Sample records for meca instrument suite

  1. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  2. Compositional Analysis of Martian Soil: Synergism of APEX and MECA Experiments on MPS 2001

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Marshall, J.

    1999-01-01

    The APEX (ATHENA Precursor Experiment) payload for the Mars 2001 mission will analyze soil and dust with a multispectral panoramic imager and an emission spectrometer on a mast on the lander, a Moessbauer spectrometer on the lander robotic arm (RA), and APXS measurements on the Marie Curie rover. These analytical methods will provide data on elemental abundances and mineralogy. The MECA payload on the lander will apply microscopy, AFM, wet chemistry, adhesive substrates, and electrometry to determine the shape and size of particles in the soil and dust, the presence of toxic substances, and electrostatic, magnetic, and hardness qualities of particles. The two experiments will complement one another through several interactions: (1) The panoramic imager provides the geological setting in which both APEX and MECA samples are acquired, (2) The RA provides samples to MECA from the surface and subsurface and will permit APEX analytical tools access to materials below the immediate surface, (3) Comparisons can be made between elemental analyses of the Moessbauer, IR, APXS on APEX and the wet chemistry of MECA which will define trace elements (ionic species in solution) and soil redox potential and conductivity. (4) APEX bulk compositional measurements will place MECA trace measurements in context, and similarly, MECA microscopy will provide particle size data that may correlate with compositional differences determined by the APEX instruments. Additionally, lithic fragments viewed by the MECA microscope station should correlate with mineral/rock species inferred by APEX data, (5) If APEX instruments detect quartz for example, the scratch plates of the MECA microscope stage will define if a mineral of this hardness is registered during abrasion tests. This is by no means an exhaustive list of potential interactions, but it is clear that both the sheer number of analytical techniques and their complementarity should provide an analytically powerful capability for both

  3. Mars Environmental Compatibility Assessment (MECA): Identifying the Hazards of the Martian Soil

    NASA Technical Reports Server (NTRS)

    Meloy, T. P.; Hecht, M. H.; Anderson, M. S.; Frant, M. A.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.; Pike, W. T.; Quate, C. F.

    1999-01-01

    Sometime in the next decade NASA will decide whether to send a human expedition to explore the planet Mars. The Mars Environmental Compatibility Assessment (MECA) has been selected by NASA to evaluate the Martian environment for soil and dust hazards to human exploration. The integrated MECA payload contains three elements: a wet-chemistry laboratory, a microscopy station, and enhancements to a lander robot-arm system incorporating arrays of material patches and an electrometer to identify triboelectric charging during soil excavation. The wet-chemistry laboratory will evaluate samples of Martian soil in water to determine the total dissolved solids, redox potential, pH, and quantify the concentration of many soluble ions using ion-selective electrodes. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. MECA's microscopy station combines optical and atomic-force microscopy with a robot-arm camera to provide imaging over nine orders of magnitude, from meters to nanometers. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined on the microscope stage using an ar-ray of sample receptacles and collection substrates, and an abrasion tool,. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Although selected by NASA's Human Exploration and Development of Space Enterprise, the MECA instrument suite also has the capability to address basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogical, petrological, and reactivity of Martian surface materials should be constrained: the NMCA experiment will shed light on these quantities through its combination of chemistry and microscopy. On Earth, the earliest forms of life are

  4. Soil Analysis Micro-Mission Concepts Derived from the MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples

  5. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Grannan, S. M.; Frant, M.; Hecht, M. H.; Kounaves, S. P.; Manatt, K.; Meloy, T. P.; Pike, W. T.; Schubert, W.; West, S.; Wen, X.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry laboratory (WCL). The WCL consists of four identical cells, each of which will evaluate a sample of Martian soil in water to determine conductivity, pH, redox potential, dissolved C02 and 02 levels, and concentrations of many soluble ions including sodium, potassium, magnesium, calcium and the halides. In addition, cyclic voltammetry will be used to evaluate reversible and irreversible oxidants present in the water/soil solution. Anodic stripping voltammetry will be used to measure concentrations of trace metals including lead, copper, and cadmium at ppb levels. Voltammetry is a general electrochemical technique that involves controlling the potential of an electrode while simultaneously measuring the current flowing at that electrode. The WCL experiments will provide information on the corrosivity and reactivity of the Martian soil, as well as on soluble components of the soil which might be toxic to human explorers. They will also guide HEDS scientists in the development of high fidelity Martian soil simulants. In the process of acquiring information relevant to HEDS, the WCL will assess the chemical composition and properties of the salts present in the Martian soil.

  6. Compositional Analysis of Martian Soil: Synergism of APEX and MECA Experiments on MPS 2001

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Marshall, J.

    1999-01-01

    The APEX (ATHENA Precursor Experiment) payload for the Mars 2001 mission will analyze soil and dust with a multispectral panoramic imager and an emission spectrometer on a mast on the lander, a Moessbauer spectrometer on the lander robotic arm (RA), and APXS measurements on the Marie Curie rover. These analytical methods will provide data on elemental abundances and mineralogy. The MECA payload on the lander will apply microscopy, AFM, wet chemistry, adhesive substrates, and electrometry to determine the shape and size of particles in the soil and dust, the presence of toxic substances, and electrostatic, magnetic, and hardness qualities of particles. The two experiments will complement one another through several interactions: (1) The panoramic imager provides the geological setting in which both APEX and MECA samples are acquired, (2) The RA provides samples to MECA from the surface and subsurface and will permit APEX analytical tools access to materials below the inunediate surface, (3) Comparisons can be made between elemental analyses of the Moessbauer, IR, APXS on APEX and the wet chemistry of MECA which will define trace elements (ionic species in solution) and soil redox potential and conductivity. (4) APEX bulk compositional measurements will place MECA trace measurements in context, and similarly, MECA microscopy will provide particle size data that may correlate with compositional differences determined by the APEX instruments. Additionally, lithic fragments viewed by the NMCA microscope station should correlate with mineral/rock species inferred by APEX data, (5) If APEX instruments detect quartz for example, the scratch plates of the N4ECA microscope stage will define if a mineral of this hardness is registered during abrasion tests. This is by no means an exhaustive list of potential interactions, but it is clear that both the sheer number of analytical techniques and their complementarity should provide an analytically powerful capability for both

  7. The Mars Environmental Compatibility Assessment (MECA) Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J. R.; Meloy, T. P.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere themselves to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs' hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated

  8. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  9. The MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.

  10. The MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil

  11. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  12. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-01-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  13. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  14. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  15. The Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Meloy, Thomas P.; Marshall, John; Hecht, Michael

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite

  16. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  17. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  18. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  19. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  20. The Characterization of Biosignatures in Caves Using an Instrument Suite.

    PubMed

    Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.

  1. Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew

    2012-01-01

    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).

  2. Distribution of oral mucosal bacteria with mecA in patients undergoing hematopoietic cell transplantation.

    PubMed

    Ebinuma, Takayuki; Soga, Yoshihiko; Sato, Takamaro; Matsunaga, Kazuyuki; Kudo, Chieko; Maeda, Hiroshi; Maeda, Yoshinobu; Tanimoto, Mitsune; Takashiba, Shogo

    2014-06-01

    We recently reported frequent detection of antibiotic-resistant bacteria on the oral mucosa during the period of hematopoietic cell transplantation (HCT) and suggested an association between oral mucositis and antibiotic-resistant bacterial infection. Methicillin-resistant Staphylococcus spp. were frequently detected, and the oral cavity may be a reservoir of the gene mediating methicillin resistance, mecA. Here, we examined the frequency of mecA carriers in patients undergoing HCT. Fifty-nine patients (male (M) = 37, female (F) = 22, 47.3 ± 11.0 years) receiving HCT were enrolled in this study. Buccal swab samples were obtained four times from day -7 to day +20 (once/week), and mecA was detected by PCR. Fifty-two subjects without systemic disease, who completed dental treatment, especially periodontal treatment (M = 21, F = 31, 55.4 ± 14.2 years), were also enrolled as controls and checked for mecA on the oral mucosa. Seventy-six percent (45/59) of the HCT patients carried mecA at least once in the study period (days -7 to +20), while no control subjects had mecA. The frequency of mecA carriers was 19.2 % from days -7 to -1, while it was significantly increased on days +7 to +13 and +14 to +20, with frequencies of 60.9 and 63.2 %, respectively (P < 0.01, ANOVA). mecA was detected in oral mucosa of patients undergoing HCT. The high detection frequency of staphylococci resistant to penicillin and beta-lactams in our recent report was supported.

  3. Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method.

    PubMed

    Koide, Y; Maeda, H; Yamabe, K; Naruishi, K; Yamamoto, T; Kokeguchi, S; Takashiba, S

    2010-04-01

    To develop a detection assay for staphylococcal mecA and spa by using loop-mediated isothermal amplification (LAMP) method. Staphylococcus aureus and other related species were subjected to the detection of mecA and spa by both PCR and LAMP methods. The LAMP successfully amplified the genes under isothermal conditions at 64 degrees C within 60 min, and demonstrated identical results with the conventional PCR methods. The detection limits of the LAMP for mecA and spa, by gel electrophoresis, were 10(2) and 10 cells per tube, respectively. The naked-eye inspections were possible with 10(3) and 10 cells for detection of mecA and spa, respectively. The LAMP method was then applied to sputum and dental plaque samples. The LAMP and PCR demonstrated identical results for the plaque samples, although frequency in detection of mecA and spa by the LAMP was relatively lower for the sputum samples when compared to the PCR methods. Application of the LAMP enabled a rapid detection assay for mecA and spa. The assay may be applicable to clinical plaque samples. The LAMP offers an alternative detection assay for mecA and spa with a great advantage of the rapidity.

  4. Soil on Phoenix's MECA

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008).

    At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute.

    On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel.

    One of Phoenix's solar panels is shown in the background of this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. The Inelastic Instrument suite at the SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E; Abernathy, Douglas L; Ehlers, Georg

    2008-01-01

    Abstract The instruments in the extensive suite of spectrometers at the SNS are in various stages of installation and commissioning. The Back Scattering Spectrometer (BASIS) is installed and is in commissioning. It's near backscattering analyzer crystals provide the 3 eV resolution as expected. BASIS will enter the user program in the fall of 2007. The ARCS wide angular-range thermal to epithermal neutron spectrometer will come on line in the fall of 2007 followed shortly by the Cold Neutron Chopper Spectrometer. These two direct geometry instruments provide moderate resolution and the ability to trade resolution for flux. In addition both instrumentsmore » have detector coverage out to 140o to provide a large Q range. The SEQUOIA spectrometer, complete in 2008, is the direct geometry instrument that will provide fine resolution in the thermal to epithermal range. The Spin-Echo spectrometer, to be completed on a similar time scale, will provide the finest energy resolution worldwide. The HYSPEC spectrometer, available no later than 2011, will provide polarized capabilities and optimized flux in the thermal energy range. Finally, the Vision chemical spectrometer will use crystal analyzers to study energy transfers into the epithermal range« less

  6. Stimulation of ANP secretion by 2-Cl-IB-MECA through A(3) receptor and CaMKII.

    PubMed

    Yuan, Kuichang; Bai, Guang Yi; Park, Woo Hyun; Kim, Sung Zoo; Kim, Suhn Hee

    2008-12-01

    Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.

  7. Instrumentation at Paranal Observatory: maintaining the instrument suite of five large telescopes and its interferometer alive

    NASA Astrophysics Data System (ADS)

    Gillet, Gordon; Alvarez, José Luis; Beltrán, Juan; Bourget, Pierre; Castillo, Roberto; Diaz, Álvaro; Haddad, Nicolás; Leiva, Alfredo; Mardones, Pedro; O'Neal, Jared; Ribes, Mauricio; Riquelme, Miguel; Robert, Pascal; Rojas, Chester; Valenzuela, Javier

    2010-07-01

    This presentation provides interesting miscellaneous information regarding the instrumentation activities at Paranal Observatory. It introduces the suite of 23 instruments and auxiliary systems that are under the responsibility of the Paranal Instrumentation group, information on the type of instruments, their usage and downtime statistics. The data is based on comprehensive data recorded in the Paranal Night Log System and the Paranal Problem Reporting System whose principles are explained as well. The work organization of the 15 team members around the high number of instruments is laid out, which includes: - Maintaining older instruments with obsolete components - Receiving new instruments and supporting their integration and commissioning - Contributing to future instruments in their developing phase. The assignments of the Instrumentation staff to the actual instruments as well as auxiliary equipment (Laser Guide Star Facility, Mask Manufacturing Unit, Cloud Observation Tool) are explained with respect to responsibility and scheduling issues. The essential activities regarding hardware & software are presented, as well as the technical and organizational developments within the group towards its present and future challenges.

  8. Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody.

    PubMed

    Bruehl, R E; Bertozzi, C R; Rosen, S D

    2000-10-20

    Sulfated forms of sialyl-Le(X) containing Gal-6-SO(4) or GlcNAc-6-SO(4) have been implicated as potential recognition determinants on high endothelial venule ligands for L-selectin. The optimal configuration of sulfate esters on the N-acetyllactosamine (Galbeta1-->4GlcNAc) core of sulfosialyl-Le(X), however, remains unsettled. Using a panel of sulfated lactose (Galbeta1-->4Glc) neoglycolipids as substrates in direct binding assays, we found that 6',6-disulfolactose was the preferred structure for L-selectin, although significant binding to 6'- and 6-sulfolactose was observed as well. Binding was EDTA-sensitive and blocked by L-selectin-specific monoclonal antibodies. Surprisingly, 6', 6-disulfolactose was poorly recognized by MECA-79, a carbohydrate- and sulfate-dependent monoclonal antibody that binds competitively to L-selectin ligands. Instead, MECA-79 bound preferentially to 6-sulfolactose. The difference in preferred substrates between L-selectin and MECA-79 may explain the variable activity of MECA-79 as an inhibitor of lymphocyte adhesion to high endothelial venules in lymphoid organs. Our results suggest that both Gal-6-SO(4) and GlcNAc-6-SO(4) may contribute to L-selectin recognition, either as components of sulfosialyl-Le(X) capping groups or in internal structures. By contrast, only GlcNAc-6-SO(4) appears to contribute to MECA-79 binding.

  9. Characterization of a complex context containing mecA but lacking genes encoding cassette chromosome recombinases in Staphylococcus haemolyticus

    PubMed Central

    2013-01-01

    Background Methicillin resistance determinant mecA is generally transferred by SCCmec elements. However, the mecA gene might not be carried by a SCCmec in a Staphylococcus haemolyticus clinical isolate, WCH1, as no cassette chromosome recombinase genes were detected. Therefore, the genetic context of mecA in WCH1 was investigated. Results A 40-kb region containing mecA was obtained from WCH1, bounded by orfX at one end and several orfs of S. haemolyticus core chromosome at the other. This 40-kb region was very complex in structure with multiple genetic components that appeared to have different origins. For instance, the 3.7-kb structure adjacent to orfX was almost identical to that on the chromosome of Staphylococcus epidermidis RP62a but was absent from S. haemolyticus JCSC1435. Terminal inverted repeats of SCC were found but no ccr genes could be detected. mecA was bracketed by two copies of IS431, which was flanked by 8-bp direct target repeat sequence (DR). Conclusions The presence of 8-bp DR suggests that the two copies of IS431 might have formed a composite transposon for mobilizing mecA. This finding is of significance as multiple copies of IS431 are commonly present in the contexts of mecA, which might have the potential to form various composite transposons that could mediate the mobilization of mecA. This study also provides an explanation for the absence of ccr in some staphylococci isolates carrying mecA. PMID:23521926

  10. Characterization of a complex context containing mecA but lacking genes encoding cassette chromosome recombinases in Staphylococcus haemolyticus.

    PubMed

    Zong, Zhiyong

    2013-03-22

    Methicillin resistance determinant mecA is generally transferred by SCCmec elements. However, the mecA gene might not be carried by a SCCmec in a Staphylococcus haemolyticus clinical isolate, WCH1, as no cassette chromosome recombinase genes were detected. Therefore, the genetic context of mecA in WCH1 was investigated. A 40-kb region containing mecA was obtained from WCH1, bounded by orfX at one end and several orfs of S. haemolyticus core chromosome at the other. This 40-kb region was very complex in structure with multiple genetic components that appeared to have different origins. For instance, the 3.7-kb structure adjacent to orfX was almost identical to that on the chromosome of Staphylococcus epidermidis RP62a but was absent from S. haemolyticus JCSC1435. Terminal inverted repeats of SCC were found but no ccr genes could be detected. mecA was bracketed by two copies of IS431, which was flanked by 8-bp direct target repeat sequence (DR). The presence of 8-bp DR suggests that the two copies of IS431 might have formed a composite transposon for mobilizing mecA. This finding is of significance as multiple copies of IS431 are commonly present in the contexts of mecA, which might have the potential to form various composite transposons that could mediate the mobilization of mecA. This study also provides an explanation for the absence of ccr in some staphylococci isolates carrying mecA.

  11. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  12. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. The Characterization of Biosignatures in Caves Using an Instrument Suite

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.

  14. Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick; hide

    2017-01-01

    The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status

  15. Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP).

    PubMed

    Chen, Changguo; Zhao, Qiangyuan; Guo, Jianwei; Li, Yanjun; Chen, Qiuyuan

    2017-08-01

    The aim of this study was to develop a rapid detection assay to identify methicillin-resistant Staphylococcus aureus by simultaneous testing for the mecA, nuc, and femB genes using the loop-mediated isothermal amplification (LAMP) method. LAMP primers were designed using online bio-software ( http://primerexplorer.jp/e/ ), and amplification reactions were performed in an isothermal temperature bath. The products were then examined using 2% agarose gel electrophoresis. MecA, nuc, and femB were confirmed by triplex TaqMan real-time PCR. For better naked-eye inspection of the reaction result, hydroxy naphthol blue (HNB) was added to the amplification system. Within 60 min, LAMP successfully amplified the genes of interest under isothermal conditions at 63 °C. The results of 2% gel electrophoresis indicated that when the Mg 2+ concentration in the reaction system was 6 μmol, the amplification of the mecA gene was relatively good, while the amplification of the nuc and femB genes was better at an Mg 2+ concentration of 8 μmol. Obvious color differences were observed by adding 1 μL (3.75 mM) of HNB into 25 μL reaction system. The LAMP assay was applied to 128 isolates cases of methicillin-resistant Staphylococcus aureus, which were separated from the daily specimens and identified by Vitek microbial identification instruments. The results were identical for both LAMP and PCR. LAMP offers an alternative detection assay for mecA, nuc, and femB and is faster than other methods.

  16. In vitro transfer of methicillin resistance determinants mecA from methicillin resistant Staphylococcus aureus (MRSA) to methicillin susceptible Staphylococcus aureus (MSSA).

    PubMed

    Bitrus, Asinamai Athliamai; Zunita, Zakaria; Bejo, Siti Khairani; Othman, Sarah; Nadzir, Nur Adilah Ahmad

    2017-04-04

    Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. This study was designed to investigate the in vitro transfer of mecA gene from methicillin resistant S. aureus to methicillin susceptible S. aureus. The recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively. In this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.

  17. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Genetic analysis of mecA gene and detection of homologue pbpD in Stahylococcus sciuri group

    PubMed Central

    Calazans-Silva, Amanda C.; Medeiros, Pedro T.C.; Araujo, Dayanne M.; Carvalho, Bruno O.; Coelho, Irene S.; Coelho, Shana M.O.; Souza, Miliane M.S.

    2014-01-01

    Oxacillin/methicillin-resistance is related to the mecA and its regulatory genes mecR1 and mecI. Its origin is still unknown, although evidences support that it is related to CNS, once mecA and a homologue gene, pbpD, were both detected in Staphylococcus sciuri species group. The present work evaluated 210 samples of skin and ear swabs from rodents and 60 nasal swabs from equines of Army Biologic Institute, Rio de Janeiro. Pheno- and genotypic characterization provided 59.52% (25/42) and 78.57% (11/14) S. lentus and S. sciuri, respectively. It was observed that although all S. sciuri isolates tested positive for pbpD, there was no correlation with oxacillin-resistance. On the other hand, isolates tested positive for mecA gene also presented phenotypic oxacillin-resistance in at least one assay. The alignment of the mecA gene showed that the nucleotide sequences were sorted into 2 different groups, one comprising the bovine strains and the other containing human and equine strains. PMID:25242954

  19. Study of a Martian Aeolian Sand Analog with MECA Microscopy

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Kuhlman, K.; Stevens, R.; Meyyappan, M.

    2001-01-01

    MECA microscopy (built for Mars '01) is simulated to show the potential of in situ microscopic analyses of surface materials on Mars. In particular, the value of nanotechnology is demonstrated. Additional information is contained in the original extended abstract.

  20. MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

    2004-01-01

    Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

  1. Detection of meca gene from methicillin resistant staphylococcus aureus isolates of north sumatera

    NASA Astrophysics Data System (ADS)

    Septiani Nasution, Gabriella; Suryanto, Dwi; Lia Kusumawati, R.

    2018-03-01

    Methicillin Resistant Staphylococcus aureus (MRSA) is a major pathogen associated with hospital-acquired infections (nosocomial infections). MRSA is a type of S. aureus resistant to the sub-group of beta-lactam antibiotics such as penicillin, cephalosporin, monobactam, and carbapenem. MRSA is resistant because of genetic changes caused by exposure to irrational antibiotic therapy. This study aimed to detect mecA gene in North Sumatra isolates of MRSA and to determine the pattern of antibiotic resistance in S.aureus isolates classified as MRSA by Vitek 2 Compact in the Central Public Hospital Haji Adam Malik, Medan. Samples were 40 isolates of S. aureus classified as MRSA obtained from clinical microbiology specimens. DNA isolation of the isolates was conducted by a method of freeze-thaw cycling. Amplification of mecA gene was done by PCR technique using specific primer for the gene. PCR products were visualized using mini-gel electrophoresis. The results showed that all MRSA isolates showed to have 533 bp band of mecA. Antibiotics test of Vitek 2 Compact showed that despite all isolates were resistant to beta-lactam antibiotics groups; the isolates showed multidrug resistant to other common antibiotics, such as aminoglycosides, macrolides, and fluoroquinolones. However, they were still sensitive to vancomycin (82.5% isolates), linezolid (97.5% isolates), and tigecycline (100% isolates).

  2. Sulfation-dependent recognition of high endothelial venules (HEV)- ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody

    PubMed Central

    1994-01-01

    L-selectin is a lectin-like receptor that mediates the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes during the process of lymphocyte recirculation. Two sulfated, mucin-like glycoproteins known as Sgp50/GlyCAM-1 and Sgp90/CD34 have previously been identified as HEV-associated ligands for L-selectin. These proteins were originally detected with an L-selectin/Ig chimera called LEC-IgG. GlyCAM-1 and CD34 are also recognized by an antiperipheral node addressin (PNAd) mAb called MECA 79, which blocks L-selectin- dependent adhesion and selectively stains lymph node HEV. The present study compares the requirements for the binding of MECA 79 and LEC-IgG to HEV-ligands. Whereas desialylation of GlyCAM-1 and CD34 drastically reduced binding to LEC-IgG, this treatment enhanced the binding of GlyCAM-1 to MECA 79. In contrast, the binding of both MECA 79 and LEC- IgG to GlyCAM-1 and CD34 was greatly decreased when the sulfation of these ligands was reduced with chlorate, a metabolic inhibitor of sulfation. Because MECA 79 stains HEV-like vessels at various sites of inflammation, recognition by L-selectin of ligands outside of secondary lymphoid organs may depend on sulfation. In addition to their reactivity with GlyCAM-1 and CD34, both MECA 79 and LEC-IgG recognize an independent molecule of approximately 200 kD in a sulfate-dependent manner. Thus, this molecule, which we designate Sgp200, is an additional ligand for L-selectin. PMID:7525849

  3. Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters.

    PubMed

    Wan, Min Tao; Chou, Chin Cheng

    2014-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a potential zoonotic agent. Municipal wastewater treatment plants (WWTPs) can be reservoirs for MRSA dissemination. It is unclear, however, whether MRSA and its β-lactam resistance gene (mecA) can be spread from WWTPs that treat the wastewater of swine auction markets. The aims of the study were to compare (1) the abundance of the mecA gene in one municipal (M-) and one swine (S-) WWTP and (2) the genotypic and phenotypic characteristics of MRSA isolates from these two types of WWTPs. The concentrations of mecA gene from 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR). One hundred and thirteen MRSA isolates were recovered and were characterized by antimicrobial susceptibility testing, minimum inhibitory concentrations (MICs), and staphylococcal cassette chromosome mec (SCCmec) typing. The mecA gene could be detected in all the wastewater samples. A high abundance of recovered mecA gene (2.6 × 10(1) to 1.9 × 10(4) gene copies μg(-1) of total DNA) in swine slaughterhouse wastewater implied a correspondingly high transferring/receiving potential. All MRSA isolates were multidrug resistant (MDR) and showed high MICs to different antimicrobials. The M-WWTP MRSA isolates harbored SCCmec II-IV and VII, whereas those from the S-WWTP harbored SCCmec V and IX. In conclusion, wastewater from swine slaughterhouses can make these slaughterhouses potential hotspots for the dissemination of mecA gene and MRSA, and the high MICs of MRSA from both WWTP origins may pose a health risk not only to workers but also to the general public. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Outcrop-Scale Hyperspectral Studies of a Lacustrine-Volcanic Mars Analog: Examination with a Mars 2020-like Instrument Suite

    NASA Astrophysics Data System (ADS)

    Martin, P.; Ehlmann, B. L.; Blaney, D. L.; Bhartia, R.; Allwood, A.

    2015-12-01

    Using the recently developed Ultra Compact Imaging Spectrometer (UCIS) (0.4-2.5 μm) to generate outcrop-scale infrared images and compositional maps, a Mars-relevant field site near China Ranch in the Mojave Desert has been surveyed and sampled to analyze the synergies between instruments in the Mars 2020 rover instrument suite. The site is broadly comprised of large lacustrine gypsum beds with fine-grained gypsiferous mudstones and interbedded volcanic ashes deposited in the Pleistocene, with a carbonate unit atop the outcrop. Alteration products such as clays and iron oxides are pervasive throughout the sequence. Mineralogical mapping of the outcrop was performed using UCIS. As the 2020 rover will have an onboard multispectral camera and IR point spectrometer, Mastcam-Z and SuperCam, this process of spectral analysis leading to the selection of sites for more detailed investigation is similar to the process by which samples will be selected for increased scrutiny during the 2020 mission. The infrared image is resampled (spatially and spectrally) to the resolutions of Mastcam-Z and SuperCam to simulate data from the Mars 2020 rover. Hand samples were gathered in the field (guided by the prior infrared compositional mapping), capturing samples of spectral and mineralogical variance in the scene. After collection, a limited number of specimens were chosen for more detailed analysis. The hand samples are currently being analyzed using JPL prototypes of the Mars 2020 arm-mounted contact instruments, specifically PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman & Luminescence). The geologic story as told by the Mars 2020 instrument data will be analyzed and compared to the full suite of data collected by hyperspectral imaging and terrestrial techniques (e.g. XRD) applied to the collected hand samples. This work will shed light on the potential uses and synergies of the Mars 2020 instrument suite, especially

  5. Detection of methicillin resistant Staphylococcus aureus (MRSA) from recreational beach using the mecA gene

    NASA Astrophysics Data System (ADS)

    Zulkifli, Aisya; Ahmad, Asmat

    2015-09-01

    Water samples were collected in triplicates from three different locations choosen from the recreational beach of Teluk Kemang, Port Dickson as sampling station including main area of recreation activity for the public. Bacteria were isolated from the water and cultured. Out of 286 presumptive Staphylococcus aureus enumerated by using culture method, only 4 (1.4 %) confirmed as Meticillin Resistant S. aureus (MRSA) based on PCR detection of mecA gene. Interestingly, all of MRSA detections were found at the main area of recreational activity. Our results suggested that public beaches may be reservoir for transmission of MRSA to beach visitors and PCR using the mecA gene is the fastest way to detect this pathogenic bacteria.

  6. Cryo-Vacuum Testing of JWST's Integrated Telescope & Scientific Instrument Suite (OTIS)

    NASA Astrophysics Data System (ADS)

    Kimble, Randy; Apollo, Peter; Feinberg, Lee; Glazer, Stuart; Hanley, Jeffrey; Keski-Kuha, Ritva; Kirk, Jeffrey; Knight, J. Scott; Lambros, Scott; Lander, Juli; McGuffey, Douglas; Mehalick, Kimberly; Ohl, Raymond; Ousley, Wes; Reis, Carl; Reynolds, Paul; Begoña Vila, Maria; Waldman, Mark; Whitman, Tony

    2018-01-01

    A year ago we reported on the planning for a major test in the James Webb Space Telescope (JWST) program: cryo-vacuum testing of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The cryo-vacuum testing of that scientific heart of the JWST observatory, known as OTIS (= OTE + ISIM), has now been completed in historic chamber A at NASA’s Johnson Space Center. From July through October 2017, the flight payload was cooled to its operating temperatures, put through a comprehensive suite of optical, thermal, and operational tests, and then safely warmed back to room temperature. We report here on the execution and top-level results from this milestone event in the JWST program.

  7. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  8. Staph ID/R: a Rapid Method for Determining Staphylococcus Species Identity and Detecting the mecA Gene Directly from Positive Blood Culture

    PubMed Central

    Pasko, Chris; Dunn, John; Jaeckel, Heidi; Nieuwlandt, Dan; Weed, Diane; Woodruff, Evelyn; Zheng, Xiaotian

    2012-01-01

    Rapid diagnosis of staphylococcal bacteremia directs appropriate antimicrobial therapy, leading to improved patient outcome. We describe herein a rapid test (<75 min) that can identify the major pathogenic strains of Staphylococcus to the species level as well as the presence or absence of the methicillin resistance determinant gene, mecA. The test, Staph ID/R, combines a rapid isothermal nucleic acid amplification method, helicase-dependent amplification (HDA), with a chip-based array that produces unambiguous visible results. The analytic sensitivity was 1 CFU per reaction for the mecA gene and was 1 to 250 CFU per reaction depending on the staphylococcal species present in the positive blood culture. Staph ID/R has excellent specificity as well, with no cross-reactivity observed. We validated the performance of Staph ID/R by testing 104 frozen clinical positive blood cultures and comparing the results with rpoB gene or 16S rRNA gene sequencing for species identity determinations and mecA gene PCR to confirm mecA gene results. Staph ID/R agreed with mecA gene PCR for all samples and agreed with rpoB/16S rRNA gene sequencing in all cases except for one sample that contained a mixture of two staphylococcal species, one of which Staph ID/R correctly identified, for an overall agreement of 99.0% (P < 0.01). Staph ID/R could potentially be used to positively affect patient management for Staphylococcus-mediated bacteremia. PMID:22170912

  9. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  10. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK

    PubMed Central

    Xu, Zhen; Mkrtchyan, Hermine V.; Cutler, Ronald R.

    2015-01-01

    Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCCmec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance. PMID:26441881

  11. Antibiotic resistance and mecA characterization of coagulase-negative staphylococci isolated from three hotels in London, UK.

    PubMed

    Xu, Zhen; Mkrtchyan, Hermine V; Cutler, Ronald R

    2015-01-01

    Antibiotic resistance in bacteria isolated from non-healthcare environments, is a potential problem to public health. In our survey a total of 71 coagulase negative staphylococci (CNS) belonging to 11 different species were isolated from three large hotels in London, UK. The most prevalent species was Staphylococcus haemolyticus, with S. hominis, S. warneri, S. cohnii, and Staphylococcus epidermidis commonly detected. Antimicrobial susceptibilities and carriage of the mecA gene were determined for all of these isolates. Most (85.9%) staphylococci were resistant to multiple antibiotics with all displaying increased susceptibility toward penicillin, fusidic acid, erythromycin, and cefepime. Twenty-one (29.5%) of the isolates were mecA positive, however MIC values to oxacillin, normally associated with the carriage of mecA, varied widely in this group (from 0.06 to 256 mg/L). Fifteen of the twenty-one mecA positive isolates carried SCCmec of these seven were type V, one type I, one type II, and one type IV. Additionally, five of these 15 isolates carried a previously unreported type, 1A, which involves an association between class A mec complex and ccr type 1. The remaining six of the 21 isolates were non-typeable and carried a combination of class A mec complex and ccrC. In addition to this, we also report on new MLST types which were assigned for five S. epidermidis isolates. Four out of these five isolates had MICs between 0.06 and 256 mg/L to oxacillin and would be regarded as clinically susceptible but one isolate had a high oxacillin MIC of 256 mg/L. We demonstrated widespread multiple drug resistance among different staphylococcal species isolated from non-healthcare environments highlighting the potential for these species to act as a reservoir for methicillin and other forms of drug resistance.

  12. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P.-A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Olsson, G.; Khotyaintsev, Y. V.; Eriksson, A.; Kletzing, C. A.; Bounds, S.; Anderson, B.; Baumjohann, W.; Steller, M.; Bromund, K.; Le, Guan; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Porter, J.; Lappalainen, K.

    2016-03-01

    The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (˜1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI

  13. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.

  14. Multiplex Real-Time PCR for Detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) Genes from Selective Enrichments from Animals and Retail Meat

    PubMed Central

    Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using

  15. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) genes from selective enrichments from animals and retail meat.

    PubMed

    Velasco, Valeria; Sherwood, Julie S; Rojas-García, Pedro P; Logue, Catherine M

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement) and 0.29-0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the

  16. Sedimentological Investigations of the Martian Surface using the Mars 2001 Robotic Arm Camera and MECA Optical Microscope

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.

    1999-01-01

    The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.

  17. Sprinkle Test by Phoenix's Robotic Arm (Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander used its Robotic Arm during the mission's 15th Martian day since landing (June 9, 2008) to test a 'sprinkle' method for delivering small samples of soil to instruments on the lander deck. This sequence of four images from the spacecraft's Surface Stereo Imager covers a period of 20 minutes from beginning to end of the activity.

    In the single delivery of a soil sample to a Phoenix instrument prior to this test, the arm brought the scooped up soil over the instrument's opened door and turned over the scoop to release the soil. The sprinkle technique, by contrast, holds the scoop at a steady angle and vibrates the scoop by running the motorized rasp located beneath the scoop. This gently jostles some material out of the scoop to the target below.

    For this test, the target was near the upper end the cover of the Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA. The cover is 20 centimeters (7.9 inches) across. The scoop is about 8.5 centimeters (3.3 inches) across.

    Based on the test's success in delivering a small quantity and fine-size particles, the Phoenix team plans to use the sprinkle method for delivering samples to MECA and to the Thermal and Evolved-Gas Analyzer, or TEGA. The next planned delivery is to MECA's Optical Microscope, via the port in the MECA cover visible at the bottom of these images.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  19. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  20. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  1. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    PubMed

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  2. First Sample Delivery to Mars Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing.

    The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing.

    The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Genetic Organization of the Chromosome Region Surrounding mecA in Clinical Staphylococcal Strains: Role of IS431-Mediated mecI Deletion in Expression of Resistance in mecA-Carrying, Low-Level Methicillin- Resistant Staphylococcus haemolyticus

    PubMed Central

    Katayama, Yuki; Ito, Teruyo; Hiramatsu, Keiichi

    2001-01-01

    We report on the structural diversity of mecA gene complexes carried by 38 methicillin-resistant Staphylococcus aureus and 91 methicillin-resistant coagulase-negative Staphylococcus strains of seven different species with a special reference to its correlation with phenotypic expression of methicillin resistance. The most prevalent and widely disseminated mec complex had the structure mecI-mecR1-mecA-IS431R (or IS431mec), designated the class A mecA gene complex. In contrast, in S. haemolyticus, mecA was bracketed by two copies of IS431, forming the structure IS431L-mecA-IS431R. Of the 38 S. haemolyticus strains, 5 had low-level methicillin resistance (MIC, 1 to 4 mg/liter) and characteristic heterogeneous methicillin resistance as judged by population analysis. In these five strains, IS431L was located to the left of an intact mecI gene, forming the structure IS431L-class A mecA-gene complex. In other S. haemolyticus strains, IS431L was associated with the deletion of mecI and mecR1, forming the structure IS431L-ΔmecR1-mecA-IS431mec, designated the class C mecA gene complex. Mutants with the class C mecA gene complex were obtained in vitro by selecting strain SH621, containing the IS431L-class A mecA gene complex with low concentrations of methicillin (1 and 3 mg/liter). The mutants had intermediate level of methicillin resistance (MIC, 16 to 64 mg/liter). The mecA gene transcription was shown to be derepressed in a representative mutant strain, SH621-37. Our study indicated that the mecI-encoded repressor function is responsible for the low-level methicillin resistance of some S. haemolyticus clinical strains and that the IS431-mediated mecI gene deletion causes the expression of methicillin resistance through the derepression of mecA gene transcription. PMID:11408208

  4. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study

    PubMed Central

    García-Álvarez, Laura; Holden, Matthew TG; Lindsay, Heather; Webb, Cerian R; Brown, Derek FJ; Curran, Martin D; Walpole, Enid; Brooks, Karen; Pickard, Derek J; Teale, Christopher; Parkhill, Julian; Bentley, Stephen D; Edwards, Giles F; Girvan, E Kirsty; Kearns, Angela M; Pichon, Bruno; Hill, Robert LR; Larsen, Anders Rhod; Skov, Robert L; Peacock, Sharon J; Maskell, Duncan J; Holmes, Mark A

    2011-01-01

    Summary Background Animals can act as a reservoir and source for the emergence of novel meticillin-resistant Staphylococcus aureus (MRSA) clones in human beings. Here, we report the discovery of a strain of S aureus (LGA251) isolated from bulk milk that was phenotypically resistant to meticillin but tested negative for the mecA gene and a preliminary investigation of the extent to which such strains are present in bovine and human populations. Methods Isolates of bovine MRSA were obtained from the Veterinary Laboratories Agency in the UK, and isolates of human MRSA were obtained from diagnostic or reference laboratories (two in the UK and one in Denmark). From these collections, we searched for mecA PCR-negative bovine and human S aureus isolates showing phenotypic meticillin resistance. We used whole-genome sequencing to establish the genetic basis for the observed antibiotic resistance. Findings A divergent mecA homologue (mecALGA251) was discovered in the LGA251 genome located in a novel staphylococcal cassette chromosome mec element, designated type-XI SCCmec. The mecALGA251 was 70% identical to S aureus mecA homologues and was initially detected in 15 S aureus isolates from dairy cattle in England. These isolates were from three different multilocus sequence type lineages (CC130, CC705, and ST425); spa type t843 (associated with CC130) was identified in 60% of bovine isolates. When human mecA-negative MRSA isolates were tested, the mecALGA251 homologue was identified in 12 of 16 isolates from Scotland, 15 of 26 from England, and 24 of 32 from Denmark. As in cows, t843 was the most common spa type detected in human beings. Interpretation Although routine culture and antimicrobial susceptibility testing will identify S aureus isolates with this novel mecA homologue as meticillin resistant, present confirmatory methods will not identify them as MRSA. New diagnostic guidelines for the detection of MRSA should consider the inclusion of tests for mecALGA251. Funding

  5. High Levels of mecA DNA Detected by a Quantitative Real-Time PCR Assay Are Associated with Mortality in Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia ▿

    PubMed Central

    Ho, Ya-Chi; Chang, Shan-Chwen; Lin, Su-Ru; Wang, Wei-Kung

    2009-01-01

    Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is known to be a poor prognostic factor. While several PCR assays for the detection of MRSA in various clinical samples were recently reported, the possibility that a quantitative PCR assay could be used to quantify and monitor MRSA bacteremia has not been explored. In this study, we established a quantitative real-time PCR assay for the mecA gene using known copy numbers of a plasmid containing mecA DNA as a standard and the previously described mecA-specific primers and probe (P. Francois et al., J. Clin. Microbiol. 41:254-260, 2003). We employed this assay to examine 250 sequential whole-blood samples from 20 adult patients, including 13 survivors and 7 nonsurvivors, with culture-proven MRSA bacteremia at the intensive care units of National Taiwan University Hospital between 1 July 2006 and 31 January 2007. The levels of mecA DNA in the nonsurvivors were significantly higher than those in the survivors during the three periods of bacteremia examined (days 0 to 2, 3 to 5, and 6 to 8) (P = 0.003 by two-tailed Mann-Whitney U test). Moreover, the nonsurvivors had higher mecA DNA levels than the survivors after 3 days and 7 days of anti-MRSA therapy (medians for nonsurvivors and survivors at 3 days, 5.86 and 4.30 log copies/ml, respectively; medians for nonsurvivors and survivors at 7 days, 5.21 and 4.36 log copies/ml, respectively; P = 0.02 and P = 0.04, respectively, by two-tailed Mann-Whitney U test). Together, these findings suggest that the level of mecA DNA in blood could potentially be used to monitor MRSA bacteremia and evaluate responses to therapy. PMID:19279177

  6. Modulation of mecA Gene Expression by Essential Oil from Salvia sclarea and Synergism with Oxacillin in Methicillin Resistant Staphylococcus epidermidis Carrying Different Types of Staphylococcal Chromosomal Cassette mec

    PubMed Central

    Chovanová, Romana; Mikulášová, Mária; Vaverková, Štefánia

    2016-01-01

    The essential oil (EO) from Salvia sclarea was shown to increase the susceptibility of methicillin resistant Staphylococcus epidermidis (MRSE) isolates to oxacillin. The purpose of this study was to investigate the effect of EO from S. sclarea on expression of mecA gene of MRSE carrying different types of staphylococcal chromosomal cassette (SCCmec) and to evaluate potential synergistic effect of EO with oxacillin. Using real-time PCR we found that EO alone inhibited the expression of the resistant genes mecA, mecR1, and mecI and blaZ, blaR1, and blaI. The use of the combination of EO with oxacillin resulted in significantly inhibited expression of mecA gene in all tested strains with different types of SCCmec. Using time-kill assay and checkerboard assay we confirmed synergistic effect of EO from S. sclarea and oxacillin in MRSE. PMID:26880926

  7. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  8. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark

    2016-07-01

    The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time

  9. Lunar Reference Suite to Support Instrument Development and Testing

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge I.; Winterhalter, Daniel; Farmer, Jack

    2010-01-01

    Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples - to select the highest value samples for transport to Earth - and to leave others on the Moon. Instruments that may be useful for such high-grading are under development. Instruments are also being developed for possible use on future lunar robotic landers, for lunar field work, and for more sophisticated analyses at a lunar outpost. The Johnson Space Center Astromaterials acquisition and Curation Office (JSC Curation) wll support such instrument testing by providing lunar sample "ground truth".

  10. Scaling functional status within the interRAI suite of assessment instruments

    PubMed Central

    2013-01-01

    Background As one ages, physical, cognitive, and clinical problems accumulate and the pattern of loss follows a distinct progression. The first areas requiring outside support are the Instrumental Activities of Daily Living and over time there is a need for support in performing the Activities of Daily Living. Two new functional hierarchies are presented, an IADL hierarchical capacity scale and a combination scale integrating both IADL and ADL hierarchies. Methods A secondary analyses of data from a cross-national sample of community residing persons was conducted using 762,023 interRAI assessments. The development of the new IADL Hierarchy and a new IADL-ADL combined scale proceeded through a series of interrelated steps first examining individual IADL and ADL item scores among persons receiving home care and those living independently without services. A factor analysis demonstrated the overall continuity across the IADL-ADL continuum. Evidence of the validity of the scales was explored with associative analyses of factors such as a cross-country distributional analysis for persons in home care programs, a count of functional problems across the categories of the hierarchy, an assessment of the hours of informal and formal care received each week by persons in the different categories of the hierarchy, and finally, evaluation of the relationship between cognitive status and the hierarchical IADL-ADL assignments. Results Using items from interRAI’s suite of assessment instruments, two new functional scales were developed, the interRAI IADL Hierarchy Scale and the interRAI IADL-ADL Functional Hierarchy Scale. The IADL Hierarchy Scale consisted of 5 items, meal preparation, housework, shopping, finances and medications. The interRAI IADL-ADL Functional Hierarchy Scale was created through an amalgamation of the ADL Hierarchy (developed previously) and IADL Hierarchy Scales. These scales cover the spectrum of IADL and ADL challenges faced by persons in the community

  11. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  14. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2015-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  15. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  16. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  17. Using a Multiwavelength Suite of Microwave Instruments to Investigate the Microphysical Structure of Deep Convective Cores

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.

    2016-01-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).

  18. Evaluation of the Sensor Data Record from the Nadir Instruments of the Ozone Mapping Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.; hide

    2014-01-01

    This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.

  19. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  20. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  1. An educational laboratory virtual instrumentation suite assisted experiment for studying fundamentals of series resistance-inductance-capacitance circuit

    NASA Astrophysics Data System (ADS)

    Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin

    2017-11-01

    One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This paper proposes a student-friendly teaching and learning approach by inculcating the multifaceted versatile software LabVIEWTM along with the educational laboratory virtual instrumentation suite hardware, for studying the RLC circuit time and frequency domain responses. The proposed approach has offered an interactive laboratory experiment where students can model circuits in simulation and hardware circuits on prototype board, and then compare their performances. The theoretical simulations and the obtained experimental data are found to be in very close agreement, thereby enhancing the conviction of students. Finally, the proposed methodology was also subjected to the assessment of learning outcomes based on student feedback, and an average score of 8.05 out of 10 with a standard deviation of 0.471 was received, indicating the overall satisfaction of the students.

  2. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  3. The instrument development status of hyper-spectral imager suite (HISUI)

    NASA Astrophysics Data System (ADS)

    Itoh, Yoshiyuki; Kawashima, Takahiro; Inada, Hitomi; Tanii, Jun; Iwasaki, Akira

    2012-11-01

    The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation project. This project is the follow up mission of the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) and Advanced Land Imager (ALDS). HISUI is composed of hyperspectral radiometer with higher spectral resolution and multi-spectral radiometer with higher spatial resolution. The development of functional evaluation model was carried out to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler for SWIR, signal processing circuit and on-board calibration source.

  4. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  5. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

    2013-01-01

    The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

  7. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  8. Software Suite to Support In-Flight Characterization of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross

    2014-01-01

    A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of

  9. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  10. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  11. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  12. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  13. Capabilities, performance, and status of the SOFIA science instrument suite

    NASA Astrophysics Data System (ADS)

    Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, E. E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Smith, Erin C.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffery E.; Young, Erick T.; Zell, Peter T.

    2013-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5-40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60-240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3-1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1-5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42-210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5-28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50-240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.

  14. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Haberle, Robert M. (Editor)

    1988-01-01

    The workshop was held to discuss a variety of questions related to the detection and cycling of atmospheric water. Among the questions addressed were: what factors govern the storage and exchange of water between planetary surfaces and atmospheres; what instruments are best suited for the measurement and mapping of atmospheric water; do regolith sources and sinks of water have uniquely identifiable column abundance signatures; what degree of time and spatial resolution in column abundance data is necessary to determine dynamic behavior. Of special importance is the question, does the understanding of how atmospheric water is cycled on Earth provide any insights for the interpretation of Mars atmospheric data.

  16. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  17. Walking a mile in another's shoes: The impact of wearing an Age Suit.

    PubMed

    Lavallière, Martin; D'Ambrosio, Lisa; Gennis, Angelina; Burstein, Arielle; Godfrey, Kathryn M; Waerstad, Hilde; Puleo, Rozanne M; Lauenroth, Andreas; Coughlin, Joseph F

    2017-01-01

    The "Age Suit" described in this article was developed to enable future designers, business leaders, and engineers to experience navigating the world as many older adults must. Tools such as this Age Suit offer the opportunity to "walk a mile" in another's shoes to develop empathy that can result in better design of spaces, goods, and services to meet the needs of a rapidly growing older population. This work first examined, through a series of clinical tests, whether younger adults' physical capacities were reduced in a direction consistent with aging by wearing a suit developed by the MIT AgeLab. An experiential learning task was then completed with the suit to understand its impact on completion of an instrumental activity of daily living. Results showed that younger adults wearing the suit experienced changes in task performance consistent with expected changes associated with aging. Participants' self-reports from the experiential learning task indicated that they were able to empathize with older adults regarding some issues they face while completing a grocery shopping task. Future research with the suit should involve a wider range of individuals from the population and examine what effect participants' levels of fitness have on the experience of wearing the suit.

  18. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    NASA Astrophysics Data System (ADS)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  19. Music Education Suites.

    ERIC Educational Resources Information Center

    Kemp, Wayne

    This publication describes options for designing and equipping middle and high school music education suites and suggests means of gaining community support for including full service music suites in new and renovated facilities. It covers the basic music suite, practice rooms, small ensemble rehearsal rooms, recording/MIDI (musical instrument…

  20. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  1. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  2. Music Education Suites

    ERIC Educational Resources Information Center

    Kemp, Wayne

    2009-01-01

    This publication describes options for designing and equipping middle and high school music education suites, and suggests ways of gaining community support for including full service music suites in new and renovated school facilities. In addition to basic music suites, and practice rooms, other options detailed include: (1) small ensemble…

  3. Astronaut Ronald Evans is suited up for EVA training

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  4. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  5. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  6. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes

  7. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  8. Antibiotic resistance patterns and occurrence of mecA gene in Staphylococcus intermedius strains of canine origin.

    PubMed

    Kizerwetter-Swida, M; Chrobak, D; Rzewuska, M; Binek, M

    2009-01-01

    We have evaluated 102 Staphylococcus intermedius isolates of canine origin for susceptibility to antimicrobial primary agents, i.e. penicillin, amoxicillin, amoxicillin with clavulanic acid, cefuroxime, trimethoprim/sulfonamides, neomycin, streptomycin, gentamicin, norfloxacin, tetracycline, vancomycin, erythromycin and secondary agents, i.e., chloramphenicol, ciprofloxacin, lincomycin, teicoplanin, rifampicin, imipenem, mupirocin. Antimicrobial sensitivity was examined using the disk diffusion method and performed according to NCCLS quidelines. Methicillin resistance was detected using the disk diffusion method with oxacillin, and the occurrence of mecA gene was detected by PCR. Resistance to streptomycin, penicillin, amoxicillin, neomycin, followed by tetracycline was predominant. From 14 mecA-positive strains, 12 were multidrug-resitant, and the remaining two showed atypical susceptibility. One strain resistant to oxacillin in the disc diffusion method was mecA-negative, suggesting a different mechanism of resistance. Our results indicate that the emergence of S. intermedius resistance to methicillin may be underestimated. In case of clinical multidrug-resitant S. intermedius isolates, resistance to methicillin should be considered.

  9. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  10. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  11. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  12. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    USGS Publications Warehouse

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  13. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  14. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  15. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  16. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  17. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  18. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain)

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Olías, M.; López, R. Pérez; Nieto, J. M.

    2017-07-01

    Fluxes of acidity and contaminants from acid mine drainage (AMD) sources to the receiving surface water bodies were studied in a mining-impacted watershed (Meca River, SW Spain) using a novel methodology based on the joint application of EMMA and MIX codes. The application of EMMA and elemental ratios allowed delimiting the end-members responsible for water quality variations at a catchment scale. The further application of MIX quantified the significant impact of AMD on the river quality; less than 10% of AMD relative contribution is enough to maintain acidic conditions during most of the year. The mixing model also provided information about the element mobility, distinguishing those elements with a quasi-conservative behavior (e.g., Cu, Zn, Al, Co or Ni) from those affected by mineral precipitation/dissolution (e.g., K, Si, Na, Sr, Ca, Fe, Pb, or As). Floods are the main driver of dissolved and, mainly particulate, contaminants in the catchment. Thus, the first rainfall events in November only accounted for 19% of the annual Meca flow but yielded between 26 and 43% of the net acidity and dissolved metal loads (mainly, Fe, As and Pb). Concerning particulate transport, around 332 tons of particulate Fe, 49 tons of Al, 0.79 tons of As and 0.37 tons of Pb were recorded during these first floods. The particulate As concentration can be up to 34 times higher than the dissolved one during floods and between 2 and 4 times higher for Fe, Pb and Cr. This integrated modeling approach could be a promising and useful tool to face future restoration plans in derelict mines worldwide. This approach would allow prioritizing remedial measures, achieving an environmental and cost-effective restoration of degraded areas.

  19. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  20. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  1. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  2. Social Learning as Approach for Teacher Professional Development; How Well Does It Suit Them?

    ERIC Educational Resources Information Center

    Meijs, Celeste; Prinsen, Fleur R.; de Laat, Maarten F.

    2016-01-01

    Learning from others has been reported as a productive approach for teacher Professional Development (PD) and is seen as a valuable addition to formal PD. Specific insights into whether social learning suits teachers is still lacking. Therefore, the aim of the current study was to develop and apply an instrument to assess social learning…

  3. Construction and Resource Utilization Explorer: Regolith Characterization Using a Modular Instrument Suite and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Johnson, Jerome B.; Boynton, William V.; Davis, Keil; Elphic, Richard; Glass, Brian; Haldemann, Albert F. C.; Adams, Frederick W.

    2005-01-01

    The Construction Resource Utilization Explorer (CRUX) is a technology maturation project for the U.S. National Aeronautics and Space Administration to provide enabling technology for lunar and planetary surface operations (LPSO). The CRUX will have 10 instruments, a data handling function (Mapper - with features of data subscription, fusion, interpretation, and publication through geographical information system [GIs] displays), and a decision support system DSS) to provide information needed to plan and conduct LPSO. Six CRUX instruments are associated with an instrumented drill to directly measure regolith properties (thermal, electrical, mechanical, and textural) and to determine the presence of water and other hydrogen sources to a depth of about 2 m (Prospector). CRUX surface and geophysical instruments (Surveyor) are designed to determine the presence of hydrogen, delineate near subsurface properties, stratigraphy, and buried objects over a broad area through the use of neutron and seismic probes, and ground penetrating radar. Techniques to receive data from existing space qualified stereo pair cameras to determine surface topography will also be part of the CRUX. The Mapper will ingest information from CRUX instruments and other lunar and planetary data sources, and provide data handling and display features for DSS output. CRUX operation will be semi-autonomous and near real-time to allow its use for either planning or operations purposes.

  4. Suited crewmember productivity

    NASA Astrophysics Data System (ADS)

    Barer, A. S.; Filipenkov, S. N.

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  5. Suited crewmember productivity.

    PubMed

    Barer, A S; Filipenkov, S N

    1994-01-01

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  6. Ozone Mapping and Profiler Suite: using mission performance data to refine predictive contamination modeling

    NASA Astrophysics Data System (ADS)

    Devaud, Genevieve; Jaross, Glen

    2014-09-01

    On October 28, 2011, the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched at Vandenberg Air Force base aboard a United Launch Alliance Delta II rocket. Included among the five instruments was the Ozone Mapping and Profiler Suite (OMPS), an advanced suite of three hyperspectral instruments built by Ball Aerospace and Technologies Corporation (BATC) for the NASA Goddard Space Flight Center. Molecular transport modeling is used to predict optical throughput changes due to contaminant accumulation to ensure performance margin to End Of Life. The OMPS Nadir Profiler, operating at the lowest wavelengths of 250 - 310 nm, is most sensitive to contaminant accumulation. Geometry, thermal profile and material properties must be accurately modeled in order to have confidence in the results, yet it is well known that the complex chemistry and process dependent variability of aerospace materials presents a substantial challenge to the modeler. Assumptions about the absorption coefficients, desorption and diffusion kinetics of outgassing species from polymeric materials dramatically affect the model predictions, yet it is rare indeed that on-mission data is analyzed at a later date as a means to compare with modeling results. Optical throughput measurements for the Ozone and Mapping Profiler Suite on the Suomi NPP Satellite indicate that optical throughput degradation between day 145 and day 858 is less than 0.5%. We will show how assumptions about outgassing rates and desorption energies, in particular, dramatically affect the modeled optical throughput and what assumptions represent the on-orbit data.

  7. Latest NASA Instrument Cost Model (NICM): Version VI

    NASA Technical Reports Server (NTRS)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  8. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  9. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  10. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  11. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  12. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  13. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  14. Sample Analysis at Mars Instrument, Side Panels Off

    NASA Image and Video Library

    2012-08-27

    An instrument suite that will analyze the chemical ingredients in samples of Martian atmosphere, rocks and soil during the mission of NASA Mars rover Curiosity, is shown here during assembly at NASA Goddard Space Flight Center, Greenbelt, Md., in 2010.

  15. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  16. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  17. Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    Bostic, Heidi E.

    2005-01-01

    Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.

  18. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  19. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  20. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  1. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  2. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  3. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  4. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  5. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  6. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  7. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  8. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  9. Antimicrobial Resistance, Biofilm Formation and mecA Characterization of Methicillin-Susceptible S. aureus and Non-S. aureus of Beef Meat Origin in Egypt

    PubMed Central

    Osman, Kamelia M.; Amer, Aziza M.; Badr, Jihan M.; Helmy, Nashwa M.; Elhelw, Rehab A.; Orabi, Ahmed; Bakry, Magdy; Saad, Aalaa S. A.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which

  10. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  11. Nickel release from surgical instruments and operating room equipment.

    PubMed

    Boyd, Anne H; Hylwa, Sara A

    2018-04-15

    Background There has been no systematic study assessing nickel release from surgical instruments and equipment used within the operating suite. This equipment represents important potential sources of exposure for nickel-sensitive patients and hospital staff. To investigate nickel release from commonly used surgical instruments and operating room equipment. Using the dimethylglyoxime nickel spot test, a variety of surgical instruments and operating room equipment were tested for nickel release at our institution. Of the 128 surgical instruments tested, only 1 was positive for nickel release. Of the 43 operating room items tested, 19 were positive for nickel release, 7 of which have the potential for direct contact with patients and/or hospital staff. Hospital systems should be aware of surgical instruments and operating room equipment as potential sources of nickel exposure.

  12. Influence of musical instruments on tooth positions.

    PubMed

    Herman, E

    1981-08-01

    A 2-year longitudinal investigation was conducted at five New York City junior high schools on 11- to 13-year-old children starting instrumental music education to determine what tooth movement, if any, resulted from the playing of certain musical instruments. Questionnaires, interviews, oral examinations, and dental casts were used at the start of instrumental study, after one year, and then after a second year. Statistically significant anterior tooth movements occurred in an overwhelming majority of the instrumentalists, while negligible movements were recorded for the controls over this period. As a result of this study, certain recommendations can be made by dentists when they are asked to suggest instruments which are dentally suited for children. In most cases they can suggest more than one instrument which would be of benefit dentally to the individual child, especially in the increase or reduction of overjet and overbite. The playing of the correct musical instrument can serve as an adjunct to the dentist or orthodontist in trying to accomplish certain tooth movements.

  13. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  14. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  15. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  16. Phoenix Wet Chemistry Laboratory Units

    NASA Image and Video Library

    2008-06-26

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer MECA instrument on board NASA Phoenix Mars Lander. This image was taken before Phoenix launch on August 4, 2007.

  17. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  18. Clinical utility of an automated instrument for gram staining single slides.

    PubMed

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-06-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis.

  19. The Calar Alto Observatory: current status and future instrumentation

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Thiele, U.; Aceituno, J.; Pedraz, S.; Sánchez, S. F.; Aguirre, A.; Alises, M.; Bergond, G.; Galadí, D.; Guijarro, A.; Hoyo, F.; Mast, D.; Montoya, L.; Sengupta, Ch.; de Guindos, E.; Solano, E.

    2011-11-01

    The Calar Alto Observatory, located at 2168 m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.

  20. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  1. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  2. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  3. Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Sutter, B.; Archer, D.; McAdam, A.; Franz, H. B.; McKay, C. P.; Coll, P.; Cabane, M.; Ming, D. W.; hide

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates, produced early in Mars history, are later decomposed back into N2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument.

  4. CAPs-IDD: Characteristics of Assessment Instruments for Psychiatric Disorders in Persons with Intellectual Developmental Disorders

    ERIC Educational Resources Information Center

    Zeilinger, E. L.; Nader, I. W.; Brehmer-Rinderer, B.; Koller, I.; Weber, G.

    2013-01-01

    Background: Assessment of psychiatric disorders in persons with an intellectual developmental disorder (IDD) can be performed with a variety of greatly differing instruments. This makes the choice of an instrument best suited for the intended purpose challenging. In this study, we developed a comprehensive set of characteristics for the evaluation…

  5. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  6. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  7. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  8. Enabling interoperability in Geoscience with GI-suite

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  9. Clinical Utility of an Automated Instrument for Gram Staining Single Slides ▿

    PubMed Central

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-01-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis. PMID:20410348

  10. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  11. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  12. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  13. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  14. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  15. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  16. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  18. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  19. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  20. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  1. Suited Contingency Ops Food - 2

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  2. Space Suit (Mobil Biological Isolation)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Houston five-year-old known as David is getting a "space suit," a vitally important gift that will give him mobility he has never known. David suffers from a rare malady called severe combined immune deficiency, which means that be was born without natural body defenses against disease; germs that would have little or no effect on most people could cause his death. As a result, he has spent his entire life in germ-free isolation rooms, one at Houston's Texas Children's hospital, another at his home. The "space suit" David is getting will allow him to spend four hours ata a time in a mobile sterile environment outside his isolation rooms. Built by NASA's Johnson Space Center, it is a specially-designed by product of Space Suit technology known as the mobile biological isolation system.

  3. Solar Probe ANalyzer Ion Instrument - Demonstrated Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Livi, R.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.

    2016-12-01

    The Solar Probe Plus (SPP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 9.86 RS. SPP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. The SPAN-Ai instrument, the ion analyzer, is composed of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. The electronics consist of (1) an anode board, (2) a TDC digital board, (3) a low voltage power supply, and (4) two high voltage boards. The onboard FPGA will control electronics and event signals while sending variable digitial packets of said information to the SWEAP Electronics Module (SWEM). The majority of the components are built, assembled, and tested primarily at the University of California, Berkeley (UCB). SPAN-Ai's main objective is to measure ions with an energy range of 5 eV - 20 keV, a mass/q between 1-100 [amu/q] and a field of view of 240 x 120 degrees . This presentation will show preliminary calibration results over the past 6 months of these features performed at UCB.

  4. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGES

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  5. UAVSAR Program: Initial Results from New Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  6. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  7. Assessment of Suited Reach Envelope in an Underwater Environment

    NASA Technical Reports Server (NTRS)

    Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar

    2017-01-01

    Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.

  8. Interoperative efficiency in minimally invasive surgery suites.

    PubMed

    van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N

    2009-10-01

    Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.

  9. The James Webb Telescope Instrument Suite Layout: Optical System Engineering Considerations for a Large, Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony

    2003-01-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  10. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  11. The Search for Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer C.; Freissinet, Caroline; McKay, Chirstopher P.; Sutter, Brad; Archer, P. Douglas, Jr.; McAdam, Amy; Franz, Heather; Coll, Partice J.; Glavin, Daniel Patrick; hide

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that <550degC evolved NO is produced via reaction of HCl with

  12. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  13. FRACTAL Systems & Project suite: engineering tools for improving development and operation of the systems

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; Mujica-Alvarez, E.; Osinde-Lopez, J.; García-Vargas, M.

    2008-07-01

    This paper describes the FRACTAL Systems & Projects suite. This suite is composed by several tools (GECO, DOCMA and SUMO) that provide the capabilities that all organizations need to store and manage the system information generated along the project's lifetime, from the design phase to the operation phase. The amount of information that is generated in a project keeps growing in size and complexity along the project's lifetime, to an extent that it becomes impossible to manage it without the aid of specific computer-based tools. The suite described in this paper is the solution developed by FRACTAL to assist the execution of different scientific projects, mainly related with telescopes and instruments, for astronomical research centres. These tools help the system and project engineers to maintain the technical control of the systems and to ensure an optimal use of the resources. GECO eases the control of the system configuration data; DOCMA provides the means to organise and manage the documents generated in the project; SUMO allows managing and scheduling the operation, the maintenance activities and the resources during the operational phase of a system. These tools improve the project communication making the information available to the authorized users (project team, customers, Consortium's members, etc). Finally and depending on the project needs, these three tools can be used integrated or in an independent manner.

  14. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  15. Class Action Suits against Public Schools.

    ERIC Educational Resources Information Center

    Mesibov, Laurie

    1984-01-01

    If a suit is brought as a class action, either plaintiff or defendant may move to uphold or challenge class certification. If neither does so, the court decides whether the action may be maintained as a class suit. Prerequisites for class certification from Rule 23 (Federal Rules of Civil Procedure) are explained. (TE)

  16. Advanced Instrumentation for Ultrafast Science at the LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture themore » ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.« less

  17. The ZPIC educational code suite

    NASA Astrophysics Data System (ADS)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  18. Performance analysis of a proposed tightly-coupled medical instrument network based on CAN protocol.

    PubMed

    Mujumdar, Shantanu; Thongpithoonrat, Pongnarin; Gurkan, D; McKneely, Paul K; Chapman, Frank M; Merchant, Fatima

    2010-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN™ technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. The instruments are in turn becoming more sophisticated; however, the operation of an instrument is still expected to be locally done by authorized medical personnel. Unfortunately, each medical instrument has its unique proprietary API (application programming interface - if any) to provide automated and electronic access to monitoring data. Integration of these APIs requires an agreement with the manufacturers towards realization of interoperable health care networking. As long as the interoperability of instruments with a network is not possible, ubiquitous access to patient status is limited only to manual entry based systems. This paper demonstrates an attempt to realize an interoperable medical instrument interface for networking using MediCAN technology suite as an open

  19. Emergency Medical Considerations in a Space-Suited Patient.

    PubMed

    Garbino, Alejandro; Nusbaum, Derek M; Buckland, Daniel M; Menon, Anil S; Clark, Jonathan B; Antonsen, Erik L

    The Stratex Project is a high altitude balloon flight that culminated in a freefall from 41,422 m (135,890 ft), breaking the record for the highest freefall to date. Crew recovery operations required an innovative approach due to the unique nature of the event as well as the equipment involved. The parachutist donned a custom space suit similar to a NASA Extravehicular Mobility Unit (EMU), with life support system mounted to the front and a parachute on the back. This space suit had a metal structure around the torso, which, in conjunction with the parachute and life support assembly, created a significant barrier to extraction from the suit in the event of a medical emergency. For this reason the Medical Support Team coordinated with the pressure suit assembly engineer team for integration, training in suit removal, definition of a priori contingency leadership on site, creation of color-coded extraction scenarios, and extraction drills with a suit mock-up that provided insight into limitations to immediate access. This paper discusses novel extraction processes and contrasts the required medical preparation for this type of equipment with the needs of the prior record-holding jump that used a different space suit with easier immediate access. Garbino A, Nusbaum DM, Buckland DM, Menon AS, Clark JB, Antonsen EL. Emergency medical considerations in a space-suited patient. Aerosp Med Hum Perform. 2016; 87(11):958-962.

  20. [Antigravity suit used for neurosurgical operations in sitting position].

    PubMed

    Szpiro-Zurkowska, A; Milczarek, Z; Marchel, A; Jagielski, J

    1996-01-01

    The aviator's antigravity suit (G-suit) was used for 40 operations on neurosurgical patients operated on in sitting position. The G-suit was filled with air to 0.2 atmosphere (20 kPa) pressure in 26 cases, and 0.3 atm. (30 kPa) in 14 cases. In all cases G-suit filling was followed by central venous pressure rise and mean arterial pressure rise. Venous air embolism was found in 5 (12.5%) patients. No other complications connected with the use of G-suit were observed.

  1. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  2. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  3. SUITS/SWUSV: a small-size mission to address solar spectral variability, space weather and solar-climate relations

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane

    2016-07-01

    We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS

  4. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  5. Sample Analysis at Mars Instrument Simulator

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes

  6. Suites of dwarfs around Nearby giant galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I., E-mail: ikar@sao.ru, E-mail: kei@sao.ru, E-mail: dim@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. Allmore » suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting

  7. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  8. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  9. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermold, B; Flynn, CJ; Barnard, J

    2013-11-27

    The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with overmore » 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.« less

  10. Complexity of Sizing for Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    The `fit? of a garment is often considered to be a subjective measure of garment quality. However, some experts attest that a complaint of poor garment fit is a symptom of inadequate or excessive ease, the space between the garment and the wearer. Fit has traditionally been hard to quantify, and space suits are an extreme example, where fit is difficult to measure but crucial for safety and operability. A proper space suit fit is particularly challenging because of NASA?s need to fit an incredibly diverse population (males and females from the 1st to 99th percentile) while developing a minimum number of space suit sizes. Because so few sizes are available, the available space suits must be optimized so that each fits a large segment of the population without compromising the fit of any one wearer.

  11. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  12. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  13. Software Framework for Controlling Unsupervised Scientific Instruments.

    PubMed

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today's research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum.

  14. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  16. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  17. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  18. EVA Suit R and D for Performance Optimization

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations

  19. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.

  20. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    NASA Technical Reports Server (NTRS)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  1. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  2. NASA Instrument Cost/Schedule Model

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George

    2011-01-01

    NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.

  3. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  4. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  5. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  6. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  7. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  8. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  9. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  10. A Review of Instrumented Equipment to Investigate Head Impacts in Sport

    PubMed Central

    2016-01-01

    Contact, collision, and combat sports have more head impacts as compared to noncontact sports; therefore, such sports are uniquely suited to the investigation of head impact biomechanics. Recent advances in technology have enabled the development of instrumented equipment, which can estimate the head impact kinematics of human subjects in vivo. Literature pertaining to head impact measurement devices was reviewed and usage, in terms of validation and field studies, of such devices was discussed. Over the past decade, instrumented equipment has recorded millions of impacts in the laboratory, on the field, in the ring, and on the ice. Instrumented equipment is not without limitations; however, in vivo head impact data is crucial to investigate head injury mechanisms and further the understanding of concussion. PMID:27594780

  11. EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE) Learning Suite for Educators

    NASA Astrophysics Data System (ADS)

    Kellagher, Emily; Scherrer, D. K.

    2013-07-01

    EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a comic book series for upper elementary and middle school students with the SDO mascot Camilla. These comics may be printed or read on mobile devices. Many teachers are looking for resources to use with their students via the Ipad so our collaboration helps supply teachers with a great resource that teachers about solar concepts and helps dispel solar misconceptions.Abstract (2,250 Maximum Characters): EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a

  12. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  13. Chemistry Lab for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The science payload of NASA's Phoenix Mars Lander includes a multi-tool instrument named the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument's wet chemistry laboratory, prominent in this photograph, will measure a range of chemical properties of Martian soil samples, such as the presence of dissolved salts and the level of acidity or alkalinity. Other tools that are parts of the instrument are microscopes that will examine samples' mineral grains and a probe that will check the soil's thermal and electrical properties.

  14. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  15. A Software Suite for Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  16. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  17. FHR Process Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  18. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... readily accessible location in or near the berthing area of the person for whom the exposure suit is... stowed in that location) is readily accessible to the station. (c) Each exposure suit on a MODU must be... type or multi-tone type, of corrosion resistant construction, and in good working order. The whistle...

  19. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  20. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  1. The OMPS Limb Profiler instrument

    NASA Astrophysics Data System (ADS)

    Rault, D. F.; Xu, P.

    2011-12-01

    The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.

  2. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify

  3. A new device for the inflation of the antigravity suit.

    PubMed

    Brodrick, P M

    1986-02-01

    The 'Schuco' orthopaedic tourniquet inflator can be simply converted into a suitable device for inflating an antigravity suit (G-suit). The antigravity suit may be used on neurosurgical patients undergoing procedures in the sitting position to help prevent hypotension and air embolism. The availability of this device may encourage the more widespread use of an antigravity suit in neuro-anaesthetic practice.

  4. The physician's reaction to a malpractice suit.

    PubMed

    Lavery, J P

    1988-01-01

    A malpractice suit can have a devastating impact on a practitioner's professional and personal life. The physician's reaction to this event is profound, affecting his own life-style and that of family, colleagues, and patients. This commentary presents an analogy between the physician's reaction to a malpractice suit and the stages of grief described by Elisabeth Kübler-Ross: the sequence of denial, anger, bargaining, depression, and acceptance. Understanding the psychodynamics of this reaction can help physicians to cope with the problems inherent in a malpractice suit and to maintain a greater stability in their personal lives. Adverse effects on medical practice and private life-style, and on the legal proceedings, can be minimized.

  5. Performance of the Magnetospheric Multiscale central instrument data handling

    NASA Astrophysics Data System (ADS)

    Klar, Robert A.; Miller, Scott A.; Brysch, Michael L.; Bertrand, Allison R.

    In order to study the fundamental physical processes of magnetic reconnection, particle acceleration and turbulence, the Magnetospheric Multiscale (MMS) mission employs a constellation of four identically configured observatories, each with a suite of complementary science instruments. Southwest Research Institute® (SwRI® ) developed the Central Instrument Data Processor (CIDP) to handle the large data volume associated with these instruments. The CIDP is an integrated access point between the instruments and the spacecraft. It provides synchronization pulses, relays telecommands, and gathers instrument housekeeping telemetry. It collects science data from the instruments and stores it to a mass memory for later playback to a ground station. This paper retrospectively examines the data handling performance realized by the CIDP implementation. It elaborates on some of the constraints on the hardware and software designs and the resulting effects on performance. For the hardware, it discusses the limitations of the front-end electronics input/output (I/O) architecture and associated mass memory buffering. For the software, it discusses the limitations of the Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP) implementation and the data structure choices for file management. It also describes design changes that improve data handling performance in newer designs.

  6. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    NASA Astrophysics Data System (ADS)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  7. Water Vapor Permeability of the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Larry; Gillis, David; Jones, Jeffery; Daniel, Brian; Gernhardt, Michael; Hamilton, Douglas

    2009-01-01

    Crew Exploration Vehicle (CEV) crewmembers are expected to return to earth wearing a suit similar to the current Advanced Crew Escape Suit (ACES). To ensure optimum cognitive performance, suited crewmembers must maintain their core body temperature within acceptable limits. There are currently several options for thermal maintenance in the post-landing phase. These include the current baseline, which uses an ammonia boiler, purge flow using oxygen in the suit, accessing sea water for liquid cooling garment (LCG) cooling and/or relying on the evaporative cooling capacity of the suit. These options vary significantly in mass, power, engineering and safety factors, with relying on the evaporative cooling capacity of the suit being the least difficult to implement. Data from previous studies indicates that the evaporative cooling capacity of the ACES was much higher than previously expected, but subsequent tests were performed for longer duration and higher metabolic rates to better define the water vapor permeability of the ACES. In these tests five subjects completed a series of tests performing low to moderate level exercise in order to control for a target metabolic rate while wearing the ACES in an environmentally controlled thermal chamber. Four different metabolic profiles at a constant temperature of 95 F and relative humidity of 50% were evaluated. These tests showed subjects were able to reject about twice as much heat in the permeable ACES as they were in an impermeable suit that had less thermal insulation. All of the heat rejection differential is attributed to the increased evaporation capability through the Gortex bladder of the suit.

  8. Postural hypotension and the anti-gravity suit.

    PubMed

    Brook, W H

    1994-10-01

    An air force anti-gravity suit, as used by fighter pilots to prevent loss of consciousness, has been successfully employed to treat severe postural hypotension in a patient with Shy-Drager syndrome. The definition of postural hypotension is reviewed, and reference is made to the previous use of the anti-gravity suit in the treatment of this condition.

  9. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  10. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  11. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  12. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  13. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  14. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  15. Preliminary Shuttle Space Suit Shielding Model. Chapter 9

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.; hide

    2003-01-01

    There are two space suits in current usage within the space program: EMU [2] and Orlan-M Space Suit . The Shuttle space suit components are discussed elsewhere [2,5,6] and serve as a guide to development of the current model. The present model is somewhat simplified in details which are considered to be second order in their effects on exposures. A more systematic approach is ongoing on a part-by-part basis with the most important ones in terms of exposure contributions being addressed first with detailed studies of the relatively thin space suit fabric as the first example . Additional studies to validate the model of the head coverings (bubble, helmet, visors.. .) will be undertaken in the near future. The purpose of this paper is to present the details of the model as it is now and to examine its impact on estimates of astronaut health risks. In this respect, the nonuniform distribution of mass of the space suit provides increased shielding in some directions and some organs. These effects can be most important in terms of health risks and especially critical to evaluation of potential early radiation effects .

  16. Immersion Suit Usage Within the RAAF

    DTIC Science & Technology

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  17. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  18. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  19. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  20. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures

    PubMed Central

    Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.

    2016-01-01

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063

  1. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    PubMed

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  2. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  3. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  4. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  5. Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument

    NASA Astrophysics Data System (ADS)

    Evrard, Rebecca L.; Ding, Yifeng

    2018-01-01

    Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.

  6. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  7. Astronaut Anna Fisher Suiting Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  8. Astronaut Anna Fisher Suited Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  9. Astronaut Anna Fisher Suited Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall SPace Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  10. Astronaut Anna Fisher Suits Up for NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  11. Astronaut Anna Fisher Suiting Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  12. Astronaut Anna Fisher Suits Up For NBS Training

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  13. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  14. 28 CFR 51.31 - Communications concerning voting suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Communications concerning voting suits... Groups § 51.31 Communications concerning voting suits. Individuals and groups are urged to notify the Chief, Voting Section, Civil Rights Division, of litigation concerning voting in jurisdictions subject...

  15. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    extended mission. For the upcoming EJSM mission with an expected launch date of 2020, the transport suite is used to compute the depth dose profile for the traditional aluminum silicon as a standard shield target combination, as well as simulating the shielding response of a high charge number (Z) material such as tantalum (Ta). Finally, a shield optimization algorithm is discussed which can guide the instrument designers and fabrication personnel with the choice of graded-Z shield selection and analysis.

  16. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  17. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  18. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  19. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments

    NASA Astrophysics Data System (ADS)

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-08-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters.

  20. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  1. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  2. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  3. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2010-01-01

    In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.

  4. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2011-01-01

    In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.

  5. Don/doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1988-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future spacecraft, lunar, or planetary bases. The present invention has a retainer which receives a protrucing lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suite. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  6. Don/Doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1989-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future space-craft, lunar or planetary bases. The present invention has a retainer which receives a protruding lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suit. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  7. EVA Suit Microbial Leakage

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2016-01-01

    NASA has a strategic knowledge gap (B5-3) about what life signatures leak/vent from our Extravehicular Activity (EVA) systems. This will impact how we search for evidence of life on Mars. Characterizing contamination leaks from our suits will help us comply with planetary protection guidelines, and better plan human exploration missions.

  8. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  9. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  10. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  11. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  12. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  13. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block capital...

  14. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  15. CASS—CFEL-ASG software suite

    NASA Astrophysics Data System (ADS)

    Foucar, Lutz; Barty, Anton; Coppola, Nicola; Hartmann, Robert; Holl, Peter; Hoppe, Uwe; Kassemeyer, Stephan; Kimmel, Nils; Küpper, Jochen; Scholz, Mirko; Techert, Simone; White, Thomas A.; Strüder, Lothar; Ullrich, Joachim

    2012-10-01

    The Max Planck Advanced Study Group (ASG) at the Center for Free Electron Laser Science (CFEL) has created the CFEL-ASG Software Suite CASS to view, process and analyse multi-parameter experimental data acquired at Free Electron Lasers (FELs) using the CFEL-ASG Multi Purpose (CAMP) instrument Strüder et al. (2010) [6]. The software is based on a modular design so that it can be adjusted to accommodate the needs of all the various experiments that are conducted with the CAMP instrument. In fact, this allows the use of the software in all experiments where multiple detectors are involved. One of the key aspects of CASS is that it can be used either 'on-line', using a live data stream from the free-electron laser facility's data acquisition system to guide the experiment, and 'off-line', on data acquired from a previous experiment which has been saved to file. Program summary Program title: CASS Catalogue identifier: AEMP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence, version 3 No. of lines in distributed program, including test data, etc.: 167073 No. of bytes in distributed program, including test data, etc.: 1065056 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-64. Operating system: GNU/Linux (for information about restrictions see outlook). RAM: >8 GB Classification: 2.3, 3, 15, 16.4. External routines: Qt-Framework[1], SOAP[2], (optional HDF5[3], VIGRA[4], ROOT[5], QWT[6]) Nature of problem: Analysis and visualisation of scientific data acquired at Free-Electron-Lasers Solution method: Generalise data access and storage so that a variety of small programming pieces can be linked to form a complex analysis chain. Unusual features: Complex analysis chains can be built without recompiling the program Additional comments: An updated extensive documentation of CASS is available

  16. An evaluation of three anti-G suit concepts for shuttle reentry

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    A study was conducted to compare the standard anti-G launch-entry suit (LES) with a reentry full-coverage anti-G suit (REAGS) and a REAGS without an abdominal bladder (AB). (The inflated AB is the most uncomfortable G-suit component). Intravenous Lasix, a diuretic, was used to induce the fluid loss seen during space flight. Using the Armstrong Laboratory Centrifuge, data collected from seven subjects have shown that less anti-G suit pressure is required to maintain eye-level systolic blood pressure above 70 mmHg when the REAGS or REAGS without AB is worn during simulated shuttle reentry G-profiles when compared to the current LES G-suit. The REAGS without AB was significantly more comfortable than the standard anti-G suit.

  17. Keeping the Deal

    NASA Technical Reports Server (NTRS)

    Hecht, Michael

    2002-01-01

    On the 4th of July 1997, I lay on a blanket with my family at a fireworks display near our home in Los Angeles, California. The pyrotechnics, they tell me, were dazzling. I wouldn't know. My attention was fixed on a tiny orange dot in the sky - Mars. A month earlier, NASA had released an Announcement of Opportunity for a supplementary payload on the Mars Surveyor Lander mission scheduled for launch in 2001. The Human Exploration and Development of Space (HEDS) organization had been authorized to make the most preliminary of investigations into the feasibility of sending humans to Mars. Among the requested investigations was an opportunity to study the dust and soil of the Red Planet, emphasizing possible hazards to human explorers. I spent that summer of '97 working on a proposal for the project I would eventually lead, the Mars Environmental Compatibility Assessment (MECA). MECA was selected in February of '98. We promised to deliver four new instruments by April 2000 with a modest budget of $5M. This is a story about some of the people who created MECA.

  18. The experience in operation and improving the Orlan-type space suits.

    PubMed

    Abramov, I P

    1995-07-01

    Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.

  19. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  20. Metabolic and Subjective Results Review of the Integrated Suit Test Series

    NASA Technical Reports Server (NTRS)

    Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.

    2009-01-01

    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a

  1. Astronaut Fred Haise - Suiting Room - Prelaunch - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34851 (11 April 1970) --- A space suit technician talks with astronaut Fred W. Haise Jr., lunar module pilot for NASA's Apollo 13 mission, during suiting up procedures at Kennedy Space Center (KSC). Other members of the crew are astronauts James A. Lovell Jr., commander, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II as a member of the crew when it was learned he had been exposed to measles.

  2. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  3. Development and Evaluation of Titanium Space Suit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Ray, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z series space suit architecture allows us to reduce mass by an estimated 23 pounds per suit system compared to the previously used stainless steel bearing designs without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race: 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approximately 2 years), bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination around a maximum contact stress that will allow the bearing to survive the life of an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an exploration mission.

  4. The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Traverse in a Planetary Suit

    NASA Technical Reports Server (NTRS)

    Vos, Jessica R.; Gernhardt, Michael L.; Lee, Lesley

    2007-01-01

    As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited EVA crew member exploring the surface of the Moon to "walk-back" to the habitat in the event of a rover breakdown, taking into consideration the planned EVA tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member s safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km Walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the Lunar Walkback Test . The test was designed not only to determine the feasibility of a 10 km excursion, but also to collect human performance, biomedical, and biomechanical data relevant to optimizing space suit design and life support system sizing. These data will also be used to develop follow-on studies to understand interrelationships of such key parameters as suit mass, inertia, suit pressure, and center of gravity (CG), and the respective influences of each on human performance.

  5. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  6. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  7. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  8. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission to the Attorney General does not affect the right of the submitting authority to bring an action in... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Right to bring suit. 51.11 Section 51.11...

  9. 28 CFR 51.11 - Right to bring suit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.11 Right to bring suit. Submission... affecting voting neither has the purpose nor will have the effect of denying or abridging the right to vote... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Right to bring suit. 51.11 Section 51.11...

  10. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  11. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    NASA Technical Reports Server (NTRS)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  12. 'The Grange', Tasmania: survival of a unique suite of 1874 transit of Venus relics

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Buchanan, Alex

    2004-06-01

    One of the two US expeditions in Australia for the 1874 transit of Venus was based in Campbell Town, Tasmania. While the transit was observed from this site and some of the photographs were used in the subsequent investigation of the solar parallax, its main claim to fame is the physical vestiges of the transit programme that have survived there through to the present day. These comprise foundations for instruments, two piers associated with the photographic telescope, and one of the prefabricated observatory buildings. In addition, a copy of a photograph of the transit is preserved in the Queen Victoria Museum and Art Gallery in nearby Launceston. Collectively these form a unique suite of 1874 transit of Venus relics, and are of international importance.

  13. Teaching contact metamorphism, isograds, and mixed-volatile reactions: A suite-based approach

    NASA Astrophysics Data System (ADS)

    Peck, W. H.

    2003-12-01

    An important goal of teaching Introductory Petrology is to demonstrate how different kinds of approaches are integrated in studying petrologic problems. Depending on the goals of the study data used can be from the field, hand-sample, microscope, electron beam instrument, or mass spectrometer. A suite of samples with a known geographical and geological context can help students in drawing connections between different petrologic approaches, as the `geologic story' of the samples becomes a unifying theme. For teaching a unit on calc-silicates I use a suite of siliceous dolomite samples collected from the Ubehebe contact aureole (Death Valley, NV) as well as published data (Roselle et al., 1997; 1999) in a linked series of laboratory exercises and problem sets. The geology of the contact aureole is introduced in a three-hour laboratory exercise, where students identify the appearance of tremolite, forsterite, and periclase/brucite and the disappearance of quartz as the intrusion is approached. A concurrent problem set uses simplified mineral assemblage maps from the aureole. In the problem set students delineate isograds and determine the balanced metamorphic reactions by which the metamorphic minerals formed. Lecture material during this unit focuses on the physical properties of fluids in the crust and the mineralogical evidence for fluid-flow (with an emphasis on mixed-volatile reactions and T-XCO2 diagrams). A concrete field example helps focus student attention on the interrelation of disparate approaches by which petrologic problems addressed. The Ubehebe suite then becomes a unifying theme throughout the course: the specimens or regional geology are used in subsequent laboratories and lectures when introducing concepts such as grain nucleation and growth, reaction overstepping, and replacement textures. A virtual field trip of the Alta aureole, UT (using field photographs, maps, and photomicrographs) concludes the unit. The geology of the Alta aureole is

  14. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  15. Skin blood flow with elastic compressive extravehicular activity space suit.

    PubMed

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  16. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  17. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  18. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  19. STS-77 MS Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 Mission Specialist Andrew S. W. Thomas finishes donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. A native of South Australia, the rookie astronaut joins a crew of five veterans on the fourth Shuttle flight of 1996. They will depart shortly for Launch Pad 39B, where the Space Shuttle Endeavour is undergoing final preparations for liftoff during a two-and-a-half hour launch window opening at 6:30 a.m. EDT, May 19.

  20. Extravehicular Mobility Unit Training Suit Symptom Study Report

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel

    2004-01-01

    The purpose of this study was to characterize the symptoms and injuries experienced by NASA astronauts during extravehicular activity (space walk) spacesuit training at the Neutral Buoyancy Laboratory at Ellington Field, Houston, Texas. We identified the frequency and incidence rates of symptoms by each general body location and characterized mechanisms of injury and effective countermeasures. Based on these findings a comprehensive list of recommendations was made to improve training, test preparation, and current spacesuit components, and to design the next -generation spacesuit. At completion of each test event a comprehensive questionnaire was produced that documented suit symptom comments, identified mechanisms of injury, and recommended countermeasures. As we completed our study we found that most extravehicular mobility unit suit symptoms were mild, self-limited, and controlled by available countermeasures. Some symptoms represented the potential for significant injury with short- and long-term consequences regarding astronaut health and interference with mission objectives. The location of symptoms and injuries that were most clinically significant was in the hands, shoulders, and feet. Correction of suit symptoms issues will require a multidisciplinary approach to improve prevention, early medical intervention, astronaut training, test planning, and suit engineering.

  1. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  2. 46 CFR 160.171-17 - Approval testing for adult size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equivalent synthetic socks; (v) Work shoes, if the suit is designed for shoes to be worn inside. (2) Test... Approval testing for adult size immersion suit. Caution: During each of the in-water tests prescribed in... if the oversize adult suit is of the same design as the adult suit except for extra material to...

  3. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  4. STS-71 Pilot Charles J. Precourt suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Pilot Charles J. Precourt gets a helping hand from a suit technician as he dons his launch/entry suit in the Operations and Checkout Building. About to embark on his second spaceflight, Precourt and six fellow crew members will shortly depart for Launch Pad 39A, where the Space Shuttle Atlantis is poised for a third liftoff attempt at 3:32 p.m. EDT.

  5. Neoprene wet-suit hood affects low-frequency underwater hearing thresholds.

    PubMed

    Fothergill, David M; Sims, John R; Curley, Michael D

    2004-05-01

    Psychophysical measures of wet-suit hood sound attenuation are needed to provide the diving community with guidance on protection from underwater sound. Underwater hearing thresholds were obtained from 15 male and 5 female recreational divers with and without a 3-mm thick wet-suit hood. Dives were conducted at a depth of 1 m in a large quiet anechoic pool. Thresholds were determined using a two-interval forced-choice procedure with a 0.71 probability of positive response at convergence. A 1-s pure tone was presented with a 20-ms rise and fall time at 100, 200, 250, 300, 400, and 500 Hz. Without a wet-suit hood, mean thresholds decreased from 99 dB re 1 microPa at 100 Hz to 85 dB at 500 Hz. Thresholds were statistically similar at 100 to 300 Hz with and without the wet-suit hood, but were significantly increased at 400 and 500 Hz with the hood (p < 0.001). In conclusion, at shallow depths, a 3-mm neoprene wet-suit hood attenuates underwater sound by approximately 10 dB for frequencies between 400 Hz and 500 Hz. At frequencies below 400 Hz, a 3-mm neoprene wet-suit hood offers no sound protection.

  6. OMPS Limb Profiler Instrument Performance Assessment

    NASA Technical Reports Server (NTRS)

    Jaross, Glen R.; Bhartia, Pawan K.; Chen, Grace; Kowitt, Mark; Haken, Michael; Chen, Zhong; Xu, Philippe; Warner, Jeremy; Kelly, Thomas

    2014-01-01

    Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft, the NASA OMPS Limb team began an evaluation of instrument and data product performance. The focus of this paper is the instrument performance in relation to the original design criteria. Performance that is closer to expectations increases the likelihood that limb scatter measurements by SNPP OMPS and successor instruments can form the basis for accurate long-term monitoring of ozone vertical profiles. The team finds that the Limb instrument operates mostly as designed and basic performance meets or exceeds the original design criteria. Internally scattered stray light and sensor pointing knowledge are two design challenges with the potential to seriously degrade performance. A thorough prelaunch characterization of stray light supports software corrections that are accurate to within 1% in radiances up to 60 km for the wavelengths used in deriving ozone. Residual stray light errors at 1000nm, which is useful in retrievals of stratospheric aerosols, currently exceed 10%. Height registration errors in the range of 1 km to 2 km have been observed that cannot be fully explained by known error sources. An unexpected thermal sensitivity of the sensor also causes wavelengths and pointing to shift each orbit in the northern hemisphere. Spectral shifts of as much as 0.5nm in the ultraviolet and 5 nm in the visible, and up to 0.3 km shifts in registered height, must be corrected in ground processing.

  7. OCAMS: The OSIRIS-REx Camera Suite

    NASA Astrophysics Data System (ADS)

    Rizk, B.; Drouet d'Aubigny, C.; Golish, D.; Fellows, C.; Merrill, C.; Smith, P.; Walker, M. S.; Hendershot, J. E.; Hancock, J.; Bailey, S. H.; DellaGiustina, D. N.; Lauretta, D. S.; Tanner, R.; Williams, M.; Harshman, K.; Fitzgibbon, M.; Verts, W.; Chen, J.; Connors, T.; Hamara, D.; Dowd, A.; Lowman, A.; Dubin, M.; Burt, R.; Whiteley, M.; Watson, M.; McMahon, T.; Ward, M.; Booher, D.; Read, M.; Williams, B.; Hunten, M.; Little, E.; Saltzman, T.; Alfred, D.; O'Dougherty, S.; Walthall, M.; Kenagy, K.; Peterson, S.; Crowther, B.; Perry, M. L.; See, C.; Selznick, S.; Sauve, C.; Beiser, M.; Black, W.; Pfisterer, R. N.; Lancaster, A.; Oliver, S.; Oquest, C.; Crowley, D.; Morgan, C.; Castle, C.; Dominguez, R.; Sullivan, M.

    2018-02-01

    The OSIRIS-REx Camera Suite (OCAMS) will acquire images essential to collecting a sample from the surface of Bennu. During proximity operations, these images will document the presence of satellites and plumes, record spin state, enable an accurate model of the asteroid's shape, and identify any surface hazards. They will confirm the presence of sampleable regolith on the surface, observe the sampling event itself, and image the sample head in order to verify its readiness to be stowed. They will document Bennu's history as an example of early solar system material, as a microgravity body with a planetesimal size-scale, and as a carbonaceous object. OCAMS is fitted with three cameras. The MapCam will record color images of Bennu as a point source on approach to the asteroid in order to connect Bennu's ground-based point-source observational record to later higher-resolution surface spectral imaging. The SamCam will document the sample site before, during, and after it is disturbed by the sample mechanism. The PolyCam, using its focus mechanism, will observe the sample site at sub-centimeter resolutions, revealing surface texture and morphology. While their imaging requirements divide naturally between the three cameras, they preserve a strong degree of functional overlap. OCAMS and the other spacecraft instruments will allow the OSIRIS-REx mission to collect a sample from a microgravity body on the same visit during which it was first optically acquired from long range, a useful capability as humanity reaches out to explore near-Earth, Main-Belt and Jupiter Trojan asteroids.

  8. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    PubMed

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  9. Android and iPhone Apps for Viewing Browse Plots from the Magnetospheric Imaging Instrument (MIMI) on Cassin

    NASA Astrophysics Data System (ADS)

    Vandegriff, J. D.; Kusterer, M. B.; Byun, S.; Steele, R. J.; Mitchell, D. G.

    2017-12-01

    We present a new mobile app for Android and an existing app for iPhone, both capable of viewing the numerous browse plots available for data collected by the MIMI suite on NASA's Cassini spacecraft. Both apps allow convenient mobile access to pre-made plots of data from various instruments on the suite, including daily, and monthly plots of particle intensities (line plots and spectrograms) from LEMMS, CHEMS and INCA. Also, the apps can show short movies made from sequences of INCA neutral atom images. Browsing the plots or movies is as simple as swiping to the left or right, and the app hides all access details needed to finding the images. Note that the app requires a data connection, since it locates and downloads the plot files live from various instrument team servers. We will demonstrate the current versions of both apps, which are available in Apple's App Store and the Google Play Store.

  10. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  11. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  12. Assessment of Thermal Protection Afforded by Hot Water Diving Suits

    DTIC Science & Technology

    1980-07-03

    Assessment of Thermal Protect! " Afforded by Hot Water Diving Suits A AA L. A. Kuehn Diver thermal comfort in cold water is presently only...with proper control oj inlet suit water flow% and temperature, as well as heating of inspired gas, this suit technology suffices for thermal comfort for...technology provides in part to the convective heat loss that it prpsents, sustained long-term thermal comfort in cold water, Webb (W) has defined a

  13. Comparisons of three anti-G suit configurations during long duration, low onset, +Gz

    NASA Technical Reports Server (NTRS)

    Stegmann, B. J.; Krutz, R. W.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    Little physiologic data exist on the effects of long duration, low onset, hypergravity (+G). Space shuttle crewmembers are subjected to low +G forces (less than +3G) for upwards of 30 minutes during reentry. A similar reentry profile is predicted for the National Aerospace Plane (NASP). The physiologic effects of this acceleration stress are compounded by the loss of body water experienced during microgravity. Currently, a standard 5 bladder anti-G suit is being used during shuttle reentry. There have been complaints of discomfort using this suit, mainly due to the abdominal bladder. This study compared the effectiveness of three anti-G suit configurations in volume depleted subjects during a simulated space shuttle reentry profile. Methods: Seven male subjects were given intravenous Lasix in a dose from 20-40 mg to induce a total body weight loss of 3 plus or minus 1.5 percent. Approximately six hours after the injection, the subjects donned one of three anti-G suits - a standard 5 bladder anti-G suit, an extended coverage anti-G suit (the advanced technology anti-G suit or ATAGS), or an extended coverage anti-G suit without an abdominal bladder (the reentry anti-G suit or REAGS). All subjects were exposed to a simulated space shuttle reentry profile. Non-invasive eye-level blood pressure (ELBP) was monitored throughout the +G exposure. When systolic ELBP dropped below 70 mmHg, the anti-G suit was inflated in 0.5 psig increments to the pressure required to maintain 70 mmHg ELBP. Each subject rode with all three suits. Comparisons were made between the final pressure required in each suit to maintain ELBP and subjective reports of comfort. Results: The mean final suit pressure required to maintain ELBP was 1.1 psi, in both the ATAGS and REAGS versus 1.8 psi in the standard suit. In addition, the subjects rated the REAGS suit highest on the comfort scale, citing the absence of the abdominal bladder as the main reason. Conclusions: Overall, the REAGS suit was the

  14. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  15. Trends in Personal Injury Suits.

    ERIC Educational Resources Information Center

    van der Smissen, Betty

    1985-01-01

    Professional competence becomes more important as personal injury suits against recreation enterprises and parks focus increasingly on the professional responsible for facility safety. All professionals should be aware of and educated in risk management. Trends in liability awards and providers' legal responsibilities in various situations are…

  16. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  17. Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 Installation

    NASA Image and Video Library

    2016-09-13

    NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 Installation inside the station’s Microgravity Science Glovebox. The glovebox is one of the major dedicated science facilities inside the Destiny laboratory and provides a sealed environment for conducting science and technology experiments. The glovebox is particularly suited for handling hazardous materials when the crew is present.

  18. Cosmonaut Sergei Krikalev receives assistance from suit technician

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  19. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  20. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to

  1. The antigravity suit in neurosurgery. Cardiovascular responses in seated neurosurgical patients.

    PubMed

    Brodrick, P M; Ingram, G S

    1988-09-01

    The haemodynamic responses associated with inflation of the antigravity suit (G suit, aviation type) to 8.0 kPa were studied in a series of 40 patients who underwent neurosurgical operations in the sitting position. The study showed statistically significant increases in systolic arterial pressure (p less than 0.005) and mean central venous pressure (p less than 0.001) with inflation of the suit. The systolic arterial and mean central venous pressures remained significantly elevated immediately before deflation of the suit at the end of the operation (p less than 0.001 and p less than 0.005 respectively). The addition of 0.8-1.0 kPa positive end expiratory pressure during suit inflation was also investigated. A further increase in central venous pressure occurred but this did not achieve statistical significance.

  2. Argon used as dry suit insulation gas for cold-water diving.

    PubMed

    Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A

    2013-06-03

    Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.

  3. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  4. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  5. Checkout and Standard Use Procedures for the Mark III Space Suit Assembly

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2012-01-01

    The operational pressure range is the range to which the suit can be nominally operated for manned testing. The top end of the nominal operational pressure range is equivalent to 1/2 the proof pressure. Structural pressure is 1.5 times the specified test pressure for any given test. Proof pressure is the maximum unmanned pressure to which the suit was tested by the vendor prior to delivery. The maximum allowable working pressure (MAWP) is 90% of the proof pressure. The pressure systems RVs are set to keep components below their MAWPs. If the suit is pressurized over its MAWP, the suit will be taken out of service and an in-depth inspection/review of the suit will be performed before the suit is put back in service. The procedures outlined in this document should be followed as written. However, the suit test engineer (STE) may make redline changes real-time, provided those changes are recorded in the anomaly section of the test data sheet. If technicians supporting suit build-up, check-out, and/or test execution believe that a procedure can be improved, they should notify their lead. If procedures are incorrect to the point of potentially causing hardware damage or affecting safety, bring the problem to the technician lead and/or STE s attention and stop work until a solution (temporary or permanent) is authorized. Certain steps in the procedure are marked with a DV , for Designated Verifier. The Designated Verifier for this procedure is an Advanced Space Suit Technology Development Laboratory technician, not directly involved in performing the procedural steps, who will verify that the step was performed as stated. The steps to be verified by the DV were selected based on one or more of the following criteria: the step was deemed significant in ensuring the safe performance of the test, the data recorded in the step is of specific interest in monitoring the suit system operation, or the step has a strong influence on the successful completion of test objectives

  6. Analysis of dynamics and fit of diving suits

    NASA Astrophysics Data System (ADS)

    Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.

    2017-10-01

    Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.

  7. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  8. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  9. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  10. An MBSE Approach to Space Suit Development

    NASA Technical Reports Server (NTRS)

    Cordova, Lauren; Kovich, Christine; Sargusingh, Miriam

    2012-01-01

    The EVA/Space Suit Development Office (ESSD) Systems Engineering and Integration (SE&I) team has utilized MBSE in multiple programs. After developing operational and architectural models, the MBSE framework was expanded to link the requirements space to the system models through functional analysis and interfaces definitions. By documenting all the connections within the technical baseline, ESSD experienced significant efficiency improvements in analysis and identification of change impacts. One of the biggest challenges presented to the MBSE structure was a program transition and restructuring effort, which was completed successfully in 4 months culminating in the approval of a new EVA Technical Baseline. During this time three requirements sets spanning multiple DRMs were streamlined into one NASA-owned Systems Requirement Document (SRD) that successfully identified requirements relevant to the current hardware development effort while remaining extensible to support future hardware developments. A capability-based hierarchy was established to provide a more flexible framework for future space suit development that can support multiple programs with minimal rework of basic EVA/Space Suit requirements. This MBSE approach was most recently applied for generation of an EMU Demonstrator technical baseline being developed for an ISS DTO. The relatively quick turnaround of operational concepts, architecture definition, and requirements for this new suit development has allowed us to test and evolve the MBSE process and framework in an extremely different setting while still offering extensibility and traceability throughout ESSD projects. The ESSD MBSE framework continues to be evolved in order to support integration of all products associated with the SE&I engine.

  11. Extending the GI Brokering Suite to Support New Interoperability Specifications

    NASA Astrophysics Data System (ADS)

    Boldrini, E.; Papeschi, F.; Santoro, M.; Nativi, S.

    2014-12-01

    The GI brokering suite provides the discovery, access, and semantic Brokers (i.e. GI-cat, GI-axe, GI-sem) that empower a Brokering framework for multi-disciplinary and multi-organizational interoperability. GI suite has been successfully deployed in the framework of several programmes and initiatives, such as European Union funded projects, NSF BCube, and the intergovernmental coordinated effort Global Earth Observation System of Systems (GEOSS). Each GI suite Broker facilitates interoperability for a particular functionality (i.e. discovery, access, semantic extension) among a set of brokered resources published by autonomous providers (e.g. data repositories, web services, semantic assets) and a set of heterogeneous consumers (e.g. client applications, portals, apps). A wide set of data models, encoding formats, and service protocols are already supported by the GI suite, such as the ones defined by international standardizing organizations like OGC and ISO (e.g. WxS, CSW, SWE, GML, netCDF) and by Community specifications (e.g. THREDDS, OpenSearch, OPeNDAP, ESRI APIs). Using GI suite, resources published by a particular Community or organization through their specific technology (e.g. OPeNDAP/netCDF) can be transparently discovered, accessed, and used by different Communities utilizing their preferred tools (e.g. a GIS visualizing WMS layers). Since Information Technology is a moving target, new standards and technologies continuously emerge and are adopted in the Earth Science context too. Therefore, GI Brokering suite was conceived to be flexible and accommodate new interoperability protocols and data models. For example, GI suite has recently added support to well-used specifications, introduced to implement Linked data, Semantic Web and precise community needs. Amongst the others, they included: DCAT: a RDF vocabulary designed to facilitate interoperability between Web data catalogs. CKAN: a data management system for data distribution, particularly used by

  12. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  13. Terrestrial EVA Suit = Fire Fighter's Protective Clothing

    NASA Technical Reports Server (NTRS)

    Foley, Tico; Brown, Robert G.; Burrell, Eddie; DelRosso, Dominic; Krishen, Kumar; Moffitt, Harold; Orndoff, Evelyne; Santos, Beatrice; Butzer, Melissa; Dasgupta, Rajib

    1999-01-01

    Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.

  14. Development of an instrument for the evaluation of advanced life support performance.

    PubMed

    Peltonen, L-M; Peltonen, V; Salanterä, S; Tommila, M

    2017-10-01

    Assessing advanced life support (ALS) competence requires validated instruments. Existing instruments include aspects of technical skills (TS), non-technical skills (NTS) or both, but one instrument for detailed assessment that suits all resuscitation situations is lacking. This study aimed to develop an instrument for the evaluation of the overall ALS performance of the whole team. This instrument development study had four phases. First, we reviewed literature and resuscitation guidelines to explore items to include in the instrument. Thereafter, we interviewed resuscitation team professionals (n = 66), using the critical incident technique, to determine possible additional aspects associated with the performance of ALS. Second, we developed an instrument based on the findings. Third, we used an expert panel (n = 20) to assess the validity of the developed instrument. Finally, we revised the instrument based on the experts' comments and tested it with six experts who evaluated 22 video recorded resuscitations. The final version of the developed instrument had 69 items divided into adherence to guidelines (28 items), clinical decision-making (5 items), workload management (12 items), team behaviour (8 items), information management (6 items), patient integrity and consideration of laymen (4 items) and work routines (6 items). The Cronbach's α values were good, and strong correlations between the overall performance and the instrument were observed. The instrument may be useful for detailed assessment of the team's overall performance, but the numerous items make the use demanding. The instrument is still under development, and more research is needed to determine its psychometric properties. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  16. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  17. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  18. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  19. 22 CFR 93.2 - Notice of suit (or of default judgment).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Notice of suit (or of default judgment). 93.2... § 93.2 Notice of suit (or of default judgment). (a) A Notice of Suit prescribed in section 1608(a) of title 28, United States Code, shall be prepared in the form that appears in the Annex to this section...

  20. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  1. Complexity of Fit, with Application to Space Suits

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely

  2. SUIT - ASTRONAUT S. CARPENTER - PA

    NASA Image and Video Library

    1960-08-01

    S61-03510 (1961) --- Project Mercury astronaut M. Scott Carpenter smiles, in his pressure suit, prior to participating in a simulated mission run at Cape Canaveral, Florida. Astronaut Carpenter has been selected as the prime pilot on the United States second attempt to put a man into orbit around Earth. Photo credit: NASA

  3. STS-70 Commander Terence 'Tom' Henricks suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Commander Terence 'Tom' Henricks is donning his launch/entry suit in the Operations and Checkout Building with help from a suit technician. Henricks, who is about to make his third trip into space, and four crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  4. Revolutionary Design for Astronaut Exploration — Beyond the Bio-Suit System

    NASA Astrophysics Data System (ADS)

    Newman, Dava J.; Canina, Marita; Trotti, Guillermo L.

    2007-01-01

    The Bio-Suit System is designed to revolutionize human space exploration by providing enhanced astronaut extravehicular activity (EVA) locomotion and performance based on the concepts of a `second skin' capability. The novel Bio-Suit concept provides an overall exploration system realized through symbiotic relationships between a suite of advanced technologies, creative design, human modeling and analysis, and new mission operations techniques. By working at the intersection of engineering, design, life sciences and operations, new emergent capabilities and interrelationships result for applications to space missions, medical rehabilitation, and extreme sports activities. In many respects, the Bio-Suit System mimics Nature (biomimetics). For example, the second skin is capable of augmenting our biological skin by providing mechanical counter-pressure. We have designed and tested prototypes that prove mechanical counter-pressure feasibility. The `epidermis' of our second skin suit is patterned from 3D laser scans that incorporate human skin strain field maps for maximum mobility and natural movements, while requiring minimum energy expenditure for exploration tasks. We provide a technology roadmap for future design, pressure production and technology investments for the Bio-Suit System. Woven into the second skin are active materials to enhance human performance as well as to provide necessary performance metrics (i.e., energy expenditure). Wearable technologies will be embedded throughout the Bio-Suit System to place the explorer in an information-rich environment enabling real-time mission planning, prediction, and visualization. The Bio-Suit System concept augments human capabilities by coupling human and robotic abilities into a hybrid of the two, to the point where the explorer is hardly aware of the boundary between innate human performance and robotic activities.

  5. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and

  6. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  7. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  8. Development and Testing of UCLA's Electron Losses and Fields Investigation (ELFIN) Instrument Payload

    NASA Astrophysics Data System (ADS)

    Wilkins, C.; Bingley, L.; Angelopoulos, V.; Caron, R.; Cruce, P. R.; Chung, M.; Rowe, K.; Runov, A.; Liu, J.; Tsai, E.

    2017-12-01

    UCLA's Electron Losses and Fields Investigation (ELFIN) is a 3U+ CubeSat mission designed to study relativistic particle precipitation in Earth's polar regions from Low Earth Orbit. Upon its 2018 launch, ELFIN will aim to address an important open question in Space Physics: Are Electromagnetic Ion-Cyclotron (EMIC) waves the dominant source of pitch-angle scattering of high-energy radiation belt charged particles into Earth's atmosphere during storms and substorms? Previous studies have indicated these scattering events occur frequently during storms and substorms, and ELFIN will be the first mission to study this process in-situ.Paramount to ELFIN's success is its instrument suite consisting of an Energetic Particle Detector (EPD) and a Fluxgate Magnetometer (FGM). The EPD is comprised of two collimated solid-state detector stacks which will measure the incident flux of energetic electrons from 50 keV to 4 MeV and ions from 50 keV to 300 keV. The FGM is a 3-axis magnetic field sensor which will capture the local magnetic field and its variations at frequencies up to 5 Hz. The ELFIN spacecraft spins perpendicular to the geomagnetic field to provide 16 pitch-angle particle data sectors per revolution. Together these factors provide the capability to address the nature of radiation belt particle precipitation by pitch-angle scattering during storms and substorms.ELFIN's instrument development has progressed into the late Engineering Model (EM) phase and will soon enter Flight Model (FM) development. The instrument suite is currently being tested and calibrated at UCLA using a variety of methods including the use of radioactive sources and applied magnetics to simulate orbit conditions during spin sectoring. We present the methods and test results from instrument calibration and performance validation.

  9. 18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH MISCELLANEOUS SUIT COMPONENTS AND SUPPLIES. TERRY WEST TO LEFT, AND PAUL DUMBACHER TO RIGHT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  10. Gemini 7 prime crew during suiting up procedures at Launch Complex 16

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr. (left), Gemini 7 prime crew pilot, talks with NASA space suit technician Clyde Teague during suiting up procedures at Launch Complex 16, Kennedy Space Center. Lovell wears the new lightweight space suit planned for use during the Gemini 7 mission (61756); Astronaut Frank Borman, comand pilot of the Gemini 7 space flight, undergoes suiting up operations in Launch Complex 16 during prelaunch countdown. Medical biosensors are attached to his scalp (61757).

  11. The Apollo Number: space suits, self-support, and the walk-run transition.

    PubMed

    Carr, Christopher E; McGee, Jeremy

    2009-08-12

    How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. The walk-run transition (denoted *) correlates with the Froude Number (Fr = v(2)/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (approximately 0.5) with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36+/-0.11, mean+/-95% CI) and Ap* (0.68+/-0.20). The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  12. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  13. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  14. GT-6 PREFLIGHT ACTIVITY (LEAVE SUITING TRAILER) - ASTRONAUT WALTER M. SCHIRRA, JR. - SUIT

    NASA Image and Video Library

    1965-12-15

    S65-59974 (15 Dec. 1965) --- Astronauts Walter M. Schirra Jr. (leading), command pilot; and Thomas P. Stafford, pilot, leave the suiting trailer at Launch Complex 16 during the Gemini-6 prelaunch countdown at Cape Kennedy, Florida. They entered a special transport van which carried them to Pad 19 and their spacecraft. Gemini-6 lifted off at 8:37 a.m. (EST) on Dec. 15, 1965. Photo credit: NASA or National Aeronautics and Space Administration

  15. The Role of KREEP in the Production of Mg-Suite Magmas and Its Influence on the Extent of Mg-Suite Magmatism in the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Elardo, S. M.; Shearer, C. K.; McCubbin, F. M.

    2017-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust. They have received a considerable amount of attention from lunar scientists since their discovery for three primary reasons: 1) their ages and geochemistry indicate they represent pristine magmatic samples that crystallized very soon after the formation of the Moon; 2) their ages often overlap with ages of the ferroan anorthosite (FAN) crust; and 3) planetary-scale processes are needed in formation models to account for their unique geochemical features. Taken as a whole, the Mg-suite samples, as magmatic cumulate rocks, approximate a fractional crystallization sequence in the low-pressure forsterite-anorthite-silica system, and thus these samples are generally thought to be derived from layered mafic intrusions which crystallized very slowly from magmas that intruded the anorthositic crust. However, no direct linkages have been established between different Mg-suite samples based either on field relationships or geochemistry.The model for the origin of the Mg-suite, which best fits the limited available data, is one where Mg-suite magmas form from melting of a hybrid cumulate package consisting of deep mantle dunite, crustal anorthosite, and KREEP (potassium-rare earth elements-phosphorus) at the base of the crust under the Procellarum KREEP Terrane (PKT). In this model, these three LMO (Lunar Magma Ocean) cumulate components are brought into close proximity by the cumulate overturn process. Deep mantle dunitic cumulates with an Mg number of approximately 90 rise to the base of the anorthositic crust due to their buoyancy relative to colder, more dense Fe- and Ti-rich cumulates. This hybridized source rock melts to form Mg-suite magmas, saturated in Mg-rich olivine and anorthitic plagioclase, that have a substantial KREEP component.

  16. Schematic Animation of Phoenix's Microscope Station

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the workings of the microscope station of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) instrument suite of NASA's Phoenix Mars Lander.

    Samples are delivered to the horizontal portion of the sample wheel (yellow) that pokes outside an opening in the box enclosure. The wheel rotates to present the sample to the microscopes. The Optical Microscope (red) can see particles a little smaller than one-tenth the diameter of a human hair. The Atomic Force Microscope (pink) can see particles forty time smaller. The samples are on a variety of substrate surfaces, the small circles on the beveled edge of the sample wheel. For scale, the diameter of the wheel is about 14 centimeters (5.5 inches). Each substrate is a circle 3 millimeters (0.1 inch) in diameter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Design and Testing of Suit Regulator Test Rigs

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.

  18. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  19. [EC5-Space Suit Assembly Team- Internship

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    There were three main projects in this internship. The first pertained to the Bearing Dust Cycle Test, in particular automating the test to allow for easier administration. The second concerned modifying the communication system setup in the Z2 suit, where speakers and mics were adjusted to allow for more space in the helmet. And finally, the last project concerned the tensile strength testing of fabrics deemed as candidates for space suit materials and desired to be sent off for radiation testing. The major duties here are split up between the major projects detailed above. For the Bearing Dust Cycle Test, the first objective was to find a way to automate administration of the test, as the previous version was long and tedious to perform. In order to do this, it was necessary to introduce additional electronics and perform programming to control the automation. Once this was done, it would be necessary to update documents concerning the test setup, procedure, and potential hazards. Finally, I was tasked with running tests using the new system to confirm system performance. For the Z2 communication system modifications, it was necessary to investigate alternative speakers and microphones which may have better performance than those currently used in the suit. Further, new speaker and microphone positions needed to be identified to keep them out of the way of the suit user. Once this was done, appropriate hardware (such as speaker or microphone cases and holders) could be prototyped and fabricated. For the suit material strength testing, the first task was to gather and document various test fabrics to identify the best suit material candidates. Then, it was needed to prepare samples for testing to establish baseline measurements and specify a testing procedure. Once the data was fully collected, additional test samples would be prepared and sent off-site to undergo irradiation before being tested again to observe changes in strength performance. For the Bearing

  20. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  1. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    PubMed

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  2. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  3. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  4. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  5. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  6. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  7. The One in the Purple Suit.

    ERIC Educational Resources Information Center

    Sargeant, Hope

    2003-01-01

    In this article, a parent of a gifted child muses on the challenges of raising her daughter, coping with her daughter's frustrations, her decision to stay home, and her brief envy of a doppelganger, a professional in a purple suit. (CR)

  8. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  9. The Apollo Number: Space Suits, Self-Support, and the Walk-Run Transition

    PubMed Central

    Carr, Christopher E.; McGee, Jeremy

    2009-01-01

    Background How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. Methodology/Principal Findings The walk-run transition (denoted *) correlates with the Froude Number (Fr = v2/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (∼0.5) with gravity but increases substantially with decreasing gravity below ∼0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36±0.11, mean±95% CI) and Ap* (0.68±0.20). Conclusions/Significance The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars. PMID:19672305

  10. Cascadia, an ultracompact seismic instrument with over 200dB of dynamic range

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce

    2017-04-01

    Integration of geophysical instrumentation is clearly a way to lower overall station cost, make installations less complex, reduce installation time, increase station utility and value to a wider group of researchers, data miners and monitoring groups. Initiatives to expand early earthquake warning networks and observatories can use these savings for increasing station density. Integration of mature instrument systems such as broadband sensors and accelerometers used in strong motion studies has to be done with care to preserve the low noise and low frequency performance while providing over 200dB of dynamic range. Understanding the instrument complexities and deployment challenges allows the engineering teams to optimize the packaging to make installation and servicing cost effective, simple, routine and ultimately more reliable. We discuss early results from testing both in the lab and in the field of a newly released instrument called the Cascadia that integrates a broadband seismometer with a class A (USGS rating) accelerometer in a small stainless steel sonde suited for dense arrays in either ad hoc direct bury field deployments or in observatory quality shallow boreholes.

  11. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly

    2016-07-01

    This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product

  12. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less

  13. ASTRONAUT GLENN, JOHN - MERCURY SPACE SUIT

    NASA Image and Video Library

    1962-02-20

    S62-00965 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., finishes suiting up, and prepares for the launch of his Mercury-Atlas 6 (MA-6) spacecraft. The MA-6 ?Friendship 7? mission marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  14. Towards non- and minimally instrumented, microfluidics-based diagnostic devices†

    PubMed Central

    Weigl, Bernhard; Domingo, Gonzalo; LaBarre, Paul; Gerlach, Jay

    2009-01-01

    In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources. PMID:19023463

  15. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  16. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  17. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  18. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  19. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  20. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The stability test prescribed in § 160.171-17(c)(8), except that only six children need be used as test subjects...

  1. Pods: a Powder Delivery System for Mars In-situ Organic, Mineralogic and Isotopic Analysis Instruments

    NASA Technical Reports Server (NTRS)

    Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.

    2005-01-01

    Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.

  2. Planetary Protection Plan for an Antibody based instrument proposed for Mars2020

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Parro, Víctor

    The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.

  3. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  4. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  5. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  6. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  7. Situational awareness and its application in the delivery suite.

    PubMed

    Edozien, Leroy C

    2015-01-01

    The delivery suite is a high-risk environment. Transitions between low-risk and high-risk can be swift, and sentinel events can occur without warning. The prevention of accidents in this environment rests on the vigilance of the individual practitioner at the frontline. It is, therefore, important that the individual practitioner should develop and maintain the cognitive skills to anticipate, recognize, and intercept unfolding error chains. This commentary gives an overview of a nontechnical skill that is essential for safe practice in a delivery suite: situational awareness. A basic description of situational awareness is provided, using examples of loss of situational awareness in the delivery suite and examples of simple interventions that could promote situational awareness. Involuntary automaticity readily creeps in during performance of routine tasks, and cognitive overload could deplete attentional resources that are, by nature, limited. Strategies and tactics for maintaining situational awareness include proactively seeking and managing information on unfolding events, continually updating individual and team mental models, mindful use of checklists and scoreboards, and avoidance of attentional blindness. These simple interventions require minimal financial resources but could immensely enhance clinical performance and patient safety. Situational awareness should be included in the training of obstetrician-gynecologists and other staff working in a delivery suite.

  8. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  9. Joe Walker in pressure suit with X-1E

    NASA Image and Video Library

    1958-01-27

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and "Little Joe" are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading "Little Joe the II" - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  10. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  11. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  12. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  13. A Smartphone Application Suite for Assessing Mobility.

    PubMed

    Madhushri, Priyanka; Dzhagaryan, Armen A; Jovanov, Emil; Milenkovic, Aleksandar

    2016-08-01

    Modern smartphones integrate a growing number of inertial and environmental sensors that can enable the development of new mobile health applications. In this paper we introduce a suite of smartphone applications for assessing mobility in elderly population. The suite currently includes applications that automate and quantify the following standardized medical tests for assessing mobility: Timed-Up-and-Go (TUG), 30 Seconds Chair Stand Test (30SCS), and a 4-stage Balance Test (4SBT). For each smartphone application we describe its functionality and a list of parameters extracted by processing signals from smartphone's inertial sensors. The paper shows the results from studies conducted on geriatric patients for TUG tests and from studies conducted in the laboratory on healthy subjects for 30SCS and 4SBT tests.

  14. Some problems of selection and evaluation of the Martian suit enclosure concept

    NASA Astrophysics Data System (ADS)

    Abramov, Isaak; Moiseyev, Nikolay; Stoklitsky, Anatoly

    2005-12-01

    One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface. The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means. However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency. The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc. The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface. The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing "Orlan" type suit. The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.

  15. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  16. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.

    1977-01-01

    Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.

  17. Distributed operations as applied in a large multi-instrument space mission: lessons learned from the Cassini-Huygens Program

    NASA Technical Reports Server (NTRS)

    Cheng, L. Y.; Larsen, B.

    2004-01-01

    Launched in 1997, the Cassini-Huygens Mission sent the largest interplanetary spacecraft ever built in the service of science. Carrying a suite of 12 scientific instruments and an atmospheric entry probe, this complex spacecraft to explore the Saturn system may not have gotten off the ground without undergoing significant design changes and cost reductions.

  18. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Suit against United States exclusive remedy. 14.57 Section... Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United States... of the same subject matter against the employee or his or her estate whose act or omission gave rise...

  19. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Suit against United States exclusive remedy. 14.57 Section... Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United States... of the same subject matter against the employee or his or her estate whose act or omission gave rise...

  20. On-ground calibration of the BEPICOLOMBO/SIMBIO-SYS at instrument level

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ferreira, J.; Poulet, F.; Eng, P.; Longval, Y.; Dassas, K.; Arondel, A.; Langevin, Y.; Capaccioni, F.; Filacchione, G.; Palumbo, P.; Cremonese, G.; Dami, M.

    2012-04-01

    The Mercury Planetary Orbiter/BepiColombo carries an integrated suite of instruments, the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS has 3 channels: a stereo imaging system (STC), a high-resolution imager (HRIC) and a visible-near-infrared imaging spectrometer (VIHI). SIMBIO-SYS will scan the surface of Mercury with these three channels and determine the physical, morphological and compositional properties of the entire planet. Before integration on the S/C, an on-ground calibration at the channels and at the instrument levels will be performed so as to describe the instrumental responses as a function of various parameters that might evolve while the instruments will be operating [1]. The Institut d'Astrophysique Spatiale (IAS) is responsible for the on-ground instrument calibration at the instrument level. During the 4 weeks of calibration campaign planned for June 2012, the instrument will be maintained in a mechanical and thermal environment simulating the space conditions. Four Optical stimuli (QTH lamp, Integrating Sphere, BlackBody with variable temperature from 50 to 1200°C and Monochromator), are placed over an optical bench to illuminate the four channels so as to make the radiometric calibration, straylight monitoring, as well as spectral proofing based on laboratory mineral samples. The instrument will be mounted on a hexapod placed inside a thermal vacuum chamber during the calibration campaign. The hexapod will move the channels within the well-characterized incoming beam. We will present the key activities of the preparation of this calibration: the derivation of the instrument radiometric model, the implementation of the optical, mechanical and software interfaces of the calibration assembly, the characterization of the optical bench and the definition of the calibration procedures.

  1. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  2. Mobility and Agility During Locomotion in the Mark III Space Suit.

    PubMed

    Cullinane, Conor R; Rhodes, Richard A; Stirling, Leia A

    2017-06-01

    The Mark III (MIII) space suit assembly (SSAs) implements a multibearing, hard-material hip brief assembly (HBA). We hypothesize that: 1) the MIII HBA restricts operator mobility and agility which manifests in effects to gait parameters; 2) the waist bearing provides rotational motion, partially alleviating the restrictions; and 3) there are resistive, speed-dependent torques associated with the spinning bearings which further diminish mobility and agility. A subject (Suited and Unsuited) performed two planetary tasks-walking forward (WF) and backward (WB). An analysis of variance (ANOVA) and post hoc comparisons were performed to determine interaction effects. Motion capture data was processed to obtain gait parameters: static base (m), dynamic base (m), step length (m), stride length (m), cadence (steps/min), center of mass speed (m · s-1), foot clearance (toe and heel) (m), and bearing angular velocities (° · s-1). The static base when Suited (0.355 m) was larger than Unsuited (0.263 m). The Suited dynamic base (pooled, 0.200 m) was larger than both Unsuited WF (0.081 m) and WB (0.107 m). When Suited, the operator had lower clearance heights. The waist bearings provided about 7.2° of rotation when WB and WF. The maximum torque, while WF, in the right upper and mid bearings was 15.6 ± 1.35 Nm and 16.3 ± 1.28 Nm. This study integrated suit component properties and the emergent biomechanics of the operator to investigate how biomechanics are affected. The human hip has three collocated degrees of freedom (DOFs), whereas the HBA has a single DOF per bearing. The results can inform requirements for future SSA and other wearable system designs and evaluations.Cullinane CR, Rhodes RA, Stirling LA. Mobility and agility during locomotion in the Mark III space suit. Aerosp Med Hum Perform. 2017; 88(6):589-596.

  3. Irena : tool suite for modeling and analysis of small-angle scattering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less

  4. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  5. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  6. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  7. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  8. Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.; hide

    2016-01-01

    The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.

  9. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  10. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  11. Case studies for observation planning algorithm of a Japanese spaceborne sensor: Hyperspectral Imager Suite (HISUI)

    NASA Astrophysics Data System (ADS)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako; Kashimura, Osamu; Rokugawa, Shuichi

    2016-10-01

    Hyperspectral Imager Suite (HISUI)[1] is a Japanese future spaceborne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI) and will be delivered to ISS in 2018. In HISUI project, observation strategy is important especially for hyperspectral sensor, and relationship between the limitations of sensor operation and the planned observation scenarios have to be studied. We have developed concept of multiple algorithms approach. The concept is to use two (or more) algorithm models (Long Strip Model and Score Downfall Model) for selecting observing scenes from complex data acquisition requests with satisfactory of sensor constrains. We have tested the algorithm, and found that the performance of two models depends on remaining data acquisition requests, i.e. distribution score along with orbits. We conclude that the multiple algorithms approach will be make better collection plans for HISUI comparing with single fixed approach.

  12. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument

    NASA Astrophysics Data System (ADS)

    DuPlain, Ron; Ransom, Scott; Demorest, Paul; Brandt, Patrick; Ford, John; Shelton, Amy L.

    2008-08-01

    The National Radio Astronomy Observatory (NRAO) is launching the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), a prototype flexible digital signal processor designed for pulsar observations with the Robert C. Byrd Green Bank Telescope (GBT). GUPPI uses field programmable gate array (FPGA) hardware and design tools developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. The NRAO has been concurrently developing GUPPI software and hardware using minimal software resources. The software handles instrument monitor and control, data acquisition, and hardware interfacing. GUPPI is currently an expert-only spectrometer, but supports future integration with the full GBT production system. The NRAO was able to take advantage of the unique flexibility of the CASPER FPGA hardware platform, develop hardware and software in parallel, and build a suite of software tools for monitoring, controlling, and acquiring data with a new instrument over a short timeline of just a few months. The NRAO interacts regularly with CASPER and its users, and GUPPI stands as an example of what reconfigurable computing and open-source development can do for radio astronomy. GUPPI is modular for portability, and the NRAO provides the results of development as an open-source resource.

  13. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  14. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    PubMed

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  15. Calibration of the Solar Orbiter Energetic Particle Detector Suite

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Martin-Garcia, C.; Kulkarni, S. R.; Panitzsch, L.; Boettcher, S.; Mason, G. M.; Kohler, J.; Ho, G. C.; Boden, S.; Grunau, J.; Steinhagen, J.; Terasa, C.; Yu, J.; Prieto, M.; Gomez-Herrero, R.; Blanco, J.

    2013-12-01

    We present the current status and plans for the calibration of the Energetic Particle Detector (EPD) suite on ESA's Solar Orbiter mission. Solar Orbiter is scheduled to launch in January 2017, instrument delivery in January 2015. EPD consists of four sensors: the SupraThermal Electron and Proton (STEP) sensor covers electrons (protons) from 2 (3) keV up to 100 keV, the Electron Proton Telescope (EPT) from 20 to 300 (7000) keV, the Suprathermal Ion Spectrograph (SIS) determines the ionic composition from ~0.05 to ~10 MeV/nuc (species dependent), and the High Energy Telescope (HET) measures electrons and protons (ions) from 0.3 to 30 and 10 to >100 MeV/nuc (20 - 200 MeV/nuc species dependent). EPT, HET, and SIS have two approximately opposite-facing fields of view, EPT, and HET share a common electronics box, two EPT/HET sensors allow the determination of second-order anisotropies (a total of 4 FoVs). Apart from the use of radioactive sources, STEP will be calibrated at the Kiel calibration facilities, EPT both at Kiel (electrons and low-energy protons) as well as at PTB in Braunschweig. SIS will undergo calibration at the LBL 88' cyclotron, HET at HIMAC in Chiba, Japan. Tests of the electron/protons discrimination of EPT show the expected behavior, HET prototypes have already been calibrated and the results will be shown.

  16. Heat Strain Evaluation of U.S. Navy Steam Suit Ensembles

    DTIC Science & Technology

    2016-05-01

    method for measuring the thermal insulation of clothing using a heated manikin. West Conshohocken, PA: ASTM International. 2. Castellani, J.W., Young...TECHNICAL REPORT NO. T16-13 DATE May 2016 ADA HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES DISCLAIMER The opinions or...USARIEM TECHNICAL REPORT T16-13 HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES

  17. SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments.

    PubMed

    Pichler, Peter; Mazanek, Michael; Dusberger, Frederico; Weilnböck, Lisa; Huber, Christian G; Stingl, Christoph; Luider, Theo M; Straube, Werner L; Köcher, Thomas; Mechtler, Karl

    2012-11-02

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge.

  18. SIMPATIQCO: A Server-Based Software Suite Which Facilitates Monitoring the Time Course of LC–MS Performance Metrics on Orbitrap Instruments

    PubMed Central

    2012-01-01

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC–MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge. PMID:23088386

  19. A Conformance Test Suite for Arden Syntax Compilers and Interpreters.

    PubMed

    Wolf, Klaus-Hendrik; Klimek, Mike

    2016-01-01

    The Arden Syntax for Medical Logic Modules is a standardized and well-established programming language to represent medical knowledge. To test the compliance level of existing compilers and interpreters no public test suite exists. This paper presents the research to transform the specification into a set of unit tests, represented in JUnit. It further reports on the utilization of the test suite testing four different Arden Syntax processors. The presented and compared results reveal the status conformance of the tested processors. How test driven development of Arden Syntax processors can help increasing the compliance with the standard is described with two examples. In the end some considerations how an open source test suite can improve the development and distribution of the Arden Syntax are presented.

  20. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  1. Effect of swimming suit design on the energy demands of swimming.

    PubMed

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P < 0.05) lower during the TOR trial than the STD trial. HR was not different (P > 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  2. STS-76 Payload Cmdr Ronald Sega suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Payload Commander Ronald M. Sega is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The third docking between the Russian Space Station Mir and the U.S. Space Shuttle marks the second trip into space for Sega, who recently served a five-month assignment in Russia as operations director for NASA activities there. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  3. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... general public importance. Upon application by the complainant and in such circumstances as the court may....402, 36.403, and 36.405 of this part, injunctive relief shall include an order to alter facilities to...

  4. Antigravity Suits For Studies Of Weightlessness

    NASA Technical Reports Server (NTRS)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  5. What's New with MS Office Suites

    ERIC Educational Resources Information Center

    Goldsborough, Reid

    2012-01-01

    If one buys a new PC, laptop, or netbook computer today, it probably comes preloaded with Microsoft Office 2010 Starter Edition. This is a significantly limited, advertising-laden version of Microsoft's suite of productivity programs, Microsoft Office. This continues the trend of PC makers providing ever more crippled versions of Microsoft's…

  6. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke pose for a photograph after they don their Russian Sokol suits prior to the launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while American spaceflight participant Richard Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  7. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke dons his Russian Sokol suit hours before he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  8. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, dons his Russian Sokol suit hours before he and Flight Engineer Yuri V. Lonchakov, second from left, and Expedition 18 Commander Michael Fincke launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  9. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov dons his Russian Sokol suit hours before he and Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, left, and Expedition 18 Commander Michael Fincke don their Russian Sokol suits hours before they and American spaceflight participant Richard Garriott launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. Beyond MOS and Fibers: Wide-FoV Imaging Fourier Transform Spectroscopy - an Instrumentation Proposal for the Present and Future Mexican Telescopes

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.

    2016-10-01

    In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.

  12. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottingham, Patrick, E-mail: pcotting@usc.edu; Morey, Jennifer R.; Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218

    2016-10-15

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe amore » rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.« less

  13. Evaluation of the Performance of the Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2002-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  14. Evaluation of The Performance of The Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  15. Clean room technology in surgery suites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The principles of clean room technology and the criteria for their application to surgery are discussed. The basic types of surgical clean rooms are presented along with their advantages and disadvantages. Topics discussed include: microbiology of surgery suites; principles of laminar airflow systems, and their use in surgery; and asepsis and the operating room.

  16. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    PubMed

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Wakata wearing Penguin-3 suit in JPM

    NASA Image and Video Library

    2009-07-12

    ISS020-E-019078 (12 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  18. Physiological effects of a new racing suit for elite cross country skiers.

    PubMed

    Sperlich, B; Holmberg, H C

    2011-12-01

    The aim of this paper was to investigate the influence of the new cross country racing suit, designed for the Olympic Winter Games in Vancouver 2010, on cardio-respiratory, thermoregulatory and perceptual responses. Six elite cross country skiers (29±6 years, peak oxygen uptake 73.2±6.9 mL·min-1·kg-1) performed two exercise bouts wearing either the 2009 or the 2010 racing suit. Bouts consisted of incremental testing on roller skis (12 km·h-1 at 5° inclination; 11 km·h-1 at 6° inclination and 12 km·h-1at 8° inclination for six minutes). During increasing intensities, significantly lower values were found for oxygen uptake, minute ventilation, RER and heart rate when wearing the new suit compared to the old one (P<0.05; effect sizes: 0.21-4.00). Core temperature was lower with the new suit during steps 2 and 3 (P<0.05, effect size: 1.22-1.27). Also, mean skin temperature was lower during the last increment (P<0.05, effect size: 0.87). The new 2010 racing suit, developed specifically for the Olympic Winter Games in Vancouver 2010, demonstrated lower values for oxygen uptake, minute ventilation, heart rate, skin and core temperature, ratings of thermal and sweat sensation when compared to the 2009 racing suit.

  19. 77 FR 48980 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9716-2] Proposed Consent Decree, Clean Air Act Citizen Suit... 16, 2011, Plaintiff filed a deadline suit to compel the Administrator to respond to an administrative..., avoiding the use of special characters and any form of encryption, and may be mailed to the mailing address...

  20. Observing Migration and Burial of Unexploded Ordnance in the Nearshore Environment with Instrumented Surrogates

    NASA Astrophysics Data System (ADS)

    Bruder, B. L.; Cristaudo, D.; Puleo, J. A.

    2016-12-01

    Prior to 1972, it was legal and common practice to unload unexploded ordnance (UXO) into the ocean. Only 60-100 miles off the US coast alone there are 72 dumping sites where it is estimated 31 million pounds of UXO lie. As recently as 2015, UXO have been found not only in the nearshore environment, but on populated beaches. Thus, understanding the migration and burial of these objects is not only of oceanographic interest, but a matter of public safety. The presented project evaluates the efficacy of instrumented UXO surrogates for observing munition migration and burial. Instrumented surrogates were exposed to near prototype scale wave conditions over a mobile bed at the Littoral Warfare Environment at Aberdeen Test Center, MD. Surrogates were deployed in the swash zone, inner and outer surf zones. Dependent on munition size, surrogates housed multiple suites of self-logging sensors. Sensor suites included different combinations of inertial motion units, ultra-wideband tracking tags, pressure transducers, shock recorders, and photocells. Preliminary results show sensor suites can resolve various types of surrogate movement. Pressure transducers accurately record ambient wave conditions as well as changes in mean depth due to surrogate migration. Inertial motion units resolve munition accelerations for rolling and translational motion. Inertial motion unit data is used to estimate trajectory as well when coupled with mean depth and bathymetric data. Photocells, which measure ambient light, resolve munition burial as well as serve as proxies for surrounding environmental conditions such as suspended sediment and water depth. The presented project will continue to utilize and couple surrogate sensor data to resolve munition movement and burial under different conditions. Knowledge of munition migration helps focus UXO detection and recovery, conserving US military and coastal resources.

  1. MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*

    PubMed Central

    Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying

    2016-01-01

    Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644

  2. The European space suit, a design for productivity and crew safety

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  3. The European space suit, a design for productivity and crew safety.

    PubMed

    Skoog, A I; Berthier, S; Ollivier, Y

    1991-01-01

    In order to fulfill the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today--and will be for several years--a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: easy donning/doffing thru rear entry, suit ergonomy optimisation, display of operational information in alpha-numerical and graphical form, and voice processing for operations and safety critical information. Concerning crew safety the major design features are: a lower R-factor for emergency EVA operations thru increased suit pressure, zero prebreath conditions for normal operations, visual and voice processing of all safety critical functions, and an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  4. DYNA3D/ParaDyn Regression Test Suite Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry I.

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to amore » particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.« less

  5. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  6. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  7. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  8. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  9. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  10. STS-82 Mission Specialist Steven L. Smith Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  11. 75 FR 67719 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9220-1] Proposed Consent Decree, Clean Air Act Citizen Suit... suit to compel the Administrator to take final action under section 110(k) of the Act on Imperial... special characters and any form of encryption, and may be mailed to the mailing address above. FOR FURTHER...

  12. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. G-suited for prevention of syncope in patients with vasovagal syncope: a pilot study.

    PubMed

    Rasmeehirun, Prayuth; Krittayaphong, Rungroj

    2014-03-01

    Vasovagal syncope (VVS) represents by far the most common cause of syncope as it is diagnosed in around 50% of all patients that come to an emergency department. Although VVS is not fatal, it can cause an injury. Even serious injuries are not common, but there are reports of serious injuries of up to 5%. There are no current studies that demonstrate the effectiveness of any treatment. Past studies found that an Anti-Gravity suit (G-suit) can increase blood pressure and has been reported to prevent orthostatic hypotension effectively in patients with diabetes. It is possible that the G-suit can prevent VVS. In the present study, the authors assessed the efficacy of G-suit for vasovagal syncope prevention. In this open-label, randomized controlled study, we used the Italian tilt protocol, namely 60 degree passive tilting followed by 0.4 mg nitroglycerin challenge when the passive phase fails to induce syncope. If test was positive, then patient was enrolled. Tilt table test was repeated to compare G-suited and no G-suited to assess efficacy of G-suit for vasovagal syncope prevention. 10 patients were enrolled. There is no difference between the control group and an experimental group. In this study there is no cardio-inhibition vasovagal syncope. Positive tilt table test occurred in 50% of the patients receiving G-suited and 100% in control group (p 0.133). G-suit is unable to prevent syncope in patients with positive tilt table test but the result is not statistically significant. However, the number of patients may be too small.

  14. Defensive aids suite prototype for light armored vehicles

    NASA Astrophysics Data System (ADS)

    Cantin, Andre; Fortin, Jean; Venter, Johan; Philip, Brian G.; Hagen, Russell; Krieger, Dietmar; Greenley, Mike

    2001-09-01

    The Defence Research Establishment Valcartier has initiated in 1998 R&D work to investigate and to demonstrate key technologies required for future Defensive Aid Suite to protect Light Armoured Vehicles. A basic Defensive Aid Suite demonstrator (Phase I) was built and integrated into the LAV vetronics by Litton Systems Canada and his consortium. The Defensive Aid Suite consisted of a 2-band HARLIDTM-based laser detection head, a processor capable to control and deploy countermeasures and a DAS touch-screen display all integrated in a Light Armored Vehicle. The crew was able to select the operation mode for direct fire or smoke deployment by pushing one of the pair of buttons available at the bottom of the display. This system was successfully demonstrated in October 1999 during an international trial. This article gives an overview of the results obtained in the field as well as some of the lessons learnt. It also describes laboratory and field measurements made on the Laser Warning Receiver unit itself. The results of the DAS tactical use and of Human factor evaluation will illustrate its performance within typical laser threat scenarios. This work will serve as the basis for the recommendation of a future DAS demonstrator (Phase II) integrating more sensors and countermeasures.

  15. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.

  16. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, smile for the camera after they had their Russian Sokol suits pressure checked in preparation for launch onboard the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke smiles for the camera after he and Expedition 18 Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott had their Russian Sokol suits pressure checked prior to launching in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  18. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, S. M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counter-pressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  19. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  20. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  1. Development of Improved Seals and Closures for Dry Diving Suits.

    DTIC Science & Technology

    1979-01-31

    7 AA SIS 17 2 BATTELLE COL4 4 St LABS 0O 4 F/6 6/17DEVLOPMENT OF IMPROVED SEALS AND CLOSURES FOR DRY DIVAlM SUITS--ETC (U) ULS JAN 79 M61331-76-C...A I Columbus Laboratories Report DTI ELIT V~ omn mbIIap" pww =dt 0lu FINAL REPORT on DEVELOPMENT OF IMPROVED SEALS AND CLOSURES FOR DRY DIVING SUITS...6 Multiple Lip Wrist Seal ..................................... 6 Closures

  2. The use of antigravity suits in the treatment of idiopathic orthostatic hypotension

    NASA Technical Reports Server (NTRS)

    Landmark, K.; Kravik, S.

    1980-01-01

    Idiopathic orthostatic hypotension is an uncommon disease characterized by a drop in blood pressure when going from a recumbent to a standing position. Treatment by medication generally produces poor results. Three patients at the Royal Hospital in Oslo were treated with antigravity suits and all were able to maintain adequate blood pressures in the standing position. One patient improved dramatically and was able to take short walks while wearing the suit. The two other patients, however, felt that wearing the suits eventually became uncomfortable. This treatment represents a useful treatment alternative for intractable cases.

  3. A methodology for choosing candidate materials for the fabrication of planetary space suit structures

    NASA Technical Reports Server (NTRS)

    Jacobs, Gilda

    1990-01-01

    A study of space suit structures and materials is under way at NASA Ames Research Center, Moffett Field, CA. The study was initiated by the need for a generation of lightweight space suits to be used in future planetary Exploration Missions. This paper provides a brief description of the Lunar and Mars environments and reviews what has been done in the past in the design and development of fabric, metal, and composite suit components in order to establish criteria for comparison of promising candidate materials and space suit structures. Environmental factors and mission scenarios will present challenging material and structural requirements; thus, a program is planned to outline the methodology used to identify materials and processes for producing candidate space suit structures which meet those requirements.

  4. Reflectron Time-of-Flight Mass Spectrometer (REMAS) Instrumentation

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; McEntire, R. W.; Cheng, A. F.

    2000-01-01

    The restricted mass and power budgets of landed science missions present a challenge to obtaining detailed analyses of planetary bodies. In situ studies, whether alone or as reconnaissance for sample return, must rely on highly miniaturized and autonomous instrumentation. Such devices must still produce useful data sets from a minimum of measurements. The great desire to understand the surfaces and interiors of planets, moons, and small bodies had driven the development of small, robotic techniques with ever-increasing capabilities. One of the most important goals on a surface mission is to study composition in many geological contexts. The mineralogical, molecular, elemental, and isotopic content of near-surface materials (regolith, rocks, soils, dust, etc.) at a variety of sites can complement broader imaging to describe the makeup and formative history of the body in question. Instruments that perform this site-to-site analysis must be highly transportable and work as a suite. For instance, a camera, microscope, spectrophotometer, and mass spectrometer can share several components and operate under a parallel command structure. Efficient use of multiple systems on a small rover has been demonstrated on the Mars Pathfinder mission.

  5. Drawing cure: children's drawings as a psychoanalytic instrument.

    PubMed

    Wittmann, Barbara

    2010-01-01

    This essay deals with the special case of drawings as psychoanalytical instruments. It aims at a theoretical understanding of the specific contribution made by children's drawings as a medium of the psychical. In the influential play technique developed by Melanie Klein, drawing continuously interacts with other symptomatic (play) actions. Nonetheless, specific functions of drawing within the play technique can be identified. The essay will discuss four crucial aspects in-depth: 1) the strengthening of the analysis's recursivity associated with the graphic artifact; 2) the opening of the analytic process facilitated by drawing; 3) the creation of a genuinely graphic mode of producing meaning that allows the child to develop a "theory" of the workings of his own psychic apparatus; and 4) the new possibilities of symbolization associated with the latter. In contrast to classical definitions of the psychological instrument, the child's drawing is a weakly structured tool that does not serve to reproduce psychic processes in an artificial, controlled setting. The introduction of drawing into the psychoanalytic cure is by no means interested in replaying past events, but in producing events suited to effecting a transformation of the synchronic structures of the unconscious.

  6. A transitional alkalic dolerite dike suite of Mesozoic age in Southeastern New England

    NASA Astrophysics Data System (ADS)

    Hermes, O. Don; Rao, J. M.; Dickenson, M. P.; Pierce, T. A.

    1984-12-01

    Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.

  7. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  8. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  9. Compression under a mechanical counter pressure space suit glove.

    PubMed

    Waldie, James M A; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W; Hargens, Alan R

    2002-12-01

    Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  10. A Suite of Tools for Technology Assessment

    DTIC Science & Technology

    2007-09-01

    Saden, Povinelli & Rosen, 1989). • This was a significant change in emphasis on the part of NASA, where technology had previously viewed as merely...Cost Analysis Symposium, April 13, 2005. A Suite of Tools for Technology Assessment 24 Bibliography - continued: • Sadin, Stanley T.; Povinelli

  11. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  12. Development of the Variable Emittance Thermal Suite for the Space Technology 5 Microsatellite

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M.; Swanson, Theodore; Osiander, Robert; Champion, John; Darrin, Ann Garrison; Biter, William; Chandrasekhar, Prasanna; Obenschain, Arthur (Technical Monitor)

    2001-01-01

    The advent of very small satellites, such as nano and microsatellites, logically leads to a requirement for smaller thermal control subsystems. In addition, the thermal control needs of the smaller spacecraft/instrument may well be different from more traditional situations. For example, power for traditional heaters may be very limited or unavailable, mass allocations may be severely limited, and fleets of nano/microsatellites will require a generic thermal design as the cost of unique designs will be prohibitive. Some applications may require significantly increased power levels while others may require extremely low heat loss for extended periods. Small spacecraft will have low thermal capacitance thus subjecting them to large temperature swings when either the heat generation rate changes or the thermal sink temperature changes. This situation, combined with the need for tighter temperature control, will present a challenging situation during transient operation. The use of "off-the-shelf" commercial spacecraft buses for science instruments will also present challenges. Older thermal technology, such as heaters, thermostats, and heat pipes, will almost certainly not be sufficient to meet the requirements of these new spacecraft/instruments. They are generally too heavy, not scalable to very small sizes, and may consume inordinate amounts of power. Hence there is a strong driver to develop new technology to meet these emerging needs. Variable emittance coatings offer an exciting alternative to traditional control methodologies and are one of the technologies that will be flown on Space Technology 5, a mission of three microsatellites designed to validate "enabling" technologies. Several studies have identified variable emittance coatings as applicable to a wide range of spacecraft, and to potentially offer substantial savings in mass and/or power over traditional approaches. This paper discusses the development of the variable emittance thermal suite for ST-5

  13. STS-86 Mission Specialist David Wolf suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf gets assistance from a suit technician while donning his orange launch and entry suit in the Operations and Checkout Building. This will be Wolfs second flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the rest of the STS-86 crew. Wolf is expected to live and work aboard the Russian space station for about four months.

  14. Inmate's rape suit is viable despite missing paperwork.

    PubMed

    1999-10-29

    An appeals court has reinstated a rape suit filed by an inmate who did not follow procedures when filing his complaint. The 6th U.S. Circuit Court of Appeals reinstated the suit by [name removed], who claims officials of the Ohio Department of Corrections (DOC) were deliberately indifferent to his safety and provided inadequate care after he was attacked by a fellow inmate. The case was originally dismissed on the grounds that [name removed] filed his lawsuit before filing a grievance form as required by the Prison Litigation Reform Act of 1996. The 6th Circuit ruled that [name removed] complied with the law by writing letters to several prison officials inquiring about his attacker's HIV status and possible charges against the attacker.

  15. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  16. Translation and adaption of the interRAI suite to local requirements in Belgian hospitals

    PubMed Central

    2012-01-01

    Background The interRAI Suite contains comprehensive geriatric assessment tools designed for various healthcare settings. Although each instrument is developed for a particular population, together they form an integrated health evaluation system. The interRAI Acute Care Minimum Data Set (interRAI AC) is tailored for hospitalized older persons. Our aim in this study was to translate and adapt the interRAI AC to the Belgian hospital context, where it can be used together with the interRAI Home Care (HC) and the interRAI Long Term Care Facility (LTCF). Methods A systematic, comprehensive, and rigorous 10-step approach was used to adapt the interRAI AC to local requirements. After linguistic translation by an official translator, five researchers assessed the translation for appropriate hospital jargon. Three researchers double-checked for translation accuracy and proposed additional items. A provisional version was converted into the three official languages of Belgium—Flemish, French, and German. Next, a multidisciplinary panel of nine experts judged item relevance to the Belgian care context and advised which country-specific items should be added. After these suggestions were incorporated into the interRAI AC, hospital staff from nine Flemish hospitals field-tested the tool in their practice. After evaluating field-test results, we compared the interRAI AC with Belgian versions of the interRAI HC and interRAI LTCF. Next, the Flemish, French, and German versions of the Belgian interRAI portfolio were harmonized. Finally, we submitted the Belgian interRAI AC to the interRAI organization for ratification. Results Eighteen administrative items of the interRAI AC were adapted to the Belgian healthcare context (e.g., usual residence, formal community services prior to admission). Fourteen items assessing the ‘informal caregiver’, and 17 items, including country-specific items, were added (e.g., advanced directive for euthanasia). Conclusions The interRAI AC was

  17. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  18. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  19. Turbulence study in the vicinity of piano key weir: relevance, instrumentation, parameters and methods

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Sharma, Nayan

    2017-05-01

    This research paper focuses on the need of turbulence, instruments reliable to capture turbulence, different turbulence parameters and some advance methodology which can decompose various turbulence structures at different levels near hydraulic structures. Small-scale turbulence research has valid prospects in open channel flow. The relevance of the study is amplified as we introduce any hydraulic structure in the channel which disturbs the natural flow and creates discontinuity. To recover this discontinuity, the piano key weir (PKW) might be used with sloped keys. Constraints of empirical results in the vicinity of PKW necessitate extensive laboratory experiments with fair and reliable instrumentation techniques. Acoustic Doppler velocimeter was established to be best suited within range of some limitations using principal component analysis. Wavelet analysis is proposed to decompose the underlying turbulence structure in a better way.

  20. Evaluation of Personal Cooling Systems in Conjunction with Explosive Ordnance Disposal Suits

    DTIC Science & Technology

    1992-06-01

    of thermal comfort and perceived exertion. The results indicated that wearing the EOD suit produces significant increases in thermal physiological...indicated reduced perceived exertion levels and improved thermal comfort when wearing the liquid-cooling garment with a EOD suit. In contrast, the ribbed