Science.gov

Sample records for mechanical chest compressions

  1. Mechanical chest compressions in the coronary catheterization laboratory - do not hesitate to go step further!

    PubMed

    Bělohlávek, Jan; Kovárník, Tomáš

    2016-01-01

    Authors Wagner et al. in your journal demonstrated effectiveness of mechanical chest compressions in the coronary catheterization laboratory to facilitate coronary intervention and survival in patients requiring prolonged resuscitation efforts. We dare to comment on this article and advocate to use mechanical chest compressions only as a bridge to extracorporeal membrane oxygenation to completely substitute failed circulation and enable percutaneous coronary intervention or other procedures to treat the cause of cardiac arrest. PMID:27530540

  2. Technique for chest compressions in adult CPR

    PubMed Central

    2011-01-01

    Chest compressions have saved the lives of countless patients in cardiac arrest as they generate a small but critical amount of blood flow to the heart and brain. This is achieved by direct cardiac massage as well as a thoracic pump mechanism. In order to optimize blood flow excellent chest compression technique is critical. Thus, the quality of the delivered chest compressions is a pivotal determinant of successful resuscitation. If a patient is found unresponsive without a definite pulse or normal breathing then the responder should assume that this patient is in cardiac arrest, activate the emergency response system and immediately start chest compressions. Contra-indications to starting chest compressions include a valid Do Not Attempt Resuscitation Order. Optimal technique for adult chest compressions includes positioning the patient supine, and pushing hard and fast over the center of the chest with the outstretched arms perpendicular to the patient's chest. The rate should be at least 100 compressions per minute and any interruptions should be minimized to achieve a minimum of 60 actually delivered compressions per minute. Aggressive rotation of compressors prevents decline of chest compression quality due to fatigue. Chest compressions are terminated following return of spontaneous circulation. Unconscious patients with normal breathing are placed in the recovery position. If there is no return of spontaneous circulation, then the decision to terminate chest compressions is based on the clinical judgment that the patient's cardiac arrest is unresponsive to treatment. Finally, it is important that family and patients' loved ones who witness chest compressions be treated with consideration and sensitivity. PMID:22152601

  3. Mechanical versus manual chest compressions for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials.

    PubMed

    Tang, Lu; Gu, Wan-Jie; Wang, Fei

    2015-01-01

    Recent evidence regarding mechanical chest compressions in out-of-hospital cardiac arrest (OHCA) is conflicting. The objective of this study was to perform a meta-analysis of randomized controlled trials (RCTs) to compare the effect of mechanical versus manual chest compressions on resuscitation outcomes in OHCA. PubMed, Embase, the Cochrane Central Register of Controlled Trials, and the ClinicalTrials.gov registry were searched. In total, five RCTs with 12,510 participants were included. Compared with manual chest compressions, mechanical chest compressions did not significantly improve survival with good neurological outcome to hospital discharge (relative risks (RR) 0.80, 95% CI 0.61-1.04, P = 0.10; I(2) = 65%), return of spontaneous circulation (RR 1.02, 95% CI 0.95-1.09, P = 0.59; I(2) = 0%), or long-term (≥6 months) survival (RR 0.96, 95% CI 0.79-1.16, P = 0.65; I(2) = 16%). In addition, mechanical chest compressions were associated with worse survival to hospital admission (RR 0.94, 95% CI 0.89-1.00, P = 0.04; I(2) = 0%) and to hospital discharge (RR 0.88, 95% CI 0.78-0.99, P = 0.03; I(2) = 0%). Based on the current evidence, widespread use of mechanical devices for chest compressions in OHCA cannot be recommended. PMID:26503429

  4. Device Assists Cardiac Chest Compression

    NASA Technical Reports Server (NTRS)

    Eichstadt, Frank T.

    1995-01-01

    Portable device facilitates effective and prolonged cardiac resuscitation by chest compression. Developed originally for use in absence of gravitation, also useful in terrestrial environments and situations (confined spaces, water rescue, medical transport) not conducive to standard manual cardiopulmonary resuscitation (CPR) techniques.

  5. Mechanical Chest Compressions in Prolonged Cardiac Arrest due to ST Elevation Myocardial Infarction Can Cause Myocardial Contusion.

    PubMed

    Stechovsky, Cyril; Hajek, Petr; Cipro, Simon; Veselka, Josef

    2016-09-01

    Acute coronary syndrome is a common cause of sudden cardiac death. We present a case report of a 60-year-old man without a history of coronary artery disease who presented with ST-elevation myocardial infarction. During transportation to the hospital, he developed ventricular fibrillation (VF) and later pulseless electrical activity. Chest compressions with LUCAS 2 (Medtronic, Minneapolis, MN) automated mechanical compression-decompression device were initiated. Coronary angiography showed total occlusion of the left main coronary artery and primary percutaneous coronary intervention (PCI) was performed. After the PCI, his heart started to generate effective contractions and LUCAS could be discontinued. Return of spontaneous circulation was achieved after 90 minutes of cardiac arrest. The patient died of cardiogenic shock 11 hours later. An autopsy revealed a transmural anterolateral myocardial infarction but also massive subepicardial hemorrhage and interstitial edema and hemorrhages on histologic samples from regions of the myocardium outside the infarction itself and also from the right ventricle. These lesions were concluded to be a myocardial contusion. The true incidence of myocardial contusion as a consequence of mechanical chest compressions is not known. We speculate that severe myocardial contusion might have influenced outcome of our patient. PMID:27574387

  6. Compression of digital chest x-rays

    NASA Astrophysics Data System (ADS)

    Cohn, Michael; Trefler, Martin; Young, Tzay S.

    1990-07-01

    The application of digital technologies to chest radiography holds the promise of routine application of intage processing techniques to effect image enhancement. However, due to their inherent spatial resolution, digital chest images impose severe constraints on data storage devices. Compression of these images will relax such constraints and facilitate image transmission on a digital network. We have evaluated image processing algorithms aimed at compression of digital chest images while improving the diagnostic quality of the image. The image quality has been measured with respect to the task of tumor detection. Compression ratios of as high as 2:1 have been achieved. This compression can then be supplemented by irreversible methods.

  7. Enhancement and compression of digital chest radiographs.

    PubMed

    Cohn, M; Trefler, M; Young, T Y

    1990-01-01

    The application of digital technologies to chest radiography holds the promise of routine application of image processing techniques to effect image enhancement. Because of their inherent spatial resolution, however, digital chest images impose severe constraints on data storage devices. Compression of these images will relax such constraints and facilitate image transmission on a digital network. We evaluated an algorithm for enhancing digital chest images that has allowed significant data compression while improving the diagnostic quality of the image. This algorithm is based on the photographic technique of unsharp masking. Image quality was measured with respect to the task of tumor detection and compression ratios as high as 2:1 were achieved. This compression can be supplemented by irreversible methods. PMID:2299708

  8. Chest compression with a higher level of pressure support ventilation: effects on secretion removal, hemodynamics, and respiratory mechanics in patients on mechanical ventilation*

    PubMed Central

    Naue, Wagner da Silva; Forgiarini, Luiz Alberto; Dias, Alexandre Simões; Vieira, Silvia Regina Rios

    2014-01-01

    OBJECTIVE: To determine the efficacy of chest compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation, in comparison with that of aspiration alone, in removing secretions, normalizing hemodynamics, and improving respiratory mechanics in patients on mechanical ventilation. METHODS: This was a randomized crossover clinical trial involving patients on mechanical ventilation for more than 48 h in the ICU of the Porto Alegre Hospital de Clínicas, in the city of Porto Alegre, Brazil. Patients were randomized to receive aspiration alone (control group) or compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation (intervention group). We measured hemodynamic parameters, respiratory mechanics parameters, and the amount of secretions collected. RESULTS: We included 34 patients. The mean age was 64.2 ± 14.6 years. In comparison with the control group, the intervention group showed a higher median amount of secretions collected (1.9 g vs. 2.3 g; p = 0.004), a greater increase in mean expiratory tidal volume (16 ± 69 mL vs. 56 ± 69 mL; p = 0.018), and a greater increase in mean dynamic compliance (0.1 ± 4.9 cmH2O vs. 2.8 ± 4.5 cmH2O; p = 0.005). CONCLUSIONS: In this sample, chest compression accompanied by an increase in pressure support significantly increased the amount of secretions removed, the expiratory tidal volume, and dynamic compliance. (ClinicalTrials.gov Identifier:NCT01155648 [http://www.clinicaltrials.gov/]) PMID:24626270

  9. Factors modulating effective chest compressions in the neonatal period.

    PubMed

    Mildenhall, Lindsay F J; Huynh, Trang K

    2013-12-01

    The need for chest compressions in the newborn is a rare occurrence. The methods employed for delivery of chest compressions have been poorly researched. Techniques that have been studied include compression:ventilation ratios, thumb versus finger method of delivering compressions, depth of compression, site on chest of compression, synchrony or asynchrony of breaths with compressions, and modalities to improve the compression technique and consistency. Although still in its early days, an evidence-based guideline for chest compressions is beginning to take shape. PMID:23920076

  10. Effect of the rate of chest compression familiarised in previous training on the depth of chest compression during metronome-guided cardiopulmonary resuscitation: a randomised crossover trial

    PubMed Central

    Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo

    2016-01-01

    Objectives To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Design Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Setting Participants were recruited from a medical school and two paramedic schools of South Korea. Participants 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Intervention Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Results Average compression depths were significantly different according to the rate used in training (p<0.001). A post hoc analysis showed that average compression depths were significantly different between trials after training at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both p<0.001). Conclusions The depth of chest compression during metronome-guided CPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. PMID:26873050

  11. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    PubMed

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%). PMID:24704648

  12. [Closed-loop control for chest compression based on coronary perfusion pressure: a computer simulation study].

    PubMed

    Chen, Aihua; Gao, Lei; Tian, Linhuai; Zhang, Jian; Zhan, Ningbo

    2014-08-01

    In this study, a closed-loop controller for chest compression which adjusts chest compression depth according to the coronary perfusion pressure (CPP) was proposed. An effective and personalized chest compression method for automatic mechanical compression devices was provided, and the traditional and uniform chest compression standard neglecting individual difference was improved. This study rebuilds Charles F. Babbs human circulation model with CPP simulation module and proposes a closed-loop controller based on a fuzzy control algorithm. The performance of the fuzzy controller was evaluated and compared to that of a traditional PID controller in computer simulation studies. The simulation results demonstrated that the fuzzy closed-loop controller produced shorter regulation time, fewer oscillations and smaller overshoot than those of the traditional PID controller and outperforms the traditional PID controller in CPP regulation and maintenance. PMID:25464812

  13. [Closed-loop control for chest compression based on coronary perfusion pressure: a computer simulation study].

    PubMed

    Chen, Aihua; Gao, Lei; Tian, Linhuai; Zhang, Jian; Zhan, Ningbo

    2014-08-01

    In this study, a closed-loop controller for chest compression which adjusts chest compression depth according to the coronary perfusion pressure (CPP) was proposed. An effective and personalized chest compression method for automatic mechanical compression devices was provided, and the traditional and uniform chest compression standard neglecting individual difference was improved. This study rebuilds Charles F. Babbs human circulation model with CPP simulation module and proposes a closed-loop controller based on a fuzzy control algorithm. The performance of the fuzzy controller was evaluated and compared to that of a traditional PID controller in computer simulation studies. The simulation results demonstrated that the fuzzy closed-loop controller produced shorter regulation time, fewer oscillations and smaller overshoot than those of the traditional PID controller and outperforms the traditional PID controller in CPP regulation and maintenance. PMID:25508443

  14. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome.

    PubMed

    Samanta, Sukhen; Samanta, Sujay; Soni, Kapil Dev

    2014-05-01

    Prone ventilation is usually used for severe acute respiratory distress syndrome. We applied an alternative method to prone position. We described 2 cases of trauma where prone position could not be done. Chest wall compression was performed by 2-kg weight in front of the chest wall bilaterally while the patient was in a supine position. Respiratory mechanics work to improve oxygenation almost as same as the mechanism proposed for prone position without any major adverse effects and serious complications. We suggest a larger randomized study to determine the efficacy and also to find out the optimum weight required to compress the chest. PMID:24332252

  15. Relationship of blood pressure and flow during CPR to chest compression amplitude: evidence for an effective compression threshold.

    PubMed

    Babbs, C F; Voorhees, W D; Fitzgerald, K R; Holmes, H R; Geddes, L A

    1983-09-01

    This study was conducted to investigate the importance of the depth of chest compression in producing effective cardiopulmonary resuscitation (CPR) in animals, as indicated by cardiac output and mean arterial blood pressure. Cardiac output was measured by a modified indicator dilution technique in 8 anesthetized dogs, 6 to 12 kg body weight, during repeated 2-minute episodes of electrically induced ventricular fibrillation and CPR provided by a mechanical chest compressor and ventilator (Thumper). Chest compression exceeding a threshold value (xo) between 1.5 and 3.0 cm was required in each animal to produce measurable cardiac output. In particular, cardiac output (CO) was linearly related to chest compression depth (x) by an expression of the form CO = a(x-xo) for x greater than xo. The mean value of xo was 2.3 cm. A similar threshold for measurable blood pressure was observed in 7 of the 8 dogs, with a mean value of 1.8 cm. For chest compression of 2.5 cm or greater, relatively modest increases in chest compression depth caused relatively large changes in cardiac output. PMID:6614604

  16. Chest Compression-Only CPR: A Meta-Analysis

    PubMed Central

    Hüpfl, Michael; Selig, Harald F; Nagele, Peter

    2010-01-01

    Summary Background Evidence suggests that dispatcher-assisted chest compression-only bystander CPR may be superior to standard CPR (chest compressions and rescue ventilation) in out-of-hospital cardiac arrest, yet recent clinical trials did not observe improved outcomes. The goal of the study was to determine the association between chest compression-only CPR and survival after out-of-hospital cardiac arrest. Methods Studies published until August 2010 were systematically searched and identified in MEDLINE and EMBASE databases. For the primary meta-analysis only clinical trials were included that prospectively randomized dispatcher instructions to chest compression-only versus standard bystander CPR in out-of-hospital adult cardiac arrest patients; for the secondary meta-analysis observational cohort studies were included that distinguished between standard CPR and chest compression-only CPR. All studies were required to contain survival data. Data on study characteristics, methods and outcomes (return of spontaneous circulation, survival to discharge, 30-day survival, and favourable neurologic outcome) were extracted. A fixed-effects model was used for both meta-analyses for lack of heterogeneity among the studies (I2 0%). Findings All three published randomized clinical trials were included in the meta-analysis. The pooled analyses shows that dispatcher-assisted chest compression-only bystander CPR for adult out-of-hospital cardiac arrest was associated with a 22% improved chance of survival (risk ratio [RR] 1.22 [95% confidence interval {CI}, 1.01 – 1.47]; I2, 0%) compared to standard CPR. The absolute increase in survival was 2.4%; the number needed to treat was 41. The secondary meta-analysis included seven observational studies of bystander-CPR (not dispatcher-assisted) and showed no difference between the two CPR techniques (RR, 0.96 [95% CI, 0.83 – 1.11]; I2, 0%). Interpretation Dispatcher-assisted chest compression-only bystander CPR is associated with

  17. Closed-loop controller for chest compressions based on coronary perfusion pressure: a computer simulation study.

    PubMed

    Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling

    2016-03-01

    High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance. PMID:26142111

  18. Effect of gravity on chest wall mechanics.

    PubMed

    Bettinelli, D; Kays, C; Bailliart, O; Capderou, A; Techoueyres, P; Lachaud, J L; Vaïda, P; Miserocchi, G

    2002-02-01

    Chest wall mechanics was studied in four subjects on changing gravity in the craniocaudal direction (G(z)) during parabolic flights. The thorax appears very compliant at 0 G(z): its recoil changes only from -2 to 2 cmH(2)O in the volume range of 30-70% vital capacity (VC). Increasing G(z) from 0 to 1 and 1.8 G(z) progressively shifted the volume-pressure curve of the chest wall to the left and also caused a fivefold exponential decrease in compliance. For lung volume <30% VC, gravity has an inspiratory effect, but this effect is much larger going from 0 to 1 G(z) than from 1 to 1.8 G(z). For a volume from 30 to 70% VC, the effect is inspiratory going from 0 to 1 G(z) but expiratory from 1 to 1.8 G(z). For a volume greater than approximately 70% VC, gravity always has an expiratory effect. The data suggest that the chest wall does not behave as a linear system when exposed to changing gravity, as the effect depends on both chest wall volume and magnitude of G(z). PMID:11796685

  19. Simulation analysis of three intubating supraglottic devices during infant chest compression.

    PubMed

    Kohama, Hanako; Komasawa, Nobuyasu; Ueki, Ryusuke; Kaminoh, Yoshiroh; Nishi, Shin-ichi

    2015-01-01

    Current guidelines for pediatric cardiopulmonary resuscitation suggest that supraglottic devices are alternatives for tracheal intubation with minimal interruption of chest compression. We examined the utility of three intubating supraglottic devices, air-Q® (air-Q), Ambu® aura-i (aura-i), and i-gel® (i-gel), utilizing manikin simulation. Twenty-two novice physicians performed securing of airway on an infant manikin with the three devices. We measured the rate of success on ventilation and the insertion time with or without chest compression. Successful ventilation rate did not significantly decrease with chest compression in the three devices (without chest compression: air-Q, 21/22; aura-i, 20/22; i-gel, 20/22, during chest compression: air-Q, 20/22; aura-i, 20/22; i-gel, 18/22). The insertion time with air-Q and aura-i did not extend significantly for chest compression. In contrast, the insertion time with i-gel was significantly extended in chest compression (P < 0.05). Air-Q and aura-i are more useful for airway management during chest compression than i-gel. PMID:25711262

  20. Chest Compression With Personal Protective Equipment During Cardiopulmonary Resuscitation

    PubMed Central

    Chen, Jie; Lu, Kai-Zhi; Yi, Bin; Chen, Yan

    2016-01-01

    Abstract Following a chemical, biological, radiation, and nuclear incident, prompt cardiopulmonary resuscitation (CPR) procedure is essential for patients who suffer cardiac arrest. But CPR when wearing personal protection equipment (PPE) before decontamination becomes a challenge for healthcare workers (HCW). Although previous studies have assessed the impact of PPE on airway management, there is little research available regarding the quality of chest compression (CC) when wearing PPE. A present randomized cross-over simulation study was designed to evaluate the effect of PPE on CC performance using mannequins. The study was set in one university medical center in the China. Forty anesthesia residents participated in this randomized cross-over study. Each participant performed 2 min of CC on a manikin with and without PPE, respectively. Participants were randomized into 2 groups that either performed CC with PPE first, followed by a trial without PPE after a 180-min rest, or vice versa. CPR recording technology was used to objectively quantify the quality of CC. Additionally, participants’ physiological parameters and subjective fatigue score values were recorded. With the use of PPE, a significant decrease of the percentage of effective compressions (41.3 ± 17.1% with PPE vs 67.5 ± 15.6% without PPE, P < 0.001) and the percentage of adequate compressions (67.7 ± 18.9% with PPE vs 80.7 ± 15.5% without PPE, P < 0.001) were observed. Furthermore, the increases in heart rate, mean arterial pressure, and subjective fatigue score values were more obvious with the use of PPE (all P < 0.01). We found significant deterioration of CC performance in HCW with the use of a level-C PPE, which may be a disadvantage for enhancing survival of cardiac arrest. PMID:27057878

  1. An algorithm used for ventricular fibrillation detection without interrupting chest compression.

    PubMed

    Li, Yongqin; Bisera, Joe; Weil, Max Harry; Tang, Wanchun

    2012-01-01

    Ventricular fibrillation (VF) is the primary arrhythmic event in the majority of patients suffering from sudden cardiac arrest. Attention has been focused on this particular rhythm since it is recognized that prompt therapy, especially electrical defibrillation, may lead to a successful outcome. However, current versions of automated external defibrillators (AEDs) mandate repetitive interruptions of chest compression for rhythm analyses since artifacts produced by chest compression during cardiopulmonary resuscitation (CPR) preclude reliable electrocardiographic (ECG) rhythm analysis. Yet, repetitive interruptions in chest compression are detrimental to the success of defibrillation. The capability for rhythm analysis without requiring "hands-off" intervals will allow for more effective resuscitation. In this paper, a novel continuous-wavelet-transformation-based morphology consistency evaluation algorithm was developed for the detection of disorganized VF from organized sinus rhythm (SR) without interrupting the ongoing chest compression. The performance of this method was evaluated on both uncorrupted and corrupted ECG signals recorded from AEDs obtained from out-of-hospital victims of cardiac arrest. A total of 232 patients and 31,092 episodes of either VF or SR were accessed, in which 8195 episodes were corrupted by artifacts produced by chest compressions. We also compared the performance of this method with three other established algorithms, including VF filter, spectrum analysis, and complexity measurement. Even though there was a modest decrease in specificity and accuracy when chest compression artifact was present, the performance of this method was still superior to other reported methods for VF detection during uninterrupted CPR. PMID:21342836

  2. Chest compressions in an infant with osteogenesis imperfecta type II: No new rib fractures.

    PubMed

    Sewell, R D; Steinberg, M A

    2000-11-01

    The case report of a newborn female with osteogenesis imperfecta type II who underwent cardiopulmonary resuscitation (CPR) with manual chest compressions for several minutes is presented. Chest radiographs taken before and after the chest compressions were administered were reviewed by several radiologists from 3 different hospitals and demonstrated no new radiographically visible rib fractures. Collagen analysis, the patient's clinical appearance, and clinical course, as well as a consultant's opinion aided in confirmation of the diagnosis of osteogenesis imperfecta type II. A review of 4 previous studies concerning rib fractures and CPR is included. This unique case supports previous articles that have concluded that rib fractures rarely, if ever, result from CPR in pediatrics, even in children with a lethal underlying bone disease, such as osteogenesis imperfecta type II. cardiopulmonary resuscitation, chest compressions, osteogenesis imperfecta, rib fractures, bone disease. PMID:11061808

  3. Chest compressions for bradycardia or asystole in neonates.

    PubMed

    Kapadia, Vishal; Wyckoff, Myra H

    2012-12-01

    When effective ventilation fails to establish a heart rate of greater than 60 bpm, cardiac compressions should be initiated to improve perfusion. The 2-thumb method is the most effective and least fatiguing technique. A ratio of 3 compressions to 1 breath is recommended to provide adequate ventilation, the most common cause of newborn cardiovascular collapse. Interruptions in compressions should be limited to not diminishing the perfusion generated. Oxygen (100%) is recommended during compressions and can be reduced once adequate heart rate and oxygen saturation are achieved. Limited clinical data are available to form newborn cardiac compression recommendations. PMID:23164181

  4. Influence of Chest Compressions on Circulation during the Peri-Cardiac Arrest Period in Porcine Models

    PubMed Central

    Li, Yan; Walline, Joseph; Zheng, Liangliang; Fu, Yangyang; Yao, Dongqi; Zhu, Huadong; Liu, Xiaohe; Chai, Yanfen; Wang, Zhong; Yu, Xuezhong

    2016-01-01

    Objective Starting chest compressions immediately after a defibrillation shock might be harmful, if the victim already had a return of spontaneous circulation (ROSC) and yet was still being subjected to external compressions at the same time. The objective of this study was to study the influence of chest compressions on circulation during the peri-cardiac arrest period. Design Prospective, randomized controlled study. Setting Animal experimental center in Peking Union Medical Collage Hospital, Beijing, China. Subjects Healthy 3-month-old male domestic pigs. Interventions 44 pigs (28±2 kg) were randomly assigned to three groups: Group I (non-arrested with compressions) (n = 12); Group II (arrested with compressions only) (n = 12); Group III (ROSC after compressions and defibrillation) (n = 20). In Groups I and II, compressions were performed to a depth of 5cm (Ia and IIa, n = 6) or a depth of 3cm (Ib and IIb, n = 6) respectively, while in Group III, the animals which had just achieved ROSC (n = 18) were compressed to a depth of 5cm (IIIa, n = 6), a depth of 3cm (IIIb, n = 6), or had no compressions (IIIc, n = 6). Hemodynamic parameters were collected and analyzed. Measurements and Findings Hemodynamics were statistically different between Groups Ia and Ib when different depths of compressions were performed (p < 0.05). In Group II, compressions were beneficial and hemodynamics correlated with the depth of compressions (p < 0.05). In Group III, compressions that continued after ROSC produced a reduction in arterial pressure (p < 0.05). Conclusions Chest compressions might be detrimental to hemodynamics in the early post-ROSC stage. The deeper the compressions were, the better the effect on hemodynamics during cardiac arrest, but the worse the effect on hemodynamics after ROSC. PMID:27168071

  5. Lung and chest wall mechanics in microgravity.

    PubMed

    Edyvean, J; Estenne, M; Paiva, M; Engel, L A

    1991-11-01

    We studied the effect of 15-20 s of weightlessness on lung, chest wall, and abdominal mechanics in five normal subjects inside an aircraft flying repeated parabolic trajectories. We measured flow at the mouth, thoracoabdominal and compartmental volume changes, and gastric pressure (Pga). In two subjects, esophageal pressures were measured as well, allowing for estimates of transdiaphragmatic pressure (Pdi). In all subjects functional residual capacity at 0 Gz decreased by 244 +/- 31 ml as a result of the inward displacement of the abdomen. End-expiratory Pga decreased from 6.8 +/- 0.8 cmH2O at 1 Gz to 2.5 +/- 0.3 cmH2O at Gz (P less than 0.005). Abdominal contribution to tidal volume increased from 0.33 +/- 0.05 to 0.51 +/- 0.04 at 0 Gz (P less than 0.001) but delta Pga showed no consistent change. Hence abdominal compliance increased from 43 +/- 9 to 70 +/- 10 ml/cmH2O (P less than 0.05). There was no consistent effect of Gz on tidal swings of Pdi, on pulmonary resistance and dynamic compliance, or on any of the timing parameters determining the temporal pattern of breathing. The results indicate that at 0 G respiratory mechanics are intermediate between those in the upright and supine postures at 1 G. In addition, analysis of end-expiratory pressures suggests that during weightlessness intra-abdominal pressure is zero, the diaphragm is passively tensed, and a residual small pleural pressure gradient may be present. PMID:1761497

  6. Effectiveness of chest compression feedback during cardiopulmonary resuscitation in lateral tilted and semirecumbent positions: a randomised controlled simulation study.

    PubMed

    Song, Y; Oh, J; Chee, Y; Cho, Y; Lee, S; Lim, T H

    2015-11-01

    Feedback devices have been shown to improve the quality of chest compression during cardiopulmonary resuscitation for patients in the supine position, but no studies have reported the effects of feedback devices on chest compression when the chest is tilted. Basic life support-trained providers were randomly assigned to administer chest compressions to a manikin in the supine, 30° left lateral tilt and 30° semirecumbent positions, with or without the aid of a feedback device incorporated into a smartphone. Thirty-six participants were studied. The feedback device did not affect the quality of chest compressions in the supine position, but improved aspects of performance in the tilted positions. In the lateral tilted position, the median (IQR [range]) chest compression rate was 99 (99-100 [96-117]) compressions.min(-1) with and 115 (95-128 [77-164]) compressions.min(-1) without feedback (p = 0.05), and the proportion of compressions of correct depth was 55 (0-96 [0-100])% with and 1 (0-30 [0-100])% without feedback (p = 0.03). In the semirecumbent position, the proportion of compressions of correct depth was 21 (0-87 [0-100])% with and 1 (0-26 [0-100])% without feedback (p = 0.05). Female participants applied chest compressions at a more accurate rate using the feedback device in the lateral tilted position but were unable to increase the chest compression depth, whereas male participants were able to increase the force of chest compression using the feedback device in the lateral tilted and semirecumbent positions. We conclude that a feedback device improves the application of chest compressions during simulated cardiopulmonary resuscitation when the chest is tilted. PMID:26349025

  7. Chest wall mechanics in sustained microgravity.

    PubMed

    Wantier, M; Estenne, M; Verbanck, S; Prisk, G K; Paiva, M

    1998-06-01

    We assessed the effects of sustained weightlessness on chest wall mechanics in five astronauts who were studied before, during, and after the 10-day Spacelab D-2 mission (n = 3) and the 180-day Euromir-95 mission (n = 2). We measured flow and pressure at the mouth and rib cage and abdominal volumes during resting breathing and during a relaxation maneuver from midinspiratory capacity to functional residual capacity. Microgravity produced marked and consistent changes (Delta) in the contribution of the abdomen to tidal volume [DeltaVab/(DeltaVab + DeltaVrc), where Vab is abdominal volume and Vrc is rib cage volume], which increased from 30.7 +/- 3. 5 (SE)% at 1 G head-to-foot acceleration to 58.3 +/- 5.7% at 0 G head-to-foot acceleration (P < 0.005). Values of DeltaVab/(DeltaVab + DeltaVrc) did not change significantly during the 180 days of the Euromir mission, but in the two subjects DeltaVab/(DeltaVab + DeltaVrc) was greater on postflight day 1 than on subsequent postflight days or preflight. In the two subjects who produced satisfactory relaxation maneuvers, the slope of the Konno-Mead plot decreased in microgravity; this decrease was entirely accounted for by an increase in abdominal compliance because rib cage compliance did not change. These alterations are similar to those previously reported during short periods of weightlessness inside aircrafts flying parabolic trajectories. They are also qualitatively similar to those observed on going from upright to supine posture; however, in contrast to microgravity, such postural change reduces rib cage compliance. PMID:9609801

  8. Chest wall mechanics in sustained microgravity

    NASA Technical Reports Server (NTRS)

    Wantier, M.; Estenne, M.; Verbanck, S.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    1998-01-01

    We assessed the effects of sustained weightlessness on chest wall mechanics in five astronauts who were studied before, during, and after the 10-day Spacelab D-2 mission (n = 3) and the 180-day Euromir-95 mission (n = 2). We measured flow and pressure at the mouth and rib cage and abdominal volumes during resting breathing and during a relaxation maneuver from midinspiratory capacity to functional residual capacity. Microgravity produced marked and consistent changes (Delta) in the contribution of the abdomen to tidal volume [DeltaVab/(DeltaVab + DeltaVrc), where Vab is abdominal volume and Vrc is rib cage volume], which increased from 30.7 +/- 3. 5 (SE)% at 1 G head-to-foot acceleration to 58.3 +/- 5.7% at 0 G head-to-foot acceleration (P < 0.005). Values of DeltaVab/(DeltaVab + DeltaVrc) did not change significantly during the 180 days of the Euromir mission, but in the two subjects DeltaVab/(DeltaVab + DeltaVrc) was greater on postflight day 1 than on subsequent postflight days or preflight. In the two subjects who produced satisfactory relaxation maneuvers, the slope of the Konno-Mead plot decreased in microgravity; this decrease was entirely accounted for by an increase in abdominal compliance because rib cage compliance did not change. These alterations are similar to those previously reported during short periods of weightlessness inside aircrafts flying parabolic trajectories. They are also qualitatively similar to those observed on going from upright to supine posture; however, in contrast to microgravity, such postural change reduces rib cage compliance.

  9. A Simulation-based Randomized Controlled Study of Factors Influencing Chest Compression Depth

    PubMed Central

    Mayrand, Kelsey P.; Fischer, Eric J.; Ten Eyck, Raymond P.

    2015-01-01

    Introduction Current resuscitation guidelines emphasize a systems approach with a strong emphasis on quality cardiopulmonary resuscitation (CPR). Despite the American Heart Association (AHA) emphasis on quality CPR for over 10 years, resuscitation teams do not consistently meet recommended CPR standards. The objective is to assess the impact on chest compression depth of factors including bed height, step stool utilization, position of the rescuer’s arms and shoulders relative to the point of chest compression, and rescuer characteristics including height, weight, and gender. Methods Fifty-six eligible subjects, including physician assistant students and first-year emergency medicine residents, were enrolled and randomized to intervention (bed lowered and step stool readily available) and control (bed raised and step stool accessible, but concealed) groups. We instructed all subjects to complete all interventions on a high-fidelity mannequin per AHA guidelines. Secondary end points included subject arm angle, height, weight group, and gender. Results Using an intention to treat analysis, the mean compression depths for the intervention and control groups were not significantly different. Subjects positioning their arms at a 90-degree angle relative to the sagittal plane of the mannequin’s chest achieved a mean compression depth significantly greater than those compressing at an angle less than 90 degrees. There was a significant correlation between using a step stool and achieving the correct shoulder position. Subject height, weight group, and gender were all independently associated with compression depth. Conclusion Rescuer arm position relative to the patient’s chest and step stool utilization during CPR are modifiable factors facilitating improved chest compression depth. PMID:26759667

  10. Detail view of steam chest and valve mechanisms for high ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of steam chest and valve mechanisms for high pressure stage of unit 40. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  11. Feedback on the Rate and Depth of Chest Compressions during Cardiopulmonary Resuscitation Using Only Accelerometers

    PubMed Central

    Ruiz de Gauna, Sofía; González-Otero, Digna M.; Ruiz, Jesus; Russell, James K.

    2016-01-01

    Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest

  12. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  13. Clinical utility of wavelet compression for resolution-enhanced chest radiography

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.

    2000-05-01

    This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.

  14. A Comparison of Chest Compression Quality Delivered During On-Scene and Ground Transport Cardiopulmonary Resuscitation

    PubMed Central

    Russi, Christopher S.; Myers, Lucas A.; Kolb, Logan J.; Lohse, Christine M.; Hess, Erik P.; White, Roger D.

    2016-01-01

    Introduction American Heart Association (AHA) guidelines recommend cardiopulmonary resuscitation (CPR) chest compressions 1.5 to 2 inches (3.75–5 cm) deep at 100 to 120 per minute. Recent studies demonstrated that manual CPR by emergency medical services (EMS) personnel is substandard. We hypothesized that transport CPR quality is significantly worse than on-scene CPR quality. Methods We analyzed adult patients receiving on-scene and transport chest compressions from nine EMS sites across Minnesota and Wisconsin from May 2008 to July 2010. Two periods were analyzed: before and after visual feedback. CPR data were collected and exported with the Zoll M series monitor and a sternally placed accelerometer measuring chest compression rate and depth. We compared compression data with 2010 AHA guidelines and Zoll RescueNet Code Review software. CPR depth and rate were “above (deep),” “in,” or “below (shallow)” the target range according to AHA guidelines. We paired on-scene and transport data for each patient; paired proportions were compared with the nonparametric Wilcoxon signed rank test. Results In the pre-feedback period, we analyzed 105 of 140 paired cases (75.0%); in the post-feedback period, 35 of 140 paired cases (25.0%) were analyzed. The proportion of correct depths during on-scene compressions (median, 41.9%; interquartile range [IQR], 16.1–73.1) was higher compared to the paired transport proportion (median, 8.7%; IQR, 2.7–48.9). Proportions of on-scene median correct rates and transport median correct depths did not improve in the post-feedback period. Conclusion Transport chest compressions are significantly worse than on-scene compressions. Implementation of visual real-time feedback did not affect performance. PMID:27625733

  15. Chest Compression Fraction Determines Survival in Patients with Out-of-hospital Ventricular Fibrillation

    PubMed Central

    Christenson, Jim; Andrusiek, Douglas; Everson-Stewart, Siobhan; Kudenchuk, Peter; Hostler, David; Powell, Judy; Callaway, Clifton W.; Bishop, Dan; Vaillancourt, Christian; Davis, Dan; Aufderheide, Tom P.; Idris, Ahamed; Stouffer, John A.; Stiell, Ian; Berg, Robert

    2009-01-01

    Background Quality CPR contributes to cardiac arrest survival. The proportion of time in which chest compressions are performed in each minute of CPR is an important modifiable aspect of quality CPR. We sought to estimate the effect of an increasing proportion of time spent performing chest compressions during cardiac arrest on survival to hospital discharge in patients with out-of hospital ventricular fibrillation or pulseless ventricular tachycardia. Methods and Results This is a prospective observational cohort study of adult patients from the Resuscitation Outcomes Consortium Cardiac Arrest Epistry with confirmed ventricular fibrillation or ventricular tachycardia, no defibrillation prior to emergency medical services arrival, electronically recorded cardiopulmonary resuscitation prior to the first shock and a confirmed outcome. Patients were followed to discharge from hospital or death. In the 506 cases, the mean age was 64 years, 80% were male, 71% were witnessed by a bystander, 51% received bystander cardiopulmonary resuscitation, 34% occurred in a public location, and 23% survived. After adjustment for age, gender, location, bystander cardiopulmonary resuscitation, bystander witness status, and response time the odds ratios of surviving to hospital discharge in the two highest categories of chest compression fraction compared to the reference category were 3.01 (95% CI, 1.37, 6.58) and 2.33 (95% CI, 0.96, 5.63). The estimated adjusted linear effect on odds ratio of survival for a 10% change in chest compression fraction was 1.11 (95% CI, 1.01, 1.21). Conclusion Increased chest compression fraction is independently predictive of better survival in patients suffering a prehospital ventricular fibrillation/tachycardia cardiac arrest. PMID:19752324

  16. Clinical evaluation of wavelet compression of digitized chest x-rays

    NASA Astrophysics Data System (ADS)

    Erickson, Bradley J.; Manduca, Armando; Persons, Kenneth R.

    1997-05-01

    In this paper we assess lossy image compression of digitalized chest x-rays using radiologist assessment of anatomic structures and numerical measurements of image accuracy. Forty chest x-rays were digitized and compressed using an irreversible wavelet technique at 10, 20, 40 and 80:1. These were presented in a blinded fashion with an uncompressed image for subjective A-B comparison of 11 anatomic structures as well as overall quality. Mean error, RMS error, maximum pixel error, and number of pixels within 1 percent of original value were also computed for compression ratios from 10:1 to 80:1. We found that at low compression there was a slight preference for compressed images. There was no significant difference at 20:1 and 40:1. There was a slight preference on some structures for the original compared with 80:1 compressed images. Numerical measures demonstrated high image faithfulness, both in terms of number of pixels that were within 1 percent of their original value, and by the average error for all pixels. Our findings suggest that lossy compression at 40:1 or more can be used without perceptible loss in the demonstration of anatomic structures.

  17. Assessment of low-contrast detectability for compressed digital chest images

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Insana, Michael F.; McFadden, Michael A.; Hall, Timothy J.; Cox, Glendon G.

    1994-04-01

    The ability of human observers to detect low-contrast targets in screen-film (SF) images, computed radiographic (CR) images, and compressed CR images was measured using contrast detail (CD) analysis. The results of these studies were used to design a two- alternative forced-choice (2AFC) experiment to investigate the detectability of nodules in adult chest radiographs. CD curves for a common screen-film system were compared with CR images compressed up to 125:1. Data from clinical chest exams were used to define a CD region of clinical interest that sufficiently challenged the observer. From that data, simulated lesions were introduced into 100 normal CR chest films, and forced-choice observer performance studies were performed. CR images were compressed using a full-frame discrete cosine transform (FDCT) technique, where the 2D Fourier space was divided into four areas of different quantization depending on the cumulative power spectrum (energy) of each image. The characteristic curve of the CR images was adjusted so that optical densities matched those of the SF system. The CD curves for SF and uncompressed CR systems were statistically equivalent. The slope of the CD curve for each was - 1.0 as predicted by the Rose model. There was a significant degradation in detection found for CR images compressed to 125:1. Furthermore, contrast-detail analysis demonstrated that many pulmonary nodules encountered in clinical practice are significantly above the average observer threshold for detection. We designed a 2AFC observer study using simulated 1-cm lesions introduced into normal CR chest radiographs. Detectability was reduced for all compressed CR radiographs.

  18. Ventilation distribution and chest wall mechanics in microgravity

    NASA Technical Reports Server (NTRS)

    Paiva, M.; Wantier, M.; Verbanck, S.; Engel, L. A.; Prisk, G. K.; Guy, H. J. B.; West, J. B.

    1997-01-01

    The effect of gravity on lung ventilation distribution and the mechanisms of the chest wall were investigated. The following tests were performed with the respiratory monitoring system of the Anthorack, flown onboard Spacelab D2 mission: single breath washout (SBW), multiple breath washout (MBW) and argon rebreathing (ARB). In order to study chest wall mechanisms in microgravity, a respiratory inductive plethysmograph was used. The SBW tests did not reach statistical significance, while the ARB tests showed that gravity independent inhomogeneity of specific ventilation is larger than gravity dependent inhomogeneity. In which concerns the chest wall mechanisms, the analysis on the four astronauts during the normal respirations of the relaxation maneuver showed a 40 percent increase on the abdominal contribution to respiration.

  19. A randomized trial of continuous versus interrupted chest compressions in out-of-hospital cardiac arrest: rationale for and design of the Resuscitation Outcomes Consortium Continuous Chest Compressions Trial.

    PubMed

    Brown, Siobhan P; Wang, Henry; Aufderheide, Tom P; Vaillancourt, Christian; Schmicker, Robert H; Cheskes, Sheldon; Straight, Ron; Kudenchuk, Peter; Morrison, Laurie; Colella, M Riccardo; Condle, Joseph; Gamez, George; Hostler, David; Kayea, Tami; Ragsdale, Sally; Stephens, Shannon; Nichol, Graham

    2015-03-01

    The Resuscitation Outcomes Consortium is conducting a randomized trial comparing survival with hospital discharge after continuous chest compressions without interruption for ventilation versus currently recommended American Heart Association cardiopulmonary resuscitation with interrupted chest compressions in adult patients with out-of-hospital cardiac arrest without obvious trauma or respiratory cause. Emergency medical services perform study cardiopulmonary resuscitation for 3 intervals of manual chest compressions (each ~2 minutes) or until restoration of spontaneous circulation. Patients randomized to the continuous chest compression intervention receive 200 chest compressions with positive pressure ventilations at a rate of 10/min without interruption in compressions. Those randomized to the interrupted chest compression study arm receive chest compressions interrupted for positive pressure ventilations at a compression:ventilation ratio of 30:2. In either group, each interval of compressions is followed by rhythm analysis and defibrillation as required. Insertion of an advanced airway is deferred for the first ≥6 minutes to reduce interruptions in either study arm. The study uses a cluster randomized design with every-6-month crossovers. The primary outcome is survival to hospital discharge. Secondary outcomes are neurologically intact survival and adverse events. A maximum of 23,600 patients (11,800 per group) enrolled during the post-run-in phase of the study will provide ≥90% power to detect a relative change of 16% in the rate of survival to discharge, 8.1% to 9.4% with overall significance level of 0.05. If this trial demonstrates improved survival with either strategy, >3,000 premature deaths from cardiac arrest would be averted annually. PMID:25728722

  20. Impact of ventilation strategies during chest compression. An experimental study with clinical observations.

    PubMed

    Cordioli, Ricardo L; Lyazidi, Aissam; Rey, Nathalie; Granier, Jean-Max; Savary, Dominique; Brochard, Laurent; Richard, Jean-Christophe M

    2016-01-15

    The optimal ventilation strategy during cardiopulmonary resuscitation (CPR) is unknown. Chest compression (CC) generates circulation, while during decompression, thoracic recoil generates negative pressure and venous return. Continuous flow insufflation of oxygen (CFI) allows noninterrupted CC and generates positive airway pressure (Paw). The main objective of this study was to assess the effects of positive Paw compared with the current recommended ventilation strategy on intrathoracic pressure (P(IT)) variations, ventilation, and lung volume. In a mechanical model, allowing compression of the thorax below an equilibrium volume mimicking functional residual capacity (FRC), CC alone or with manual bag ventilation were compared with two levels of Paw with CFI. Lung volume change below FRC at the end of decompression and P(IT), as well as estimated alveolar ventilation, were measured during the bench study. Recordings were obtained in five cardiac arrest patients to confirm the bench findings. Lung volume was continuously below FRC, and as a consequence P(IT) remained negative during decompression in all situations, including with positive Paw. Compared with manual bag or CC alone, CFI with positive Paw limited the fall in lung volume and resulted in larger positive and negative P(IT) variations. Positive Paw with CFI significantly augmented ventilation induced by CC. Recordings in patients confirmed a major loss of lung volume below FRC during CPR, even with positive Paw. Compared with manual bag ventilation, positive Paw associated with CFI limits the loss in lung volume, enhances CC-induced positive P(IT), maintains negative P(IT) during decompression, and generates more alveolar ventilation. PMID:26586906

  1. Is It Possible to Maintain Consciousness and Spontaneous Ventilation with Chest Compression in the Early Phase of Cardiac Arrest?

    PubMed Central

    Oksar, Menekse; Turhanoglu, Selim

    2016-01-01

    Chest compression is important in cardiopulmonary resuscitation. However, life support algorithms do not specify when chest compression should be initiated in patients with persistent spontaneous normal breathing in the early phase after cardiac arrest. Here we describe the case of a 69-year-old man who underwent femoral bypass surgery and was extubated at the end of the procedure. After extubation, the patient's breathing pattern and respiratory rate were normal. The patient subsequently developed ventricular fibrillation, evident on two monitors. Because defibrillation was ineffective, chest compression was initiated even though the patient had spontaneous normal breathing and defensive motor reflexes, which were continued throughout resuscitation. He regained consciousness and underwent tracheal extubation without neurological sequelae on postoperative day 1. This case highlights the necessity of chest compression in the early phase of cardiac arrest. PMID:26981288

  2. Chest compression-only CPR or good quality 30:2 CPR.

    PubMed

    Anantharaman, V

    2011-08-01

    There is debate as to whether chest compression-only cardiopulmonary resuscitation (CC-CPR) or standard 30:2 CPR should be taught to laypersons. Equivalence in outcomes between standard CPR and CC-CPR has been amply demonstrated in communities with short ambulance response times of about five minutes. Depriving oxygen from a collapsed patient beyond six minutes results in poorer outcomes. Communities with prolonged ambulance travel times have seen improved outcomes with CPR than CC-CPR. While healthcare workers demonstrate a reluctance to perform mouth-to-mouth ventilation, laypersons generally show a willingness to do so. Rescuer fatigue also argues against the use of CC-CPR for more than a few minutes. For communities with relatively long ambulance transport times, the best approach appears to be standard CPR, with emphasis on good quality compression. For dispatcher-assisted CPR, communication issues suggest that CC-CPR is advisable. Public CPR training should include teaching of mouth-to-mouth ventilation alternating with chest compressions. PMID:21879215

  3. A New Chest Compression Depth Feedback Algorithm for High-Quality CPR Based on Smartphone

    PubMed Central

    Song, Yeongtak; Oh, Jaehoon

    2015-01-01

    Abstract Background Although many smartphone application (app) programs provide education and guidance for basic life support, they do not commonly provide feedback on the chest compression depth (CCD) and rate. The validation of its accuracy has not been reported to date. This study was a feasibility assessment of use of the smartphone as a CCD feedback device. In this study, we proposed the concept of a new real-time CCD estimation algorithm using a smartphone and evaluated the accuracy of the algorithm. Materials and Methods Using the double integration of the acceleration signal, which was obtained from the accelerometer in the smartphone, we estimated the CCD in real time. Based on its periodicity, we removed the bias error from the accelerometer. To evaluate this instrument's accuracy, we used a potentiometer as the reference depth measurement. The evaluation experiments included three levels of CCD (insufficient, adequate, and excessive) and four types of grasping orientations with various compression directions. We used the difference between the reference measurement and the estimated depth as the error. The error was calculated for each compression. Results When chest compressions were performed with adequate depth for the patient who was lying on a flat floor, the mean (standard deviation) of the errors was 1.43 (1.00) mm. When the patient was lying on an oblique floor, the mean (standard deviation) of the errors was 3.13 (1.88) mm. Conclusions The error of the CCD estimation was tolerable for the algorithm to be used in the smartphone-based CCD feedback app to compress more than 51 mm, which is the 2010 American Heart Association guideline. PMID:25402865

  4. Optimizing ventilation in conjunction with phased chest and abdominal compression-decompression (Lifestick) resuscitation.

    PubMed

    Kern, Karl B; Hilwig, Ronald W; Berg, Robert A; Schock, Robert B; Ewy, Gordon A

    2002-01-01

    The best method for employment of phased chest and abdominal compression-decompression (Lifestick) cardiopulmonary resuscitation (CPR) has yet to be determined. Of particular concern with using this technique is the combining of ventilation with the phased compressions and decompressions. Twenty domestic swine (50+/-1 kg) were equally divided into four groups. Following 10 min of untreated VF, CPR was begun. Group 1 received Lifestick (LS) CPR with only passive ventilation ('passive'); Group 2 received LS-CPR with synchronized positive pressure ventilations (ppv) at a chest compression ratio of 15:2 (15:2 S); Group 3 had LS-CPR with synchronized ppv at 5:1 (5:1 S); and Group 4 received LS-CPR with asynchronous ppv at 5:1 (5:1 A). Endpoints included hemodynamics, blood gases, minute ventilation, and 24 h outcome. Asynchronous ventilation (5:1 A) had significantly worse hemodynamics including aortic and right atrial systolic, aortic diastolic, and coronary perfusion pressures than the other groups (P<0.05). Passive ventilation had the poorest arterial and mixed venous blood gases (P<0.05), but did not differ from 15:2 S in minute ventilation produced (8 vs 10 l/min). No differences in outcome were seen. The ventilation technique combined with LS-CPR can make a significant difference in hemodynamics as well as ventilation. Optimizing other forms of basic and advanced cardiac life support through different ventilation methods deserves new consideration, including a re-examination of the current single rescuer recommendation of a 15:2 ratio. Optimal ventilation strategy when using the LS device at 60 compressions per min appears to be 5:1 S. Such data is important for conducting clinical trials with this new CPR adjunct. PMID:11801354

  5. Measurement and control for mechanical compressive stress

    NASA Astrophysics Data System (ADS)

    Li, Qing; Ye, Guang; Pan, Lan; Wu, Xiushan

    2001-12-01

    At present, the indirect method is applied to measuring and controlling mechanical compressive stress, which is the measurement and control of rotating torque of screw with torque transducer during screw revolving. Because the friction coefficient between every screw-cap and washer, of screw-thread is different, the compressive stress of every screw may is different when the machinery is equipped. Therefore, the accurate measurement and control of mechanical compressive stress is realized by the direct measurement of mechanical compressive stress. The author introduces the research of contrast between compressive stress and rotating torque in the paper. The structure and work principle of a special washer type transducer is discussed emphatically. The special instrument cooperates with the washer type transducer for measuring and controlling mechanical compressive stress. The control tactics based on the rate of compressive stress is put to realize accurate control of mechanical compressive stress.

  6. Impact of the 2010 resuscitation guidelines training on layperson chest compressions

    PubMed Central

    Blewer, Audrey L.; Buckler, David G.; Li, Jiaqi; Leary, Marion; Becker, Lance B.; Shea, Judy A.; Groeneveld, Peter W.; Putt, Mary E.; Abella, Benjamin S.

    2015-01-01

    BACKGROUND: Survival from cardiac arrest is sensitive to the quality of delivered CPR. In 2010, updated international resuscitation guidelines emphasized deeper chest compressions and faster rates, yet it is unknown whether training laypersons using updated guidelines resulted in changed CPR performance. We hypothesized that laypersons taught CPR using the 2010 guidelines performed deeper and faster compressions than those taught using the 2005 materials. METHODS: This work represents a secondary analysis of a study conducted at eight hospitals where family members of hospitalized cardiac patients were trained in CPR. An initial cohort was trained using the 2005 guidelines, and a subsequent cohort was trained using the 2010 guideline materials. Post training, CPR skills were quantified using a recording manikin. RESULTS: Between May 2009 to August 2013, 338 subjects completed the assessment. Among the subjects, 176 received 2005 training and 162 underwent 2010 training. The mean compression rate in the 2005 cohort was 87 (95%CI 83–90) per minute, and in the 2010 cohort was 86 (95%CI 83–90) per minute (P=ns), while the mean compression depth was 34 (95%CI 32–35) mm in the 2005 cohort and 46 (95%CI 44–47) mm in the 2010 cohort (P<0.01). CONCLUSIONS: Training with the 2010 CPR guidelines resulted in a statistically significant increase in trainees’ compression depth but there was no change in compression rate. Nevertheless, the majority of CPR performed by trainees in both cohorts was below the guideline recommendation, highlighting an important gap between training goals and trainee performance. PMID:26693261

  7. Minute ventilation at different compression to ventilation ratios, different ventilation rates, and continuous chest compressions with asynchronous ventilation in a newborn manikin

    PubMed Central

    2012-01-01

    Background In newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute. However, this recommendation is based on physiological plausibility and consensus rather than scientific evidence. With focus on minute ventilation (Mv), we aimed to compare today’s standard to alternative chest compression to ventilation (C:V) ratios and different ventilation rates, as well as to continuous chest compressions with asynchronous ventilation. Methods Two investigators performed cardiopulmonary resuscitation on a newborn manikin with a T-piece resuscitator and manual chest compressions. The C:V ratios 3:1, 9:3 and 15:2, as well as continuous chest compressions with asynchronous ventilation (120 compressions and 40 ventilations per minute) were performed in a randomised fashion in series of 10 × 2 minutes. In addition, ventilation only was performed at three different rates (40, 60 and 120 ventilations per minute, respectively). A respiratory function monitor measured inspiration time, tidal volume and ventilation rate. Mv was calculated for the different interventions and the Mann–Whitney test was used for comparisons between groups. Results Median Mv per kg in ml (interquartile range) was significantly lower at the C:V ratios of 9:3 (140 (134–144)) and 15:2 (77 (74–83)) as compared to 3:1 (191(183–199)). With ventilation only, there was a correlation between ventilation rate and Mv despite a negative correlation between ventilation rate and tidal volumes. Continuous chest compressions with asynchronous ventilation gave higher Mv as compared to coordinated compressions and ventilations at a C:V ratio of 3:1. Conclusions In this study, higher C:V ratios than 3:1 compromised ventilation dynamics in a newborn manikin. However, higher ventilation rates, as well as continuous chest compressions with asynchronous ventilation gave higher Mv

  8. Evaluation of chest injury mechanisms in nearside oblique frontal impacts.

    PubMed

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries.To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy.The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework.In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°-35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  9. Evaluation of Chest Injury Mechanisms in Nearside Oblique Frontal Impacts

    PubMed Central

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries. To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy. The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework. In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°–35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  10. Four-stage teaching technique and chest compression performance of medical students compared to conventional technique

    PubMed Central

    Jenko, Matej; Frangež, Maja; Manohin, Aleksander

    2012-01-01

    Aim To compare the 2-stage and 4-stage basic life support teaching technique. The second aim was to test if students’ self-evaluated knowledge was in accordance with their actual knowledge. Methods A total of 126 first-year students of the Faculty of Medicine in Ljubljana were involved in this parallel study conducted in the academic year 2009/2010. They were divided into ten groups. Five groups were taught the 2-stage model and five the 4-stage model. The students were tested in a scenario immediately after the course. Questionnaires were filled in before and after the course. We assessed the absolute values of the chest compression variables and the proportions of students whose performance was evaluated as correct according to our criteria. The results were analyzed with independent samples t test or Mann-Whitney-U test. Proportions were compared with χ2 test. The correlation was calculated with the Pearson coefficient. Results There was no difference between the 2-stage (2S) and the 4-stage approach (4S) in the compression rate (126 ± 13 min-1 vs 124 ± 16 min -1, P = 0.180, independent samples t test), compression depth (43 ± 7 mm vs 44 ± 8 mm, P = 0.368, independent samples t test), and the number of compressions with correct hand placement (79 ± 32% vs 78 ± 12, P = 0.765, Mann-Whitney U-test). However, students from the 4-stage group had a significantly higher average number of compressions per minute (70 ± 13 min -1 2S, 78 ± 12 min-1 4S, P = 0.02, independent samples t test). The percentage of students with all the variables correct was the same (13% 2S, 15% 4S, P = 0.741, χ2 test). There was no correlation between the students’ actual and self-evaluated knowledge (P = 0.158, Pearson coefficient = 0.127). Conclusions The 4-stage teaching technique does not significantly improve the quality of chest compressions. The students’ self-evaluation of their performance after the course was

  11. Comparison of the McGrath MAC video laryngoscope and the Pentax Airwayscope during chest compression: a manikin study.

    PubMed

    Kotera, Atsushi; Irie, Hiroki; Iwashita, Shinsuke; Taniguchi, Junichi; Kasaoka, Shunji; Kinoshita, Yoshihiro

    2014-01-01

    We tested the utility of the McGrath MAC(®) (McG) video laryngoscope during chest compression compared with the Pentax Airwayscope(®) (AWS). We recruited 59 participants into the simulation study. The difference in the time to intubation (TTI [sec]) between without and with chest compression was significant for the AWS attempts (median 13, range 6-28 vs. median 15, range 6-72, p = 0.0247) but not significant for the McG attempts (median 16, range 6-75 vs. median 16, range 6-71); however, the difference of the TTIs is not serious clinically. The utility of the two devices during chest compressions is almost similar although their characteristics are different. PMID:25520833

  12. Comparison of Methods for the Determination of Cardiopulmonary Resuscitation Chest Compression Fraction

    PubMed Central

    Iyanaga, Masayuki; Gray, Randal; Stephens, Shannon W.; Akinsanya, Olajide; Rodgers, Joel; Smyrski, Kathleen; Wang, Henry E.

    2012-01-01

    Objective While cardiopulmonary resuscitation (CPR) chest compression fraction (CCF) is associated with out-of-hospital cardiac arrest (OHCA) outcomes, there is no standard method for the determination of CCF. We compared nine methods for calculating CCF. Methods We studied consecutive adult OHCA patients treated by Alabama Emergency Medical Services (EMS) agencies of the Resuscitation Outcomes Consortium (ROC) during Jan. 1, 2010 - Oct. 28, 2010. Paramedics used portable cardiac monitors with real-time chest compression detection technology (LifePak 12, Physio-Control, Redmond, Washington). We performed both automated CCF calculation for the entire care episode as well as manual review of CPR data in 1-minute epochs, defining CCF as the proportion of each treatment interval with active chest compressions. We compared the CCF values resulting from 9 calculation methods: 1) mean CCF for the entire patient care episode (automated calculation by manufacturer software), 2) mean CCF for first 3 minutes of patient care, 3) mean CCF for first 5 minutes, 4) mean CCF for first 10 minutes, 5) mean CCF for the entire episode except first 5 minutes, 6) mean CCF for last 5 minutes, 7) mean CCF from start to first shock, 8) mean CCF for the first half of resuscitation, 9) mean CCF for the second half of resuscitation. We compared CCF for Methods 2-9 with Method 1 using paired t-tests with a Bonferroni-adjusted p-value of 0.006 (99.5% confidence intervals). Results Among 102 adult OHCA, patient demographics were: mean age 60.3 years (SD 20.8 years), African American 56.9%, male 63.7%, and shockable ECG rhythm 23.5%. Mean CPR duration was 728 seconds (95% CI: 647-809 seconds). Mean CCF for the 9 CCF calculation methods were: 1) 0.587; 2) 0.526; 3) 0.541; 4) 0.566; 5) 0.562; 6) 0.597; 7) 0.530; 8) 0.550; 9) 0.590%. Compared with Method 1, Method 7 CCF (start to first shock) was slightly lower (−0.057; 99.5% CI: −0.100 – (−0.014)). There were no other statistically

  13. Eccentric crank variable compression ratio mechanism

    DOEpatents

    Lawrence, Keith Edward; Moser, William Elliott; Roozenboom, Stephan Donald; Knox, Kevin Jay

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  14. Chest Compression With Personal Protective Equipment During Cardiopulmonary Resuscitation: A Randomized Crossover Simulation Study.

    PubMed

    Chen, Jie; Lu, Kai-Zhi; Yi, Bin; Chen, Yan

    2016-04-01

    Following a chemical, biological, radiation, and nuclear incident, prompt cardiopulmonary resuscitation (CPR) procedure is essential for patients who suffer cardiac arrest. But CPR when wearing personal protection equipment (PPE) before decontamination becomes a challenge for healthcare workers (HCW). Although previous studies have assessed the impact of PPE on airway management, there is little research available regarding the quality of chest compression (CC) when wearing PPE.A present randomized cross-over simulation study was designed to evaluate the effect of PPE on CC performance using mannequins.The study was set in one university medical center in the China.Forty anesthesia residents participated in this randomized cross-over study.Each participant performed 2 min of CC on a manikin with and without PPE, respectively. Participants were randomized into 2 groups that either performed CC with PPE first, followed by a trial without PPE after a 180-min rest, or vice versa.CPR recording technology was used to objectively quantify the quality of CC. Additionally, participants' physiological parameters and subjective fatigue score values were recorded.With the use of PPE, a significant decrease of the percentage of effective compressions (41.3 ± 17.1% with PPE vs 67.5 ± 15.6% without PPE, P < 0.001) and the percentage of adequate compressions (67.7 ± 18.9% with PPE vs 80.7 ± 15.5% without PPE, P < 0.001) were observed. Furthermore, the increases in heart rate, mean arterial pressure, and subjective fatigue score values were more obvious with the use of PPE (all P < 0.01).We found significant deterioration of CC performance in HCW with the use of a level-C PPE, which may be a disadvantage for enhancing survival of cardiac arrest. PMID:27057878

  15. Three cases of suprachoroidal hemorrhage associated with chest compression or asphyxiation and detected using postmortem computed tomography.

    PubMed

    Oshima, Toru; Yoshikawa, Hiroshi; Ohtani, Maki; Mimasaka, Sohtaro

    2015-05-01

    We report 3 cases of suprachoroidal hemorrhage (SCH) found to be triggered by increased intrathoracic pressure and detected using postmortem computed tomography (PMCT). Case 1 was a man aged in his 50s who was found dead at a landslide site. The autopsy showed clogging of the upper respiratory tract with soil debris from the landslide. The cause of death was determined to be asphyxia. PMCT showed SCH in both eyes, which was believed to be caused by chest compression or choking on the soil debris from the landslide. Case 2 was a woman aged in her 60s who was found dead in the sea. The autopsy revealed injuries primarily to her chest. We concluded that the cause of death was drowning. PMCT showed SCH in her right eye that was believed to be caused by chest compression. Case 3 was a woman aged in her 80s who was buried in a snowdrift and potentially died from hypothermia. PMCT showed SCH in both eyes, which was considered to be from an increase in intrathoracic pressure that might have been caused by the burial in the snow. Histological findings showed serous retinal detachment associated with retinal pigment epithelium damage due to SCH, which indicated that she was alive for several hours after the onset of SCH. The increase in intrathoracic pressure caused by dyspnea or chest compression was considered responsible for the onset of SCH in all of the present cases. PMCT might assist with the differential diagnosis of traumatic asphyxiation by SCH. PMID:25533924

  16. Effects of chest wall compression on expiratory flow rates in patients with chronic obstructive pulmonary disease

    PubMed Central

    Nozoe, Masafumi; Mase, Kyoshi; Ogino, Tomoyuki; Murakami, Shigefumi; Takashima, Sachie; Domen, Kazuhisa

    2016-01-01

    Background: Manual chest wall compression (CWC) during expiration is a technique for removing airway secretions in patients with respiratory disorders. However, there have been no reports about the physiological effects of CWC in patients with chronic obstructive pulmonary disease (COPD). Objective: To compare the effects of CWC on expiratory flow rates in patients with COPD and asymptomatic controls. Method: Fourteen subjects were recruited from among patients with COPD who were receiving pulmonary rehabilitation at the University Hospital (COPD group). Fourteen age-matched healthy subjects were also consecutively recruited from the local community (Healthy control group). Airflow and lung volume changes were measured continuously with the subjects lying in supine position during 1 minute of quiet breathing (QB) and during 1 minute of CWC by a physical therapist. Results: During CWC, both the COPD group and the healthy control group showed significantly higher peak expiratory flow rates (PEFRs) than during QB (mean difference for COPD group 0.14 L/sec, 95% confidence interval (CI) 0.04 to 0.24, p<0.01, mean difference for healthy control group 0.39 L/sec, 95% CI 0.25 to 0.57, p<0.01). In the between-group comparisons, PEFR was significantly higher in the healthy control group than in the COPD group (-0.25 L/sec, 95% CI -0.43 to -0.07, p<0.01). However, the expiratory flow rates at the lung volume at the PEFR during QB and at 50% and 25% of tidal volume during QB increased in the healthy control group (mean difference for healthy control group 0.31 L/sec, 95% CI 0.15 to 0.47, p<0.01: 0.31 L/sec, 95% CI 0.15 to 0.47, p<0.01: 0.27 L/sec, 95% CI 0.13 to 0.41, p<0.01, respectively) but not in the COPD group (0.05 L/sec, 95% CI -0.01 to 0.12: -0.01 L/sec, 95% CI -0.11 to 0.08: 0.02 L/sec, 95% CI -0.05 to 0.90) with the application of CWC. Conclusion: The effects of chest wall compression on expiratory flow rates was different between COPD patients and asymptomatic

  17. Virtual arterial blood pressure feedback improves chest compression quality during simulated resuscitation☆

    PubMed Central

    Rieke, Horst; Rieke, Martin; Gado, Samkon K.; Nietert, Paul J.; Field, Larry C.; Clark, Carlee A.; Furse, Cory M.; McEvoy, Matthew D.

    2014-01-01

    Introduction Quality chest compressions (CC) are the most important factor in successful cardiopulmonary resuscitation. Adjustment of CC based upon an invasive arterial blood pressure (ABP) display would be theoretically beneficial. Additionally, having one compressor present for longer than a 2-min cycle with an ABP display may allow for a learning process to further maximize CC. Accordingly, we tested the hypothesis that CC can be improved with a real-time display of invasively measured blood pressure and with an unchanged, physically fit compressor. Methods A manikin was attached to an ABP display derived from a hemodynamic model responding to parameters of CC rate, depth, and compression-decompression ratio. The area under the blood pressure curve over time (AUC) was used for data analysis. Each participant (N = 20) performed 4 CPR sessions: (1) No ABP display, exchange of compressor every 2 min; (2) ABP display, exchange of compressor every 2 min; (3) no ABP display, no exchange of the compressor; (4) ABP display, no exchange of the compressor. Data were analyzed by ANOVA. Significance was set at a p-value < 0.05. Results The average AUC for cycles without ABP display was 5201 mmHg s (95% confidence interval (CI) of 4804–5597 mmHg s), and for cycles with ABP display 6110 mmHg s (95% CI of 5715–6507 mmHg s) (p< 0.0001). The average AUC increase with ABP display for each participant was 20.2 ± 17.4% 95 CI (p < 0.0001). Conclusions Our study confirms the hypothesis that a real-time display of simulated ABP during CPR that responds to participant performance improves achieved and sustained ABP. However, without any real-time visual feedback, even fit compressors demonstrated degradation of CC quality. PMID:23816900

  18. Using an inertial navigation algorithm and accelerometer to monitor chest compression depth during cardiopulmonary resuscitation.

    PubMed

    Boussen, Salah; Ibouanga-Kipoutou, Harold; Fournier, Nathalie; Raboutet, Yves Godio; Llari, Maxime; Bruder, Nicolas; Arnoux, Pierre Jean; Behr, Michel

    2016-09-01

    We present an original method using a low cost accelerometer and a Kalman-filter based algorithm to monitor cardiopulmonary resuscitation chest compressions (CC) depth. A three-axis accelerometer connected to a computer was used during CC. A Kalman filter was used to retrieve speed and position from acceleration data. We first tested the algorithm for its accuracy and stability on surrogate data. The device was implemented for CC performed on a manikin. Different accelerometer locations were tested. We used a classical inertial navigation algorithm to reconstruct CPR depth and frequency. The device was found accurate enough to monitor CPR depth and its stability was checked for half an hour without any drift. Average error on displacement was ±0.5mm. We showed that depth measurement was dependent on the device location on the patient or the rescuer. The accuracy and stability of this small low-cost accelerometer coupled to a Kalman-filter based algorithm to reconstruct CC depth and frequency, was found well adapted and could be easily implemented. PMID:27246666

  19. Pulse Oximetry: A Non-Invasive, Novel Marker for the Quality of Chest Compressions in Porcine Models of Cardiac Arrest

    PubMed Central

    Han, Fei; Li, Yan; Walline, Joseph; Fu, Yangyang; Yao, Dongqi; Zhang, Xiaocui; Zhang, Hui; Zhu, Huadong; Guo, Shubin; Wang, Zhong; Yu, Xuezhong

    2015-01-01

    Objective Pulse oximetry, which noninvasively detects the blood flow of peripheral tissue, has achieved widespread clinical use. We have noticed that the better the quality of cardiopulmonary resuscitation (CPR), the better the appearance of pulse oximetry plethysmographic waveform (POP). We investigated whether the area under the curve (AUC) and/or the amplitude (Amp) of POP could be used to monitor the quality of CPR. Design Prospective, randomized controlled study. Setting Animal experimental center in Peking Union Medical Collage Hospital, Beijing, China. Subjects Healthy 3-month-old male domestic swine. Interventions 34 local pigs were enrolled in this study. After 4 minutes of untreated ventricular fibrillation, animals were randomly assigned into two resuscitation groups: a “low quality” group (with a compression depth of 3cm) and a “high quality” group (with a depth of 5cm). All treatments between the two groups were identical except for the depth of chest compressions. Hemodynamic parameters [coronary perfusion pressure (CPP), partial pressure of end-tidal carbon dioxide (PETCO2)] as well as AUC and Amp of POP were all collected and analyzed. Measurements and Findings There were statistical differences between the “high quality” group and the “low quality” group in AUC, Amp, CPP and PETCO2 during CPR (P<0.05). AUC, Amp and CPP were positively correlated with PETCO2, respectively (P<0.01). There was no statistical difference between the heart rate calculated according to the POP (FCPR) and the frequency of mechanical CPR at the 3rd minute of CPR. The FCPR was lower than the frequency of mechanical CPR at the 6th and the 9th minute of CPR. Conclusions Both the AUC and Amp of POP correlated well with CPP and PETCO2 in animal models. The frequency of POP closely matched the CPR heart rate. AUC and Amp of POP might be potential noninvasive quality monitoring markers for CPR. PMID:26485651

  20. Peyton's 4-Steps-Approach in comparison: Medium-term effects on learning external chest compression – a pilot study

    PubMed Central

    Münster, Tobias; Stosch, Christoph; Hindrichs, Nina; Franklin, Jeremy; Matthes, Jan

    2016-01-01

    Introduction: The external chest compression is a very important skill required to maintain a minimum of circulation during cardiac arrest until further medical procedures can be taken. Peyton’s 4-Steps-Approach is one method of skill training, the four steps being: Demonstration, Deconstruction, Comprehension and Execution. Based on CPR skill training, this method is widely, allegedly predominantly used, although there are insufficient studies on Peyton’s 4-Steps-Approach for skill training in CPR in comparison with other methods of skill training. In our study, we compared the medium- term effects on learning external chest compression with a CPR training device in three different groups: PEY (Peyton’s 4-Steps-Approach), PMOD (Peyton’s 4-Steps-Approach without Step 3) and STDM, the standard model, according to the widely spread method “see one, do one” (this is equal to Peyton’s step 1 and 3). Material and Methods: This prospective and randomised pilot study took place during the summer semester of 2009 at the SkillsLab and Simulation Centre of the University of Cologne (Kölner interprofessionelles Skills Lab und Simulationszentrum - KISS). The subjects were medical students (2nd and 3rd semester). They volunteered for the study and were randomised in three parallel groups, each receiving one of the teaching methods mentioned above. One week and 5/6 months after the intervention, an objective, structured single assessment was taken. Compression rate, compression depth, correct compressions, and the sum of correct checklist items were recorded. Additionally, we compared cumulative percentages between the groups based on the correct implementation of the resuscitation guidelines during that time. Results: The examined sample consisted of 134 subjects (68% female; age 22±4; PEY: n=62; PMOD: n=31; STDM: n=41). There was no difference between the groups concerning age, gender, pre-existing experience in CPR or time of last CPR course. The only

  1. Instructions to “push as hard as you can” improve average chest compression depth in dispatcher-assisted Cardiopulmonary Resuscitation

    PubMed Central

    Mirza, Muzna; Brown, Todd B.; Saini, Devashish; Pepper, Tracy L; Nandigam, Hari Krishna; Kaza, Niroop; Cofield, Stacey S.

    2008-01-01

    Background and Objective Cardiopulmonary Resuscitation (CPR) with adequate chest compression depth appears to improve first shock success in cardiac arrest. We evaluate the effect of simplification of chest compression instructions on compression depth in dispatcher-assisted CPR protocol. Methods Data from two randomized, double-blinded, controlled trials with identical methodology were combined to obtain 332 records for this analysis. Subjects were randomized to either modified Medical Priority Dispatch System (MPDS) v11.2 protocol or a new simplified protocol. The main difference between the protocols was the instruction to “push as hard as you can” in the simplified protocol, compared to “push down firmly 2 inches (5cm)” in MPDS. Data were recorded via a Laerdal® ResusciAnne® SkillReporter™ manikin. Primary outcome measures included: chest compression depth, proportion of compressions without error, with adequate depth and with total release. Results Instructions to “push as hard as you can”, compared to “push down firmly 2 inches (5cm)”, resulted in improved chest compression depth (36.4 vs 29.7 mm, p<0.0001), and improved median proportion of chest compressions done to the correct depth (32% vs <1%, p<0.0001). No significant difference in median proportion of compressions with total release (100% for both) and average compression rate (99.7 vs 97.5 per min, p<0.56) was found. Conclusions Modifying dispatcher-assisted CPR instructions by changing “push down firmly 2 inches (5cm)” to “push as hard as you can” achieved improvement in chest compression depth at no cost to total release or average chest compression rate. PMID:18635306

  2. Pitfalls with the "chest compression-only" approach: the challenge of an unusual cause.

    PubMed

    Reid, Bjørn Ole; Skogvoll, Eirik

    2010-01-01

    Chest compression-only (CC-only) is now incorporated in the Norwegian protocol for dispatch guided CPR (cardiopulmonary resuscitation) in cardiac arrest of presumed cardiac aetiology.We present a case that is unique and instructive as well as unusual. It reminds us of the challenges that face bystanders, dispatch centres and ambulance services when faced with possible cardiac arrest.This case report describes a 50 year old man in a rural community. He had suffered a heart attack 8 months previously, and was found unconscious with respiratory arrest in his garden one morning. Due to the proximity to the ambulance station, the paramedics were on the scene within three minutes. A chain-saw was lying beside him, but no external injuries were seen. The patient had no radial pulse, central cyanosis and respiratory gasps approximately every 30 seconds. Ventilation with bag and mask was given, and soon a femoral pulse could be palpated. Blood sugar was elevated and ECG (electrocardiogram) was normal. GCS (Glasgow Coma Scale) was 3. Upon arrival of the physician staffed air ambulance, further examination revealed bilateral miosis of the pupils and continuing bradypnoea. Naloxone was given with an immediate effect and the patient woke up. The patient denied intake of narcotics, but additional information from the dispatch centre revealed that he was hepatitis C positive. After a few hours, the patient admitted to have obtained a fentanyl transdermal patch from an acquaintance, having chewed it before falling unconscious. This case report shows the importance as well as the challenges of identifying a non-cardiac cause of possible cardiac arrest, and the value of providing causal therapy. PMID:20707888

  3. Ventilation by high-frequency chest wall compression in dogs with normal lungs.

    PubMed

    Zidulka, A; Gross, D; Minami, H; Vartian, V; Chang, H K

    1983-06-01

    In 6 anesthetized and paralyzed supine dogs, ventilation by high-frequency chest wall compression (HFCWC) was accomplished by a piston pump rapidly oscillating the pressure in a modified double blood pressure cuff wrapped around the lower thorax. Testing applied frequencies at 3, 5, 8, and 11 Hz, applied peak cuff pressures ranged from 30 to 230 cmH2O. This produced swings of esophageal pressure as high as 18 cmH2O and peak oscillatory air flow ranging from 0.7 to 1.6 L/s. Oscillatory tidal volume declined with increasing frequency and ranged from a mean of 61 to 45 ml. After 30 min of applied HFCWC, arterial blood gas determinations revealed a mean PaCO2 of 29.3 mmHg at 5 Hz, 35 mmHg at 3 Hz, 36 mmHg at 8 Hz, and 51 mmHg at 11 Hz. Mean PaO2 improved from ventilator control values at 3 Hz, remained unchanged at 5 and 8 Hz, and declined at 11 Hz. In 2 dogs breathing spontaneously, HFCWC applied at 5 and 11 Hz resulted in a reduction in spontaneous minute ventilation, mainly by a reduction in spontaneous tidal volume, whereas arterial blood gas values changed slightly. One dog ceased to breath spontaneously within 5 min of application of HFCWC as the PaCO2 fell below control values. We conclude that in dogs with normal lungs, HFCWC may assist spontaneous ventilation. In paralyzed dogs, HFCWC may be of sufficient magnitude to cause hyperventilation. PMID:6407373

  4. Mechanically induced sudden death in chest wall impact (commotio cordis).

    PubMed

    Link, Mark S

    2003-01-01

    Sudden death due to nonpenetrating chest wall impact in the absence of injury to the ribs, sternum and heart is known as commotio cordis. Although once thought rare, an increasing number of these events have been reported. Indeed, a significant percentage of deaths on the athletic field are due to chest wall impact. Commotio cordis is most frequently observed in young individuals (age 4-18 years), but may also occur in adults. Sudden death is instantaneous or preceded by several seconds of lightheadedness after the chest wall blow. Victims are most often found in ventricular fibrillation, and successful resuscitation is more difficult than expected given the young age, excellent health of the victims, and the absence of structural heart disease. Autopsy examination is notable for the lack of any significant cardiac or thoracic abnormalities. In an experimental model of commotio cordis utilizing anesthetized juvenile swine, ventricular fibrillation can be produced by a 30 mph baseball strike if the strike occurred during the vulnerable period of repolarization, on the upslope of the T-wave. Energy of the impact object was also found to be a critical variable with 40 mph baseballs more likely to cause ventricular fibrillation than velocities less or greater than 40 mph. In addition, more rigid impact objects and blows directly over the center of the chest were more likely to cause ventricular fibrillation. Peak left ventricular pressure generated by the chest wall blow correlated with the risk of ventricular fibrillation. Activation of the K(+)(ATP) channel is a likely cause of the ventricular fibrillation produced by chest wall blows. Successful resuscitation is attainable with early defibrillation. PMID:12732277

  5. Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol

    PubMed Central

    2010-01-01

    Background Survival after out-of-hospital cardiac arrest is closely linked to the quality of CPR, but in real life, resuscitation during prehospital care and ambulance transport is often suboptimal. Mechanical chest compression devices deliver consistent chest compressions, are not prone to fatigue and could potentially overcome some of the limitations of manual chest compression. However, there is no high-quality evidence that they improve clinical outcomes, or that they are cost effective. The Prehospital Randomised Assessment of a Mechanical Compression Device In Cardiac Arrest (PARAMEDIC) trial is a pragmatic cluster randomised study of the LUCAS-2 device in adult patients with non-traumatic out-of-hospital cardiac arrest. Methods/design The primary objective of this trial is to evaluate the effect of chest compression using LUCAS-2 on mortality at 30 days post out-of-hospital cardiac arrest, compared with manual chest compression. Secondary objectives of the study are to evaluate the effects of LUCAS-2 on survival to 12 months, cognitive and quality of life outcomes and cost-effectiveness. Methods: Ambulance service vehicles will be randomised to either manual compression (control) or LUCAS arms. Adult patients in out-of-hospital cardiac arrest, attended by a trial vehicle will be eligible for inclusion. Patients with traumatic cardiac arrest or who are pregnant will be excluded. The trial will recruit approximately 4000 patients from England, Wales and Scotland. A waiver of initial consent has been approved by the Research Ethics Committees. Consent will be sought from survivors for participation in the follow-up phase. Conclusion The trial will assess the clinical and cost effectiveness of the LUCAS-2 mechanical chest compression device. Trial Registration: The trial is registered on the International Standard Randomised Controlled Trial Number Registry (ISRCTN08233942). PMID:21054860

  6. Competing hydrostatic compression mechanisms in nickel cyanide

    NASA Astrophysics Data System (ADS)

    Adamson, J.; Lucas, T. C.; Cairns, A. B.; Funnell, N. P.; Tucker, M. G.; Kleppe, A. K.; Hriljac, J. A.; Goodwin, A. L.

    2015-12-01

    We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN)2. Whereas other layered molecular framework materials are known to exhibit negative area compressibility, we find that Ni(CN)2 does not. We attribute this difference to the existence of low-energy in-plane tilt modes that provide a pressure-activated mechanism for layer contraction. The experimental bulk modulus we measure is about four times lower than that reported elsewhere on the basis of density functional theory methods [Phys. Rev. B 83 (2011) 024301].

  7. The evaluation of upper body muscle activity during the performance of external chest compressions in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Krygiel, Rebecca G.; Waye, Abigail B.; Baptista, Rafael Reimann; Heidner, Gustavo Sandri; Rehnberg, Lucas; Russomano, Thais

    2014-04-01

    BACKGROUND: This original study evaluated the electromyograph (EMG) activity of four upper body muscles: triceps brachii, erector spinae, upper rectus abdominis, and pectoralis major, while external chest compressions (ECCs) were performed in simulated Martian hypogravity using a Body Suspension Device, counterweight system, and standard full body cardiopulmonary resuscitation (CPR) mannequin. METHOD: 20 young, healthy male subjects were recruited. One hundred compressions divided into four sets, with roughly six seconds between each set to indicate 'ventilation', were performed within approximately a 1.5 minute protocol. Chest compression rate, depth and number were measured along with the subject's heart rate (HR) and rating of perceived exertion (RPE). RESULTS: All mean values were used in two-tailed t-tests using SPSS to compare +1 Gz values (control) versus simulated hypogravity values. The AHA (2005) compression standards were maintained in hypogravity. RPE and HR increased by 32% (p < 0.001) and 44% (p = 0.002), respectively, when ECCs were performed during Mars simulation, in comparison to +1 Gz. In hypogravity, the triceps brachii showed significantly less activity (p < 0.001) when compared with the other three muscles studied. The comparison of all the other muscles showed no difference at +1 Gz or in hypogravity. CONCLUSIONS: This study was among the first of its kind, however several limitations were faced which hopefully will not exist in future studies. Evaluation of a great number of muscles will allow space crews to focus on specific strengthening exercises within their current training regimes in case of a serious cardiac event in hypogravity.

  8. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  9. Mechanical properties of chest protectors and the likelihood of ventricular fibrillation due to commotio cordis.

    PubMed

    Drewniak, Elizabeth I; Spenciner, David B; Crisco, Joseph J

    2007-11-01

    Sudden death resulting from ventricular fibrillation (VF) caused by a nonpenetrating chest wall impact, known as commotio cordis (CC), is the second leading cause of death among young athletes. To date, seven young athletes wearing chest protectors have died from CC. The purpose of this study was to determine whether a relationship exists between mechanical properties of chest protectors and occurrence of VF, previously determined by Weinstock et al., using an established swine model. A servo-hydraulic material tester was used to determine properties of the chest protectors, including displacement, permanent deformation, stiffness, and area of pressure distribution. These properties were then compared with the occurrence of VF. We found that a decreased proportion of hits resulting in VF was significantly associated (R2 = 0.59, p = 0.001) with an increase in the area of pressure distribution. These findings are a limited, but crucial, first step in understanding the prevention of this complex and perplexing phenomenon. PMID:18089926

  10. Mechanical properties of lungs and chest wall during spontaneous breathing.

    PubMed

    Nagels, J; Làndsér, F J; van der Linden, L; Clément, J; Van de Woestijne, K P

    1980-09-01

    Using a forced oscillation technique, we measured the resistance (Rrs) and reactance (Xrs) of the respiratory system between 2 and 32 Hz at three different lung volumes in 15 healthy subjects and 7 patients with chronic obstructive pulmonary disease. Rrs and Xrs were partitioned, by means of a pressure recording in the esophagus, into the resistance and reactance of lung and airways (L) and the chest wall. The measurements were validated by checking the adequacy of the frequency response of the esophagus, by the lack of difference between thoracic and mouth flow, by an estimation of the error introduced by the shunt impedance of the cheeks, and by comparisons with the values of pulmonary compliance and resistance determined in the same subjects with classical techniques. In both healthy subjects and patients, the chest wall has a low resistance that increases somewhat at low lung volumes and behaves functionally as a two-compartment system, with low capacitance at frequencies exceeding 4 Hz. Rrs varies with lung volume and is markedly frequency dependent in patients; both phenomena are due primarily to corresponding variations of RL. In healthy subjects, at and above functional residual capacity (FRC) level, the lungs behave as a one-compartment system, the reactance of which is mainly determined by the gaseous inertance, at least beyond 2 Hz. In patients and in healthy subjects breathing below FRC, the observed frequency dependence of resistance and the simultaneous increase in resonant frequency can be simulated satisfactorily by Mead's two-compartment model, assuming a large increase in peripheral airways resistance. PMID:7204163

  11. Survival with good neurological outcome in a patient with prolonged ischemic cardiac arrest--utility of automated chest compression systems in the cardiac catheterization laboratory.

    PubMed

    Psaltis, Peter J; Meredith, Ian T; Ahmar, Walid

    2014-11-15

    The management of refractory cardiac arrest during invasive coronary procedures has substantial logistical challenges and is typically associated with disappointing outcomes. We describe the case of a young woman with recalcitrant ventricular fibrillation due to acute anterior ST-elevation myocardial infarction caused by occlusion of her proximal left anterior descending artery. Survival without neurological deficit or organ failure was achieved following primary percutaneous reperfusion and a total of 52 min of intra-procedural chest compression support, made possible by the use of an automated chest compression device. PMID:24403102

  12. Mechanical Metamaterials with Negative Compressibility Transitions

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2015-03-01

    When tensioned, ordinary materials expand along the direction of the applied force. In this presentation, I will explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which the material undergoes contraction when tensioned (or expansion when pressured). Such transitions, which are forbidden in thermodynamic equilibrium, are possible during the decay of metastable, super-strained states. I will introduce a statistical physics theory for negative compressibility transitions, derive a first-principles model to predict these transitions, and present a validation of the model using molecular dynamics simulations. Aside from its immediate mechanical implications, our theory points to a wealth of analogous inverted responses, such as inverted susceptibility or heat-capacity transitions, allowed when considering realistic scales. This research was done in collaboration with Zachary Nicolaou, and was supported by the National Science Foundation and the Alfred P. Sloan Foundation.

  13. Systematic investigation of compression mechanisms of clinoenstatite

    NASA Astrophysics Data System (ADS)

    Lazarz, J. D.; Dera, P.; Bina, C. R.; Jacobsen, S. D.

    2015-12-01

    Pyroxenes are a major component of the Earth's upper mantle and believed to be stable to approximately 16 GPa, along the oceanic geotherm. However, under certain conditions such as subducting slabs, it is possible to carry pyroxenes to much greater depths within the mantle. Pyroxenes penetrating the mantle to such depths could potentially undergo further phase transitions which could impact subducting slab mineralogy and mantle dynamics. The compression behavior of clinopyroxenes has been well characterized up to approximately 25 GPa with much of the work being focused on Ca-rich cpx. Beyond 10 GPa previous studies have published equations of state but there is a general lack of structure determinations. Ca-rich clinopyroxenes crystallize in the C2/c space group while Ca-poor clinopyroxenes crystalize in P21/c. It has been shown that P21/c clinopyroxenes reversibly transform to C2/c upon increased pressure, temperature, and M2 site cation size. The critical pressure for this transition is exceedingly compositionally dependent at 6.5 GPa and 1.7 GPa for clinoenstatite and clinoferrosilite, respectively. The strong compositional dependence of phase transitions in pyroxenes is motivation for a more complete understanding of compression mechanisms within the broad pyroxene category. By using in situ x-ray diffraction and diamond anvil cells to compress single-crystal clinoenstatite up to 50 GPa this study aims to expand the understanding of Ca-poor clinopyroxene compression mechanisms and elasticity. Here we report a fully reversible high-pressure phase in the P21/c space group found at approximately 45 GPa.

  14. Mechanisms and Clinical Management of Ventricular Arrhythmias following Blunt Chest Trauma

    PubMed Central

    Wolbrom, Daniel H.; Rahman, Aleef; Tschabrunn, Cory M.

    2016-01-01

    Nonpenetrating, blunt chest trauma is a serious medical condition with varied clinical presentations and implications. This can be the result of a dense projectile during competitive and recreational sports but may also include other etiologies such as motor vehicle accidents or traumatic falls. In this setting, the manifestation of ventricular arrhythmias has been observed both acutely and chronically. This is based on two entirely separate mechanisms and etiologies requiring different treatments. Ventricular fibrillation can occur immediately after chest wall injury (commotio cordis) and requires rapid defibrillation. Monomorphic ventricular tachycardia can develop in the chronic stage due to underlying structural heart disease long after blunt chest injury. The associated arrhythmogenic tissue may be complex and provides the necessary substrate to form a reentrant VT circuit. Ventricular tachycardia in the absence of overt structural heart disease appears to be focal in nature with rapid termination during ablation. Regardless of the VT mechanism, patients with recurrent episodes, despite antiarrhythmic medication in the chronic stage following blunt chest injury, are likely to require ablation to achieve VT control. This review article will describe the mechanisms, pathophysiology, and treatment of ventricular arrhythmias that occur in both the acute and chronic stages following blunt chest trauma. PMID:26981308

  15. Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness.

    PubMed

    Dellimore, Kiran H; Scheffer, Cornie

    2012-12-01

    A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient's thoracic stiffness, taking into account the patient's age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate. PMID:23054380

  16. Impact of physical fitness and biometric data on the quality of external chest compression: a randomised, crossover trial

    PubMed Central

    2011-01-01

    Background During circulatory arrest, effective external chest compression (ECC) is a key element for patient survival. In 2005, international emergency medical organisations changed their recommended compression-ventilation ratio (CVR) from 15:2 to 30:2 to acknowledge the vital importance of ECC. We hypothesised that physical fitness, biometric data and gender can influence the quality of ECC. Furthermore, we aimed to determine objective parameters of physical fitness that can reliably predict the quality of ECC. Methods The physical fitness of 30 male and 10 female healthcare professionals was assessed by cycling and rowing ergometry (focussing on lower and upper body, respectively). During ergometry, continuous breath-by-breath ergospirometric measurements and heart rate (HR) were recorded. All participants performed two nine-minute sequences of ECC on a manikin using CVRs of 30:2 and 15:2. We measured the compression and decompression depths, compression rates and assessed the participants' perception of exhaustion and comfort. The median body mass index (BMI; male 25.4 kg/m2 and female 20.4 kg/m2) was used as the threshold for subgroup analyses of participants with higher and lower BMI. Results HR during rowing ergometry at 75 watts (HR75) correlated best with the quality of ECC (r = -0.57, p < 0.05). Participants with a higher BMI and better physical fitness performed better and showed less fatigue during ECC. These results are valid for the entire cohort, as well as for the gender-based subgroups. The compressions of female participants were too shallow and more rapid (mean compression depth was 32 mm and rate was 117/min with a CVR of 30:2). For participants with a lower BMI and higher HR75, the compression depth decreased over time, beginning after four minutes for the 15:2 CVR and after three minutes for the 30:2 CVR. Although found to be more exhausting, a CVR of 30:2 was rated as being more comfortable. Conclusion The quality of the ECC and fatigue can

  17. Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump?

    PubMed

    Chalkias, Athanasios; Xanthos, Theodoros

    2015-02-01

    Given the importance of increased coronary and cerebral perfusion pressure during cardiopulmonary resuscitation, the recommendation of limiting tidal volume and ventilation rate to 10 per minute in order not to inhibit venous return seems to be correct. However, although the resuscitation community believes that positive-pressure ventilation during cardiopulmonary resuscitation is bad for the circulation, proper timing of compression and ventilation may actually improve the circulation. PMID:24381094

  18. Should PEEP Titration Be Based on Chest Mechanics in Patients With ARDS?

    PubMed

    Kallet, Richard H

    2016-06-01

    Functional residual capacity (FRC) is essentially the alveolar volume and a determinant of both oxygenation and respiratory system compliance (CRS). ARDS decreases FRC, and sufficient PEEP restores FRC; thus, assessments of PEEP by its impact on oxygenation and CRS are intimately linked. PEEP also can ameliorate or aggravate ventilator-induced lung injury. Therefore, it can be argued that PEEP should be titrated primarily by its impact on CRS The pro position argues that the heterogeneous nature of lung injury and its unique presentation in individual patients results in an uncoupling between oxygenation and CRS Therefore, relying upon oxygenation alone may enhance lung injury and mortality risk, particularly in those with severe ARDS. The con argument is that the preponderance of preclinical and clinical evidence suggests that a relatively narrow range of PEEP is required to manage all but the most severe cases of ARDS. In addition, pathological alterations in chest wall compliance confuse the interpretation of chest mechanics. Moreover, ambiguities and technical limitations in advanced techniques, such as esophageal manometry and pressure-volume curves, add a layer of complexity that renders its broader application in all ARDS patients both impractical and unnecessary. Whether sophisticated monitoring of chest mechanics in severe ARDS might improve outcomes further is open to question and should be studied further. However, it is highly improbable that we will ever discover a PEEP strategy that optimizes all aspects of cardiorespiratory function and chest mechanics for individual patients suffering from ARDS. PMID:27235320

  19. Comparison of the Pentax Airwayscope, Glidescope Video Laryngoscope, and Macintosh Laryngoscope During Chest Compression According to Bed Height.

    PubMed

    Kim, Wonhee; Lee, Yoonje; Kim, Changsun; Lim, Tae Ho; Oh, Jaehoon; Kang, Hyunggoo; Lee, Sanghyun

    2016-02-01

    We aimed to investigate whether bed height affects intubation performance in the setting of cardiopulmonary resuscitation and which type of laryngoscope shows the best performance at each bed height.A randomized crossover manikin study was conducted. Twenty-one participants were enrolled, and they were randomly allocated to 2 groups: group A (n = 10) and group B (n = 11). The participants underwent emergency endotracheal intubation (ETI) using the Airwayscope (AWS), Glidescope video laryngoscope, and Macintosh laryngoscope in random order while chest compression was performed. Each ETI was conducted at 2 levels of bed height (minimum bed height: 68.9  cm and maximum bed height: 101.3 cm). The primary outcomes were the time to intubation (TTI) and the success rate of ETI. The P value for statistical significance was set at 0.05 and 0.017 in post-hoc test.The success rate of ETI was always 100% regardless of the type of laryngoscope or the bed height. TTI was not significantly different between the 2 bed heights regardless of the type of laryngoscope (all P > 0.05). The time for AWS was the shortest among the 3 laryngoscopes at both bed heights (13.7  ±  3.6 at the minimum bed height and 13.4  ±  4.7 at the maximum bed height) (all P < 0.017). The TTI of Glidescope video laryngoscope was not significantly shorter than that of Macintosh laryngoscope at the minimum height (17.6  ±  4.0 vs 19.6  ±  4.8; P = 0.02).The bed height, whether adjusted to the minimum or maximum setting, did not affect intubation performance. In addition, regardless of the bed height, the intubation time with the video laryngoscopes, especially AWS, was significantly shorter than that with the direct laryngoscope during chest compression. PMID:26844477

  20. Comparison of the Pentax Airwayscope, Glidescope Video Laryngoscope, and Macintosh Laryngoscope During Chest Compression According to Bed Height

    PubMed Central

    Kim, Wonhee; Lee, Yoonje; Kim, Changsun; Lim, Tae Ho; Oh, Jaehoon; Kang, Hyunggoo; Lee, Sanghyun

    2016-01-01

    Abstract We aimed to investigate whether bed height affects intubation performance in the setting of cardiopulmonary resuscitation and which type of laryngoscope shows the best performance at each bed height. A randomized crossover manikin study was conducted. Twenty-one participants were enrolled, and they were randomly allocated to 2 groups: group A (n = 10) and group B (n = 11). The participants underwent emergency endotracheal intubation (ETI) using the Airwayscope (AWS), Glidescope video laryngoscope, and Macintosh laryngoscope in random order while chest compression was performed. Each ETI was conducted at 2 levels of bed height (minimum bed height: 68.9 cm and maximum bed height: 101.3 cm). The primary outcomes were the time to intubation (TTI) and the success rate of ETI. The P value for statistical significance was set at 0.05 and 0.017 in post-hoc test. The success rate of ETI was always 100% regardless of the type of laryngoscope or the bed height. TTI was not significantly different between the 2 bed heights regardless of the type of laryngoscope (all P > 0.05). The time for AWS was the shortest among the 3 laryngoscopes at both bed heights (13.7 ± 3.6 at the minimum bed height and 13.4 ± 4.7 at the maximum bed height) (all P < 0.017). The TTI of Glidescope video laryngoscope was not significantly shorter than that of Macintosh laryngoscope at the minimum height (17.6 ± 4.0 vs 19.6 ± 4.8; P = 0.02). The bed height, whether adjusted to the minimum or maximum setting, did not affect intubation performance. In addition, regardless of the bed height, the intubation time with the video laryngoscopes, especially AWS, was significantly shorter than that with the direct laryngoscope during chest compression. PMID:26844477

  1. A chest physician's guide to mechanisms of sinonasal disease.

    PubMed

    Hox, V; Maes, T; Huvenne, W; Van Drunen, C; Vanoirbeek, J A; Joos, G; Bachert, C; Fokkens, W; Ceuppens, J L; Nemery, B; Hellings, P W

    2015-04-01

    The upper and lower airways are closely linked from an anatomical, histological and immunological point of view, with inflammation in one part of the airways influencing the other part. Despite the concept of global airway disease, the upper airways tend to be overlooked by respiratory physicians. We provide a clinical overview of the most important and recent insights in rhinitis and rhinosinusitis in relation to lower airway disease. We focus on the various exogenous and endogenous factors that play a role in the development and aggravation of chronic upper airway inflammation. In addition to the classical inhaled allergens or microorganisms with well-defined pathophysiological mechanisms in upper airway disease, environmental substances such as cigarette smoke, diesel exhaust particles and occupational agents affecting lower airway homeostasis have recently gained attention in upper airway research. We are only at the beginning of understanding the complex interplay between exogenous and endogenous factors like genetic, immunological and hormonal influences on chronic upper airway inflammation. From a clinical perspective, the involvement of upper and lower airway disease in one patient can only be fully appreciated by doctors capable of understanding the interplay between upper and lower airway inflammation. PMID:25563773

  2. Comparative Effectiveness of Emergency Resuscitative Thoracotomy versus Closed Chest Compressions among Patients with Critical Blunt Trauma: A Nationwide Cohort Study in Japan

    PubMed Central

    Suzuki, Kodai; Inoue, Shigeaki; Morita, Seiji; Watanabe, Nobuo; Shintani, Ayumi; Inokuchi, Sadaki; Ogura, Shinji

    2016-01-01

    Background Although emergency resuscitative thoracotomy is performed as a salvage maneuver for critical blunt trauma patients, evidence supporting superior effectiveness of emergency resuscitative thoracotomy compared to conventional closed-chest compressions remains insufficient. The objective of this study was to investigate whether emergency resuscitative thoracotomy at the emergency department or in the operating room was associated with favourable outcomes after blunt trauma and to compare its effectiveness with that of closed-chest compressions. Methods This was a retrospective nationwide cohort study. Data were obtained from the Japan Trauma Data Bank for the period between 2004 and 2012. The primary and secondary outcomes were patient survival rates 24 h and 28 d after emergency department arrival. Statistical analyses were performed using multivariable generalized mixed-effects regression analysis. We adjusted for the effects of different hospitals by introducing random intercepts in regression analysis to account for the differential quality of emergency resuscitative thoracotomy at hospitals where patients in cardiac arrest were treated. Sensitivity analyses were performed using propensity score matching. Results In total, 1,377 consecutive, critical blunt trauma patients who received cardiopulmonary resuscitation in the emergency department or operating room were included in the study. Of these patients, 484 (35.1%) underwent emergency resuscitative thoracotomy and 893 (64.9%) received closed-chest compressions. Compared to closed-chest compressions, emergency resuscitative thoracotomy was associated with lower survival rate 24 h after emergency department arrival (4.5% vs. 17.5%, respectively, P < 0.001) and 28 d after arrival (1.2% vs. 6.0%, respectively, P < 0.001). Multivariable generalized mixed-effects regression analysis with and without a propensity score-matched dataset revealed that the odds ratio for an unfavorable survival rate after 24 h

  3. Clinical study on VATS combined mechanical ventilation treatment of ARDS secondary to severe chest trauma

    PubMed Central

    Qi, Yongjun

    2016-01-01

    The aim of the study was to investigate the clinical effects of microinvasive video-assisted thoracoscopic surgery (VATS) combined with mechanical ventilation in the treatment of acute respiratory distress syndrome (ARDS) secondary to severe chest trauma. A total of 62 patients with ARDS secondary to severe chest trauma were divided into the observation and control groups. The patients in the observation groups were treated with VATS combined with early mechanical ventilation while patients in the control group were treated using routine open thoracotomy combined with early mechanical ventilation. Compared to the controls, the survival rate of the observation group was significantly higher. The average operation time of the observation group was significantly shorter than that of the control group, and the incidence of complications in the perioperative period of the observation group was significantly lower than that of the control group (p<0.05). The average application time of the observation group was significantly shorter than that of the control group, and the incidence of ventilator-associated complications was significantly lower than that of the control group (p<0.05). In conclusion, a reasonable understanding of the indications and contraindications of VATS, combined with early mechanical treatment significantly improved the success rate of the treatment of ARDS patients secondary to severe chest trauma and reduced the complications. PMID:27446317

  4. Severe Pulmonary Valve Regurgitation 40 Years After Blunt Chest Trauma.

    PubMed

    Fuglsang, Simon; Heiberg, Johan; Hjortdal, Vibeke Elisabeth

    2015-10-01

    Severe pulmonary valve regurgitation caused by a pulmonary valve tear is a rare complication to a blunt chest trauma. In this case report, we present a patient with pulmonary regurgitation originating from a chest trauma 40 years ago. Possible mechanisms are osseous pinch of the pulmonary valve between the anterior chest wall and the vertebral column, and retrograde blowout from severe compression of the lungs. PMID:26434447

  5. In a Swine Model, Chest Compressions Cause Ventricular Capture, and By Means of a Long-Short Sequence, Ventricular Fibrillation

    PubMed Central

    Osorio, Jose; Dosdall, Derek J; Robichaux, Robert P; Tabereaux, Paul B.; Ideker, Raymond E

    2009-01-01

    Background During resuscitation, fibrillation often recurs. In swine, we studied refibrillation after long duration ventricular fibrillation (LDVF) investigating an association with chest compressions (CCs). Methods and Results In Protocol A, 47 episodes of LDVF lasting at least 2.5 min were induced in 8 animals. Following defibrillation, CCs were required for 35 episodes and delivered with a pneumatic device (Lucas-CPR). In 9 episodes, refibrillation occurred within 2 s of CC initiation (Group 1) and in 26 episodes CCs were delivered without refibrillation (Group 2). From the ECG and intracardiac electrodes, the RR interval preceding CCs, the shortest cycle length during the first 2 CCs (Short) and the preceding cycle length (Long) were measured. A similar study was conducted in 3 more animals without intracardiac catheters (Protocol B). In Protocol A, the mean RR before CC was 665±292ms in Group 1 and 769±316 in Group 2. CCs stimulated ventricular beats in all 35 episodes. The Short and Long intervals were shorter in Group 1 (215±31ms and 552±210ms), than in Group 2 (402±153ms and 699±147ms) (p=0.009 and p=0.04, respectively). The Prematurity Index (Short/RR) was lower in Group 1 (0.35±0.09) than Group 2 (0.58±0.21) (p<0.01). A Short interval < 231 ms predicted refibrillation with 88% sensitivity and 91% specificity. In Protocol B, CCs were required in 11 episodes, causing ventricular stimulation in all of them and VF within the first 2 CCs in 3. Conclusions Under some conditions, CC during resuscitation can stimulate the ventricles and initiate VF by a long-short sequence. PMID:19808420

  6. Inelastic deformation mechanisms in a transverse MMC lamina under compression

    NASA Technical Reports Server (NTRS)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1992-01-01

    An investigation was undertaken to study the inelastic deformation mechanisms in (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Both mechanical behavior and microstructural evaluation were undertaken at room temperature, 538 and 650 C. Results indicate that mechanical response and deformation characteristics are significantly different in monotonic tension and compression. The inelastic deformation mechanisms in compression are controlled by radial fiber fracture, matrix plasticity and fiber-matrix debonding. The radial fiber fracture is a new damage mode observed for metal-matrix composites (MMC).

  7. A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction.

    PubMed

    Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng

    2015-06-01

    Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in

  8. Mechanical metamaterials with negative compressibility transitions

    NASA Astrophysics Data System (ADS)

    Nicolaou, Zachary G.; Motter, Adilson E.

    2012-07-01

    When tensioned, ordinary materials expand along the direction of the applied force. Here, we explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which a material undergoes contraction when tensioned (or expansion when pressured). Continuous contraction of a material in the same direction of an applied tension, and in response to this tension, is inherently unstable. The conceptually similar effect we demonstrate can be achieved, however, through destabilizations of (meta)stable equilibria of the constituents. These destabilizations give rise to a stress-induced solid-solid phase transition associated with a twisted hysteresis curve for the stress-strain relationship. The strain-driven counterpart of negative compressibility transitions is a force amplification phenomenon, where an increase in deformation induces a discontinuous increase in response force. We suggest that the proposed materials could be useful for the design of actuators, force amplifiers, micromechanical controls, and protective devices.

  9. Mechanical metamaterials with negative compressibility transitions.

    PubMed

    Nicolaou, Zachary G; Motter, Adilson E

    2012-07-01

    When tensioned, ordinary materials expand along the direction of the applied force. Here, we explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which a material undergoes contraction when tensioned (or expansion when pressured). Continuous contraction of a material in the same direction of an applied tension, and in response to this tension, is inherently unstable. The conceptually similar effect we demonstrate can be achieved, however, through destabilizations of (meta)stable equilibria of the constituents. These destabilizations give rise to a stress-induced solid-solid phase transition associated with a twisted hysteresis curve for the stress-strain relationship. The strain-driven counterpart of negative compressibility transitions is a force amplification phenomenon, where an increase in deformation induces a discontinuous increase in response force. We suggest that the proposed materials could be useful for the design of actuators, force amplifiers, micromechanical controls, and protective devices. PMID:22609557

  10. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Rajalakshmi, Natarajan; Jervis, Rhodri; Shearing, Paul R.; Brett, Daniel J. L.

    2015-06-01

    Conventional polymer electrolyte fuel cells (PEFCs) require a means of placing the series of laminar components that make up cells under mechanical compression so as to ensure effective electrical conduction, mass transport and gas-tight operation. This review describes the effect of mechanical compression and dimensional change on the components of PEFCs and reviews the range of methods used to achieve desired stack compression. The case is made for improved understanding of the mechanisms of fuel cell component compression and greater attention to the development of technological approaches for stack compression.

  11. Mechanical compression drives cancer cells toward invasive phenotype

    PubMed Central

    Tse, Janet M.; Cheng, Gang; Tyrrell, James A.; Wilcox-Adelman, Sarah A.; Boucher, Yves; Jain, Rakesh K.; Munn, Lance L.

    2012-01-01

    Uncontrolled growth in a confined space generates mechanical compressive stress within tumors, but little is known about how such stress affects tumor cell behavior. Here we show that compressive stress stimulates migration of mammary carcinoma cells. The enhanced migration is accomplished by a subset of “leader cells” that extend filopodia at the leading edge of the cell sheet. Formation of these leader cells is dependent on cell microorganization and is enhanced by compressive stress. Accompanied by fibronectin deposition and stronger cell–matrix adhesion, the transition to leader-cell phenotype results in stabilization of persistent actomyosin-independent cell extensions and coordinated migration. Our results suggest that compressive stress accumulated during tumor growth can enable coordinated migration of cancer cells by stimulating formation of leader cells and enhancing cell–substrate adhesion. This novel mechanism represents a potential target for the prevention of cancer cell migration and invasion. PMID:22203958

  12. Statistical mechanics of lossy data compression using a nonmonotonic perceptron

    NASA Astrophysics Data System (ADS)

    Hosaka, Tadaaki; Kabashima, Yoshiyuki; Nishimori, Hidetoshi

    2002-12-01

    The performance of a lossy data compression scheme for uniformly biased Boolean messages is investigated via methods of statistical mechanics. Inspired by a formal similarity to the storage capacity problem in neural network research, we utilize a perceptron of which the transfer function is appropriately designed in order to compress and decode the messages. Employing the replica method, we analytically show that our scheme can achieve the optimal performance known in the framework of lossy compression in most cases when the code length becomes infinite. The validity of the obtained results is numerically confirmed.

  13. Which Fingers Should We Perform Two-Finger Chest Compression Technique with When Performing Cardiopulmonary Resuscitation on an Infant in Cardiac Arrest?

    PubMed

    Kim, Young Sinn; Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Dong Hoon; Hong, Jun Young

    2016-06-01

    This study compared the effectiveness two-finger chest compression technique (TFCC) performed using the right vs. left hand and the index-middle vs. middle-ring fingers. Four different finger/hand combinations were tested randomly in 30 healthcare providers performing TFCC (Test 1: the right index-middle fingers; Test 2: the left index-middle fingers; Test 3: the right middle-ring fingers; Test 4: the left middle-ring fingers) using two cross-over trials. The "patient" was a 3-month-old-infant-sized manikin. Each experiment consisted of cardiopulmonary resuscitation (CPR) consisting of 2 minutes of 30:2 compression: ventilation performed by one rescuer on a manikin lying on the floor as if in cardiac arrest. Ventilations were performed using the mouth-to-mouth method. Compression and ventilation data were collected during the tests. The mean compression depth (MCD) was significantly greater in TFCC performed with the index-middle fingers than with the middle-ring fingers regardless of the hand (95% confidence intervals; right hand: 37.8-40.2 vs. 35.2-38.6 mm, P = 0.002; left hand: 36.9-39.2 vs. 35.5-38.1 mm, P = 0.003). A deeper MCD was achieved with the index-middle fingers of the right versus the left hand (P = 0.004). The ratio of sufficiently deep compressions showed the same patterns. There were no significant differences in the other data. The best performance of TFCC in simulated 30:2 compression: ventilation CPR performed by one rescuer on an infant in cardiac arrest lying on the floor was obtained using the index-middle fingers of the right hand. Clinical Trial Registry at the Clinical Research Information Service (KCT0001515). PMID:27247512

  14. Which Fingers Should We Perform Two-Finger Chest Compression Technique with When Performing Cardiopulmonary Resuscitation on an Infant in Cardiac Arrest?

    PubMed Central

    2016-01-01

    This study compared the effectiveness two-finger chest compression technique (TFCC) performed using the right vs. left hand and the index-middle vs. middle-ring fingers. Four different finger/hand combinations were tested randomly in 30 healthcare providers performing TFCC (Test 1: the right index-middle fingers; Test 2: the left index-middle fingers; Test 3: the right middle-ring fingers; Test 4: the left middle-ring fingers) using two cross-over trials. The “patient” was a 3-month-old-infant-sized manikin. Each experiment consisted of cardiopulmonary resuscitation (CPR) consisting of 2 minutes of 30:2 compression: ventilation performed by one rescuer on a manikin lying on the floor as if in cardiac arrest. Ventilations were performed using the mouth-to-mouth method. Compression and ventilation data were collected during the tests. The mean compression depth (MCD) was significantly greater in TFCC performed with the index-middle fingers than with the middle-ring fingers regardless of the hand (95% confidence intervals; right hand: 37.8–40.2 vs. 35.2–38.6 mm, P = 0.002; left hand: 36.9–39.2 vs. 35.5–38.1 mm, P = 0.003). A deeper MCD was achieved with the index-middle fingers of the right versus the left hand (P = 0.004). The ratio of sufficiently deep compressions showed the same patterns. There were no significant differences in the other data. The best performance of TFCC in simulated 30:2 compression: ventilation CPR performed by one rescuer on an infant in cardiac arrest lying on the floor was obtained using the index-middle fingers of the right hand. Clinical Trial Registry at the Clinical Research Information Service (KCT0001515). PMID:27247512

  15. Effects of Constituent Properties on Compression Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.

    1984-01-01

    Compression failure mechanisms were investigated through the analysis of matrix-embedded fiber bundles. The use of fiber bundle specimens can provide much needed information on compression failure mechanisms because failure of the bundle is well contained and can be monitored during testing. The method can clearly distinguish between buckling-induced failure and shear-induced failure. The results indicate that WY and T300 graphite fibers and E-glass fiber fail in buckling while the high-modulus P75S graphite fiber fails in shear. Buckling-induced failure becomes more evident with low-modulus fiber in softer epoxy.

  16. Computerized detection of vertebral compression fractures on lateral chest radiographs: Preliminary results with a tool for early detection of osteoporosis

    SciTech Connect

    Kasai, Satoshi; Li Feng; Shiraishi, Junji; Li Qiang; Doi, Kunio

    2006-12-15

    Vertebral fracture (or vertebral deformity) is a very common outcome of osteoporosis, which is one of the major public health concerns in the world. Early detection of vertebral fractures is important because timely pharmacologic intervention can reduce the risk of subsequent additional fractures. Chest radiographs are used routinely for detection of lung and heart diseases, and vertebral fractures can be visible on lateral chest radiographs. However, investigators noted that about 50% of vertebral fractures visible on lateral chest radiographs were underdiagnosed or under-reported, even when the fractures were severe. Therefore, our goal was to develop a computerized method for detection of vertebral fractures on lateral chest radiographs in order to assist radiologists' image interpretation and thus allow the early diagnosis of osteoporosis. The cases used in this study were 20 patients with severe vertebral fractures and 118 patients without fractures, as confirmed by the consensus of two radiologists. Radiologists identified the locations of fractured vertebrae, and they provided morphometric data on the vertebral shape for evaluation of the accuracy of detecting vertebral end plates by computer. In our computerized method, a curved search area, which included a number of vertebral end plates, was first extracted automatically, and was straightened so that vertebral end plates became oriented horizontally. Edge candidates were enhanced by use of a horizontal line-enhancement filter in the straightened image, and a multiple thresholding technique, followed by feature analysis, was used for identification of the vertebral end plates. The height of each vertebra was determined from locations of identified vertebral end plates, and fractured vertebrae were detected by comparison of the measured vertebral height with the expected height. The sensitivity of our computerized method for detection of fracture cases was 95% (19/20), with 1.03 (139/135) false

  17. Clinical evaluation of the AutoPulse automated chest compression device for out-of-hospital cardiac arrest in the northern district of Shanghai, China

    PubMed Central

    Chen, Yuanzhuo; Peng, Hu; Chen, Yanqing; Zhuang, Yugang; Zhou, Shuqin

    2016-01-01

    Introduction Whether the AutoPulse automated chest compression device is worthy of clinical use for out-of-hospital cardiac arrest (OHCA) remains controversial. A prospective controlled study was conducted to evaluate the effect of AutoPulse versus manual chest compression for cardiopulmonary resuscitation (CPR) of OHCA patients in the northern district of Shanghai, China. Material and methods A total of 133 patients with OHCA who were treated at the Emergency Medical Center of the Tenth People's Hospital Affiliated with Tongji University between March 2011 and March 2012 were included. The patients were randomly assigned to the Manual CPR (n = 64) and AutoPulse CPR groups (n = 69) in accordance with the approach of chest compression received. The primary outcome measure was return of spontaneous circulation (ROSC), and the secondary outcome measures included 24-h survival rate, hospital discharge rate, and neurological prognosis at hospital discharge. Results The ROSC rate of patients with OHCA was significantly higher in the AutoPulse CPR group than in the Manual CPR group (44.9% vs. 23.4%; p = 0.009). The 24-h survival rate of OHCA patients was significantly higher in the AutoPulse CPR group than in the Manual CPR group (39.1% vs. 21.9%; p = 0.03). The hospital discharge rate of the patients with OHCA was significantly higher in the AutoPulse CPR group than in the Manual CPR group (18.8% vs. 6.3%; p = 0.03). The proportion of patients with OHCA and a cerebral performance category score of 1 or 2 points at hospital discharge was higher in the AutoPulse CPR group than in the Manual CPR group, but the difference was not statistically significant (16.2% vs. 13.4%, p = 1.00). Conclusions Use of the AutoPulse increases CPR success and survival rates in patients with OHCA, but its ability to improve cerebral performance requires further evaluation. PMID:27279849

  18. Compressive fracture morphology and mechanism of metallic glass

    NASA Astrophysics Data System (ADS)

    Qu, R. T.; Zhang, Z. F.

    2013-11-01

    We quantitatively investigated the fracture morphologies of Zr52.5Cu17.9Ni14.6Al10Ti5 and Pd78Cu6Si16 metallic glasses (MGs) under compression. The characteristic features of the compressive fracture morphology were captured, and the shear vein patterns were found to be not a one-to-one correspondence between two opposing fracture surfaces in an identical sample. This finding experimentally confirms that the compressive failure behaves in a fracture mode of pure shear (mode II). Quantitative measurements show that a ˜1 μm thickness layer with materials not only inside but also adjacent to the major shear band contributes to the formation of shear vein patterns. The critical shear strain to break a shear band was found to be more than 105% and higher in more ductile MGs under compression than tension. Estimation on the temperature rise at the fracture moment indicates that only ˜5% of the total elastic energy stored in the sample converts into the heat required for melting the layer to form the vein patterns. The mode II fracture toughness was also estimated based on the quantitative measurements of shear vein pattern and found larger than the mode I fracture toughness. Finally, the deformation and fracture mechanisms of MGs under tension and compression were compared and discussed. These results may improve the understanding on the fracture behaviors and mechanisms of MGs and may provide instructions on future design for ductile MGs with high resistance for fracture.

  19. Mechanical properties of murine and porcine ocular tissues in compression.

    PubMed

    Worthington, Kristan S; Wiley, Luke A; Bartlett, Alexandra M; Stone, Edwin M; Mullins, Robert F; Salem, Aliasger K; Guymon, C Allan; Tucker, Budd A

    2014-04-01

    Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo. PMID:24613781

  20. Mechanical behavior of carpal tunnel subsynovial connective tissue under compression.

    PubMed

    Goetz, Jessica E; Baer, Thomas E

    2011-01-01

    Subsynovial connective tissue (SSCT) is a fluid-permeated loose connective tissue that occupies the majority of the space in the carpal tunnel not occupied by the digital flexor tendons or the median nerve. It is arranged in layers around these more discrete structures, presumably to assist with tendon gliding. As a result of this arrangement, the compressive behavior and the fluid permeability of this tissue may substantially affect the stresses in the median nerve resulting from contact with its neighboring tendons or with the walls of the tunnel itself. These stresses may contribute to damage of the median nerve and the development of carpal tunnel syndrome. In this study, the fluid permeability and the compressive behavior of the SSCT were investigated to better understand the mechanics of this tissue and how it may mediate mechanical insult to the median nerve. A custom experimental apparatus was built to allow simultaneous measurement of tissue compression and fluid flow. Using Darcy's law, the average SSCT fluid permeability was 8.78×10(15) m(4)/Ns. The compressive behavior of the SSCT demonstrated time dependence, with an initial modulus of 395kPa gradually decreasing to a value of 285kPa. These baseline tissue data may serve as a mechanical norm (toward which pathological tissue might be returned, therapeutically) and may serve as essential properties to include in future mechanical models of the carpal tunnel. PMID:22096431

  1. MECHANICAL BEHAVIOR OF CARPAL TUNNEL SUBSYNOVIAL CONNECTIVE TISSUE UNDER COMPRESSION

    PubMed Central

    Goetz, Jessica E; Baer, Thomas E

    2011-01-01

    Subsynovial connective tissue (SSCT) is a fluid-permeated loose connective tissue that occupies the majority of the space in the carpal tunnel not occupied by the digital flexor tendons or the median nerve. It is arranged in layers around these more discrete structures, presumably to assist with tendon gliding. As a result of this arrangement, the compressive behavior and the fluid permeability of this tissue may substantially affect the stresses in the median nerve resulting from contact with its neighboring tendons or with the walls of the tunnel itself. These stresses may contribute to damage of the median nerve and the development of carpal tunnel syndrome. In this study, the fluid permeability and the compressive behavior of the SSCT were investigated to better understand the mechanics of this tissue and how it may mediate mechanical insult to the median nerve. A custom experimental apparatus was built to allow simultaneous measurement of tissue compression and fluid flow. Using Darcy’s law, the average SSCT fluid permeability was 8.78×1015 m4/Ns. The compressive behavior of the SSCT demonstrated time dependence, with an initial modulus of 395kPa gradually decreasing to a value of 285kPa. These baseline tissue data may serve as a mechanical norm (toward which pathological tissue might be returned, therapeutically) and may serve as essential properties to include in future mechanical models of the carpal tunnel. PMID:22096431

  2. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  3. Lung and chest wall mechanics in patients with acquired immunodeficiency syndrome and severe Pneumocystis carinii pneumonia.

    PubMed

    D'Angelo, E; Calderini, E; Robatto, F M; Puccio, P; Milic-Emili, J

    1997-10-01

    The aim of this study was to assess the mechanical characteristics of the respiratory system in patients with acquired immune deficiency syndrome (AIDS) and acute respiratory distress syndrome (ARDS) caused by Pneumocystis carinii pneumonia (PCP). In 12 mechanically ventilated patients, total respiratory system mechanics was assessed using the technique of rapid airway occlusion during constant flow inflation, and was partitioned into lung and chest wall components using the oesophageal balloon technique. We measured interrupter resistance (Rint), which mainly reflects airway resistance, additional resistance (deltaR) due to viscoelastic behaviour and time constant inequalities, and static elastance (Est). In addition, the static inflation volume-pressure (V-P) curve was assessed. In eight patients, computed tomography scans were performed within 2 days of the assessment of respiratory mechanics. Compared to values reported in the literature for normal subjects, Est and deltaR were markedly increased in AIDS patients with PCP, whilst Rint exhibited a relatively smaller increase. These changes, which involved only the lung and airways, were mainly due to the reduction of ventilated lung units, but additional factors were involved to cause independent modifications of lung stiffness, airway calibre, and viscoelastic properties. The changes in Rint, deltaR, and Est were similar to those observed in other studies on patients with ARDS of different aetiologies. At variance with common observations in the latter patients, none of the AIDS patients with PCP exhibited an inflection point on the static inflation V-P curve, suggesting little or no alveolar recruitment during lung inflation. This finding could be related to the distinctive histopathology of Pneumocystis carinii pneumonia. Indeed, computed tomography revealed homogeneous diffuse interstitial and alveolar infiltration rather than the dense, dependent opacities observed in other studies on acute respiratory

  4. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  5. Dynamic Compression Effects on Intervertebral Disc Mechanics and Biology

    PubMed Central

    Korecki, Casey L.; MacLean, Jeffrey J.; Iatridis, James C.

    2008-01-01

    Study Design A bovine intervertebral disc organ culture model was used to study the effect of dynamic compression magnitude on mechanical behavior and measurement of biosynthesis rate, cell viability, and mRNA expression. Objective The objective of this study was to examine the effect of loading magnitude on intervertebral disc mechanics and biology in an organ culture model. Summary of Background Data The in vivo and cell culture response of intervertebral disc cells to dynamic mechanical loading provides evidence the disc responds in a magnitude dependant manner. However, the ability to link mechanical behavior of the disc with biologic phenomena has been limited. A large animal organ culture system facilitates measurements of tissue mechanics and biologic response parameters on the same sample allowing a broader understanding of disc mechanobiology. Methods Bovine caudal intervertebral discs were placed in organ culture for 6 days and assigned to a static control or 1 of 2 dynamic compression loading protocols (0.2–1 MPa or 0.2–2.5 MPa) at 1 Hz for 1 hour for 5 days. Disc structure was assessed with measurements of dynamic modulus, creep, height loss, water content, and proteoglycan loss to the culture medium. Cellular responses were assessed through changes in cell viability, metabolism, and qRT-PCR analyses. Results Increasing magnitudes of compression increased disc modulus and creep; however, all mechanical parameters recovered each day. In the anulus, significant increases in gene expression for collagen I and a trend of increasing sulfate incorporation were observed. In the nucleus, increasing gene expression for collagen I and MMP3 was observed between magnitudes and between static controls and the lowest magnitude of loading. Conclusion Results support the hypothesis that biologic remodeling precedes damage to the intervertebral disc structure, that compression is a healthy loading condition for the disc, and further support the link between applied

  6. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism.

    PubMed

    Wu, Yabin; van der Schaft, Daisy W J; Baaijens, Frank P; Oomens, Cees W J

    2016-05-01

    Deep tissue injury (DTI), a type of pressure ulcer, arises in the muscle layers adjacent to bony prominences due to sustained mechanical loading. DTI presents a serious problem in the clinic, as it is often not visible until reaching an advanced stage. One of the causes can be direct mechanical deformation of the muscle tissue and cell. The mechanism of cell death induced by mechanical compression was studied using bio-artificial skeletal muscle tissues. Compression was applied by placing weights on top of the constructs. The morphological changes of the cytoskeleton and the phosphorylation of mitogen-activated protein kinases (MAPK) under compression were investigated. Moreover, inhibitors for each of the three major MAPK groups, p38, ERK, and JNK, were applied separately to look at their roles in the compression caused apoptosis and necrosis. The present study for the first time showed that direct mechanical compression activates MAPK phosphorylation. Compression also leads to a gradual destruction of the cytoskeleton. The percentage apoptosis is strongly reduced by p38 and JNK inhibitors down to the level of the unloaded group. This phenomenon could be observed up to 24h after initiation of compression. Therefore, cell death in bio-artificial muscle tissue caused by mechanical compression is primarily caused by a physiological mechanism, rather than through a physical mechanism which kills the cell directly. These findings reveal insight of muscle cell death under mechanical compression. Moreover, the result indicates a potential clinical solution to prevent DTI by pre-treating with p38 or/and JNK inhibitors. PMID:26961799

  7. One-dimensional discrete LQR control of compression of the human chest impulsively loaded by fast moving point mass

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2011-05-01

    This paper uncovers some interesting extension of an optimal discrete control methodology partially included in Proceedings and presented at the international conference on "Dynamical Systems Theory and Applications". There has been applied a scheme for realisation of active control strategy with numerically estimated linear optimal quadratic index of performance in reduction of impact-induced deformation of human chest loaded by a point mass at the central point of upper-torso body. We focused on application of one active element attached between torso's upper back (looking from posterior direction) and a fixed support. As the practical result we provide values of quality and reaction matrices, some useful deformation and energy dissipation time-characteristics and the resulting shape of control force time-characteristics that would be the demanding one for a hypothetical real implementation.

  8. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  9. Use of Backboard and Deflation Improve Quality of Chest Compression When Cardiopulmonary Resuscitation Is Performed on a Typical Air Inflated Mattress Configuration

    PubMed Central

    Oh, Jaehoon; Chee, Youngjoon; Lim, Taeho; Song, Yeongtak; Cho, Youngsuk; Je, Sangmo

    2013-01-01

    No study has examined the effectiveness of backboards and air deflation for achieving adequate chest compression (CC) depth on air mattresses with the typical configurations seen in intensive care units. To determine this efficacy, we measured mattress compression depth (MCD, mm) on these surfaces using dual accelerometers. Eight cardiopulmonary resuscitation providers performed CCs on manikins lying on 4 different surfaces using a visual feedback system. The surfaces were as follows: A, a bed frame; B, a deflated air mattress placed on top of a foam mattress laid on a bed frame; C, a typical air mattress configuration with an inflated air mattress placed on a foam mattress laid on a bed frame; and D, C with a backboard. Deflation of the air mattress decreased MCD significantly (B; 14.74 ± 1.36 vs C; 30.16 ± 3.96, P < 0.001). The use of a backboard also decreased MCD (C; 30.16 ± 3.96 vs D; 25.46 ± 2.89, P = 0.002). However, deflation of the air mattress decreased MCD more than use of a backboard (B; 14.74 ± 1.36 vs D; 25.46 ± 2.89, P = 0.002). The use of a both a backboard and a deflated air mattress in this configuration reduces MCD and thus helps achieve accurate CC depth during cardiopulmonary resuscitation. PMID:23399985

  10. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    SciTech Connect

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  11. Evaluation of the compressive mechanical properties of endoluminal metal stents.

    PubMed

    Schrader, S C; Beyar, R

    1998-06-01

    The mechanical properties of metal stents are important parameters in the consideration of stent design, matched to resist arterial recoil and vascular spasm. The purpose of this study was to develop a system for a standardized quantitative evaluation of the mechanical characteristics of various coronary stents. Several types of stents were compressed by external hydrostatic pressure. The stent diameter was assessed by placing a pair of small ultrasonic sono-crystals on the stent. From pressure-strain diagrams the ultimate strength and radial stiffness for each stent were determined. For all stents, except the MICRO-II and the Wiktor stent, the diameter decreased homogeneously until an ultimate compressive strength was exceeded, causing an abrupt collapse. Expanded to 3 mm, the mechanical behavior of the beStent, the Crown and the Palmaz-Schatz stent (PS153-series) were comparable. The spiral articulated Palmaz-Schatz stent showed twice the strength (1.26 atm) of the PS-153 (0.65 atm). The NIR stent yielded a maximum strength of 1.05 atm. The MICRO-II and the Wiktor stent did not collapse abruptly but rather showed a continuous decline of diameter with increasing external pressure. The Cardiocoil stent behaved in a fully elastic manner and showed the largest radial stiffness. Difference in mechanical properties between stents were documented using a new device specifically developed for that purpose. These mechanical stent parameters may have important clinical implications. PMID:9637441

  12. Mechanical response of collagen molecule under hydrostatic compression.

    PubMed

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. PMID:25687001

  13. Damage mechanisms in uniaxial compression of single enamel rods.

    PubMed

    An, Bingbing; Wang, Raorao; Arola, Dwayne; Zhang, Dongsheng

    2015-02-01

    Enamel possesses a complex hierarchical structure, which bestows this tissue with unique mechanical properties. In this study, the mechanical behavior of single enamel rods was investigated under uniaxial compression. Numerical simulations were also performed using micromechanics models for individual enamel rods to identify the damage mechanisms contributing to the constitutive behavior. Experimental results showed that the single rods exhibited an elastic modulus ranging from 10~31 GPa, and that they undergo post-yield strain-hardening. The primary damage mode consisted of delamination within the assembly of mineral crystals. Results from numerical simulations suggest that strain localization within individual rods is responsible for the observed delamination, which is believed to arise from the non-uniform arrangement of mineral crystals. This mechanism was independent of mineral morphology and properties. The non-uniform crystal arrangement results in friction between crystals with different inclination angles and is believed to be responsible for the post-yield strain hardening behavior. PMID:25460920

  14. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets

    PubMed Central

    Li, Elliott S.; Cheung, Po-Yin; Lee, Tze-Fun; Lu, Min; O'Reilly, Megan

    2016-01-01

    Objective Recently, sustained inflations (SI) during chest compression (CC) have been suggested as an alternative to the current approach during neonatal resuscitation. However, the optimal rate of CC during SI has not yet been established. Our aim was to determine whether different CC rates during SI reduce time to return of spontaneous circulation (ROSC) and improve hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia. Intervention and measurements Term newborn piglets were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized into three groups: CC superimposed by SI at a rate of 90 CC per minute (SI+CC 90, n = 8), CC superimposed by SI at a rate of 120 CC per minute (SI+CC 120, n = 8), or a sham group (n = 6). Cardiac function, carotid blood flow, cerebral oxygenation and respiratory parameters were continuously recorded throughout the experiment. Main results Both treatment groups had similar time of ROSC, survival rates, hemodynamic and respiratory parameters during cardiopulmonary resuscitation. The hemodynamic recovery in the subsequent 4h was similar in both groups and was only slightly lower than sham-operated piglets at the end of experiment. Conclusion Newborn piglets resuscitated by SI+CC 120 did not show a significant advantage in ROSC, survival, and hemodynamic recovery as compared to those piglets resuscitated by SI+CC 90. PMID:27304210

  15. Vocal tract resonances in singing: variation with laryngeal mechanism for male operatic singers in chest and falsetto registers.

    PubMed

    Henrich Bernardoni, Nathalie; Smith, John; Wolfe, Joe

    2014-01-01

    Seven male operatic singers sang the same notes and vowels in their chest and their falsetto registers, covering the overlap frequency range where two main laryngeal mechanisms can be identified by means of electroglottography: M1 in chest register and M2 in falsetto register. Glottal contact quotients determined using electroglottography were typically lower by 0.27 in M2 than in M1. Vocal tract resonance frequencies were measured by using broadband excitation at the lips and found to be typically lower in M2 than in M1 sung at the same pitch and vowel; R1 typically by 65 Hz and R2 by 90 Hz. These shifts in tract resonances were only weakly correlated with the changes in the contact quotient or laryngeal height that were measured simultaneously. There was considerable variability in the resonance tuning strategies used by the singers, and no evidence of a uniform systematic tuning strategy used by all singers. A simple model estimates that the shifts in resonance frequencies are consistent with the effective glottal area in falsetto register (M2) being 60%-70% of its value in chest register (M1). PMID:24437789

  16. Mechanical behavior of enamel rods under micro-compression.

    PubMed

    Yilmaz, Ezgi D; Schneider, Gerold A

    2016-10-01

    Exploring the structural strategies behind the optimized mechanical performance of hierarchical materials has been a focal point of extensive research over the past decades. Dental enamel is one such natural material, comprising a complicated hierarchical structure with a high level of mineral content. Bundles of hydroxyapatite nanofibers (level-1) Ø: 50nm form enamel rods (level-2) Ø: 5µm, which constitute bands (level-3) Ø: 50µm. While a number of studies in the last decade using advanced fracture mechanical methods have revealed an increasing trend in the fracture toughness of enamel with each additional level of hierarchy, there is still no general agreement on how hierarchical structuring affects the stiffness and strength of enamel. In this study, we identified the stiffness and strength values of the isolated rods (level-2) via micro-compression. The rods were tested in three different orientations with respect to the loading direction: parallel, perpendicular and oblique. The highest stress level withstood before catastrophic fracture was observed to be ~1500MPa in perpendicular orientation. In the oblique loading, the specimens failed by shearing and exhibited a damage-tolerant deformation behavior, which was attributed to the conjugation spots identified between the rods and interrod sheets. The elastic modulus was ~60GPa on average and similar in all orientations. The isotropy in stiffness was attributed to the mineral contacts residing between rods. This was verified by an analytical model derived for level-1 and extended over higher hierarchical levels. The experimental results obtained at level-2 were comparable to the compressive strength and stiffness values reported for level-1 and bulk enamel in the literature. In general, our results suggest that hierarchy has only a minor influence on the compressive properties of enamel. PMID:27415405

  17. A mechanism for the compressive ignition of liquid monopropellants

    NASA Technical Reports Server (NTRS)

    Morrison, W. F.; Knapton, J. D.; Mandzy, J.

    1980-01-01

    Possible mechanisms for compressive ignition of liquid monopropellants are discussed. These mechanisms all involve the collapse of a gas filled bubble imbedded in the liquid. A model of the collapse of a gas bubble in an incompressible liquid and the combustion of the surrounding liquid after ignition occurs is presented. The effect of gas covolume, liquid density, the adiabatic exponent, rate of pressurization and prepressurization are investigated. Calculations for finite and infinite liquid volumes are also presented. Gas generation in the bubble is shown to have a significant effect on its evolution and the introduction of a surface enhancement factor leads to a runaway reaction. For the conditions considered, the reacting bubble oscillates at a frequency of about 35 kHz over the first 0.5 milliseconds. This frequency decreases as the surface enhancement factor is increased. The implication is that a one dimensional model of this process may be tractable from the standpoint of computer time.

  18. Levofloxacin decreased chest wall mechanical inhomogeneities and airway and vascular remodeling in rats with induced hepatopulmonary syndrome.

    PubMed

    Gaio, Eduardo; Amado, Veronica; Rangel, Leonardo; Huang, Wilson; Storck, Rodrigo; Melo-Silva, César Augusto

    2013-12-01

    The administration of antibiotics decreases bacterial translocation, reduces the activity of nitric oxide synthase and improves the gas exchange of hepatopulmonary syndrome (HPS) in rats. We hypothesized that levofloxacin could reduce HPS-induced respiratory mechanical inhomogeneities and airway and pulmonary vascular remodeling. We assessed the respiratory mechanical properties and lung tissue structure in 24 rats assigned to the control, HPS (eHPS) and HPS+levofloxacin (eHPS+L) groups. The administration of levofloxacin reduced the HPS-induced chest wall but not the lung mechanical inhomogeneities. The eHPS airway proportion of elastic fibers increased 20% but was similar between the control and eHPS+L groups. The eHPS vascular collagen increased 25% in eHPS but was similar between the control and eHPS+L groups. Compared to the control group, the vascular proportion of elastic fibers of the eHPS and eHPS+L groups increased by 60% and 16%, respectively. The administration of levofloxacin decreased the HPS-induced chest wall mechanical inhomogeneities and airway and vascular remodeling. PMID:23994178

  19. The effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation

    PubMed Central

    Bousarri, Mitra Payami; Shirvani, Yadolah; Agha-Hassan-Kashani, Saeed; Nasab, Nouredin Mousavi

    2014-01-01

    Background: In patients undergoing mechanical ventilation, mucus production and secretion is high as a result of the endotracheal tube. Because endotracheal suction in these patients is essential, chest physiotherapy techniques such as expiratory rib cage compression before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretion and improving alveolar ventilation. As one of the complications of mechanical ventilation and endotracheal suctioning is decrease of cardiac output, this study was carried out to determine the effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation. Materials and Methods: This study was a randomized clinical trial with a crossover design. The study subjects included 50 mechanically ventilated patients, hospitalized in intensive care wards of Valiasr and Mousavi hospitals in Zanjan, Iran. Subjects were selected by consecutive sampling and randomly allocated to groups 1 and 2. The patients received endotracheal suctioning with or without rib cage compression, with a minimum of 3 h interval between the two interventions. Expiratory rib cage compression was performed for 5 min before endotracheal suctioning. Vital signs were measured 5 min before and 15 and 25 min after endotracheal suctioning. Data were recorded on a data recording sheet. Data were analyzed using paired t-tests. Results: There were statistically significant differences in the means of vital signs measured 5 min before with 15 and 25 min after endotracheal suctioning with rib cage compression (P < 0. 01). There was no significant difference in the means of diastolic pressure measured 25 min after with baseline in this stage). But on the reverse mode, there was a significant difference between the means of pulse and respiratory rate 15 min after endotracheal suctioning and the baseline values (P < 0.002). This effect continued up to 25 min after endotracheal

  20. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100 % O2

    PubMed Central

    Wagner, Katja; Gröger, Michael; McCook, Oscar; Scheuerle, Angelika; Asfar, Pierre; Stahl, Bettina; Huber-Lang, Markus; Ignatius, Anita; Jung, Birgit; Duechs, Matthias; Möller, Peter; Georgieff, Michael; Calzia, Enrico; Radermacher, Peter; Wagner, Florian

    2015-01-01

    Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post

  1. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2.

    PubMed

    Wagner, Katja; Gröger, Michael; McCook, Oscar; Scheuerle, Angelika; Asfar, Pierre; Stahl, Bettina; Huber-Lang, Markus; Ignatius, Anita; Jung, Birgit; Duechs, Matthias; Möller, Peter; Georgieff, Michael; Calzia, Enrico; Radermacher, Peter; Wagner, Florian

    2015-01-01

    Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100% O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post

  2. Compressive adaptive ghost imaging via sharing mechanism and fellow relationship.

    PubMed

    Huo, Yaoran; He, Hongjie; Chen, Fan

    2016-04-20

    For lower sampling rate and better imaging quality, a compressive adaptive ghost imaging is proposed by adopting the sharing mechanism and fellow relationship in the wavelet tree. The sharing mechanisms, including intrascale and interscale sharing mechanisms, and fellow relationship are excavated from the wavelet tree and utilized for sampling. The shared coefficients, which are part of the approximation subband, are localized according to the parent coefficients and sampled based on the interscale sharing mechanism and fellow relationship. The sampling rate can be reduced owing to the fact that some shared coefficients can be calculated by adopting the parent coefficients and the sampled sum of shared coefficients. According to the shared coefficients and parent coefficients, the proposed method predicts the positions of significant coefficients and samples them based on the intrascale sharing mechanism. The ghost image, reconstructed by the significant coefficients and the coarse image at the given largest scale, achieves better quality because the significant coefficients contain more detailed information. The simulations demonstrate that the proposed method improves the imaging quality at the same sampling rate and also achieves a lower sampling rate for the same imaging quality for different types of target object images in noise-free and noisy environments. PMID:27140111

  3. [Chest pain].

    PubMed

    Horn, Benedikt

    2015-01-01

    Chest pain in ambulatory setting is predominantly not heart-associated. Most patients suffer from muskuloskeletal or functional (psychogenic) chest pain. Differential diagnosis covers aortic dissection, rib-fracture, shingles, GERD, Tietze-Syndrome, pulmonary embolism, pleuritis, pneumothorax, pleurodynia and metastatic disease. In most cases history, symptoms and signs allow a clinical diagnosis of high pretest-probability. PMID:25533261

  4. Chest Pain

    MedlinePlus

    Having a pain in your chest can be scary. It does not always mean that you are having a heart attack. There can be many other causes, ... embolism Costochondritis - an inflammation of joints in your chest Some of these problems can be serious. Get ...

  5. Mechanics of particulate composites with glassy polymer binders in compression

    PubMed Central

    Jordan, J. L.; Spowart, J. E.; Kendall, M. J.; Woodworth, B.; Siviour, C. R.

    2014-01-01

    Whether used as structural components in design or matrix materials for composites, the mechanical properties of polymers are increasingly important. The compressive response of extruded polymethyl methacrylate (PMMA) rod with aligned polymer chains and Al–Ni–PMMA particulate composites are investigated across a range of strain rates and temperatures. The particulate composites were prepared using an injection-moulding technique resulting in highly anisotropic microstructures. The mechanics of these materials are discussed in the light of theories of deformation for glassy polymers. The experimental data from this study are compared with PMMA results from the literature as well as epoxy-based composites with identical particulates. The PMMA exhibited the expected strain rate and temperature dependence and brittle failure was observed at the highest strain rates and lowest temperatures. The Al–Ni–PMMA composites were found to have similar stress–strain response to the PMMA with reduced strain softening after yield. Increasing volume fraction of particulates in the composite resulted in decreased strength. PMID:24711495

  6. Chest MRI

    MedlinePlus

    ... Restrictive cardiomyopathy Superior vena cava (SVC) obstruction Thoracic aortic aneurysm Thymus tumor Tumors of the chest Consult your ... Restrictive cardiomyopathy SVC obstruction Swollen lymph nodes Thoracic aortic aneurysm Patient Instructions Abdominal aortic aneurysm repair - open - discharge ...

  7. Chest MRI

    MedlinePlus

    ... imaging test that uses powerful magnetic fields and radio waves to create pictures of the chest (thoracic area). ... no side effects from the magnetic fields and radio waves have been reported. The most common type of ...

  8. Chest drainage.

    PubMed

    Carter, Chris

    2014-07-15

    As an intensive care nurse with experience of caring for critically ill patients in the UK and on deployed operations overseas, I found the CPD article useful in reviewing the pathophysiology of a pneumothorax, use of intrapleural chest drains, observations that should be recorded, and nursing care and management of a patient with an intrapleural chest drain. Reflecting on the time out activities in the CPD article was valuable. PMID:25005418

  9. Chest radiology

    SciTech Connect

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case.

  10. [Chest trauma].

    PubMed

    Freixinet Gilart, Jorge; Ramírez Gil, María Elena; Gallardo Valera, Gregorio; Moreno Casado, Paula

    2011-01-01

    Chest trauma is a frequent problem arising from lesions caused by domestic and occupational activities and especially road traffic accidents. These injuries can be analyzed from distinct points of view, ranging from consideration of the most severe injuries, especially in the context of multiple trauma, to the specific characteristics of blunt and open trauma. In the present article, these injuries are discussed according to the involvement of the various thoracic structures. Rib fractures are the most frequent chest injuries and their diagnosis and treatment is straightforward, although these injuries can be severe if more than three ribs are affected and when there is major associated morbidity. Lung contusion is the most common visceral lesion. These injuries are usually found in severe chest trauma and are often associated with other thoracic and intrathoracic lesions. Treatment is based on general support measures. Pleural complications, such as hemothorax and pneumothorax, are also frequent. Their diagnosis is also straightforward and treatment is based on pleural drainage. This article also analyzes other complex situations, notably airway trauma, which is usually very severe in blunt chest trauma and less severe and even suitable for conservative treatment in iatrogenic injury due to tracheal intubation. Rupture of the diaphragm usually causes a diaphragmatic hernia. Treatment is always surgical. Myocardial contusions should be suspected in anterior chest trauma and in sternal fractures. Treatment is conservative. Other chest injuries, such as those of the great thoracic and esophageal vessels, are less frequent but are especially severe. PMID:21640287

  11. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  12. A non-topological mechanism for negative linear compressibility.

    PubMed

    Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon

    2016-06-14

    Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra. PMID:27203683

  13. Impacts to the chest of PMHSs - Influence of impact location and load distribution on chest response.

    PubMed

    Holmqvist, Kristian; Svensson, Mats Y; Davidsson, Johan; Gutsche, Andreas; Tomasch, Ernst; Darok, Mario; Ravnik, Dean

    2016-02-01

    The chest response of the human body has been studied for several load conditions, but is not well known in the case of steering wheel rim-to-chest impact in heavy goods vehicle frontal collisions. The aim of this study was to determine the response of the human chest in a set of simulated steering wheel impacts. PMHS tests were carried out and analysed. The steering wheel load pattern was represented by a rigid pendulum with a straight bar-shaped front. A crash test dummy chest calibration pendulum was utilised for comparison. In this study, a set of rigid bar impacts were directed at various heights of the chest, spanning approximately 120mm around the fourth intercostal space. The impact energy was set below a level estimated to cause rib fracture. The analysed results consist of responses, evaluated with respect to differences in the impacting shape and impact heights on compression and viscous criteria chest injury responses. The results showed that the bar impacts consistently produced lesser scaled chest compressions than the hub; the Middle bar responses were around 90% of the hub responses. A superior bar impact provided lesser chest compression; the average response was 86% of the Middle bar response. For inferior bar impacts, the chest compression response was 116% of the chest compression in the middle. The damping properties of the chest caused the compression to decrease in the high speed bar impacts to 88% of that in low speed impacts. From the analysis it could be concluded that the bar impact shape provides lower chest criteria responses compared to the hub. Further, the bar responses are dependent on the impact location of the chest. Inertial and viscous effects of the upper body affect the responses. The results can be used to assess the responses of human substitutes such as anthropomorphic test devices and finite element human body models, which will benefit the development process of heavy goods vehicle safety systems. PMID:26687541

  14. A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Luong, Dung D.; Rohatgi, Pradeep K.

    2011-05-01

    Obtaining meaningful information from the test results is a challenge in the split-Hopkinson pressure bar (SHPB) test method if the specimen does not fail during the test. Although SHPB method is now widely used for high strain rate testing, this limitation has made it difficult to use it for characterization of materials in the intermediate strain rate range (typically 10-1000 s-1). In the present work, a method is developed to characterize materials in the intermediate strain rate range using SHPB setup. In this method, the specimen is repeatedly tested under compression at a given strain rate until failure is achieved. The stress-strain graphs obtained from each test cycle are used to plot the master stress-strain graph for that strain rate. This method is used to study the strain rate dependence of compressive response of a Mg-Al-Zn alloy in the intermediate strain rate range. A remarkable difference is observed in the failure mechanism of the alloy under quasi-static and intermediate strain rate compression. Matrix cracking is the main failure mechanism under quasi-static compression, whereas shattering of intermetallic precipitates, along with plastic deformation of the matrix, is discovered to become prominent as the strain rate is increased.

  15. Temperature, moisture, and strain rate effects on the compressive mechanical behavior of Nylon 6/6

    SciTech Connect

    Kawahara, W.A.; Brandon, S.L.; Korellis, J.S.

    1988-04-01

    Material test results are presented for the mechanical behavior of Nylon 66 in compression. Static compression modes include direct compression, stress relaxation and creep. Dynamic direct compression results are included. Tests are performed at atmospheric pressure; strain rates range from 10/sup /minus/4/sec to 10/sup 2/sec; temperatures are 20, 65, 110, 150 and 200/degree/C; moisture levels are 0% (dry), 2% and 6% (saturated); true strains to /minus/0.25 are imposed. Our empirical Temperature-Moisture equivalence of 14/degree/C per 1% moisture is discussed with respect to the /open quotes/free volume/close quotes/ concept.

  16. Mechanics of the Compression Wood Response: II. On the Location, Action, and Distribution of Compression Wood Formation.

    PubMed

    Archer, R R; Wilson, B F

    1973-04-01

    A new method for simulation of cross-sectional growth provided detailed information on the location of normal wood and compression wood increments in two tilted white pine (Pinus strobus L.) leaders. These data were combined with data on stiffness, slope, and curvature changes over a 16-week period to make the mechanical analysis. The location of compression wood changed from the under side to a flank side and then to the upper side of the leader as the geotropic stimulus decreased, owing to compression wood action. Its location shifted back to a flank side when the direction of movement of the leader reversed. A model for this action, based on elongation strains, was developed and predicted the observed curvature changes with elongation strains of 0.3 to 0.5%, or a maximal compressive stress of 60 to 300 kilograms per square centimeter. After tilting, new wood formation was distributed so as to maintain consistent strain levels along the leaders in bending under gravitational loads. The computed effective elastic moduli were about the same for the two leaders throughout the season. PMID:16658408

  17. Automatic compression adjusting mechanism for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  18. Tensile and compressive mechanical behavior of twinned silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-04-01

    Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strains. The critical strain of the twinned nanowires can be enhanced by twin-stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are just stretched before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for the thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of the twinned SiC nanowires exhibits two differently failure modes, depending on the length and diameter of the nanowires, i.e. shell buckling for short length nanowires and columnar buckling for longer length nanowires.

  19. On the mechanical behavior of slender, slightly curved, compressed microbridges

    NASA Astrophysics Data System (ADS)

    Hallauer, W. L.; Ma, C.

    2011-06-01

    We consider a clamped-clamped, slender beam-column that is slightly curved in its unloaded static equilibrium state. Perhaps the best practical example of this type of structure is a microbeam used in sensing and actuating devices. If the clamped ends are forced toward each other, or if stiff supports inhibit axial expansion that is fostered by fabrication processes and/or operational heating, then the column bends beyond its initial curvature. If the axial force approaches the buckling load, then the static flexural deflection can be relatively large, greater than the column's depth. We show that the dependence of moderately large static deflection upon compressive force is mathematically linear, and that nonlinearity arises only in the relationship of column shortening to transverse deflection. This leads to a linear finite-element method for static structural analysis of non-uniform columns, with which we simulate the behavior of a 62.5 µm long microbridge of 0.5 µm thin-film gold. This microbridge was observed experimentally to bend 4-5 µm under compression. We also examine previous studies of bending vibration about moderately large static deflection. Calculations and experimental measurements of the dependence of the fundamental natural frequency on axial compression and initial curvature indicate practical significance relative to design of microbridge resonators.

  20. What Is Chest MRI?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Chest MRI? Chest MRI (magnetic resonance imaging) is a safe, noninvasive ... creates detailed pictures of the structures in your chest, such as your chest wall, heart, and blood ...

  1. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs.

    PubMed

    Chen, P S; Wolf, P D; Dixon, E G; Danieley, N D; Frazier, D W; Smith, W M; Ideker, R E

    1988-06-01

    To determine the mechanism of ventricular vulnerability to electrical stimulation, we simultaneously recorded from 120 transmural electrodes in a 35 X 20 X 5-mm portion of right ventricular infundibulum in seven dogs. Baseline pacing (S1) was performed from outside the mapped region followed by single premature stimulation (S2) of increasing strength at the center of the mapped region. In five of six episodes of ventricular fibrillation and 26 of 30 episodes of repetitive responses, complete reentrant pathways were observed. Earliest activation following S2 was not at the site of S2 stimulation but was at a point between the S1 and S2 sites of stimulation. Activation spread away from the early site toward the opposite side of the mapped region around the sides of an arc of block near the S2 site to form a "figure-of-eight." The activation fronts coalesced to activate the region around the S2 site last and, if the difference in times between activation at the early site and near the S2 site was large, reentered the tissue toward the S1 site. Ventricular refractory periods were determined in four dogs following S1 pacing; the regions with the greatest nonuniformity in the dispersion of refractoriness were not the regions of unidirectional block after S2 stimulation. Thus, 1) ventricular fibrillation and repetitive responses induced electrically with S1 and S2 stimuli at different ventricular sites arise by figure-of-eight reentry, 2) this reentry is caused by the ability of S2 stimulation both to prolong refractoriness near the S2 site and to initiate a propagated response in the region between the S1 and S2 sites, and 3) a nonuniform dispersion of refractoriness is not crucial for the electrical induction of reentry leading to ventricular fibrillation or repetitive responses when S1 and S2 stimuli are given at different locations on the right ventricular outflow tract. PMID:2454762

  2. Structural basis for the nonlinear mechanics of fibrin networks under compression.

    PubMed

    Kim, Oleg V; Litvinov, Rustem I; Weisel, John W; Alber, Mark S

    2014-08-01

    Fibrin is a protein polymer that forms a 3D filamentous network, a major structural component of protective physiological blood clots as well as life threatening pathological thrombi. It plays an important role in wound healing, tissue regeneration and is widely employed in surgery as a sealant and in tissue engineering as a scaffold. The goal of this study was to establish correlations between structural changes and mechanical responses of fibrin networks exposed to compressive loads. Rheological measurements revealed nonlinear changes of fibrin network viscoelastic properties under dynamic compression, resulting in network softening followed by its dramatic hardening. Repeated compression/decompression enhanced fibrin clot stiffening. Combining fibrin network rheology with simultaneous confocal microscopy provided direct evidence of structural modulations underlying nonlinear viscoelasticity of compressed fibrin networks. Fibrin clot softening in response to compression strongly correlated with fiber buckling and bending, while hardening was associated with fibrin network densification. Our results suggest a complex interplay of entropic and enthalpic mechanisms accompanying structural changes and accounting for the nonlinear mechanical response in fibrin networks undergoing compressive deformations. These findings provide new insight into the fibrin clot structural mechanics and can be useful for designing fibrin-based biomaterials with modulated viscoelastic properties. PMID:24840618

  3. Structural basis for the nonlinear mechanics of fibrin networks under compression

    PubMed Central

    Kim, Oleg V.; Litvinov, Rustem I.; Weisel, John W.; Alber, Mark S.

    2014-01-01

    Fibrin is a protein polymer that forms a 3D filamentous network, a major structural component of protective physiological blood clots as well as life threatening pathological thrombi. It plays an important role in wound healing, tissue regeneration and is widely employed in surgery as a sealant and in tissue engineering as a scaffold. The goal of this study was to establish correlations between structural changes and mechanical responses of fibrin networks exposed to compressive loads. Rheological measurements revealed nonlinear changes of fibrin network viscoelastic properties under dynamic compression, resulting in network softening followed by its dramatic hardening. Repeated compression/decompression enhanced fibrin clot stiffening. Combining fibrin network rheology with simultaneous confocal microscopy provided direct evidence of structural modulations underlying nonlinear viscoelasticity of compressed fibrin networks. Fibrin clot softening in response to compression strongly correlated with fiber buckling and bending, while hardening was associated with fibrin network densification. Our results suggest a complex interplay of entropic and enthalpic mechanisms accompanying structural changes and accounting for the nonlinear mechanical response in fibrin networks undergoing compressive deformations. These findings provide new insight into the fibrin clot structural mechanics and can be useful for designing fibrin-based biomaterials with modulated viscoelastic properties. PMID:24840618

  4. Joining mechanism with stem tension and interlocked compression ring

    DOEpatents

    James, Allister W.; Morrison, Jay A.

    2012-09-04

    A stem (34) extends from a second part (30) through a hole (28) in a first part (22). A groove (38) around the stem provides a non-threaded contact surface (42) for a ring element (44) around the stem. The ring element exerts an inward force against the non-threaded contact surface at an angle that creates axial tension (T) in the stem, pulling the second part against the first part. The ring element is formed of a material that shrinks relative to the stem by sintering. The ring element may include a split collet (44C) that fits partly into the groove, and a compression ring (44E) around the collet. The non-threaded contact surface and a mating distal surface (48) of the ring element may have conic geometries (64). After shrinkage, the ring element is locked onto the stem.

  5. Comparison of ventilation and chest compression performance by bystanders using the Impact Model 730 ventilator and a conventional bag valve with mask in a model of adult cardiopulmonary arrest.

    PubMed

    Hurst, Victor; West, Sarah; Austin, Paul; Branson, Richard; Beck, George

    2007-04-01

    "Bystanders" or lay persons are typically the first caregivers to attend to a victim of out-of-hospital cardiopulmonary arrest. Astronaut crew medical officers (CMO) play a similar role to bystanders aboard the International Space Station (ISS). Studies have demonstrated the importance of bystander cardiopulmonary resuscitation (BCPR) for patient survival before the arrival of emergency medical care. Recent apprehension from bystanders about the threat of contracting communicable diseases during BCPR, however, has led to the consideration of other ventilation systems such as the bag-valve mask (BVM) and automatic transport ventilators (ATV). BVM use is called for during CPR aboard the ISS. This study evaluated the ventilation and compression performance of 40 basic CPR-trained bystanders using either a BVM (adult-sized self-inflating bag with face mask) or an ATV (Model 730 ventilator (M730), Impact Instrumentation, Inc., West Caldwell, NJ). Each two-bystander team gave BCPR to a simulated cardiopulmonary arrest victim using the 2-breath/15-compression cycle for 4 min and then switched roles for another 4-min interval. Compared to BVM use, the M730 led to significantly (p<0.05) lower number of breaths, smaller tidal volumes, airway flows, airway pressures, volume of gas entering the stomach per breath and chest compressions for the 4-min period. The M730 also enabled a bystander to meet the recommendation of 4-breath and compression cycles per minute as per Guidelines 2000. Lastly, ease-of-use scores were significantly higher for the M730 compared to the BVM. Overall, the data suggest that the M730 improves the quality of performance for a bystander performing BCPR. PMID:17175090

  6. Failure mechanisms of notched laminated composites under compressive loading at room and elevated temperature

    NASA Astrophysics Data System (ADS)

    Ahn, Jung Hyun

    1999-10-01

    Understanding the mechanisms of failure of composite structures and developing mechanism based failure criteria are important considerations in designing structures made of composite materials. The compressive response of composite materials and structures has received considerable attention due to their significance in the aerospace industry and the complexity associated with compressive failure. Several competing failure mechanisms such as fiber instability, fiber/matrix interfacial failure, fiber microbuckling/kinking, delamination initiation and delamination buckling may become active in compressive loading. Environmental effect such as an elevated temperature can alter and affect these failure mechanisms. In this thesis, a micromechanics based finite element predictive model for notched strength of multidirectional laminates is presented. The in-situ shear response of the matrix, the fiber mechanical properties, the lay-up (stacking sequence) and fiber volume fraction serve as input to the model. The prediction of the model is found to match favorably with experimental data. The effect of ply angle and its influence on the failure mechanism are quantified and compared with a set of available experimental data. The present work is the first development of a non-empirical mechanics based failure prediction methodology for notched compressive strength of composite laminates. Both an experimental and an analytical study are presented herein.

  7. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    PubMed

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. PMID:25746272

  8. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  9. Optimization of the dye-sensitized solar cell performance by mechanical compression

    NASA Astrophysics Data System (ADS)

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-09-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.

  10. Optimization of the dye-sensitized solar cell performance by mechanical compression

    PubMed Central

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  11. Optimization of the dye-sensitized solar cell performance by mechanical compression.

    PubMed

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm(2), the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm(2), and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  12. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  13. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.

    PubMed

    Li, Simin; Demirci, Emrah; Silberschmidt, Vadim V

    2013-05-01

    The mechanical properties of cortical bone vary not only from bone to bone; they demonstrate a spatial viability even within the same bone due to its changing microstructure. They also depend considerably on different loading modes and orientations. To understand the variability and anisotropic mechanical behavior of a cortical bone tissue, specimens cut from four anatomical quadrants of bovine femurs were investigated both in tension and compression tests. The obtained experimental results revealed a highly anisotropic mechanical behavior, depending also on the loading mode (tension and compression). A compressive longitudinal loading regime resulted in the best load-bearing capacity for cortical bone, while tensile transverse loading provided significantly poorer results. The distinctive stress-strain curves obtained for tension and compression demonstrated various damage mechanisms associated with different loading modes. The variability of mechanical properties for different cortices was evaluated with two-way ANOVA analyses. Statistical significances were found among different quadrants for the Young's modulus. The results of microstructure analysis of the entire transverse cross section of a cortical bone also confirmed variations of volume fractions of constituents at microscopic level between anatomic quadrants: microstructure of the anterior quadrant was dominated by plexiform bone, whereas secondary osteons were prominent in the posterior quadrant. The effective Young's modulus predicted using the modified Voigt-Reuss-Hill averaging scheme accurately reproduced our experimental results, corroborating additionally a strong effect of random and heterogeneous microstructure on variation of mechanical properties in cortical bone. PMID:23563047

  14. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your ...

  15. Chest tube insertion

    MedlinePlus

    ... leaks from inside the lung into the chest ( pneumothorax ) Fluid buildup in the chest (called a pleural ... on the reason a chest tube is inserted. Pneumothorax usually improves, but sometimes needs minimally invasive surgery. ...

  16. Inelastic deformation mechanisms in SCS-6/Ti 15-3 MMC lamina under compression

    NASA Technical Reports Server (NTRS)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1993-01-01

    An investigation was undertaken to study the inelastic deformation mechanisms in (0)(sub 8) and (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Monotonic tests were conducted at room temperature (RT), 538 C and 650 C. Results indicate that mechanical response and deformation characteristics were different in monotonic tension and compression loading whereas some of those differences could be attributed to residual stress effects. There were other differences because of changes in damage and failure modes. The inelastic deformation in the (0)(sub 8) lamina under compression was controlled primarily by matrix plasticity, although some evidence of fiber-matrix debonding was observed. Failure of the specimen in compression was due to fiber buckling in a macroscopic shear zone (the failure plane). The inelastic deformation mechanisms under compression in (90)(sub 8) lamina were controlled by radial fiber fracture, matrix plasticity, and fiber-matrix debonding. The radial fiber fracture was a new damage mode observed for MMC's. Constitutive response was predicted for both the (0)(sub 8) and (90)(sub 8) laminae, using AGLPLY, METCAN, and Battelle's Unit Cell FEA model. Results from the analyses were encouraging.

  17. Mechanically induced structural changes during dynamic compression of engineered cartilaginous constructs can potentially explain increases in bulk mechanical properties

    PubMed Central

    Nagel, Thomas; Kelly, Daniel J.

    2012-01-01

    Several studies on chondrocyte-seeded hydrogels in bioreactor culture report increased mechanical properties of mechanically loaded constructs compared with unloaded free swelling controls despite no significant differences in biochemical composition. One possible explanation is that changes in the collagen architecture of dynamically compressed constructs lead to improved mechanical properties. Collagen molecules are incorporated locally into the extracellular matrix with individual stress-free configurations and orientations. In this study, we computationally investigated possible influences of loading on the collagen architecture in chondrocyte-seeded hydrogels and their resulting mechanical properties. Both the collagen orientation and its stress-free configuration were hypothesized to depend on the local mechanical environment. Reorientation of the collagen network alone in response to dynamic compression leads to a prediction of constructs with lower compressive properties. In contrast, remodelling of the stress-free configuration of the collagen fibres was predicted to result in a more compacted tissue with higher swelling pressures and an altered pre-stressed state within the collagen network. Combining both mechanisms resulted in predictions of construct geometry and mechanical properties in agreement with experimental observations. This study provides support for the hypothesis that structural changes to the collagen network contribute to the enhanced mechanical properties of cartilaginous tissues engineered in bioreactors. PMID:21900321

  18. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  19. A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.

  20. Thermal and mechanical properties of compression-molded pMDI-reinforced PCL/gluten composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polycaprolactone (PCL) and vital wheat gluten or wheat flour composites were prepared and compatibilized with polymeric diphenylmethane diisocyanate (pMDI) by blending and compression-molding. The thermo-mechanical properties of the composites were determined by thermogravimetric analysis (TGA), di...

  1. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties.

    PubMed

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-06-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ∼4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (∼60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications. PMID:27227818

  2. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    SciTech Connect

    Kolmakova, T. V. Buyakova, S. P. Kul’kov, S. N.

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  3. Mechanical Modeling of Foods Including Fracture and Simulation of Food Compression

    NASA Astrophysics Data System (ADS)

    Morimoto, Masamichi; Mizunuma, Hiroshi; Sonomura, Mitsuhiro; Kohyama, Kaoru; Ogoshi, Hiro

    2008-07-01

    The purposes of this research are to simulate the swallowing of foods, and to investigate the relationship between the rheological properties of foods and the swallowing. Here we proposed the mechanical modeling of foods, and simulated the compression test using the finite element method. A linear plasticity model was applied as the rheological model of the foods, and two types of computational elements were used to simulate the fracture behavior. The compression tests with a wedged plunger were simulated for tofu, banana, and biscuit, and were compared with the experimental results. Other than the homogeneous food model, the simulations were conducted for the multi-layer models. Reasonable agreements on the behaviors of compression and fracture were obtained between the simulations and the experiments including the reaction forces on the plunger.

  4. Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Karimi, Mona; Girimaji, Sharath S.

    2016-04-01

    The transformative influence of compressibility on the Kelvin-Helmholtz instability (KHI) at the interface between two fluid streams of different velocities is explicated. When the velocity difference is small (subsonic), shear effects dominate the interface flow dynamics causing monotonic roll-up of vorticity and mixing between the two streams leading to the KHI. We find that at supersonic speed differentials, compressibility forces the dominance of dilatational (acoustic) rather than shear dynamics at the interface. Within this dilatational interface layer, traveling pressure waves cause the velocity perturbations to become oscillatory. We demonstrate that the oscillatory fluid motion reverses vortex roll-up and segregates the two streams leading to KHI suppression. Analysis and illustrations of the compressibility-induced suppression mechanism are presented.

  5. Long-term mechanical behaviour of skeletal muscle tissue in semi-confined compression experiments.

    PubMed

    Böl, Markus; Leichsenring, Kay; Ernst, Michael; Ehret, Alexander E

    2016-10-01

    In this study, porcine skeletal muscle tissue was tested until 112 hours post mortem using a semi-confined compression device that induces fascicles to enter one of the states of compression (mode I), tension (mode II), or constant length (mode III). Based on the authors׳ previous studies (Böl et al., 2014, 2015a), the anisotropic mechanical behaviour of the tissue was analysed, with a special focus on the testing time post mortem. The results suggest that the tissue exhibits significant anisotropic behaviour during the first hours of post mortem but that this anisotropy becomes insignificant at later time points. Interestingly, the compressibility of the tissue is more or less unaffected by the testing time. These results are discussed especially with respect to tissue microstructure. PMID:27367943

  6. Volar/dorsal compressive mechanical behavior of the transverse carpal ligament.

    PubMed

    Main, Erin K; Goetz, Jessica E; Baer, Thomas E; Klocke, Noelle F; Brown, Thomas D

    2012-04-30

    Mechanical insult to the median nerve caused by contact with the digital flexor tendons and/or carpal tunnel boundaries may contribute to the development of carpal tunnel syndrome. Since the transverse carpal ligament (TCL) comprises the volar boundary of the carpal tunnel, its mechanics in part govern the potential insult to the median nerve. Using unconfined compression testing in combination with a finite element-based optimization process, nominal stiffness measurements and first-order Ogden hyperelastic material coefficients (μ and α ) were determined to describe the volar/dorsal compressive behavior of the TCL. Five different locations on the TCL were tested, three of which were deep to the origins of the thenar and hypothenar muscles. The average (± standard deviation) low-strain and high-strain TCL stiffness values in compression sites outside the muscle attachment region were 3.6 N/mm (±2.7) and 28.0 N/mm (±20.2), respectively. The average stiffness values at compression sites with muscle attachments were notably lower, with low-strain and high-strain stiffness values of 1.2 N/mm (±0.5) and 9.7 N/mm (±4.8), respectively. The average Ogden coefficients for the muscle attachment region were 51.6 kPa (±16.5) for μ and 16.5 (±2.0) for α, while coefficients for the non-muscle attachment region were 117.8 kPa (±86.8) for μ and 17.2 (±1.6) for α. These TCL compressive mechanical properties can help inprove computational models, which can be used to provide insight into the mechanisms of median nerve injury leading to the onset of carpal tunnel syndrome symptoms. PMID:22381735

  7. Esophageal pressure as an estimate of average pleural pressure with lung or chest distortion in rats.

    PubMed

    Pecchiari, Matteo; Loring, Stephen H; D'Angelo, Edgardo

    2013-04-01

    Pressure-volume curves of the lungs and chest wall require knowledge of an effective 'average' pleural pressure (Pplav), and are usually estimated using esophageal pressure as Ples-V and Pwes-V curves. Such estimates could be misleading when Ppl becomes spatially non-uniform with lung lavage or shape distortion of the chest. We therefore measured Ples-V and Pwes-V curves in conditions causing spatial non-uniformity of Ppl in rats. Ples-V curves of normal lungs were unchanged by chest removal. Lung lavage depressed PLes-V but not Pwes-V curves to lower volumes, and chest removal after lavage increased volumes at PL≥15cmH2O by relieving distortion of the mechanically heterogeneous lungs. Chest wall distortion by ribcage compression or abdominal distension depressed Pwes-V curves and Ples-V curves of normal lungs only at Pl≥3cmH2O. In conclusion, Pes reflects Pplav with normal and mechanically heterogeneous lungs. With chest wall distortion and dependent deformation of the normal lung, changes of Ples-V curves are qualitatively consistent with greater work of inflation. PMID:23416404

  8. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  9. High-frequency oscillation of the airway and chest wall.

    PubMed

    Fink, James B; Mahlmeister, Michael J

    2002-07-01

    High-frequency oscillation (HFO), applied to either the airway or chest wall, has been associated with changes in sputum attributes and clearance. The evolution of evidence, both in vitro and in vivo, supporting the use of HFO is reviewed. Devices that apply HFO to the airway range from the relatively simple mechanical Flutter and Acapella devices to the more complex Percussionaire Intrapercussive Ventilators. and the Hayek Oscillator are designed to provide high-frequency chest wall compression. Operation and use of these devices are described with examples of differentiation of device types by characterization of flows, and airway and esophageal pressures. Although HFO devices span a broad range of costs, they provide a reasonable therapeutic option to support secretion clearance for patients with cystic fibrosis. PMID:12088550

  10. On the Study of Lifting Mechanism of a Soft Porous Media under Fast Compression

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Santhanam, S.; Nathan, R.; Vucbmss Team

    2015-11-01

    Fluid flow in a soft porous media under fast compressions is widely observed in biological systems and industrial applications. Despite of much progress, it remains unclear for the lifting mechanisms of the porous media due to the lack of complete experimental verifications of theoretical models. We report herein a unique approach to treat the limitation. The permeability of a synthetic fibrous porous media as a function of its compression was first measured. The material was then employed in a dynamic compression experiment using a porous-walled cylinder piston apparatus. The obtained transient compression of the porous media and the aforementioned permeability data were applied in different theoretical models for the pore pressure generation, which conclusively proved the validity of the consolidation theory developed by Wu et al. (JFM, 542, 281, 2005). Furthermore, the solid phase lifting force was separated from the total reaction force and was characterized by a new viscoelastic model, containing a nonlinear spring in conjunction with a linear viscoelastic Generalized Maxwell mechanical module. Excellent agreement was obtained between the experiment and the theory. Thus, the lifting forces from both the fluid and the solid were determined. This project is supported by NSF Grant 1511096.

  11. Kronecker compressive sensing-based mechanism with fully independent sampling dimensions for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Rongqiang; Wang, Qiang; Shen, Yi

    2015-11-01

    We propose a new approach for Kronecker compressive sensing of hyperspectral (HS) images, including the imaging mechanism and the corresponding reconstruction method. The proposed mechanism is able to compress the data of all dimensions when sampling, which can be achieved by three fully independent sampling devices. As a result, the mechanism greatly reduces the control points and memory requirement. In addition, we can also select the suitable sparsifying bases and generate the corresponding optimized sensing matrices or change the distribution of sampling ratio for each dimension independently according to different HS images. As the cooperation of the mechanism, we combine the sparsity model and low multilinear-rank model to develop a reconstruction method. Analysis shows that our reconstruction method has a lower computational complexity than the traditional methods based on sparsity model. Simulations verify that the HS images can be reconstructed successfully with very few measurements. In summary, the proposed approach can reduce the complexity and improve the practicability for HS image compressive sensing.

  12. Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Belhadj, Abd-Elmouneïm; Gavrus, Adinel; Bernard, Fabrice; Azzaz, Mohammed

    2015-10-01

    The design of new or innovative materials has to meet two essential criteria: increased mechanical performance and minimization of the mass. This dual requirement leads to interest in the study of various classes of metallic foams. The actual research is focused on open-cell Tin-Lead foams manufactured by replication process using NaCl preform. A mechanical press equipped with a load cell and a local extensometer with a controlled deformation rate is used. Experimental tests were carried out in order to study the influences of both the cell size and of the relative density on the mechanical behavior during a compression deformation and to analyze the obtained properties variation within a new framework. This study has three main sections which start with the manufacturing description and mechanical characterization of the proposed metallic foams followed by the understanding and modeling of their response to a compression load via a Gibson-Ashby model, a Féret law, a proposed simple Avrami model, and a generalized Avrami model. Finally, an exposition of a numerical simulation analyzing the compression of the Sn-Pb foams concerning the variation of the relative densities with respect to the plastic strain is proposed.

  13. Chest pain evaluation in the emergency department.

    PubMed

    Foy, Andrew J; Filippone, Lisa

    2015-07-01

    Chest pain is a common complaint in the emergency department. Recognition of chest pain symptoms and electrocardiographic changes consistent with acute coronary syndrome (ACS) can lead to prompt initiation of goal-directed therapy. Cardiac troponin testing confirms the diagnosis of acute myocardial infarction, but does not reveal the mechanism of injury. When patients with chest pain rule out for ACS the use of advanced, noninvasive testing has not been found to be associated with better patient outcomes. PMID:26042885

  14. Failure mechanisms in laminated carbon/carbon composites under biaxial compression

    SciTech Connect

    Grape, J.A.; Gupta, V.

    1995-07-01

    The failure mechanisms of 2D carbon/carbon (C/C) woven laminates have been determined under inplane biaxial compression loads, and the associated failure envelopes that account for the effect of matrix-type and loading directions were also obtained. The failure was in the form of micro-kinking of fiber bundles, interspersed with localized interply delaminations to form an overall shear fault. The shear fault was aligned with the major axis of loading except at above 75% of balanced biaxial compressive stress where failure occurred along both axes. Although the biaxial strength varied significantly with the ratio of in-plane principal stresses, R, there was no variation in the local failure mechanisms. Accordingly, it was found that the samples fail upon achieving a critical strain along the primary axis of loading.

  15. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Prostate Ultrasound Video: IMRT Video: Chest CT Video:Thyroid Ultrasound Video: Pediatric MRI Radiology and You About ... Prostate Ultrasound Video: IMRT Video: Chest CT Video:Thyroid Ultrasound Video: Pediatric MRI Radiology and You About ...

  16. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.

    PubMed

    Yao, Wang; Yoshida, Kyoko; Fernandez, Michael; Vink, Joy; Wapner, Ronald J; Ananth, Cande V; Oyen, Michelle L; Myers, Kristin M

    2014-06-01

    The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially develop indentation techniques for in vivo diagnostics to identify women who are at risk for premature cervical remodeling and thus preterm birth, we developed a spherical indentation technique to measure the time-dependent material properties of human cervical tissue taken from patients undergoing hysterectomy. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report compressive viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens. The material parameters reported here for human cervical tissue can be used to model the compressive time-dependent behavior of the tissue within a small strain regime of 25%. PMID:24548950

  17. A mechanism responsible for reducing compression strength of through-the-thickness reinforced composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    A study was conducted to identify one of the mechanisms that contributes to the reduced compression strength of composite materials with through-the-thickness (TTT) reinforcements. In this study a series of thick (0/90) laminates with stitched and integrally woven TTT reinforcements were fabricated and statically tested. In both the stitching and weaving process a surface loop of TTT reinforcement yarn is created between successive TTT penetrations. It was shown that the surface loop of the TTT reinforcement 'kinked' the in-plane fibers in such a manner that they were made ineffective in carrying compressive load. The improvement in strength by removal of the surface loop and 'kinked' in-plane fibers was between 7 and 35 percent.

  18. New compression mechanism in penile-scrotal lymphedema and sexual rehabilitation

    PubMed Central

    de Godoy, Jose Maria Pereira; Facio, Fernando Nestor; de Carvalho, Eleni Cássia Matias; Godoy, Maria de Fatima Guerreiro

    2014-01-01

    The objective of this study is to describe a new compression mechanism in the treatment of lymphedema of the penis and scrotum and the ensuing sexual rehabilitation. The patient, a 58-year-old man, had edema of the penile and scrotal region as a result of surgery of the pancreas and spleen and chemotherapy. The patient complained of pain, discomfort, and difficulties to walk and urinate. A clinical diagnosis of lymphedema of the penis and scrotum was reached. Treatment involved the continuous use of a cotton-polyester compression garment for the region together with thorough hygiene skin care. The swelling reduced significantly within a week to almost a normal aspect which was accompanied by clinical improvements of the symptoms. The reduction in penile edema allowed sexual rehabilitation even though erectile dysfunction required the use of a specific medication (sildenafil). In conclusion, simple and low-cost options can improve lymphedema of the penis and scrotum and allow sexual rehabilitation. PMID:24669133

  19. Chest pain in children.

    PubMed Central

    Leung, A. K.; Robson, W. L.; Cho, H.

    1996-01-01

    Chest pain is usually a benign symptom in children. The most common identifiable causes are musculoskeletal. Often, no cause can be identified. Cardiac disorders are uncommon causes of chest pain children. Most causes can be diagnosed from history and physical examination. Treatment should be directed at the underlying cause. For idiopathic chest pain, reassurance and regular follow-up examinations are important. PMID:8704491

  20. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  1. American College of Chest Physicians

    MedlinePlus

    ... of Certification (MOC) CHEST GAIN NSCLC CHEST SEEK Innovation, Simulation, and Training Center Professional Representative Education Program ( ... of Certification (MOC) CHEST GAIN NSCLC CHEST SEEK Innovation, Simulation, and Training Center Professional Representative Education Program ( ...

  2. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. PMID:27178343

  3. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia.

    PubMed

    Song, X J; Hu, S J; Greenquist, K W; Zhang, J M; LaMotte, R H

    1999-12-01

    Chronic compression of the dorsal root ganglion (CCD) was produced in adult rats by implanting a stainless steel rod unilaterally into the intervertebral foramen, one rod at L(4) and another at L(5). Two additional groups of rats received either a sham surgery or an acute injury consisting of a transient compression of the ganglion. Withdrawal of the hindpaw was used as evidence of a nocifensive response to mechanical and thermal stimulation of the plantar surface. In addition, extracellular electrophysiological recordings of spontaneous discharges were obtained from dorsal root fibers of formerly compressed ganglia using an in vitro nerve-DRG-dorsal root preparation. The mean threshold force of punctate indentation and the mean threshold temperature of heating required to elicit a 50% incidence of foot withdrawal ipsilateral to the CCD were significantly lower than preoperative values throughout the 35 days of postoperative testing. The number of foot withdrawals ipsilateral to the CCD during a 20-min contact with a temperature-controlled floor was significantly increased over preoperative values throughout postoperative testing when the floor was 4 degrees C (hyperalgesia) and, to a lesser extent, when it was 30 degrees C (spontaneous pain). Stroking the foot with a cotton wisp never elicited a reflex withdrawal before surgery but did so in most rats tested ipsilateral to the CCD during the first 2 postoperative weeks. In contrast, the CCD produced no changes in responses to mechanical or thermal stimuli on the contralateral foot. The sham operation and acute injury produced no change in behavior other than slight, mechanical hyperalgesia for approximately 1 day, ipsilateral to the acute injury. Ectopic spontaneous discharges generated within the chronically compressed ganglion and, occurring in the absence of blood-borne chemicals and without an intact sympathetic nervous system, were recorded from neurons with intact, conducting, myelinated or unmyelinated

  4. Mechanical response of porcine skin under compression from low to high strain rates

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Butler, Ben; Williams, Alun; Brown, Katherine; Proud, William

    2013-06-01

    Uniaxial compression experiments were performed on fresh porcine skin samples at different strain rates to study the stress-strain response. Low strain rate experiments were performed with an Instron 5566, while high strain rates were achieved using a Split Hopkinson Pressure Bar system. Magnesium bars and semiconductor strain gauges were used respectively to maximize the signal transmission from porcine skin to the output bar and to allow the signal measurement. Skin samples were harvested from different area of the animal to investigate the heterogeneity of such material. The experimental results showed that the mechanical response of skin in compression is strongly dependent on the strain rate of loading and on the location from which the samples were collected. Specimens collected from the rump showed a stiffer response compared to samples harvested from the thigh. Finally, a histological analysis of the samples post compression was carried out to examine the extent of tissue damage as a function of strain rate. This work is supported by the Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK.

  5. Compressive mechanical properties of Sm123 bulk superconductor at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Murakami, A.; Katagiri, K.; Kan, R.; Miyata, H.; Shoji, Y.; Noto, K.; Iwamoto, A.; Mito, T.

    2005-10-01

    In order to investigate the compressive mechanical properties of a single-grain Sm123 bulk superconductor at cryogenic temperature, compressive tests at liquid nitrogen temperature on small specimens with the dimensions of 3 × 3 × 8 mm 3 cut from the bulk with 45 mm in diameter and 15 mm in thickness were carried out. Due to the closure of pre-existing micro-cracks perpendicular to the c-axis, the average Young’s modulus in the c-axis, 93 GPa, was lower than that in the direction perpendicular to the c-axis, 150 GPa. While the former was higher than the value at room temperature (RT), 75 GPa, the latter was slightly lower than that, 165 GPa. The compressive strength in the c-axis, 466 MPa, was higher than that in the direction perpendicular to the c-axis, 368 MPa. This anisotropy is also ascribed to the pre-existing micro-cracks associated with the fracture mode. Both the former and the latter were higher than the values at RT, 350 and 335 MPa, respectively. Most of the specimens loaded in perpendicular to the c-axis fractured along the plane perpendicular to the c-axis into a few pieces. The specimen loaded in the c-axis fractured into many small fragments, although the specimen with extraordinarily low strength fractured in a similar mode as mentioned above.

  6. Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting.

    PubMed

    Jenei, Péter; Choi, Hyelim; Tóth, Adrián; Choe, Heeman; Gubicza, Jenő

    2016-10-01

    Pure Ti and Ti-5%W foams were prepared via freeze casting. The porosity and grain size of both the materials were 32-33% and 15-17µm, respectively. The mechanical behavior of the foams was investigated by uniaxial compression up to a plastic strain of ~0.26. The Young׳s moduli of both foams were ~23GPa, which was in good agreement with the value expected from their porosity. The Young׳s moduli of the foams were similar to the elastic modulus of cortical bones, thereby eliminating the osteoporosis-causing stress-shielding effect. The addition of W increased the yield strength from ~196MPa to ~235MPa. The microstructure evolution in the grains during compression was studied using electron backscatter diffraction (EBSD) and X-ray line profile analysis (XLPA). After compression up to a plastic strain of ~0.26, the average dislocation densities increased to ~3.4×10(14)m(-2) and ~5.9×10(14)m(-2) in the Ti and Ti-W foams, respectively. The higher dislocation density in the Ti-W foam can be attributed to the pinning effect of the solute tungsten atoms on dislocations. The experimentally measured yield strength was in good agreement with the strength calculated from the dislocation density and porosity. This study demonstrated that the addition of W to Ti foam is beneficial for biomedical applications, because the compressive yield strength increased while its Young׳s modulus remained similar to that of cortical bones. PMID:27469602

  7. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  8. Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide.

    PubMed

    Gao, Hong-fei; Zhang, Shu-hai; Ren, Fu-de; Gou, Rui-jun; Han, Gang; Wu, Jing-bo; Ding, Xiong; Zhao, Wen-hu

    2016-05-01

    Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the a-c face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the b-c face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB. PMID:27094730

  9. Quantitative mechanical analysis of thin compressible polymer monolayers on oxide surfaces.

    PubMed

    Huang, Qian; Yoon, Ilsun; Villanueva, Josh; Kim, Kanguk; Sirbuly, Donald J

    2014-10-28

    A clear understanding of the mechanical behavior of nanometer thick films on nanostructures, as well as developing versatile approaches to characterize their mechanical properties, are of great importance and may serve as the foundation for understanding and controlling molecular interactions at the interface of nanostructures. Here we report on the synthesis of thin, compressible polyethylene glycol (PEG) monolayers with a wet thickness of <20 nm on tin dioxide (SnO2) nanofibers through silane-based chemistries. Nanomechanical properties of such thin PEG films were extensively investigated using atomic force microscopy (AFM). In addition, tip-sample interactions were carefully studied, with different AFM tip modifications (i.e., hydrophilic and hydrophobic) and in different ionic solutions. We find that the steric forces dominate the tip-sample interactions when the polymer film is immersed in solution with salt concentrations similar to biological media (e.g., 1x phosphate buffer solution), while van der Waals and electrostatic forces have minimal contributions. A Dimitriadis thin film polymer compression model shows that the linear elastic regime is reproducible in the initial 50% indentation of these films which have tunable Young's moduli ranging from 5 MPa for the low molecular weight films to 700 kPa for the high molecular weight PEG films. Results are compared with the same PEG films deposited on silicon substrates which helped quantify the structural properties and understand the relationship between the structural and the mechanical properties of PEG films on the SnO2 fibers. PMID:25157609

  10. Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Vogler, Tracy J.

    2015-06-01

    In most porous materials, void collapse during shock compression couples mechanical energy to thermal energy. Increased temperature drives up pressures and lowers densities in the final Hugoniot states as compared to full-density samples. Some materials, however, exhibit an anomalous enhanced densification in their Hugoniot states when porosity is introduced. We have recently shown that silicon is such a material, and demonstrated a molecular mechanism for the effect using molecular simulation. We will review results from large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniotstat simulations of shock compressed porous silicon, highlighting the mechanism by which porosity produces local shear which nucleate partial phase transition and localized melting at shock pressures below typical thresholds in these materials. Further, we will characterize the stress states and strength of the material as a function of porosity from 5 to 50 percent and with various porosity microstructures. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Nonlinear elastic behavior and failure mechanism of polyhedral graphite particles undergoing uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhang, P.; Fu, Q. Q.; Li, X. F.; Zhao, X.; Song, X. L.

    2014-08-01

    Load-displacement responses and ultimate strength of polyhedral graphite particles (PGPs) undergoing in situ nano-compression at ambient temperature have been studied. The dynamic responses of PGPs to uniaxial loads exhibit a typical nonlinear elastic behavior for graphitic nanomaterials. Based on the analysis of stress-strain relationship, the intrinsic strength is slightly larger than actual ultimate strength, indicating the mechanical properties influenced by the initial defects in PGPs. For a given case, compressive Young's modulus E and third-order elastic modulus D achieve to 12.8 GPa and -13.9 GPa, respectively. Weibull probability analysis confirmed its broad range of structural defects inside PGPs and mechanical properties are sensitive to initial defects. The values of ultimate strength of tested PGPs with diameter of 150-400 nm fall within 2-4.5 GPa, which are in the range between shear elastic modulus C44 of turbo-g (minimum) and C44 of hex-g (maximum) in the literature. The deformation and failure mechanisms are discussed and rationalized in terms of structural factors and elastic moduli of perfect graphite crystals.

  12. Analysis of an evaporator-condenser-separated mechanical vapor compression system

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Yulong; Chen, Jiang

    2013-04-01

    An evaporator-condenser-separated mechanical vapor compression (MVC) system was presented. The better effect of descaling and antiscaling was obtained by the new system. This study focused on the method of thermodynamic analysis, and the energy and exergy flow diagrams were established by using the first and second law of thermodynamics analysis. The results show that the energy utilization rate is very high and the specific power consumption is low. Exergy analysis indicates that the exergy efficiency is low, and the largest exergy loss occurs within the evaporator -condenser and the compressor.

  13. Mechanical behavior of human embryonic stem cell pellet under unconfined compression.

    PubMed

    Ma, Gang; Petersen, Erik; Leong, Kam W; Liao, Kin

    2012-05-01

    As a prelude to the understanding of mechanotransduction in human embryonic stem cell (hESC) differentiation, the mechanical behavior of hESCs in the form of cell pellet is studied. The pellets were tested after 3 or 5 weeks of cell culture in order to demonstrate the effect of the duration of cell culture on the mechanical properties of the pellets. A micromechanical tester was used to conduct unconfined compression on hESC pellet, and experimental, numerical, and analytical methods were combined to determine the mechanical properties of hESC pellet. It is assumed that the mechanical behavior of hESC pellets can be described by an isotropic, linear viscoelastic model consisting of a spring and two Maxwell units in parallel, and the Poisson's ratio of the hESC pellet is constant based on pellet deformation in the direction perpendicular to the compression direction. Finite element method (FEM) simulation was adopted to determine the values of Poisson's ratio and the five parameters contained in the viscoelastic model. The variations of Poisson's ratio and the initial elastic modulus are found to be larger compared with those of the four other parameters. Results show that longer duration of cell culture leads to higher modulus of hESC pellet. The effect of pellet size error on the values of mechanical parameters determined is studied using FEM simulation, and it is found that the effect of size error on Poisson's ratio and initial elastic modulus is much larger than that on the other parameters. PMID:21858691

  14. A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications

    NASA Astrophysics Data System (ADS)

    Luo, Zhaoyu; Plomer, Max; Lu, Tianfeng; Som, Sibendu; Longman, Douglas E.

    2012-04-01

    Biodiesel is a promising alternative fuel for compression ignition (CI) engines. It is a renewable energy source that can be used in these engines without significant alteration in design. The detailed chemical kinetics of biodiesel is however highly complex. In the present study, a skeletal mechanism with 123 species and 394 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decanoate and n-heptane was developed for simulations of 3-D turbulent spray combustion under engine-like conditions. The reduction was based on an improved directed relation graph (DRG) method that is particularly suitable for mechanisms with many isomers, followed by isomer lumping and DRG-aided sensitivity analysis (DRGASA). The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K. The wide parameter range ensures the applicability of the skeletal mechanism under engine-like conditions. As such the skeletal mechanism is applicable for ignition at both low and high temperatures. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a significant reduction in size while still retaining good accuracy and comprehensiveness. The validations of ignition delay time, flame lift-off length and important species profiles were also performed in 3-D engine simulations and compared with the experimental data from Sandia National Laboratories under CI engine conditions.

  15. Mechanical compression and nucleus pulposus application on dorsal root Ganglia differentially modify evoked neuronal activity in the thalamus.

    PubMed

    Nilsson, Elin; Brisby, Helena; Rask, Katarina; Hammar, Ingela

    2013-06-01

    A combination of mechanical compression caused by a protruding disc and leakage of nucleus pulposus (NP) from the disc core is presumed to contribute to intervertebral disc hernia-related pain. Experimental models of disc hernia including both components have resulted in changes in neuronal activity at the level of the dorsal root ganglion (DRG) and spinal cord, but changes within the brain have been less well studied. However, acute application of NP to a DRG without mechanical compression rapidly increases neuronal activity in the thalamus, a major brain relay nucleus processing information from sensory pathways including ascending nociceptive tracts. The combination of mechanical compression and NP might therefore result in further increases in central neuronal activity. Using an experimental disc herniation rat model including both mechanical compression and NP the present study aimed to investigate changes in neuronal activity in the contralateral thalamic ventral posterior lateral nucleus in vivo. Measurements were obtained while electrically stimulating the ipsilateral sciatic nerve at Aδ fiber intensities. The L4 DRG was subjected to light mechanical compression and NP exposure, and acute changes in evoked thalamic responses were recorded for up to 40 min. In order to compare effects in naïve animals with effects following a longer period of NP exposure, animals that were either disc-punctured or sham-operated 24 h previously were also included. In all animals, light mechanical compression of the DRG depressed the number of evoked neuronal responses. Prior NP exposure resulted in less potent changes following mechanical compression (80% of baseline) than that observed in naïve animals (50%). During the subsequent NP application, the number of evoked responses compared to baseline increased in pre-exposed animals (to 87%) as well as in naïve animals (72%) in which the removal of the mechanical compression resulted in a further increase (106%). The

  16. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  17. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    PubMed

    Perepelyuk, Maryna; Chin, LiKang; Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B; Janmey, Paul A; Wells, Rebecca G

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  18. A Current Review of Mechanical Compression and Its Role in Venous Thromboembolic Prophylaxis in Total Knee and Total Hip Arthroplasty.

    PubMed

    Pierce, Todd P; Cherian, Jeffrey J; Jauregui, Julio J; Elmallah, Randa K; Lieberman, Jay R; Mont, Michael A

    2015-12-01

    Interest in mechanical compression for venous thromboembolic disease prophylaxis has increased over the last several years because of concerns related to bleeding complications associated with chemoprophylaxis. However, the research evaluating compression is clearly not definitive. Therefore, this review aims to: (1) summarize methods of compression; (2) compare AAOS, ACCP, and SCIP guidelines; and (3) make recommendations regarding usage. Below-the-knee devices have demonstrated the most efficacy with multiple guidelines recommending usage. Efficacy and compliance may be improved with the use of mobile devices. PMID:26048728

  19. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix.

    PubMed

    Zhu, Youjia; Wu, Hua; Sun, Shaofa; Zhou, Ting; Wu, Jingjing; Wan, Ying

    2014-08-01

    Collagen, chitosan-polycaprolactone (CH-PCL) copolymer with PCL content of around 40wt% and chondroitin sulfate (CS) were mixed together at various ratios to prepare collagen/CH-PCL/CS composites and the resulting composites were used to build stratified porous scaffolds that are potentially applicable for articular cartilage repair. The ternary composites were designed in such a way that collagen content in the scaffolds decreased from the top layer to the bottom layer while the content of CH-PCL and CS altered in a reversed trend in order to reach partial similarity to cartilage matrix in the composition of main components. Porous structures inside collagen/CH-PCL/CS scaffolds were constructed using a low-temperature deposition processing technique and graded average pore-size and porosity for the scaffolds were established. Such produced scaffolds were further crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide under optimized conditions, and the obtained scaffolds showed well-defined elastic compressive properties. Compressive modulus (E) and stress at 10% strain (σ10) of full scaffolds in wet state reached about 2.8MPa and 0.3MPa, respectively, and meanwhile, E and σ10 of layers inside hydrated scaffolds changed in a gradient-increased manner from the top layer to the bottom layer with significant differences between contiguous layers, which partially mimics compressive mechanical properties of cartilage matrix. In addition, in vitro culture of cell-scaffold constructs exhibited that scaffolds were able to well support the ingrowth and migration of seeded cells, and cells also showed relatively uniform distribution throughout the scaffolds. These results suggest that the presently developed collagen/CH-PCL/CS scaffolds have promising potential for applications in articular cartilage repair. PMID:24793172

  20. Mechanism for amorphization of boron carbide B4C under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B11C-CBC, and B12-CCC, where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that the B11C-CBC (B12-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B11C and B12 icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (Cij) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.

  1. Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression

    SciTech Connect

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that the B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.

  2. Detailed Chemical Kinetic Reaction Mechanisms for Autoignition of Isomers of Heptane Under Rapid Compression

    SciTech Connect

    Westbrook, C K; Pitz, W J; Boercker, J E; Curran, H J; Griffiths, J F; Mohamed, C; Ribaucour, M

    2001-12-17

    Detailed chemical kinetic reaction mechanisms are developed for combustion of all nine isomers of heptane (C{sub 7}H{sub 16}), and these mechanisms are tested by simulating autoignition of each isomer under rapid compression machine conditions. The reaction mechanisms focus on the manner in which the molecular structure of each isomer determines the rates and product distributions of possible classes of reactions. The reaction pathways emphasize the importance of alkylperoxy radical isomerizations and addition reactions of molecular oxygen to alkyl and hydroperoxyalkyl radicals. A new reaction group has been added to past models, in which hydroperoxyalkyl radicals that originated with abstraction of an H atom from a tertiary site in the parent heptane molecule are assigned new reaction sequences involving additional internal H atom abstractions not previously allowed. This process accelerates autoignition in fuels with tertiary C-H bonds in the parent fuel. In addition, the rates of hydroperoxyalkylperoxy radical isomerization reactions have all been reduced so that they are now equal to rates of analogous alkylperoxy radical isomerizations, significantly improving agreement between computed and experimental ignition delay times in the rapid compression machine. Computed ignition delay times agree well with experimental results in the few cases where experiments have been carried out for specific heptane isomers, and predictive model calculations are reported for the remaining isomers. The computed results fall into three general groups; the first consists of the most reactive isomers, including n-heptane, 2-methyl hexane and 3-methyl hexane. The second group consists of the least reactive isomers, including 2,2-dimethyl pentane, 3,3-dimethyl pentane, 2,3-dimethyl pentane, 2,4-dimethyl pentane and 2,2,3-trimethyl butane. The remaining isomer, 3-ethyl pentane, was observed computationally to have an intermediate level of reactivity. These observations are generally

  3. Noncardiac chest pain: epidemiology, natural course and pathogenesis.

    PubMed

    Fass, Ronnie; Achem, Sami R

    2011-04-01

    Noncardiac chest pain is defined as recurrent chest pain that is indistinguishable from ischemic heart pain after a reasonable workup has excluded a cardiac cause. Noncardiac chest pain is a prevalent disorder resulting in high healthcare utilization and significant work absenteeism. However, despite its chronic nature, noncardiac chest pain has no impact on patients' mortality. The main underlying mechanisms include gastroesophageal reflux, esophageal dysmotility and esophageal hypersensitivity. Gastroesophageal reflux disease is likely the most common cause of noncardiac chest pain. Esophageal dysmotility affects only the minority of noncardiac chest pain patients. Esophageal hypersensitivity may be present in non-GERD-related noncardiac chest pain patients regardless if esophageal dysmotility is present or absent. Psychological co-morbidities such as panic disorder, anxiety, and depression are also common in noncardiac chest pain patients and often modulate patients' perception of disease severity. PMID:21602987

  4. Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Chan; Zhang, Jun-Pu; Fuh, Yiin-Kuen

    2014-01-01

    Experiments including electrical, mechanical and morphological aspects under compression in the range of 0-40% have been carried out on four potential materials for liquid diffusion layer (LDL) of vanadium redox flow battery (VRB) (including three widely used carbon felt and one recently utilized metal foam) in order to better understand the influence of the fundamental properties on the battery performance. We experimentally demonstrate that the electrical contact resistance is predominately determined by the clamping force. It is observed that increasing the stress applied on the carbon felt, which is of high interest for the durability of the membrane electrode assembly (MEA), has moreover a positive effect on their performance due to the reduced contact resistance. However, a simultaneously reduced porosity is also recorded and possibly detrimental to the mass transport of vanadium electrolyte. Moreover, the intrusion of carbon felts under compression is also characterized. Experimental results show that with the clamping force increases, both the porosity of the carbon felts underneath the rib and channel volume decrease, and this can be mainly attributed to the deformation of the carbon felts and resultant changed of the void volume as well as intrusion.

  5. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. PMID:21507747

  6. Failure analysis of porcupine quills under axial compression reveals their mechanical response during buckling.

    PubMed

    Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego

    2014-11-01

    Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling. PMID:25123434

  7. Computer-aided study of the mechanical behavior of the jaw bone fragments under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana V.

    2016-08-01

    The article presents the calculated results of the mechanical behavior of simulative bone mesovolumes under uniaxial compression with their architectonics corresponding to the human jaw bone fragments. The results of the calculation show that changes in the structure and mineral content of the bone fragments can lead to the change of their prevailing deformation response. New effective parameters were introduced to reflect the character of the distribution of stresses and strains in the bone mesovolumes. Implants are to be created and selected to correspond to the offered parameters and longitudinal modulus of elasticity of bone mesovolumes in order to maintain the stress and strain state existing in bone macrovolume during the implantation and in order to avoid bone restructuring through its borderline resorption.

  8. Compression strength failure mechanisms in unidirectional composite laminates containing a hole

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1993-01-01

    Experiments on graphite-epoxy laminated plates containing unloaded small holes show that these laminates are notch insensitive. That is, the uniaxial strength of these laminates with small holes exceeds the strength predicted by a point stress criterion using the stress concentration factor for the in-plane stress field. Laminates containing large holes exhibit notch sensitive behavior and consequently their strength is reasonably well predicted by the stress concentration effect. This hole size effect is manifested both in tension and in compression. Apparently, some mechanism must cause in-plane stress relief for laminates containing small holes. The purpose of this research was to study the influence of geometric nonlinearity on the micromechanical response of a filamentary composite material in the presence of a strain gradient caused by a discontinuity such as a hole. A mathematical model was developed at the micromechanical level to investigate this geometrically nonlinear effect.

  9. Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material

    SciTech Connect

    Bejot, P.; Schmidt, B. E.; Legare, F.; Kasparian, J.; Wolf, J.-P.

    2010-06-15

    We numerically investigate the pulse compression mechanism in the infrared spectral range based on the successive action of nonlinear pulse propagation in a hollow-core fiber followed by linear propagation through bulk material. We found an excellent agreement of simulated pulse properties with experimental results at 1.8 {mu}m in the two-optical-cycle regime close to the Fourier limit. In particular, the spectral phase asymmetry attributable to self-steepening combined with self-phase modulation is a necessary prerequisite for subsequent compensation by the phase introduced by glass material in the anomalous dispersion regime. The excellent agreement of the model enabled simulating pressure and wavelength tunability of sub-two cycles in the range from 1.5 to 4 {mu}m with this cost-efficient and robust approach.

  10. Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting

    NASA Astrophysics Data System (ADS)

    Augustin, S.; Hieronymus, J.; Jung, P.; Hübers, H.-W.

    2015-05-01

    We investigate a single-pixel camera (SPC) that relies on non-mechanical scanning with a terahertz (THz) spatial light modulator (SLM) and Compressed Sensing (CS) for image generation. The camera is based on a 350 GHz multiplier source and a Golay cell detector. The SLM consists of a Germanium disc, which is illuminated by a halogen lamp. The light of the lamp is transmitted through a thin-film transistor (TFT) liquid crystal display (LCD). This enables the generation of light patterns on the Germanium disc, which in turn produce reflecting patterns for THz radiation. Using up to 1000 different patterns the pseudo-inverse reconstruction algorithm and the CS algorithm CoSaMP are evaluated with respect to image quality. It is shown that CS allows a reduction of the necessary measurements by a factor of three without compromising the image quality.

  11. Transforming powder mechanical properties by core/shell structure: compressible sand.

    PubMed

    Shi, Limin; Sun, Changquan Calvin

    2010-11-01

    Some active pharmaceutical ingredients possess poor mechanical properties and are not suitable for tableting. Using fine sand (silicon dioxide), we show that a core/shell structure, where a core particle (sand) is coated with a thin layer of polyvinylpyrrolidone (PVP), can profoundly improve powder compaction properties. Sand coated with 5% PVP could be compressed into intact tablets. Under a given compaction pressure, tablet tensile strength increases dramatically with the amount of coating. This is in sharp contrast to poor compaction properties of physical mixtures, where intact tablets cannot be made when PVP content is 20% or less. The profoundly improved tabletability of core/shell particles is attributed to the formation of a continuous three-dimensional bonding network in the tablet. PMID:20845444

  12. Vertebrae in compression: Mechanical behavior of arches and centra in the gray smooth-hound shark (Mustelus californicus).

    PubMed

    Porter, Marianne E; Long, John H

    2010-03-01

    In swimming sharks, vertebrae are subjected, in part, to compressive loads as axial muscles contract. We currently have no information about which vertebral elements, centra, arch cartilages, or both, actually bear compressive loads in cartilaginous vertebrae. To address this issue, the goal of this experiment was to determine the load-bearing ability of arch and centrum cartilages in compression, to determine the material properties of shark vertebrae, and to document fracture patterns in the centra with and without the arches. Intact vertebrae and vertebrae with the arch cartilages experimentally removed (centra alone) were subjected to compressive loading to failure at a single strain rate. The maximum compressive forces sustained by the vertebrae and the centra are statistically indistinguishable. Thus we conclude that under these testing conditions the arch does not bear appreciable loads. Independent evidence for this conclusion comes from the fact that vertebrae fail in compression at the centra, and not at the arches. Overall, the results of these mechanical tests suggest that the neural arches are not the primary load-bearing structure during axial compression. PMID:19862836

  13. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom

    PubMed Central

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T.

    2011-01-01

    Purpose: The authors previously introduced a methodology to generate a realistic three-dimensional (3D), high-resolution, computer-simulated breast phantom based on empirical data. One of the key components of such a phantom is that it provides a means to produce a realistic simulation of clinical breast compression. In the current study, they have evaluated a finite element (FE) model of compression and have demonstrated the effect of a variety of mechanical properties on the model using a dense mesh generated from empirical breast data. While several groups have demonstrated an effective compression simulation with lower density finite element meshes, the presented study offers a mesh density that is able to model the morphology of the inner breast structures more realistically than lower density meshes. This approach may prove beneficial for multimodality breast imaging research, since it provides a high level of anatomical detail throughout the simulation study. Methods: In this paper, the authors describe methods to improve the high-resolution performance of a FE compression model. In order to create the compressible breast phantom, dedicated breast CT data was segmented and a mesh was generated with 4-noded tetrahedral elements. Using an explicit FE solver to simulate breast compression, several properties were analyzed to evaluate their effect on the compression model including: mesh density, element type, density, and stiffness of various tissue types, friction between the skin and the compression plates, and breast density. Following compression, a simulated projection was generated to demonstrate the ability of the compressible breast phantom to produce realistic simulated mammographic images. Results: Small alterations in the properties of the breast model can change the final distribution of the tissue under compression by more than 1 cm; which ultimately results in different representations of the breast model in the simulated images. The model

  14. Deformation mechanism of basic rock during long-term compression: Area of HLW repository design, Chelyabinsk District, Russia

    SciTech Connect

    Petrov, V.A.; Zviagintsev, L.I.; Poluektov, V.V.

    1996-08-01

    A combination of ultrasound, mechanical and petrographic results for long-term experimental compression of greenschist facies porphyritic andesite tuffs indicate a deformation mechanism that depends upon the mineral composition, textural-structural features of the rocks and the orientation of compression relative to the rock textures. Three dry samples of rock were investigated. Coaxial compression of a massive sample for 816 hours and a foliated sample for 1,176 hours (pressure orthogonal to foliation) is characterized by solidification when the rocks are temporarily metastable. Compressive strength of the first sample is 850 kg/cm{sup 2} and of the second one, 800 kg/cm{sup 2}. Experimentally, the rock behavior changes from a plastic to a brittle regime of deformation. In contrast, compression of the foliated sample parallel to foliation causes disintegration along the foliation within 480 hours without solidification. The rock is liable to brittle deformation and its compressive strength is 500 kg/cm{sup 2}. These results may have implications for characterization of near-field processes in connection with numerous subhorizontal zones of schistosity within the strata that are targeted for underground disposal of high-level wastes (HLW) in the Mayak radiochemical complex area.

  15. DIFFERENCES IN THE MECHANICAL BEHAVIOR OF CORTICAL BONE BETWEEN COMPRESSION AND TENSION WHEN SUBJECTED TO PROGRESSIVE LOADING

    PubMed Central

    Nyman, Jeffry S.; Ling, Huijie; Dong, Xuanliang; Wang, Xiaodu

    2008-01-01

    The hierarchical arrangement of collagen and mineral into bone tissue presumabley maximizes fracture resistance with respect to the predominant strain mode in bone. Thus, the ability of cortical bone to dissipate energy may differ between compression and tension for the same anatomical site. To test this notion, we subjected bone specimens from the anterior quadrant of human cadaveric tibiae to a progressive loading scheme in either uniaxial tension or uniaxial compression. One tension (dog-bone shape) and one compression specimen (cylindrical shape) were collected each from tibiae of nine middle aged male donors. At each cycle of loading-dwell-unloading-dwell-reloading, we calculated maximum stress, permanent strain, modulus, stress relaxation, time constant, and 3 pathways of energy dissipation for both loading modes. In doing so, we found that bone dissipated greater energy through the mechanisms of permanent and viscoelastic deformation in compression than in tension. On the other hand, however, bone dissipated greater energy through the release of surface energy in tension than in compression. Moreover, differences in the plastic and viscoelastic properties after yielding were not reflected in the evolution of modulus loss (an indicator of damage accumulation), which was similar for both loading modes. A possible explanation is that differences in damage morphology between the two loading modes may favor the plastic and viscolelastic energy dissipation in compression, but facilitate the surface energy release in tension. Such detailed information about failure mechanisms of bone at the tissue-level would help explain the underlying causes of bone fractures. PMID:19716106

  16. Synchronization of radiograph film exposure with the inspiratory pause. Effect on the appearance of bedside chest radiographs in mechanically ventilated patients.

    PubMed

    Langevin, P B; Hellein, V; Harms, S M; Tharp, W K; Cheung-Seekit, C; Lampotang, S

    1999-12-01

    The appearance of portable chest radiographs (CXRs) may be affected by changes in ventilation, particularly when patients are mechanically ventilated. Synchronization of the CXR with the ventilatory cycle should limit the influence of respiratory variation on the appearance of the CXR. This study evaluates the effect of synchronizing the CXR film exposure with ventilation on the appearance of the radiograph. Twenty-five patients who remained intubated postoperatively, were mechanically ventilated, and required a CXR were enrolled in this triple-blind, randomized prospective study. Each patient received one radiograph using conventional techniques and another using the interface. The sequence of the two films was randomized, and the two films were taken on the same patient within a few minutes of each other. Hence, each patient served as his own control and the position of the patient, source-film distance, intensity (Kvp), and duration of the exposure (mAs) were identical for the two films. Five board-certified radiologists were then asked to compare paired films for clarity of lines and tubes, definition of the pulmonary vasculature, visibility of the mediastinum, definition of the diaphragm, and degree of lung inflation. Radiologists were also asked to choose which films they preferred. A majority of board certified radiologists preferred CXRs taken with the interface in 21 of 25 patients (p < 0.0001). Furthermore, four of the five criteria evaluated were improved (p < 0.05) on synchronized CXRs. Synchronization of the bedside CXR with the end of inspiration ensures that they are always obtained at maximal inflation, which improves the appearance of a majority of radiographs by at least one of five criteria. PMID:10588630

  17. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia

    PubMed Central

    Chowdhary, Anuradha; Sharma, Cheshta; Kathuria, Shallu; Hagen, Ferry; Meis, Jacques F.

    2015-01-01

    Aspergillus fumigatus causes varied clinical syndromes ranging from colonization to deep infections. The mainstay of therapy of Aspergillus diseases is triazoles but several studies globally highlighted variable prevalence of triazole resistance, which hampers the management of aspergillosis. We studied the prevalence of resistance in clinical A. fumigatus isolates during 4 years in a referral Chest Hospital in Delhi, India and reviewed the scenario in Asia and the Middle East. Aspergillus species (n = 2117) were screened with selective plates for azole resistance. The isolates included 45.4% A. flavus, followed by 32.4% A. fumigatus, 15.6% Aspergillus species and 6.6% A. terreus. Azole resistance was found in only 12 (1.7%) A. fumigatus isolates. These triazole resistant A. fumigatus (TRAF) isolates were subjected to (a) calmodulin and β tubulin gene sequencing (b) in vitro antifungal susceptibility testing against triazoles using CLSI M38-A2 (c) sequencing of cyp51A gene and real-time PCR assay for detection of mutations and (d) microsatellite typing of the resistant isolates. TRAF harbored TR34/L98H mutation in 10 (83.3%) isolates with a pan-azole resistant phenotype. Among the remaining two TRAF isolates, one had G54E and the other had three non-synonymous point mutations. The majority of patients were diagnosed as invasive aspergillosis followed by allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. The Indian TR34/L98H isolates had a unique genotype and were distinct from the Chinese, Middle East, and European TR34/L98H strains. This resistance mechanism has been linked to the use of fungicide azoles in agricultural practices in Europe as it has been mainly reported from azole naïve patients. Reports published from Asia demonstrate the same environmental resistance mechanism in A. fumigatus isolates from two highly populated countries in Asia, i.e., China and India and also from the neighboring Middle East. PMID:26005442

  18. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    SciTech Connect

    Yuan, Fuping Wu, Xiaolei

    2014-12-15

    A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.

  19. Statistical mechanics description of an isotropic compression and its relationship to micromechanics

    NASA Astrophysics Data System (ADS)

    Oquendo, W. F.; Muñoz, J. D.

    2013-06-01

    Statistical mechanics of volumes have been used to describe static packings of grains, usually grown by deposition or after shaking. In the present work, we use molecular dynamic simulations and the Gamma distribution of volumes introduced by Aste et. al [1, 2] to explore the limit equilibrium state of isotropic compression on a monodisperse system of spheres with sliding and rolling friction. The objective is to investigate how the volume entropy S, the compactivity χ and the number of elementary cells per particle C/N change with the microscopic force parameters among grains. First, we found that the volume distribution of the Voronoi tessellation on the final state actually follows the Gamma distribution proposed by Aste et. al. Next, we found that both S and χ grow smoothly by a factor of two with an increasing sliding friction coefficient μs, which, therefore, could be used as tunning parameter for these statistical variables. They also grow with the rolling friction coefficient μr, but for a smaller factor and reaching saturation very early. In contrast, C/N is almost unaffected by μr (between the error bars) and saturates for very small values of μs, but it can be reduced in around a 10% by decreasing the reduced elastic constant κ in two orders of magnitude, a change that does leave χ almost unaffected. These results drive the attention on μs as the most meaningful variable to control the reorganizations of grains through the isotropic compression and, thus, the statistical properties of its final state.

  20. Dynamic Compression Effects on Immature Nucleus Pulposus: a Study Using a Novel Intelligent and Mechanically Active Bioreactor

    PubMed Central

    Li, Pei; Gan, Yibo; Wang, Haoming; Zhang, Chengmin; Wang, Liyuan; Xu, Yuan; Song, Lei; Li, Songtao; Li, Sukai; Ou, Yangbin; Zhou, Qiang

    2016-01-01

    Background: Previous cell culture and animal in vivo studies indicate the obvious effects of mechanical compression on disc cell biology. However, the effects of dynamic compression magnitude, frequency and duration on the immature nucleus pulposus (NP) from an organ-cultured disc are not well understood. Objective: To investigate the effects of a relatively wide range of compressive magnitudes, frequencies and durations on cell apoptosis and matrix composition within the immature NP using an intelligent and mechanically active bioreactor. Methods: Discs from the immature porcine were cultured in a mechanically active bioreactor for 7 days. The discs in various compressive magnitude groups (0.1, 0.2, 0.4, 0.8 and 1.3 MPa at a frequency of 1.0 Hz for 2 hours), frequency groups (0.1, 0.5, 1.0, 3.0 and 5.0 Hz at a magnitude of 0.4 MPa for 2 hours) and duration groups (1, 2, 4 and 8 hours at a magnitude of 0.4 MPa and frequency of 1.0 Hz) experienced dynamic compression once per day. Discs cultured without compression were used as controls. Immature NP samples were analyzed using the TUNEL assay, histological staining, glycosaminoglycan (GAG) content measurement, real-time PCR and collagen II immunohistochemical staining. Results: In the 1.3 MPa, 5.0 Hz and 8 hour groups, the immature NP showed a significantly increase in apoptotic cells, a catabolic gene expression profile with down-regulated matrix molecules and up-regulated matrix degradation enzymes, and decreased GAG content and collagen II deposition. In the other compressive magnitude, frequency and duration groups, the immature NP showed a healthier status regarding NP cell apoptosis, gene expression profile and matrix production. Conclusion: Cell apoptosis and matrix composition within the immature NP were compressive magnitude-, frequency- and duration-dependent. The relatively high compressive magnitude or frequency and long compressive duration are not helpful for maintaining the healthy status of an

  1. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. PMID:26995618

  2. Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2011-05-01

    Magnesium single crystal samples are compressed at room temperature under quasistatic (˜0.001 s-1) loading in a universal testing machine and dynamic (430, 1000, and 1200 s-1) loading in a split Hopkinson pressure bar system. Stress-strain curves show that (a) the fracture strain slightly increases with the strain rate; and (b) the maximum strength and strain hardening rate increase significantly when the testing changes from quasistatic to dynamic, although they do not vary much when the strain rate for dynamic testing varies in the range of 430-1200 s-1. The operation of the secondary pyramidal slip system is the dominating deformation mechanism, which leads to a fracture surface with an angle of ˜42° with respect to the loading axial direction. A theoretical material model based on Johnson-Cook law is also derived. The model includes the strain hardening and strain rate hardening terms, and provides the stress-strain relations matching with the experimental results. Finite element simulations for the strain rates used in the experiments predict the mechanical responses of the material that agree well with the experimental data.

  3. Chest Injuries and Disorders

    MedlinePlus

    ... your neck and your abdomen. It includes the ribs and breastbone. Inside your chest are several organs, ... and collapsed lung Pleural disorders Esophagus disorders Broken ribs Thoracic aortic aneurysms Disorders of the mediastinum, the ...

  4. Chest CT Scan

    MedlinePlus

    ... pictures to create a very detailed, three-dimensional (3D) model of organs. Sometimes, a substance called contrast dye is injected into a vein in your arm for the CT scan. This substance highlights areas in your chest, which ...

  5. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

    PubMed

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-10-01

    Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies. PMID:27434651

  6. Mechanical behavior of twinned SiC nanowires under combined tension-torsion and compression-torsion strain

    SciTech Connect

    Li, Zhijie; Wang, Shengjie; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2010-07-01

    The mechanical behavior of twinned silicon carbide (SiC) nanowires under combined tension-torsion and compression-torsion is investigated using molecular dynamics simulations with an empirical potential. The simulation results show that both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading. The torsion rate has no effect on the elastic properties of the twinned SiC nanowires. The collapse of the twinned nanowires takes place in a twin stacking fault of the nanowires.

  7. Mechanical consequences of allergic induced remodeling on mice airway resistance and compressibility.

    PubMed

    Novali, Mauro; Shalaby, Karim H; Robichaud, Annette; Benedetti, Andrea; Fereydoonzad, Liah; McGovern, Toby K; Schuessler, Thomas F; Martin, James G

    2015-11-01

    The effect of remodeling on airway function is uncertain. It may affect airway compressibility during forced expirations differently than airflow resistance, providing a tool for its assessment. The aim of the current study was to compare the effects of acute and chronic antigen challenge on methacholine-induced bronchoconstriction assessed from resistance and maximal tidal expiratory flow. Balb/C mice were sensitized with ovalbumin (OVA) and challenged either daily for three days with intra-nasal OVA or daily for 5 days and three times a week for 5 subsequent weeks. Acute and chronic allergen challenge induced airway hyperresponsiveness (AHR) to methacholine. However the relationship between maximal tidal expiratory flow and resistance during methacholine challenge was different between the two conditions, suggesting that the determinants of AHR are not identical following acute and chronic allergen exposure. We conclude that the contrast of changes in maximal tidal expiratory flow and respiratory resistance during methacholine-induced bronchoconstriction may allow the detection of the mechanical consequences of airway remodeling. PMID:26213118

  8. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing

    NASA Astrophysics Data System (ADS)

    Briot, Nicolas J.; Kennerknecht, Tobias; Eberl, Christoph; Balk, T. John

    2014-03-01

    In this work, the mechanical behaviour of millimetre-scale, bulk single crystalline, nanoporous gold at room temperature is reported for the first time. Tension and compression tests were performed with a custom-designed test system that accommodates small-scale samples. The absence of grain boundaries in the specimens allowed measurement of the inherent strength of millimetre-scale nanoporous gold in tension. The elastic modulus and strength values in tension and compression were found to be significantly lower than values measured with nanoindentation-based techniques and previously reported in the literature, but close to those reported for millimetre-scale polycrystalline samples tested using traditional compression techniques. Fracture toughness was found to be very low, in agreement with the macroscopic brittleness of nanoporous gold, but this is due to the localization of deformation to a narrow zone of ligaments, which individually exhibit significant plasticity and necking.

  9. Strain softening mechanism at meso scale during micro-compression in an ultrafine-grained pure copper

    SciTech Connect

    Xu, Jie; Li, Jianwei; Shan, Debin; Guo, Bin

    2015-09-15

    Strain softening behavior has been found at meso scale using micro-compression testing in an ultrafine-grained (UFG) pure copper by comparison with the typical strain hardening in conventional coarse-grained (CG) material. Microstructural observations show that grain size remains nearly the same including the fraction of high-angle grain boundaries during micro-compression in UFG pure copper. The Kernel average misorientation(KAM) distribution measured by electron backscatter diffraction (EBSD), as a statistical method, is applied to qualitatively evaluate dislocation density in the interior of the grains. It is suggested that the deformation mechanisms are dominated by grain boundary sliding and grain rotation accompanied by dislocation slip in UFG pure copper, which demonstrates that the strain softening behavior is primarily caused by dislocation annihilation during micro-compression.

  10. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Grinds

    SciTech Connect

    Mani, Sudhagar; Tabil, Lope Jr.; Sokhansanj, Shahabaddine

    2006-03-01

    Chemical composition, moisture content, bulk and particle densities, and geometric mean particle size were determined to characterize grinds from wheat and barley straws, corn stover and switchgrass. The biomass grinds were compressed for five levels of compressive forces (1000, 2000, 3000, 4000, 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wb) to establish the compression and relaxation data. Corn stover grind produced the highest compact density at low pressure during compression. Compressive force, particle size and moisture content of grinds significantly affected the compact density of barley straw, corn stover and switchgrass grinds. However, different particle sizes of wheat straw grind did not produce any significant difference on compact density. Barley straw grind had the highest asymptotic modulus among all other biomass grinds indicating that compact from barley straw grind were more rigid than those of other compacts. Asymptotic modulus increased with an increase in maximum compressive pressure. The trend of increase in asymptotic modulus (EA) with the maximum compressive pressure ( 0) was fitted to a second order polynomial equation. Keywords: Biomass grinds, chemical composition, compact density and asymptotic modulus

  11. Musculoskeletal chest wall pain

    PubMed Central

    Fam, Adel G.; Smythe, Hugh A.

    1985-01-01

    The musculoskeletal structures of the thoracic wall and the neck are a relatively common source of chest pain. Pain arising from these structures is often mistaken for angina pectoris, pleurisy or other serious disorders. In this article the clinical features, pathogenesis and management of the various musculoskeletal chest wall disorders are discussed. The more common causes are costochondritis, traumatic muscle pain, trauma to the chest wall, “fibrositis” syndrome, referred pain, psychogenic regional pain syndrome, and arthritis involving articulations of the sternum, ribs and thoracic spine. Careful analysis of the history, physical findings and results of investigation is essential for precise diagnosis and effective treatment. ImagesFig. 3Fig. 4Fig. 5 PMID:4027804

  12. A Review of Esophageal Chest Pain.

    PubMed

    Coss-Adame, Enrique; Rao, Satish S C

    2015-11-01

    Noncardiac chest pain is a term that encompasses all causes of chest pain after a cardiac source has been excluded. This article focuses on esophageal sources for chest pain. Esophageal chest pain (ECP) is common, affects quality of life, and carries a substantial health care burden. The lack of a systematic approach toward the diagnosis and treatment of ECP has led to significant disability and increased health care costs for this condition. Identifying the underlying cause(s) or mechanism(s) for chest pain is key for its successful management. Common etiologies include gastroesophageal reflux disease, esophageal hypersensitivity, dysmotility, and psychological conditions, including panic disorder and anxiety. However, the pathophysiology of this condition is not yet fully understood. Randomized controlled trials have shown that proton pump inhibitor therapy (either omeprazole, lansoprazole, or rabeprazole) can be effective. Evidence for the use of antidepressants and the adenosine receptor antagonist theophylline is fair. Psychological treatments, notably cognitive behavioral therapy, may be useful in select patients. Surgery is not recommended. There remains a large unmet need for identifying the phenotype and prevalence of pathophysiologic mechanisms of ECP as well as for well-designed multicenter clinical trials of current and novel therapies. PMID:27134590

  13. A Review of Esophageal Chest Pain

    PubMed Central

    Coss-Adame, Enrique

    2015-01-01

    Noncardiac chest pain is a term that encompasses all causes of chest pain after a cardiac source has been excluded. This article focuses on esophageal sources for chest pain. Esophageal chest pain (ECP) is common, affects quality of life, and carries a substantial health care burden. The lack of a systematic approach toward the diagnosis and treatment of ECP has led to significant disability and increased health care costs for this condition. Identifying the underlying cause(s) or mechanism(s) for chest pain is key for its successful management. Common etiologies include gastroesophageal reflux disease, esophageal hypersensitivity, dysmotility, and psychological conditions, including panic disorder and anxiety. However, the pathophysiology of this condition is not yet fully understood. Randomized controlled trials have shown that proton pump inhibitor therapy (either omeprazole, lansoprazole, or rabeprazole) can be effective. Evidence for the use of antidepressants and the adenosine receptor antagonist theophylline is fair. Psychological treatments, notably cognitive behavioral therapy, may be useful in select patients. Surgery is not recommended. There remains a large unmet need for identifying the phenotype and prevalence of pathophysiologic mechanisms of ECP as well as for well-designed multicenter clinical trials of current and novel therapies. PMID:27134590

  14. Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

    SciTech Connect

    ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G.; EWSUK,KEVIN G.

    2000-04-24

    In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

  15. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads.

    PubMed

    Chun, Keyoung Jin; Lee, Jong Yeop

    2014-01-01

    There are two objectives. One is to show the differences in the mechanical properties of various dental restorative materials compared to those of enamel and dentin. The other is to ascertain which dental restorative materials are more suitable for clinical treatments. Amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were processed as dental restorative material specimens. The specimens (width, height, and length of 1.2, 1.2, and 3.0 mm, respectively) were compressed at a constant loading speed of 0.1 mm/min. The maximum stress (115.0 ± 40.6, 55.0 ± 24.8, 291.2 ± 45.3, 274.6 ± 52.2, 2206.0 ± 522.9, and 953.4 ± 132.1 MPa), maximum strain (7.8% ± 0.5%, 4.0% ± 0.1%, 12.7% ± 0.8%, 32.8% ± 0.5%, 63.5% ± 14.0%, and 45.3% ± 7.4%), and elastic modulus (1437.5 ± 507.2, 1548.4 ± 583.5, 2323.4 ± 322.4, 833.1 ± 92.4, 3895.2 ± 202.9, and 2222.7 ± 277.6 MPa) were evident for amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy, respectively. The reference hardness value of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy was 90, 420, 130-135, 86.6-124.2, 1250, and 349, respectively. Since enamel grinds food, its abrasion resistance is important. Therefore, hardness value should be prioritized for enamel. Since dentin absorbs bite forces, mechanical properties should be prioritized for dentin. The results suggest that gold alloy simultaneously has a hardness value lower than enamel (74.8 ± 18.1), which is important in the wear of the opposing natural teeth, and higher maximum stress, maximum strain, and elastic modulus than dentin (193.7 ± 30.6 MPa, 11.9% ± 0.1%, 1653.7 ± 277.9 MPa, respectively), which are important considering the rigidity to absorb bite forces. PMID:25352921

  16. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads

    PubMed Central

    Lee, Jong Yeop

    2014-01-01

    There are two objectives. One is to show the differences in the mechanical properties of various dental restorative materials compared to those of enamel and dentin. The other is to ascertain which dental restorative materials are more suitable for clinical treatments. Amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were processed as dental restorative material specimens. The specimens (width, height, and length of 1.2, 1.2, and 3.0 mm, respectively) were compressed at a constant loading speed of 0.1 mm/min. The maximum stress (115.0 ± 40.6, 55.0 ± 24.8, 291.2 ± 45.3, 274.6 ± 52.2, 2206.0 ± 522.9, and 953.4 ± 132.1 MPa), maximum strain (7.8% ± 0.5%, 4.0% ± 0.1%, 12.7% ± 0.8%, 32.8% ± 0.5%, 63.5% ± 14.0%, and 45.3% ± 7.4%), and elastic modulus (1437.5 ± 507.2, 1548.4 ± 583.5, 2323.4 ± 322.4, 833.1 ± 92.4, 3895.2 ± 202.9, and 2222.7 ± 277.6 MPa) were evident for amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy, respectively. The reference hardness value of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy was 90, 420, 130–135, 86.6–124.2, 1250, and 349, respectively. Since enamel grinds food, its abrasion resistance is important. Therefore, hardness value should be prioritized for enamel. Since dentin absorbs bite forces, mechanical properties should be prioritized for dentin. The results suggest that gold alloy simultaneously has a hardness value lower than enamel (74.8 ± 18.1), which is important in the wear of the opposing natural teeth, and higher maximum stress, maximum strain, and elastic modulus than dentin (193.7 ± 30.6 MPa, 11.9% ± 0.1%, 1653.7 ± 277.9 MPa, respectively), which are important considering the rigidity to absorb bite forces. PMID:25352921

  17. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    NASA Astrophysics Data System (ADS)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  18. [Chest wall reconstruction after resection of malignant chest wall tumors].

    PubMed

    Ayabe, H; Oka, T; Akamine, S; Takahashi, T; Nagayasu, T

    1998-05-01

    Full-thickness chest wall resection is performed for complete removal of primary and secondary malignant chest wall tumors. Large defects of the chest wall after resection must be repaired to maintain adequate ventilation, to protect important intrathoracic structures, and to preserve cosmetic integrity. Various materials have been utilized over the years to replace the rigid chest wall. At present, Marlex mesh and a composite of Marlex mesh and methylmethacrylate are frequently used to reconstruct rigid chest wall defects. On the other hand, to replace the soft part of the chest wall and cover the rigid materials, pedicled muscle flaps, myocutaneous flaps, or omentum are used. Major pedicled flaps include the pectoralis major, rectus abdominis and latissimus dorsi muscular, and musculocutaneous flaps. Techniques are now available to repair any chest wall site, and to restore chest continuity in patients whose tumors are curatively resected. PMID:9656244

  19. The Protective Effects of Salubrinal on the Cartilage and Subchondral Bone of the Temporomandibular Joint under Various Compressive Mechanical Stimulations

    PubMed Central

    Zhang, Caixia; Chen, Sheng; Li, Huang

    2016-01-01

    Excessive mechanical loads on the temporomandibular joint (TMJ) can cause mandibular cartilage degradation and subchondral bone erosion, but the treatment of these conditions remains challenging. Salubrinal, which target eukaryotic translation initiation factor 2 alpha, has been shown to have multiple beneficial effects on skeletal tissue. Here, we examined the effect of a Salubrinal injection on the mandibular cartilage and subchondral bone of the TMJ under various compressive stresses. We conducted in vivo analyses in rat models using various compressive stresses (40 g and 80 g), and we observed time-related degeneration and pathological changes in the cartilage and subchondral bone of the TMJ at days 1, 3 and 7 through histological measurements, subcellular observation, and changes in proliferation and apoptosis. After the Salubrinal injection, the thickness of the cartilage recovered, and the pathological change was alleviated. In the Salubrinal/light (Sal/light) compressive stress group, the drug altered the proliferation and apoptosis of chondrocytes most significantly at day 1. In the Salubrinal/heavy (Sal/heavy) compressive stress group, the drug increased the proliferation of chondrocytes most significantly at day 1 and reduced the apoptosis of chondrocytes most significantly at day 7. Salubrinal also increased the area of the bone trabeculae and suppressed inflammatory responses and pathological change in the subchondral bone of the TMJ. Together, these results indicate that the administration of Salubrinal reduces apoptosis and strengthens the proliferation of chondrocyte to varying degrees at days 1, 3 and 7 under various compressive mechanical stresses, both of which contribute to the recovery of cartilage thickness and the alleviation of pathological change. Salubrinal also suppresses inflammatory responses and pathological change in the subchondral bone of the TMJ. PMID:27196267

  20. MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test.

    PubMed

    Knecht, Sven; Luechinger, Roger; Boesiger, Peter; Stüssi, Edgar

    2008-12-01

    The mechanical property of articular cartilage determines to a great extent the functionality of diarthrodial joints. Consequently, the early detection of mechanical and, thus, functional changes of cartilage is crucial for preventive measures to maintain the mobility and the quality of life of individuals. An alternative to conventional mechanical testing is the inverse finite element approach, enabling non-destructive testing of the tissue. We evaluated a method for the assessment of the equilibrium material properties of the patellar cartilage based on magnetic resonance imaging during patellofemoral compression. We performed ex vivo testing of two equine patellas with healthy cartilage, one with superficial defects, and one with synthetically degenerated cartilage to simulate a pre-osteoarthritic stage. Static compression with 400 N for 2 h resulted in morphological changes comparable to physiological in vivo deformations in humans. We observed a decrease of the equilibrium Young's modulus of the degenerated cartilage by -59%, which was in the range of the results from indentation (-74%) and confined compression tests (-58%). With the reported accuracy of magnetic resonance imaging and its reproducibility, the results indicate the potential to measure differences in Young's modulus with regard to cartilage degeneration and consequently to distinguish between healthy and pre-osteoarthritic cartilage. PMID:19037871

  1. Incidences of Deep Vein Thrombosis and Pulmonary Embolism after Total Knee Arthroplasty Using a Mechanical Compression Device with and without Low-Molecular-Weight Heparin

    PubMed Central

    Park, Sin Hyung; Ahn, Joong Hyeon; Park, Yong Bok; Lee, Sun Geun

    2016-01-01

    Purpose To investigate the incidence of thromboembolic events and complications related to bleeding after total knee arthroplasty (TKA) with a mechanical compression device alone or in combination with low-molecular-weight heparin (LMWH). Materials and Methods A total of 489 TKA patients (776 knees) were retrospectively reviewed for the incidence of thromboembolic events and complications related to bleeding. While 233 patients (354 knees) were treated with a mechanical compressive device without LMWH, 256 patients (422 knees) were treated with the mechanical compressive device along with LMWH. Results The incidences of deep vein thrombosis (DVT) and pulmonary embolism (PE) were 15 of 375 knees (4.0%) and 5 of 375 knees (1.3%), respectively, in the group that used only a mechanical compressive device, and 14 of 401 knees (3.4%) and 5 of 401 knees (1.2%), respectively, in the group that used the mechanical compressive device with LMWH. There was no significant difference between the two groups (p=0.125 and p=0.146, respectively). The postoperative hemovac drainage amount was 635±57 mL in the group with a mechanical compressive device only and 813±84 mL in the group with the device and LMWH; therefore, the amount of drainage was significantly greater in the latter group (p=0.013). Conclusions Mechanical compression alone for prophylaxis against DVT and PE after TKA can be an attractive option in Korean patients. PMID:27595075

  2. Bilateral mechanical and thermal hyperalgesia and tactile allodynia after chronic compression of dorsal root ganglion in mice.

    PubMed

    Chen, Rong-Gui; Kong, Wei-Wei; Ge, Da-Long; Luo, Ceng; Hu, San-Jue

    2011-08-01

    OBJECTIVE Low back pain is one of the most inextricable problems encountered in clinics. Animal models that imitate symptoms in humans are valuable tools for investigating low back pain mechanisms and the possible therapeutic applications. With the development of genetic technology in pain field, the possibility of mutating specific genes in mice has provided a potent tool for investigating the specific mechanisms of pain. The aim of the present study was to develop a mouse model of chronic compression of dorsal root ganglion (CCD), in which gene mutation can be applied to facilitate the studies of chronic pain. METHODS Chronic compression of L4 and L5 dorsal root ganglia was conducted in mice by inserting fine stainless steel rods into the intervertebral foramina, one at L4 and the other at L5. Mechanical allodynia and thermal hyperalgesia were examined with von Frey filaments and radiating heat stimulator, respectively. RESULTS The CCD mice displayed dramatic mechanical and thermal hyperalgesia as well as tactile allodynia in the hindpaw ipsilateral to CCD. In addition, this mechanical and thermal hyperalgesia as well as tactile allodynia was also found to spread to the contralateral hindpaw. CONCLUSION This model, combined with the possible genetic modification, will strengthen our knowledge of the underlying mechanisms of low back pain. It also favors the development of new treatment strategies for pain and hyperalgesia after spinal injury and other disorders which affect the dorsal root ganglion in humans. PMID:21788994

  3. Chest Pain (Beyond the Basics)

    MedlinePlus

    ... coronary arteries. Heart attack — A heart attack, or myocardial infarction (MI), occurs when the surface covering of a ... chest pain Criteria for the diagnosis of acute myocardial infarction Outpatient evaluation of the adult with chest pain ...

  4. Sonography of the Pediatric Chest.

    PubMed

    Goh, Yonggeng; Kapur, Jeevesh

    2016-05-01

    Traditionally, pediatric chest diseases are evaluated with chest radiography. Due to advancements in technology, the use of sonography has broadened. It has now become an established radiation-free imaging tool that may supplement plain-film findings and, in certain cases, the first-line modality for evaluation of the pediatric chest. This pictorial essay will demonstrate the diagnostic potential of sonography, review a spectrum of pediatric chest conditions, and discuss their imaging features and clinical importance. PMID:27009313

  5. Numerical study of mechanical behavior of ceramic composites under compression loading in the framework of movable cellular automaton method

    SciTech Connect

    Konovalenko, Igor S. Smolin, Alexey Yu. Konovalenko, Ivan S.; Promakhov, Vladimir V.; Psakhie, Sergey G.

    2014-11-14

    Movable cellular automaton method was used for investigating the mechanical behavior of ceramic composites under uniaxial compression. A 2D numerical model of ceramic composites based on oxides of zirconium and aluminum with different structural parameters was developed using the SEM images of micro-sections of a real composite. The influence of such structural parameters as the geometrical dimensions of layers, inclusions, and their spatial distribution in the sample, the volume content of the composite components and their mechanical properties (as well as the amount of zirconium dioxide that underwent the phase transformation) on the fracture, strength, deformation and dissipative properties was investigated.

  6. Approach to Pediatric Chest Radiograph.

    PubMed

    Jana, Manisha; Bhalla, Ashu Seith; Gupta, Arun Kumar

    2016-06-01

    Chest radiograph remains the first line imaging modality even today, especially in ICU settings. Hence proper interpretation of chest radiographs is crucial, which can be achieved by adopting a systematic approach and proper description and identification of abnormalities. In this review, the authors describe a short and comprehensive way of interpreting the pediatric chest radiograph. PMID:26983619

  7. Thermal Cycling and Degradation Mechanisms of Compressive Mica-based Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Yeong-Shyung ); Stevenson, Jeffry W. )

    2002-11-14

    Thermal cycling was conducted on the compressive mica seals at 800 degrees C in air. Thin ({approx}0-1 mm) Muscovite mica was pressed between a metal pipe and an alumina substrate and tested for leak rates at a stress of 100 psi in the plain (mica only) and the hybrid design.

  8. Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Chandross, Michael; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad L.; Hattar, Khalid; Kotula, Paul G.; Hall, Aaron C.

    2016-01-01

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

  9. Evaluation of Quantitative Magnetic Resonance Imaging, Biochemical and Mechanical Properties of Trypsin-Treated Intervertebral Discs Under Physiological Compression Loading

    PubMed Central

    Mwale, Fackson; Demers, Caroline N.; Michalek, Arthur J.; Beaudoin, Gilles; Goswami, Tapas; Beckman, Lorne; Iatridis, James C.; Antoniou, John

    2014-01-01

    Purpose To investigate the influence of targeted trypsin digestion and 16 hours compression loading on MR parameters and the mechanical and biochemical properties of bovine disc segments. Materials and Methods Twenty-two 3-disc bovine coccygeal segments underwent compression loading for 16 hours after the nucleus pulposus (NP) of each disc was injected with a solution of trypsin or buffer. The properties of the NP and annulus fibrosus (AF) tissues of each disc were analyzed by quantitative MRI, biochemical tests, and confined compression tests. Results Loading had a significant effect on the MR properties (T1, T2, T1ρ, MTR, ADC) of both the NP and AF tissues. Loading had a greater effect on the MR parameters and biochemical composition of the NP than trypsin. In contrast, trypsin had a larger effect on the mechanical properties. Our data also indicated that localized trypsin injection predominantly affected the NP. T1ρ was sensitive to loading and correlated with the water content of the NP and AF but not with their proteoglycan content. Conclusion Our studies indicate that physiological loading is an important parameter to consider and that T1ρ contributes new information in efforts to develop quantitative MRI as a noninvasive diagnostic tool to detect changes in early disc degeneration. PMID:18219615

  10. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.