Science.gov

Sample records for mechanical loads

  1. Transfer Mechanisms for Heavy Loads

    NASA Technical Reports Server (NTRS)

    Cassisi, V.

    1986-01-01

    Soft hydraulic system gently maneuvers loads. Upper and lower load-transfer mechanisms attach through mounting holes in vertical beam adjustable or gross positioning. Fine positioning of load accomplished by hydraulic cylinders that move trunnion support and trunnion clamp through short distances. Useful in transferring large loads in railroads, agriculture, shipping, manufacturing, and even precision assembly of large items.

  2. Load characteristics of mechanical pectoral fin

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroyoshi; Kato, Naomi; Suzumori, Koichi

    2008-05-01

    This paper describes the use of a three-motor driven mechanical pectoral fin as a new device for maneuvering and stabilizing an underwater vehicle. The mechanical pectoral fin consists of three servomotors generating feathering, rowing, and flapping motions. The load properties are analyzed experimentally. The mechanical pectoral fin can generate a control load in three dimensions. The effect of flexibility of the fin on the load is also investigated experimentally.

  3. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  4. Mechanical Predictors of Discomfort during Load Carriage

    PubMed Central

    Wettenschwiler, Patrick D.; Lorenzetti, Silvio; Stämpfli, Rolf; Rossi, René M.; Ferguson, Stephen J.; Annaheim, Simon

    2015-01-01

    Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury

  5. Mechanical Predictors of Discomfort during Load Carriage.

    PubMed

    Wettenschwiler, Patrick D; Lorenzetti, Silvio; Stämpfli, Rolf; Rossi, René M; Ferguson, Stephen J; Annaheim, Simon

    2015-01-01

    Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury

  6. Mechanically loaded myotubes affect osteoclast formation.

    PubMed

    Juffer, Petra; Jaspers, Richard T; Klein-Nulend, Jenneke; Bakker, Astrid D

    2014-03-01

    In response to mechanical loading skeletal muscle produces numerous growth factors and cytokines that enter the circulation. We hypothesized that myotubes produce soluble factors that affect osteoclast formation and aimed to identify which osteoclastogenesis-modulating factors are differentially produced by mechanically stimulated myotubes. C2C12 myotubes were subjected to mechanical loading by cyclic strain for 1 h, and postincubated with or without cyclic strain for 24 h. The effect of cyclic strain on gene expression in myotubes was determined by PCR. Conditioned medium (CM) was collected from cultures of unloaded and loaded myotubes and from MLO-Y4 osteocytes. CM was added to mouse bone marrow cells containing osteoclast precursors, and after 6 days osteoclasts were counted. Compared to unconditioned medium, CM from unloaded osteocytes increased osteoclast formation, while CM from unloaded myotubes decreased osteoclast formation. Cyclic strain strongly enhanced IL-6 expression in myotubes. CM from cyclically strained myotubes increased osteoclast formation compared to CM from unloaded myotubes, but this effect did not occur in the presence of an IL-6 antibody. In conclusion, mechanically loaded myotubes secrete soluble factors, among others IL-6, which affect osteoclast formation. These results suggest that muscle could potentially affect bone homeostasis in vivo via production of growth factors and/or cytokines. PMID:24264813

  7. Apparatus for loading shape memory gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2001-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  8. Load transfer mechanisms in anchored geosynthetic systems

    NASA Astrophysics Data System (ADS)

    Hryciw, Roman D.

    1990-12-01

    Success of an anchored geosynthetic system (AGS) depends on the satisfactory transfer of load between: the surface-deployed geosynthetic and anchors (typically ribbed reinforcing rods) driven into the slope; the geosynthetic and soil; and the anchors and soil. A study was performed to evaluate the load transfer mechanisms at these interfaces in an AGS. A mathematical model was developed for predicting the pullout resistance of plane ribbed inclusions. The model considered the contribution of both frictional and passive resistance components of pullout resistance. Optical observation of sand around the ribs was made to determine the behavior of soil around the moving ribs during pullout. A theoretical study disclosed that the optimum anchor orientation for stabilization of infinite slopes depends on several factors including slope angle and in-situ stresses. It typically ranges from 20 to 30 degree from the normal to the slope with the anchor driven upslope. An experimental study confirmed that the soil-geosynthetic interface friction angle may be correctly predicted from the residual or critical state friction angle of the sand. Equations were developed for load transfer at curved soil-fabric interfaces. An experimental study verified that the increases in soil stress with distance from the anchor may be predicted by the developed equations.

  9. Cellular accommodation and the response of bone to mechanical loading.

    PubMed

    Schriefer, Jennifer L; Warden, Stuart J; Saxon, Leanne K; Robling, Alexander G; Turner, Charles H

    2005-09-01

    Several mathematical rules by which bone adapts to mechanical loading have been proposed. Previous work focused mainly on negative feedback models, e.g., bone adapts to increased loading after a minimum strain effective (MES) threshold has been reached. The MES algorithm has numerous caveats, so we propose a different model, according to which bone adapts to changes in its mechanical environment based on the principle of cellular accommodation. With the new algorithm we presume that strain history is integrated into cellular memory so that the reference state for adaptation is constantly changing. To test this algorithm, an experiment was performed in which the ulnae of Sprague-Dawley rats were loaded in axial compression. The animals received loading for 15 weeks with progressively decreasing loads, increasing loads, or a constant load. The results showed the largest increases in geometry in the decreasing load group, followed by the constant load group. Bone formation rates (BFRs) were significantly greater in the decreasing load group during the first 2 weeks of the study as compared to all other groups (P<0.05). After the first few weeks of mechanical loading, the BFR in the loaded ulnae returned to the values of the nonloaded ulnae. These experimental results closely fit the predicted results of the cellular accommodation algorithm. After the initial weeks of loading, bone stopped responding so the degree of adaptation was proportional to the initial peak load magnitude. PMID:16023471

  10. Biaxial load effects in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Lee, J. D.; Eftis, J.

    1977-01-01

    It is found that the standard expressions for elastic stress and displacement in the crack-tip region (i.e., the so-called singular solution) cannot be considered to be approximations that are acceptable in a completely general sense. This conclusion is best illustrated by the instance of a biaxially loaded infinite sheet with a flat horizontal central crack, where the effect of load applied parallel to the plane of the crack appears entirely in the second terms of the series representations for local stresses and displacements. An elastoplastic finite-element analysis of the same biaxially loaded finite specimen geometry shows that the global energy release rate, the J-integral, the plastic stress and strain intensity factors (in the sense of Hilton and Hutchinson), and the size of the crack border region plastic yield, all have pronounced biaxial load dependence.

  11. Behavior of cracked cylinders under combined thermal and mechanical loading

    SciTech Connect

    Ignaccolo, S.

    1996-12-01

    Nuclear pressure vessels and pipings can be submitted in their life to severe mechanical and thermal loadings. Engineering methods easy to apply, but sufficiently accurate, are needed to assess the flaws. In the field of non-linear fracture mechanics a lot of work has been achieved for structures submitted to mechanical loadings. But for thermal loadings, and particularly for thermal gradients, only few contributions are available. The authors propose, here, to present the main results of a complete set of finite element computations, conducted in France by CEA, EDF and FRAMATOME, on cracked cylinders submitted to combined mechanical and thermal loads. The interaction between these two types of loads is analyzed in the cases of austenitic and ferritic structures. Moreover, these results are compared to the predictions obtained by simplified engineering methods (R6 procedure, J{sub SA16}, and J{sub EDF} approaches). Their domain of validity is also discussed.

  12. Honeycomb Core Permeability Under Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  13. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Sheng, Junjie; Liu, Lei; Wang, Yongquan; Jia, Shuhai

    2014-07-01

    This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.

  14. Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration.

    PubMed

    McDermott, Anna M; Mason, Devon E; Lin, Angela S P; Guldberg, Robert E; Boerckel, Joel D

    2016-09-01

    A common design constraint in functional tissue engineering is that scaffolds intended for use in load-bearing sites possess similar mechanical properties to the replaced tissue. Here, we tested the hypothesis that in vivo loading would enhance bone morphogenetic protein-2 (BMP-2)-mediated bone regeneration in the presence of a load-bearing PLDL scaffold, whose pores and central core were filled with BMP-2-releasing alginate hydrogel. First, we evaluated the effects of in vivo mechanical loading on bone regeneration in the structural scaffolds. Second, we compared scaffold-mediated bone regeneration, independent of mechanical loading, with alginate hydrogel constructs, without the structural scaffold, that have been shown previously to facilitate in vivo mechanical stimulation of bone formation. Contrary to our hypothesis, mechanical loading had no effect on bone formation, distribution, or biomechanical properties in structural scaffolds. Independent of loading, the structural scaffolds reduced bone formation compared to non-structural alginate, particularly in regions in which the scaffold was concentrated, resulting in impaired functional regeneration. This is attributable to a combination of stress shielding by the scaffold and inhibition of cellular infiltration and tissue ingrowth. Collectively, these data question the necessity of scaffold similarity to mature tissue at the time of implantation and emphasize development of an environment conducive to cellular activation of matrix production and ultimate functional regeneration. PMID:27208510

  15. HOW DO BONE CELLS SENSE MECHANICAL LOADING?

    PubMed Central

    Gusmão, Carlos Vinícius Buarque de; Belangero, William Dias

    2015-01-01

    Influenced by gravidity, bone tissue experiences stronger or lighter deformation according to the strength of the activities of daily life. Activities resulting in impact are particularly known to stimulate osteogenesis, thus reducing bone mass loss. Knowing how bone cells recognize the mechanical deformation imposed to the bone and trigger a series of biochemical chain reactions is of crucial importance for the development of therapeutic and preventive practices in orthopaedic activity. There is still a long way to run until we can understand the whole process, but current knowledge has shown a strong progression, with researches being conducted focused on therapies. For a mechanical sign to be transformed into a biological one (mechanotransduction), it must be amplified at cell level by the histological structure of bone tissue, producing tensions in cell membrane proteins (integrins) and changing their spatial structure. Such change activates bindings between these and the cytoskeleton, producing focal adhesions, where cytoplasmatic proteins are recruited to enable easier biochemical reactions. Focal adhesion kinase (FAK) is the most important one being self-activated when its structure is changed by integrins. Activated FAK triggers a cascade of reactions, resulting in the activation of ERK-1/2 and Akt, which are proteins that, together with FAK, regulate the production of bone mass. Osteocytes are believed to be the mechanosensor cells of the bone and to transmit the mechanical deformation to osteoblasts and osteoclasts. Ionic channels and gap junctions are considered as intercellular communication means for biochemical transmission of a mechanical stimulus. These events occur continuously on bone tissue and regulate bone remodeling. PMID:27022510

  16. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading

    NASA Astrophysics Data System (ADS)

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  17. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  18. Role of Integrin in Mechanical Loading of Osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Demsky, Caroline

    2000-01-01

    Mechanical forces generated by gravity, weightbearing, and muscle contraction play a key role in the genesis and maintenance of skeletal structure. The molecular mechanisms that mediate changes in osteoblast activity in response to altered patterns of skeletal loading are not known, and a better understanding of these processes may be essential for developing effective treatment strategies to prevent disuse osteoporosis. We have elucidated specific integrin/ECM (extracellular matrix) interactions that are required for osteoblast differentiation and survival and have developed a useful loading system to further explore the molecular basis of mechano-sensitivity of osteoblasts. The long term goal of our collaborative research is to understand how the ECM and cell adhesion proteins and integrins interaction to mediate the response of osteoblasts and their progenitors to mechanical loading. We suggest that integrin/ECM interactions are crucial for basic cellular processes, including differentiation and survival, as well as to participate in detecting and mediating cellular responses to mechanical stimuli.

  19. Mechanical response of ceramics to creep loading

    SciTech Connect

    Blumenthal, W.R.

    1983-08-01

    The mechanical response of small, semi-elliptical, identification-induced surface cracks in fine-grain alumina was studied. The deformation behavior of the crack tip region was monitored using crack opening and surface displacements. Results indicate values of the secondary creep exponent, n, between 1.5 and 2 with a temperature dependence consistent with secondary creep data from the same material. Crack growth was measured at 1300 and 1400/sup 0/C and a narrow power-law growth regime was revealed. Again the power-law exponent and activation energy were very close to creep values. Asymptotic behavior was exhibited near both K/sub Ic/ and K/sub th/, the crack growth threshold. The threshold occurred near 0.4 K/sub Ic/, independent of temperature. Crack tip damage in the form of grain boundary cavities growing by diffusion was responsible for crack extension. The damage also exerts a strong influence on the displacement field as predicted by recent theories. The crack growth threshold is preceded by a transition in the size and distribution of damage. At K/sub I/ near K/sub Ic/ the damage is restricted to a few facets directly ahead of the crack tip. Near K/sub th/ damage concentrates in side-lobes far ahead of the crack tip and at angles between 20/sup 0/ to 60/sup 0/ from the plane of the crack. The transition between frontal and side-lobe damage is anticipated to be moderately dependent on grain size. 34 figures.

  20. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, Richard L.; Casamajor, Alan B.; Parsons, Richard E.

    1982-01-01

    Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

  1. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  2. Commercial solar/load management experiment: New mechanical engineering building

    NASA Astrophysics Data System (ADS)

    Noble, J. M.

    1981-01-01

    The effects of load management heat recovery, thermal storage, and solar systems on energy usage and power demand profiles in the University of New Mexico's Mechanical Engineering Building are presented. Results were obtained from a year monitoring of the building's heating and cooling systems and recording of sensor signals by a computer based data acquisition system. A modified AXCESS Energy Analysis Program to simulate energy usage is detailed, and the development of perferred strategies for maximizing the building's load management capabilities is outlined.

  3. Mechanics and energetics of load carriage during human walking

    PubMed Central

    Huang, Tzu-wei P.; Kuo, Arthur D.

    2014-01-01

    Although humans clearly expend more energy to walk with an extra load, it is unclear what biomechanical mechanisms contribute to that increase. One possible contribution is the mechanical work performed on the body center of mass (COM), which simple models predict should increase linearly with added mass. The work should be performed primarily by the lower extremity joints, although in unknown distribution, and cost a proportionate amount of metabolic energy. We therefore tested normal adults (N=8) walking at constant speed (1.25 m s−1) with varying backpack loads up to 40% of body weight. We measured mechanical work (both performed on the COM and joint work from inverse dynamics), as well as metabolic energy expenditure through respirometry. Both measures of work were found to increase approximately linearly with carried load, with COM work rate increasing by approximately 1.40 W for each 1 kg of additional load. The joints all contributed work, but the greatest increase in positive work was attributable to the ankle during push-off (45–60% of stride time) and the knee in the rebound after collision (12–30% stride). The hip performed increasing amounts of negative work, near the end of stance. Rate of metabolic energy expenditure also increased approximately linearly with load, by approximately 7.6 W for each 1 kg of additional load. The ratio of the increases in work and metabolic cost yielded a relatively constant efficiency of approximately 16%. The metabolic cost not explained by work appeared to be relatively constant with load and did not exhibit a particular trend. Most of the increasing cost for carrying a load appears to be explained by positive mechanical work, especially about the ankle and knee, with both work and metabolic cost increasing nearly linearly with added mass. PMID:24198268

  4. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  5. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    SciTech Connect

    Maddocks, J.R.

    1995-05-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to {minus}184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool.

  6. Features of structural response of mechanically loaded crystallites to irradiation

    SciTech Connect

    Korchuganov, Aleksandr V.

    2015-10-27

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  7. Monitoring contractile dermal lymphatic activity following uniaxial mechanical loading.

    PubMed

    Gray, R J; Worsley, P R; Voegeli, D; Bader, D L

    2016-09-01

    It is proposed that direct mechanical loading can impair dermal lymphatic function, contributing to the causal pathway of pressure ulcers. The present study aims to investigate the effects of loading on human dermal lymphatic vessels. Ten participants were recruited with ages ranging from 24 to 61 years. Participants had intradermal Indocyanine Green injections administrated between left finger digits. Fluorescence was imaged for 5min sequences with an infra-red camera prior to lymph vessel loading, immediately after axial loading (60mmHg) and following a recovery period. Image processing was employed to defined transient lymph packets and compare lymph function between each test phase. The results revealed that between 1-8 transient events (median=4) occurred at baseline, with a median velocity of 8.1mm/sec (range 4.1-20.1mm/sec). Immediately post-loading, there was a significant (p<0.05) reduction in velocity (median=6.4, range 2.2-13.5mm/sec), although the number of transient lymph packages varied between participants. During the recovery period the number (range 1-7) and velocity (recovery median=9.6mm/sec) of transient packets were largely restored to basal values. The present study revealed that some individuals present with impaired dermal lymphatic function immediately after uniaxial mechanical loading. More research is needed to investigate the effects of pressure and shear on lymphatic vessel patency. PMID:27245749

  8. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads

    NASA Astrophysics Data System (ADS)

    Liang, Xu; Yang, Wenjun; Hu, Shuling; Shen, Shengping

    2016-03-01

    Piezoelectric nanofilms (PNFs) are widely used in microelectromechanical systems, buckling commonly occurs when subjected to compressive mechanical loads in their applications. In this paper we comprehensively study the flexoelectric effect on the buckling and vibrational behaviors of PNFs. The results from the analytical solutions indicate the significance of the flexoelectricity. The critical buckling loads and natural frequency are enhanced by the flexoelectricity. Analytical results indicate that the critical buckling load is not only influenced by the thickness of the PNFs, but also by the in-plane aspect ratio. When the thickness of the PNFs is several micrometers, the critical buckling load predicted by the present model is much higher than the prediction by the classical piezoelectric plate model. And the natural frequency calculated by the current model is much higher than that obtained by the classical piezoelectricity plate theory when the thickness is several tens of nanometers.

  9. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect

  10. Adaptive and injury response of bone to mechanical loading

    PubMed Central

    McBride, Sarah H; Silva, Matthew J

    2012-01-01

    Bone responds to supraphysiological mechanical loads by increasing bone formation. Depending on the applied strain magnitude (and other loading parameters) the response can be either adaptive (mostly lamellar bone) or injury (mostly woven bone). Seminal studies of Hert, Lanyon and Rubin originally established the basic 'rules' of bone mechanosensitivity. These were reinforced by subsequent studies using noninvasive rodent loading models, most notably by Turner et al. More recent works with these models have been able to explore the structural, transcriptional and molecular mechanisms which distinguish the two responses (lamellar vs woven). Wnt/Lrp signaling has emerged as a key mechanoresponsive pathway for lamellar bone. However, there is still much to study with regard to effects of ageing, osteocytes, other signaling pathways, and the molecular regulation that modulates lamellar vs woven bone formation. This review summarizes not only the historical findings but also the current data for these topics. PMID:23505338

  11. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  12. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  13. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, theory avoiding fractional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  14. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. An F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  15. Spectral response of multilayer optical structures to dynamic mechanical loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; LeCroy, Garrett; Summers, Christopher J.; Thadhani, Naresh N.

    2015-05-01

    A computational study of Distributed Bragg Reflectors (DBR) and Optical Microcavities (OMC) was conducted to ascertain their potential as time-resolved mesoscale sensors due to their unique structure-driven spectral characteristics. Shock wave propagation simulations of polymer-based DBRs and glass/ceramic-based OMCs were coupled with spectral response calculations to demonstrate the combined dynamic mechanical and spectral response of the structures. Clear spectral shifts in both structures are predicted as a function of dynamic loading magnitude. Potential applications of the structures include high spatial and temporal resolution surface maps of material states, and in-situ probing of material interfaces during dynamic loading.

  16. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  17. Analysis of thermal conductivity of polymeric nanocomposites under mechanical loading

    NASA Astrophysics Data System (ADS)

    Yu, Suyoung; Yang, Seunghwa; Cho, Maenghyo

    2013-12-01

    When the plastic deformation is applied to neat polymer, the polymer chains are aligned and the thermal conductivity of neat polymer increases linearly along the loading direction. However, the thermal conductivity change of nanocomposites consisting of polymer matrix and nanofillers during plastic deformation is not simple. The volume fraction and size of nanofillers scarcely affect the structural change of polymer chains during the plastic deformation. In this study, the structural change of polymeric materials according to the mechanical loading and its effect on the thermal transport properties are investigated through a molecular dynamics simulation. To investigate the effects of nanofiller, its volume fraction, and size on the thermal transport properties, the unit cells of neat amorphous nylon 6 and nanocomposites consisting of amorphous nylon 6 matrix and spherical silica particles are prepared. The molecular unit cells are uniaxially stretched by applying constant strain along the loading directions. Then, non-equilibrium molecular dynamics (NEMD) simulations are performed to estimate the thermal conductivities during plastic deformation. The alignment of polymer chains is analyzed by tracing the orientation correlation function of each polymer molecule and the free volume change during the mechanical loading is also analyzed.

  18. Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2002-01-01

    Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.

  19. Simulation of mechanical responses of fingertip to dynamic loading.

    PubMed

    Wu, J Z; Dong, R G; Rakheja, S; Schopper, A W

    2002-05-01

    Extended exposure to mechanical vibration has been related to many vascular, sensorineural and musculoskeletal disorders of the hand-arm system, frequently termed 'hand-arm vibration syndrome' (HAVS). A two-dimensional, nonlinear finite element model of a fingertip is developed to study the stress and strain fields of the soft tissue under dynamic loading, that may be encountered while grasping and operating a hand-held power tool. The model incorporates the most essential anatomical elements of a fingertip, such as soft tissue, bone, and nail. The finger is assumed to be in contact with a steel plate, simulating the interaction between the fingertip and a vibrating machine tool or handle. The soft tissue is assumed to be nonlinearly visco-elastic, while the nail, bone, and steel plate are considered to be linearly elastic. In order to study the time-dependent deformation behavior of the fingertip, the numerical simulations were performed under ramp-like loading with different ramping periods and sinusoidal vibrations of the contacting plate at three different frequencies (1, 10, and 31.5 Hz). Owing to relatively large deformations of the soft tissue under specified static and dynamic loading, Lagrangian large deformation theory was applied in the present analysis. The effects of the loading rate and the frequency of the sinusoidal vibration on the time-dependent strain/stress distributions in the different depth within the soft tissue of the fingertip are investigated numerically. Our simulations suggest that the soft tissue of the fingertip experiences high local stress and strain under dynamic loading and the fingertip may separate from the vibrating contact surface due to the viscous deformation behaviour of the soft tissue. For a given deformation, the high frequency loading produces a higher stress in the tissues compared to that obtained at a low frequency loading. The present model may serve as a useful tool to study the mechanism of tissue degeneration

  20. Load transfer mechanisms in cross-linked DWNT fibers

    NASA Astrophysics Data System (ADS)

    Filleter, T.; Naraghi, M.; Moravsky, A.; Bernal, R.; Loutfy, R. O.; Espinosa, H. D.

    2011-03-01

    The application of carbon nanotubes (CNT) to macroscopic composite fibers has been limited by weak shear interfaces between adjacent CNT shells and composite matrix elements. A fundamental understanding of load transfer at multiple length-scales is needed to identify how the exceptional mechanical properties of CNTs can be scaled to produce high-performance fibers. Through in-situ electron microscopy tensile testing we have elucidated load transfer mechanisms across multiple scales of cross-linked double-walled nanotube (DWNT) fibers. A low density of polymer cross-links is found to increase the total energy dissipated at failure and ductility of fibers by 5 and 10X, respectively, without reducing strength. This mutiscale approach has identified a need to enhance shear interactions between individual DWNTs within the hierarchical DWNT fiber structures. Through in-situ TEM electron irradiation studies we have shown that load can be effectively transferred to inner DWNTs within bundles by covalently cross-linking the interfaces of adjacent DWNTs and shells. We have observed order of magnitude increases in strength and modulus and identified their dependence on irradiation dose. In future a combined approach of irradiation induced covalent and polymer cross-linking may lead to high-performance DWNT-based fibers and composites with tunable mechanical properties.

  1. Investigation of defect nucleation in titanium under mechanical loading

    SciTech Connect

    Zolnikov, Konstantin P. Kryzhevich, Dmitrij S.; Korchuganov, Aleksandr V.; Psakhie, Sergey G.

    2014-11-14

    The paper undertakes a study of plastic deformation in a titanium crystallite under mechanical loading (uniaxial tension and indentation) in terms of atomic mechanisms of its generation and development. The molecular dynamics method with many-body interatomic potentials is employed. It is shown that there is a threshold strain, at which a crystal reveals the generation of local structural transformations associated with changes in atomic configurations of the first and second coordination spheres. The onset of plastic deformation in a crystallite is accompanied by a stepwise decrease in potential energy. The effect of free surfaces and grain boundaries on the generation of local structural transformations in a titanium crystallite is investigated.

  2. Gene Expression Patterns in Bone Following Mechanical Loading

    PubMed Central

    Mantila Roosa, Sara M; Liu, Yunlong; Turner, Charles H

    2011-01-01

    The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading during key periods of the bone-formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. A standard model for bone loading was employed in which the right forelimb was loaded axially for 3 minutes per day, whereas the left forearm served as a nonloaded contralateral control. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days after the first loading session. Six distinct time-dependent patterns of gene expression were identified over the time course and were categorized into three primary clusters: genes upregulated early in the time course, genes upregulated during matrix formation, and genes downregulated during matrix formation. Genes then were grouped based on function and/or signaling pathways. Many gene groups known to be important in loading-induced bone formation were identified within the clusters, including AP-1-related genes in the early-response cluster, matrix-related genes in the upregulated gene clusters, and Wnt/β-catenin signaling pathway inhibitors in the downregulated gene clusters. Several novel gene groups were identified as well, including chemokine-related genes, which were upregulated early but downregulated later in the time course; solute carrier genes, which were both upregulated and downregulated; and muscle-related genes, which were primarily downregulated. © 2011 American Society for Bone and Mineral Research. PMID:20658561

  3. Mechanical response of brain tissue under blast loading.

    PubMed

    Laksari, Kaveh; Sadeghipour, Keyanoush; Darvish, Kurosh

    2014-04-01

    In this study, a framework for understanding the propagation of stress waves in brain tissue under blast loading has been developed. It was shown that tissue nonlinearity and rate dependence are the key parameters in predicting the mechanical behavior under such loadings, as they determine whether traveling waves could become steeper and eventually evolve into shock discontinuities. To investigate this phenomenon, in the present study, brain tissue has been characterized as a quasi-linear viscoelastic (QLV) material and a nonlinear constitutive model has been developed for the tissue that spans from medium loading rates up to blast rates. It was shown that development of shock waves is possible inside the head in response to high rate compressive pressure waves. Finally, it was argued that injury to the nervous tissue at the microstructural level could be partly attributed to the high stress gradients with high rates generated at the shock front and this was proposed as a mechanism of injury in brain tissue. PMID:24457112

  4. Method for loading shape memory polymer gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2002-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SMP material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  5. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  6. Proteoglycan expression is influenced by mechanical load in TMJ discs.

    PubMed

    Nakao, Y; Konno-Nagasaka, M; Toriya, N; Arakawa, T; Kashio, H; Takuma, T; Mizoguchi, I

    2015-01-01

    The expression and assembly of the extracellular matrix are profoundly associated with adaptive and pathological responses of the temporomandibular joint (TMJ). To better understand the adaptive responses of the TMJ disc to mechanical loading, we examined the expression of 2 modular proteoglycans and 10 small leucine-rich proteoglycans (SLRPs) at the mRNA and protein levels and determined the contents of proteoglycan-related glycosaminoglycans (GAGs) in rat TMJ discs in response to altered mechanical loading caused by an incisal bite plane. One hundred thirty 7-week-old male Wistar rats were assigned to control and bite plane groups. TMJ disc thickness and the intensity of toluidine blue staining of metachromasia increased in the posterior band after 2 weeks of wearing the bite plane. GAG content increased significantly in the bite plane group after 2 weeks. Quantitative real-time RT-PCR (reverse transcription polymerase chain reaction) analysis indicated that biglycan and chondroadherin mRNA levels increased after 2 weeks and that the level of decorin mRNA increased at 4 weeks. Versican mRNA levels increased after 3 weeks, particularly for the V0 and V1 versican isoforms, which carry more GAG attachment sites than do the V2 and V3 isoforms. Western analysis demonstrated a corresponding increase in the levels of versican, biglycan, and decorin core proteins at 4 weeks in the bite plane group. These results indicate that mechanical loading differentially influences proteoglycan mRNA expression and protein accumulation in the TMJ disc. The change in proteoglycan mRNA and protein levels may lead to the modulation of matrix-matrix and cell-matrix interactions and has important biological significance for adaptation to complicated biomechanical requirements and for tissue maintenance in the TMJ disc. PMID:25348543

  7. Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2000-01-01

    A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.

  8. Modulation of mechanical and muscular load by footwear during catering.

    PubMed

    Kersting, U G; Janshen, L; Böhm, H; Morey-Klapsing, G M; Brüggemann, G-P

    2005-03-15

    The BGN (Berufsgenossenschaft Nahrungsmithl und Gaststätten) reports 70% of job induced days off work to be connected with traumas of the ankle joint or overloading of the leg, knee and lower back, with an increased incidence in service areas outdoors (R. Grieshaber, personal communication). Workspace environments usually contain narrow passages, slopes or stairs and sudden changes between different surfaces. The aim of this study was to investigate the biomechanical load on the lower extremity and the low back during catering service when wearing different types of footwear. Thus, the potential for altering mechanical stress experienced during catering by variations in footwear was explored. Sixteen experienced waiters followed a course typical for a combined indoor-outdoor service area. Three different types of footwear were investigated using pressure distribution measurements, rearfoot goniometry and electromyography. A discriminant analysis revealed that the factors subject, shoe and surface affect rear foot movement or pressure distribution in different ways. A MANOVA demonstrated significant differences in loading parameters between footwear types. In general, these differences increased in magnitude in critical situations, such as climbing stairs or crossing slippery surfaces. The results of this study demonstrate that manipulations to footwear offer a great potential for modulating loads experienced during catering. Based on the results, the effects of constructional features are discussed. The method proposed can be applied to evaluate shoe modifications under realistic workplace conditions. PMID:15804847

  9. Continuous damage parameter calculation under thermo-mechanical random loading

    PubMed Central

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress–strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history. PMID:26150939

  10. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    SciTech Connect

    Schaaf, A. De Monte, M. Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-15

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  11. Dynamics and mechanics of bed-load tracer particles

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Jerolmack, D. J.

    2014-12-01

    Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve - despite more than an order of magnitude difference in channel slope - when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  12. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  13. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGESBeta

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  14. Earthquake nucleation mechanisms and periodic loading: Models, Experiments, and Observations

    NASA Astrophysics Data System (ADS)

    Dahmen, K.; Brinkman, B.; Tsekenis, G.; Ben-Zion, Y.; Uhl, J.

    2010-12-01

    The project has two main goals: (a) Improve the understanding of how earthquakes are nucleated ¬ with specific focus on seismic response to periodic stresses (such as tidal or seasonal variations) (b) Use the results of (a) to infer on the possible existence of precursory activity before large earthquakes. A number of mechanisms have been proposed for the nucleation of earthquakes, including frictional nucleation (Dieterich 1987) and fracture (Lockner 1999, Beeler 2003). We study the relation between the observed rates of triggered seismicity, the period and amplitude of cyclic loadings and whether the observed seismic activity in response to periodic stresses can be used to identify the correct nucleation mechanism (or combination of mechanisms). A generalized version of the Ben-Zion and Rice model for disordered fault zones and results from related recent studies on dislocation dynamics and magnetization avalanches in slowly magnetized materials are used in the analysis (Ben-Zion et al. 2010; Dahmen et al. 2009). The analysis makes predictions for the statistics of macroscopic failure events of sheared materials in the presence of added cyclic loading, as a function of the period, amplitude, and noise in the system. The employed tools include analytical methods from statistical physics, the theory of phase transitions, and numerical simulations. The results will be compared to laboratory experiments and observations. References: Beeler, N.M., D.A. Lockner (2003). Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res.-Solid Earth 108, 2391-2407. Ben-Zion, Y. (2008). Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Evolutionary Changes and Corresponding Dynamic Regimes, Rev. Geophysics, 46, RG4006, doi:10.1029/2008RG000260. Ben-Zion, Y., Dahmen, K. A. and J. T. Uhl (2010). A unifying phase diagram for the dynamics of sheared solids

  15. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  16. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  17. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements. PMID:27104932

  18. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading

    PubMed Central

    2012-01-01

    Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is

  19. Mechanism of DNA loading by the DNA repair helicase XPD.

    PubMed

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J Carlos; White, Malcolm F; Naismith, James H

    2016-04-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5' to 3' helicase with an essential iron-sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase fromThermoplasma acidophilumhas been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD fromSulfolobus acidocaldiariusthat lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  20. Structural concerns in dynamic drop loads on transfer lock mechanisms

    SciTech Connect

    Pfeiffer, P.A.; Moran, T.J.; Kulak, R.F.

    1997-07-01

    Drop loads are usually low probability events that can generate substantial loading to the impacted structures. When the impacted structure contains slender elements, the concern about dynamic buckling must be addressed. The problem of interest here is a structure is also under significant preload, which must be taken into account in the transient analysis. For complex structures, numerical simulations are the only viable option for assessing the transient response to short duration impactive loads. this paper addresses several analysis issues of preloaded structures with slender members subjected to drop loads. A three-dimensional beam element is validated for use in dynamic buckling analysis. the numerical algorithm used to solve the transient response of preloaded structures is discussed. The methodology is applied to an inter-compartment lock that is under significant preloads, and subjected to a drop load.

  1. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon

    PubMed Central

    Szczesny, Spencer E.; Elliott, Dawn M.

    2014-01-01

    Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements. PMID:24530560

  2. A unified creep-plasticity model suitable for thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Slavik, D.; Sehitoglu, H.

    1988-01-01

    An experimentally based unified creep-plasticity constitutive model was implemented for 1070 steel. Accurate rate and temperature effects were obtained for isothermal and thermo-mechanical loading by incorporating deformation mechanisms into the constitutive equations in a simple way.

  3. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    PubMed

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum. PMID:27115725

  4. A procedure for combining acoustically induced and mechanically induced loads (first passage failure design criterion)

    NASA Technical Reports Server (NTRS)

    Crowe, D. R.; Henricks, W.

    1983-01-01

    The combined load statistics are developed by taking the acoustically induced load to be a random population, assumed to be stationary. Each element of this ensemble of acoustically induced loads is assumed to have the same power spectral density (PSD), obtained previously from a random response analysis employing the given acoustic field in the STS cargo bay as a stationary random excitation. The mechanically induced load is treated as either (1) a known deterministic transient, or (2) a nonstationary random variable of known first and second statistical moments which vary with time. A method is then shown for determining the probability that the combined load would, at any time, have a value equal to or less than a certain level. Having obtained a statistical representation of how the acoustic and mechanical loads are expected to combine, an analytical approximation for defining design levels for these loads is presented using the First Passage failure criterion.

  5. The interface of mechanical loading and biological variables as they pertain to the development of tendinosis.

    PubMed

    Thornton, G M; Hart, D A

    2011-06-01

    Different tendons are designed to withstand different mechanical loads in their individual environments. Variable physiologic loading ranges and correspondingly different injury thresholds lead to tendon heterogeneity. Also, tendon heterogeneity is evident when examining how different tendons regulate their response to changes in mechanical loading (over- and under-loading). The response of tendons to changes in mechanical loading plays an important role in the induction and progression of tendinosis which is tendon degeneration without inflammation. Tendon overuse injury is likely related to abnormal mechanical loading that deviates from normal mechanical loading in magnitude, frequency, duration and/or direction. Mechanical loading that results in tendon overuse injury can initiate a repair process but, after failed initial repair, non-resolving chronic attempted repair appears to lead to a "smoldering" fibrogenesis. Contributions of regulatory components, including minor components in the "nerve-mast cell-myofibroblast axis", are key features in the development and progression of tendinosis. Hormonal and genetic factors may also influence risk for tendinosis. Further understanding of how tendinosis induction is related to mechanical use/overuse, how tendinosis progression is related to abnormal regulation of attempted repair, and how induction and/or progression are modulated by other risk factors may lead to interventions that mitigate risk and enhance functional repair. PMID:21625046

  6. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Feeback, D. L.

    1996-01-01

    The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.

  7. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  8. Mechanical behavior of a continuous fiber reinforced aluminum matrix composite subjected to transverse and thermal loading

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers were investigated. The composite is subjected to both mechanical and cyclic thermal loading. The results of an experimental program indicate that the shakedown concept of structural mechanics provides a means of describing the material behavior. When the loading conditions are within the shakedown region, the material finally responds in an elastic manner after initial plastic response, and for loading conditions outside the shakedown region, the material exhibits a rapid incremental plastic strain accumulation. The failure strain varies by an order of magnitude according to the operating conditions. Hence, for high mechanical and low thermal loading, the failure strains is small; for low mechanical and high thermal loading, the failure strain is large.

  9. Structural Mechanisms of Hexameric Helicase Loading, Assembly, and Unwinding

    PubMed Central

    Trakselis, Michael A.

    2016-01-01

    Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome. PMID:26918187

  10. Thick-walled composite tubes under mechanical and hygrothermal loading

    NASA Astrophysics Data System (ADS)

    Wuetrich, C.

    1992-11-01

    The stresses in long thick-walled composite tubes were determined analytically for loading by internal and external pressure, longitudinal forces and twisting moments. Effects of thermal and hygrothermal expansion were also treated. The solution is restricted to tubes built up from one or more layers with macroscopically orthotropic properties. Such layers may be produced, for example, by filament winding or winding of textile reinforcements. It was shown how the elastic and hygrothermal parameters of the macroscopically orthotropic materials may be calculated by homogenization of the properties of uniaxially reinforced materials.

  11. Loading configurations and driving mechanisms for joints based on the Griffith energy-balance concept

    NASA Astrophysics Data System (ADS)

    Engelder, Terry; Fischer, Mark P.

    1996-05-01

    Using the Griffith energy-balance concept to model joint propagation in the brittle crust, two laboratory loading configurations serve as appropriate analogs for in situ conditions: the dead-weight load and the fixed-grips load. The distinction between these loading configurations is based largely on whether or not a loaded boundary moves as a joint grows. During displacement of a loaded boundary, the energy necessary for joint propagation comes from work by the dead weight (i.e., a remote stress). When the loaded boundary remains stationary, as if held by rigid grips, the energy for joint propagation develops upon release of elastic strain energy within the rock mass. These two generic loading configurations serve as models for four common natural loading configurations: a joint-normal load; a thermoelastic load; a fluid load; and an axial load. Each loading configuration triggers a different joint-driving mechanism, each of which is the release of energy through elastic strain and/or work. The four mechanisms for energy release are joint-normal stretching, elastic contraction, poroelastic contraction under either a constant fluid drive or fluid decompression, and axial shortening, respectively. Geological circumstances favoring each of the joint-driving mechanisms are as follows. The release of work under joint-normal stretching occurs whenever layer-parallel extension keeps pace with slow or subcritical joint propagation. Under fixed grips, a substantial crack-normal tensile stress can accumulate by thermoelastic contraction until joint propagation is driven by the release of elastic strain energy. Within the Earth the rate of joint propagation dictates which of these two driving mechanisms operates, with faster propagation driven by release of strain energy. Like a dead-weight load acting to separate the joint walls, pore fluid exerts a traction on the interior of some joints. Joint propagation under fluid loading may be driven by a release of elastic strain

  12. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    PubMed

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. PMID:27126600

  13. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. PMID:25638034

  14. Reliability of piezoceramic patch sensors under cyclic mechanical loading

    NASA Astrophysics Data System (ADS)

    Thielicke, Bärbel; Gesang, Thomas; Wierach, Peter

    2003-12-01

    Piezoceramic patch sensors have to withstand the primary stresses and strains of a structure during operation. In the leading project 'Adaptronics' a lifespan of 106 cycles at 0.1% strain was required for sensors applied on components of steel and carbon fibre reinforced plastic (CFRP). In order to test the reliability of the patches themselves and of their adhesion on the substrate, special four-point bending tests were carried out under quasistatic loading and under cyclic loading at different strain levels. The specimens consisted in sheets of steel and CFRP as substrates on which the newly developed patches with embedded piezoelectric foils and fibres were glued. In the quasistatic bending tests the performance of each sensor was characterized by measuring the sensor signal (charge) as a function of strain before and after cycling. Damage of the specimens would result in a decreasing slope of the charge-strain-curve after cycling. However, all the specimens tested survived 107 cycles up to 0.12% strain without marked loss of performance.

  15. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  16. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    ERIC Educational Resources Information Center

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  17. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  18. Skeletal adaptation to external loads optimizes mechanical properties: fact or fiction

    NASA Technical Reports Server (NTRS)

    Turner, R. T.

    2001-01-01

    The skeleton adapts to a changing mechanical environment but the widely held concept that bone cells are programmed to respond to local mechanical loads to produce an optimal mechanical structure is not consistent with the high frequency of bone fractures. Instead, the author suggests that other important functions of bone compete with mechanical adaptation to determine structure. As a consequence of competing demands, bone architecture never achieves an optimal mechanical structure. c2001 Lippincott Williams & Wilkins, Inc.

  19. Mechanics of cranial sutures during simulated cyclic loading.

    PubMed

    Jasinoski, S C; Reddy, B D

    2012-07-26

    Previous computational and experimental analyses revealed that cranial sutures, fibrous joints between the bones, can reduce the strain experienced by the surrounding skull bones during mastication. This damping effect reflects the importance of including sutures in finite element (FE) analyses of the skull. Using the FE method, the behaviour of three suture morphologies of increasing complexity (butt-ended, moderate interdigitated, and complex interdigitated) during static loading was recently investigated, and the sutures were assumed to have linear elastic properties. In the current study, viscoelastic properties, derived from published experimental results of the nasofrontal suture of young pigs (Sus scrofa), are applied to the three idealised bone-suture models. The effects of suture viscoelasticity on the stress, strain, and strain energy in the models were computed for three different frequencies (corresponding to periods of 1, 10, and 100s) and compared to the results of a static, linear elastic analysis. The range of applied frequencies broadly represents different physiological activities, with the highest frequency simulating mastication and the lowest frequency simulating growth and pressure of the surrounding tissues. Comparing across all three suture morphologies, strain energy and strain in the suture decreased with the increase in suture complexity. For each suture model, the magnitude of strain decreased with an increase in frequency, and the magnitudes were similar for both the elastic and 1s frequency analyses. In addition, a viscous response is less apparent in the higher frequency analyses, indicating that viscous properties are less important to the behaviour of the suture during those analyses. The FE results suggest that implementation of viscoelastic properties may not be necessary for computational studies of skull behaviour during masticatory loading but instead might be more relevant for studies examining lower frequency physiological

  20. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Ranjith, P. G.; Huang, Yan-Hua; Yin, Peng-Fei; Jing, Hong-Wen; Gui, Yi-Lin; Yu, Qing-Lei

    2015-05-01

    The mechanical damage characteristics of sandstone subjected to cyclic loading is very significant to evaluate the stability and safety of deep excavation damage zones. However to date, there are very few triaxial experimental studies of sandstone under cyclic loading. Moreover, few X-ray micro-computed tomography (micro-CT) observations have been adopted to reveal the damage mechanism of sandstone under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic loading tests and X-ray micro-CT observations were conducted to analyse the mechanical damage characteristics of sandstone with respect to different confining pressures. The results indicated that at lower confining pressures, the triaxial strength of sandstone specimens under cyclic loading is higher than that under monotonic loading; whereas at confining pressures above 20 MPa, the triaxial strength of sandstone under cyclic loading is approximately equal to that under monotonic loading. With the increase of cycle number, the crack damage threshold of sandstone first increases, and then significantly decreases and finally remains constant. Based on the damage evolution of irreversible deformation, it appears that the axial damage value of sandstone is all higher than the radial damage value before the peak strength; whereas the radial damage value is higher than the axial damage value after the peak strength. The evolution of Young's modulus and Poisson's ratio of sandstone can be characterized as having four stages: (i) Stage I: material strengthening; (ii) Stage II: material degradation; (iii) Stage III: material failure and (iv) Stage IV: structure slippage. X-ray micro-CT observations demonstrated that the CT scanning surface images of sandstone specimens are consistent with actual surface crack photographs. The analysis of the cross-sections of sandstone supports that the system of crack planes under triaxial cyclic loading is much more complicated than that under triaxial

  1. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  2. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    SciTech Connect

    Rossi, Pierre Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-09-15

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack.

  3. The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading

    PubMed Central

    Moustafa, Alaa; Sugiyama, Toshihiro; Saxon, Leanne K.; Zaman, Gul; Sunters, Andrew; Armstrong, Victoria J.; Javaheri, Behzad; Lanyon, Lance E.; Price, Joanna S.

    2009-01-01

    Bones' functionally adaptive responses to mechanical loading can usefully be studied in the tibia by the application of loads between the knee and ankle in normal and genetically modified mice. Such loading also deforms the fibula. Our present study was designed to ascertain whether the fibula adapts to loading in a similar way to the tibia and could thus provide an additional bone in which to study functional adaptation. The right tibiae/fibulae in C57BL/6 mice were subjected to a single period of axial loading (40 cycles at 10 Hz with 10-second intervals between each cycle; approximately 7 min/day, 3 alternate days/week, 2 weeks). The left tibiae/fibulae were used as non-loaded, internal controls. Both left and right fibulae and tibiae were analyzed by micro-computed tomography at the levels of the mid-shaft of the fibula and 25% from its proximal and distal ends. We also investigated the effects of intermittent parathyroid hormone (iPTH) on the (re)modelling response to 2-weeks of loading and the effect of 2-consecutive days of loading on osteocytes' sclerostin expression. These in vivo experiments confirmed that the fibula showed similar loading-related (re)modelling responses to those previously documented in the tibia and similar synergistic increases in osteogenesis between loading and iPTH. The numbers of sclerostin-positive osteocytes at the proximal and middle fibulae were markedly decreased by loading. Collectively, these data suggest that the mouse fibula, as well as the tibia and ulna, is a useful bone in which to assess bone cells' early responses to mechanical loading and the adaptive (re)modelling that this engenders. PMID:19442626

  4. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    SciTech Connect

    Mojumder, Satyajit; Amin, Abdullah Al; Islam, Md Mahbubul

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  5. Mechanical and transport properties of IBAD/EDDC-SmBCO coated conductor tapes during fatigue loading

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Dedicatoria, Marlon J.

    2011-06-01

    In electrical devices like superconducting motor, generator and SMES, HTS coated conductor (CC) tapes will be subjected to alternating stress or strain during manufacturing and operation. The repeated loading will affect the mechanical integrity and eventually the electrical transport property of CC tapes. Therefore in such applications, electro-mechanical property of CC tapes should be evaluated. In this study, the endurance of an IBAD/EDDC-SmBCO CC tape under high-cycle fatigue loading has been evaluated. Applied maximum stress and fatigue life ( S-N) relation was obtained at 77 K. The mechanical properties and the critical current, I c, of the sample under fatigue loading were investigated at 77 K. Considering the practical operating environment, the effect of the stress ratio R, on the degradation behavior of I c under fatigue loading was also examined.

  6. Mechanical behavior of adhesive joints subjected to cyclic thermal loading

    SciTech Connect

    Humfeld, G.R.; Dillard, D.A.

    1996-12-31

    Stresses induced in bimaterial systems due to changing temperature has been the subject of much study since the publication of Timoshenko`s classic paper of 1925. An adhesive bond is one example of a bimaterial system in which thermal stress can play an important role. However, adhesives are viscoelastic in nature, and their mechanical behavior is dictated by the temperature- and time-dependence of their material properties; analytical solutions for elastic materials do not adequately describe their true behavior. The effect of the adhesive`s viscoelasticity on stress in an adhesive bond subjected to changing temperature is therefore of compelling interest and importance for the adhesives industry. The objective of this research is to develop an understanding of the viscoelastic effect in an adhesive bond subjected to cycling temperature, particularly when the temperature range spans a transition temperature of the adhesive. Numerical modeling of a simplified geometry was first undertaken to isolate the influence of viscoelasticity on the stress state from any particular specimen geometry effect. Finite element modeling was then undertaken to examine the mechanical behavior of the adhesive in a layered geometry. Both solution methods predicted development of residual tensile stresses in the adhesive. For the layered geometry this was found to correspond with residual tensile peel stresses, which are thought to be the cause of interfacial debonding.

  7. A Load-Based Multiple-Partial Unloading Micro-Indentation Technique for Mechanical Property Evaluation

    SciTech Connect

    C. Feng; J.M. Tannenbaum; B.S. Kang; M.A. Alvin

    2009-07-23

    A load-based multiple-partial unloading microindentation technique has been developed for evaluating mechanical properties of materials. Comparing to the current prevailing nano/micro-indentation methods, which require precise measurements of the indentation depth and load, the proposed technique only measures indentation load and the overall indentation displacement (i.e. including displacement of the loading apparatus). Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young’s modulus of metallic alloys with flat, tubular, or curved architectures. Test results show consistent and correct elastic modulus values when performing indentation tests on standard alloys such as steel, aluminum, bronze, and single crystal superalloys. The proposed micro-indentation technique has led to the development of a portable loaddepth sensing indentation system capable of on-site, in-situ material property measurement.

  8. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  9. A micro-mechanical model to determine changes of collagen fibrils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.

    Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.

  10. Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading

    PubMed Central

    Lorbergs, Amanda L.

    2012-01-01

    ABSTRACT Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties. PMID:23449969

  11. Effects of Stiffening and Mechanical Load on Thermal Buckling of Stiffened Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Card, Michael F.

    1995-01-01

    A study of thermal buckling of stiffened cylindrical shells with the proportions of a preliminary supersonic transport fuselage design (1970) is presented. The buckling analysis is performed using an axisymmetric shell-of-revolution code, BOSOR4. The effects of combined mechanical (axial loading) and thermal loading (heated skins) are investigated. Results indicate that the location of longitudinal eccentric stiffening has a very large effect on the thermal buckling strength of longitudinally stiffened shells, and on longitudinally stiffened shells with rings.

  12. Intermittent PTH administration and mechanical loading are anabolic for periprosthetic cancellous bone

    PubMed Central

    Grosso, Matthew J.; Courtland, Hayden-William; Yang, Xu; Sutherland, James P.; Stoner, Kirsten; Nguyen, Joseph; Fahlgren, Anna; Ross, F. Patrick; van der Meulen, Marjolein C. H.; Bostrom, Mathias P.

    2016-01-01

    The purpose of this study was to determine the individual and combined effects on periprosthetic cancellous bone of intermittent PTH (iPTH) and mechanical loading at the cellular, molecular, and tissue levels. Porous titanium implants were inserted bilaterally on the cancellous bone of adult rabbits beneath a loading device attached to the distal lateral femur. The left femur received a sham loading device. The right femur was loaded daily, and half of the rabbits received daily PTH. Periprosthetic bone was evaluated up to 28 days for gene expression, histology, and µCT analysis. Loading and iPTH increased bone mass by a combination of two mechanisms: 1) altering cell populations in a pro-osteoblastic/anti-adipocytic direction, and 2) controlling bone turnover by modulating the RANKL-OPG ratio. At the tissue level, BV/TV increased with both loading (+53%, p<0.05) and iPTH (+54%, p<0.05). Combined treatment showed only small additional effects at the cellular and molecular levels that corresponded to a small additive effect on bone volume (+13% compared to iPTH alone, p>0.05). This study suggests that iPTH and loading are potential therapies for enhancing periprosthetic bone formation. The elucidation of the cellular and molecular response may help further enhance the combined therapy and related targeted treatment strategies. PMID:25408434

  13. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  14. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  15. Single-molecule Studies of Origin Licensing Reveal Mechanisms Ensuring Bidirectional Helicase Loading

    PubMed Central

    Ticau, Simina; Friedman, Larry J.; Ivica, Nikola A.; Gelles, Jeff; Bell, Stephen P.

    2015-01-01

    SUMMARY Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1 and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation. PMID:25892223

  16. A Magnetic Resonance-Compatible Loading Device for Dynamically Imaging Shortening and Lengthening Muscle Contraction Mechanics

    PubMed Central

    Silder, Amy; Westphal, Christopher J.; Thelen, Darryl G.

    2013-01-01

    The purpose of this study was to design and test a magnetic resonance (MR)-compatible device to induce either shortening or lengthening muscle contractions for use during dynamic MR imaging. The proposed device guides the knee through cyclic flexion-extension, while either elastic or inertial loads are imposed on the hamstrings. Ten subjects were tested in a motion capture laboratory to evaluate the repeatability of limb motion and imposed loads. Image data were subsequently obtained for all ten subjects using cine phase contrast imaging. Subjects achieved ~30 deg of knee joint motion, with individual subjects remaining within ~1 deg of their average motion across 56 repeated cycles. The maximum hamstring activity and loading occurred when the knee was flexed for the elastic loading condition (shortening contraction), and extended for the inertial loading condition (lengthening contraction). Repeat MR image acquisitions of the same loading condition resulted in similar tissue velocities, while spatial variations in velocity data were clearly different between loading conditions. The proposed device can enable dynamic imaging of the muscle under different types of loads, which has the potential to improve our understanding of basic muscle mechanics, identify potential causes of muscle injury, and provide a basis for quantitatively assessing injury effects at the tissue level. Slight modifications to the device design and/or subject positioning could allow for imaging of the quadriceps or the knee. PMID:24353749

  17. Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.

    PubMed

    Cardwell, Robyn D; Kluge, Jonathan A; Thayer, Patrick S; Guelcher, Scott A; Dahlgren, Linda A; Kaplan, David L; Goldstein, Aaron S

    2015-07-01

    Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression

  18. Kinetic modelling and bifurcation analysis of chemomechanically miniaturized gels under mechanical load.

    PubMed

    Wang, Pengfei; Liu, Shaobao; Zhou, Jinxiong; Xu, Feng; Lu, Tianjian

    2013-09-01

    Chemomechanically responsive gels, with great potential applications in the fields of smart structures and biomedicines, present autonomously oscillatory deformation driven by the Belousov-Zhabotinsky chemical reaction. The dynamic behavior of the responsive gels is obviously affected by the external mechanical load. This approach proposed a kinetic model with an ordinary differential equation to describe the oscillatory deformation of the gels under the mechanical load. Then the periodic solutions and phase diagrams of the oscillation are obtained using the improved Runge-Kutta and shooting methods. The results demonstrated that bifurcations are typically existent in the system and the characters of the oscillatory deformation regularly depend on the mechanical load as well as the concentration of reactants and the stoichiometric coefficient of chemical reaction. This development is supposed to promote the practical applications of the chemomechanically responsive gels. PMID:24072466

  19. A Model to Study Articular Cartilage Mechanical and Biological Responses to Sliding Loads.

    PubMed

    Schätti, Oliver R; Gallo, Luigi M; Torzilli, Peter A

    2016-08-01

    In physiological conditions, joint function involves continuously moving contact areas over the tissue surface. Such moving contacts play an important role for the durability of the tissue. It is known that in pathological joints these motion paths and contact mechanics change. Nevertheless, limited information exists on the impact of such physiological and pathophysiological dynamic loads on cartilage mechanics and its subsequent biological response. We designed and validated a mechanical device capable of applying simultaneous compression and sliding forces onto cartilage explants to simulate moving joint contact. Tests with varying axial loads (1-4 kg) and sliding speeds (1-20 mm/s) were performed on mature viable bovine femoral condyles to investigate cartilage mechanobiological responses. High loads and slow sliding speeds resulted in highest cartilage deformations. Contact stress and effective cartilage moduli increased with increasing load and increasing speed. In a pilot study, changes in gene expression of extracellular matrix proteins were correlated with strain, contact stress and dynamic effective modulus. This study describes a mechanical test system to study the cartilage response to reciprocating sliding motion and will be helpful in identifying mechanical and biological mechanisms leading to the initiation and development of cartilage degeneration. PMID:26698580

  20. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.

  1. Somatomedin C immunoreactivity in the Achilles tendon varies in a dynamic manner with the mechanical load.

    PubMed

    Hansson, H A; Engström, A M; Holm, S; Rosenqvist, A L

    1988-10-01

    Distribution of the trophic peptide somatomedin C (Sm-C; insulin-like growth factor I; IGF-I) immunoreactivity was mapped in normal Achilles and tibialis anterior tendons. The spindle-shaped tendon fibroblasts showed faint perinuclear staining. Fibroblasts in the paratenon mostly had a more intense IGF-I immunoreactivity, i.e. faint to moderate. When analysing either tendon in detail, areas with more intense IGF-I immunoreactivity could be recognized and seemed to correlate with areas of high mechanical stress. Increased mechanical load induced over 3 days elevated IGF-I immunoreactivity throughout the cytoplasm of tendon fibroblasts. Peak intensity was reached in 7 days, and thereafter the IGF-I immunoreactivity seemed to decrease irrespective of persistent high mechanical load. Training the animals on a treadmill for from 20 up to 60 min per day for 5 days induced after 3-5 days increased IGF-I immunoreactivity throughout the cytoplasm of the tendon and paratenon fibroblasts. Sudden curtailment of loading the Achilles tendon resulted in a marked reduction of the IGF-I immunoreactivity in most fibroblasts within 3 days. After a week only a small number of tendon fibroblasts showed any IGF-I immunoreactivity. The IGF-I immunoreactivity of tendon fibroblasts thus correlates to mechanical loading of the tendon. It is proposed that IGF-I may have a trophic influence on tendon and paratenon cells by autocrine and/or paracrine mechanisms. PMID:3067520

  2. Mechanical loading up-regulates early remodeling signals from osteocytes subjected to physical damage.

    PubMed

    Liu, Chao; Zhang, Xiaoqing; Wu, Michael; You, Lidan

    2015-12-16

    In the mineralized bone matrix, mechanical loading causes micrometer-sized cracks. These cracks trigger targeted remodeling along the micro-crack. Physical damage to osteocytes was shown to be involved in the initiation of this remodeling process. However, the role of subsequent mechanical loading osteocyte response to physical damage is unclear. In this study, we have designed and developed an in vitro cell model to study the impact of mechanical loading on osteocytes with physical damage. Specifically, a system was developed to create sub-cellular physical damage on MLO-Y4 osteocytes in vitro. This model re-created the spatial distribution of non-viable cells and VEGF expression around microdamage as reported in vivo. Using this system, the short term (24h) effects of fluid shear stress in regulation of osteocyte response to physical damage were investigated. We have observed that the mechanical stimuli had an additive effect in terms of COX-2, VEGF mRNA expressions, as well as PGE2, VEGF concentrations in the media. Interestingly, other inflammatory signals such as IL-6 and TNF-α did not change with these stimuli, at this time point. Moreover, fluid shear also had a modulating effect in regulation of osteoclast differentiation by osteocyte with physical damage. These results show that (1) subcellular physical damage upregulates remodeling signals in osteocytes at early time point, (2) mechanical loading substantially upregulates these signals for remodeling in osteocytes with physical damage. PMID:26596719

  3. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the

  4. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  5. Load Regulates Bone Formation and Sclerostin Expression through a TGFβ-Dependent Mechanism

    PubMed Central

    Nguyen, Daniel; Alliston, Tamara

    2013-01-01

    Bone continually adapts to meet changing physical and biological demands. Osteoblasts, osteoclasts, and osteocytes cooperate to integrate these physical and biochemical cues to maintain bone homeostasis. Although TGFβ acts on all three of these cell types to maintain bone homeostasis, the extent to which it participates in the adaptation of bone to mechanical load is unknown. Here, we investigated the role of the TGFβ pathway in load-induced bone formation and the regulation of Sclerostin, a mechanosensitive antagonist of bone anabolism. We found that mechanical load rapidly represses the net activity of the TGFβ pathway in osteocytes, resulting in reduced phosphorylation and activity of key downstream effectors, Smad2 and Smad3. Loss of TGFβ sensitivity compromises the anabolic response of bone to mechanical load, demonstrating that the mechanosensitive regulation of TGFβ signaling is essential for load-induced bone formation. Furthermore, sensitivity to TGFβ is required for the mechanosensitive regulation of Sclerostin, which is induced by TGFβ in a Smad3-dependent manner. Together, our results show that physical cues maintain bone homeostasis through the TGFβ pathway to regulate Sclerostin expression and the deposition of new bone. PMID:23308287

  6. The pendular mechanism does not determine the optimal speed of loaded walking on gradients.

    PubMed

    Gomeñuka, Natalia Andrea; Bona, Renata Luisa; da Rosa, Rodrigo Gomes; Peyré-Tartaruga, Leonardo Alexandre

    2016-06-01

    The pendular mechanism does not act as a primary mechanism in uphill walking due to the monotonic behavior of the mechanical energies of the center of mass. Nevertheless, recent evidence shows that there is an important minimization of energy expenditure by the pendular mechanism during walking on uphill gradients. In this study, we analyzed the optimum speed (OPT) of loaded human walking and the pendulum-like determining variables (Recovery R, Instantaneous pendular re-conversion Rint, and Congruity percentage %Cong). Ten young men walked on a treadmill at five different speeds and at three different treadmill incline gradients (0, +7 and +15%), with and without a load carried in their backpacks. We used indirect calorimetry and 3D motion analysis, and all of the data were analyzed by computational algorithms. Rint increased at higher speeds and decreased with increasing gradient. R and %Cong decreased with increasing gradient and increased with speed, independent of load. Thus, energy conversion by the pendular mechanism during walking on a 15% gradient is supported, and although this mechanism can explain the maintenance of OPT at low walking speeds, the pendular mechanism does not fully explain the energy minimization at higher speeds. PMID:27017543

  7. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts.

    PubMed

    Chieruzzi, Manila; Rallini, Marco; Pagano, Stefano; Eramo, Stefano; D'Errico, Potito; Torre, Luigi; Kenny, José M

    2014-02-01

    The aim of this study was to investigate the mechanical behavior of a dental system built up with fiber-reinforced composite (FRC) endodontic posts with different types of fibers and two cements (the first one used with a primer, the second one without it). Six FRC posts were used. Each system was characterized in terms of structural efficiency under external applied loads similar to masticatory forces. An oblique force was applied and stiffness and maximum load data were obtained. The same test was used for the dentine. The systems were analyzed by scanning electron microscope (SEM) to investigate the surface of the post and inner surface of root canal after failure. The mechanical tests showed that load values in dental systems depend on the post material and used cement. The highest load (281 ± 59 N) was observed for the conical glass fiber posts in the cement without primer. There was a 50 and 85% increase in the maximum load for two of the conical posts with glass fibers and a 229% increase for the carbon fiber posts in the cement without primer as compared with the cement with primer. Moreover, almost all the studied systems showed fracture resistances higher than the typical masticatory loads. The microscopic analysis underlined the good adhesion of the second cement at the interfaces between dentine and post. The mechanical tests confirmed that the strength of the dental systems subjected to masticatory loads was strictly related to the bond at the interface post/cement and cement/dentine. PMID:24000235

  8. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading

    PubMed Central

    Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward

    2014-01-01

    Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610

  9. Role of mechanical loads in inducing in-cycle tensile stress in thermally grown oxide

    SciTech Connect

    Diaz, R.; Jansz, M.; Mossaddad, M.; Raghavan, S.; Okasinski, J.S.; Almer, J.D.; Perez, H.P.; Imbrie, P.

    2012-01-01

    Experimental in situ synchrotron x-ray diffraction results tracking the strain behavior of the various layers during a cycle, under thermo-mechanical conditions are presented in this work. The quantitative strain measurements here show that the thermally grown oxide briefly experiences in-plane tensile stress ({sigma}{sub 22} = +36.4 MPa) with increased mechanical loading during ramp-up in the thermal cycle. These findings are the first in situ experimental observations of these strains under thermo-mechanical conditions, envisaged to serve as a catalyst for crack initiation. The depth resolved measurements of strain taken during applied thermal and mechanical load in this work are a significant step towards achieving realistic testing conditions.

  10. Effect of nanofillers on the physico-mechanical properties of load bearing bone implants.

    PubMed

    Michael, Feven Mattews; Khalid, Mohammad; Walvekar, Rashmi; Ratnam, Chantara Thevy; Ramarad, Suganti; Siddiqui, Humaira; Hoque, M Enamul

    2016-10-01

    Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites. PMID:27287178

  11. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives. PMID:25244526

  12. Mechanical loading prevents the stimulating effect of IL-1β on osteocyte-modulated osteoclastogenesis.

    PubMed

    Kulkarni, Rishikesh N; Bakker, Astrid D; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1β (IL-1β), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1β affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1β (0.1-1 ng/ml) for 24h. Cells were either or not subjected to mechanical loading by 1h pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) in the presence of IL-1β (0.1-1 ng/ml). Conditioned medium was collected after 1h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1β-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1β-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1β, as well as conditioned medium from static IL-1β-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL-1β-treated osteocytes prevented osteoclast formation. Incubation with IL-1β upregulated RANKL and downregulated OPG gene expression by static osteocytes. PFF upregulated CYR61, RANKL, and OPG gene expression by osteocytes. Our results suggest that IL-1β increases osteocyte-modulated osteoclastogenesis, and that mechanical loading of osteocytes may abolish IL-1β-induced osteoclastogenesis. PMID:22390927

  13. Cognitive-load approaches to detect deception: searching for cognitive mechanisms.

    PubMed

    Blandón-Gitlin, Iris; Fenn, Elise; Masip, Jaume; Yoo, Aspen H

    2014-09-01

    A current focus in deception research is on developing cognitive-load approaches (CLAs) to detect deception. The aim is to improve lie detection with evidence-based and ecologically valid procedures. Although these approaches show great potential, research on cognitive processes or mechanisms explaining how they operate is lacking. Potential mechanisms underlying the most popular techniques advocated for field application are highlighted. Cognitive scientists are encouraged to conduct basic research that qualifies the 'cognitive' in these new approaches. PMID:25168448

  14. Cognitive-load approaches to detect deception: searching for cognitive mechanisms

    PubMed Central

    Blandón-Gitlin, Iris; Fenn, Elise; Masip, Jaume; Yoo, Aspen H.

    2015-01-01

    A current focus in deception research is on developing cognitive-load approaches (CLAs) to detect deception. The aim is to improve lie detection with evidence-based and ecologically valid procedures. Although these approaches show great potential, research on cognitive processes or mechanisms explaining how they operate is lacking. Potential mechanisms underlying the most popular techniques advocated for field application are highlighted. Cognitive scientists are encouraged to conduct basic research that qualifies the ‘cognitive’ in these new approaches. PMID:25168448

  15. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    ERIC Educational Resources Information Center

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  16. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  17. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes.

    PubMed

    Juffer, Petra; Jaspers, Richard T; Lips, Paul; Bakker, Astrid D; Klein-Nulend, Jenneke

    2012-02-15

    Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a

  18. Surface damage of metallic implants due to mechanical loading and chemical reactions

    NASA Astrophysics Data System (ADS)

    Ryu, Jaejoong

    The present study investigates interfacial damage mechanism of modular implants due to synergetic action of mechanical contact loading and corrosion. Modular implants are manufactured such that surfaces have a characteristic degree of roughness determined by tool tip size and motion of tool path or feeding speed. The central hypothesis for this work is that during contact loading of metallic implants, mechanisms of damage and dissolution are determined by contact loads, plastic deformation, residual stresses and environmental conditions at the nanoscale surface asperities; while during subsequent rest periods, mechanism of metallic dissolution is determined by the environmental conditions and residual stress field induced due to long range elastic interactions of the plastically deformed asperities. First part of the thesis is focused on investigating the mechanisms underlying surface roughness evolution due to stress-assisted dissolution during the rest period. The latter part is focused on investigating material removal mechanisms during single asperity contact of implant surfaces. Experimental study was performed to elucidate the roughness evolution mechanism by combined effect of multi-asperity contact and environmental corrosion. Cobalt-chromium-molybdenum specimen was subjected to either contact loading alone or alternating contact loading and exposure to reactive environment. Roughness of the specimen surface was monitored by optical profilometry and Fast Fourier Transform (FFT) calculation was used to characterize the evolving behavior of roughness modes. Finite element analysis (FEA) was employed to identify influences of surface morphological configurations and contact pressures on the residual stress development. Analytical model of multi-asperity contact has been developed for prediction of residual stress field for different roughness configurations during varying magnitude of contact loads based on elastic inclusion theory. Experimental results

  19. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    PubMed Central

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  20. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  1. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions.

    PubMed

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-10-17

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  2. The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics

    PubMed Central

    Zdero, Radovan; Bagheri, Zahra S; Rezaey, Mojtaba; Schemitsch, Emil H; Bougherara, Habiba

    2014-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own. No studies have directly measured the effect of vertical load application speed on the contact mechanics of a metal sphere indenting UHMWPE. To this end, a metal ball was used to apply vertical force to a series of UHMWPE flat plate specimens over a wide range of loading speeds, namely, 1, 20, 40, 60, 80, 100, and 120 mm/min. Pressure sensitive Fujifilm was placed at the interface to measure contact area. Experimental results showed that maximum contact force ranged from 3596 to 4520 N and was logarithmically related (R2=0.96) to loading speed. Average contact area ranged from 76.5 to 79.9 mm2 and was linearly related (R2=0.56) to loading speed. Average contact stress ranged from 45.1 to 58.2 MPa and was logarithmically related (R2=0.95) to loading speed. All UHMWPE specimens displayed a circular area of permanent surface damage, which did not disappear with time. This study has practical implications for understanding the contact mechanics of hip and knee replacements for a variety of activities of daily living. PMID:24893849

  3. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-08-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  4. Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

    PubMed

    Toledano, Manuel; Aguilera, Fátima S; Cabello, Inmaculada; Osorio, Raquel

    2014-11-01

    This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phosphoric acid (PA)-treated samples promoted a generalized increases in relative presence of minerals, crystallinity, ratio of phosphate peaks and a decrease in the gradient of mineral content. The organic component showed, in general terms, an increase in crosslinking. [Formula: see text]-helices incremented in sine and square waveform loading. In EDTA + SB specimens, the relative mineral concentration incremented when loading in hold, in general. Nonuniform parameters of Bis-GMA and adhesive penetration were encountered in both groups. PA + SB promoted the highest dentin mineralization degree when loading in square, based on the increase in the relative presence of minerals and crystallinity. EDTA + SB produced any advance crystallographic maturity at the interface. High crosslinking parameters and conformational changes in proteins in PA-treated specimens indicated, indirectly, that the first remineralization is intrafibrillar. PMID:24671520

  5. Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.

  6. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    SciTech Connect

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  7. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo

  8. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  9. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  10. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  11. Influence of external mechanical loadings (creep, fatigue) on oxygen diffusion during nickel oxidation

    SciTech Connect

    Moulin, G.; Arevalo, P.; Salleo, A.

    1996-02-01

    This study deals with the influence of various mechanical loadings (fatigue, creep, creep-fatigue) on oxygen diffusion in a particular system, oxidizing nickel. A distinction between the behavior of the oxide layer and underlying nickel was noted during the first step of oxidation at 550{degrees}C, in P{sub O{sub 2}}= 1 atm. Mechanical loading causes a decrease of the oxygen mobility through the oxide scale (factor of 10{sup 3}). The oxide thicknesses on nickel undergoing mechanical loadings are different than for an unloaded sample, due to distinct contributions of the oxygen and nickel fluxes in the growing oxide. In the substrate, the ingress of oxygen becomes easier with a constant tensile load (creep). The intergranular-oxygen diffusion coefficient, D{sub i}, is increased by a factor of 10{sup 2} with respect to other samples. In creep, oxygen diffusion takes place along grain boundaries of a structure with smaller grains than in unstrained Ni. A short fatigue period during creep-fatigue decreases the sensitivity of nickel to intergranular-oxygen diffusion.

  12. Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Wei; Yang, Zai-Lin; Luo, Gang

    2016-08-01

    Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated. We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load. The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires, there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties. Project supported by the National Science and Technology Pillar Program, China (Grant No. 2015BAK17B06), the Earthquake Industry Special Science Research Foundation Project, China (Grant No. 201508026-02), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201310), and the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province, China (Grant No. LBHQ13040).

  13. Hydraulic head response of a confined aquifer influenced by river stage fluctuations and mechanical loading

    NASA Astrophysics Data System (ADS)

    Pacheco, F. A. L.; Fallico, C.

    2015-12-01

    The response to river stage fluctuation of a drilled well penetrating a confined aquifer was simulated using a stream-aquifer interaction algorithm. Because the confined aquifer is overlaid by a water table aquifer, the algorithm was coupled with formulae used to correct the heads for mechanical loading. The coupling of stream-aquifer interaction and mechanical loading models was tried for the first time in this study. The test site was a drilled well installed on the Montalto Uffugo aquifer located at the Calabria University groundwater test field (Calabria region, south of Italy). This aquifer comprises a 44 m-thick sand bank bounded on bottom and top by clay layers and covered by a 7 m-thick sandy conglomerate, being adjacent to the Mavigliano River. Overall, the head changes caused by a river stage raise represented a contribution of 49.3-57.8% to the total head, while mechanical loading accounted for the remaining 50.7-32.2%. The loading was triggered by a sequence of short-spaced rainfall events lasting for a total of 167 days, which caused recharge to the unconfined aquifer thickening the water column by some 3.1 m.

  14. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis.

    PubMed

    Meyer, Luisa A; Johnson, Michael G; Cullen, Diane M; Vivanco, Juan F; Blank, Robert D; Ploeg, Heidi-Lynn; Smith, Everett L

    2016-04-01

    Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (-2000με, 120cycles daily, "jump" waveform) and big ET1 (25ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23days. The bone cores' response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher's LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the "no load + big ET1" (CE, 13±12.2%, p=0.56), "load + no big ET1" (LC, 17±3.9%, p=0.14) and "load + big ET1" (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15

  15. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in

  16. Photo-thermal polymerization of nanotube/polymer composites: Effects of load transfer and mechanical strength

    PubMed Central

    Xu, Peng; Loomis, James; Panchapakesan, Balaji

    2012-01-01

    The authors report a method where in-situ photon assisted heating of multi-wall carbon nanotubes was utilized for enhanced polymerization of the nanotube/polydimethylsiloxane interface that resulted in significant load transfer and improved mechanical properties. Large Raman shifts (20 cm−1 wavenumbers) of the 2D bands were witnessed for near-infrared light polymerized samples, signifying increased load transfer to the nanotubes for up to ∼80% strains. An increase in elastic modulus of ∼130% for 1 wt. % composites is reported for photon assisted crosslinking. PMID:22509070

  17. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  18. Mechanics of load transfer at the interface. [from matrix to fiber of composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    The mechanism of load transfer from matrix to fiber though the interface and, as a consequence, the effects of the interface on composite structural integrity are discussed. Specifically, the present work deals with the role of interfacial bonding in composite strength, the dependence of fracture surface on interface bond strength, and methods of measuring and predicting the stress at the interface, the microresidual stress, and load condition effects on the interface bond. The possibility of designing composites with specified bond properties is examined. Many of these effects are illustrated graphically to indicate general trends and to illustrate significant points. The discussion is based on theoretical considerations and is supplemented with pertinent experimental data.

  19. Mechanics of energy transfer and failure of ductile microscale beams subjected to dynamic loading

    NASA Astrophysics Data System (ADS)

    Kimberley, J.; Lambros, J.; Chasiotis, I.; Pulskamp, J.; Polcawich, R.; Dubey, M.

    2010-08-01

    The mechanical response of microelectromechanical systems (MEMS) under impulse loading conditions has not been thoroughly studied to date, partially because of the lack of means to provide such extreme loading rates to miniature devices. However, the increasing use of MEMS-based sensors and actuators in adverse environments, which include extreme strain rate loading, has motivated the investigation of the response of MEMS components under these conditions. In this work, basic and mostly commonly employed Au MEMS components were subjected to impulse loads of 40 ns in duration, which were generated by a high power pulsed laser in order to achieve acceleration levels on the order of 10 9g. This allowed for the microdevice mechanical/structural response to be investigated at time scales that were of the order of wave transit times in the substrate and the devices. Basic microscale structures, such as cantilevers and fixed-fixed beams of uniform cross-section, were employed to facilitate comparisons with companion finite element simulations in order to gain insight into the mechanisms responsible for impulsive deformation at the microscale. The simulations investigated the effect of loading rate, boundary conditions, beam length, material constitutive response, and damping on the final deformed shapes of the beams. It was found that contact and momentum transfer mechanisms were responsible for the large permanent beam deflections which were measured postmortem. Additionally, the effects of both damping and material property rate dependence were found to be dominant in determining the final deformed shape of the beams. In fact, our observations suggest that the contributions of material rate dependence and damping are not simply additive, but rather involve a coupling between them that affects the final structure response.

  20. Preclinical models for in vitro mechanical loading of bone-derived cells.

    PubMed

    Michael Delaine-Smith, Robin; Javaheri, Behzad; Helen Edwards, Jennifer; Vazquez, Marisol; Rumney, Robin Mark Howard

    2015-01-01

    It is well established that bone responds to mechanical stimuli whereby physical forces are translated into chemical signals between cells, via mechanotransduction. It is difficult however to study the precise cellular and molecular responses using in vivo systems. In vitro loading models, which aim to replicate forces found within the bone microenvironment, make the underlying processes of mechanotransduction accessible to the researcher. Direct measurements in vivo and predictive modeling have been used to define these forces in normal physiological and pathological states. The types of mechanical stimuli present in the bone include vibration, fluid shear, substrate deformation and compressive loading, which can all be applied in vitro to monolayer and three-dimensional (3D) cultures. In monolayer, vibration can be readily applied to cultures via a low-magnitude, high-frequency loading rig. Fluid shear can be applied to cultures in multiwell plates via a simple rocking platform to engender gravitational fluid movement or via a pump to cells attached to a slide within a parallel-plate flow chamber, which may be micropatterned for use with osteocytes. Substrate strain can be applied via the vacuum-driven FlexCell system or via a four-point loading jig. 3D cultures better replicate the bone microenvironment and can also be subjected to the same forms of mechanical stimuli as monolayer, including vibration, fluid shear via perfusion flow, strain or compression. 3D cocultures that more closely replicate the bone microenvironment can be used to study the collective response of several cell types to loading. This technical review summarizes the methods for applying mechanical stimuli to bone cells in vitro. PMID:26331007

  1. Preclinical models for in vitro mechanical loading of bone-derived cells

    PubMed Central

    Michael Delaine-Smith, Robin; Javaheri, Behzad; Helen Edwards, Jennifer; Vazquez, Marisol; Rumney, Robin Mark Howard

    2015-01-01

    It is well established that bone responds to mechanical stimuli whereby physical forces are translated into chemical signals between cells, via mechanotransduction. It is difficult however to study the precise cellular and molecular responses using in vivo systems. In vitro loading models, which aim to replicate forces found within the bone microenvironment, make the underlying processes of mechanotransduction accessible to the researcher. Direct measurements in vivo and predictive modeling have been used to define these forces in normal physiological and pathological states. The types of mechanical stimuli present in the bone include vibration, fluid shear, substrate deformation and compressive loading, which can all be applied in vitro to monolayer and three-dimensional (3D) cultures. In monolayer, vibration can be readily applied to cultures via a low-magnitude, high-frequency loading rig. Fluid shear can be applied to cultures in multiwell plates via a simple rocking platform to engender gravitational fluid movement or via a pump to cells attached to a slide within a parallel-plate flow chamber, which may be micropatterned for use with osteocytes. Substrate strain can be applied via the vacuum-driven FlexCell system or via a four-point loading jig. 3D cultures better replicate the bone microenvironment and can also be subjected to the same forms of mechanical stimuli as monolayer, including vibration, fluid shear via perfusion flow, strain or compression. 3D cocultures that more closely replicate the bone microenvironment can be used to study the collective response of several cell types to loading. This technical review summarizes the methods for applying mechanical stimuli to bone cells in vitro. PMID:26331007

  2. Thermo-mechanical History of a Friction Stir Welded Plate; Influence of the Mechanical Loading on the Residual Stress Distribution

    NASA Astrophysics Data System (ADS)

    Paun, Florin; Azouzi, Alexandre

    2004-06-01

    The Friction Stir Welding is considered to be one of the most promising processing for aeronautics. The obtained welded joints (for the best welding parameters) seem to have better resistance than conventional joining techniques including riveting. To predict the best welding process conditions, current work aims to completely describe the thermo-mechanical history using computer simulation. In this paper, we will present the latest numerical results, thermal and stress-strain fields, obtained for a "virtual" welded plate. This numerical simulation introduces both thermal and mechanical loadings using a step by step advancing coupled method with SAMCEF code. Further works are proposed for the development of a FSW predictive numerical tool.

  3. In Vivo Mechanical Loading Rapidly Activates β–catenin Signaling in Osteocytes through a Prostaglandin Mediated Mechanism

    PubMed Central

    Lara-Castillo, N; Kim-Weroha, NA; Kamel, MA; Javaheri, B; Ellies, DL; Krumlauf, RE; Thiagarajan, G; Johnson, ML

    2015-01-01

    The response of the skeleton to loading appears to be mediated through the activation of the Wnt/β-catenin signaling pathway and osteocytes have long been postulated to be the primary mechanosensory cells in bone. To examine the kinetics of the mechanoresponse of bone and cell types involved in the in vivo, we performed forearm loading of 17-week-old female TOPGAL mice. β-catenin signaling was observed only in embedded osteocytes, not osteoblasts, at 1 hour post loading, spreading to additional osteocytes and finally to cells on the bone surface by 24 hrs. This early activation at 1 hour appeared to be independent of receptor (Lrp5/6) mediated activation as it occurred in the presence of the inhibitors sclerostin and/or Dkk1. The COX-2 inhibitor, Carprofen, blocked the activation of β-catenin signaling and decline in sclerostin positive osteocytes post-loading implying an important role for prostaglandin. In vitro, PI3K/Akt activation was shown to be required for β-catenin nuclear translocation downstream from prostaglandin in MLO-Y4 osteocyte-like cells supporting this mechanism. Downstream targets of β-catenin signaling, sclerostin and Dkk1, were also examined and found to be significantly down regulated in osteocytes in vivo at 24 hours post-loading. The pattern of initially activated osteocytes appeared random and in order to understand this heterogeneous expression, a novel finite element model of the strain field in the ulna was developed, which predicts highly variable local magnitudes of strain experienced by osteocytes. In summary, both in vivo and in vitro models show the rapid activation of β-catenin in response to load through the early release of prostaglandin and that strain fields in the bone are extremely heterogeneous resulting in heterogeneous activation of the β-catenin pathway in osteocytes in vivo. PMID:25836764

  4. In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism.

    PubMed

    Lara-Castillo, N; Kim-Weroha, N A; Kamel, M A; Javaheri, B; Ellies, D L; Krumlauf, R E; Thiagarajan, G; Johnson, M L

    2015-07-01

    The response of the skeleton to loading appears to be mediated through the activation of the Wnt/β-catenin signaling pathway and osteocytes have long been postulated to be the primary mechanosensory cells in bone. To examine the kinetics of the mechanoresponse of bone and cell types involved in vivo, we performed forearm loading of 17-week-old female TOPGAL mice. β-catenin signaling was observed only in embedded osteocytes, not osteoblasts, at 1h post-loading, spreading to additional osteocytes and finally to cells on the bone surface by 24h. This early activation at 1h appeared to be independent of receptor (Lrp5/6) mediated activation as it occurred in the presence of the inhibitors sclerostin and/or Dkk1. The COX-2 inhibitor, Carprofen, blocked the activation of β-catenin signaling and decline in sclerostin positive osteocytes post-loading implying an important role for prostaglandin. In vitro, PI3K/Akt activation was shown to be required for β-catenin nuclear translocation downstream from prostaglandin in MLO-Y4 osteocyte-like cells supporting this mechanism. Downstream targets of β-catenin signaling, sclerostin and Dkk1, were also examined and found to be significantly downregulated in osteocytes in vivo at 24h post-loading. The pattern of initially activated osteocytes appeared random and in order to understand this heterogeneous expression, a novel finite element model of the strain field in the ulna was developed, which predicts highly variable local magnitudes of strain experienced by osteocytes. In summary, both in vivo and in vitro models show the rapid activation of β-catenin in response to load through the early release of prostaglandin and that strain fields in the bone are extremely heterogeneous resulting in heterogeneous activation of the β-catenin pathway in osteocytes in vivo. PMID:25836764

  5. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2015-09-01

    Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s-1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  6. Mechanical properties of methacrylate-based model dentin adhesives: effect of loading rate and moisture exposure.

    PubMed

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Park, Jonggu; Spencer, Paulette

    2013-11-01

    The aim of this study is to investigate the mechanical behavior of model methacrylate-based dentin adhesives under conditions that simulate the wet oral environment. A series of monotonic and creep experiments were performed on rectangular beam samples of dentin adhesive in three-point bending configuration under different moisture conditions. The monotonic test results show a significant effect of loading rate on the failure strength and the linear limit (yield point) of the stress-strain response. In addition, these tests show that the failure strength is low, and the failure occurs at a smaller deformation when the test is performed under continuously changing moisture conditions. The creep test results show that under constant moisture conditions, the model dentin adhesives can have a viscoelastic response under certain low loading levels. However, when the moisture conditions vary under the same low loading levels, the dentin adhesives have an anomalous creep response accompanied by large secondary creep and high strain accumulation. PMID:23744598

  7. Mechanical effects associated with surface loading of dry rock due to glaciation

    SciTech Connect

    Wahi, K.K.; Hunter, R.L.

    1985-01-01

    Many scenarios of interest for a repository in the Pasco Basin begin with glaciation. Loading and unloading of joints and fractures due to the weight of ice sheets could affect the hydrologic properties of the host rock and surrounding units. Scoping calculations performed using two-dimensional numerical models with simplifying assumptions predict stress changes and uplift or subsidence caused by an advancing glacier. The magnitudes of surface uplift and subsidence predicted by the study agree well with previous independent predictions. Peak stress unloading near the repository horizon is a small fraction of the ambient stress. Any resultant aperture increase is likewise small. Based on the results of this study, mechanical loading caused by a glacier is expected to have a minimal effect on rock permeability, assuming that the excess compressive loads do not crush the rock. 13 refs., 3 figs., 1 tab.

  8. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.

    PubMed

    Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H

    2016-09-01

    Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues. PMID:27602730

  9. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings

  10. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading.

    PubMed

    Poon, Chi-Sang; Tin, Chung

    2013-03-01

    Patients with chronic heart failure (CHF) suffer increased alveolar VD/VT (dead-space-to-tidal-volume ratio), yet they demonstrate augmented pulmonary ventilation such that arterial [Formula: see text] ( [Formula: see text] ) remains remarkably normal from rest to moderate exercise. This paradoxical effect suggests that the control law governing exercise hyperpnea is not merely determined by metabolic CO2 production ( [Formula: see text] ) per se but is responsive to an apparent (real-feel) metabolic CO2 load ( [Formula: see text] ) that also incorporates the adverse effect of physiological VD/VT on pulmonary CO2 elimination. By contrast, healthy individuals subjected to dead space loading also experience augmented ventilation at rest and during exercise as with increased alveolar VD/VT in CHF, but the resultant response is hypercapnic instead of eucapnic, as with CO2 breathing. The ventilatory effects of dead space loading are therefore similar to those of increased alveolar VD/VT and CO2 breathing combined. These observations are consistent with the hypothesis that the increased series VD/VT in dead space loading adds to [Formula: see text] as with increased alveolar VD/VT in CHF, but this is through rebreathing of CO2 in dead space gas thus creating a virtual (illusory) airway CO2 load within each inspiration, as opposed to a true airway CO2 load during CO2 breathing that clogs the mechanism for CO2 elimination through pulmonary ventilation. Thus, the chemosensing mechanism at the respiratory controller may be responsive to putative drive signals mediated by within-breath [Formula: see text] oscillations independent of breath-to-breath fluctuations of the mean [Formula: see text] level. Skeletal muscle afferents feedback, while important for early-phase exercise cardioventilatory dynamics, appears inconsequential for late-phase exercise hyperpnea. PMID:23274121

  11. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading

    PubMed Central

    Poon, Chi-Sang; Tin, Chung

    2013-01-01

    Patients with chronic heart failure (CHF) suffer increased alveolar VD/VT (dead-space-to-tidal-volume ratio), yet they demonstrate augmented pulmonary ventilation such that arterial PCO2 (PaCO2) remains remarkably normal from rest to moderate exercise. This paradoxical effect suggests that the control law governing exercise hyperpnea is not merely determined by metabolic CO2 production (V̇CO2) per se but is responsive to an apparent (real-feel) metabolic CO2 load (V˙CO2o) that also incorporates the adverse effect of physiological VD/VT on pulmonary CO2 elimination. By contrast, healthy individuals subjected to dead space loading also experience augmented ventilation at rest and during exercise as with increased alveolar VD/VT in CHF, but the resultant response is hypercapnic instead of eucapnic, as with CO2 breathing. The ventilatory effects of dead space loading are therefore similar to those of increased alveolar VD/VT and CO2 breathing combined. These observations are consistent with the hypothesis that the increased series VD/VT in dead space loading adds to V˙CO2o as with increased alveolar VD/VT in CHF, but this is through rebreathing of CO2 in dead space gas thus creating a virtual (illusory) airway CO2 load within each inspiration, as opposed to a true airway CO2 load during CO2 breathing that clogs the mechanism for CO2 elimination through pulmonary ventilation. Thus, the chemosensing mechanism at the respiratory controller may be responsive to putative drive signals mediated by within-breath PaCO2 oscillations independent of breath-to-breath fluctuations of the mean PaCO2 level. Skeletal muscle afferents feedback, while important for early-phase exercise cardioventilatory dynamics, appears inconsequential for late-phase exercise hyperpnea. PMID:23274121

  12. A new method to investigate how mechanical loading of osteocytes controls osteoblasts.

    PubMed

    Vazquez, Marisol; Evans, Bronwen A J; Riccardi, Daniela; Evans, Sam L; Ralphs, Jim R; Dillingham, Christopher Mark; Mason, Deborah J

    2014-01-01

    Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte

  13. A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts

    PubMed Central

    Vazquez, Marisol; Evans, Bronwen A. J.; Riccardi, Daniela; Evans, Sam L.; Ralphs, Jim R.; Dillingham, Christopher Mark; Mason, Deborah J.

    2014-01-01

    Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte–osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000–4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte–osteoblast co-culture model that may be useful for investigating mechanically induced

  14. Mechanical Assessment of the Drep Shield Subject to Vibratory Motion and Dynamic and Static Rock Loading

    SciTech Connect

    R.C. Quittmeyer

    2005-11-16

    The purpose of the drip shield (DS) is to divert water that may seep into emplacement drifts from contacting the waste packages, and to protect the waste packages from impact or static loading from rockfall. The objective of this document is to summarize, into one location, the results of a series of supporting engineering calculations that were developed to study the effect of static and dynamic loads on the mechanical performance of the DS. The potential DS loads are a result of: (1) Potential earthquake vibratory ground motion, and resulting interaction of the DS, waste package and pallet, and drift invert; (2) Dynamic impacts of rockfall resulting from emplacement drift damage as a result of earthquake vibratory motion; and (3) Static load of the caved rock rubble that may come to rest on the DS as a result of vibratory motion or from time-dependent yielding of the rock mass surrounding the emplacement drift. The potential mechanical failure mechanisms that may result from these loads include: (1) Overturning and/or separation of the interlocking DS segments; (2) Loss of structural integrity and stability of the DS, including excessive deformation or buckling; and (3) Localized damage to the top and side-wall plates of the DS. The scope of this document is limited to summarizing results presented in the supporting calculations in the areas of analysis of the potential for DS collapse, and determination of the damaged surface area of the DS plates. New calculations are presented to determine whether or not separation of DSs occur under vibratory motion.

  15. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  16. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  17. Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane

    PubMed Central

    Paul, Deepen; Paul, Sharmistha; Roohpour, Nima; Wilks, Mark; Vadgama, Pankaj

    2013-01-01

    Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU) and variously characterized by field emission scanning electron microscopy (FESEM), fourier transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD) and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w) AgNO3, 1% and 10% (w/w) Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA) indicated greater thermal stability. PMID:24956194

  18. Non-Invasive Investigation of Bone Adaptation in Humans to Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Whalen, R.

    1999-01-01

    Experimental studies have identified peak cyclic forces, number of loading cycles, and loading rate as contributors to the regulation of bone metabolism. We have proposed a theoretical model that relates bone density to a mechanical stimulus derived from average daily cumulative peak cyclic 'effective' tissue stresses. In order to develop a non-invasive experimental model to test the theoretical model we need to: (1) monitor daily cumulative loading on a bone, (2) compute the internal stress state(s) resulting from the imposed loading, and (3) image volumetric bone density accurately, precisely, and reproducibly within small contiguous volumes throughout the bone. We have chosen the calcaneus (heel) as an experimental model bone site because it is loaded by ligament, tendon and joint contact forces in equilibrium with daily ground reaction forces that we can measure; it is a peripheral bone site and therefore more easily and accurately imaged with computed tomography; it is composed primarily of cancellous bone; and it is a relevant site for monitoring bone loss and adaptation in astronauts and the general population. This paper presents an overview of our recent advances in the areas of monitoring daily ground reaction forces, biomechanical modeling of the forces on the calcaneus during gait, mathematical modeling of calcaneal bone adaptation in response to cumulative daily activity, accurate and precise imaging of the calcaneus with quantitative computed tomography (QCT), and application to long duration space flight.

  19. Immature articular cartilage and subchondral bone covered by menisci are potentially susceptive to mechanical load

    PubMed Central

    2014-01-01

    Background The differences of mechanical and histological properties between cartilage covered by menisci and uncovered by menisci may contribute to the osteoarthritis after meniscectomy and these differences are not fully understood. The purpose of this study is to investigate potential differences in the mechanical and histological properties, and in particular the collagen architecture, of the superficial cartilage layer and subchondral bone between regions covered and uncovered by menisci using immature knee. Methods Osteochondral plugs were obtained from porcine tibial cartilage that was either covered or uncovered by menisci. Investigation of the thickness, mechanical properties, histology, and water content of the cartilage as well as micro-computed tomography analysis of the subchondral bone was performed to compare these regions. Collagen architecture was also assessed by using scanning electron microscopy. Results Compared to the cartilage uncovered by menisci, that covered by menisci was thinner and showed a higher deformity to compression loading and higher water content. In the superficial layer of cartilage in the uncovered regions, collagen fibers showed high density, whereas they showed low density in covered regions. Furthermore, subchondral bone architecture varied between the 2 regions, and showed low bone density in covered regions. Conclusions Cartilage covered by menisci differed from that uncovered in both its mechanical and histological properties, especially with regards to the density of the superficial collagen layer. These regional differences may be related to local mechanical environment in normal condition and indicate that cartilage covered by menisci is tightly guarded by menisci from extreme mechanical loading. Our results indicate that immature cartilage degeneration and subchondral microfracture may occur easily to extreme direct mechanical loading in covered region after meniscectomy. PMID:24669849

  20. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.

    PubMed

    Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan

    2016-03-01

    Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters. PMID:26044551

  1. Shield mechanics and resultant load-vector studies. Report of Investigations/1986

    SciTech Connect

    Barczak, T.M.; Garson, R.C.

    1986-01-01

    The term resultant load vector is defined as the representation of the forces applied to a longwall roof-support element by strata activity through a single, quantifiable measure of support resistance. The relatively complex kinematics of the shield structure prohibit determination of support resistance simply from the summation of leg forces. In the research reported in the Bureau of Mines study, the mechanics of the shield structure were evaluated and a technique was developed whereby the resultant shield loading could be determined by instrumenting supports with pressure transducers and strain gages to measure leg, canopy capsule, and lemniscate link forces. The technique was laboratory tested in the Bureau's Mine Roof Simulator. Functional relationships among variables were assessed, and confidence intervals were established for prediction of the resultant load-vector parameters. Resultant load measurements were taken on five instrumented shields on an active longwall face in Colorado. Results were analyzed and found to be consistent with shield mechanics and anticipated roof behavior. Benefits to be derived from the research, future efforts, and long-range goals are discussed.

  2. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  3. Hydraulic mechanism to limit torsional loads between the IUS and space transportation system orbiter

    NASA Technical Reports Server (NTRS)

    Farmer, James R.

    1986-01-01

    The Inertial Upper Stage (IUS) is a two-stage booster used by NASA and the Defense Department to insert payloads into geosynchronous orbit from low-Earth orbit. The hydraulic mechanism discussed here was designed to perform a specific dynamic and static interface function within the Space Transportation System's Orbiter. Requirements, configuration, and application of the hydraulic mechanism with emphasis on performance and methods of achieving zero external hydraulic leakage are discussed. The hydraulic load-leveler mechanism meets the established design requirements for operation in a low-Earth orbit. Considerable testing was conducted to demonstrate system performance and verification that external leakage had been reduced to zero. Following each flight use of an ASE, all hydraulic mechanism components are carefully inspected for leakage. The ASE, including the hydraulic mechanism, has performed without any anomalies during all IUS flights.

  4. Assembly and Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial Nanocompartment Encapsulin.

    PubMed

    Snijder, Joost; Kononova, Olga; Barbu, Ioana M; Uetrecht, Charlotte; Rurup, W Frederik; Burnley, Rebecca J; Koay, Melissa S T; Cornelissen, Jeroen J L M; Roos, Wouter H; Barsegov, Valeri; Wuite, Gijs J L; Heck, Albert J R

    2016-08-01

    Prokaryotes mostly lack membranous compartments that are typical of eukaryotic cells, but instead, they have various protein-based organelles. These include bacterial microcompartments like the carboxysome and the virus-like nanocompartment encapsulin. Encapsulins have an adaptable mechanism for enzyme packaging, which makes it an attractive platform to carry a foreign protein cargo. Here we investigate the assembly pathways and mechanical properties of the cargo-free and cargo-loaded nanocompartments, using a combination of native mass spectrometry, atomic force microscopy and multiscale computational molecular modeling. We show that encapsulin dimers assemble into rigid single-enzyme bacterial containers. Moreover, we demonstrate that cargo encapsulation has a mechanical impact on the shell. The structural similarity of encapsulins to virus capsids is reflected in their mechanical properties. With these robust mechanical properties encapsulins provide a suitable platform for the development of nanotechnological applications. PMID:27355101

  5. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    NASA Astrophysics Data System (ADS)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  6. Detection of Micro-Leaks Through Complex Geometries Under Mechanical Load and at Cryogenic Temperature

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Sikora, J. G.; Sankaran, S. N.

    2001-01-01

    Polymer Matrix Composite (PMC) hydrogen tanks have been proposed as an enabling technology for reducing the weight of Single-Stage-to-Orbit reusable launch vehicles where structural mass has a large impact on vehicle performance. A key development issue of these lightweight structures is the leakage of hydrogen through the composite material. The rate of hydrogen leakage can be a function of the material used, method of 6 fabrication used to manufacture the tank, mechanical load the tank must react, internal damage-state of the material, and the temperatures at which the tank must operate. A method for measuring leakage through a geometrically complex structure at cryogenic temperature and under mechanical load was developed, calibrated and used to measure hydrogen leakage through complex X-33 liquid-hydrogen tank structure sections.

  7. The results of near-field thermal and mechanical calculations of thermal loading schemes

    SciTech Connect

    Holland, J.F.

    1992-12-31

    Two waste emplacement schemes,borehole and in-drift are under evaluation as potential repository drift geometries for the Yucca Mountain Site Characterization Project Calculations were performed to examinethe systems implications of various thermal loadings on the near- and far-field repository environments. Ms paper reports the results of two-dimensional finite element analyses of the near-field thermal and structural response of the potential repository. Thermal calculations were run to 1000 years and mechanical calculations were run to 75 years. the time when the drifts will be backfilled. Local areal power densities (LAPDs) of 57, 80, and 100 kW/acre were used in the calculations. Both emplacement schemes meet current near-field thermal performance goals for all loadings examined. The mechanical calculations predict no intact rock failure, limited joint slippage around the drifts, and closure of apertures for vertical fractures above and below the drifts.

  8. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  9. Inverse thermoelastic analysis for thermal and mechanical loads identification using FBG data

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshiya; Kamimura, Yukihiro; Igawa, Hirotaka; Morino, Yoshiki

    2014-12-01

    Fiber Bragg Grating (FBG) sensors have widely been used to monitor temperature and strain distributions as a part of the structural health monitoring system. Since FBG has the sensitivity to the variations in both temperature and strain, a compensation is required to separate the strain or temperature data from the sensor output which is the shift of the grating's Bragg wavelength. The present study develops a computational inverse thermoelastic analysis method to separately identify the thermal and mechanical boundary conditions (loads) from the output of the FBG sensor. Numerical study has been made for a corrugate-core sandwich integral thermal protection system (TPS) to examine the method. The discussion is focused on the computational stability. The results reveal that the identification of the mechanical load is less stable than that of the heat flux. It is also shown that the condition number of a coefficient matrix serves as the index of the stability of the inverse analysis.

  10. Time-dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation.

    PubMed

    Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-10-01

    Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This

  11. Mechanical behaviour of Bioactive Glass granules and morselized cancellous bone allograft in load bearing defects.

    PubMed

    Hulsen, D J W; Geurts, J; van Gestel, N A P; van Rietbergen, B; Arts, J J

    2016-05-01

    Bioactive Glass (BAG) granules are osteoconductive and possess unique antibacterial properties for a synthetic biomaterial. To assess the applicability of BAG granules in load-bearing defects, the aim was to compare mechanical behaviour of graft layers consisting of BAG granules and morselized cancellous bone allograft in different volume mixtures under clinically relevant conditions. The graft layers were mechanically tested, using two mechanical testing modalities with simulated physiological loading conditions: highly controllable confined compression tests (CCT) and more clinically realistic in situ compression tests (ISCT) in cadaveric porcine bone defects. Graft layer impaction strain, residual strain, aggregate modulus, and creep strain were determined in CCT. Graft layer porosity was determined using micro computed tomography. The ISCT was used to determine graft layer subsidence in bone environment. ANOVA showed significant differences (p<0.001) between different graft layer compositions. True strains absolutely decreased for increasing BAG content: impaction strain -0.92 (allograft) to -0.39 (BAG), residual strain -0.12 to -0.01, and creep strain -0.09 to 0.00 respectively. Aggregate modulus increased with increasing BAG content from 116 to 653MPa. Porosity ranged from 66% (pure allograft) to 15% (pure BAG). Subsidence was highest for allograft, and remarkably low for a 1:1 BAG-allograft volume mixture. Both BAG granules and allograft morsels as stand-alone materials exhibit suboptimal mechanical behaviour for load-bearing purpose. BAG granules are difficult to handle and less porous, whereas allograft subsides and creeps. A 1:1 volume mixture of BAG and allograft is therefore proposed as the best graft material in load-bearing defects. PMID:26972764

  12. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites

    NASA Astrophysics Data System (ADS)

    Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T.

    2000-05-01

    Multiwall carbon nanotubes have been dispersed homogeneously throughout polystyrene matrices by a simple solution-evaporation method without destroying the integrity of the nanotubes. Tensile tests on composite films show that 1 wt % nanotube additions result in 36%-42% and ˜25% increases in elastic modulus and break stress, respectively, indicating significant load transfer across the nanotube-matrix interface. In situ transmission electron microscopy studies provided information regarding composite deformation mechanisms and interfacial bonding between the multiwall nanotubes and polymer matrix.

  13. The study on ``load relief`` mechanism of multiple cracks in thick-wall cylinder

    SciTech Connect

    Zhang, Y.H.; Huang, Z.Z.; Tan, Y.; Chen, L.Y.; Pan, B.Z.

    1995-11-01

    In this paper, the stress field on a given cross section in a thick-wall cylinder with single or multiple cracks is analyzed by means of 3-D photoelastic. Based on the study of the effect of crack on stress field, the concept of ``Additional Bending Moment`` is presented and the expression for non-dimensional ABM, M, is derived. The ``load relief`` mechanism of multiple cracks in a thick-wall cylinder is studied.

  14. Mechanical response of thick laminated beams and plates subject to out-of-plane loading

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Brinson, . F.

    1989-01-01

    The use of simplified elasticity solutions to determine the mechanical response of thick laminated beams and plates subject to out-of-plane loading is demonstrated. Excellent results were obtained which compare favorably with theoretical, numerical and experimental analyses from other sources. The most important characteristic of the solution methodology presented is that it combines great mathematical precision with simplicity. This symbiosis has been needed for design with advanced composite materials.

  15. Mechanical load and mechanical integrity of lung cells - experimental mechanostimulation of epithelial cell- and fibroblast-monolayers.

    PubMed

    Gamerdinger, Katharina; Wernet, Florian; Smudde, Eva; Schneider, Matthias; Guttmann, Josef; Schumann, Stefan

    2014-12-01

    Experimental mechanostimulation of soft biologic tissue is widely used to investigate cellular responses to mechanical stress or strain. Reactions on mechanostimulation are investigated in terms of morphological changes, inflammatory responses and apoptosis/necrosis induction on a cellular level. In this context, the analysis of the mechanical characteristics of cell-layers might allow to indicate patho-physiological changes in the cell-cell contacts. Recently, we described a device for experimental mechanostimulation that allows simultaneous measurement of the mechanical characteristics of cell-monolayers. Here, we investigated how cultivated lung epithelial cell- and fibroblast-monolayers behave mechanically under different amplitudes of biaxial distension. The cell monolayers were sinusoidally deflected to 5%, 10% or 20% surface gain and their mechanical properties during mechanostimulation were analyzed. With increasing stimulation amplitudes more pronounced reductions of cell junctions were observed. These findings were accompanied by a substantial loss of monolayer rigidity. Pulmonary fibroblast monolayers were initially stiffer but were stronger effected by the mechanostimulation compared to epithelial cell-monolayers. We conclude that, according to their biomechanical function within the pulmonary tissue, epithelial cells and fibroblasts differ with respect to their mechanical characteristics and tolerance of mechanical load. PMID:25241284

  16. A Load-based Micro-indentation Technique for Mechanical Property and NDE Evaluation

    SciTech Connect

    Bruce S. Kang; Chuanyu Feng; Jared M. Tannenbaum; M.A. Alvin

    2009-06-04

    A load-based micro-indentation technique has been developed for evaluating mechanical properties of materials. Instead of using measured indentation depth or contact area as a necessary parameter, the new technique is based on the indentation load, coupled with a multiple-partial unloading procedure for mechanical property evaluation. The proposed load-based micro-indentation method is capable of determining Young’s modulus of metals, superalloys, and single crystal matrices, and stiffness of coated material systems with flat, tubular, or curved architectures. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed metal, superalloy, single crystal, and TBC-coated material properties. Based on this technique, several bond coated substrates were tested at various stages of thermal cycles. The time-series evaluation of test material surface stiffness reveals the status of coating strength without any alternation of the coating surface, making it a true time-series NDE investigation. The microindentation test results show good correlation with post mortem microstructural analyses. This technique also shows promise for the development of a portable instrument for on-line, in-situ NDE and mechanical properties measurement of structural components.

  17. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  18. The stiffness of bone marrow cell-knit composites is increased during mechanical load.

    PubMed

    Bruinink, A; Siragusano, D; Ettel, G; Brandsberg, T; Brandsberg, F; Petitmermet, M; Müller, B; Mayer, J; Wintermantel, E

    2001-12-01

    A novel device for mechanical stimulation of primary adult rat bone marrow cells cultured on three-dimensional knitted textiles has been prototyped. A method has been developed ensuring a well-defined, high-density, and reproducible cell seeding on the knitted fabric. After culturing for 18-52 days the cell-knit composites were subjected to uniaxial 2% stretching and relaxation. The frequency was altered between 0.1 Hz (196 min, loading phase) and 0.01 Hz (360 min, resting phase). Identically treated knits without cells exhibited a slight stiffness reduction, whereas the stiffness of knits with cells increased from cycle to cycle. The stiffness increase was found to depend on the duration of the culture period before mechanical loading. Our data suggest that the extracellular matrix deposited by the cells on the knit and intact microtubuli of living cells cause the observed stiffness increase. In comparison to the unstrained static cell-knit composites cell proliferation and bone cell differentiation were reduced by the mechanical load. PMID:11603589

  19. Recent Findings on the Mechanical Responses of Nanostructures to Extreme Loading Conditions

    SciTech Connect

    Chen Zhen; Gan Yong; Shen Luming; Chen, J. K.

    2010-05-21

    A systematic investigation is being performed to understand the combined size, loading rate and thermal effects on the responses of nanostructures such as nanofilms and nanowires. This paper summarizes what has been found so far, and presents the recent molecular dynamics simulations of the mechanical behaviors of single crystal fcc nanowires and nanofilms under different temperatures and extremely high strain rates. Based on the model-based simulation results, the mechanism of the nanostructural responses will be explored and future research tasks will be discussed.

  20. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    SciTech Connect

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  1. Theoretical study of β-HMX decomposition mechanism of the solid phase under shock loadings

    NASA Astrophysics Data System (ADS)

    Ji, Guangfu; Ge, Nina; Chen, Xiangrong

    2015-06-01

    Study material properties under extreme conditions is a fundamental problem in the field of condensed matter physics. The decomposition mechanisms of energetic materials under the shock wave become a hot topic in recent years. In this paper, molecular dynamics simulations combined with multi-scale shock technology (MSST) are used to study the decomposition mechanism, shock sensitivity and electronic structure of β-HMX. First, the decomposition mechanism of β-HMX perfect crystal were studied at different shock speeds. We found that when the shock wave at a speed 8 km / s is loaded, the decomposition reaction start at N-NO2 bond breakage; when the shock wave at a speed of 10 km / s and 11 km / s is loaded, the the first decomposition reaction is CH bond breaking, and accompanied by the formation of five-membered ring and transfer of hydrogen ions. The simulation results also show that when the shock wave velocity is increased, the higher the pressure generated in the high-pressure N-NO2 bond cleavage was inhibited significantly. Secondly, the impact of its initial chemical reaction process along different crystal axis directions were studied, the results showed that along the a-axis and c-axis shock sensitivity is higher, and along the b-axis sensitivity is lower. We believe that the system of all sensitivity of direction is due to the rotation of the friction between the slip plane of crystals and molecules. Finally, we discussed the solid phase β-HMX electronic properties change under the shock wave loadings. We found that in the 11 km/s under the impact load, when the pressure reaches 130 GPa, zero bandgap is reached.

  2. Mechanical loading causes site-specific anabolic effects on bone following exposure to ionizing radiation.

    PubMed

    Shirazi-Fard, Yasaman; Alwood, Joshua S; Schreurs, Ann-Sofie; Castillo, Alesha B; Globus, Ruth K

    2015-12-01

    During spaceflight, astronauts will be exposed to a complex mixture of ionizing radiation that poses a risk to their health. Exposure of rodents to ionizing radiation on Earth causes bone loss and increases osteoclasts in cancellous tissue, but also may cause persistent damage to stem cells and osteoprogenitors. We hypothesized that ionizing radiation damages skeletal tissue despite a prolonged recovery period, and depletes the ability of cells in the osteoblast lineage to respond at a later time. The goal of the current study was to test if irradiation prevents bone accrual and bone formation induced by an anabolic mechanical stimulus. Tibial axial compression was used as an anabolic stimulus after irradiation with heavy ions. Mice (male, C57BL/6J, 16 weeks) were exposed to high atomic number, high energy (HZE) iron ions ((56)Fe, 2 Gy, 600 MeV/ion) (IR, n=5) or sham-irradiated (Sham, n=5). In vivo axial loading was initiated 5 months post-irradiation; right tibiae in anesthetized mice were subjected to an established protocol known to stimulate bone formation (cyclic 9N compressive pulse, 60 cycles/day, 3 day/wk for 4 weeks). In vivo data showed no difference due to irradiation in the apparent stiffness of the lower limb at the initiation of the axial loading regimen. Axial loading increased cancellous bone volume by microcomputed tomography and bone formation rate by histomorphometry in both sham and irradiated animals, with a main effect of axial loading determined by two-factor ANOVA with repeated measure. There were no effects of radiation in cancellous bone microarchitecture and indices of bone formation. At the tibia diaphysis, results also revealed a main effect of axial loading on structure. Furthermore, irradiation prevented axial loading-induced stimulation of bone formation rate at the periosteal surface of cortical tissue. In summary, axial loading stimulated the net accrual of cancellous and cortical mass and increased cancellous bone formation rate

  3. Experimental study of low amplitude, long-duration mechanical loading of reactive materials

    SciTech Connect

    Urtiew, P A; Forbes, J W

    2000-10-03

    Studies of the low amplitude, long-duration mechanical loading of reactive materials rely very heavily on the experimental data in general and in particular on the data obtained from gauges placed within the experimental test sample to measure accurately the local changes of parameters of the investigated material. For a complete description of these changes taking place in a dynamically loaded material one would like to know both the spatial and the temporal resolution of pressure, temperature, volume, wave and mass velocity. However, temperature and volume are not easily attainable. Therefore, most of the in-situ work is limited to measurements of pressure and both wave and mass velocities. Various types of these gauges will be discussed and their records will be illustrated. Some of these gauges have limitations but are better suited for particular applications than others. These aspects will also be discussed. Main limitation of most in-situ gauges is that they are built for one-dimensional application. However, some work is being done to develop two-dimensional gauges. This work will also be briefly discussed. While these experiments are necessary to validate theoretical models of the phenomenon, they can also provide sufficient amount of data to yield complete information on material characteristics such as its equation of state (EOS), its phase change under certain loads and its sensitivity to shock loading. Processing of these data to get important information on the behavior of both reactive and non-reactive materials will also be demonstrated.

  4. Corner Wrinkling at a Square Membrane Due to Symmetric Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Johnston, John D.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    Thin-film membrane structures are under consideration for use in many future gossamer spacecraft systems. Examples include sunshields for large aperture telescopes, solar sails, and membrane optics. The development of capabilities for testing and analyzing pre-tensioned, thin film membrane structures is an important and challenging aspect of gossamer spacecraft technology development. This paper presents results from experimental and computational studies performed to characterize the wrinkling behavior of thin-fi[m membranes under mechanical loading. The test article is a 500 mm square membrane subjected to symmetric comer loads. Data is presented for loads ranging from 0.49 N to 4.91 N. The experimental results show that as the load increases the number of wrinkles increases, while the wrinkle amplitude decreases. The computational model uses a finite element implementation of Stein-Hedgepeth membrane wrinkling theory to predict the behavior of the membrane. Comparisons were made with experimental results for the wrinkle angle and wrinkled region. There was reasonably good agreement between the measured wrinkle angle and the predicted directions of the major principle stresses. The shape of the wrinkle region predicted by the finite element model matches that observed in the experiments; however, the size of the predicted region is smaller than that determined in the experiments.

  5. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    NASA Astrophysics Data System (ADS)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  6. CCL7 Is a Protective Factor Secreted by Mechanically Loaded Osteocytes

    PubMed Central

    Kitase, Y.; Lee, S.; Gluhak-Heinrich, J.; Johnson, M.L.; Harris, S.E.; Bonewald, L.F.

    2014-01-01

    In a search for factors up-regulated by mechanical strain in osteocytes, we discovered that chemokine (C-C motif) ligand 7 (CCL7), a chemotactic myokine, was highly expressed in MLO-Y4 osteocyte-like cells. Although MLO-Y4 cells secrete potent chemotactic factors for osteoclast precursors, CCL7 was not responsible for this activity. CCL7 was increased in osteocytes in response to tooth movement in vivo. Since mechanical loading plays a crucial role in maintaining osteocyte viability, CCL7 was tested for protective activity and found to be protective against cell death induced by dexamethasone and etoposide. CCL7 specific antibody partially, but in combination with indomethacin, completely abrogated the protective effects of fluid flow shear stress against dexamethasone-induced cell death. CCL7 activated the β-catenin pathway through phosphorylation of glycogen synthase kinase 3 (GSK-3), suggesting that this pathway is responsible for the observed protective effects. A related cytokine, CCL2, also produced by MLO-Y4 cells but not regulated by mechanical loading, proved to be more potent and protected against cell death induced by not only dexamethasone, but also by Tumor Necrosis Factor α (TNFα). Whereas osteocytes may produce CCL2 in constitutively low levels, a major function of mechanically induced CCL7 may be to selectively protect osteocytes in an autocrine manner against glucocorticoid-induced cell death. PMID:25274752

  7. CCL7 is a protective factor secreted by mechanically loaded osteocytes.

    PubMed

    Kitase, Y; Lee, S; Gluhak-Heinrich, J; Johnson, M L; Harris, S E; Bonewald, L F

    2014-11-01

    In a search for factors up-regulated by mechanical strain in osteocytes, we discovered that chemokine (C-C motif) ligand 7 (CCL7), a chemotactic myokine, was highly expressed in MLO-Y4 osteocyte-like cells. Although MLO-Y4 cells secrete potent chemotactic factors for osteoclast precursors, CCL7 was not responsible for this activity. CCL7 was increased in osteocytes in response to tooth movement in vivo. Since mechanical loading plays a crucial role in maintaining osteocyte viability, CCL7 was tested for protective activity and found to be protective against cell death induced by dexamethasone and etoposide. CCL7 specific antibody partially, but in combination with indomethacin, completely abrogated the protective effects of fluid flow shear stress against dexamethasone-induced cell death. CCL7 activated the β-catenin pathway through phosphorylation of glycogen synthase kinase 3 (GSK-3), suggesting that this pathway is responsible for the observed protective effects. A related cytokine, CCL2, also produced by MLO-Y4 cells but not regulated by mechanical loading, proved to be more potent and protected against cell death induced by not only dexamethasone, but also by Tumor Necrosis Factor α (TNFα). Whereas osteocytes may produce CCL2 in constitutively low levels, a major function of mechanically induced CCL7 may be to selectively protect osteocytes in an autocrine manner against glucocorticoid-induced cell death. PMID:25274752

  8. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. PMID:25900444

  9. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading.

    PubMed

    Prot, M; Saletti, D; Pattofatto, S; Bousson, V; Laporte, S

    2015-02-01

    Previous studies show that in vivo assessment of fracture risk can be achieved by identifying the relationships between microarchitecture description from clinical imaging and mechanical properties. This study demonstrates that results obtained at low strain rates can be extrapolated to loadings with an order of magnitude similar to trauma such as car crashes. Cancellous bovine bone specimens were compressed under dynamic loadings (with and without confinement) and the mechanical response properties were identified, such as Young׳s modulus, ultimate stress, ultimate strain, and ultimate strain energy. Specimens were previously scanned with pQCT, and architectural and structural microstructure properties were identified, such as parameters of geometry, topology, connectivity and anisotropy. The usefulness of micro-architecture description studied was in agreement with statistics laws. Finally, the differences between dynamic confined and non-confined tests were assessed by the bone marrow influence and the cancellous bone response to different boundary conditions. Results indicate that architectural parameters, such as the bone volume fraction (BV/TV), are as strong determinants of mechanical response parameters as ultimate stress at high strain rates (p-value<0.001). This study reveals that cancellous bone response at high strain rates, under different boundary conditions, can be predicted from the architectural parameters, and that these relations with mechanical properties can be used to make fracture risk prediction at a determined magnitude. PMID:25577437

  10. A New Mechanical Loading Configuration for Maximizing The Performance of Dielectric Elastomer Generators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Huang, Jiangshui; Suo, Zhigang; Clarke, David

    2013-03-01

    Electrical energy can be generated from mechanical deformations using dielectric elastomers but currently achieved energy densities and conversion efficiencies are still small. In this presentation, we demonstrate that significant improvements, an energy density over 500 mJ/g and up to 10% in efficiency, can be produced using VHB elastomers by altering the mechanical loading geometry. A major limitation is viscous losses in the VHB elastomer indicating that higher efficiencies with other elastomers will be attainable. The basic concept of mechanical energy harvesting with a dielectric elastomer sheet is a straightforward electromechanical cycle leading to a voltage step-up: a sheet is stretched, electrical charge at low voltage is placed on either side using compliant electrodes, the stretch is released causing the sheet's initial thickness and area to be recovered increasing the charge potential which can then be harvested. Integral to maximizing the energy conversion is the amount of mechanical energy that can be stored elastically and the amount of capacitance change in the elastomer sheet during stretching. We show that these factors can be maximized by equi-biaxial loading. Details of our dielectric elastomer generator will be described as well as the procedures we use for quantifying its performance.

  11. Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2011-05-01

    Magnesium single crystal samples are compressed at room temperature under quasistatic (˜0.001 s-1) loading in a universal testing machine and dynamic (430, 1000, and 1200 s-1) loading in a split Hopkinson pressure bar system. Stress-strain curves show that (a) the fracture strain slightly increases with the strain rate; and (b) the maximum strength and strain hardening rate increase significantly when the testing changes from quasistatic to dynamic, although they do not vary much when the strain rate for dynamic testing varies in the range of 430-1200 s-1. The operation of the secondary pyramidal slip system is the dominating deformation mechanism, which leads to a fracture surface with an angle of ˜42° with respect to the loading axial direction. A theoretical material model based on Johnson-Cook law is also derived. The model includes the strain hardening and strain rate hardening terms, and provides the stress-strain relations matching with the experimental results. Finite element simulations for the strain rates used in the experiments predict the mechanical responses of the material that agree well with the experimental data.

  12. Mechanical Behavior of Methane Infiltrated Coal: the Roles of Gas Desorption, Stress Level and Loading Rate

    NASA Astrophysics Data System (ADS)

    Wang, Shugang; Elsworth, Derek; Liu, Jishan

    2013-09-01

    We report laboratory experiments to investigate the role of gas desorption, stress level and loading rate on the mechanical behavior of methane infiltrated coal. Two suites of experiments are carried out. The first suite of experiments is conducted on coal (Lower Kittanning seam, West Virginia) at a confining stress of 2 MPa and methane pore pressures in the fracture of 1 MPa to examine the role of gas desorption. These include three undrained (hydraulically closed) experiments with different pore pressure distributions in the coal, namely, overpressured, normally pressured and underpressured, and one specimen under drained condition. Based on the experimental results, we find quantitative evidence that gas desorption weakens coal through two mechanisms: (1) reducing effective stress controlled by the ratio of gas desorption rate over the drainage rate, and (2) crushing coal due to the internal gas energy release controlled by gas composition, pressure and content. The second suite of experiments is conducted on coal (Upper B seam, Colorado) at confining stresses of 2 and 4 MPa, with pore pressures of 1 and 3 MPa, under underpressured and drained condition with three different loading rates to study the role of stress level and loading rate. We find that the Biot coefficient of coal specimens is <1. Reducing effective confining stress decreases the elastic modulus and strength of coal. This study has important implications for the stability of underground coal seams.

  13. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  14. Developing a New Appliance to Dissipate Mechanical Load on Teeth and Improve Limitation of Vertical Mouth

    PubMed Central

    Satomi, Takashi; Kobayashi, Takehito; Iino, Mituyoshi

    2013-01-01

    ABSTRACT Objectives The principle of leverage to superpose the convex surfaces of two shells was applied to develop a device for treating limitation of mouth opening and called it the "shell-shaped mouth opener" and analyzed pressure on the teeth with the TheraBite® appliance and the shell-shaped mouth opening appliance. Material and Methods To compare the TheraBite® appliance and the shell-shaped mouth opening appliance, pressure on the teeth in the dentition model with both devices was analyzed using the Inastomer® flexible conductive sensor. Results The load was better dispersed to each tooth in the shell-shaped mouth opening appliance in the all quadrants compared to the TheraBite® appliance. Conclusions The present study revealed that the shell-shaped mouth opening appliance which was originally invented in our lab, dissipated the mechanical load on teeth more evenly than the TheraBite® appliance. PMID:24422037

  15. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  16. The Effect of Asymmetric Mechanical and Thermal Loading on Membrane Wrinkling

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Johnston, John D.; Miles, Jonathan J.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    Large, tensioned membranes are being considered for future gossamer spacecraft systems. Examples include sunshields, solar sails, and membrane optics. In many. cases a relatively flat membrane with minimal wrinkling is desired. Developing methods to predict and measure membrane wrinkling is important to the future development of gossamer spacecraft. Numerical and experimental data are presented for a 0.5 m square, tensioned membrane. The membrane is subjected to symmetric and asymmetric mechanical loading. Data are also presented for a symmetrically loaded membrane subjected to spot heating in the center. The numerical model shows good agreement with the experiment for wrinkle angle data. There is. also reasonable agreement for the wrinkled area for both isothermal and elevated temperature tests.

  17. Failure mechanisms of notched laminated composites under compressive loading at room and elevated temperature

    NASA Astrophysics Data System (ADS)

    Ahn, Jung Hyun

    1999-10-01

    Understanding the mechanisms of failure of composite structures and developing mechanism based failure criteria are important considerations in designing structures made of composite materials. The compressive response of composite materials and structures has received considerable attention due to their significance in the aerospace industry and the complexity associated with compressive failure. Several competing failure mechanisms such as fiber instability, fiber/matrix interfacial failure, fiber microbuckling/kinking, delamination initiation and delamination buckling may become active in compressive loading. Environmental effect such as an elevated temperature can alter and affect these failure mechanisms. In this thesis, a micromechanics based finite element predictive model for notched strength of multidirectional laminates is presented. The in-situ shear response of the matrix, the fiber mechanical properties, the lay-up (stacking sequence) and fiber volume fraction serve as input to the model. The prediction of the model is found to match favorably with experimental data. The effect of ply angle and its influence on the failure mechanism are quantified and compared with a set of available experimental data. The present work is the first development of a non-empirical mechanics based failure prediction methodology for notched compressive strength of composite laminates. Both an experimental and an analytical study are presented herein.

  18. Voltage generation from individual BaTiO(3) nanowires under periodic tensile mechanical load.

    PubMed

    Wang, Zhaoyu; Hu, Jie; Suryavanshi, Abhijit P; Yum, Kyungsuk; Yu, Min-Feng

    2007-10-01

    Direct tensile mechanical loading of an individual single-crystal BaTiO(3) nanowire was realized to reveal the direct piezoelectric effect in the nanowire. Periodic voltage generation from the nanowire was produced by a periodically varying tensile mechanical strain applied with a precision mechanical testing stage. The measured voltage generation from the nanowire was found to be directly proportional to the applied strain rate and was successfully modeled through the consideration of an equivalent circuit for a piezoelectric nanowire under low-frequency operation. The study, besides demonstrating a controlled experimental method for the study of direct piezoelectric effect in nanostructures, implies also the use of such perovskite piezoelectric nanowires for efficient energy-harvesting applications. PMID:17894515

  19. Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect

    SciTech Connect

    Dill, S.J.; Dauskardt, R.H.; Bennison, S.J.

    1997-03-01

    Amorphous glasses are generally considered immune to mechanical fatigue effects associated with cyclic loading. In this study surprising new evidence is presented for a mechanical fatigue effect in borosilicate glass, in both moist air and dry nitrogen environments. The fatigue effect occurs at near threshold subcritical crack-growth rates (da/dt < 3 {times} 10{sup {minus}8} m/s) as the crack extension per cycle approaches the dimensions of the borosilicate glass network. While subcritical crack growth under cyclic loads at higher load levels is entirely consistent with environmentally assisted crack growth, lower growth rates actually exceed those measured under monotonic loads. This suggests a mechanical fatigue effect which accelerates subcritical crack-growth rates. Likely mechanisms for the mechanical fatigue effect are presented.

  20. Study of the Anisotropic Properties of Argillite Under Moisture and Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Yang, Diansen; Chanchole, Serge; Valli, Pierre; Chen, Liufeng

    2013-03-01

    Due to various factors, such as sedimentation, layered morphology of clay minerals, in situ stress, etc., argillite rocks often exhibit anisotropic behavior. In order to study the anisotropic properties of the Callovo-Oxfordian (COx) argillite of the Meuse-Haute-Marne site in France considered as a possible host rock for high-level radioactive nuclear waste repository, a series of tests including uniaxial compression and dehydration and hydration at different constant applied stress levels are carried out. In this study, a specific setup combining moisture and mechanical loading with optical observation is used and it allows to continuously capture surface images from which the full-field strains are determined by using Digital Image Correlation techniques. The results show evidence of the mechanical and hydric anisotropy of the material. The anisotropy parameters are identified, assuming the studied argillite as transversely isotropic. The shrinkage and swelling depend on the applied stress and the angle with respect to the vertical direction of the mechanical load and the stratification plane, and this dependence is quantified. The non-linearity and the hysteresis observed during dehydration and hydration cycles are discussed.

  1. Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Liu, Haifeng; Shang, Lin

    2008-11-01

    Based on the theory of consecutive damage mechanics, micro-mechanics, statistics and the visco-plastic constitutive equation of Perzyna, a coupled model of damage and plasticity is developed to describe the complex behavior of concrete subjected to impact loadings. In this model, some suppositions about deformation of the material and evolution of the damage are made. First, concrete is macroscopically assumed to be homogeneous and consecutive, while it is microscopically filled with large amounts of micro-crack and micro-void defects. Second, the damage evolution of the micro-cracks is caused by the nucleation, growth and coalescence of the micro-cracks due to the interior tensile stress in concrete, which leads to a degradation in the strength and stiffness of concrete. Third, compaction of concrete is physically a collapse of the material micro-void. It produces irreversible plastic strains in the material and, at the same time, an increase in the bulk modulus. Fourth, there is no interaction between the micro-crack and the micro-void. Last, when the damage reaches a critical value, the concrete may fail totally. The model parameters for concrete are determined by plate impact experiments. The model predictions fit the experimental results well. So the model can be used to simulate the dynamic mechanical behavior of concrete under impact loadings.

  2. Using the Enhanced Daily Load Stimulus Model to Quantify the Mechanical Load and Bone Mineral Density Changes Experienced by Crew Members on the International Space Station

    NASA Technical Reports Server (NTRS)

    Genc, K. O.; Gopalakrishnan, R.; Kuklis, M. M.; Maender, C. C.; Rice, A. J.; Cavanagh, P. R.

    2009-01-01

    Despite the use of exercise countermeasures during long-duration space missions, bone mineral density (BMD) and predicted bone strength of astronauts continue to show decreases in the lower extremities and spine. This site-specific bone adaptation is most likely caused by the effects of microgravity on the mechanical loading environment of the crew member. There is, therefore, a need to quantify the mechanical loading experienced on Earth and on-orbit to define the effect of a given "dose" of loading on bone homeostasis. Gene et al. recently proposed an enhanced DLS (EDLS) model that, when used with entire days of in-shoe forces, takes into account recently developed theories on the importance of factors such as saturation, recovery, and standing and their effects on the osteogenic response of bone to daily physical activity. This algorithm can also quantify the tinting and type of activity (sit/unload, stand, walk, run or other loaded activity) performed throughout the day. The purpose of the current study was to use in-shoe force measurements from entire typical work days on Earth and on-orbit in order to quantify the type and amount of loading experienced by crew members. The specific aim was to use these measurements as inputs into the EDLS model to determine activity timing/type and the mechanical "dose" imparted on the musculoskeletal system of crew members and relate this dose to changes in bone homeostasis.

  3. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  4. Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass

    PubMed Central

    Ellman, Rachel; Spatz, Jordan; Cloutier, Alison; Palme, Rupert; Christiansen, Blaine A; Bouxsein, Mary L

    2014-01-01

    Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb. PMID:23165526

  5. Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-10-01

    Evidence suggests that the sudden triggering of rainfall-induced shallow landslides is preceded by accumulation of local internal failures in the soil mantle before their abrupt coalescence into a landslide failure plane. The mechanical status of a hillslope at any given time reflects competition between local damage accumulated during antecedent rainfall events and rates of mechanical healing (e.g., rebonding of microcracks and root regrowth). This dynamic interplay between damage accumulation and healing rates determines the initial mechanical state for landslide modeling. We evaluated the roles of these dynamic processes on landslide characteristics and patterns using a hydromechanical landslide-triggering model for a sequence of rainfall scenarios. The progressive nature of soil failure was represented by the fiber bundle model formalism that considers threshold strength of mechanical bonds linking adjacent soil columns and bedrock. The antecedent damage induced by prior rainfall events was expressed by the fraction of broken fibers that gradually regain strength or mechanically heal at rates specific to soil and roots. Results indicate that antecedent damage accelerates landslide initiation relative to pristine (undamaged) hillslopes. The volumes of first triggered landslides increase with increasing antecedent damage; however, for heavily damaged hillslopes, landslide volumes tend to decrease. Elapsed time between rainfall events allows mechanical healing that reduces the effects of antecedent damage. This study proposed a quantitative framework for systematically incorporating hydromechanical loading history and information on precursor events (e.g., such as recorded by acoustic emissions) into shallow landslide hazard assessment.

  6. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study

    PubMed Central

    Qasim, Muhammad; Natarajan, Raghu N.; An, Howard S.; Andersson, Gunnar B.J.

    2013-01-01

    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived. PMID:22682891

  7. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study.

    PubMed

    Qasim, Muhammad; Natarajan, Raghu N; An, Howard S; Andersson, Gunnar B J

    2012-07-26

    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived. PMID:22682891

  8. Mechanical properties and in vivo healing evaluation of a novel Centella asiatica-loaded hydrocolloid wound dressing.

    PubMed

    Jin, Sung Giu; Kim, Kyung Soo; Yousaf, Abid Mehmood; Kim, Dong Wuk; Jang, Sun Woo; Son, Mi-Won; Kim, Young Hun; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-07-25

    To develop a novel sodium alginate based Centella asiatica (CA)-loaded hydrocolloid wound dressing (HCD) providing excellent mechanical properties and improved wound healing, numerous CA-loaded HCDs were prepared with various ingredients using the hot melting method. The effect of sodium alginate, styrene-isoprene-styrene copolymer (SIS) and petroleum hydrocarbon resin (PHR) on the mechanical properties of CA-loaded HCDs was investigated. The effect of disintegrants on swelling and drug release was assessed. Moreover, the in vivo wound healing potentials of the selected CA-loaded HCD in various wound models such as abrasion, excision and infection were evaluated in comparison with the commercial product. Polyisobutylene and SIS hardly affected the mechanical properties, but PHR improved the tensile strength and elongation at break. Disintegrants such as croscarmellose sodium, sodium starch glycolate and crospovidone improved the swelling ratio of the CA-loaded HCD. Furthermore, the CA-loaded HCD without croscarmellose sodium poorly released the drug, but that with 2% croscarmellose sodium showed about 27% drug release in 24h. In particular, the CA-loaded HCD composed of CA/polyisobutylene/SIS/PHR/liquid paraffin/sodium alginate/croscarmellose sodium at the weight ratio of 1/8/25/25/12/27/2 furnished excellent mechanical properties and drug release. As compared with the commercial product, it offered improved healing effects in excision, infection and abrasion type wounds in rats. Thus, this novel CA-loaded HCD could be a potential candidate for the treatment of various wounds. PMID:26024819

  9. Analysis of Curved Sandwich Panels Subjected to Combined Temperature Gradient and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Starnes, James H., Jr.; Peters, Jeanne M.

    1998-01-01

    The results of a detailed study of the nonlinear response of curved sandwich panels with composite face sheets and subjected to a temperature gradient through-the-thickness combined with mechanical loadings are presented. The analysis is based on a first-order shear-deformation Sanders-Budiansky type theory with the effects of large displacements, moderate rotations, transverse shear deformation and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, the effective properties of the face sheet layers and the core, and the micromechanical parameters. Numerical results are presented for cylindrical panels subjected to combined pressure loading, edge shortening or extension, edge shear and a temperature gradient through the thickness. The results show the effects of variations in the loading and the panel aspect ratio, on the nonlinear response and its sensitivity to changes in the various panel, effective layer and micromechanical parameters.

  10. Oxidative stress and protective mechanisms in erythrocytes in relation to Plasmodium vinckei load.

    PubMed Central

    Stocker, R; Hunt, N H; Buffinton, G D; Weidemann, M J; Lewis-Hughes, P H; Clark, I A

    1985-01-01

    The protection of mouse erythrocytes (RBC) parasitized with Plasmodium vinckei vinckei against activated oxygen species was examined in relation to the intraerythrocytic parasite load. RBC from highly infected animals were separated by density gradient centrifugation into six bands with increasing parasite content and with parasitemias ranging from 17% to 100%. Increase in parasite load was accompanied by a decrease in the activities of the enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), glutathione peroxidase (EC 1.11.1.9), glutathione reductase [NAD(P)H] (EC 1.6.4.2), and NADH-methemoglobin reductase (EC 1.6.2.2; NADH:ferricytochrome b5 oxidoreductase) in the RBC lysates. In contrast, the total amount of reduced glutathione increased in the highly parasitized bands. Furthermore, the vitamin E content of all RBC bands, including the one that contained mainly nonparasitized erythrocytes, was 3- to 5-fold higher than that of control noninfected RBC. Increasing parasite load was accompanied by an increase in the production of malonyldialdehyde, indicating enhanced lipid peroxidation. Our results indicate that oxidative stress is experienced by all RBC during a malarial infection and is accompanied by a variety of changes in the antioxidant defense mechanisms of the host and the parasite. Furthermore, it appears that the plasma membrane of the host cell is better protected against oxidative injury than are the membranes surrounding the parasite. PMID:3855565

  11. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  12. Simple solutions of the free-edge stresses in composite laminates under thermal and mechanical loads

    SciTech Connect

    Yin, Wan-Lee )

    1994-01-01

    Intense and localized interlaminar stresses generally occur in a narrow boundary region near the free edge of a multilayered anisotropic laminate under mechanical and temperature loads. Quantitative measures of interlaminar action across interfaces may be readily obtained through purely algebraic operations, even if nonlinear and inelastic material behavior becomes significant in the boundary region due to severe strain concentration. These measures are the limiting values of the Lekhnitskii stress functions F and Psi (and of the normal derivative of F) along interfaces and toward the interior region of the laminate. In the present work, they are used as the basis of an exceedingly simple and efficient method of interlaminar stress analysis that is potentially applicable to free-edge problems involving nonlinear thermoelastic constitutive relations. Example solutions are obtained for symmetric, four-layer, cross-ply, and angle-ply laminates under a temperature load and two different types of strain loads, and the results are found to be in reasonable agreement with the existing numerical and analytical solutions based on elaborate analysis methods. 13 refs.

  13. Bone's responses to mechanical loading are impaired in type 1 diabetes.

    PubMed

    Parajuli, Ashutosh; Liu, Chao; Li, Wen; Gu, Xiaoyu; Lai, Xiaohan; Pei, Shaopeng; Price, Christopher; You, Lidan; Lu, X Lucas; Wang, Liyun

    2015-12-01

    Diabetes adversely impacts many organ systems including the skeleton. Clinical trials have revealed a startling elevation in fracture risk in diabetic patients. Bone fractures can be life threatening: nearly 1 in 6 hip fracture patients die within one year. Because physical exercise is proven to improve bone properties and reduce fracture risk in non-diabetic subjects, we tested its efficacy in type 1 diabetes. We hypothesized that diabetic bone's response to anabolic mechanical loading would be attenuated, partially due to impaired mechanosensing of osteocytes under hyperglycemia. Heterozygous C57BL/6-Ins2(Akita)/J (Akita) male and female diabetic mice and their age- and gender-matched wild-type (WT) C57BL/6J controls (7-month-old, N=5-7 mice/group) were subjected to unilateral axial ulnar loading with a peak strain of 3500 με at 2 Hz and 3 min/day for 5 days. The Akita female mice, which exhibited a relatively normal body weight and a mild 40% elevation of blood glucose level, responded with increased bone formation (+6.5% in Ct.B.Ar, and 4 to 36-fold increase in Ec.BFR/BS and Ps.BFR/BS), and the loading effects, in terms of changes of static and dynamic indices, did not differ between Akita and WT females (p ≥ 0.1). However, loading-induced anabolic effects were greatly diminished in Akita males, which exhibited reduced body weight, severe hyperglycemia (+230%), diminished bone formation (ΔCt.B.Ar: 0.003 vs. 0.030 mm(2), p=0.005), and suppressed periosteal bone appositions (ΔPs.BFR/BS, p=0.02). Hyperglycemia (25 mM glucose) was further found to impair the flow-induced intracellular calcium signaling in MLO-Y4 osteocytes, and significantly inhibited the flow-induced downstream responses including reduction in apoptosis and sRANKL secretion and PGE2 release. These results, along with previous findings showing adverse effects of hyperglycemia on osteoblasts and mesenchymal stem cells, suggest that failure to maintain normal glucose levels may impair bone

  14. Outperforming hummingbirds’ load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism

    PubMed Central

    Reynaerts, Dominiek; Vandepitte, Dirk

    2016-01-01

    ABSTRACT The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. PMID:27444790

  15. Outperforming hummingbirds' load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism.

    PubMed

    Leys, Frederik; Reynaerts, Dominiek; Vandepitte, Dirk

    2016-01-01

    The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. PMID:27444790

  16. X-ray tomography system to investigate granular materials during mechanical loading

    SciTech Connect

    Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pan, Xiaochuan; Pelizzari, Charles; Jaeger, Heinrich M.

    2014-08-15

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  17. X-ray tomography system to investigate granular materials during mechanical loading

    NASA Astrophysics Data System (ADS)

    Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M.

    2014-08-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)3 field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  18. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Zou, Chunjiang; Wong, Louis Ngai Yuen

    2016-05-01

    The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

  19. X-ray tomography system to investigate granular materials during mechanical loading.

    PubMed

    Athanassiadis, Athanasios G; La Rivière, Patrick J; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M

    2014-08-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)(3) field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise. PMID:25173277

  20. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  1. Numerical Modeling of Long Bone Adaptation due to Mechanical Loading: Correlation with Experiments

    PubMed Central

    Kumar, Natarajan Chennimalai; Dantzig, Jonathan A.; Jasiuk, Iwona M.; Robling, Alex G.; Turner, Charles H.

    2011-01-01

    The process of external bone adaptation in cortical bone is modeled mathematically using finite element (FE) stress analysis coupled with an evolution model, in which adaptation response is triggered by mechanical stimulus represented by strain energy density. The model is applied to experiments in which a rat ulna is subjected to cyclic loading, and the results demonstrate the ability of the model to predict the bone adaptation response. The FE mesh is generated from micro-computed tomography (μCT) images of the rat ulna, and the stress analysis is carried out using boundary and loading conditions on the rat ulna obtained from the experiments [Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. J. Bone Miner. Res. 17:1545–1554, 2002]. The external adaptation process is implemented in the model by moving the surface nodes of the FE mesh based on an evolution law characterized by two parameters: one that captures the rate of the adaptation process (referred to as gain); and the other characterizing the threshold value of the mechanical stimulus required for adaptation (referred to as threshold-sensitivity). A parametric study is carried out to evaluate the effect of these two parameters on the adaptation response. We show, following comparison of results from the simulations to the experimental observations of Robling et al. (J. Bone Miner. Res. 17:1545–1554, 2002), that splitting the loading cycles into different number of bouts affects the threshold-sensitivity but not the rate of adaptation. We also show that the threshold-sensitivity parameter can quantify the mechanosensitivity of the osteocytes. PMID:20013156

  2. Effects of Mechanical Loading on the Dynamics of Hair-Cell Stereociliary Bundles

    NASA Astrophysics Data System (ADS)

    Fredrickson, Lea

    Hearing is remarkably sensitive and still not entirely understood. Hair cells of the inner ear are the mechano-electrical transducers of sound and understanding how they function is essential to the understanding of hearing in general. Spontaneous oscillations exhibited by stereociliary bundles of the bullfrog sacculus provide a useful probe for the study of the hair cells' internal dynamic state. In this work we study the effects of mechanical loading on these hair-cell bundles in order to study their dynamics. When applying stiffness loads, we find that the spontaneous oscillation profile changes from multimode to single mode with light loading, and decreases in amplitude and increases in frequency with stiffer loads. We also find that tuning decreases with increasing load such that at loads comparable to in vivo conditions the tuning is flat. We further explore loading via deflections to hair cell bundles, both in the form of steady-state offsets and slow ramps. We find that steady state offsets lead to significant modulation of the characteristic frequency of response, decreasing the frequency in the channels closed direction (negative) and increasing it in the channels open direction (positive). Attachment to the overlying membrane was found, in vitro, to affect bundle offset position in hair cells of the bullfrog sacculus. Application of similar offsets on free-standing, spontaneously oscillating hair bundles shows modulation of their dynamic state, i.e. oscillation profile, characteristic frequency, and response to stimulus. Large offsets are found to arrest spontaneous oscillations, which recover upon reversal of the stimulus. The dynamical state of the hair bundle is dependent on both the history and direction of the offset stimulus. Oscillation suppression occurs much more readily in the negative direction and the bundle behavior approaching quiescence is distinct from that in the positive direction. With the change in spontaneous oscillation frequency

  3. An Autoregulatory Mechanism Governing Mucociliary Transport Is Sensitive to Mucus Load

    PubMed Central

    Liu, Linbo; Shastry, Suresh; Byan-Parker, Suzanne; Houser, Grace; K. Chu, Kengyeh; Birket, Susan E.; Fernandez, Courtney M.; Gardecki, Joseph A.; Grizzle, William E.; Wilsterman, Eric J.; Sorscher, Eric J.; Rowe, Steven M.

    2014-01-01

    Mucociliary clearance, characterized by mucus secretion and its conveyance by ciliary action, is a fundamental physiological process that plays an important role in host defense. Although it is known that ciliary activity changes with chemical and mechanical stimuli, the autoregulatory mechanisms that govern ciliary activity and mucus transport in response to normal and pathophysiological variations in mucus are not clear. We have developed a high-speed, 1-μm-resolution, cross-sectional imaging modality, termed micro-optical coherence tomography (μOCT), which provides the first integrated view of the functional microanatomy of the epithelial surface. We monitored invasion of the periciliary liquid (PCL) layer by mucus in fully differentiated human bronchial epithelial cultures and full thickness swine trachea using μOCT. We further monitored mucociliary transport (MCT) and intracellular calcium concentration simultaneously during invasion of the PCL layer by mucus using colocalized μOCT and confocal fluorescence microscopy in cell cultures. Ciliary beating and mucus transport are up-regulated via a calcium-dependent pathway when mucus causes a reduction in the PCL layer and cilia height. When the load exceeds a physiological limit of approximately 2 μm, this gravity-independent autoregulatory mechanism can no longer compensate, resulting in diminished ciliary motion and abrogation of stimulated MCT. A fundamental integrated mechanism with specific operating limits governs MCT in the lung and fails when periciliary layer compression and mucus viscosity exceeds normal physiologic limits. PMID:24937762

  4. DEFORMATION CHARACTERISTICS OF CRUSHED-STONE LAYER UNDER CYCLIC IMPACT LOADING FROM MICRO-MECHANICAL VIEW

    NASA Astrophysics Data System (ADS)

    Kono, Akiko; Matsushima, Takashi

    'Hanging sleepers', which have gaps between sleepers and ballast layer are often found in the neighborhood of rail joints or rugged surface rails. This suggests that differential settlement of the ballast layer is due to impact loading generated by the contact between running wheel and rugged surface rail. Then cyclic loading tests were performed on crushed-stone layer with two loading patterns, the one is a cyclic impact loading and the other one is cyclic 'standard' loading controlled at 1/10 loading velocity of the impact loading. It was shown that the crashed-stone layer deforms with volumetric expansion during every off-loading processes under the cyclic impact loading. This phenomena prevents crushed stone layer from forming stable grain columns, then the residual settlement under the cyclic impact loading is larger than that under the cyclic 'standard' loading. A simple mass-spring model simulates that two masses move in the opposite direction with increased frequency of harmonic excitation.

  5. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  6. Induction of hypertrophy in vitro by mechanical loading in adult rabbit myocardium.

    PubMed

    Bupha-Intr, Tepmanas; Holmes, Jeffrey W; Janssen, Paul M L

    2007-12-01

    To study myocardial hypertrophy under in vitro conditions, we developed an experimental system and protocol in which mechanical conditions of isolated multicellular myocardium can be controlled while function can be continuously assessed. This in vitro culture system now allows us to investigate how mechanical overload impacts on cardiac hypertrophy in the absence of systemic factors. In this system, small right ventricular rabbit trabeculae were subjected to different modes of mechanical load, while being electrically stimulated to contract at 1 Hz at 37 degrees C. Muscles subjected to prolonged isometric contractions at high, but physiological, pre- and afterload showed a rapid induction of cardiac hypertrophy; overall muscle diameter increased by 4.3 +/- 1.4 and 17.9 +/- 4.0% after 24 and 48 h, respectively. This finding was confirmed at the cellular level; individual myocyte width significantly increased after 24 and 48 h. In muscles subjected to a low preload, or in the absence of afterload, this hypertrophic response was absent. Functionally, after 24 h of isometric contractions at high load, active developed tension had gradually increased to 168 +/- 22% of starting values. Proteomic analysis of this cultured myocardium demonstrated reproducible changes in the protein expression pattern and included an upregulation of myofilament proteins, myosin light chain isoforms, alpha-b crystalline, and breast cancer 1 protein, and a downregulation of myoglobin. We conclude that multicellular myocardium can be stressed to undergo rapid hypertrophy in vitro, and changes in function and protein expression can be investigated during the transition from healthy myocardium to early hypertrophy. PMID:17933962

  7. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading

    PubMed Central

    LeBlanc, Kimberly T.; Walcott, Marie E.; Gaur, Tripti; O’Connell, Shannon L.; Basil, Kirti; Tadiri, Christina P.; Mason-Savas, April; Silva, Jason A.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S; Ayers, David C.; Lian, Jane B.; Fanning, Paul J.

    2015-01-01

    Objective Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Methods Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Results Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte ‘clones’ where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. Conclusion The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human ‘clones’ of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function. PMID:25078095

  8. Performance of nanoscale metallic multilayer systems under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Economy, David Ross

    Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser

  9. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  10. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  11. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  12. Evaluation of the Kinematic Responses and Potential Injury Mechanisms of the Jejunum during Seatbelt Loading.

    PubMed

    Howes, Meghan K; Hardy, Warren N; Agnew, Amanda M; Hallman, Jason J

    2015-11-01

    High-speed biplane x-ray was used to research the kinematics of the small intestine in response to seatbelt loading. Six driver-side 3-point seatbelt simulations were conducted with the lap belt routed superior to the pelvis of six unembalmed human cadavers. Testing was conducted with each cadaver perfused, ventilated, and positioned in a fixed-back configuration with the spine angled 30° from the vertical axis. Four tests were conducted with the cadavers in an inverted position, and two tests were conducted with the cadavers upright. The jejunum was instrumented with radiopaque markers using a minimally-invasive, intraluminal approach without inducing preparation-related damage to the small intestine. Tests were conducted at a target peak lap belt speed of 3 m/s, resulting in peak lap belt loads ranging from 5.4-7.9 kN. Displacement of the radiopaque markers was recorded using high-speed x-ray from two perspectives. Marker trajectories were tracked using motion analysis software and projected into calibrated three-dimensional coordinates to quantify the seatbelt and jejunum kinematics for each test. Five of the six tests resulted in jejunum damage. Based on the autopsy findings and the assessment of the belt and jejunum kinematics, it is likely that direct abdominal interactions with the seatbelt resulting in compression and stretch of the jejunum are components of the mechanisms of crash-induced jejunum injuries. In addition, the presence of fluid or air in the portion of the jejunum in the load path appears to be necessary to create jejunum damage in the cadaver model. Overall, the kinematics and damage data generated in this study may be useful for future restraint system development. PMID:26660746

  13. Experimental Support of Statistical Mechanics Theory of Bed Load Sediment Motions Using High-Speed Imagery

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2014-12-01

    Bed load particles move as a complex mixture of rolling, sliding, and small saltating motions on the stream bed. We track particle motions from start to stop using high speed imagery of coarse sand particles in flume experiments. This work utilizes a rich data set to provide foundational support for a statistical mechanics approach to bed load transport. The streamwise and cross-stream particle accelerations form Laplacian-like distributions, centered on zero, such that the positive and negative accelerations are balanced, which is consistent with equilibrium transport conditions wherein the mean particle acceleration must equal zero. Measurements from the imagery are censored by the window size and the sampling time, wherein particle `hops' are only measured if they both start and stop in the field of view (spatial censorship) and during the analyzed period of time (temporal censorship). We focus on the former, by considering data from complete particle hops in different sampling windows. Although all hop data are censored, we find that with a decreasing window size, longer hop distances and travel times are preferentially censored from the data. Furthermore, this suggests the streamwise hop distances scale with travel times to the second power, rather than previous estimates of a 5/3 power relationship. Data from a new experiment, with a higher particle activity, suggest similar forms of the instantaneous velocities and hops compared to lower activity data. Furthermore, the relationship between the streamwise hop distance and travel times appears to scale with the second power. Data from this new experiment will provide further insight concerning the nature of bed load transport from coupled measurements of particle transport and near-bed fluid velocities, which will ultimately inform statistically expected sediment behaviors.

  14. Trabecular bone response to mechanical loading in ovariectomized Sprague-Dawley rats depends on baseline bone quantity.

    PubMed

    Ko, Chang-Yong; Jung, Young Jin; Park, Ji Hyung; Seo, Donghyun; Han, Paul; Bae, Kiho; Schreiber, Jürgen; Kim, Han Sung

    2012-07-26

    Mechanical loading is one of the determining factors for bone modulation, and is therefore frequently used to treat or prevent bone loss; however, there appears to be no data on the effects of baseline bone quantity on this response. This study aimed to verify whether baseline bone quantity affects osteoporotic trabecular bone adaptive response to mechanical stimulation. Twenty-four female Sprague-Dawley (SD) rats were ovariectomized (OVX). After 3 weeks of OVX, rats were divided into a high bone quantity and a low bone quantity group, and rats in each group were then subdivided into 4 groups that were exposed to different loading strategies. In the loading groups, tibiae were stimulated through axial loading at 2000με of strain, for 1500 cycles each of 75s, 150s, or 250s. The sham treatment groups received no loading. Changes in BV/TV for trabecular bone in the tibia were measured at the baseline (before loading), and at 3 weeks and 6 weeks after loading. BV/TVs in loading groups of the low baseline bone quantity group were significantly increased at 6 weeks, compared with those in the no-loading groups (p<0.05), while those in the high quantity groups were not increased (p>0.05). A significant negative correlation was observed between baseline BV/TV and its relative variations at 3 weeks or 6 weeks (p<0.05). These results indicate that adaptive responses of osteoporotic trabecular bone to mechanical loading depend on baseline bone quantity. PMID:22663762

  15. [Load and stress of musculature. Some considerations from the mechanical viewpoint].

    PubMed

    Denoth, J; Stacoff, A

    1991-03-01

    Injuries in the musculature belong to the most frequent injuries in sports. However, the various explanations regarding the reasons which lead to these problems differ considerably. In this work the muscle is simplified from a mechanical point of view and then explanations are derived in respect to possible origins of muscle injuries. The terms stress and distribution of stress are important in material science to describe the strength of a material. The same is true for the human body, for a muscle fibre or for an entire muscle. Due to its anatomical construction, the distribution of stress in the muscle is very inhomogeneous. It can be very large, even if the acting load is quite small. The most critical movements which lead to muscle injuries are fast, passive elongations of a muscle. The larger the rate of this elongation, the higher the risk of injury. These theoretical conclusions can also be supported by observations in everyday life. For example, muscle pain after exercise occurs almost exclusively after excentric loading. PMID:2057869

  16. The Mechanical and Optical Response of Polychlorotrifluoroethylene to One-Dimensional Shock Loading

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy C. F.; Lowe, Michael R.; Appleby-Thomas, Gareth; Roberts, Andrew

    2016-02-01

    A series of plate impact experiments have been performed to probe the shock behavior of polychlorotrifluoroethylene (PCTFE), in terms of its optical and mechanical response. Interfacial velocity measurements using interferometric techniques have shown differences between measured and actual velocities, and been used to determine changes in refractive index due to shock-induced density increases. These have further been used to determine an optical correction factor, and allow the possibility of PCTFE being used as an optical window in future shock loading experiments. The shear strength of shock loaded PCTFE has also been shown to be near-constant behind the shock front, in common with other fluorinated polymers, although the strength variation with impact stress is greater than other similar materials. It has been suggested that the presence of a larger chlorine atom replacing a fluorine allows for a degree of tacticity between polymer chains, with local variations of charge density along the chain (due to the presence of the chlorine atom) also having an effect.

  17. Evaluating the effects of loading parameters on single-crystal slip in tantalum using molecular mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman; Ghosh, Somnath; Luscher, D. J.; Bronkhorst, Curt A.

    2014-01-01

    This study is aimed at developing a physics-based crystal plasticity finite element model for body-centred cubic (BCC) metals, through the introduction of atomic-level deformation information from molecular dynamics (MD) investigations of dislocation motion at the onset of plastic flow. In this study, three critical variables governing crystal plasticity mediated by dislocation motion are considered. MD simulations are first performed across a range of finite temperatures up to 600K to quantify the temperature dependence of critical stress required for slip initiation. An important feature of slip in BCC metals is that it is not solely dependent on the Schmid law measure of resolved shear stress, commonly employed in crystal plasticity models. The configuration of a screw dislocation and its subsequent motion is studied under different load orientations to quantify these non-Schmid effects. Finally, the influence of strain rates on thermal activation is studied by inducing higher stresses during activation at higher applied strain rates. Functional dependence of the critical resolved shear stress on temperature, loading orientation and strain rate is determined from the MD simulation results. The functional forms are derived from the thermal activation mechanisms that govern the plastic behaviour and quantification of relevant deformation variables. The resulting physics-based rate-dependent crystal plasticity model is implemented in a crystal plasticity finite element code. Uniaxial simulations reveal orientation-dependent tension-compression asymmetry of yield that more accurately represents single-crystal experimental results than standard models.

  18. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  19. Mechanical response of metals under dynamic loading off the principal Hugoniot and isentrope

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher

    2015-06-01

    Controlled dynamic loading of materials on phase-space paths off the principal Hugoniot and isentrope provide a stringent test of equation of state models in regions not typically experimentally constrained. Maturation of hardware design and pulse-shaping capabilities for shock-ramp experiments at Sandia's Z Machine have been exploited to test the mechanical response of a wide range of metals on ramp compression initiated from a well-defined Hugoniot state. A range of 1-8 km/s impact velocities are possible before initiating a ramp wave in a test sample. Capabilities and challenges of this type of experiment will be presented along with recent data on platinum, tin, cerium, and tantalum. Results of these experiments will be discussed in relation to existing equation of state data and models, and the future outlook for experimental constraints on material response on controlled off-principal loading paths. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    NASA Astrophysics Data System (ADS)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  1. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  2. FEA Based Tool Life Quantity Estimation of Hot Forging Dies Under Cyclic Thermo-Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Schäfer, F.; Hadifi, T.

    2011-01-01

    Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element analysis (FEA) may serve as a means for process design and process optimisation. So far the FEA based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. Two industrial forging processes, where clear fatigue crack initiation has been observed are considered for a fatigue analysis. For this purpose the relevant tool components are modelled with elasto-plastic material behaviour. The predicted sites, where crack initiation occurs, agree with the ones observed on the real die component.

  3. Simulated-Physiological Loading Conditions Preserve Biological and Mechanical Properties of Caprine Lumbar Intervertebral Discs in Ex Vivo Culture

    PubMed Central

    Paul, Cornelis P. L.; Zuiderbaan, Hendrik A.; Zandieh Doulabi, Behrouz; van der Veen, Albert J.; van de Ven, Peter M.; Smit, Theo H.; Helder, Marco N.; van Royen, Barend J.; Mullender, Margriet G.

    2012-01-01

    Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions. In order to study mechanical loading effects, degeneration-associated processes and/or potential regenerative therapies in IVDs, it is imperative to maintain the IVDs' structural integrity. While in vivo models provide comprehensive insight in IVD biology, an accompanying organ culture model can focus on a single factor, such as loading and may serve as a prescreening model to reduce life animal testing. In the current study we examined the feasibility of organ culture of caprine lumbar discs, with the hypothesis that a simulated-physiological load will optimally preserve IVD properties. Lumbar caprine IVDs (n = 175) were cultured in a bioreactor up to 21 days either without load, low dynamic load (LDL), or with simulated-physiological load (SPL). IVD stiffness was calculated from measurements of IVD loading and displacement. IVD nucleus, inner- and outer annulus were assessed for cell viability, cell density and gene expression. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and total collagen content. IVD biomechanical properties did not change significantly with loading conditions. With SPL, cell viability, cell density and gene expression were preserved up to 21 days. Both unloaded and LDL resulted in decreased cell viability, cell density and significant changes in gene expression, yet no differences in ECM content were observed in any group. In conclusion, simulated-physiological loading preserved the native properties of caprine IVDs during a 21-day culture period. The characterization of caprine IVD response to culture in the LDCS under SPL conditions paves the way for controlled analysis of degeneration- and

  4. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  5. Gene expression of atrial natriuretic peptide in rat papillary muscle. Rapid induction by mechanical loading.

    PubMed

    Jarygin, C; Hänze, J; Lang, R E

    1994-06-13

    The effect of mechanical stretch on protein synthesis and the expression of the gene for atrial natriuretic peptide (ANP) was examined in electrically paced, isolated papillary muscles from rat heart. Incorporation of [3H]phenylalanine into protein increased only in stretched but not in unloaded muscles. Five hours of stretching increased ANP mRNA levels more than threefold as compared to freshly excised papillary muscles. A drastic fall in ANP mRNA levels was observed in unloaded muscles over this time. These data indicate that papillary muscles similar to other ventricular tissue are capable of activating ANP gene expression in response to increased load. The effect occurs in vitro and does not depend on circulating or nervous factors. The unexpected rapid induction of ANP gene expression in such a particular structure of the heart raises the possibility of local actions of ventricular ANP. PMID:8013631

  6. Control of a hair bundle’s mechanosensory function by its mechanical load

    PubMed Central

    Salvi, Joshua D.; Ó Maoiléidigh, Dáibhid; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-01-01

    Hair cells, the sensory receptors of the internal ear, subserve different functions in various receptor organs: they detect oscillatory stimuli in the auditory system, but transduce constant and step stimuli in the vestibular and lateral-line systems. We show that a hair cell's function can be controlled experimentally by adjusting its mechanical load. By making bundles from a single organ operate as any of four distinct types of signal detector, we demonstrate that altering only a few key parameters can fundamentally change a sensory cell’s role. The motions of a single hair bundle can resemble those of a bundle from the amphibian vestibular system, the reptilian auditory system, or the mammalian auditory system, demonstrating an essential similarity of bundles across species and receptor organs. PMID:25691749

  7. Particle removal in a novel sequential mechanical filter system loaded with blackwater.

    PubMed

    Todt, Daniel; Jenssen, Petter D

    2015-01-01

    A novel sequential mechanical filter system was developed as an alternative primary treatment method for onsite wastewater treatment. The filter combines traditional screening with a novel type of counter-flow filter using wood-shavings as a biodegradable filter matrix. This study tested the system in a batch loading regime simulating high frequency toilet flushing using blackwater from a student dormitory. The filter removed 78-85% of suspended solids, 60-80% of chemical oxygen demand, and 42-57% of total-P in blackwater, giving a retentate with a dry matter content of 13-20%. Data analysis clearly indicated a tendency towards higher removal performance with high inlet concentrations, hence, the system seems to be most applicable to blackwater or other types of wastewater with a high content of suspended solids. PMID:25945859

  8. Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads

    NASA Technical Reports Server (NTRS)

    Gold, Harold; Otto, Edward W; Ransom, Victor L

    1953-01-01

    An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.

  9. Simple solutions of the free-edge effects in composite laminates under thermal and mechanical loads

    SciTech Connect

    Yin, W.

    1993-01-01

    Intense and localized interlaminar stresses generally occur in a narrow boundary region near the free edge of a multilayered anisotropic laminate under mechanical and temperature loads. Quantitative measures of interlaminar action across interfaces may be readily obtained, through purely algebraic operations, even if nonlinear and inelastic material behavior becomes significant in the boundary region due to severe strain concentration. These measures are the limiting values of the Lekhnitskii stress functions F and psi (and of the normal derivative of F) along interfaces and toward the interior region of the laminate. In the present work, they are used as the basis of an exceedingly simple and efficient method of interlaminar stress analysis that is potentially applicable to free-edge problems involving nonlinear thermoelastic constitutive relations. 11 refs.

  10. The effect of material heterogeneity and random loading on the mechanics of fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Srivatsan, T. S.; Sambandham, M.; Bharucha-Reid, A. T.

    1985-01-01

    This paper reviews experimental work on the influence of variable amplitude or random loads on the mechanics and micromechanisms of fatigue crack growth. Implications are discussed in terms of the crack driving force, local plasticity, crack closure, crack blunting, and microstructure. Due to heterogeneity in the material's microstructure, the crack growth rate varies with crack tip position. Using the weakest link theory, an expression for crack growth rate is obtained as the expectation of a random variable. This expression is used to predict the crack growth rates for aluminum alloys, a titanium alloy, and a nickel steel in the mid-range region. It is observed, using the present theory, that the crack growth rate obeys the power law for small stress intensity factor range, and that the power is a function of a material constant.