detectors beyond the current generation. Since Ar and Kr have similar laser cooling wavelengths, the apparatus has been tested with Ar to avoid contamination prior to measuring Xe samples. A radio-frequency plasma discharge generates a beam of metastable atoms which is optically collimated, slowed, and trapped using standard magneto-optical techniques. Based on the measured overall system efficiency of 1.2 × 10{sup −8} (detection mode), we expect the ATTA system to reach the design goal sensitivity to ppt concentrations of Kr in Xe in <2 h.

  14. Mannitol as a Sensitive Indicator of Sugarcane Deterioration and Bacterial Contamination in Fuel Alcohol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, formed mainly by Leuconostoc mesenteroides bacteria, is a very sensitive indicator of sugarcane deterioration that can predict processing problems. A rapid (4 to 7 min) enzymatic method has been developed to measure mannitol in juice pressed from consignments of sugarcane delivered to the...

  15. Final Report for the SEED Project: ''Inexpensive Chemresistor Sensors for Real Time Ground Water Contamination Measurement''

    SciTech Connect

    HUGHES, ROBERT C.; DAVIS, CHAD E.; THOMAS, MICHAEL L.

    2002-04-01

    This report details some proof-of-principle experiments we conducted under a small, one year ($100K) grant from the Strategic Environmental Research and Development Program (SERDP) under the SERDP Exploratory Development (SEED) effort. Our chemiresistor technology had been developed over the last few years for detecting volatile organic compounds (VOCs) in the air, but these sensors had never been used to detect VOCs in water. In this project we tried several different configurations of the chemiresistors to find the best method for water detection. To test the effect of direct immersion of the (non-water soluble) chemiresistors in contaminated water, we constructed a fixture that allowed liquid water to pass over the chemiresistor polymer without touching the electrical leads used to measure the electrical resistance of the chemiresistor. In subsequent experiments we designed and fabricated probes that protected the chemiresistor and electronics behind GORE-TEX{reg_sign} membranes that allowed the vapor from the VOCs and the water to reach a submerged chemiresistor without allowing the liquids to touch the chemiresistor. We also designed a vapor flow-through system that allowed the headspace vapor from contaminated water to be forced past a dry chemiresistor array. All the methods demonstrated that VOCs in a high enough concentration in water can be detected by chemiresistors, but the last method of vapor phase exposure to a dry chemiresistor gave the fastest and most repeatable measurements of contamination. Answers to questions posed by SERDP reviewers subsequent to a presentation of this material are contained in the appendix.

  16. Identifying the sources of subsurface contamination at the Hanford site in Washington using high-precision uranium isotopic measurements

    SciTech Connect

    Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Maher, Kate; DePaolo, Donald J.

    2004-03-30

    In the mid-1990s, a groundwater plume of uranium (U) was detected in monitoring wells in the B-BX-BY Waste Management Area (WMA) at the Hanford Site in Washington. This area has been used since the late 1940s to store high-level radioactive waste and other products of U fuel-rod processing. Using multiple collector ICP source magnetic sector mass spectrometry (MC ICPMS) high precision uranium isotopic analyses were conducted of samples of vadose zone contamination and of groundwater. The ratios {sup 236}U/{sup 238}U, {sup 234}U/{sup 238}U and {sup 238}U/{sup 235}U are used to distinguish contaminant sources. Based on the isotopic data, the source of the groundwater contamination appears to be related to a 1951 overflow event at tank BX-102 that spilled high level U waste into the vadose zone. The U isotopic variation of the groundwater plume is a result of mixing between contaminant U from this spill and natural background U. Vadose zone U contamination at tank B-110 likely predates the recorded tank leak and can be ruled out as a source of groundwater contamination, based on the U isotopic composition. The locus of vadose zone contamination is displaced from the initial locus of groundwater contamination, indicating that lateral migration in the vadose zone was at least 8 times greater than vertical migration. The time evolution of the groundwater plume suggests an average U migration rate of {approx}0.7-0.8 m/day showing slight retardation relative to a ground water flow of {approx}1 m/day.

  17. THE EFFECT OF AUTOMOTIVE FUEL CONSERVATION MEASURES ON AIR POLLUTION

    EPA Science Inventory

    A number of policies have been designed to reduce gasoline consumption by automobiles, including: gasoline rationing; increases in the federal excise tax on gasoline; excise taxes on new cars, in inverse proportion to their fuel economy; and regulations to set minimum levels on a...

  18. Environmental Education in Brazil: Preventive Measures to Avoid Contamination with U and Th

    NASA Astrophysics Data System (ADS)

    da Silva Pastura, Valéria Fonseca; Wieland, Patricia

    2008-08-01

    Aiming at increasing awareness of radiation health effects, environmental issues and preventive measures, the Nuclear Energy National Commission (CNEN) launched in 2004 an education and public outreach programme for mine workers, students, teachers, governmental leaders, labor representatives and members of communities nearby small mining sites at the North and Northeast regions. Many Brazilian conventional mines present a significant risk of exposure to radiation due to Uranium and Thorium. CNEN inspects the mines but there are several small mining sites dedicated to open pit short term mineral extraction, called "garimpagem", that are of difficult control. Therefore, information at large about preventive measures to avoid contamination during exploration, transportation and storage is necessary. CNEN developed an educational campaign which includes a series of open seminars, talks, folders, booklets and posters. The objective of this paper is to present the Brazilian educational campaign to avoid contamination risks at those small mineral exploration sites and its results. This campaign is a joint task that receives collaboration of other organizations such as federal police, schools and universities.

  19. Environmental Education in Brazil: Preventive Measures to Avoid Contamination with U and Th

    SciTech Connect

    Silva Pastura, Valeria Fonseca da; Wieland, Patricia

    2008-08-07

    Aiming at increasing awareness of radiation health effects, environmental issues and preventive measures, the Nuclear Energy National Commission (CNEN) launched in 2004 an education and public outreach programme for mine workers, students, teachers, governmental leaders, labor representatives and members of communities nearby small mining sites at the North and Northeast regions. Many Brazilian conventional mines present a significant risk of exposure to radiation due to Uranium and Thorium. CNEN inspects the mines but there are several small mining sites dedicated to open pit short term mineral extraction, called 'garimpagem', that are of difficult control. Therefore, information at large about preventive measures to avoid contamination during exploration, transportation and storage is necessary. CNEN developed an educational campaign which includes a series of open seminars, talks, folders, booklets and posters. The objective of this paper is to present the Brazilian educational campaign to avoid contamination risks at those small mineral exploration sites and its results. This campaign is a joint task that receives collaboration of other organizations such as federal police, schools and universities.

  20. Land treatment of PAH-contaminated soil: Performance measured by chemical and toxicity assays

    SciTech Connect

    Sayles, G.D.; Acheson, C.M.; Kupferle, M.J.; Shan, Y.; Zhou, Q.; Meier, J.R.; Chang, L.; Brenner, R.C.

    1999-12-01

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former wood-treating site was simulated at pilot scale in temperature-controlled sol pans. Nineteen two- through six-ring PAHs were monitored with time (initial total PAHs = 2,800 mg/kg). Twenty-five weeks of treatment yielded a final total PAH level of 1,160 mg/kg. Statistically significant decreases in concentrations were seen in total, two-, three-, and four-ring PAHs. Carcinogenic and five- and six-ring PAHs showed no significant change in concentration. Land treatment resulted in significant toxicity reduction based on root elongation, Allium chromosomal aberration, and solid-phase Microtox bioassays. Acute toxicity, as measured by the earthworm survival assay, was significantly reduced and completely removed. The Ames spiral plate mutagenicity assay revealed that the untreated soil was slightly mutagenic and that treatment may have reduced mutagenicity. The variety of results generated from the chemical and toxicity assays emphasize the need for conducting a battery of such tests to fully understand soil remediation processes.

  1. Estimation of organ dose equivalents from residents of radiation-contaminated buildings with Rando phantom measurements.

    PubMed

    Lee, J S; Dong, S L; Wu, T H

    1999-05-01

    Since August 1996, a dose reconstruction model has been conducted with thermoluminescent dosimeter (TLD)-embedded chains, belts and badges for external dose measurements on the residents in radiation-contaminated buildings. The TLD dosimeters, worn on the front of the torso, would not be adequate for dose measurement in cases when the radiation is anisotropic or the incident angles of radiation sources are not directed in the front-to-back direction. The shielding and attenuation by the body would result in the dose equivalent estimation being somewhat skewed. An organ dose estimation method with a Rando phantom under various exposure geometries is proposed. The conversion factors, obtained from the phantom study, may be applicable to organ dose estimations for residents in the contaminated buildings if the incident angles correspond to the phantom simulation results. There is a great demand for developing a mathematical model or Monte Carlo calculation to deal with complicated indoor layout geometry problems involving ionizing radiation. Further research should be directed toward conducting laboratory simulation by investigating the relationship between doses delivered from multiple radiation sources. It is also necessary to collaborate with experimental biological dosimetry, such as chromosome aberration analysis, fluorescence in situ hybridization (FISH) and retrospective ESR-dosimetry with teeth, applied to the residents, so that the organ dose equivalent estimations may be more reliable for radio-epidemiological studies. PMID:10214706

  2. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  3. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  4. On-site gamma-ray spectroscopic measurements of fission gas release in irradiated nuclear fuel.

    PubMed

    Matsson, I; Grapengiesser, B; Andersson, B

    2007-01-01

    An experimental, non-destructive in-pool, method for measuring fission gas release (FGR) in irradiated nuclear fuel has been developed. Using the method, a significant number of experiments have been performed in-pool at several nuclear power plants of the BWR type. The method utilises the 514 keV gamma-radiation from the gaseous fission product (85)Kr captured in the fuel rod plenum volume. A submergible measuring device (LOKET) consisting of an HPGe-detector and a collimator system was utilised allowing for single rod measurements on virtually all types of BWR fuel. A FGR database covering a wide range of burn-ups (up to average rod burn-up well above 60 MWd/kgU), irradiation history, fuel rod position in cross section and fuel designs has been compiled and used for computer code benchmarking, fuel performance analysis and feedback to reactor operators. Measurements clearly indicate the low FGR in more modern fuel designs in comparison to older fuel types. PMID:16949295

  5. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes.

    PubMed

    Brian Leen, J; Berman, Elena S F; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ(2)H and δ(18)O measurement errors (Δδ(2)H and Δδ(18)O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m(BB), and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m(NB). These metrics are used to correct for Δδ(2)H and Δδ(18)O. The method was tested on 14 instruments and Δδ(18)O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ(2)H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m(NB). Using the isotope error versus m(NB) and m(BB) curves, Δδ(2)H and Δδ(18)O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 [per thousand] and 0.25 [per thousand] respectively, while Δδ(2)H and Δδ(18)O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 [per thousand] and 0.22 [per thousand]. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant

  6. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    SciTech Connect

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish; Liebson, Lindsay

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  7. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique

  8. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Peterson, Eric

    2011-09-30

    This progress report documents the first year of the project, from October 1, 2010 through September 30, 2011. Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 of 7:1 to minimize hydrodynamic instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) presented in this study include 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and

  9. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    USGS Publications Warehouse

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  10. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    SciTech Connect

    Folsom, Charles; Xing, Changhu; Jensen, Colby; Ban, Heng; Marshall, Douglas W.

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m-1 K-1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  11. [A study of groundwater contamination with organic fuels and potential public health impact in Itaguaí, Rio de Janeiro State, Brazil].

    PubMed

    Silva, Rosimar Lima Brandão; Barra, Cristina Maria; Monteiro, Teófilo Carlos do Nascimento; Brilhante, Ogenis Magno

    2002-01-01

    Increasing attention is current focused on urban groundwater contamination with gasoline hydrocarbon compounds in Brazil. The compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) contained in fuels are highly toxic and can have severe public health consequences, besides posing the risk of intake from the water table by way of contamination. After two years of a steady gasoline storage tank leak, water samples from private household wells in the district of Brisa Mar, Itaguaí, Rio de Janeiro State, were analyzed and the concentration of BTEX compounds was evaluated. Two out of ten water samples from the study area presented BTEX concentrations above the National Water Quality Standard (Brazilian Health Ministry Ruling No. 1469/2000), in which the maximum permissible benzene concentration is 5 micro g.L-1. Four others wells were also contaminated with nitrate, responsible for the induction of methemoglobinemia. Natural attenuation (intrinsic biodegradation) mechanisms through electron acceptors was also investigated in this study. PMID:12488887

  12. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  13. Turbulent flame speeds and NOx kinetics of HHC fuels with contaminants and high dilution levels

    SciTech Connect

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Petersen, Eric

    2012-09-30

    This progress report documents the second year of the project, from October 1, 2011 through September 30, 2012. Characterization of the new turbulent flame speed vessel design was completed. Turbulence statistics of three impellers with different geometric features were measured using particle image velocimetry inside a Plexiglas model (~1:1 scale) of a cylindrical flame speed vessel (30.5 cm ID × 35.6 cm L). With four impellers arranged in a central-symmetric configuration, turbulence intensities between 1.2 and 1.7 m/s with negligible mean flow (0.1u´) were attained at the lowest fan speeds. Acceptable ranges for homogeneity and isotropy ratios of the velocity fields were set within a narrow bandwidth near unity (0.9-1.1). Homogeneity ratios were unaffected by changes to the impeller geometry, and the prototype with the higher number of blades caused the flow to become anisotropic. The integral length scale of the flow fields varied between 27 and 20 mm, which correlates well with those typically observed inside a gas turbine combustor. The mechanism to independently vary the intensity level and the integral length scale was established, where turbulence intensity level was dependent on the rotational speed of the fan, and the integral length scale decreased with increasing blade pitch angle. Ignition delay times of H₂/O₂ mixtures highly diluted with Ar and doped with various amounts of N₂O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940-1675 K). The pressure range investigated during this work (around 1.6, 13, and 30 atm) allows studying the effect of N₂O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N₂O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 30 atm. When it occurred, the decrease in

  14. Tracing the dispersion of contaminated sediment with plutonium isotope measurements in coastal catchments of Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J. Patrick; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurement of Pu isotopic atom and activity ratios is required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we measured Pu isotopic ratios in recently deposited sediments along rivers draining the most contaminated part of the inland radioactive plume. To this end, we carried out a thorough chemical purification and concentration of Pu from sediment samples (5 g dry material) and precise isotopic measurements using a double-focusing sector field ICP-MS. Results showed that the entire range of measured Pu isotopes (i.e., 239Pu, 240Pu, 241Pu, and 242Pu) were detected in all samples, although in extremely low concentrations. The 241Pu/239Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113±0.00008 on average in the Northern Hemisphere between 31°-71°N). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout, representing up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (45 km) from FDNPP and deposited in rivers representing a potential source of Pu to the ocean.

  15. The influence of governmental mitigation measures on contamination characteristics of PM(2.5) in Beijing.

    PubMed

    Chen, Yuan; Schleicher, Nina; Chen, Yizhen; Chai, Fahe; Norra, Stefan

    2014-08-15

    Beijing, the capital of China, has become one of the most air-polluted cities due to its rapid economic growth. Weekly PM2.5 samples-collected continuously from 2007 to 2010-were used to study the contamination characteristics of atmospheric particles and effects of governmental mitigation measures especially since the 2008 Summer Olympic Games. PM2.5 mass concentrations during the sampling period were reduced compared to the previous studies before 2005, although they were still too high in comparison with environmental standards of China and many other countries as well as WHO standards. Results of principle component analysis show that elements of primary anthropogenic origin had an obvious decline while elements mainly from the natural environment kept a relatively stable course. The governmental macro-control measures influenced both anthropogenic and geogenic sources, but they also led to some pollution peaks prior to implementation of the respective measures. Some element concentrations correlated to the restrictiveness of relative measures, especially during different traffic restrictions. The comparison with other countries and international standards shows that there is a long way to go in order to improve air quality in Beijing, and that governmental mitigation measures need to be continued and reinforced. PMID:24887192

  16. Contamination measurements during IUS thermal vacuum tests in a large space chamber. [IUS equipment support system

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.

    1984-01-01

    The levels of contamination that originate from inside the IUS equipment support section (ESS) due to outgassing from electronics components and wiring operating at elevated temperatures (80-160 F) were investigated. Pressure was measured inside and outside the ESS. Mass deposition measurements were made with quartz crystal microbalances (QCM) facing into and away from ESS vents. The OCM's were operated at -50 C and -180 C using thermoelectrically and cryogenically cooled QCM's. Gaseous nitrogen flow inside the ESS was used to obtain the effective molecular flow vent area of the ESS, which was evaluated to be 359 sq cm (56 sq in) compared to the 978 sq cm (150 sq in) estimated by an earlier atmosphere pressure billowing test. The total outgassing rate of the ESS materials at a temperature of 60 C (140 F) decays with a time constant of 11.5 hours based on pressure measurements during the hot cycle. A time constant of 22 hours was estimated for the fraction of the outgassing which will condense on a -50 C surface. In contrast, the time constant is only 10.1 hours for the outgassing material which condenses on a surface at -180 C. A surface at -180 C collects approximately one half of the material vented from the ESS which impinges on it. Pressure measurements show very good correlation with the mass deposition measurements.

  17. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    SciTech Connect

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  18. Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Lovley, D.R.; Vroblesky, D.A.

    1996-01-01

    Rates of biodegradation were measured in a petroleum hydrocarbon-contaminated aquifer using a combination of field and laboratory methods. These methods are based on tracking concentration changes of substrates (both electron donors and acceptors) or final products of microbial metabolism over time. Ground water at the study site (Hanahan, South Carolina) is anoxic, and sulfate reduction it the predominant terminal electron accepting process. Laboratory studies conducted with sediment cored from the site showed that 14C-toluene was mineralized to 14CO2 with a first-order degradation rate constant (ktol) of- 0.01 d-1 under sulfate-reducing conditions. Under nitrate-amended, Fe(III)-amended, or nonamended (methanogenic) conditions, toluene was not significantly mineralized. 14C-Benzene was degraded at low but measurable rates (kbrn= 0.003 d-1) under sulfate-reducing conditions whereas degradation under methanogenic conditions was negligible. These results illustrate the extreme sensitivity of laboratory-measured biodegradation rates to terminal electron-accepting conditions, and show the necessity of carefully matching experimental conditions to in situ conditions. Concentration decreases of toluene along aquifer flowpaths, when the uncertainty of ground-water flow velocities was considered, indicated ktol values ranging from -0.0075 to -0.03 d-1. Concentration decreases of sulfate and concentration increase of dissolved inorganic carbon (DIC), when normalized for assumed stoichiometric oxidation of toluene coupled to sulfate reduction, yielded a kso4 range of -0.005 to -0.02 d-1, and a kDIC value range of +0.00075 to -0.003 d-1. Because both laboratory and field methods have numerous sources of uncertainty, a combination of these methods is the most appropriate procedure for evaluating biodegradation rate constants in contaminated ground-water systems.

  19. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  20. Assessment of soil-gas contamination at three former fuel-dispensing sites, Fort Gordon, Georgia, 2010—2011

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were

  1. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III

    1991-12-31

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  2. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  3. Analyses of uranium and actinium gamma spectra: An application to measurements of environmental contamination

    NASA Astrophysics Data System (ADS)

    Momeni, Michael H.

    A system for the reduction of the complex gamma spectra of nuclides in the uranium, actinium, and thorium series, tailored to calculation of line intensities, analyses of errors, and identification of nuclides is described. This system provides an efficient technique for characterizing contamination in the environs of uranium mines and mills. Identification of the nuclides and calculation of their concentrations requires accurate knowledge of gamma energies and absolute quantum intensities. For some spectral lines, there are no reported measurements of absolute quantum intensities and in some cases where reports are available the measured intensities are not in agreement. In order to improve this data base, the spectra of gamma rays (of nuclides in the uranium and actinium series) with energies between 40 and 1400 keV were measured using high-resolution germanium detectors. A brief description of the spectroscopy system, computational algorithms for deconvolution, and methods of calibration for energy and efficiency, are described. The measured energies and absolute quantum intensities are compared with those reported in the literature.

  4. Analyses of uranium and actinium gamma spectra: an application to measurements of environmental contamination

    SciTech Connect

    Momeni, M.H.

    1981-01-01

    A system for the reduction of the complex gamma spectra of nuclides in the uranium, actinium, and thorium series, tailored to calculation of line intensities, analyses of errors, and identification of nuclides is described. This system provides an efficient technique for characterizing contamination in the environs of uranium mines and mills. Identification of the nuclides and calculation of their concentrations require accurate knowledge of gamma energies and absolute quantum intensities. For some spectral lines, there are no reported measurements of absolute quantum intensities and in some cases where reports are available the measured intensities are not in agreement. In order to improve this data base, the spectra of gamma rays (of nuclides in the uranium and actinium series) with energies between 40 and 1400 keV were measured using high-resolution germanium detectors. A brief description of the spectroscopy system, computational algorithms for deconvolution, and methods of calibration for energy and efficiency, are described. The measured energies and absolute quantum intensities are compared with those reported in the literature.

  5. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    SciTech Connect

    Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

  6. Airborne Measurements of the Atmospheric Emissions from a Fuel Ethanol Refinery

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J.; Graus, M.; Hanisco, T. F.; Holloway, J. S.; Lerner, B. M.; Kaiser, J.; Keutsch, F. N.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K. E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M., Jr.

    2014-12-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the United States. The ethanol is produced in over 200 fuel ethanol refineries across the country. In this work, we report measurements of the atmospheric emissions from the third largest fuel ethanol refinery in the U.S. located in Decatur, Illinois. Measurements were made from the NOAA WP-3D research aircraft during the NOAA Southeast Nexus (SENEX) campaign in the summer of 2013, which was part of the larger Southeast Atmosphere Study (SAS). Emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) agreed with reported emissions in the 2011 National Emissions Inventory (NEI-2011). In contrast, emissions of several volatile organic compounds (VOCs) including ethanol, formaldehyde and acetaldehyde, were underestimated by an order of magnitude in the NEI-2011. By combining data from the NEI-2011 and fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities for SO2, NOx and VOCs, defined as the emissions per volume of fuel produced. These emission intensities can be readily compared to fuel-based emission factors from gasoline vehicles and the relative contributions made by fuel refining and fuel use to overall emissions will be quantified. Emission intensities of SO2 and NOx are particularly high for those fuel ethanol refineries that use coal as an energy source, including the plant in Decatur studied in this work. Finally, by comparing the measurements at different distances downwind, chemical transformation of the emissions could be observed, including the formation of new particles, peroxyacyl nitrates, ozone and sulfate aerosol.

  7. Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy.

    PubMed

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2012-01-30

    Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such

  8. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  9. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  10. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  11. {sup 252}Cf-source-driven frequency analysis measurements with subcritical arrays of PWR fuel pins

    SciTech Connect

    Mihalczo, J.T.; Valentine, T.E.; Blakeman, E.D.; King, W.T.

    1996-08-01

    Experiments with fresh PWR fuel assemblies were performed to assess the {sup 252}Cf-source-driven frequency analysis method for measuring the subcriticality of spent fuel. The measurements at the Babcox and Wilcox Critical Experiments Facility mocked up between 17x17 fuel pins (single assembly) and a full array of 4961 fuel pins (about 17 fuel assemblies) in borated water with a fixed B concentration. For the full array, the B content of the water was varied from 1511 at delayed criticality to 4303 ppM. Measurements were done for various source-detector-fuel pin configurations; they showed high sensitivity of frequency analysis parameters to B content and fissile mass. Parameters such as auto and cross power spectral densities can be calculated directly by a more general model of the Monte Carlo code (MCNP-DSP). Calculation-measurement comparisons are presented. This model permits the validation of neutron and gamma ray transport calculational methods with subcritical measurements using the {sup 252}Cf-source-driven frequency analysis method.

  12. Conceptual study of measures against heat generation for TRU fuel fabrication system

    SciTech Connect

    Kawaguchi, Koichi; Namekawa, Takashi

    2007-07-01

    To lower the reprocessing cost and the environmental burden, the Japan Atomic Energy Agency (JAEA) has developed low decontamination TRU fuel fabrication system. TRU fuel contains MA of 1.2 to 5 wt% and its decay heat is estimated a few tens W/kg-HM. As the heat affects fuel quality through oxidation of fuel material and members, it is necessary to remove decay heat. In this work, authors designed concepts of the measures against heat generation at typical equipments using with the thermal hydraulics analysis technique. As a result, it is shown that it is possible to cool fuel materials with specific heat generation up to 20 W/kg-HM enough, though more detailed study is required for comprehensive equipments. (authors)

  13. Measurements of fuel pin/water hole worths and power peaking, void coefficients, and temperature coefficients for 4. 81 wt% enriched UO[sub 2] fuel rods

    SciTech Connect

    Harris, D.R.; Rohr, R.R.; Angelo, P.L.; Patrou, N.T.; Buckwheat, K.W.; Hayes, D.K.

    1990-01-01

    The Rensselaer Polytechnic Institute reactor critical facility is currently the only facility in North America providing critical measurement data in support of the light water reactor electric power industry. The reactor is fueled by 4.81 wt% [sup 235]U enriched UO[sub 2] high-density pellets in stainless steel clad fuel rods at the present time, although experiments with other fuels are being analyzed. The fuel pins are supported by inexpensive stainless steel lattice plates in a large open water tank. Three sets of lattice plates have been fabricated for fuel pins in square array with pitches 0.585, 0.613, and 0.640 in. (1.486, 0.613, and 1.656 cm, respectively) to provide a relevant range of water-to-fuel volume ratios. The measurements reported here are for the first of these, a relatively tight lattice of considerable interest for reactor physics methods for advanced fuels and reactors.

  14. Influence of selected coal contaminants on graphitic carbon electro-oxidation for application to the direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Tulloch, John; Allen, Jessica; Wibberley, Louis; Donne, Scott

    2014-08-01

    A novel method examining the fundamental electrochemical behaviour of carbon is outlined here involving the use of a half cell set-up and solid sacrificial anode. Using this method, electrochemical oxidation of graphite is assessed using selective contamination of a graphite electrode with major coal contaminants identified in selected Australian black coals using X-ray diffraction. Contaminants identified include anatase, alumina, pyrite, quartz, kaolin and montmorillonite. From the systematic introduction of these contaminants it is shown that clay materials, such as kaolin and montmorillonite, act catalytically to increase the rate of graphite oxidation. Metal oxides and sulfides such as anatase, alumina and pyrite give a limited increase in the normalised current, whereas quartz gives a significant decrease in performance. This demonstrates a clear effect of the solid phase interaction of these contaminants on the electrochemical oxidation of graphite since the same effect is not observed when the contaminants are added instead to the molten carbonate electrolyte.

  15. Applying the common sense model to measure representations of arsenic contaminated well water.

    PubMed

    Severtson, Dolores J; Baumann, Linda C; Brown, Roger L

    2008-09-01

    Theory-based research is needed to understand how people respond to environmental health risk information. Both the common sense model (CSM) of self-regulation and the mental models approach propose that information shapes individuals' personal understandings that, in turn, influence their decisions and actions. We compare these frameworks and explain how the CSM was applied to describe and measure mental representations of arsenic contaminated well water. Educational information, key informant interviews, and environmental risk literature were used to develop survey items to measure dimensions of cognitive representations (identity, cause, timeline, consequences, control) and emotional representations. Surveys mailed to 1,067 private well users with moderate and elevated arsenic levels yielded an 84 % response rate (n = 897). Exploratory and confirmatory factor analyses of data from the elevated arsenic group identified a factor structure that retained the CSM representational structure and was consistent across moderate and elevated arsenic groups. The CSM has utility for describing and measuring representations of environmental health risks, thus supporting its application to environmental health risk communication research. PMID:18726811

  16. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  17. Simultaneous measurements of wire electrode surface contamination and corona discharge characteristics in an air-cleaning electrostatic precipitator

    SciTech Connect

    Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Adachi, Takayoshi; Chang, J.S.

    1997-01-01

    Contamination of the corona wire in a wire-to-plate type air-cleaning electrostatic precipitator is studied experimentally. In order to enhance the contamination of wire, air containing dusts is directly supplied to a part of the wire electrode. Spores of Lycopodium and cigarette smoke particles are used as test dusts. Simultaneous measurements of wire electrode optical images and corona discharge modes are carried out during contamination processes. Results show that corona discharge modes and optical emission from the wire electrode change with time due to the surface contamination. In the case of cigarette smoke, after a time elapsed, streamer coronas appear due to the buildup of smoke particles on the wire surface. After the first streamer generation, the corona current fluctuates with time because the formation and diminution of the projections occur alternately at the different parts on the wire electrode surface.

  18. Status and trends in concentrations of contaminants and measures of biological stress in San Francisco Bay. Technical memo

    SciTech Connect

    Long, E.; MacDonald, D.; Matta, M.B.; VanNess, K.; Buchman, M.

    1988-05-01

    Under the National Status and Trends (NS T) Program, the National Oceanic and Atmospheric Administration (NOAA) monitors the occurrence of certain contaminants and indicators of biological stress at approximately 200 sites in the United States. The Program was initiated in 1984 to provide an internally consistent data base for assessing the condition of parts of the Nation's coastal and estuarine environments. The Program thus far has focused largely upon generation of chemical contaminant data for sediments, fish, and bivalves, and certain analyses of these data. The results of the initial analyses are summarized in progress reports (NOAA, 1987a and b). The objectives of the report are to: (1) portray geographic trends in the concentrations of contaminants and the prevalence of selected measures of biological effects; (2) portray temporal trends in concentrations of contaminants and prevalence of selected measures of biological effects; (3) relate selected measures of biological effects to the concentrations of contaminants; and (4) compare the trends observed in available historical data to compatible recent measurements made by NOAA in San Francisco Bay. These objectives will be met through evaluation of data collected by NOAA and the many others who have studied the conditions in San Fransisco Bay. Some of the data from the NOAA NS T Program will be reported for the first time in the report.

  19. Recent advances in hardware and software are to improve spent fuel measurements

    SciTech Connect

    Staples, P.; Beddingfield, D. H.; Lestone, J. P.; Pelowitz, D. G.; Bytchkov, M.; Starovich, Z.; Harizanov, I.; Luna-Vellejo, J.; Lavender, C.

    2001-01-01

    Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long-cooling-time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies being prepared for intermediate term storage in the CIS countries promotes the possibility of increased accuracy in spent fuel assays. This improvement is made possible through the process of decay of the Curium isotopes and of fission products. An important point to consider for the future that could advance safeguards measurements for reverification and inspection would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel, Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUT's). The software used for these projects significantly reduces the IAEA inspector's time expenditure for both learning and operating computer and data acquisition systems, At the same time, by standardizing the spent fuel measurements, it is possible to increase reproducibility and reliability of the measurement data. Hardware systems will be described which take advantage of the increased computer control available to enable more complex measurement scenarios. A specific example of this is the active regulation of a spent fuel neutron coincident counter's {sup 3}He tubes high voltage, and subsequent scaling of measurement results to maintain a calibration for direct assay of the plutonium content of Fast Breeder Reactor spent fuel. The plutonium content has been successfully determined

  20. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  1. Agglomeration and defluidization in FBC of biomass fuels -- Mechanisms and measures for prevention

    SciTech Connect

    Nordin, A.; Oehman, M.; Skrifvars, B.J.; Hupa, M.

    1996-12-31

    The use of biomass fuels in fluidized bed combustion (FBC) and gasification (FBG) is becoming more important because of the environmental benefits associated with these fuel and processes. However, severe bed agglomeration and defluidization have been reported due to the special ash forming constituents of some biomass fuels. Previous results have indicated that this could possibly be prevented by intelligent fuel mixing. In the present work the mechanisms of bed agglomeration using two different biomass fuels as well as the mechanism of the prevention of agglomeration by co-combustion with coal (50/50 %{sub w}) were studied. Several repeated combustion tests with the two biomass fuels, alone (Lucerne and olive flesh), all resulted in agglomeration and defluidization of the bed within less than 30 minutes. By controlled defluidization experiments the initial cohesion temperatures for the two fuels were determined to be as low as 670 C and 940 C, respectively. However, by fuel mixing the initial agglomeration temperature increased to 950 C and more than 1050 C, respectively. When co-combusted with coal during ten hour extended runs, no agglomeration was observed for either of the two fuel mixtures. The agglomeration temperatures were compared with results from a laboratory method, based on compression strength measurements of ash pellets, and results from chemical equilibrium calculations. Samples of bed materials, collected throughout the experimental runs, as well as the produced agglomerated beds, were analyzed using SEM EDS and X-ray diffraction. The results showed that loss of fluidization resulted from formation of molten phases coating the bed materials; a salt melt in the case of Lucerne and a silicate melt in the case of the olive fuel. By fuel mixing, the in-bed ash composition is altered, conferring higher melting temperatures, and thereby agglomeration and defluidization can be prevented.

  2. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  3. Environmental measurement while drilling system for real-time field screening of contaminants

    SciTech Connect

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1996-12-31

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA). The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

  4. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  5. Lead Slowing Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel

    SciTech Connect

    Warren, Glen A.; Anderson, Kevin K.; Kulisek, Jonathan A.; Danon, Yaron; Weltz, Adam; Gavron, Victor A.; Harris, Jason; Stewart, Trevor N.

    2015-01-12

    Improved non-destructive assay of isotopic masses in used nuclear fuel would be valuable for nuclear safeguards operations associated with the transport, storage and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing down spectrometry techniques to assay the isotopic fissile masses in used nuclear fuel assemblies. We present the application of our analysis algorithms on measurements conducted with a lead spectrometer. The measurements involved a single fresh fuel pin and discrete 239Pu and 235U samples. We are able to describe the isotopic fissile masses with root mean square errors over seven different configurations to 6.35% for 239Pu and 2.7% for 235U over seven different configurations. Funding Source(s):

  6. Use of a marker organism in poultry processing to identify sites of cross-contamination and evaluate possible control measures.

    PubMed

    Mead, G C; Hudson, W R; Hinton, M H

    1994-07-01

    1. Nine different sites at a poultry processing plant were selected in the course of a hazard analysis to investigate the degree of microbial cross-contamination that could occur during processing and the effectiveness of possible control measures. 2. At each site, carcases, equipment or working surfaces were inoculated with a non-pathogenic strain of nalidixic acid-resistant Escherichia coli K12; transmission of the organism among carcases being processed was followed qualitatively and, where appropriate, quantitatively. 3. The degree of cross-contamination and the extent to which it could be controlled by the proposed measures varied from one site to another. PMID:7953779

  7. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    SciTech Connect

    Hoover, Andrew S; Rudy, Cliff R; Tobin, Steve J; Charlton, William S; Stafford, A; Strohmeyer, D; Saavadra, S

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  8. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specifications of 40 CFR part 1065, subpart C, instead of those in this paragraph (b). ... measurement instrument must have a minimum accuracy of one percent of full-scale flow rate for each... ±five percent of full-scale flow rate for the measurement range used. The controlling parameters are...

  9. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  10. Interference of Cerebrospinal Fluid Total Protein Measurement by Povidone-Iodine Contamination

    PubMed Central

    Gounden, Verena; Sacks, David B; Zhao, Zhen

    2014-01-01

    Background A falsely high cerebrospinal fluid (CSF) total protein (TP) result measured by pyrogallol red (PGR) method was suspected to be caused by preparation of the collection site with povidone-iodine (PVP-iodine) solution. Methods CSF TP was evaluated for interference in samples with different final concentrations of PVP-iodine (up to 0.25% PVP and 0.025% iodine) or iodine alone (up to 0.025% iodine) using three methods: PGR, modified biuret and benzethonium chloride (BZTC). Interference exceeding ±20% of the baseline value is considered clinically significant according the criterion defined by College of American Pathologists. Results There was a positive interference with the PGR method and a negative inference for the BZTC method in CSF samples spiked with PVP-iodine. The PVP-iodine (up to 0.25% PVP and 0.025% iodine) did not cause a clinically significant interference with the modified biuret method. PVP alone without iodine caused a positive interference with the PGR method but did not interfere with the modified biuret or the BZTC method. When the samples were spiked with iodine alone, none of the three methods was affected (change < 20%) by iodine concentration up to 0.025%. Conclusions Contamination of CSF specimens with PVP-iodine can lead to interference with CSF TP measurements using PGR or BZTC methods. PMID:25446880

  11. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.

    PubMed

    Jampasri, Kongkeat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Ounjai, Puey; Kumsopa, Acharaporn

    2016-10-01

    Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils. PMID:27159380

  12. A summary of truck fuel-saving measures developed with industry participation

    SciTech Connect

    Bertram, K.M.; Saricks, C.L.; Gregory, E.W. II; Moore, A.J.

    1983-09-01

    This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

  13. A DEVICE TO MEASURE LOW LEVELS OF RADIOACTIVE CONTAMINANTS IN ULTRA-CLEAN MATERIALS

    SciTech Connect

    James H Reeves; Matthew Kauer

    2006-03-17

    measuring 6"x6"x6" was fitted with wave length shifting fibers that allowed the light from ionizing radiation to be collected and transmitted outside the massive shield to photomultiplier tubes and electronics. The detector was calibrated for energy and detection efficiency and low resolution background spectra were collected. Results from these measurements show the figure of merit (using: efficiency/square root of background) for this plastic scintillation counting technique to be ~15 times better than for a 2 kg germanium detector for measuring surface contamination from atmospheric 222Rn daughters (210Pb, 210Bi, and 210Po). These daughter radionuclides are normally deposited everywhere onto all materials exposed to air. The results are encouraging and indicate that plastic scintillation counting techniques can be of benefit to the public by making available very sensitive counters for screening ultra-low background materials at an affordable cost. However, in order to reach the level required a multi element array of thin plastic scintillator sheets must be developed that will allow many thin samples to be counted at one time. In addition, more sophisticated light detection hardware, electronics, and computer software is needed.

  14. Airborne measurements of the atmospheric emissions from a fuel ethanol refinery

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J. B.; Graus, M.; Hanisco, T.; Holloway, J. S.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K.-E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M.

    2015-05-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the U.S. The ethanol is produced in over 200 fuel ethanol refineries across the nation. We report airborne measurements downwind from Decatur, Illinois, where the third largest fuel ethanol refinery in the U.S. is located. Estimated emissions are compared with the total point source emissions in Decatur according to the 2011 National Emissions Inventory (NEI-2011), in which the fuel ethanol refinery represents 68.0% of sulfur dioxide (SO2), 50.5% of nitrogen oxides (NOx = NO + NO2), 67.2% of volatile organic compounds (VOCs), and 95.9% of ethanol emissions. Emissions of SO2 and NOx from Decatur agreed with NEI-2011, but emissions of several VOCs were underestimated by factors of 5 (total VOCs) to 30 (ethanol). By combining the NEI-2011 with fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities, defined as the emissions per ethanol mass produced. Emission intensities of SO2 and NOx are higher for plants that use coal as an energy source, including the refinery in Decatur. By comparing with fuel-based emission factors, we find that fuel ethanol refineries have lower NOx, similar VOC, and higher SO2 emissions than from the use of this fuel in vehicles. The VOC emissions from refining could be higher than from vehicles, if the underestimated emissions in NEI-2011 downwind from Decatur extend to other fuel ethanol refineries. Finally, chemical transformations of the emissions from Decatur were observed, including formation of new particles, nitric acid, peroxyacyl nitrates, aldehydes, ozone, and sulfate aerosol.

  15. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volume flow and density, the error in the actual volume consumed must not be greater than ±1 percent of... (electronic weight, volume, density, etc.), measurements may not be used for calculations if the...

  16. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  17. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... for commercial electricity-measuring devices (including those used in sub- metering electricity at residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel... in the home or business where the electricity metered is consumed by the end purchaser. DATES:...

  18. Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study.

    PubMed

    Dadrasnia, Arezoo; Pariatamby, Agamuthu

    2016-03-01

    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead. PMID:26675494

  19. Collection and measurement of atmospheric contaminants during Skylab AM/MDA unmanned altitude chamber test

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The analytical data obtained from both cryogenic and grab sampling of the atmosphere of the Skylab AM/MDA during an 84 hour unmanned chamber run are reported. The level of contaminants found at different points of the test chamber are tabulated. The results indicate that there was no clear trend of increasing or decreasing contaminant levels during the test run.

  20. Equilibrium Partitioning Approach for Assessing Toxicity of Contaminants in Sediments: Linking Measured Concentrations to Effects

    EPA Science Inventory

    A variety of approaches exist for assessing the degree, extent and/or risk of metals contamination in sediments. Selection of the “correct” approach depends on the nature of the question being asked (e.g., the degree of metals contamination in marine sediments may be estimated by...

  1. Measuring eco-efficiency of contaminated soil management at the regional level.

    PubMed

    Kielenniva, Nea; Antikainen, Riina; Sorvari, Jaana

    2012-10-30

    Eco-efficiency and sustainable development are the key environmental topics and goals for today's society that we should strive for in all activities, including contaminated soil management (CSM). However, particularly at the regional level, CSM is studied to a lesser extent from this perspective and practical means to monitor and assess sustainability or eco-efficiency are not widely available. This study aims to fill this gap by developing indicators to measure and monitor the development of regional eco-efficiency of CSM. The indicators can be used to support decision-making at the regional level since many CSM decisions, such as prioritisation of sites and the number of soil treatment and storing facilities, are made regionally. To start with, we surveyed the methods available for determining eco-efficiency and suitable indicators to monitor and measure the development of CSM regionally. We used life cycle analysis (LCA) and material flow analysis (MFA) to identify factors that the environmental indicators should cover, and also involved economic indicators. We ended up with a selection of 28 indicators, which can be classed into three different categories: background indicators, environmental indicators and economic indicators. We further demonstrated the use of the indicators by applying data from three different regions in Finland, and evaluated their suitability. On the basis of the results we recommended 15 indicators for continuous follow-up and decision-making purposes. Even though these indicators are suitable for monitoring and measuring the eco-efficiency of CSM at the regional level, unfortunately we found several data gaps related to the actual remediation projects which impede their use in practice. The data collection practices therefore need to be regionally developed. PMID:22033066

  2. Laboratory scale studies of Pd/y-Al2O3 sorbents for the removal of trace contaminents from coal-derived fuel gas at elevated temperatures

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-12-31

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150-540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/{gamma}-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  3. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  4. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  5. Measurements of the Fuel Distribution in Cryogenic D-T Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, Chad J.

    In direct-drive inertial confinement fusion (ICF) experiments, a capsule filled with a mixture of deuterium and tritium ice at cryogenic temperature is irradiated by a symmetric arrangements of laser beams to compress and heat the fuel to conditions required for thermonuclear reactions. The areal density (rhoR) of the compressed fuel assembly in a cryogenic implosion is one of the fundamental parameters required to assess the target performance. The rhoR measurements presented here are achieved by measuring the complex neutron energy spectrum resulting from primary and secondary nuclear reactions within the compressed fuel assembly. Advances in neutron time-of-flight diagnostics have made it possible to infer the neutron fraction that elastically scatters off the tritons in the compressed fuel in the energy range from 3.5 -5.5 MeV which is directly proportional to the areal density. In these OMEGA cryogenic campaigns from January 2013 to August 2014, measured low-mode modulations show good agreement with Monte Carlo simulations. Deviations up to 40% in the cold-fuel distribution from spherical symmetry have been inferred from the scattered neutron spectrum. Understanding the mechanism for anisotropic areal density measurements is crucial to improve hydrodynamically equivalent ignition-relevant direct-drive cryogenic implosions on OMEGA.

  6. Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel

    DOEpatents

    Beyer, Norman S.; Lewis, Robert N.; Perry, Ronald B.

    1976-01-01

    The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.

  7. Reliability and Validity of a Questionnaire to Measure Consumer Knowledge regarding Safe Practices to Prevent Microbiological Contamination in Restaurants

    ERIC Educational Resources Information Center

    Uggioni, Paula Lazzarin; Salay, Elisabette

    2013-01-01

    Objective: The objective of this study was to develop a validated and reliable questionnaire to measure consumer knowledge regarding safe practices to prevent microbiological contamination in restaurants and commercial kitchens. Methods: Non-probabilistic samples of individuals were interviewed in the city of Campinas, Brazil. Questionnaire items…

  8. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  9. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2014-02-01

    This study elucidates the relationship between membrane properties and the rejection of trace organic contaminants (TrOCs) in forward osmosis (FO). An asymmetric cellulose triacetate (CTA) and a thin-film composite (TFC) polyamide FO membrane were used for this investigation. The effective average pore radius (rp), selective barrier thickness over porosity parameter (l/ε), surface charge, support layer structural parameter (S), pure water permeability coefficient (A) and salt (NaCl) permeability coefficient (B) of the two membranes were systematically characterised. Results show that measured rejection of TrOCs as a function of permeate water flux can be well described by the pore hindrance transport model. This observation represents the first successful application of this model, which was developed for pressure-driven nanofiltration, to an osmotically-driven membrane process. The rejection of charged TrOCs by the CTA and TFC membranes was high and was governed by both electrostatic repulsion and steric hindrance. The TFC membrane exhibited higher rejection of neutral TrOCs with low molecular weight than the CTA membrane, although the estimated pore size of the TFC membrane (0.42 nm) was slightly larger than that of the CTA membrane (0.37 nm). This higher rejection of neutral TrOCs by the TFC membrane is likely attributed to its active layer properties, namely a more effective active layer structure, as indicated by a larger l/ε parameter, and pore hydration induced by the negative surface charge. PMID:24345822

  10. Aerodynamic drag and fuel spreading measurements in a simulated scramjet combustion module

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1974-01-01

    The drag of a simulated scramjet combustion module was measured at Mach 2, 2.5, and 3. The combustor was rectangular in cross section and incorporated six swept fuel injector struts. The effect of strut leading edge radius, position of maximum thickness, thickness ratio, sweep angle, and strut length on the drag was determined. Reduction in thickness ratio had the largest effect on drag reduction. Sweeping the struts upstream yielded the same drag as sweeping the struts downstream and potentially offers the advantages of increased mixing time for the fuel. Helium injection was used to simulate hydrogen fuel. The interstrut spacing required to achieve good distribution of fuel was was found to be about 10 jet diameters. The contribution of helium injection to drag reduction was small.

  11. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    SciTech Connect

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-02-22

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  12. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  13. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  15. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max contamination of the cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02). PMID:21399836

  16. Measurement by room-temperature phosphorescence of polynuclear aromatics containing hydrocarbon fuels that permeate glove materials

    SciTech Connect

    Gammage, R.B.; White, D.A.; Vo-Dinh, T.

    1986-01-01

    Permeations of commonly used glove materials by polynuclear aromatic (PNA) compounds in hydrocarbon fuels were measured with solid-state dosemeters composed of filter paper. The permeated PNA were sorbed by the filter paper and analyzed in situ using room-temperature phosphorescence spectroscopy. This technique provided a simple, cost-effective, and very sensitive means for measuring breakthrough times and permeation rates of the class of potentially carcinogenic PNA in liquid fuels derived from crude petroleum, oil shale, and coal. 7 refs., 3 figs.

  17. Assessment of contaminant levels and trophic relations at a World Heritage Site by measurements in a characteristic shorebird species

    SciTech Connect

    Schwemmer, Philipp; Covaci, Adrian; Das, Krishna; Lepoint, Gilles; Adler, Sven; Garthe, Stefan

    2015-01-15

    The River Elbe is responsible for influxes of contaminants into the Wadden Sea World Heritage Site. We investigated levels of polychlorinated biphenyls (PCBs), oxychlordane (OxC), hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ-HCHs), dichlorodiphenyltrichloroethane (DDT) and its metabolites, and polybrominated diphenyl ethers (PBDEs) in blood and feathers from Eurasian oystercatchers (Haematopus ostralegus; n=28) at the Elbe and compared it with a non-riverine site about 90 km further north. (1) Mean levels of all contaminants in feathers and serum were significantly higher at the river (∑PCBs: 27.6 ng/g feather, 37.0 ng/ml serum; ∑DDTs: 5.3 ng/g feather, 4.4 ng/ml serum) compared with the non-riverine site (∑PCBs: 6.5 ng/g feather, 1.2 ng/ml serum; ∑DDTs: 1.4 ng/g feather, 0.5 ng/ml serum). Mean ∑HCH and HCB levels were <1.8 ng/g in feather and <1.8 ng/ml in serum at both sites. (2) Levels of most detectable compounds in serum and feathers were significantly related, but levels were not consistently higher in either tissue. (3) There was no significant relationship between trophic level in individual oystercatchers (expressed as δ15N) or the degree of terrestrial feeding (expressed as δ13C) and contaminant loads. (4) PBDEs were not detected in significant amounts at either site. The results of this study indicate that the outflow from one of Europe′s largest river systems is associated with significant historical contamination, reflected by the accumulation of contaminants in body tissues in a coastal benthivore predator. - Highlights: • Contaminants in Oystercatchers from the Elbe river and a non-riverine site were measured. • Mean levels of contaminants were higher at the river than at the non-riverine site. • Levels of most contaminants in serum and feathers were significantly related. • No relationship between trophic level (δ15N) and contaminant level was found. • One of Europe′s largest river systems is associated

  18. Novel Method for Measuring Temperature Distribution within Fuel Cell using Microsensors

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Yuan; Hsieh, Chi-Lieh; Wu, Guan-Wei

    2007-05-01

    A fuel cell has the potential to become an important source of electric power. However, measuring the temperature inside the fuel cell is difficult. Hence, in this investigation, an array of microsensors is set up inside the fuel cell to measure the temperature distribution. The substrate of a bipolar plate in the fuel cell is stainless steel (SS-316) and an electroforming technique is implemented to fabricate channels in the stainless steel substrate. Then micro-electro-mechanical system (MEMS) technologies are employed to fabricate a platinum temperature sensor on the rib of a channel in the stainless steel substrate. In this experiment, the temperature of microsensor is measured to range from 31 to 80 °C and its resistance ranges from 0.593 to 0.649 Ω. Experimental results demonstrate that temperature is almost linearly related to resistance and that accuracy and sensitivity are 0.5 °C and 1.93× 10-3/°C, respectively. The performance curves of a single fuel cell operating at 34 °C and H2/O2 gas flow rates of 50/50 ml/min are determined. The maximum power density is 170 mW/cm2 and the current density is 513 mA/cm2.

  19. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  20. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    NASA Astrophysics Data System (ADS)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  1. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    PubMed

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-01

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated. PMID:26906828

  2. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites.

    PubMed

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G

    2015-08-01

    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. PMID:26039657

  3. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    NASA Astrophysics Data System (ADS)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix

  4. Applications of accurate isentropic exponent determination for fuel gas measurement

    SciTech Connect

    Pack, D.J.; Edwards, T.J.; Fawcett, D.

    1996-07-01

    This paper discusses the determination and application of the isentropic exponent to the various thermodynamic processes found in a high-pressure natural gas transmission system. Increasing demands for more precise measurement of natural gas, coupled with the need for greater efficiency and accountability of transportation and processing operations, had led to the research and development of gas thermodynamic properties including isentropic exponent. The isentropic exponent has many applications, some of which include: the determination of the expansion factor {epsilon}, for calculation of flow using an orifice or venturi-type meter; the volumetric efficiency in a reciprocating compressor; the determination of the compression head for a centrifugal compressor; the engine power required for the given conditions for a gas compressor; the calculation of discharge temperatures for compressors; and the direct measurement of gas density. As can be appreciated, the application of an incorrect value for the isentropic exponent represents an error in the parameter determined. For large volume gas flows, this can translate into a significant cost penalty.

  5. Calculated and measured drift closure during the spent-fuel test in Climax granite

    SciTech Connect

    Yow, J.L. Jr.; Butkovich, T.R.

    1982-04-01

    Horizontal and vertical measurements of drift closures have been made with a manually operated tape extensometer since about 6 weeks after the emplacement of the spent fuel at various locations along the length of the drifts. The averaged closures are less than 0.6 mm from the onset of measurements through about two years after the spent fuel emplacement. These results have been compared with thermo-elastic finite element calculations using measured medium properties. The comparisons show that most of the closure of the drifts occurred between the time the spent fuel was emplaced and the time of first measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, although where closures of less than 0.2 mm are measured the comparison with calculations is limited by measurement reproducability. Once measurements commenced the averaged measured closures remain to within 30% of the calculated total closure in each drift. 9 figures, 1 table.

  6. EMERGING TECHNOLOGIES FOR DETECTING AND MEASURING CONTAMINANTS IN THE VADOSE ZONE

    EPA Science Inventory

    A review with many references, provides a brief description of the basic operating principles of the different technologies, where the technologies stand with regard to commercial availability, the intended applications, and a list of contaminants detected.

  7. Measurement of Thin-film Coating Hardness in the Presence of Contamination and Roughness: Implications for Tribology

    NASA Astrophysics Data System (ADS)

    Demas, Nicholaos G.; Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.; Erck, Robert A.; Shareef, Iqbal

    2016-04-01

    Standard nanoindentation measurements on commercially available TiAlN, CrN, metal-containing diamond-like carbon, and TiN coatings, deposited on steel substrates were performed to determine coating hardness and elastic modulus. It was found that the coating surface roughness/morphology present after deposition can significantly affect the measurements of nanomechanical properties so that measurements of these properties on the as-deposited coating surface may be significantly different from the bulk. In addition, a surface measurement may produce a lower nanohardness due to the existence of a soft surface contamination layer. A simple method was developed to enable accurate measurement of the nanomechanical properties of coatings, while avoiding errors introduced by surface topography and the presence of superficial contamination layers on thin films. Friction and wear behavior, as well as the wear mechanisms in dry reciprocating sliding contact of the various coatings with a steel ball can be correlated to the surface attributes of each coating in terms of roughness and the presence of contamination layers, both of which are shown to also affect the nanohardness measurements.

  8. Characterisation of airborne uranium and thorium contamination in northern England through measurement of U, Th and 235U/238U in tree bark.

    PubMed

    Bellis, D J; Ma, R; McLeod, C W

    2001-02-01

    Samples of tree bark were collected from four locations in Northern England (a typical rural site, a coal-fired power station, a uranium (isotopic) enrichment plant and a nuclear fuel fabrication facility), to assess the nature and extent of airborne uranium and thorium contamination. The U and Th concentrations of bark were determined by inductively coupled plasma mass spectrometry after conventional nebulisation of bark digests, whilst measurement of 235U/238U isotopic ratio utilised high efficiency nebulisation. Uranium concentrations varied between and within the sites (range, 0.01-12 micrograms g-1), with maximum values recorded within 1 km of the nuclear fuel fabrication plant (Springfields). In comparison, the concentration of Th in bark was low (mean, 0.018 microgram g-1) at all sites with the exception of the area affected by coal combustion (0.2-0.8 microgram g-1). The U/Th ratio varied from 0.5 to 3900 compared with the average crustal ratio of 0.3. Low values (< 2) were recorded at the 'coal' and 'rural' sites whilst Capenhurst and Springfields showed high values indicating the relative magnitude of uranium elevation. Significant enrichment of the natural 235U/238U ratio (0.00725) was observed near the nuclear installations, in particular, the enrichment plant (Capenhurst). PMID:11354728

  9. Use of hydroacoustic measurements to characterize bottom sediments and guide sampling and remediation of organic contaminants in lake sediments.

    PubMed

    Anderson, Michael A; Conkle, Jeremy L; Pacheco, Porfirio; Gan, Jay

    2013-08-01

    Sampling of bed sediment for contamination characterization is often limited by the heterogeneity in sediment properties and distribution. In this study, we explored the use of hydroacoustic measurements to characterize sediment properties and guide sediment sampling in a small lake contaminated by organochlorine pesticides (OCPs) and PCBs. A dual frequency hydroacoustic survey was conducted to characterize sediment properties, distribution, and thickness in McGrath Lake, near Ventura, CA. Based upon these results, sediment core samples were collected from 15 sites on the lake, and sectioned into 20 cm intervals for sediment characterization and analysis of OCPs and PCBs. Very high concentrations of total DDT and total chlordane were found in the sediments, with mean values of 919 and 34.9 ng g(-1), respectively. Concentrations of OCPs were highest at 60-80 cm depth near the inflow at the north end of the lake. Total PCB concentrations were much lower (mean concentration of 4.5 ng g(-1)). Using the hydroacoustic and chemical data, it was estimated that nearly 30,000 m(3) of DDT- and chlordane-contaminated sediment (above effects range median values) was present in the uppermost 1.2 m of sediment in the lake. A hydroacoustic survey can be a valuable tool used to delineate sediment distribution in a lake, identify areas with deeper organic sediment where hydrophobic contaminants would likely be found, and guide sampling. Sampling and chemical analyses are nonetheless needed to quantify contaminant levels in bottom sediments. When combined with hydroacoustic measurements, this approach can reasonably estimate the distributions and volumes of contaminated sediment important in the development of remediation strategies. PMID:23644565

  10. The Euratom Fast Collar (EFC): A Safeguards Instrument Design to Address Future Fuel Measurement Challenges

    SciTech Connect

    Evans, Louise; Swinhoe, Martyn T.; Menlove, Howard O.; Browne, Michael C.

    2012-08-13

    Summary of this presentation: (1) EFC instrument design for {sup 235}U verification measurements issued to EURATOM to issue a call for commercial tender; (2) Achieved a fast (Cd mode) measurement with less than 2% relative uncertainty in the doubles neutron counting rate in 10 minutes using a standard source strength; (3) Assay time in fast mode consistent with the needs of an inspector; (4) Extended to realistic calibration range for modern fuel designs - Relatively insensitive to gadolinia content for fuel designs with up to 32 burnable poison rods and 15 wt % gadolinia concentration, which is a realistic maximum for modern PWR fuel; (5) Improved performance over the standard thermal neutron collar with greater than twice the efficiency of the original design; (6) Novel tube pattern to reduce the impact of accidental pile-up; and (7) Joint test of prototype unit - EURATOM-LANL.

  11. Solid-phase Microextraction (SPME) with Stable Isotope Calibration for Measuring Bioavailability of Hydrophobic Organic Contaminants

    PubMed Central

    Cui, Xinyi; Bao, Lianjun; Gan, Jay

    2014-01-01

    Solid-phase microextraction (SPME) is a biomimetic tool ideally suited for measuring bioavailability of hydrophobic organic compounds (HOCs) in sediment and soil matrices. However, conventional SPME sampling requires the attainment of equilibrium between the fiber and sample matrix, which may take weeks or months, greatly limiting its applicability. In this study, we explored the preloading of polydimethylsiloxane fiber with stable isotope labeled analogs (SI-SPME) to circumvent the need for long sampling time, and evaluated the performance of SI-SPME against the conventional equilibrium SPME (Eq-SPME) using a range of sediments and conditions. Desorption of stable isotope-labeled analogs and absorption of PCB-52, PCB-153, bifenthrin and cis-permethrin were isotropic, validating the assumption for SI-SPME. Highly reproducible preloading was achieved using acetone-water (1:4, v/v) as the carrier. Compared to Eq-SPME that required weeks or even months, the fiber concentrations (Cf) under equilibrium could be reliably estimated by SI-SPME in 1 d under agitated conditions or 20 d under static conditions in spiked sediments. The Cf values predicted by SI-SPME were statistically identical to those determined by Eq-SPME. The SI-SPME method was further applied successfully to field sediments contaminated with PCB 52, PCB 153, and bifenthrin. The increasing availability of stable isotope labeled standards and mass spectrometry nowadays makes SI-SPME highly feasible, allowing the use of SPME under non-equilibrium conditions with much shorter or flexible sampling time. PMID:23930601

  12. Evaluation of measured LWR spent fuel composition data for use in code validation

    SciTech Connect

    Hermann, O.W.; DeHart, M.D.; Murphy, B.D.

    1998-02-01

    Burnup credit (BUC) is a concept applied in the criticality safety analysis of spent nuclear fuel in which credit or partial credit is taken for the reduced reactivity worth of the fuel due to both fissile depletion and the buildup of actinides and fission products that act as net neutron absorbers. Typically, a two-step process is applied in BUC analysis: first, depletion calculations are performed to estimate the isotopic content of spent fuel based on its burnup history; second, three-dimensional (3-D) criticality calculations are performed based on specific spent fuel packaging configurations. In seeking licensing approval of any BUC approach (e.g., disposal, transportation, or storage) both of these two computational procedures must be validated. This report was prepared in support of the validation process for depletion methods applied in the analysis of spent fuel from commercial light-water-reactor (LWR) designs. Such validation requires the comparison of computed isotopic compositions with those measured via radiochemical assay to assess the ability of a computer code to predict the contents of spent fuel samples. The purpose of this report is to address the availability and appropriateness of measured data for use in the validation of isotopic depletion methods. Although validation efforts to date at ORNL have been based on calculations using the SAS2H depletion sequence of the SCALE code system, this report has been prepared as an overview of potential sources of validation data independent of the code system used. However, data that are identified as in use in this report refer to earlier validation work performed using SAS2H in support of BUC. This report is the result of a study of available assay data, using the experience gained in spent fuel isotopic validation and with a consideration of the validation issues described earlier. This report recommends the suitability of each set of data for validation work similar in scope to the earlier work.

  13. Comparison of Coriolis and turbine-type flowmeters for fuel measurement in gas turbine testing

    SciTech Connect

    MacLeod, J.D.; Grabe, W.

    1995-01-01

    The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. The MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine-type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference, and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeter. Results indicate that the agreement between Coriolis and turbine-type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturer`s specification. Even a significant variation in fuel density (10 percent), and viscosity (300 percent) did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.

  14. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  15. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol.

    PubMed

    Sihota, Natasha J; Mayer, K Ulrich; Toso, Mark A; Atwater, Joel F

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation-related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur-even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 9 μmol m(-2) s(-1). At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 393 μmol m(-2) s(-1). Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion

  16. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol

    NASA Astrophysics Data System (ADS)

    Sihota, Natasha J.; Mayer, K. Ulrich; Toso, Mark A.; Atwater, Joel F.

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation—related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur—even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 9 μmol m- 2 s- 1. At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 393 μmol m- 2 s- 1. Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion or

  17. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    SciTech Connect

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  18. Measurement of (233)U/(234)U ratios in contaminated groundwater using alpha spectrometry.

    PubMed

    Harrison, Jennifer J; Payne, Timothy E; Wilsher, Kerry L; Thiruvoth, Sangeeth; Child, David P; Johansen, Mathew P; Hotchkis, Michael A C

    2016-01-01

    The uranium isotope (233)U is not usually observed in alpha spectra from environmental samples due to its low natural and fallout abundance. It may be present in samples from sites in the vicinity of nuclear operations such as reactors or fuel reprocessing facilities, radioactive waste disposal sites or sites affected by clandestine nuclear operations. On an alpha spectrum, the two most abundant alpha emissions of (233)U (4.784 MeV, 13.2%; and 4.824 MeV, 84.3%) will overlap with the (234)U doublet peak (4.722 MeV, 28.4%; and 4.775 MeV, 71.4%), if present, resulting in a combined (233+234)U multiplet. A technique for quantifying both (233)U and (234)U from alpha spectra was investigated. A series of groundwater samples were measured both by accelerator mass spectrometry (AMS) to determine (233)U/(234)U atom and activity ratios and by alpha spectrometry in order to establish a reliable (233)U estimation technique using alpha spectra. The Genie™ 2000 Alpha Analysis and Interactive Peak Fitting (IPF) software packages were used and it was found that IPF with identification of three peaks ((234)U minor, combined (234)U major and (233)U minor, and (233)U major) followed by interference correction on the combined peak and a weighted average activity calculation gave satisfactory agreement with the AMS data across the (233)U/(234)U activity ratio range (0.1-20) and (233)U activity range (2-300 mBq) investigated. Correlation between the AMS (233)U and alpha spectrometry (233)U was r(2) = 0.996 (n = 10). PMID:26359847

  19. Development of inspection techniques for quantitatively measuring surface contamination on SRM hardware

    NASA Technical Reports Server (NTRS)

    Law, R. D.

    1989-01-01

    A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.

  20. The Effect of Surface Contamination on Adhesive Forces as Measured by Contact Mechanics

    SciTech Connect

    EMERSON,JOHN A.; GIUNTA,RACHEL K.; MILLER,GREGORY V.; SORENSEN,CHRISTOPHER R.; PEARSON,RAYMOND A.

    2000-12-18

    The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to mate the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces were coated with hexadecane as a controlled contaminant. The force required to pull an elastomeric hemisphere from a surface was determined by contact mechanics, via the JKR model, using a model siloxane network for the elastomeric contact sphere. Due to the dispersive nature of the elastomer surface, larger forces were required to pull the sphere from a contaminated surface than a clean aluminum oxide surface.

  1. Development and calibration of the shielded measurement system for fissile contents measurements on irradiated nuclear fuel in dry storage.

    SciTech Connect

    Mosby, W. R.; Jensen, B. A.

    2002-05-31

    In recent years there has been a trend towards storage of Irradiated Nuclear Fuel (INF) in dry conditions rather than in underwater environments. At the same time, the Department of Energy (DOE) has begun encouraging custodians of INF to perform measurements on INF for which no recent fissile contents measurement data exists. INF, in the form of spent fuel from Experimental Breeder Reactor 2 (EBR-II), has been stored in close-fitting, dry underground storage locations at the Radioactive Scrap and Waste Facility (RSWF) at Argonne National Laboratory-West (ANL-W) for many years. In Fiscal Year 2000, funding was obtained from the DOE Office of Safeguards and Security Technology Development Program to develop and prepare for deployment a Shielded Measurement System (SMS) to perform fissile content measurements on INF stored in the RSWF. The SMS is equipped to lift an INF item out of its storage location, perform scanning neutron coincidence and high-resolution gamma-ray measurements, and restore the item to its storage location. The neutron and gamma-ray measurement results are compared to predictions based on isotope depletion and Monte Carlo neutral-particle transport models to provide confirmation of the accuracy of the models and hence of the fissile material contents of the item as calculated by the same models. This paper describes the SMS and discusses the results of the first calibration and validation measurements performed with the SMS.

  2. A FAST BREEDER REACTOR SPENT FUEL MEASUREMENTS PROGRAM FOR BN-350 REACTOR

    SciTech Connect

    P. STAPLES; J. HALBIG; ET AL

    1999-04-01

    A project to verify the fissile content of fast breeder reactor spent nuclear fuel is underway in the Republic of Kasakhstan. There are a variety of assembly types with different irradiation histories and profiles in the reactor that require a variety of measurement and analysis procedures. These procedures will be discussed and compared as will the general process that has been designed to resolve any potential measurement discrepancies. The underwater counter is part of a system that is designed to assist the International Atomic Energy Agency (IAEA) in maintaining continuity of knowledge from the time of measurement until the measured item is placed in a welded container with a unique identification. In addition to satisfying IAEA requirements for the spent nuclear fuel, this measurement program is able to satisfy some of the measurement requirements for the Kasakhstan Atomic Energy Agency concerning the repackaging of the spent nuclear fuel into a standard canister. The project is currently operational in a mode requiring the IAEA's continuous presence.

  3. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, Philip Lon; Sterbentz, James William

    2001-04-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements’ burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element’s reported burnup or provide a burnup estimate for an element with an unknown burnup.

  4. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, P.L.; Sterbentz, J.W.

    2002-07-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  5. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  6. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    PubMed

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel. PMID:25996759

  7. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; Youngstrom, Erica

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  8. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  9. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOEpatents

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  10. Comments on "validation of two innovative methods to measure contaminant mass flux in groundwater" by Goltz et al.

    NASA Astrophysics Data System (ADS)

    Sun, Kerang

    2014-12-01

    I wish to comment on the paper published by Goltz et al. on this journal, titled Validation of two innovative methods to measure contaminant mass flux in groundwater (Goltz et al., 2009). The paper presents the results of experiments Goltz et al. conducted on an artificial aquifer for the purpose of validating two recently developed methods to measure contaminant mass flux in groundwater, the tandem circulation well (TCW) method and the modified integral pumping test (MIPT) method. Their experiment results showed that the TCW method implemented using both the multi-dipole technique and the tracer test technique successfully estimated the mass fluxes with respective accuracies within 2% and 16% of the known values. The MIPT method, on the other hand, underestimated the mass flux by as much as 70%. My comments focus on the MIPT method.

  11. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    SciTech Connect

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems.

  12. Measurement of fission gas release from irradiated U-Mo monolithic fuel samples

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine J.; Pool, Karl N.

    2015-06-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of heating post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium-molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1000 °C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature.

  13. Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures

    SciTech Connect

    Harris, S.J.; Swarin, S.J.; Sultan, M.F.; Lambert, D.K.; Jack, M.D.

    1993-08-31

    A sensing device is described for determining the alcohol content of an alcohol/gasoline mixture comprising: a light source emitting a light beam containing at least a first and a second wavelengths within the near-infrared spectrum, said light beam being transmitted through the alcohol/gasoline fuel mixture; means for switching the current through said light source between at least two fixed values, so as to correspondingly switch the light intensity at said first and second wavelengths which is emitted by said light source; first and second detectors which are disposed so as to receive said emitted light beam after its transmission through the alcohol/gasoline fuel mixture, said first detector determines a first amount of absorption by the alcohol/gasoline fuel mixture at said first wavelength for each of said fixed values of current, and said second detector determines a second amount of absorption by the alcohol/gasoline fuel mixture at said second wavelength for each of said fixed values of current; means for separately measuring the output voltage from said first and second detectors for each of said power settings; and computational means for determining, from said output voltages, the ratio of said first and second absorbances by the alcohol/gasoline fuel mixture at said first and said second wavelengths for each of said fixed values of current such that said ratio of absorbances provide an output indicative of the alcohol content within the alcohol/gasoline mixture.

  14. Measurement of fission gas release from irradiated U–Mo monolithic fuel samples

    SciTech Connect

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine J.; Pool, Karl N.

    2015-06-01

    The uranium–molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of heating post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium–molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1000 °C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature.

  15. Measurement of Fission Gas Release from Irradiated U-Mo Monolithic Fuel Samples

    SciTech Connect

    Burkes, Douglas; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine; Pool, Karl N.

    2015-06-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of annealing post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium-molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1050 C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in literature.

  16. Predicting wetland contamination from atmospheric deposition measurements of pesticides in the Canadian Prairie Pothole region

    NASA Astrophysics Data System (ADS)

    Messing, Paul G.; Farenhorst, Annemieke; Waite, Don T.; McQueen, D. A. Ross; Sproull, James F.; Humphries, David A.; Thompson, Laura L.

    2011-12-01

    Although it has been suggested that atmospheric deposition alone can result in detectable levels of pesticides in wetlands of the Pairie Pothole Region of Canada, this is the first field study to compare the masses of pesticides entering wetlands by atmospheric deposition with those concentrations of pesticides detected in the water-column of prairie wetlands. Weekly air and bulk deposition samples were collected from May 26th to Sept. 15th, 2008 at the Manitoba Zero Tillage Research Association (MZTRA) Farm, Brandon, Manitoba, with four on-site wetlands (approximate sizes 0.15-0.45 ha) monitored every second week. Twelve pesticides were detected in the air, with MCPA (one of the three pesticides applied on the farm in 2008 in addition to clopyralid and glyphosate), triallate, and γ-HCH being detected every week. Calculations were performed to predict wetland pesticide concentrations based on bulk deposits alone for those pesticides that had detectable concentrations in the bulk deposition samples (in order of the highest total seasonal deposition mass to the lowest): MCPA, glyphosate, 2,4-D, clopyralid, bromoxynil, atrazine, dicamba, metolachlor, and mecoprop. The estimated concentrations were closest to actual concentrations for MCPA (Pearson correlation coefficient's = 0.91 to 0.98; p-values < 0.001) and predictions were also reasonable for a range of other herbicides, but a source other than atmospheric deposition was clearly relevant to detections of clopyralid in the wetland water-column. Although the types and levels of pesticides detected in the wetlands of the current study suggest that regional pesticide applications can contribute to pesticide surface water contamination following atmospheric transport and deposition, the greater frequency and concentrations of clopyralid, MCPA, and glyphosate detections in wetlands confirm that on-farm pesticide applications have a greater impact on on-site water quality. Beneficial management practices that reduce

  17. A review of melanized (black) fungal contamination in pharmaceutical products-incidence, drug recall and control measures.

    PubMed

    Vijayakumar, R; Saleh Al-Aboody, M; Sandle, T

    2016-04-01

    The aim of this study was to describe the incidence of contamination of pharmaceutical products by melanized fungi and to consider control measures in relation to bioburden and cleanrooms. This study reviews and analyses pharmaceutical product recalls and offers incidence rates of fungal detection from a typical cleanrooms. The recalls include some serious cases which resulted in the loss of life. Of different types of fungal contamination incidences some of the most damaging have been due to melanized fungi ('black mould'), such as Exserohilum rostratum. The focus of the article is with melanized fungi. The study concludes that, from the review of recent pharmaceutical product recalls, fungal contamination is either increasingly common within cleanroom environments or the accuracy of sampling and the level of reporting has risen. The prevalence of melanized fungi in pharmaceutical facilities rests on specific virulence factors particular to these types of fungi, which are outlined. The article identifies a gap in the way that such fungi are screened for using available cultural methods. The article provides some control strategies, including assessing the suitability of disinfectants and biocides, for reducing the risk of melanized fungal incidences within the pharmaceutical facility. Understanding the fungal risk to pharmaceutical products remains a poorly understood and often overlooked aspect of pharmaceutical microbiology. This article helps to identify this risk and offer some guidance to those involved with pharmaceutical products manufacture in relation to bio-contamination control strategies. PMID:26119714

  18. Real-time measurement of temperature variation during nanosecond pulsed-laser-induced contamination deposition.

    PubMed

    Kokkinos, Dimitrios; Gailly, Patrick; Georges, Marc P; Tzeremes, Georgios; Rochus, Pierre; Fleury-Frenette, Karl

    2015-12-20

    In this paper, a study of heat generation during UV laser-induced contamination (LIC) and potentially resulting subsequent thermal damage are presented. This becomes increasingly interesting when optics with delicate coatings are involved. During LIC, radiation can interact with outgassing molecules, both in the gas phase and at the surface, thus triggering chemical and photo-fixation reactions. This is a major hazard, in particular for laser units operating under vacuum conditions such as in space applications. The intense photon flux not only affects the contaminant deposition rate but also alters their chemical structure, which can increase their absorption coefficient. Over cumulative irradiation shots, these molecules formed deposits that increasingly absorb photons and produce heat as a by-product of de-excitation, eventually leading to thermal damage. One could better assess the risk of the latter with the knowledge of temperature during the contamination process. For this purpose, a thermoreflectance technique is used here to estimate the temperature variation from pulse to pulse during contamination deposition through the analysis of a temperature-dependent surface reflectance signal. PMID:26837020

  19. FIELD MEASUREMENTS OF PRE- AND POST-REMEDIAL CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (WASHINGTON, DC)

    EPA Science Inventory

    The complete removal of all dense nonaqueous phase liquid (DNAPL) contaminant from source zone areas has not been demonstrated with current remedial techniques, and conflicting views on the benefits of partial DNAPL source zone remediation have been expressed in the literature. ...

  20. THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  1. MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  2. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  3. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  4. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil.

    PubMed

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Fraraccio, Serena; McFarlin, Kelly; Kottara, Anastasia; Glover, Catherine; Macek, Tomas; Leigh, Mary Beth

    2016-01-01

    Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders. PMID:27313574

  5. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil

    PubMed Central

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Fraraccio, Serena; McFarlin, Kelly; Kottara, Anastasia; Glover, Catherine; Macek, Tomas; Leigh, Mary Beth

    2016-01-01

    Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders. PMID:27313574

  6. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  7. Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions

    NASA Astrophysics Data System (ADS)

    Kattner, L.; Mathieu-Üffing, B.; Burrows, J. P.; Richter, A.; Schmolke, S.; Seyler, A.; Wittrock, F.

    2015-09-01

    In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.

  8. ADONIS, high count-rate HP-Ge {gamma} spectrometry algorithm: Irradiated fuel assembly measurement

    SciTech Connect

    Pin, P.; Barat, E.; Dautremer, T.; Montagu, T.; Normand, S.

    2011-07-01

    ADONIS is a digital system for gamma-ray spectrometry, developed by CEA. This system achieves high count-rate gamma-ray spectrometry with correct dynamic dead-time correction, up to, at least, more than an incoming count rate of 3.10{sup 6} events per second. An application of such a system at AREVA NC's La Hague plant is the irradiated fuel scanning facility before reprocessing. The ADONIS system is presented, then the measurement set-up and, last, the measurement results with reference measurements. (authors)

  9. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  10. Comparison of Techniques for Non-Intrusive Fuel Drop Size Measurements in a Subscale Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.

    1999-01-01

    In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.

  11. Considerations in screeneing/measuring children with internal/external contamination.

    PubMed

    Kramer, Gary H

    2010-11-01

    The National Internal Radiation Assessment Section, which operates the Canadian National Calibration Reference Centre for Bioassay and In Vivo Monitoring, has field deployable equipment for emergency response. A substantial part of this toolkit is a set of portal monitors that can be used to quickly screen people into 'uncontaminated' and 'contaminated'. The former term refers to a person who has <60 kBq (empirical practical detection limit) of activation/fission products and the latter group is contaminated by that amount or more. Previous work has focused on how to process large numbers of people quickly and methodologies have been previously published; however, it was assumed that the group being monitored was composed of healthy adults. When applying these methods to children, a number of shortcomings have been identified. PMID:20833679

  12. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  13. Practical measures for reducing the risk of environmental contamination in shale energy production.

    PubMed

    Ziemkiewicz, Paul; Quaranta, John D; McCawley, Michael

    2014-07-01

    Gas recovery from shale formations has been made possible by advances in horizontal drilling and hydraulic fracturing technology. Rapid adoption of these methods has created a surge in natural gas production in the United States and increased public concern about its environmental and human health effects. We surveyed the environmental literature relevant to shale gas development and studied over fifteen well sites and impoundments in West Virginia to evaluate pollution caused by air emissions, light and noise during drilling. Our study also characterized liquid and solid waste streams generated by drilling and hydraulic fracturing and evaluated the integrity of impoundments used to store fluids produced by hydraulic fracturing. While most shale gas wells are completed with little or no environmental contamination, we found that many of the problems associated with shale gas development resulted from inattention to accepted engineering practices such as impoundment construction, improper liner installation and a lack of institutional controls. Recommendations are provided based on the literature and our field studies. They will address not all but a great many of the deficiencies that result in environmental release of contaminants from shale gas development. We also identified areas where new technologies are needed to fully address contaminant releases to air and water. PMID:24745034

  14. Hydrogel-encapsulated soil: A tool to measure contaminant attenuation in situ

    SciTech Connect

    Brooks, Scott C; Spalding, Brian Patrick; Watson, David B

    2010-01-01

    After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed non-destructively for uranium and other elements using x-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions of the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169-1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r2 = 0.89) with the residual uranium retained after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the same soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term retained fraction from 50 to 88% of the total uranium and increased the in situ retention half-life of the long-term retained fraction from 990 to 40,000 days. Hydrogel encapsulation presents a novel and powerful general method to observe many water-solids interactions in situ for a variety of aqueous media besides groundwater, with a variety of non-destructive analytical methods, and with a variety of solids besides contaminated soil.

  15. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  16. PNNL/Euratom glass fiber optic, spent fuel neutron profile measurement system

    SciTech Connect

    SM Bowyer; JE Smart

    2000-03-03

    The glass fiber optic spent fuel neutron profile measurement system is designed to measure the neutron profile of a Castor with high reproducibility and to distinguish spent fuel Castor contents from vitrified waste Castor contents. The basic principle of the detector is that the glass fibers detect thermal neutrons. The glass is loaded with lithium enriched in Li-6, which has a high thermal neutron cross-section. A neutron is captured by the Li-6 and a He-4 and H-3 are created. Because the glass also contains Cerium in a 3{sup +} ionization state, the excitation caused by the movement of the He-4 and H-3 results in the emission of light from the cerium atoms. This light then travels to the ends of the fiber where it is detected by photon sensitive devices (e.g., photo-multiplier tubes).

  17. Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels

    NASA Astrophysics Data System (ADS)

    Kobtsev, V. D.; Kozlov, D. N.; Kostritsa, S. A.; Smirnov, V. V.; Stel'makh, O. M.; Tumanov, A. A.

    2016-03-01

    A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.

  18. Spent fuel test - Climax: technical measurements. Interim report, Fiscal Year 1983

    SciTech Connect

    Patrick, W.C.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Ganow, H.C.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1984-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted as part of the Nevada Nuclear Waste Storage Investigations. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April-May 1980. The spent-fuel canisters were retrieved and the thermal sources were de-energized in March-April 1983 when test data indicated that test objectives were met during the 3-year storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. In addition to emplacement and retrieval operations, three exchanges of spent-fuel between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and three previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the 3-1/2 year duration of the test on more than 900 channels. Data acquisition from the test is now limited to instrumentation calibration and evaluation activities. Data now available for analysis are presented here. Highlights of activities this year include a campaign of in situ stress measurements, mineralogical and petrological studies of pretest core samples, microfracture analyses of laboratory irradiated cores, improved calculations of near-field heat transfer and thermomechanical response during the final months of heating as well as during a six-month cool-down period, metallurgical analyses of selected test components, and further development of the data acquisition and data management systems. 27 references, 68 figures, 10 tables.

  19. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-10

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2x10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  20. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth M; Hausladen, Paul; Mihalczo, John T; Blackburn, Brandon; Chichester, David

    2009-01-01

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2 x 10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence distribution and Feynman variance results from the measurements.

  1. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    NASA Astrophysics Data System (ADS)

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-01

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2×106 neutrons-s-1) and moderated 3He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  2. Estimation of localized current anomalies in polymer electrolyte fuel cells from magnetic flux density measurements

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Koike, Masanori; Ando, Shigeru; Gotoh, Yuji; Izumi, Masaaki

    2016-05-01

    In this paper, we propose novel inversion methods to estimate defects or localized current anomalies in membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs). One method is an imaging approach with L1-norm regularization that is suitable for estimation of focal anomalies compared to Tikhonov regularization. The second is a complex analysis based method in which multiple pointwise current anomalies can be identified directly and algebraically from the measured magnetic flux density.

  3. Performance and cost evaluation of ULTROX d-tox(trademark) UV/oxidation system for the treatment of hydrocarbon vapors from fuel-contaminated soils. Draft report

    SciTech Connect

    Archabal, S.R.; Downey, D.C.; Malone, D.R.

    1996-07-01

    This technology demonstration was completed to determine the feasibility of using an ultraviolet (UV) oxidizing catalyst in the presence of ozone to treat non-chlorinated, fuel hydrocarbon volatile organic compounds (VOCs). The soil vapor extraction (SVE) and treatment demonstration was conducted at the Installation Restoration Program (IRP) Site SS-20 located at Myrtle Beach Air Force Base (AFB), Myrtle Beach, South Carolina. Site SS-20, locally known as the MOGAS site, was previously investigated under the IRP and known to be contaminated with gasoline residuals. This demonstration was conducted from 10 November to 20 December 1996 and was performed as part of an ongoing innovative technologies evaluation program sponsored by the Air Force in order to promote cost-effective vapor treatment technologies at contaminated sites. The technology demonstration was performed in accordance with the `Treatability Study Test Design for ULTROX(registered) UV/Oxidation System Pilot Scale Treatability Testing at Myrtle Beach AFB, Myrtle Beach, SC.` (Zimpro, ULTROX Division, September, 1995) as approved by the Air Force and regulatory agencies.

  4. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    SciTech Connect

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    {sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.

  5. Improvements of fuel failure detection in boiling water reactors using helium measurements

    SciTech Connect

    Larsson, I.; Sihver, L.; Grundin, A.; Helmersson, J. O.

    2012-07-01

    To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper. (authors)

  6. Measurement of fission gas release from irradiated Usbnd Mo dispersion fuel samples

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2016-09-01

    The uranium-molybdenum (Usbnd Mo) alloy dispersed in an Alsbnd Si matrix has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. In this paper, two irradiated samples containing 53.9 vol% U-7wt% Mo fuel particles dispersed in an Al-2wt% Si matrix were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Measurements revealed three distinct fission gas release events for the samples from 400 to 700 °C, as well as a number of minor fission gas releases below and above this temperature range. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature with exceptional agreement.

  7. Calculation of detection efficiency of the fiber-optic sensor to measure radioactive contamination using MCNP simulation

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Lee, Arim; Kim, Rinah; Park, Chan Hee; Moon, Joo Hyun

    2015-09-01

    In this paper, a fiber-optic radiation sensor (FORS) was developed to measure gamma rays from the radionuclides frequently found in radioactively contaminated soil. The sensing probe of the FORS was made of an inorganic (Lu,Y)2SiO5:Ce (LYSO:Ce) scintillator, a mixture of epoxy resin and hardener and a plastic fiber. The FORS was applied to measure gamma rays from Cs-137 source (1.1 μCi) in a disk shape. Also, MCNP simulation was performed for the same geometry as that in the experimental setup. Comparison between measurements by the FORS and MCNP simulation showed that the detection efficiency of the fiber-optic sensor was about 19.2%. The FORS is expected to be useful in measuring gamma rays from the radioactive soil at nuclear facility site.

  8. Post-injection transmission scans in a PET camera operating without septa with simultaneous measurement of emission activity contamination

    SciTech Connect

    Smith, R.J.; Karp, J.S.

    1996-08-01

    The authors report here on methods developed to reliably perform attenuation correction by post-injection transmission in a volume imaging PET scanner. The method directly measures the emission contamination during the transmission study, using a virtual transmission source position offset by 20{degree} from the actual {sup 68}Ge transmission source. Events are recorded only if they meet a co-linearity requirement with either the real or virtual source position. The simultaneous measurements of the emission contamination and transmission data remove the need for complex corrections to the emission data and are not subject to activity redistributions between emission and transmission scans performed sequentially. Correction is necessary, however, for the extra deadtime that varies with the amount of emission activity in the FOV. The extra deadtime is determined from a lookup table of deadtime as a function of detector countrates, which are recorded during the study. The lookup table is based upon phantom measurements. Using patient and phantom data, with both pre- and post-injection transmission measurements, this method is shown to be reliable for attenuation correction in the body. In addition, it enables the calculation of Standardized Uptake Values for analyzing tumor activity.

  9. Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid

    NASA Astrophysics Data System (ADS)

    Oliveira, S. M.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in vivo monitoring of 131I in the thyroid using portable surface contamination probes. Results show that all models evaluated in this work present enough sensitivity for the evaluation of accidental intakes.

  10. PNNL/Euratom glass fiber-optic, spent-fuel profile measurement system

    SciTech Connect

    Bowyer, S.M.; Smart, J.E.; Hansen, R.R.

    1999-07-01

    Discussions between Euratom and Pacific Northwest National Laboratory (PNNL) revealed a need for a neutron detection system that could measure the neutron profile down the entire length of a CASTOR in one measurement. The CASTORS (dry storage casks for spent fuel and vitrified wastes) are {approximately}6 m high and 2 x 2 m square in cross section. Neutron profiles of the CASTORS are desirable for both content identification and verification. Profile measurements have traditionally been done with {sup 3}He-based detectors {approximately}1 m high that scan the length of a CASTOR as they are lifted by a crane. Geometric reproducibility errors plague this type of measurement; hence, the ability to simultaneously measure the neutron profile over the entire length of the CASTOR became highly desirable. Use of the PNNL-developed neutron-sensitive glass fibers in the construction of a 6-m-high detector was proposed, and design and construction of the detector began.

  11. Spent-fuel cooling curve for safeguard applications of gross-gamma measurements

    SciTech Connect

    Rinard, P.

    1983-04-01

    Gross-gamma detectors can be used to gather data from spent-fuel assemblies in a simple and rapid manner. Using these data, inspectors can generate a power-law curve to check the consistency of the declared values with the measured values; points outside the curve indicate erroneously declared values or removal of material. Simple types of erroneously declared values can be detected immediately, whereas subtle types may require a second measurement and more subtle types may escape detection. If measurements of passive emissions of neutrons from the assemblies are made in addition to the gamma measurements, the values of the exposures and cooling times can be estimated independent of the operator-declared values. Although not yet demonstrated, it may be possible to obtain crude estimates of the exposures and cooling times from the gamma measurments alone.

  12. 40 CFR 1066.710 - Cold temperature testing procedures for measuring CO and NMHC emissions and determining fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR 86.1840 if a vehicle's climate control system is not compatible with the provisions of this... testing as specified 40 CFR Part 1065, subpart H. The temperature of the dispensed test fuel must be at or... for measuring CO and NMHC emissions and determining fuel economy. 1066.710 Section 1066.710...

  13. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces.

    PubMed

    Méheust, Delphine; Le Cann, Pierre; Reboux, Gabriel; Millon, Laurence; Gangneux, Jean-Pierre

    2014-08-01

    Indoor fungal contamination has been associated with a wide range of adverse health effects, including infectious diseases, toxic effects and allergies. The diversity of fungi contributes to the complex role that they play in indoor environments and human diseases. Molds have a major impact on public health, and can cause different consequences in hospitals, homes and workplaces. This review presents the methods used to assess fungal contamination in these various environments, and discusses advantages and disadvantages for each method in consideration with different health risks. Air, dust and surface sampling strategies are compared, as well as the limits of various methods are used to detect and quantify fungal particles and fungal compounds. In addition to conventional microscopic and culture approaches, more recent chemical, immunoassay and polymerase chain reaction (PCR)-based methods are described. This article also identifies common needs for future multidisciplinary research and development projects in this field, with specific interests on viable fungi and fungal fragment detections. The determination of fungal load and the detection of species in environmental samples greatly depend on the strategy of sampling and analysis. Quantitative PCR was found useful to identify associations between specific fungi and common diseases. The next-generation sequencing methods may afford new perspectives in this area. PMID:23586944

  14. Use of chironomids (Diptera: Chironomidae) as bioindicators of contaminant stress: Biochemical, chromosomal and developmental measures

    SciTech Connect

    Ciborowski, J.J.H.; Cervi, L.; Sinasac, D.; Pardalis, G.; Day, K.

    1995-12-31

    Sublethal environmental stresses produce effects ranging from subtle biochemical changes that protect an organism from damage, through developmental effects that interfere with growth and compromise fitness. Benthic chironomids live in intimate contact with the sediments to which most persistent chemicals are bound. Their short life cycle and unique developmental and genetic structure make them excellent candidates as biological indicators of stress. The authors evaluated the short and long-term responses of Chironomus riparius larvae to contaminants. To determine short-term stress responses, third and fourth instar Chironomus larvae were exposed to up to 1.5 {micro}L/g creosote or up to 100 {micro}g/g Cd for 12 h. Creosote-exposed larvae exhibited proteins of a molecular weight consistent with production of heat shock proteins of the HSP 70 family. Exposure to Cd induced significant enlargement of Balbiani Rings of the 4th chromosome in chironomid salivary glands, indicative of increased transcription of RNA precursors to salivary mucoproteins. Chironomus larvae individually reared from second instar larvae at [Cd] up to 40 {micro}g/g sediment exhibited increased incidence of mentum deformities, and delayed development that resulted in larger size at pupation. Thus deformities are biologically relevant indicators of stress. Overall, the results confirm the potential of chironomids as relevant bioindicators of contaminant stress.

  15. Atrazine Contamination in Water and the Impact on Amphibian Populations: A Bioassay That Measures Water Quality

    NASA Astrophysics Data System (ADS)

    Hayes, T. B.

    2001-12-01

    In recent laboratory studies, we showed that atrazine, a common herbicide, can inhibit metamorphosis, produce hermaphrodites, and inhibit male development in amphibians. In part, these effects are due to a decrease in androgen levels. These effects occur at ecologically relevant low doses (0.1 ppb), and the effective levels are below the current drinking level standard and below contaminant levels found even in rainfall in some areas. Thus, the impact of this widespread compound on free-ranging amphibians is a concern. We undertook a large-scale study to examine atrazine levels in a variety of habitats (temporary pools, rivers, lakes and ponds, and field runoff) across the US where atrazine is used and areas that report no atrazine use. Also, we collected amphibians at each site to examine them for developmental abnormalities. These ongoing studies will help determine the extent of atrazine contamination and its potential impact on amphibian populations. The concern for atrazine's impact is increased, because the mechanism through which the compound produces this effect (inhibition of androgen production) is commonly observed in fish, reptiles and mammals in addition to amphibians, although amphibians appear to sensitive at much lower doses. Thus, effects on amphibians may indicate a much broader impact.

  16. Contamination of environmental surfaces by Staphylococcus aureus in a dermatological ward and its preventive measures.

    PubMed

    Oie, Shigeharu; Yanagi, Chikashige; Matsui, Hiroto; Nishida, Tomoko; Tomita, Masaaki; Kamiya, Akira

    2005-01-01

    We investigated contamination of environmental surfaces by Staphylococcus aureus from April 1 to the end of June in 2002 in the dermatological ward (37 beds) of a university hospital. For surfaces contaminated by high levels of S. aureus, disinfection methods were evaluated. 100-10(5) colony forming units (cfu) of methicillin-resistant S. aureus (MRSA) or methicillin-sensitive S. aureus (MSSA) were detected on items such as an immersion bathtub (examined area, about 900 cm2), foot washbowl, stretcher for an immersion bath, and chair for the shower. After disinfection, no S. aureus was detected on smooth surfaces such as the immersion bathtub and foot washbowl; however, S. aureus was detected even after disinfection on porous surfaces made of sponge-like materials (polyethylene foam) such as the stretcher for the immersion bath and the shower chair. Scanning electron microscopy of the porous surfaces showed formation of a large amount of coccus and bacillus biofilms on the walls of pores in the multi-pore structure. Material that is porous should not be used in patient care settings because it is not possible to disinfect it properly. PMID:15635175

  17. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    SciTech Connect

    Rosman, L.B.; Barrows, E.S.

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  18. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    SciTech Connect

    Orechwa, Y.; Bucher, R.G.

    1994-08-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software.

  19. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  20. Single particle refuse-derived fuel devolatilization: Experimental measurements of reaction products

    SciTech Connect

    Lai, Weichuan; Krieger-Brockett, B. . Dept. of Chemical Engineering)

    1993-11-01

    The authors present experimentally measured devolatilization product yields from single particles of refuse-derived fuel (RDF), a more uniform, transportable municipal solid waste. Disposal costs and environmental concerns have stimulated interest in thermochemical conversion of this material to chemicals and fuels. The composition, reaction conditions, and particle properties were systematically varied over the range found in practice to develop quantitative measures that rank the process controllables' influence on altering the product slate. Specialized regression methods and experimental designs enhanced the accuracy in view of the feed heterogeneity and offer a general method to extract real effects from experimental and sample noise''. The results have been verified successfully using actual commercial RDF and fabricated compositions that surpass those normally found in municipal waste to anticipate the influence of trends in recycling. The results show that the reaction conditions have a greater influence on altering fuel utilization and the relative yields of char, condensibles, and gases than does the composition over the range found in MSW and RDF.

  1. Analysis of MERCI decay heat measurement for PWR UO{sub 2} fuel rod

    SciTech Connect

    Jaboulay, J.C.; Bourganel, S.

    2012-01-15

    Decay heat measurements, called the MERCI experiment, were conducted at Commissariat a l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAIC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO{sub 2} fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was similar to 3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAIC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Post irradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min otter shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ± 1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 10{sup 5} s has not been validated previously. (authors)

  2. Monitoring shipping fuel sulfur content regulations with in-situ measurements of shipping emissions

    NASA Astrophysics Data System (ADS)

    Kattner, Lisa; Mathieu-Ueffing, Barbara; Seyler, André; Aulinger, Armin; Burrows, John; Matthias, Volker; Neumann, Daniel; Richter, Andreas; Schmolke, Stefan; Theobald, Norbert; Wittrock, Folkard

    2015-04-01

    Air pollution from shipping emissions contributes to overall air quality problems and has direct health effects on the population especially in coastal regions and harbor cities. In order to reduce these emissions the International Maritime Organisation (IMO) has tightened the regulations for air pollution from ships. Since January 1st 2015, the allowed amount of sulfur in shipping fuel which is responsible for SO2 emissions, has dropped from 1% to 0,1% in the Emission Control area (ECA) that combines the North Sea and Baltic Sea. This effectively excludes the use of heavy fuel oils by ships in this area. However, until now there is no regular monitoring system available to verify that ships are complying with these new regulations. The project MeSMarT (Measurements of shipping emissions in the marine troposphere) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with the support of the Helmholtz-Zentrum Geesthacht to estimate the influence of shipping emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Within the project, several hundred ships have been monitored with focus on their sulfur fuel content, which is estimated by the ratio of SO2 and CO2, both measured with in-situ instruments from measurement stations near the passing ships. It is shown how well ships have been complying to the sulfur content regulation so far and which ships and how many are affected by the new regulations. Three different measurement sites, ranging from measurements near the Elbe River to open sea measurements from a research vessel are compared to show if the distance to the coast has an effect on the fuel quality. First results from very recent measurements of 2015 will be presented to show how the new regulations are implemented and how this will result in reduced SO2 and thus better

  3. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    SciTech Connect

    Marshall, Margaret A.; Bess, John D.

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O2 fuel mockup of a potassium-cooled space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario

  4. Isolation and microscopic characterization of nuclear fuel particles from contaminated soil of ChernobylSéparation et caractérisation microscopique des particules de combustible nucléaire présentes dans les sols contaminés de Tchernobyl

    NASA Astrophysics Data System (ADS)

    Ahamdach, Noureddine; Stammose, Denise

    2000-03-01

    Nuclear fuel particles were separated from Chernobyl contaminated soil sample by sedimentation in bromoform. Their physicochemical characteristics were studied using the scanning electron microscope. One part of the particles contained U and O and the other part contained U, Zr and O. The size of the particles containing Zr was greater than that of the pure fuel particles. The structure and the surface morphology of the studied particles were variable and characterized the conditions of their formation. Thus, the source term is heterogeneous. This heterogeneity has direct consequences on the dissolution of the fuel particles.

  5. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  6. Three-Dimensional Measurements of Fuel Distribution in High-Pressure, High- Temperature, Next-Generation Aviation Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.

    1998-01-01

    In our world-class, optically accessible combustion facility at the NASA Lewis Research Center, we have developed the unique capability of making three-dimensional fuel distribution measurements of aviation gas turbine fuel injectors at actual operating conditions. These measurements are made in situ at the actual operating temperatures and pressures using the JP-grade fuels of candidate next-generation advanced aircraft engines for the High Speed Research (HSR) and Advanced Subsonics Technology (AST) programs. The inlet temperature and pressure ranges used thus far are 300 to 1100 F and 80 to 250 psia. With these data, we can obtain the injector spray angles, the fuel mass distributions of liquid and vapor, the degree of fuel vaporization, and the degree to which fuel has been consumed. The data have been used to diagnose the performance of injectors designed both in-house and by major U.S. engine manufacturers and to design new fuel injectors with overall engine performance goals of increased efficiency and reduced environmental impact. Mie scattering is used to visualize the liquid fuel, and laser-induced fluorescence is used to visualize both liquid and fuel vapor.

  7. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  8. Detailed measurements in the SSME high pressure fuel turbine with smooth rotor blades

    NASA Astrophysics Data System (ADS)

    Hudson, Susan T.

    1993-07-01

    Several tests of the Rocketdyne configuration of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) Turbine have been completed in the Turbine Test Equipment (TTE) at Marshall Space Flight Center. The tests involved using scaled performance parameters and model measurements to predict the performance of the turbine. The overall performance has been the primary objective of the tests to date, but more detailed measurements are also of interest. During the most recent test of the Rocketdyne configuration of the HPFTP turbine with smooth rotor blades, several different measurement techniques were used to study the turbine inlet and exit velocity profiles, boundary layer thicknesses, turbulence intensities, etc. Data has been obtained using various hot film probes and three-hole cobra probes. Laser Velocimeter measurements were also made. The test plan and test data will be presented and discussed as well as lessons learned on how to obtain the various types of data.

  9. Detailed measurements in the SSME high pressure fuel turbine with smooth rotor blades

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.

    1993-01-01

    Several tests of the Rocketdyne configuration of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) Turbine have been completed in the Turbine Test Equipment (TTE) at Marshall Space Flight Center. The tests involved using scaled performance parameters and model measurements to predict the performance of the turbine. The overall performance has been the primary objective of the tests to date, but more detailed measurements are also of interest. During the most recent test of the Rocketdyne configuration of the HPFTP turbine with smooth rotor blades, several different measurement techniques were used to study the turbine inlet and exit velocity profiles, boundary layer thicknesses, turbulence intensities, etc. Data has been obtained using various hot film probes and three-hole cobra probes. Laser Velocimeter measurements were also made. The test plan and test data will be presented and discussed as well as lessons learned on how to obtain the various types of data.

  10. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

    SciTech Connect

    Not Available

    1994-06-01

    The procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 d in 300 ml chambers containing 100 ml of sediment and 175 ml of overlying water. Overlying water is renewed daily and test organisms are fed during the toxicity tests. The endpoint in the toxicity test with H. azteca is survival and the endpoints in the toxicity test with C. tentans are survival and growth. Procedures are primarily described for testing freshwater sediments; however, estaurine sediments (up to 15%) can also be tested with H. azteca. Guidance for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual.

  11. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris.

    PubMed

    Gauquie, Johanna; Devriese, Lisa; Robbens, Johan; De Witte, Bavo

    2015-11-01

    Chemical compounds present on plastic were characterised on different types of plastic litter and beached pellets, using a general GC-MS screening method. A variety of plastic related compounds, such as building blocks, antioxidants, additives and degradation products, were identified next to diverse environmental pollutants and biofilm compounds. A validated method for the analysis of PAHs and PCBs on beached pellets at the Belgian Coast, showed concentrations of ∑ 16 EPA-PAHs of 1076-3007 ng g(-1) plastic, while the concentrations of ∑ 7 OSPAR-PCBs ranged from 31 to 236 ng g(-1) plastic. The wide variety of plastic compounds retrieved in the general screening showed the importance of plastic as a potential source of contaminants and their degradation products. PMID:26126190

  12. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  13. Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners

    SciTech Connect

    Serne, R.J.; Peterson, S.R.; Gee, G.W.

    1983-04-01

    We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

  14. Radioactive contamination processes during 14-21 March after the Fukushima accident: What does atmospheric electric field measurements tell us?

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Yamauchi, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-04-01

    Ionizing radiation from the radioactive material is known to increase atmospheric electric conductivity, and hence to decrease vertical downward atmospheric DC electric field at ground level, or potential gradient (PG). In the past, the drop of PG has been observed after rain-induced radioactive fallout (wet contamination) after nuclear tests or after the Chernobyl disaster. After the nuclear accident Fukushima Dai-ichi nuclear power plant (FNPP) that started 11 March 2011, the PG also at Kakioka, 150 km southwest from the FNPP, also dropped a by one order of magnitude. Unlike the past examples, the PG drop was two-stepped on 14 March and 20 March. Both correspond to two largest southward release of radioactive material according to the data from the radiation dose rate measurement network. We compare the Kakioka's PG data with the radiation dose rate data at different places to examine the fallout processes of both on 14 March and on 20 March. The former turned out to be dry contamination by surface wind, leaving a substantial amount of fallout floating near the ground. The latter turned out to be wet contamination by rain after transport by relatively low-altitude wind, and the majority of the fallout settled to the ground at this time. It is recommended that all nuclear power plant to have a network of PG observation surrounding the plant. Takeda, et al. (2011): Initial effect of the Fukushima accident on atmospheric electricity, Geophys. Res. Lett., 38, L15811, doi:10.1029/2011GL048511. Yamauchi, et al. (2012): Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement, Ann. Geophys., 30, 49-56, doi:10.5194/angeo-30-49-2012.

  15. In situ membrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses

    SciTech Connect

    Buechi, F.N.; Scherer, G.G.; Marek, A.

    1995-06-01

    A solid-state current Pulse generator for in situ membrane resistance measurements by superimposed square current pulses in polymer electrolyte fuel cells was designed and built. The choice of the measuring technique and of parameters of the instrumentation was based on a critical analysis of the relevant electrochemical and physical processes. The inductance of the current pulse path is very low ({approx}5 nH), because the last stage of the generator is directly attached to the fuel cell. This low inductance -permits the generation of 5 A pulses with extremely fast (decay time {<=}5 ns) trailing edges (accompanied by a moderate ringing), which in turn makes it possible to measure the voltage transient induced by the current decay, with gigahertz resolution. The voltage transient is analyzed in a time window of 200 to 700 ns after the end of the pulse. By measurements in this time window, it is possible to separate accurately the ohmic series resistance of the cell (membrane resistance) from the other over potentials at the electrochemical interfaces. Because the pulse current path is independent of the dc loop, the resistance can be measured independently of the dc value, i.e., at open circuit and under high current density conditions. The instrument was tested, and the results were analyzed for accuracy. Resistances down to 2 m{Omega} can be measured with an error of <5%. The influence of the pulse length and pulse amplitude on the cell voltage response was also investigated. For cell resistances in the order of few milliohms, a current pulse amplitude of 5 A is the minimum requirement for accurate measurements.

  16. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  17. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    SciTech Connect

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  18. Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions

    SciTech Connect

    Aho, K.; Vakkilainen, E. ); Hupa, M. . Chemical Engineering Dept.)

    1994-05-01

    Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

  19. Solid state track recorder neutron dosimetry measurements for fuel debris assessment of TMI-2 demineralizer-A

    SciTech Connect

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.; Ulseth, J.A.

    1982-12-01

    Solid State Track Recorder (SSTR) neutron dosimetry measurements have been made in TMI-2 makeup Demineralizer A Cubicle in order to assess the amount of fuel debris present by means of the specific neutron activity of TMI-2 fuel. Based on recent calibration data and the results of the TMI-2 SSTR neutron dosimetry, the amount of fuel present is estimated to be 1.7 +- 0.6 kg. This value is in excellent agreement with a value determined independently by Compton recoil gamma-ray spectrometry. Sources of uncertainty in and proposed refinements of the present SSTR measurements are discussed.

  20. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.