Science.gov

Sample records for mechanically exfoliated graphene

  1. Graphene Made by Mechanical Exfoliation of Graphite Intercalation Compound

    NASA Astrophysics Data System (ADS)

    Fukada, Seiya; Shintani, Yumi; Shimomura, Midori; Tahara, Fumiya; Yagi, Ryuta

    2012-08-01

    We report a method of making few-layer graphene flakes by mechanically exfoliating SbCl5-graphite intercalation compounds (GICs). The number of layers of exfoliated graphene flakes had a particular distribution relevant to the stage structure of the GICs. The carrier doping of the few-layer graphene flakes was about two orders of magnitude smaller than that expected from the stoichiometry of the GICs. The measured electric mobility was comparable to that made from pristine graphite.

  2. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene.

    PubMed

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-Ul-Haq; Khan, Ahmad Nawaz

    2016-12-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization. PMID:27558496

  3. Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation.

    PubMed

    Elbourne, Aaron; McLean, Ben; Voïtchovsky, Kislon; Warr, Gregory G; Atkin, Rob

    2016-08-18

    All reported methods of graphene exfoliation require external energy input, most commonly from sonication,1 shaking,2 or stirring.3 The reverse process-aggregation of single or few layer graphene sheets-occurs spontaneously in most solvents. This makes producing, and especially storing, graphene in economic quantities challenging,4,5 which is a significant barrier to widespread commercialization. This study reveals ionic liquids (ILs) can spontaneously exfoliate graphene from graphite at room temperature. The process is thermally activated and follows an Arrhenius-type behavior, resulting in thermodynamically stable IL/graphene suspensions. Using atomic force microscopy, the kinetics of the exfoliation could be followed in situ and with subnanometer resolution, showing that both the size and the charge of the constituent IL ions play a key role. Our results provide a general molecular mechanism underpinning spontaneous graphene exfoliation at room temperature in electrically conducting ILs, paving the way for their adoption in graphene-based technology. PMID:27463824

  4. Stability of melamine-exfoliated graphene in aqueous media: quantum-mechanical insights at the nanoscale.

    PubMed

    Rodríguez, Antonio M; Muñoz-García, Ana B; Crescenzi, Orlando; Vázquez, Ester; Pavone, Michele

    2016-08-10

    In recent experiments, melamine (1,3,5-triazine-2,4,6-triamine) has been proposed as an effective exfoliating agent to obtain high quality graphene from graphite. After washing out the melamine in excess, small amounts (ppm) are still needed to stabilize the dispersion of graphene flakes in aqueous media. To understand the origin of this behaviour, we investigated the melamine-graphene-water system and the fundamental interactions that determine its structure and energetics. To disentangle the subtle interplay of hydrogen-bonding and dispersive forces we used state-of-the-art ab initio calculations based on density functional theory. First, we focused on the case of water molecules interacting with melamine-graphene assemblies at different melamine coverages. We found that water-melamine interactions provide the driving force for washing off the melamine from graphene. Then, we addressed the interaction of single and double layers of water molecules with the graphene surface in the presence of an adsorbed melamine molecule. We found that this melamine acts as a non-covalent anchor for keeping a number of water molecules conveniently close to the graphene surface, thus helping its stabilization in aqueous media. Our analysis helps understanding how competing weak forces can lead to a stable graphene water suspension thanks to small amounts of adsorbed melamine. From our results, we derive simple indications on how the water-graphene interfacial properties can be tuned via non-covalent adsorption of small functional molecules with H-bond donor/acceptor groups. These new hints can be helpful to prepare stable graphene dispersions in water and so to unlock graphene potential in aqueous environments. PMID:27452832

  5. Preparation and characterization of solar exfoliated graphene

    SciTech Connect

    M, Sreejesh S, Nagaraja H.; K, Udaya Bhat

    2014-10-15

    Hummer's method was used for the chemical synthesis of graphite oxide from graphite flakes. Simultaneous exfoliation and reduction of graphite oxide to Graphene was achieved through focused solar light irradiation using a convex lens. The morphological characteristics were studied using SEM and TEM. Layered morphology of Graphene was observed through TEM. Raman spectra and FTIR were used for the structural characterization of Graphene. EDAX analysis showed the drop in oxygen content during exfoliation. The method offered a faster, easier and environmental friendly method to produce Graphene for potential applications.

  6. Preparation and characterization of solar exfoliated graphene

    NASA Astrophysics Data System (ADS)

    M, Sreejesh; K, Udaya Bhat; S, Nagaraja H.

    2014-10-01

    Hummer's method was used for the chemical synthesis of graphite oxide from graphite flakes. Simultaneous exfoliation and reduction of graphite oxide to Graphene was achieved through focused solar light irradiation using a convex lens. The morphological characteristics were studied using SEM and TEM. Layered morphology of Graphene was observed through TEM. Raman spectra and FTIR were used for the structural characterization of Graphene. EDAX analysis showed the drop in oxygen content during exfoliation. The method offered a faster, easier and environmental friendly method to produce Graphene for potential applications.

  7. Preparation of colloidal graphene in quantity by electrochemical exfoliation.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2014-12-15

    We reported the preparation of colloidal graphene in quantity via the anodic exfoliation of graphite in (NH4)2SO4 aqueous solution. In the currently designed electrochemical exfoliation route, mass high-quality graphene was produced within short reaction time, around 1h. The proposed electrochemical exfoliation mechanism showed that SO4(2-) and H2O can be intercalated into those graphite sheets, monolayer and few-layer graphene were obtained by the formation of gaseous SO2 and O2 within graphite sheets. Stability evaluation showed that our exfoliated colloidal graphene can be perfectly stabilized in DMF solvent more than 1 week. The colloidal graphene can be used to construct various simple and complex patterns by writing it on A4 paper, which can be applied to flexible printed electronic devices. Furthermore, colloidal graphene can show promising applications in the fabrication of binder- and additive-free electrodes for supercapacitors and lithium-ion batteries. Our present method shows huge potential for industrial-scale synthesis of high-quality graphene and further commercialization of graphene colloid for numerous advanced applications in flexible printed electronics and energy storage devices. PMID:25265584

  8. Surfactant mediated liquid phase exfoliation of graphene

    NASA Astrophysics Data System (ADS)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  9. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Joo, Won-Jae; Hwang, SungWoo; Whang, Dongmok

    2015-11-01

    Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer graphene showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps.

  10. Foam stabilisation using surfactant exfoliated graphene.

    PubMed

    Sham, Alison Y W; Notley, Shannon M

    2016-05-01

    Liquid-air foams have been stabilised using a suspension of graphene particles at very low particle loadings. The suspension was prepared through the liquid phase exfoliation of graphite in the presence of the non-ionic tri-block surfactant, Pluronic® F108. The graphene particles possess an extremely high aspect ratio, with lateral dimensions of between 0.1 and 1.3 μm as evidenced by TEM imaging. The particles were shown to exhibit a number of other properties known to favour stabilisation of foam structures. Particle surface activity was confirmed through surface tension measurements, suggesting the particles favour adsorption at the air-water interface. The evolution of bubble size distributions over time indicated the presence of particles yielded improvements to foam stability due to a reduction in disproportionation. Foam stability measurements showed a non-linear relationship between foam half-life and graphene concentration, indicative of the rate at which particles adsorb at bubble surfaces. The wettability of the graphene particles was altered upon addition of alkali metal chlorides, with the stability of the foams being enhanced according to the series Na(+)>Li(+)>K(+)>Cs(+). This effect is indicative of the relative hydration capacity of each salt with respect to the surfactant, which is adsorbed along the graphene plane as a result of the exfoliation process. Thus, surfactant exfoliated graphene particles exhibit a number of different features that demonstrate efficient application of high-aspect ratio particles in the customisation and enhancement of foams. PMID:26890385

  11. Graphene via sonication assisted liquid-phase exfoliation.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2014-01-01

    Graphene, the 2D form of carbon based material existing as a single layer of atoms arranged in a honeycomb lattice, has set the science and technology sectors alight with interest in the last decade in view of its astounding electrical and thermal properties, combined with its mechanical stiffness, strength and elasticity. Two distinct strategies have been undertaken for graphene production, i.e. the bottom-up and the top-down. The former relies on the generation of graphene from suitably designed molecular building blocks undergoing chemical reaction to form covalently linked 2D networks. The latter occurs via exfoliation of graphite into graphene. Bottom-up techniques, based on the organic syntheses starting from small molecular modules, when performed in liquid media, are both size limited, because macromolecules become more and more insoluble with increasing size, and suffer from the occurrence of side reactions with increasing molecular weight. Because of these reasons such a synthesis has been performed more and more on a solid (ideally catalytically active) surface. Substrate-based growth of single layers can be done also by chemical vapor deposition (CVD) or via reduction of silicon carbide, which unfortunately relies on the ability to follow a narrow thermodynamic path. Top-down approaches can be accomplished under different environmental conditions. Alongside the mechanical cleavage based on the scotch tape approach, liquid-phase exfoliation (LPE) methods are becoming more and more interesting because they are extremely versatile, potentially up-scalable, and can be used to deposit graphene in a variety of environments and on different substrates not available using mechanical cleavage or growth methods. Interestingly, LPE can be applied to produce different layered systems exhibiting different compositions such as BN, MoS2, WS2, NbSe2, and TaS2, thereby enabling the tuning of numerous physico-chemical properties of the material. Furthermore, LPE can be

  12. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu.

    PubMed

    Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Joo, Won-Jae; Hwang, SungWoo; Whang, Dongmok

    2015-11-13

    Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer grapheme showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps. PMID:26491038

  13. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation.

    PubMed

    Chen, Chia-Hsuan; Yang, Shiou-Wen; Chuang, Min-Chiang; Woon, Wei-Yen; Su, Ching-Yuan

    2015-10-01

    Large-scale production of uniform and high-quality graphene is required for practical applications of graphene. The electrochemical exfoliation method is considered as a promising approach for the practical production of graphene. However, the relatively low production rate of graphene currently hinders its usage. Here, we demonstrate, for the first time, a rapid and high-yield approach to exfoliate graphite into graphene sheets via an electrochemical method with small molecular additives; where in this approach, the use of melamine additives is able to efficiently exfoliate graphite into high-quality graphene sheets. The exfoliation yield can be increased up to 25 wt% with melamine additives compared to electrochemical exfoliation without such additives in the electrolyte. The proposed mechanism for this improvement in the yield is the melamine-induced hydrophilic force from the basal plane; this force facilitates exfoliation and provides in situ protection of the graphene flake surface against further oxidation, leading to high-yield production of graphene of larger crystallite size. The residual melamine can be easily washed away by water after collection of the graphene. The exfoliation with molecular additives exhibits higher uniformity (over 80% is graphene of less than 3 layers), lower oxidation density (C/O ratio of 26.17), and low defect level (D/G < 0.45), which are characteristics superior to those of reduced graphene oxide (rGO) or of a previously reported approach of electrochemical exfoliated graphene (EC-graphene). The continuous films obtained by the purified graphene suspension exhibit a sheet resistance of 13.5 kΩ □(-1) at ∼95% transmittance. A graphene-based nanocomposite with polyvinyl butyral (PVB) exhibits an electrical conductivity of 3.3 × 10(-3) S m(-1) for the graphene loading fraction of 0.46 vol%. Moreover, the melamine functionalized graphene sheets are readily dispersed in the aqueous solution during the exfoliation process

  14. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hsuan; Yang, Shiou-Wen; Chuang, Min-Chiang; Woon, Wei-Yen; Su, Ching-Yuan

    2015-09-01

    Large-scale production of uniform and high-quality graphene is required for practical applications of graphene. The electrochemical exfoliation method is considered as a promising approach for the practical production of graphene. However, the relatively low production rate of graphene currently hinders its usage. Here, we demonstrate, for the first time, a rapid and high-yield approach to exfoliate graphite into graphene sheets via an electrochemical method with small molecular additives; where in this approach, the use of melamine additives is able to efficiently exfoliate graphite into high-quality graphene sheets. The exfoliation yield can be increased up to 25 wt% with melamine additives compared to electrochemical exfoliation without such additives in the electrolyte. The proposed mechanism for this improvement in the yield is the melamine-induced hydrophilic force from the basal plane; this force facilitates exfoliation and provides in situ protection of the graphene flake surface against further oxidation, leading to high-yield production of graphene of larger crystallite size. The residual melamine can be easily washed away by water after collection of the graphene. The exfoliation with molecular additives exhibits higher uniformity (over 80% is graphene of less than 3 layers), lower oxidation density (C/O ratio of 26.17), and low defect level (D/G < 0.45), which are characteristics superior to those of reduced graphene oxide (rGO) or of a previously reported approach of electrochemical exfoliated graphene (EC-graphene). The continuous films obtained by the purified graphene suspension exhibit a sheet resistance of 13.5 kΩ □-1 at ~95% transmittance. A graphene-based nanocomposite with polyvinyl butyral (PVB) exhibits an electrical conductivity of 3.3 × 10-3 S m-1 for the graphene loading fraction of 0.46 vol%. Moreover, the melamine functionalized graphene sheets are readily dispersed in the aqueous solution during the exfoliation process, allowing for

  15. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    NASA Astrophysics Data System (ADS)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.

  16. High-quality thin graphene films from fast electrochemical exfoliation.

    PubMed

    Su, Ching-Yuan; Lu, Ang-Yu; Xu, Yanping; Chen, Fu-Rong; Khlobystov, Andrei N; Li, Lain-Jong

    2011-03-22

    Flexible and ultratransparent conductors based on graphene sheets have been considered as one promising candidate for replacing currently used indium tin oxide films that are unlikely to satisfy future needs due to their increasing cost and losses in conductivity on bending. Here we demonstrate a simple and fast electrochemical method to exfoliate graphite into thin graphene sheets, mainly AB-stacked bilayered graphene with a large lateral size (several to several tens of micrometers). The electrical properties of these exfoliated sheets are readily superior to commonly used reduced graphene oxide, which preparation typically requires many steps including oxidation of graphite and high temperature reduction. These graphene sheets dissolve in dimethyl formamide (DMF), and they can self-aggregate at air-DMF interfaces after adding water as an antisolvent due to their strong surface hydrophobicity. Interestingly, the continuous films obtained exhibit ultratransparency (∼96% transmittance), and their sheet resistance is <1k Ω/sq after a simple HNO3 treatment, superior to those based on reduced graphene oxide or graphene sheets by other exfoliation methods. Raman and STM characterizations corroborate that the graphene sheets exfoliated by our electrochemical method preserve the intrinsic structure of graphene. PMID:21309565

  17. Thermal Exfoliation of Natural Cellulosic Material for Graphene Synthesis

    NASA Astrophysics Data System (ADS)

    Ray, Ajoy Kumar; Chatterjee, Somenath; Singh, Jitendra Kumar; Bapari, Himangshu

    2015-01-01

    Hibiscus flower petals have been used as a cheap natural resource precursor for cost-effective synthesis of high quality graphene by thermal exfoliation process. In order to compare the quality of graphene obtained from the flower petals directly with the flower petals pretreated with nickel(II) chloride, Raman spectroscopic technique has been used as the structural probe. The role of temperature and the effect of nickel on thermal exfoliation process have been examined. It has been observed that graphene obtained via nickel incorporation is of better quality because NI2+ ions that get dispersed in the layered-structured cellulose at elevated temperatures get reduced to the metallic state, which in turn push the graphitic layers during thermal exfoliation to produce good quality graphene. In contrast, no such driving force is present in cellulose and hemi-cellulose of flower petals that contain lignin.

  18. A facile liquid phase exfoliation method to prepare graphene sheets with different sizes expandable graphite

    SciTech Connect

    Zhou, Keqing; Shi, Yongqian; Jiang, Saihua; Song, Lei; Hu, Yuan; Gui, Zhou

    2013-09-01

    Graphical abstract: - Highlights: • This study presented a novel method for the production of high-quality graphene sheets through the exfoliation of Li-intercalated EG with sonication. • The quality of the graphene sheets produced from different sizes EG was compared for the first time and the formation mechanism was discussed. • The graphene sheets obtained from the small size EG have less layers than the large size EG. - Abstract: In this work, graphene sheets suspension were synthesized directly from expandable graphite (EG) via an intercalation and exfoliation pathway using n-butyl lithium as the intercalating agent, water and N,N-dimethylformamide (DMF) as the exfoliating agent. The quality of the graphene sheets produced from different sizes EG was compared and the formation mechanism was discussed. The formation of the graphene sheets and its formation mechanism were confirmed by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy measurement, inductively coupled plasma atomic emission spectrometry (ICP-AES) and thermogravimetric analysis (TGA). The graphene sheets obtained from the small size EG have less layers than the large size EG.

  19. Stable Aqueous Dispersion of Exfoliated Graphene for Tribological Applications.

    PubMed

    Liang, Shuaishuai; Shen, Zhigang; Yi, Min; Liu, Lei; Cai, Chujiang; Zhang, Xiaojing; Ma, Shulin

    2016-02-01

    In this study, the directly exfoliated graphene prepared by a jet cavitation method was tested as additive in pure water toward tribological applications. Reductions of friction coefficient and wear volume up to 22.8% and 44.4% respectively were achieved by addition of the graphene flakes. The as-prepared aqueous graphene dispersions exhibited high stability against sedimentation, and concurrently maintained their tribological properties after deposited for 15 days. The improvement in lubricating and anti-wear performances can be attributed to the graphene network formed on the sliding surfaces during the test. PMID:27433609

  20. Ultrasound exfoliation of inorganic analogues of graphene

    NASA Astrophysics Data System (ADS)

    Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-04-01

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.

  1. Ultrasound exfoliation of inorganic analogues of graphene

    PubMed Central

    2014-01-01

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented. PMID:24708572

  2. Adhesive tape exfoliation: Why it works for graphene

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob

    2015-03-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful. In particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations.

  3. Controlling the number of graphene sheets exfoliated from graphite by designed normal loading and frictional motion

    SciTech Connect

    Lee, Seungjun; Lu, Wei

    2014-07-14

    We use molecular dynamics to study the exfoliation of patterned nanometer-sized graphite under various normal loading conditions for friction-induced exfoliation. Using highly ordered pyrolytic graphite (HOPG) as well as both amorphous and crystalline SiO{sub 2} substrate as example systems, we show that the exfoliation process is attributed to the corrugation of the HOPG surface and the atomistic roughness of the substrate when they contact under normal loading. The critical normal strain, at which the exfoliation occurs, is higher on a crystalline substrate than on an amorphous substrate. This effect is related to the atomistic flatness and stiffness of the crystalline surface. We observe that an increase of the van der Waals interaction between the graphite and the substrate results in a decrease of the critical normal strain for exfoliation. We find that the magnitude of the normal strain can effectively control the number of exfoliated graphene layers. This mechanism suggests a promising approach of applying designed normal loading while sliding to pattern controlled number of graphene layers or other two-dimensional materials on a substrate surface.

  4. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite

    PubMed Central

    Rao, Kodepelly Sanjeeva; Senthilnathan, Jaganathan; Liu, Yung-Fang; Yoshimura, Masahiro

    2014-01-01

    This study demonstrates a facile, mild and environmentally-friendly sustainable (soft processing) approach for the efficient electrochemical exfoliation of graphite using a sodium hydroxide/hydrogen peroxide/water (NaOH/H2O2/H2O) system that can produce high-quality, anodic few-layer graphene nanosheets in 95% yield at ambient reaction conditions. The control experiment conducted using NaOH/H2O revealed the crucial role of H2O2 in the exfoliation of graphite. A possible exfoliation mechanism is proposed. The reaction of H2O2 with hydroxyl ions (HO−) leads to the formation of highly nucleophilic peroxide ions (O22−), which play a crucial role in the exfoliation of graphite via electrochemical-potential-assisted intercalation and strong expansion of graphite sheets. PMID:24577336

  5. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite

    NASA Astrophysics Data System (ADS)

    Rao, Kodepelly Sanjeeva; Senthilnathan, Jaganathan; Liu, Yung-Fang; Yoshimura, Masahiro

    2014-02-01

    This study demonstrates a facile, mild and environmentally-friendly sustainable (soft processing) approach for the efficient electrochemical exfoliation of graphite using a sodium hydroxide/hydrogen peroxide/water (NaOH/H2O2/H2O) system that can produce high-quality, anodic few-layer graphene nanosheets in 95% yield at ambient reaction conditions. The control experiment conducted using NaOH/H2O revealed the crucial role of H2O2 in the exfoliation of graphite. A possible exfoliation mechanism is proposed. The reaction of H2O2 with hydroxyl ions (HO-) leads to the formation of highly nucleophilic peroxide ions (O22-), which play a crucial role in the exfoliation of graphite via electrochemical-potential-assisted intercalation and strong expansion of graphite sheets.

  6. Liquid-phase exfoliated graphene: functionalization, characterization, and applications.

    PubMed

    Quintana, Mildred; Tapia, Jesús Iván; Prato, Maurizio

    2014-01-01

    The development of chemical strategies to render graphene viable for incorporation into devices is a great challenge. A promising approach is the production of stable graphene dispersions from the exfoliation of graphite in water and organic solvents. The challenges involve the production of a large quantity of graphene sheets with tailored distribution in thickness, size, and shape. In this review, we present some of the recent efforts towards the controlled production of graphene in dispersions. We also describe some of the chemical protocols that have provided insight into the vast organic chemistry of the single atomic plane of graphite. Controlled chemical reactions applied to graphene are expected to significantly improve the design of hierarchical, functional platforms, driving the inclusion of graphene into advanced functional materials forward. PMID:25551061

  7. Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Matsushita, Tomohiro; Koh, Shinji; Daimon, Hiroshi

    2013-11-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions.

  8. Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2016-08-01

    Graphene, a one-atom thick two-dimensional (2D) material, is at the core of an ever-growing research effort due to its combination of unique mechanical, thermal, optical and electrical properties. Two strategies are being pursued for the graphene production: the bottom-up and the top-down. The former relies on the use of covalent chemistry approaches on properly designed molecular building blocks undergoing chemical reaction to form 2D covalent networks. The latter occurs via exfoliation of bulk graphite into individual graphene sheets. Amongst the various types of exfoliations exploited so far, ultrasound-induced liquid-phase exfoliation (UILPE) is an attractive strategy, being extremely versatile, up-scalable and applicable to a variety of environments. In this review, we highlight the recent developments that have led to successful non-covalent functionalization of graphene and how the latter can be exploited to promote the process of molecule-assisted UILPE of graphite. The functionalization of graphene with non-covalently interacting molecules, both in dispersions as well as in dry films, represents a promising and modular approach to tune various physical and chemical properties of graphene, eventually conferring to such a 2D system a multifunctional nature. PMID:26928750

  9. Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree

    NASA Astrophysics Data System (ADS)

    Sharif, Morteza A.; Majles Ara, M. H.; Ghafary, Bijan; Salmani, Somayeh; Mohajer, Salman

    2016-03-01

    We have experimentally investigated low threshold Optical Bistability (OB) and multi-stability in exfoliated graphene ink with low oxidation degree. Theoretical predictions of N-layer problem and the resonator feedback problem show good agreement with the experimental observation. In contrary to the other graphene oxide samples, we have indicated that the absorbance does not restrict OB process. We have concluded from the experimental results and Nonlinear Schrödinger Equation (NLSE) that the nonlinear dispersion - rather than absorption - is the main nonlinear mechanism of OB. In addition to the enhanced nonlinearity, exfoliated graphene with low oxidation degree possesses semiconductors group III-V equivalent band gap energy, high charge carrier mobility and thus, ultra-fast optical response which makes it a unique optical material for application in all optical switching, especially in THz frequency range.

  10. Facile Large Scale Production of Few-Layer Graphene Sheets by Shear Exfoliation in Volatile Solvent.

    PubMed

    Akhtar, M Wasim; Park, Chan Woo; Kim, Youn Sop; Kim, Jong Seok

    2015-12-01

    Few layer graphene sheets were synthesized from natural graphite through mechanical shear mixer in 1-butanol as solvent. The liquid phase exfoliation of graphite through the shear mixer generated incising forces for 20 minutes which changed the large amount of graphite's flake into few layer graphene. The removal of solvent from the deposited dispersion was performed immediately by keeping at the room temperature. The deposited graphene thin films were characterized by AFM, HR-TEM, XRD, FT-IR and Raman Spectroscopy. The HR-TEM results showed the formation of few layers and well dispersed graphene. The Raman spectroscopy and XRD characterization confirmed the good quality and non-oxidized state of graphene. PMID:26682388

  11. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study

    SciTech Connect

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.; Kottaisamy, M.

    2014-02-15

    The exfoliation of graphene from pristine graphite in a liquid phase was achieved successfully via sonication followed by centrifugation method. Ultraviolet–visible (UV–vis) spectra of the obtained graphene dispersions at different exfoliation time indicated that the concentration of graphene dispersion increased markedly with increasing exfoliation time. The sheet-like morphology of the exfoliated graphene was revealed by Scanning Electron Microscopy (SEM) image. Further, the morphological change in different exfoliation time was investigated by Atomic Force Microscopy (AFM). A complete structural and defect characterization was probed using micro-Raman spectroscopic technique. The shape and position of the 2D band of Raman spectra revealed the formation of bilayer to few layer graphene. Also, Raman mapping confirmed the presence of uniformly distributed bilayer graphene sheets on the substrate.

  12. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    PubMed

    Haar, Sébastien; Bruna, Matteo; Lian, Jian Xiang; Tomarchio, Flavia; Olivier, Yoann; Mazzaro, Raffaello; Morandi, Vittorio; Moran, Joseph; Ferrari, Andrea C; Beljonne, David; Ciesielski, Artur; Samorì, Paolo

    2016-07-21

    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent. PMID:27349897

  13. Exfoliated Graphene Oxide/MoO2 Composites as Anode Materials in Lithium-Ion Batteries: An Insight into Intercalation of Li and Conversion Mechanism of MoO2.

    PubMed

    Petnikota, Shaikshavali; Teo, Keefe Wayne; Chen, Luo; Sim, Amos; Marka, Sandeep Kumar; Reddy, M V; Srikanth, V V S S; Adams, S; Chowdari, B V R

    2016-05-01

    Exfoliated graphene oxide (EG)/MoO2 composites are synthesized by a simple solid-state graphenothermal reduction method. Graphene oxide (GO) is used as a reducing agent to reduce MoO3 and as a source for EG. The formation of different submicron sized morphologies such as spheres, rods, flowers, etc., of monoclinic MoO2 on EG surfaces is confirmed by complementary characterization techniques. As-synthesized EG/MoO2 composite with a higher weight percentage of EG performed excellently as an anode material in lithium-ion batteries. The galvanostatic cycling studies aided with postcycling cyclic voltammetry and galvanostatic intermittent titrations followed by ex situ structural studies clearly indicate that Li intercalation into MoO2 is transformed into conversion upon aging at low current densities while intercalation mechanism is preferably taking place at higher current rates. The intercalation mechanism is found to be promising for steady-state capacity throughout the cycling because of excess graphene and higher current density even in the operating voltage window of 0.005-3.0 V in which MoO2 undergoes conversion below 0.8 V. PMID:27057928

  14. Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene

    NASA Astrophysics Data System (ADS)

    Du, Wencheng; Lu, Jie; Sun, Peipei; Zhu, Yinyan; Jiang, Xiaoqing

    2013-05-01

    Certain ordinary organic salts, such as edetate disodium, sodium tartrate, potassium sodium tartrate and sodium citrate were found to have universal and efficient assistant effect for liquid-phase exfoliation of graphite in common organic solvents to produce pristine graphene. Up to 123 times enhanced exfoliation efficiency was observed when sodium citrate was introduced into an exfoliation system consisting of natural graphite powder and dimethyl sulfoxide. TEM, AFM, Raman spectroscopy, EDX, TGA, and FTIR analysis showed graphite was successfully exfoliated into single or few-layer graphene nanosheets which were free of defects and oxides. The method is simple, effective, safe and economical.

  15. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H.; Yin, Geping; Lin, Yuehe

    2011-03-22

    Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoeletron spectroscopy, atomic force microscopy, and fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in-situ growth of highly-dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity towards formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets, opens up new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.

  16. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene.

    PubMed

    Petrone, Nicholas; Dean, Cory R; Meric, Inanc; van der Zande, Arend M; Huang, Pinshane Y; Wang, Lei; Muller, David; Shepard, Kenneth L; Hone, James

    2012-06-13

    While chemical vapor deposition (CVD) promises a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior electronic properties in comparison with exfoliated samples. Here we test the electrical transport properties of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing-induced contamination, are substantially reduced. We grow CVD graphene with grain sizes up to 250 μm to abate grain boundaries, and we transfer graphene utilizing a novel, dry-transfer method to minimize chemical contamination. We fabricate devices on both silicon dioxide and hexagonal boron nitride (h-BN) dielectrics to probe the effects of substrate-induced disorder. On both substrate types, the large-grain CVD graphene samples are comparable in quality to the best reported exfoliated samples, as determined by low-temperature electrical transport and magnetotransport measurements. Small-grain samples exhibit much greater variation in quality and inferior performance by multiple measures, even in samples exhibiting high field-effect mobility. These results confirm the possibility of achieving high-performance graphene devices based on a scalable synthesis process. PMID:22582828

  17. Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites

    NASA Astrophysics Data System (ADS)

    Nasirpouri, Farzad; Pourmahmoudi, Hassan; Abbasi, Farhang; Littlejohn, Samuel; Chauhan, Ashok S.; Nogaret, Alain

    2015-10-01

    We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS-GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS-GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.

  18. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices.

    PubMed

    Wei, Di; Grande, Lorenzo; Chundi, Vishnu; White, Richard; Bower, Chris; Andrew, Piers; Ryhänen, Tapani

    2012-01-30

    Graphite was electrochemically exfoliated in mixtures of room temperature ionic liquids and deionized water containing lithium salts to produce functionalized graphenes and such an electrochemical exfoliation technique can be directly used in making primary battery electrodes with significantly enhanced specific energy capacity. PMID:22170354

  19. BioGraphene: Direct Exfoliation of Graphite in a Kitchen Blender for Enzymology Applications.

    PubMed

    Kumar, C V; Pattammattel, A

    2016-01-01

    A high yielding method for the aqueous exfoliation of graphite crystals to produce high quality graphene nanosheets in a kitchen blender is described here. Bovine serum albumin (BSA), β-lactoglobulin, ovalbumin, lysozyme, and hemoglobin as well as calf serum were used for the exfoliation of graphene. Among these, BSA gave the maximum exfoliation efficiency, exceeding 4mgmL(-1)h(-1) of graphene. Quality of graphene produced was examined by Raman spectroscopy, which indicated 3-5 layer graphene of very high quality and very low levels of defects. Transmission electron microscopy indicated an average size of ~0.5μm flakes. The graphene/BSA dispersions were stable over pH 3.0-11, and at 5°C or 50°C, for more than 2 months. Current approach gave higher rates of BSA/graphene (BioGraphene) in better yields than other methods. Calf serum, when used in place of BSA, also gave high yields of good quality BioGraphene and these preparations may be of direct use for cell culture studies. A simple example of BioGraphene preparation is described that can be adapted in most laboratories, and graphene-adsorbed glucose oxidase is nearly as active as the free enzyme. Current approach may facilitate large-scale production of graphene in most laboratories around the world and it may open new opportunities for biological applications of graphene. PMID:27112402

  20. Electrical Characterization of Graphene Flakes Synthesized Using Liquid Phase Exfoliation of Graphite in Isopropyl Alcohol

    NASA Astrophysics Data System (ADS)

    Talapatra, Saikat; Muchharla, Baleeswaraiah; Connolly, Mitchell; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Southern Illinois University Carbondale Team; Northeastern University, Boston Collaboration

    2013-03-01

    Liquid-phase exfoliation processes for synthesis of nano structures is often a simpler route to get functional nanomaterials in large scale. Here we will report on the synthesis of graphene flakes using exfoliation of bulk graphite in isopropyl alcohol. We will also present electrical characterization of thin film devices made from these exfoliated flakes. Temperature dependence of resistance performed for 10K exfoliated flakes under electrochemical gating environment will be presented and discussed.

  1. Induced magnetism in exfoliated graphene via proximity effect with yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Amado, Mario; Li, Yang; di Bernardo, Angelo; Lombardo, Antonio; Ferrari, Andrea C.; Robinson, Jason

    The recent discovery of the quantum anomalous Hall effect (QAHE) in magnetically doped topological insulators cooled below in the milikelvin regime represents breakthrough in the field of spintronics. Theoretically, the QAHE should occur in graphene proximity coupled to a ferromagnetic insulato but with the promise of much higher operating temperatures for practical applications. Hints of proximity-induced magnetism in graphene coupled to yttrium iron garnet (YIG) films have been reported although the QAHE remains unobserved; the lack of a fully developed plateau in graphene/YIG devices can be attributed to poor interfacial coupling and therefore a dramatically reduced magnetic proximity effect. Here we report the deposition and characterisation of epitaxial thin-films of YIG on lattice-matched gadolinium gallium garnet substrates by pulsed laser deposition. Pristine exfoliated graphene flakes transferred mechanically onto the YIG are reported alongside results that correlate the effects of YIG morphology on the electronic and crystal properties of graphene by electrical (low temperature magnetoresistance measurements in Hall-bar-like configuration) and optical (Raman) means.

  2. Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene

    NASA Astrophysics Data System (ADS)

    Haar, Sébastien; El Gemayel, Mirella; Shin, Yuyoung; Melinte, Georgian; Squillaci, Marco A.; Ersen, Ovidiu; Casiraghi, Cinzia; Ciesielski, Artur; Samorì, Paolo

    2015-11-01

    Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and non-oxidized graphene sheets can be produced; among them an inexpensive and scalable method based on liquid-phase exfoliation of graphite (LPE) holds potential for applications in opto-electronics and nanocomposites. Here we have used n-octylbenzene molecules as graphene dispersion-stabilizing agents during the graphite LPE process. We have demonstrated that by tuning the ratio between organic solvents such as N-methyl-2-pyrrolidinone or ortho-dichlorobenzene, and n-octylbenzene molecules, the concentration of exfoliated graphene can be enhanced by 230% as a result of the high affinity of the latter molecules for the basal plane of graphene. The LPE processed graphene dispersions were further deposited onto solid substrates by exploiting a new deposition technique called spin-controlled drop casting, which was shown to produce uniform highly conductive and transparent graphene films.

  3. Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene

    PubMed Central

    Haar, Sébastien; El Gemayel, Mirella; Shin, Yuyoung; Melinte, Georgian; Squillaci, Marco A.; Ersen, Ovidiu; Casiraghi, Cinzia; Ciesielski, Artur; Samorì, Paolo

    2015-01-01

    Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and non-oxidized graphene sheets can be produced; among them an inexpensive and scalable method based on liquid-phase exfoliation of graphite (LPE) holds potential for applications in opto-electronics and nanocomposites. Here we have used n-octylbenzene molecules as graphene dispersion-stabilizing agents during the graphite LPE process. We have demonstrated that by tuning the ratio between organic solvents such as N-methyl-2-pyrrolidinone or ortho-dichlorobenzene, and n-octylbenzene molecules, the concentration of exfoliated graphene can be enhanced by 230% as a result of the high affinity of the latter molecules for the basal plane of graphene. The LPE processed graphene dispersions were further deposited onto solid substrates by exploiting a new deposition technique called spin-controlled drop casting, which was shown to produce uniform highly conductive and transparent graphene films. PMID:26573383

  4. A novel bubbling-assisted exfoliating method preparation of magnetically separable γ-Fe2O3/graphene recyclable photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Hu, Hongrui; Wu, Mingzai; Yu, Xinxin; Sun, Zhaoqi; Li, Guang; Liu, Xiansong; Zheng, Xiuwen

    2014-06-01

    A facile and novel bubbling-assisted exfoliating method was developed for the preparation of γ-Fe2O3/graphene composite, which showed desirable photocatalytic activity toward methyl orange with excellent cycling abilities and the possible growth mechanism was discussed. Photocatalytic and magnetic properties measurements show that the composite has excellent recyclable degradation efficiency and soft magnetic parameters, which makes the composite magnetically separable in a suspension system and can be recycled without significant loss of catalytic activity.

  5. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties

    PubMed Central

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  6. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    PubMed

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  7. Production and stability of mechanochemically exfoliated graphene in water and culture media.

    PubMed

    León, V; González-Domínguez, J M; Fierro, J L G; Prato, M; Vázquez, E

    2016-08-14

    The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ∼25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported. PMID:27411953

  8. Low defect concentration few-layer graphene using a two-step electrochemical exfoliation

    NASA Astrophysics Data System (ADS)

    Huang, Xuhua; Li, Senlin; Qi, Zhiqiang; Zhang, Wei; Ye, Wei; Fang, Yanyan

    2015-03-01

    Low defect concentration few-layer graphene (FLG) sheets were fabricated by a two-step electrochemical intercalation exfoliation, including a graphite foil pretreatment in sodium hydroxide solution and a subsequent further exfoliation in sulfuric acid solution. During the process, the pretreatment results in the expansion of the graphite foil and in turn facilitates the final exfoliation in sulfuric acid solution. The results show that the ID/IG of the obtained FLG sheets is as low as 0.29 while maintaining relatively high yield, more than 56%. In addition, the oxygen content in the FLG sheets is 8.32% with the C/O ratio of 11.02.

  9. Exfoliation and Performance Properties of Non-Oxidized Graphene in Water

    PubMed Central

    Chen, I-Wen Peter; Huang, Chun-Yuan; Jhou, Sheng-Hong Saint; Zhang, Yu-Wei

    2014-01-01

    Single-layered graphene has unique electronic, chemical, and electromechanical properties. Recently, graphite exfoliation in N-methylpyrrolidone and molten salt has been demonstrated to generate monolayer exfoliated graphene sheets (EGS). However, these solvents are either high-priced or require special care and have high boiling points and viscosities, making it difficult to deposit the dispersed graphene onto substrates. Here we show a universal principle for the exfoliation of graphite in water to single-layered and several-layered graphene sheets via the direct exfoliation of highly oriented pyrolytic graphite (HOPG) using pyridinium tribromide (Py+Br3−). Electrical conductivity >5100 S/cm was observed for filtered graphene paper, and the EGS exhibited superior performance as a hole transport layer compared to the conventional material N,N-di(naphthalene-1-yl)-N,N-diphenylbenzidine at low voltage. The overall results demonstrate that this method is a scalable process for the preparation of highly conductive graphene for use in the commercial manufacture of high-performance electronic devices. PMID:24473336

  10. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.

    PubMed

    Parvez, Khaled; Li, Rongjin; Puniredd, Sreenivasa Reddy; Hernandez, Yenny; Hinkel, Felix; Wang, Suhao; Feng, Xinliang; Müllen, Klaus

    2013-04-23

    Solution-processable thin layer graphene is an intriguing nanomaterial with tremendous potential for electronic applications. In this work, we demonstrate that electrochemical exfoliation of graphite furnishes graphene sheets of high quality. The electrochemically exfoliated graphene (EG) contains a high yield (>80%) of one- to three-layer graphene flakes with high C/O ratio of 12.3 and low sheet resistance (4.8 kΩ/□ for a single EG sheet). Due to the solution processability of EG, a vacuum filtration method in association with dry transfer is introduced to produce large-area and highly conductive graphene films on various substrates. Moreover, we demonstrate that the patterned EG can serve as high-performance source/drain electrodes for organic field-effect transistors. PMID:23531157

  11. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    NASA Astrophysics Data System (ADS)

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-01

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d002-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1×103 Ω/square.

  12. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    SciTech Connect

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-15

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d{sub 002}-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1 Multiplication-Sign 10{sup 3} {Omega}/square. - Graphical abstract: A stable graphene oxide suspension could be quickly prepared by exfoliating a graphite oxide suspension by a host-guest electrostatic repulsion in aqueous solution. Highlights: Black-Right-Pointing-Pointer Graphene nanosheets were prepared by a zwitterions amino acid intermediate from graphite oxide. Black-Right-Pointing-Pointer 11-aminoundecanoic acid was protonated to intercalate molecules into the graphene oxide to achieve ion exchange. Black-Right-Pointing-Pointer The d{sub 002}-spacing of the graphite oxide greatly increased from 0.330 nm to 0.415 nm after 11-aminoundecanoic acid treatment.

  13. Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf

    2016-02-01

    A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.

  14. High-yield production of graphene by liquid-phase exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M.; Sun, Zhenyu; de, Sukanta; McGovern, I. T.; Holland, Brendan; Byrne, Michele; Gun'ko, Yurii K.; Boland, John J.; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari, Andrea C.; Coleman, Jonathan N.

    2008-09-01

    Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg ml-1, produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of ~1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

  15. Mechanical exfoliation of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) providing graphene nanoplatelets that exhibit enhanced electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hayes, William Ignatius; Lubarsky, Gennady; Li, Meixian; Papakonstantinou, Pagona

    2014-12-01

    A novel production method for graphene nanoplatelets (GPs) with enhanced electrocatalytic behaviour is presented. GPs show improvement in their oxygen reduction reaction (ORR) catalysis after prolonging the grinding of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Nitrogen doping of the GPs has inferred a further increase in ORR. The ORR onset potential, cathodic current magnitude and electron transfer efficiency have all improved as a direct consequence of increasing the graphite grinding duration from 30 min to 4 h. Atomic force microscopy has confirmed a decrease in the GP diameter and height as the grinding increases. Raman spectroscopy indicates a higher level of defects present after prolonging the graphite grinding in BMIM-PF6, most likely a result of the increased edge plane exposure. This increased edge plane appears to promote a higher level of nitrogen incorporation as the graphite grinding duration increases, as confirmed by X-ray photoelectron spectroscopy analysis. The stability of the cathodic current assessed by chronoamperometry analysis is higher for the GP and nitrogen doped graphene nanoplatelet (N-GP) samples than the platinum on carbon black (Pt/C). This study presents a novel process for the production of nitrogen doped graphene nanoplatelets, constituting a strategy for the up-scaled production of electrocatalysts.

  16. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors.

    PubMed

    Tung, Tran Thanh; Yoo, Jeongha; Alotaibi, Faisal K; Nine, Md J; Karunagaran, Ramesh; Krebsz, Melinda; Nguyen, Giang T; Tran, Diana N H; Feller, Jean-Francois; Losic, Dusan

    2016-06-29

    Here, we report a new method to prepare graphene from graphite by the liquid phase exfoliation process with sonication using graphene oxide (GO) as a dispersant. It was found that GO nanosheets act a as surfactant to the mediated exfoliation of graphite into a GO-adsorbed graphene complex in the aqueous solution, from which graphene was separated by an additional process. The preparation of isolated graphene from a single to a few layers is routinely achieved with an exfoliation yield of up to higher than 40% from the initial graphite material. The prepared graphene sheets showed a high quality (C/O ∼ 21.5), low defect (ID/IG ∼ 0.12), and high conductivity (6.2 × 10(4) S/m). Moreover, the large lateral size ranging from 5 to 10 μm of graphene, which is believed to be due to the shielding effect of GO avoiding damage under ultrasonic jets and cavitation formed by the sonication process. The thin graphene film prepared by the spray-coating technique showed a sheet resistance of 668 Ω/sq with a transmittance of 80% at 550 nm after annealing at 350 °C for 3 h. The transparent electrode was even greater with the resistance only 66.02 Ω when graphene is deposited on an interdigitated electrode (1 mm gap). Finally, a flexible sensor based on a graphene spray-coating polydimethylsiloxane (PDMS) is demonstrated showing excellent performance working under human touch pressure (<10 kPa). The graphene prepared by this method has some distinct properties showing it as a promising material for applications in electronics including thin film coatings, transparent electrodes, wearable electronics, human monitoring sensors, and RFID tags. PMID:27268515

  17. Direct exfoliation of graphite to graphene in aqueous media with diazaperopyrenium dications.

    PubMed

    Sampath, Srinivasan; Basuray, Ashish N; Hartlieb, Karel J; Aytun, Taner; Stupp, Samuel I; Stoddart, J Fraser

    2013-05-21

    The 2,9-dimethyldiazaperopyrenium dication can be made from a ubiquitous and inexpensive feedstock in three simple steps as its chloride salt. When mixed with powdered graphite at 23 °C, this behemoth of a molecular compound exfoliates graphite to graphene in water under mild conditions. PMID:23553617

  18. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Minghan; Zhang, Wei; Yang, Zhi; Yu, Fan; Ma, Yujie; Hu, Nantao; He, Dannong; Liang, Qi; Su, Yanjie; Zhang, Yafei

    2015-06-01

    Carbon quantum dots (CQDs) are novel carbon nanomaterials and are attracting increasing interest due to their good characteristics such as hydrophilicity, chemical stability, quantum yield, small particle sizes, and low cytotoxicity. Herein, we used CQDs as stabilizers and exfoliation agents to exfoliate graphite to graphene in an aqueous medium for the first time. The functions of CQDs are to reduce the surface tension of water to match that of graphite and to make weak interactions (π-π conjugation, hydrophobic force, and the Coulomb attraction) with the graphite surface. Different characterization methods were used to evaluate the presence of layers (<5 layers) of graphene sheets with fewer defects and low oxidation. In the future, CQDs can also be good candidates to exfoliate other two-dimensional materials, such as WS2, BN, MoS2, and g-C3N4, to form two-dimensional heterostructures for a range of possible applications.Carbon quantum dots (CQDs) are novel carbon nanomaterials and are attracting increasing interest due to their good characteristics such as hydrophilicity, chemical stability, quantum yield, small particle sizes, and low cytotoxicity. Herein, we used CQDs as stabilizers and exfoliation agents to exfoliate graphite to graphene in an aqueous medium for the first time. The functions of CQDs are to reduce the surface tension of water to match that of graphite and to make weak interactions (π-π conjugation, hydrophobic force, and the Coulomb attraction) with the graphite surface. Different characterization methods were used to evaluate the presence of layers (<5 layers) of graphene sheets with fewer defects and low oxidation. In the future, CQDs can also be good candidates to exfoliate other two-dimensional materials, such as WS2, BN, MoS2, and g-C3N4, to form two-dimensional heterostructures for a range of possible applications. Electronic supplementary information (ESI) available: Particle size distribution, UV-vis spectrum, and XRD pattern of

  19. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere.

    PubMed

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-02-18

    Nanoarchitectonics on graphene implicates a specific and exact anchoring of molecules or nanoparticles onto the surface of graphene. One such example of an effective anchoring group that is highly reactive is the halogen moiety. Herein we describe a simple and scalable method for the introduction of halogen (chlorine, bromine, and iodine) moieties onto the surface of graphene by thermal exfoliation/reduction of graphite oxide in the corresponding gaseous halogen atmosphere. We characterized the halogenated graphene by using various techniques, including scanning and transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, and electrochemistry. The halogen atoms that have successfully been attached to the graphene surfaces will serve as basic building blocks for further graphene nanoarchitectonics. PMID:23296548

  20. Exfoliation of graphene with an industrial dye: teaching an old dog new tricks

    NASA Astrophysics Data System (ADS)

    Schlierf, Andrea; Cha, Kitty; Schwab, Matthias Georg; Samorı, Paolo; Palermo, Vincenzo

    2014-12-01

    We describe the exfoliation, processing and inclusion in polymer composites of few-layers graphene nanoplatelets (GNPs) by using the molecule indanthrone blue sulphonic acid sodium salt (IBS), a very common industrial dyestuff and intermediate for liquid crystal preparation. We show how IBS can be used to successfully exfoliate graphite into few-layers graphene yielding highly stable dispersions in water. To demonstrate that the method is suitable for applications in composites, these graphene-organic hybrids are processed into a commercial commodity polymer (polyvinyl alcohol, PVA), enhancing its electrical bulk conductivity by ten orders of magnitude by adding as few as 3% of GNP. We attribute the good performance of IBS in dispersing GNPs in water to its amphiphilic nature and the tendency to self-assemble through π-π interaction of its large aromatic core with the graphene surface. The molecule studied here, unlike many specialty organic surfactants or solvents commonly known to exfoliate graphene, is already used as a blue pigment dispersant additive in the industrial production of polymers and thus does not need to be removed from the final product.

  1. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles.

    PubMed

    Hurtado-Morales, M; Ortiz, M; Acuña, C; Nerl, H C; Nicolosi, V; Hernández, Y

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene. PMID:27232390

  2. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurtado-Morales, M.; Ortiz, M.; Acuña, C.; Nerl, H. C.; Nicolosi, V.; Hernández, Y.

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene.

  3. Direct exfoliation of graphene in ionic liquids with aromatic groups

    NASA Astrophysics Data System (ADS)

    Bari, Rozana; Tamas, George; Irin, Fahmida; Aquino, Adelia; Quitevis, Edward; Green, Micah

    2015-03-01

    The imidazolium cation of the designed and synthesized novel ionic liquids (ILs) having aromatic groups interact non-covalently with graphene. The Graphene stabilized by the IL is neither covalently functionalized nor requires the presence of additive stabilizer and such process results in dispersion of pristine graphene. This graphene dispersion is stable against centrifugation and the concentration of the resulting graphene is high as well. It was observed that the ILs are less effective in dispersing graphene if the cation does not have these aromatic groups. The interaction between the cation and the graphene surface plays an important role in the final yield of graphene. The graphene dispersion was characterized by Raman spectroscopy, X-ray Diffraction, and X-ray photoelectron spectroscopy. The experimental observations were compared with the density functional theory (DFT-D3) calculations and the comparison indicated that the experimental observations and the theoretical calculations were in good agreement. These validated theoretical calculations can further be used in future to design and synthesize the ILs in order to optimize the graphene yield without the need for additional experimentation. National Science Foundation under CRIF-MU instrumentation grant CHE-0840493, National Science Foundation under CAREER award CMMI-1253085, Air Force Office of Scientific Research Young Investigator Program (AFOSR FA9550-11-1-0027),

  4. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender

    NASA Astrophysics Data System (ADS)

    Varrla, Eswaraiah; Paton, Keith R.; Backes, Claudia; Harvey, Andrew; Smith, Ronan J.; McCauley, Joe; Coleman, Jonathan N.

    2014-09-01

    To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds

  5. CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures

    SciTech Connect

    Wang, Min; Jang, Sung Kyu; Song, Young Jae; Lee, Sungjoo

    2015-01-15

    Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO{sub 2}, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems.

  6. Production and stability of mechanochemically exfoliated graphene in water and culture media

    NASA Astrophysics Data System (ADS)

    León, V.; González-Domínguez, J. M.; Fierro, J. L. G.; Prato, M.; Vázquez, E.

    2016-07-01

    The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported.The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported. Electronic supplementary information (ESI) available: A video showing the dispersion process, the N 1s XPS spectrum of BMG, image of the graphite test in CCM, and the characterization of the GO employed. See DOI: 10.1039/c6nr03246j

  7. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, Xiqing; Fulvio, Pasquale F; Baker, Gary A; Veith, Gabriel M; Unocic, Raymond R; Mahurin, Shannon Mark; Dai, Sheng

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL{sup -1}) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf{sub 2}N]), by tip ultrasonication.

  8. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, X.; Fulvio, P. F.; Baker, G. A.; Veith, G. M.; Unocic, R. R.; Mahurin, S., M.; Chi, M.; Dai, S.

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL-1) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf2N]), by tip ultrasonication.

  9. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Liu, Xiangrong; Zheng, Mingtao; Xiao, Ke; Xiao, Yong; He, Chenglong; Dong, Hanwu; Lei, Bingfu; Liu, Yingliang

    2014-04-01

    Graphene is widely used as promising electronic material and devices, owing to its exceptional electronic and optoelectronic properties. Up to now, defect-free graphene has been limited to the method for controllable, reproducible and scalable mass production. A simple, green, and nontoxic approach for large-scale preparation of high quality graphene is produced by exfoliation of graphite sheets collaborated with intercalant (FeCl2) under hydrothermal conditions, the absence of defects or oxides in graphene with a yield up to 10 wt% can be a practical application and industrial process such as optical limiters, transparent conductors, and sensors. This new process could potentially be improved to give a yield of up to 35 wt% of the starting graphite mass with sediment recycling. We show with experiments and theories that exfoliation graphene is the result of a combined action by diminishing the van der Waals interactions between graphite layers and the shear force drove by the Brownian motion of H2O and FeCl2 molecules. Hydrothermal exfoliation has potential applications in the exfoliation of other layered materials (e.g. BN, MoS2) and carbon nantubes, and in the synthesis of intercalation compounds, nanoribbons, and nanoparticles, thus opening new ways of exfoliation engineering.Graphene is widely used as promising electronic material and devices, owing to its exceptional electronic and optoelectronic properties. Up to now, defect-free graphene has been limited to the method for controllable, reproducible and scalable mass production. A simple, green, and nontoxic approach for large-scale preparation of high quality graphene is produced by exfoliation of graphite sheets collaborated with intercalant (FeCl2) under hydrothermal conditions, the absence of defects or oxides in graphene with a yield up to 10 wt% can be a practical application and industrial process such as optical limiters, transparent conductors, and sensors. This new process could potentially be

  10. Facile method for liquid-exfoliated graphene size prediction by UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Ismail, Zulhelmi; Yusoh, Kamal

    2016-07-01

    In this work, an application of UV spectroscopy for facile prediction of liquid -exfoliated graphene size is discussed. Dynamic light scattering method was used to estimate the graphene flake size ( whilst UV spectroscopy measurement was carried out for extinction coefficient value (ɛ) determination. It was found that the value of (ɛ) decreased gradually as the graphene size was further reduced after intense sonication time (7h). This observation showed the influence of sonication time on electronic structure of graphene. A mathematical equation was derived from log-log graph for correlation between () and (ɛ) value. Both values can be expressed in a single equation as ( = (3.4 × 10-2) ɛ1.2).

  11. Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene.

    PubMed

    Kabe, Ryota; Feng, Xinliang; Adachi, Chihaya; Müllen, Klaus

    2014-11-01

    A water-soluble surfactant consisting of hexa-peri-hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self-assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L(-1) containing 2-6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100-500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements. PMID:25156746

  12. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender.

    PubMed

    Varrla, Eswaraiah; Paton, Keith R; Backes, Claudia; Harvey, Andrew; Smith, Ronan J; McCauley, Joe; Coleman, Jonathan N

    2014-10-21

    To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml(-1) and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ∼0.15 g h(-1), much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation. PMID:25164103

  13. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    2012-09-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear & friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  14. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Graphene is an exciting new atomically-thin two-dimensional (2D) system of carbon atoms organized in a hexagonal lattice structure. This "wonder material" has been extensively studied in the last few years since it's first isolation in 2004. Its rapid rise to popularity in scientific and technological communities can be attributed to a number of its exceptional properties. In this thesis I will present several topics including fabrication of graphene devices, electrical and mechanical properties of graphene. I will start with a brief introduction of electronic transport in nanosclae system including quantum Hall effect, followed by a discussion of fundamental electrical and mechanical properties of graphene. Next I will describe how graphene devices are produced: from the famous "mechnical exfoliation" to our innovative "scratching exfoliation" method, together with the traditional lithography fabrication for graphene devices. We also developed a lithography-free technique for making electrical contacts to suspended graphene devices. Most of the suspended devices presented in this thesis are fabricated by this technique. Graphene has remarkable electrical properties thanks to its crystal and band structures. In Chapter 3, I will first focus on proximity-induced superconductivity in graphene Josephson transistors. In this section we investigate electronic transport in single layer graphene coupled to superconducting electrodes. We observe significant suppression in the critical current I c and large variation in the product IcR n in comparison to theoretic prediction; both phenomena can be satisfactorily accounted for by premature switching in underdamped Josephson junctions. Another focus of our studies is quantum Hall effect and many body physics in graphene in suspended bilayer and trilayer graphene. We demonstrate that symmetry breaking of the first 3 Landau levels and fractional quantum Hall states are observed in both bilayer and trilayer suspended graphene

  15. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    SciTech Connect

    Antony, Rajini P. Preethi, L.K.; Gupta, Bhavana; Mathews, Tom Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  16. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes

    NASA Astrophysics Data System (ADS)

    Munuera, J. M.; Paredes, J. I.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascón, J. M. D.

    2016-01-01

    Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise

  17. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-09-01

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low

  18. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.

    PubMed

    Malho, Jani-Markus; Laaksonen, Päivi; Walther, Andreas; Ikkala, Olli; Linder, Markus B

    2012-04-01

    Nanofibrillated cellulose (NFC) is a natural fibrillar material with exceptionally high mechanical properties. It has, however, been exceedingly difficult to achieve nanocomposites with drastically improved mechanical properties by dispersing NFC as random networks to polymer matrices, even using compatibilization. We show nanocomposites consisting of aligned assemblies of multilayered graphene and NFC with excellent tensile mechanical properties without any surface treatments. The optimum composition was found at 1.25 wt % graphene multilayers, giving a Young's modulus of 16.9 GPa, ultimate strength of 351 MPa, strain of 12%, and work-of-fracture of 22.3 MJ m(-3). This combines high strength with relatively high toughness and is obtained by direct exfoliation of graphite within aqueous hydrogels of NFC where an optimum sonication power is described. The results suggest the existence of an attractive interaction between multilayered graphene flakes and cellulose. Aligned assemblies are obtained by removal of water by filtration. The concept can be beneficial for applications because it results in high mechanical properties by a simple and environmentally green process. PMID:22372697

  19. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    PubMed

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-01-28

    Electrolytic - usually referred to as electrochemical - exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes. PMID:26782137

  20. Scalable production of graphene with tunable and stable doping by electrochemical intercalation and exfoliation.

    PubMed

    Hsieh, Ya-Ping; Chiang, Wan-Yu; Tsai, Sun-Lin; Hofmann, Mario

    2016-01-01

    Graphene's unique semimetallic band structure yields carriers with widely tunable energy levels that enable novel electronic devices and energy generators. To enhance the potential of this feature, a scalable synthesis method for graphene with adjustable Fermi levels is required. We here show that the electrochemical intercalation of FeCl3 and subsequent electrochemical exfoliation produces graphene whose energy levels can be finely tuned by the intercalation parameters. X-ray photoelectron spectroscopy reveals that a gradual transition in the bonding character of the intercalant is the source of this behavior. The intercalated graphene exhibits a significantly increased work function that can be varied between 4.8 eV and 5.2 eV by the intercalation potential. Transparent conducting electrodes produced by these graphene flakes exhibit a threefold improvement in performance and the doping effect was found to be stable for more than a year. These findings open up a new route for the scalable production of graphene with adjustable properties for future applications. PMID:26617396

  1. Manganese oxide nanosheets and a 2D hybrid of graphene-manganese oxide nanosheets synthesized by liquid-phase exfoliation

    NASA Astrophysics Data System (ADS)

    Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria

    2015-06-01

    Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.

  2. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-12-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (˜8 Ω/□), high transmittance (˜81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  3. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  4. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    PubMed

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices. PMID:23824229

  5. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids

    NASA Astrophysics Data System (ADS)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards ‘single-layer’ graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml-1, and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  6. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Shi, Weili; Chen, Yongmei; Yang, Quanling; Wang, Mengkui; Liu, Bin; Tang, Zhen; Jiang, Ming; Fang, De; Xiong, Chuanxi

    2016-02-01

    The superior properties of graphene in applications ranging from electronic devices to composites have been extensively reported. So far, no mass production of defect-free few-layer graphene has been attained. The authors of this study have demonstrated a high-yield method to produce defect-free few-layer graphene by exfoliation of graphite in a degradable water-soluble polymer (I) with cholamine modification, and the obtained intercalated (D-I) chemical structure was confirmed by Fourier transform infrared spectroscopy. The electron donor forms π-π stacking interactions with the graphene sheets during sonication, which prevents the exfoliated graphene from restacking. The method is environment-friendly compared with other liquid exfoliation methods, and the aqueous and ethanolic solutions of graphene are stable for long durations. The authors also confirmed the presence of gossamer graphene sheets, which have typical wrinkled and folded structures, by using high resolution transmission electron microscopy. Atomic force microscopy images revealed that graphene sheets with a thickness of approximately 1 nm were uniformly distributed.

  7. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Li, Yuhan; Wang, Zhenyu; Ho, Wing-Kei

    2015-12-01

    Graphene-like porous g-C3N4 nanosheets were synthesized via direct pyrolysis of thiourea followed by a thermal exfoliation. With increased exfoliation temperature, the color of the resulting samples gradually became shallow, and the thickness and size of the layers were decreased. A formation mechanism involving layer-by-layer exfoliation coupled with layer splitting was proposed. The band structure of the g-C3N4 nanosheets was continuously tuned because of quantum size effect. Time-resolved decay spectra indicated that the radiative lifetime of charge carriers (τ1 and τ2) increased from 4.13 and 26.23 ns for bulk g-C3N4 to 5.36 and 36.57 ns for graphene-like g-C3N4 nanosheets. The g-C3N4 nanosheet samples were applied for visible light photocatalytic removal of NOx in air. The performance of porous g-C3N4 nanosheets was significantly enhanced with increased exfoliation temperature from 450 to 550 °C. Moreover, photochemical and structural stability was well maintained after multiple reaction cycles. By monitoring the reaction intermediate NO2, it was found that the generation of NO2 was inhibited. The activity enhancement of graphene-like g-C3N4 nanosheets can be predominantly ascribed to the prolonged lifetime and improved photo-oxidation ability of charge carriers arising from the unique electronic structure. As the synthesis method for graphene-like g-C3N4 nanosheets with high a performance is simple, the g-C3N4 nanosheets can be envisioned to be applicable in environmental remediation and solar energy conversion.

  8. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    SciTech Connect

    Dao, Trung Dung; Jeong, Han Mo

    2015-10-15

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphite with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.

  9. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions

    NASA Astrophysics Data System (ADS)

    Ravula, Sudhir; Baker, Sheila N.; Kamath, Ganesh; Baker, Gary A.

    2015-02-01

    Research on graphene--monolayers of carbon atoms arranged in a honeycomb lattice--is proceeding at a relentless pace as scientists of both experimental and theoretical bents seek to explore and exploit its superlative attributes, including giant intrinsic charge mobility, record-setting thermal conductivity, and high fracture strength and Young's modulus. Of course, fully exploiting the remarkable properties of graphene requires reliable, large-scale production methods which are non-oxidative and introduce minimal defects, criteria not fully satisfied by current approaches. A major advance in this direction is ionic liquid-assisted exfoliation and dispersion of graphite, leading to the isolation of few- and single-layered graphene sheets with yields two orders of magnitude higher than the earlier liquid-assisted exfoliation approaches using surface energy-matched solvents such as N-methyl-2-pyrrolidone (NMP). In this Minireview, we discuss the emerging use of ionic liquids for the practical exfoliation, dispersion, and modification of graphene nanosheets. These developments lay the foundation for strategies seeking to overcome the many challenges faced by current liquid-phase exfoliation approaches. Early computational and experimental results clearly indicate that these same approaches can readily be extended to inorganic graphene analogues (e.g., BN, MoX2 (X = S, Se, Te), WS2, TaSe2, NbSe2, NiTe2, and Bi2Te3) as well.

  10. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Song, Yu; Xu, Jun-Li; Liu, Xiao-Xia

    2014-03-01

    Partial exfoliation of graphene from graphite foil (GF) is achieved by a convenient one-step electrochemical exfoliation method to afford partially exfoliated graphene electrode (Ex-GF) with graphene sheets standing on GF matrix stably. Electropolymerization of pyrrole is carried out on Ex-GF with 1,5-naphthalene disulfonate (NDS) and 2-naphthalene sulfonate (NMS) as the 'permanent' doping anions to prepare Ex-GF/PPy-NDS and Ex-GF/PPy-NMS, respectively, in which the polymer is anchoring on the surfaces of graphene sheets. The PPy displays an opened structure due to the facilitated homogeneous nucleation on Ex-GF and so exhibits enhanced specific capacitance compared to the polymers deposited on pristine GF (to afford GF/PPy-NDS and GF/PPy-NMS). Specifically, Ex-GF/PPy-NDS film maintains 79% of its specific capacitance when the discharge current density increases from 1 to 20 A g-1. Moreover, discharge potential window of the polymer is enlarged to 1.3 V (from -0.8 to 0.5 V vs. SCE) due to the dual doping mode. Ex-GF/PPy-NDS film displays a high energy density of 82.4 Wh kg-1 at the power density of 650 W kg-1 and 65.1 Wh kg-1 at the power density of 13 kW kg-1. The cyclic charge/discharge stability of the polymer is also improved due to synergistic effect with partially exfoliated graphene.

  11. Enhancement of electrode performance by a simple casting method using sonochemically exfoliated graphene.

    PubMed

    Walch, Nik J; Davis, Frank; Langford, Nathan; Holmes, Joanne L; Collyer, Stuart D; Higson, Séamus P J

    2015-09-15

    We demonstrate within this paper a method for modifying commercial screen-printed electrodes with aqueous graphene suspensions to enhance their electrochemical activity. The graphene suspensions are synthesized by a simple ultrasonic exfoliation method from graphite, where reaggregation is prevented by the addition of common cationic or anionic surfactants, thereby avoiding the use of organic solvents or harsh chemical procedures. These suspensions can then be simply cast onto the screen-printed electrodes. Cyclic voltammetry with a number of redox active species such as phenols, as well as impedance measurements, were made to characterize these systems. The modified electrodes are shown to demonstrate significantly enhanced electrochemical activity and greatly lowered electron transfer resistances compared to the unmodified electrodes. Initial proof of concept applications of these electrodes, including the detection of heavy metals by absorptive stripping voltammetry, are also shown. PMID:26289227

  12. Graphenothermal reduction synthesis of 'exfoliated graphene oxide/iron (II) oxide' composite for anode application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Petnikota, Shaikshavali; Marka, Sandeep Kumar; Banerjee, Arkaprabha; Reddy, M. V.; Srikanth, V. V. S. S.; Chowdari, B. V. R.

    2015-10-01

    Graphenothermal Reduction process is used to obtain exfoliated graphene oxide (EG)/iron (II) oxide (FeO) composite prepared at 650 °C for 5 h in argon. Structural and compositional analyses of the sample confirm the formation of EG/FeO composite. This composite shows a reversible capacity of 857 mAh g-1 at a current rate of 50 mA g-1 in the voltage range 0.005-3.0 V versus Li. An excellent capacity retention up to 60 cycles and high coulombic efficiency of 98% are also observed. Characteristic Fe2+/0 redox peaks observed in Cyclic Voltammetry measurement are explained in correlation with lithium storage mechanism. Thermal, electrical and impedance spectroscopy studies of EG/FeO composite are discussed in detail. Comparative electrochemical cycling studies of EG/FeO composite with Fe2O3 and Fe3O4 materials prepared under controlled conditions are also discussed.

  13. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  14. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    PubMed

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction. PMID:23656223

  15. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene.

    PubMed

    Geng, Xiumei; Guo, Yufen; Li, Dongfang; Li, Weiwei; Zhu, Chao; Wei, Xiangfei; Chen, Mingliang; Gao, Song; Qiu, Shengqiang; Gong, Youpin; Wu, Liqiong; Long, Mingsheng; Sun, Mengtao; Pan, Gebo; Liu, Liwei

    2013-01-01

    Mass production of reduced graphene oxide and graphene nanoplatelets has recently been achieved. However, a great challenge still remains in realizing large-quantity and high-quality production of large-size thin few-layer graphene (FLG). Here, we create a novel route to solve the issue by employing one-time-only interlayer catalytic exfoliation (ICE) of salt-intercalated graphite. The typical FLG with a large lateral size of tens of microns and a thickness less than 2 nm have been obtained by a mild and durative ICE. The high-quality graphene layers preserve intact basal crystal planes owing to avoidance of the degradation reaction during both intercalation and ICE. Furthermore, we reveal that the high-quality FLG ensures a remarkable lithium-storage stability (>1,000 cycles) and a large reversible specific capacity (>600 mAh g(-1)). This simple and scalable technique acquiring high-quality FLG offers considerable potential for future realistic applications. PMID:23355949

  16. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene

    NASA Astrophysics Data System (ADS)

    Geng, Xiumei; Guo, Yufen; Li, Dongfang; Li, Weiwei; Zhu, Chao; Wei, Xiangfei; Chen, Mingliang; Gao, Song; Qiu, Shengqiang; Gong, Youpin; Wu, Liqiong; Long, Mingsheng; Sun, Mengtao; Pan, Gebo; Liu, Liwei

    2013-01-01

    Mass production of reduced graphene oxide and graphene nanoplatelets has recently been achieved. However, a great challenge still remains in realizing large-quantity and high-quality production of large-size thin few-layer graphene (FLG). Here, we create a novel route to solve the issue by employing one-time-only interlayer catalytic exfoliation (ICE) of salt-intercalated graphite. The typical FLG with a large lateral size of tens of microns and a thickness less than 2 nm have been obtained by a mild and durative ICE. The high-quality graphene layers preserve intact basal crystal planes owing to avoidance of the degradation reaction during both intercalation and ICE. Furthermore, we reveal that the high-quality FLG ensures a remarkable lithium-storage stability (>1,000 cycles) and a large reversible specific capacity (>600 mAh g-1). This simple and scalable technique acquiring high-quality FLG offers considerable potential for future realistic applications.

  17. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    PubMed

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-30

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes. PMID:26963627

  18. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites.

    PubMed

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; De Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C; Beljonne, David; Samorì, Paolo

    2016-01-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors. PMID:27052205

  19. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites

    NASA Astrophysics Data System (ADS)

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; de Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-04-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors.

  20. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  1. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  2. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Yan, Jia; She, Xiaojie; Xu, Li; Xia, Jiexiang; Xu, Yuanguo; Song, Yanhua; Huang, Liying; Li, Huaming

    2014-01-01

    Graphene-analogue nanostructures defined as a new kind of promising materials with unique electronic, surface and optical properties have received much attention in the fields of catalysis, energy storage, sensing and electronic devices. Due to the distinctive structure characteristics of the graphene-analogue materials, they brought novel and amazing properties. Herein, graphene-analogue carbon nitride (GA-C3N4) was synthesized by high-yield, large-scale thermal exfoliation from the graphitic C3N4-based intercalation compound. Graphene-analogue carbon nitride exhibited 2D thin-layer structure with 6-9 atomic thickness, a high specific surface area of 30.1 m2 g-1, increased photocurrent responses and improved electron transport ability, which could give rise to enhancing the photocatalytic activity and stability. The graphene-analogue carbon nitride had a new features that could make it suitable as a sensor for Cu2+ determination. So GA-C3N4 is a new but promising candidate for heavy metal ions (Cu2+) determination in water environment. The photocatalytic mechanism and photoelectrochemical selective sensing of Cu2+ were also discussed.Graphene-analogue nanostructures defined as a new kind of promising materials with unique electronic, surface and optical properties have received much attention in the fields of catalysis, energy storage, sensing and electronic devices. Due to the distinctive structure characteristics of the graphene-analogue materials, they brought novel and amazing properties. Herein, graphene-analogue carbon nitride (GA-C3N4) was synthesized by high-yield, large-scale thermal exfoliation from the graphitic C3N4-based intercalation compound. Graphene-analogue carbon nitride exhibited 2D thin-layer structure with 6-9 atomic thickness, a high specific surface area of 30.1 m2 g-1, increased photocurrent responses and improved electron transport ability, which could give rise to enhancing the photocatalytic activity and stability. The graphene

  3. Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Leprat, D.; Glattli, D. C.; Schopfer, F.; Poirier, W.

    2012-04-01

    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2 substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3 K), the Hall resistance is measured by comparison with a GaAs-based quantum resistance standard using a cryogenic current comparator. In the low-dissipation limit, it is found quantized within 5 parts in 107 (one standard deviation, 1σ) at the expected rational fractions of the von Klitzing constant, respectively, RK/2 and RK/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10-9 accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasielastic inter-Landau-level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau-level transition rate and cause small breakdown currents.

  4. Schwinger mechanism and graphene

    SciTech Connect

    Allor, Danielle; Cohen, Thomas D.; McGady, David A.

    2008-11-01

    The Schwinger mechanism, the production of charged particle-antiparticle pairs in a macroscopic external electric field, is derived for 2+1-dimensional theories. The rate of pair production per unit area for four species of massless fermions, with charge q, in a constant electric field E is given by {pi}{sup -2}({Dirac_h}/2{pi}){sup -3/2}c-tilde{sup -1/2}(qE){sup 3/2} where c-tilde is the speed of light for the two-dimensional system. To the extent undoped graphene behaves like the quantum field-theoretic vacuum for massless fermions in 2+1 dimensions, the Schwinger mechanism should be testable experimentally. A possible experimental configuration for this is proposed. Effects due to deviations from this idealized picture of graphene are briefly considered. It is argued that with present day samples of graphene, tests of the Schwinger formula may be possible.

  5. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device.

    PubMed

    Wang, Xuewen; Xiong, Zuoping; Liu, Zheng; Zhang, Ting

    2015-02-25

    Reduced graphene oxide ultrathin films are fabricated by a reproducible exfoliation method at the liquid/air interface, and they show high transparency, tunable sheet resistance, uniform electric conductivity, and structural homogeneity over a large area. A flexible relative humidity sensing matrix is demonstrated and it is shown to be excellent for close proximity sensing without touching it. This method opens up a novel avenue for future human-machine interaction applications. PMID:25522328

  6. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu²⁺.

    PubMed

    Xu, Hui; Yan, Jia; She, Xiaojie; Xu, Li; Xia, Jiexiang; Xu, Yuanguo; Song, Yanhua; Huang, Liying; Li, Huaming

    2014-01-01

    Graphene-analogue nanostructures defined as a new kind of promising materials with unique electronic, surface and optical properties have received much attention in the fields of catalysis, energy storage, sensing and electronic devices. Due to the distinctive structure characteristics of the graphene-analogue materials, they brought novel and amazing properties. Herein, graphene-analogue carbon nitride (GA-C₃N₄) was synthesized by high-yield, large-scale thermal exfoliation from the graphitic C₃N₄-based intercalation compound. Graphene-analogue carbon nitride exhibited 2D thin-layer structure with 6-9 atomic thickness, a high specific surface area of 30.1 m(2) g(-1), increased photocurrent responses and improved electron transport ability, which could give rise to enhancing the photocatalytic activity and stability. The graphene-analogue carbon nitride had a new features that could make it suitable as a sensor for Cu(2+) determination. So GA-C₃N₄ is a new but promising candidate for heavy metal ions (Cu(2+)) determination in water environment. The photocatalytic mechanism and photoelectrochemical selective sensing of Cu(2+) were also discussed. PMID:24309635

  7. Mechanism of Exfoliation and Prediction of Materials Properties of Clay-Polymer Nanocomposites from Multiscale Modeling.

    PubMed

    Suter, James L; Groen, Derek; Coveney, Peter V

    2015-12-01

    We describe the mechanism that leads to full exfoliation and dispersion of organophilic clays when mixed with molten hydrophilic polymers. This process is of fundamental importance for the production of clay-polymer nanocomposites with enhanced materials properties. The chemically specific nature of our multiscale approach allows us to probe how chemistry, in combination with processing conditions, produces such materials properties at the mesoscale and beyond. In general agreement with experimental observations, we find that a higher grafting density of charged quaternary ammonium surfactant ions promotes exfoliation, by a mechanism whereby the clay sheets slide transversally over one another. We can determine the elastic properties of these nanocomposites; exfoliated and partially exfoliated morphologies lead to substantial enhancement of the Young's modulus, as found experimentally. PMID:26575149

  8. A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: unraveling the role of the length of fatty acids.

    PubMed

    Haar, Sébastien; Ciesielski, Artur; Clough, Joseph; Yang, Huafeng; Mazzaro, Raffaello; Richard, Fanny; Conti, Simone; Merstorf, Nicolas; Cecchini, Marco; Morandi, Vittorio; Casiraghi, Cinzia; Samorì, Paolo

    2015-04-01

    Achieving the full control over the production as well as processability of high-quality graphene represents a major challenge with potential interest in the field of fabrication of multifunctional devices. The outstanding effort dedicated to tackle this challenge in the last decade revealed that certain organic molecules are capable of leveraging the exfoliation of graphite with different efficiencies. Here, a fundamental understanding on a straightforward supramolecular approach for producing homogenous dispersions of unfunctionalized and non-oxidized graphene nanosheets in four different solvents is attained, namely N-methyl-2-pyrrolidinone, N,N-dimethylformamide, ortho-dichlorobenzene, and 1,2,4-trichlorobenzene. In particular, a comparative study on the liquid-phase exfoliation of graphene in the presence of linear alkanes of different lengths terminated by a carboxylic-acid head group is performed. These molecules act as graphene dispersion-stabilizing agents during the exfoliation process. The efficiency of the exfoliation in terms of concentration of exfoliated graphene is found to be proportional to the length of the employed fatty acid. Importantly, a high percentage of single-layer graphene flakes is revealed by high-resolution transmission electron microscopy and Raman spectroscopy analyses. A simple yet effective thermodynamic model is developed to interpret the chain-length dependence of the exfoliation yield. This approach relying on the synergistic effect of a ad-hoc solvent and molecules to promote the exfoliation of graphene in liquid media represents a promising and modular strategy towards the rational design of improved dispersion-stabilizing agents. PMID:25504589

  9. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates

    NASA Astrophysics Data System (ADS)

    Jiang, Xian; Drzal, Lawrence T.

    2012-11-01

    This research explored the potential of using exfoliated graphene nanoplatelets, GNP, as the conductive filler to construct highly conductive polymeric nanocomposites to substitute for conventional metallic and graphite bipolar plates in the polymer electrolyte membrane (PEM) fuel cells. Polyphenylene sulfide (PPS) was selected as the polymer matrix because of its high thermal and chemical tolerance. Solid state ball milling (SSBM) followed by compression molding was then applied to fabricate PPS/GNP nanocomposites. Results showed that PPS/GNP nanocomposites made by this method exhibit excellent mechanical and gas barrier properties but unsatisfied electrical conductivity. However, it was found that the electrical conductivity of these nanocomposites could be substantially enhanced if we combine GNP with second minor conductive filler for a positive synergistic effect and also optimize the processing time of SSBM. Meanwhile, PPS impregnated GNP papers were embedded into these PPS/GNP nanocomposites in order to further improve various properties of the resulting bipolar plates. It is believed that the bipolar plates made from PPS/GNP nanocomposites will allow lighter weight of PEM fuel cells with enhanced performance which is particularly suited for automotive applications.

  10. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-01

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery. PMID:27052542

  11. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber.

    PubMed

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-18

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL(-1) was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 10(4) Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials. PMID:26313887

  12. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  13. Dynamics and Mechanisms of Exfoliated Black Phosphorus Sublimation.

    PubMed

    Fortin-Deschênes, Matthieu; Levesque, Pierre L; Martel, Richard; Moutanabbir, Oussama

    2016-05-01

    We report on real time observations of the sublimation of exfoliated black phosphorus layers throughout annealing using in situ low energy electron microscopy. We found that sublimation manifests itself above 375 ± 20 °C through the nucleation and expansion of asymmetric, faceted holes with the long axis aligned along the [100] direction and sharp tips defined by edges consisting of alternating (10) and (11) steps. This thermally activated process repeats itself via successive sublimation of individual layers. Calculations and simulations using density functional theory and kinetic Monte Carlo allowed to determine the involved atomic pathways. Sublimation is found to occur via detachments of phosphorus dimers rather than single atoms. This behavior and the role of defects is described using an analytical model that captures all essential features. This work establishes an atomistic-level understanding of the thermal stability of exfoliated black phosphorus and defines the temperature window available for material and device processing. PMID:27097073

  14. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. PMID:26926591

  15. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-05-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission

  16. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    NASA Astrophysics Data System (ADS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L. S.; Tavolaro, A.

    2016-09-01

    In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al2O3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm2. The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  17. Epitaxial graphene: the material for graphene electronics

    SciTech Connect

    Sprinkle, M.; Soukiassian, P.; de Heer, W.A.; Berger, C.; Conrad, E.H.

    2009-12-10

    The search for an ideal graphene sheet has been a quest driving graphene research. While most research has focused on exfoliated graphene, intrinsic substrate interactions and mechanical disorder have precluded the observation of a number of graphene's expected physical properties in this material. The only graphene candidate that has demonstrated all the essential properties of an ideal sheet is multilayer graphene grown on the SiC(000) surface. Its unique stacking allows nearly all the sheets in the stack to behave like isolated graphene, while the weak graphene-graphene interaction prevents any significant doping or distortion in the band near the Fermi level.

  18. Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Islam, Md Tariqul; Karim, Hasanul; Ramabadran, Navaneet; Noveron, Juan C.; Lin, Yirong

    2015-09-01

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO2 nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode-electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge-discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  19. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Goyal, V.; Teweldebrhan, D.; Balandin, A. A.

    2010-09-01

    The authors report on "graphene-like" mechanical exfoliation of single-crystal Bi2Te3 films and thermoelectric characterization of the stacks of such films. Thermal conductivity of the resulting "pseudosuperlattices" was measured by the "hot disk" and "laser flash" techniques. The room temperature in-plane (cross-plane) thermal conductivity of the stacks decreases by a factor of ˜2.4 (3.5) as compared to bulk. The thermal conductivity reduction with preserved electrical properties leads to strong increase in the thermoelectric figure of merit. It is suggested that the film thinning to few-quintuples and tuning of the Fermi level can help in achieving the topological-insulator surface transport regime with an extraordinary thermoelectric efficiency.

  20. Morphology selective preparation and formation mechanism of graphene nanoribbons from graphite by liquid-phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2016-02-01

    The paper studied preparation and formation mechanism of free-standing 3D graphene nanoribbons (GNRs) from graphite by pulsed laser ablation in liquid. The method to fabricate freestanding graphene nanoribbons directly was simple and controllable, which does not need other precursor materials and has no byproducts. Prepared graphene nanoribbons are shown composed of up to 14 layers of graphene, spaced about 0.30-0.35 nm and have a length of hundreds of nanometers. Formation mechanism of graphene nanoribbons was proposed based on the interaction between laser and material which can be demonstrated that the exfoliation of GNRs is a carbon plasma collision connecting-graphene segments-graphene sheets-multilayer graphene-graphene nanoribbons process. The high degree of repeatability and particularity found in the obtained GNRs might suggest their unique advantages and potential applications in nano-devices and spin electronics.

  1. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties

    NASA Astrophysics Data System (ADS)

    Poh, Hwee Ling; Šaněk, Filip; Ambrosi, Adriano; Zhao, Guanjia; Sofer, Zdeněk; Pumera, Martin

    2012-05-01

    Large-scale fabrication of graphene is highly important for industrial and academic applications of this material. The most common large-scale preparation method is the oxidation of graphite to graphite oxide using concentrated acids in the presence of strong oxidants and consequent thermal exfoliation and reduction by thermal shock to produce reduced graphene. These oxidation methods typically use concentrated sulfuric acid (a) in combination with fuming nitric acid and KClO3 (Staudenmaier method), (b) in combination with concentrated nitric acid and KClO3 (Hofmann method) or (c) in the absence of nitric acid but in the presence of NaNO3 and KMnO4 (Hummers method). The evaluation of quality and applicability of the graphenes produced by these various methods is of high importance and is attempted side-by-side for the first time in this paper. Full-scale characterization of thermally reduced graphenes prepared by these standard methods was performed with techniques such as transmission and scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their applicability for electrochemical devices was further evaluated by means of cyclic voltammetry techniques. We showed that while Staudenmaier and Hofmann methods (methods that do not use potassium permanganate as oxidant) generated thermally reduced graphenes with comparable electrochemical properties, the graphene prepared by the Hummers method which uses permanganate as oxidant showed higher heterogeneous electron transfer rates and lower overpotentials as compared to graphenes prepared by the Staudenmaier or Hofmann methods. This clearly shows that the methods of preparations have dramatic influences on the materials properties and, thus, such findings are of eminent importance for practical applications as well as for academic research.

  2. Ultrathin hexagonal hybrid nanosheets synthesized by graphene oxide-assisted exfoliation of β-Co(OH)2 mesocrystals.

    PubMed

    Deng, Suzi; Thomas Cherian, Christie; Liu, Xiao Li; Tan, Hui Ru; Yeo, Li Hsia; Yu, Xiaojiang; Rusydi, Andrivo; Chowdari, B V R; Fan, Hai Ming; Sow, Chorng Haur

    2014-09-22

    In the present study, we report the synthesis of a high-quality, single-crystal hexagonal β-Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β-Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure-directing molecules, the β-Co(OH)2 flower-like superstructures were first grown by a nanoparticle-mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β-Co(OH)2 nanoflowers were chemically exfoliated by surface-active GO under hydrothermal conditions into unilamellar single-crystal nanosheets. In this reaction, GO acts as a two-dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on-site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium-ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g(-1) for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO-assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics. PMID:25111836

  3. Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Min; Dong, Lei; Han, Yan; Li, Xi-Fei; Li, De-Jun

    2015-08-01

    Nanosize N-doped graphene is prepared from N-containing carbon nanotubes (CNTs) by chemical exfoliation. The CNTs adopted for graphene are characterized by a discontinuous wall that consists of nanosize graphite layers, exhibiting a bamboo-like appearance. Take advantage of this characterization, the most time-consuming process of chemical oxidation that involves intercalation in graphene from CNT has been markedly reduced. The reduction in processing time is attributed to the diffusion distance of chemical oxidation intercalation into nanosize graphite composed of a bamboo-like carbon nanotube (BCNT) wall being far less than that of conventional chemical exfoliation into microsize graphite. The as-prepared nanosize N-doped graphene from BCNTs has shown an excellent electrochemical performance for Li-ion battery and Na-ion battery anode materials.

  4. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Backes, Claudia; Paton, Keith R.; Hanlon, Damien; Yuan, Shengjun; Katsnelson, Mikhail I.; Houston, James; Smith, Ronan J.; McCloskey, David; Donegan, John F.; Coleman, Jonathan N.

    2016-02-01

    Liquid phase exfoliation is a powerful and scalable technique to produce defect-free mono- and few-layer graphene. However, samples are typically polydisperse and control over size and thickness is challenging. Notably, high throughput techniques to measure size and thickness are lacking. In this work, we have measured the extinction, absorption, scattering and Raman spectra for liquid phase exfoliated graphene nanosheets of various lateral sizes (90 <= <= 810 nm) and thicknesses (2.7 <= <= 10.4). We found all spectra to show well-defined dependences on nanosheet dimensions. Measurements of extinction and absorption spectra of nanosheet dispersions showed both peak position and spectral shape to vary with nanosheet thickness in a manner consistent with theoretical calculations. This allows the development of empirical metrics to extract the mean thickness of liquid dispersed nanosheets from an extinction (or absorption) spectrum. While the scattering spectra depended on nanosheet length, poor signal to noise ratios made the resultant length metric unreliable. By analyzing Raman spectra measured on graphene nanosheet networks, we found both the D/G intensity ratio and the width of the G-band to scale with mean nanosheet length allowing us to establish quantitative relationships. In addition, we elucidate the variation of 2D/G band intensities and 2D-band shape with the mean nanosheet thickness, allowing us to establish quantitative metrics for mean nanosheet thickness from Raman spectra.Liquid phase exfoliation is a powerful and scalable technique to produce defect-free mono- and few-layer graphene. However, samples are typically polydisperse and control over size and thickness is challenging. Notably, high throughput techniques to measure size and thickness are lacking. In this work, we have measured the extinction, absorption, scattering and Raman spectra for liquid phase exfoliated graphene nanosheets of various lateral sizes (90 <= <= 810 nm) and

  5. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    PubMed

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-01

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures. PMID:26479951

  6. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    PubMed

    Zou, Yuqin; Wang, Shuangyin

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors. PMID:26149290

  7. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor

    PubMed Central

    Zou, Yuqin; Wang, Shuangyin

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive “binders”. The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors. PMID:26149290

  8. Exfoliation of graphene oxide and its application in improving the electro-optical response of ferroelectric liquid crystal

    SciTech Connect

    Kumar, Veeresh; Kumar, Ajay; Bhandari, Shruti; Biradar, A. M.; Pasricha, Renu E-mail: renu1505@gmail.com; Reddy, G. B.

    2015-09-21

    Near complete exfoliation and reduction of lyophilized graphene oxide (GO) has been carried out at temperature as low as 400 °C. The structural characterizations of the reduced GO have been performed using X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy techniques. The morphological studies were carried out using scanning electron microscopy. The synthesized GO finds an application in improving the switching performance of a liquid crystal (LC) mixture by remarkably modifying the physical properties, such as spontaneous polarization and rotational viscosity of the ferroelectric LC (FLC) material which in turn resulted into faster response of the FLC. The present study explores the possibility of low temperature thermal reduction of GO along with its application in improving the properties of LC based display systems.

  9. Synthesis of Multimetal-Graphene Composite by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan

    2016-06-01

    Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.

  10. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.

    PubMed

    Singkammo, Suparat; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-02-11

    In this work, flame-spray-made SnO2 nanoparticles are systematically studied by doping with 0.1-2 wt % nickel (Ni) and loading with 0.1-5 wt % electrolytically exfoliated graphene for acetone-sensing applications. The sensing films (∼12-18 μm in thickness) were prepared by a spin-coating technique on Au/Al2O3 substrates and evaluated for acetone-sensing performances at operating temperatures ranging from 150 to 350 °C in dry air. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy and Raman spectroscopy demonstrated that Ni-doped SnO2 nanostructures had a spheriodal morphology with a polycrystalline tetragonal SnO2 phase, and Ni was confirmed to form a solid solution with SnO2 lattice while graphene in the sensing film after annealing and testing still retained its high-quality nonoxidized form. Gas-sensing results showed that SnO2 sensing film with 0.1 wt % Ni-doping concentration exhibited an optimal response of 54.2 and a short response time of ∼13 s toward 200 ppm acetone at an optimal operating temperature of 350 °C. The additional loading of graphene at 5 wt % into 0.1 wt % Ni-doped SnO2 led to a drastic response enhancement to 169.7 with a very short response time of ∼5.4 s at 200 ppm acetone and 350 °C. The superior gas sensing performances of Ni-doped SnO2 nanoparticles loaded with graphene may be attributed to the large specific surface area of the composite structure, specifically the high interaction rate between acetone vapor and graphene-Ni-doped SnO2 nanoparticles interfaces and high electronic conductivity of graphene. Therefore, the 5 wt % graphene loaded 0.1 wt % Ni-doped SnO2 sensor is a promising candidate for fast, sensitive and selective detection of acetone. PMID:25602118

  11. Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers.

    PubMed

    Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong

    2016-01-14

    A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (∼1093 S m(-1)) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). PMID:26660032

  12. Economical and eco-friendly recycling of used dry batteries for synthesis of graphene oxide by sheer exfoliation in presence of SDS

    NASA Astrophysics Data System (ADS)

    Kochrekar, Sachin; Agharkar, Mahesh; Salgaonkar, Manjunath; Gharge, Mrunal; Hidouri, Slah; Azeez, Musibau A.

    2015-06-01

    Graphene is a two-dimensional form of graphite that has attracted great curiosity for its novel physical properties. A key challenge that has emerged is how to create large amounts of graphene at low cost. The purpose of this Paper is to explore a new method to exfoliate graphite extracted from used dry battery in a small scale blender; in presence of SDS surfactant to synthesize graphene oxide, which can be then reduced to graphene. Quantity of SDS required is extremely less (1/10th) of graphite, and it replaces several steps and chemicals such as KMnO4, H2O2, H2SO4 and NaNO3. In this paper, we present the new process and preliminary characterization of synthesized graphene oxide by Raman and UV-Vis absorbance spectroscopy and ATR-IR spectroscopy.

  13. Water-soluble polymer exfoliated graphene: as catalyst support and sensor.

    PubMed

    Wang, Haibo; Xia, Baoyu; Yan, Ya; Li, Nan; Wang, Jing-Yuan; Wang, Xin

    2013-05-01

    In this paper, we obtained various water-soluble polymer functionalized graphene in dimethyl sulfoxide under ultrasonication. The atomic force microscope analysis and control experiment shows the water-soluble polymer is the crucial part to help solvent molecules separate interlayer. Such polymer/graphene exhibits high conductivity and tunable surface property, as confirmed by the selected area electron diffraction and Raman and electrochemical impedance spectroscopy. As a result, a catalyst based on polyvinyl pyrrolidone (PVP)/graphene shows better methanol oxidation performance than that based on PVP/reduced graphene oxide. By changing to another polymer, poly(4-vinylpyridine)/graphene shows a stable and reversible response to pH, and demonstrates its potential for sensor application. PMID:23574310

  14. Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Shen, Tian; Cao, Helin; Jauregui, Luis A.; Wu, Wei; Yu, Qingkai; Newell, David; Chen, Yong P.

    2013-04-01

    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interest. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapor deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this paper, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapor deposition. We also discuss potential applications of such large-scale synthetic graphene.

  15. Application of oil-swollen surfactant gels as a growth medium for metal nanoparticle synthesis, and as an exfoliation medium for preparation of graphene.

    PubMed

    Upadhyay, Ravi Kant; Waghmare, Prashant R; Roy, Susanta Sinha

    2016-07-15

    Gel is an intermediate phase of solid and liquid, which exhibits properties of both, and this unique feature of gel has made it an excellent choice as a reaction medium for the nanomaterials synthesis. Herein, we report use of oil swollen surfactant gels as reaction medium and exfoliation medium, for the synthesis of metals (Au, Ag) nanoparticles and graphene, respectively. Confined growth of metals (Au and Ag) nanoparticles, has been achieved by exploring tween 80 based surfactant gel as a reaction medium. Au NPs prepared within tween 80 gel were found to be spherical with size ∼5nm, arranged in template micelles. Heating triggered the growth of Au nanoparticles and particles of various shapes including triangles, rods and pentagonal, were produced. Au and Ag containing tween 80 gels were found to be promising as catalysts for the nitrophenol reduction. Apart from separate synthesis of Au and Ag nanoparticles, bimetallic (Au-Ag) nanoparticles have also been synthesized by taking advantage of selective reducing property of tween 80. First time CTAB gel has been utilized as an exfoliation medium for the quick exfoliation of graphite into graphene sheets, eliminating the necessity of any external driving force such as sonication or heating, to reinforce exfoliation. PMID:27093455

  16. Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong

    2015-12-01

    A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07076g

  17. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    PubMed

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-01

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. PMID:26957045

  18. Mechanical Behavior of Graphene Nanomeshes

    NASA Astrophysics Data System (ADS)

    Chen, Mengxi; Hu, Lin; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Graphene nanomeshes (GNMs) are ordered, defect-engineered graphene nanostructures consisting of periodic arrays of nanopores in the graphene lattice with neck widths less than 10 nm. The electronic, transport, and mechanical properties of GNMs can be tuned by varying the structural, chemical, and architectural parameters of the nanomeshes, namely, their porosity, as well their pore lattice structure, pore morphology, and pore edge passivation. Here, we study the mechanical response of GNMs to uniaxial tensile straining and determine their mechanical properties based on molecular-dynamics simulations of dynamic deformation tests according to a reliable bond-order interatomic potential. We establish the dependences of the elastic modulus, fracture strain, ultimate tensile strength, and toughness on the nanomesh porosity and derive scaling laws for GNM modulus-density and strength-density relations. We also establish the dependence of the above properties on pore morphology, for GNMs with circular and elliptical pores over a range of aspect ratios, and on pore edge hydrogen passivation that causes elastic stiffening and strength reduction. The underlying mechanisms of crack initiation and propagation and nanomesh failure also are characterized.

  19. Synthesis of graphene

    NASA Astrophysics Data System (ADS)

    Bhuyan, Md. Sajibul Alam; Uddin, Md. Nizam; Islam, Md. Maksudul; Bipasha, Ferdaushi Alam; Hossain, Sayed Shafayat

    2016-02-01

    Graphene, a two-dimensional material of sp2 hybridization carbon atoms, has fascinated much attention in recent years owing to its extraordinary electronic, optical, magnetic, thermal, and mechanical properties as well as large specific surface area. For the tremendous application of graphene in nano-electronics, it is essential to fabricate high-quality graphene in large production. There are different methods of generating graphene. This review summarizes the exfoliation of graphene by mechanical, chemical and thermal reduction and chemical vapor deposition and mentions their advantages and disadvantages. This article also indicates recent advances in controllable synthesis of graphene, illuminates the problems, and prospects the future development in this field.

  20. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    PubMed

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results. PMID:26706531

  1. One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes

    PubMed Central

    Kuo, Na-Jung; Chen, Yu-Syuan; Wu, Chien-Wei; Huang, Chun-Yuan; Chan, Yang-Hsiang; Chen, I-Wen Peter

    2016-01-01

    Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm2, which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 104 accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 104 s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization. PMID:27452118

  2. One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes

    NASA Astrophysics Data System (ADS)

    Kuo, Na-Jung; Chen, Yu-Syuan; Wu, Chien-Wei; Huang, Chun-Yuan; Chan, Yang-Hsiang; Chen, I.-Wen Peter

    2016-07-01

    Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm2, which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 104 accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 104 s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.

  3. One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes.

    PubMed

    Kuo, Na-Jung; Chen, Yu-Syuan; Wu, Chien-Wei; Huang, Chun-Yuan; Chan, Yang-Hsiang; Chen, I-Wen Peter

    2016-01-01

    Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm(2), which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10(4) accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10(4) s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization. PMID:27452118

  4. Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence.

    PubMed

    Sarkar, Suprabhat; Gandla, Dayakar; Venkatesh, Yeduru; Bangal, Prakriti Ranjan; Ghosh, Sutapa; Yang, Yang; Misra, Sunil

    2016-08-21

    Facile synthesis of 2-10 nm-sized graphene quantum dots (GQDs) from graphite powder by organic solvent-assisted liquid exfoliation using a sonochemical method is reported in this study. Synthesized GQDs are well dispersed in organic solvents like ethyl acetoacetate (EAA), dimethyl formamide (DMF) and also in water. MALDI-TOF mass spectrometry reveals its selective mass fragmentation. Detailed characterizations by various techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) confirm the formation of disordered, functional GQDs. Density functional theory (DFT) calculation confirms HOMO-LUMO energy gap variation with changing size and functionalities. Photoluminescence (PL) properties of as-prepared GQDs were studied in detail. The ensemble studies of GQDs showed excellent photoluminescence properties comprising normal and upconverted fluorescence, delayed fluorescence and room-temperature phosphorescence. PL decay dynamics of GQDs has been explored using time-correlated single-photon technique (TCSPC) as well as femtosecond fluorescence upconversion technique. In vitro cytotoxicity study reveals its biocompatibility and high cell viability (>91%) even at high concentration (400 μg mL(-1)) of GQDs in Chinese Hamster Ovary (CHO) cells. PMID:27302411

  5. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jinkins, K.; Camacho, J.; Farina, L.; Wu, Y.

    2015-12-01

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  6. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  7. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    SciTech Connect

    Jinkins, K.; Farina, L.; Wu, Y.; Camacho, J.

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  8. Graphene Mechanics: Current Status and Perspectives.

    PubMed

    Galiotis, Costas; Frank, Otakar; Koukaras, Emmanuel N; Sfyris, Dimitris

    2015-01-01

    The mechanical properties of 2D materials such as monolayer graphene are of extreme importance for several potential applications. We summarize the experimental and theoretical results to date on mechanical loading of freely suspended or fully supported graphene. We assess the obtained axial properties of the material in tension and compression and comment on the methods used for deriving the various reported values. We also report on past and current efforts to define the elastic constants of graphene in a 3D representation. Current areas of research that are concerned with the effect of production method and/or the presence of defects upon the mechanical integrity of graphene are also covered. Finally, we examine extensively the work related to the effect of graphene deformation upon its electronic properties and the possibility of employing strained graphene in future electronic applications. PMID:25898069

  9. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications.

    PubMed

    Paredes, J I; Villar-Rodil, S

    2016-08-25

    Direct liquid-phase exfoliation of layered materials by means of ultrasound, shear forces or electrochemical intercalation holds enormous promise as a convenient, cost-effective approach to the mass production of two-dimensional (2D) materials, particularly in the form of colloidal suspensions of high quality and micrometer- and submicrometer-sized flakes. Of special relevance due to environmental and practical reasons is the production of 2D materials in aqueous medium, which generally requires the use of certain additives (surfactants and other types of dispersants) to assist in the exfoliation and colloidal stabilization processes. In this context, biomolecules have received, in recent years, increasing attention as dispersants for 2D materials, as they provide a number of advantages over more conventional, synthetic surfactants. Here, we review research progress in the use of biomolecules as exfoliating and dispersing agents for the production of 2D materials. Although most efforts in this area have focused on graphene, significant advances have also been reported with transition metal dichalcogenides (MoS2, WS2, etc.) or hexagonal boron nitride. Particular emphasis is placed on the specific merits of different types of biomolecules, including proteins and peptides, nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts, on their role as efficient colloidal dispersants of 2D materials, as well as on the potential applications that have been explored for such biomolecule-exfoliated materials. These applications are wide-ranging and encompass the fields of biomedicine (photothermal and photodynamic therapy, bioimaging, biosensing, etc.), energy storage (Li- and Na-ion batteries), catalysis (e.g., catalyst supports for the oxygen reduction reaction or electrocatalysts for the hydrogen evolution reaction), or composite materials. As an incipient area of research, a number of knowledge gaps, unresolved issues and novel future

  10. Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

    PubMed Central

    Richter, Nils; Convertino, Domenica; Coletti, Camilla; Balestro, Franck; Wernsdorfer, Wolfgang; Kläui, Mathias; Affronte, Marco

    2015-01-01

    Summary Graphene-based electrodes are very promising for molecular electronics and spintronics. Here we report a systematic characterization of the electroburning (EB) process, leading to the formation of nanometer-spaced gaps, on different types of few-layer graphene (namely mechanically exfoliated graphene on SiO2, graphene epitaxially grown on the C-face of SiC and turbostratic graphene discs deposited on SiO2) under air and vacuum conditions. The EB process is found to depend on both the graphene type and on the ambient conditions. For the mechanically exfoliated graphene, performing EB under vacuum leads to a higher yield of nanometer-gap formation than working in air. Conversely, for graphene on SiC the EB process is not successful under vacuum. Finally, the EB is possible with turbostratic graphene discs only after the creation of a constriction in the sample using lithographic patterning. PMID:25821711

  11. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    SciTech Connect

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong; Islam, Md Tariqul; Noveron, Juan C.; Ramabadran, Navaneet

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  12. 2 µm ultrafast fiber laser modelocked by mechanically exfoliated Sb2Te3

    NASA Astrophysics Data System (ADS)

    Tarka, Jan; Boguslawski, Jakub; Zybala, Rafał; Kowalczyk, Maciej; Sobon, Grzegorz; Sotor, Jaroslaw

    2016-03-01

    We demonstrate the usage of a saturable absorber material - antimony telluride (Sb2Te3) for efficient mode-locking of a Thulium-doped fiber laser. The Sb2Te3 layers were obtained by mechanical exfoliation and transferred onto the fiber ferrule. The all-fiber laser was capable of generating optical solitons with the full width at half-maximum of 4.5 nm centered at 1945 nm, with 39.5 MHz repetition rate and more than 60 dB signal to noise ratio. The pulse energy of the generated 890 fs pulses was at the level of 30 pJ. Our experiment showed that Sb2Te3 saturable absorbers are suitable for the operation in 2 μm bandwidth.

  13. Low interfacial contact resistance of Al-graphene composites via interface engineering

    NASA Astrophysics Data System (ADS)

    Hahm, Myung Gwan; Nam, Jaewook; Choi, Minseok; Park, Chi-Dong; Cho, Byungjin; Kazunori, Sanada; Ahm Kim, Yoong; Kim, Dong Young; Endo, Morinobu; Kim, Dong-Ho; Vajtai, Robert; Ajayan, Pulickel M.; Moo Song, Sung

    2015-05-01

    Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode.

  14. Metal-assisted exfoliation (MAE): green process for transferring graphene to flexible substrates and templating of sub-nanometer plasmonic gaps (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.

    2015-09-01

    This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.

  15. On the Mechanism of Hydrophilicity of Graphene.

    PubMed

    Hong, Guo; Han, Yang; Schutzius, Thomas M; Wang, Yuming; Pan, Ying; Hu, Ming; Jie, Jiansheng; Sharma, Chander S; Müller, Ulrich; Poulikakos, Dimos

    2016-07-13

    It is generally accepted that the hydrophilic property of graphene can be affected by the underlying substrate. However, the role of intrinsic vs substrate contributions and the related mechanisms are vividly debated. Here, we show that the intrinsic hydrophilicity of graphene can be intimately connected to the position of its Fermi level, which affects the interaction between graphene and water molecules. The underlying substrate, or dopants, can tune hydrophilicity by modulating the Fermi level of graphene. By shifting the Fermi level of graphene away from its Dirac point, via either chemical or electrical voltage doping, we show enhanced hydrophilicity with experiments and first principle simulations. Increased vapor condensation on graphene, induced by a simple shifting of its Fermi level, exemplifies applications in the area of interfacial transport phenomena. PMID:27248183

  16. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  17. Fabricating graphene devices from graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Yagi, Ryuta; Shimomura, Midori; Tahara, Fumiya; Fukada, Seiya

    2013-03-01

    We report a method of making few-layer graphene flakes by mechanically exfoliating SbCl5-graphite intercalation compounds (GICS). The number of exfoliated graphene flakes had a peculiar distribution relevant to the stage structure of GICs. The carrier doping of the few-layer graphene flakes was about two orders of magnitude smaller than that expected from the stoichiometry of the GICs. The measured electric mobility was comparable to that made from pristine graphite. The EPMA measurement showed that inhomogeneous distribution of dopant near the surface of GIC was responsible for obtaining the virtually undoped graphene. Deintercalation of dopant would expand interlayer distance of each graphene layer, and thereby layer-number of exfoliated graphene depended stage number of GIC.

  18. Mechanical Properties and Failure Mechanisms in Polycrystalline Graphene

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph; Perriot, Romain; Oleynik, Ivan

    Large-scale growth of graphene using chemical vapor deposition produces polycrystalline material containing grain boundaries. Recent experiments demonstrate that polycrystalline graphene is nearly as strong as pristine. In this work, the mechanical properties of bi-crystal and polycrystalline graphene samples are investigated by simulating nano-indentation of a circular membrane using classical molecular dynamics and a novel Screened Environment Dependent Reactive Bond Order (SED-REBO) potential. The failure mechanisms and crack propagation in graphene samples containing grain boundaries are also discussed.

  19. Formation mechanisms and near-surface stress orientations derived from fractographic markings on exfoliation joints in the Alps

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Loew, S.; Bahat, D.

    2013-12-01

    1 orientations to topographic perturbation (caused by glacial valley erosion) of a more uniform far-field stress field. A portion of young, shallow exfoliation fractures of batch 2 exhibits numerous (up to about 50) arrest marks and plumose structure shapes (with plumose axes pitch angles >45°) that indicate primarily downwards directed fracture propagation. These provide evidence for a distinctly different fracture mechanism. Figure 1. Sketch of fractographic features frequently encountered on exfoliation fractures (upper Aar valley, Swiss Alps).

  20. The mechanism of caesium intercalation of graphene

    NASA Astrophysics Data System (ADS)

    Petrović, M.; Šrut Rakić, I.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazić, P.; Pletikosić, I.; Pan, Z.-H.; Milun, M.; Pervan, P.; Atodiresei, N.; Brako, R.; Šokčević, D.; Valla, T.; Michely, T.; Kralj, M.

    2013-11-01

    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers; however, the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also have a role for intercalation of layered materials.

  1. The mechanism of caesium intercalation of graphene.

    PubMed

    Petrović, M; Šrut Rakić, I; Runte, S; Busse, C; Sadowski, J T; Lazić, P; Pletikosić, I; Pan, Z-H; Milun, M; Pervan, P; Atodiresei, N; Brako, R; Šokčević, D; Valla, T; Michely, T; Kralj, M

    2013-01-01

    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers; however, the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also have a role for intercalation of layered materials. PMID:24212475

  2. Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method.

    PubMed

    Huang, Liping; Wu, Bin; Chen, Jianyi; Xue, Yunzhou; Geng, Dechao; Guo, Yunlong; Yu, Gui; Liu, Yunqi

    2013-04-22

    Flake graphite is used as carbon source and ZnO or ZnS as catalyst in the synthesis of high-quality graphene sheets. A catalytic growth mechanism for cathode-part graphene synthesis in the arc-discharge apparatus and an exfoliation mechanism for wall-part graphene synthesis are introduced. N-doped cathode-part graphene and undoped wall-part graphene are formed simultaneously. PMID:23463696

  3. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  4. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Kang, Hongyan; Jiao, Lifang; Chen, Chengcheng; Cao, Kangzhe; Wang, Yijing; Yuan, Huatang

    2015-01-01

    Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling.Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is

  5. Understanding Mechanical Response of Elastomeric Graphene Networks.

    PubMed

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  6. Understanding Mechanical Response of Elastomeric Graphene Networks

    NASA Astrophysics Data System (ADS)

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-09-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls.

  7. Understanding Mechanical Response of Elastomeric Graphene Networks

    PubMed Central

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  8. Mechanical properties of monolayer graphene oxide.

    PubMed

    Suk, Ji Won; Piner, Richard D; An, Jinho; Ruoff, Rodney S

    2010-11-23

    Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes. PMID:20942443

  9. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.

    PubMed

    Ramazani, Soghra; Karimi, Mohammad

    2015-11-01

    A number of studies have demonstrated that the mechanical properties of electrospun polymeric nanofibrous scaffolds are enhanced with the incorporation of graphene and its derivatives, thus developing their applications in hard tissue engineering. However, our understanding of the relationship between the microstructure and properties of these fibrous scaffolds and how they are influenced by graphene oxide (GO) and reduced graphene oxide (RGO) loading is much more limited. Thus, in this paper, poly(ε-caprolactone) (PCL)/GO and RGO nanocomposite nanofibers containing 0, 0.1, 0.5 and 1wt.% GO and RGO were prepared using an electrospinning technique. With the addition of 0.1wt.% of GO and RGO nanosheets in PCL, the tensile strength of PCL scaffolds increased over ~160 and 304% respectively and elastic modulus increased over 103 and 163% due to the good dispersion of the nanosheets and their interaction with the molecular chains of PCL. These were supported by the parallel increase in relaxation time and molecular orientation of PCL chains at the presence of nanosheets with a loading of 0.1wt.%. The enhancement effect of the nanosheets was weakened with an increase in GO and RGO loading up to 1wt.% in which it is connected to a partial exfoliation of the nanosheets. PMID:26249597

  10. The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes

    PubMed Central

    2012-01-01

    We report the formation and characterization of graphene dispersions in two organosilanes, 3-glycidoxypropyl trimethoxysilane (GPTMS) and phenyl triethoxysilane (PhTES) as new reactive solvents. The preparation method was mild and easy and does not produce any chemical modification. The dispersions, which exhibit the Tyndall effect, were characterized by TEM and Raman spectroscopy to confirm the presence of few-layer graphene. Concentrations as high as 0.66 and 8.00 mg/ml were found for PhTES and GPTMS, respectively. The latter is one of the highest values reported for a dispersion of graphene obtained by any method. This finding paves the way for the direct synthesis of polymer nanofiller-containing composites consisting of graphene and reactive silanes to be used in sol–gel synthesis, without any need for solvent removal, thus preventing graphene reaggregation to form graphite flakes. PMID:23237423

  11. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2 , WS2 , and WSe2 ) is lower than that of graphene and its analogues.

    PubMed

    Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin

    2014-07-28

    Studies involving transition-metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2 , WS2 , and WSe2 , and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose-dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL(-1) ; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in-depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial-induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST-8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are

  12. Graphene mechanical oscillators with tunable frequency.

    PubMed

    Chen, Changyao; Lee, Sunwoo; Deshpande, Vikram V; Lee, Gwan-Hyoung; Lekas, Michael; Shepard, Kenneth; Hone, James

    2013-12-01

    Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications including timing references and frequency modulators. However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here, we report oscillators built on micrometre-size, atomically thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. Self-sustaining mechanical motion is generated and transduced at room temperature in these oscillators using simple electrical circuitry. The prototype graphene voltage-controlled oscillators exhibit frequency stability and a modulation bandwidth sufficient for the modulation of radiofrequency carrier signals. As a demonstration, we use a graphene oscillator as the active element for frequency-modulated signal generation and achieve efficient audio signal transmission. PMID:24240431

  13. Graphene mechanical oscillators with tunable frequency

    NASA Astrophysics Data System (ADS)

    Chen, Changyao; Lee, Sunwoo; Deshpande, Vikram V.; Lee, Gwan-Hyoung; Lekas, Michael; Shepard, Kenneth; Hone, James

    2013-12-01

    Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications including timing references and frequency modulators. However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here, we report oscillators built on micrometre-size, atomically thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. Self-sustaining mechanical motion is generated and transduced at room temperature in these oscillators using simple electrical circuitry. The prototype graphene voltage-controlled oscillators exhibit frequency stability and a modulation bandwidth sufficient for the modulation of radiofrequency carrier signals. As a demonstration, we use a graphene oscillator as the active element for frequency-modulated signal generation and achieve efficient audio signal transmission.

  14. Multifunctional polymeric nanocomposites fabricated by incorporation of exfoliated graphene nanoplatelets and their application in bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xian

    The focus of this research is to investigate the potential of using exfoliated graphene nanoplatelets, GNP, as the multifunctional nano-reinforcement in fabricating polymer/GNP nanocomposites and then explore their prospective applications in bipolar plates for polymer electrolyte membrane (PEM) fuel cells. Firstly, HDPE (high density polyethylene)/GNP nanocomposites were fabricated using the conventional compounding method of melt-extrusion followed by injection molding. The mechanical properties, crystallization behaviors, thermal stability, thermal conductivity, and electrical conductivity of the resulting HDPE/GNP nanocomposites were evaluated as a function of GNP concentration. Results showed that HDPE/GNP nanocomposites exhibit equivalent flexural modulus and strength to HDPE composites filled with other commercial reinforcements but they have superior impact strength. By investigating the crystallization behavior of HDPE/GNP nanocomposites, it was found that GNP is a good nucleating agent at low loading levels and as a result can significantly increase crystallization temperature and crystallinity of HDPE. At high GNP loadings, however, the close proximity of GNP particles retards the crystallization process. The thermal stability and thermal conductivity of HDPE/GNP nanocomposites were significantly enhanced due to the excellent thermal properties of GNP. Meanwhile, results indicated that the percolation threshold of these nanocomposites prepared by the conventional melt-extrusion and injection molding is relatively high at around 10--15 vol% GNP loading. To enhance the electrical conductivity of HDPE/GNP nanocomposites, two special processing methods named solid state ball milling (SSBM) and solid state shear pulverization (SSSP) were studied. The mechanism by which SSBM and SSSP are capable of producing lower percolation or higher electrical conductivity is to coat the polymer surface by GNP platelets which facilitate the formation of conductive networks

  15. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  16. In-Situ Measurements of Graphene Mechanics During Annealing

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; de Alba, Roberto; Sebastian, Abhilash; Parpia, Jeevak

    Graphene shows great potential as a material for a new generation of mechanical nanodevices. However, current methodologies used for fabricating graphene structures involve polymer resists for transfer and patterning, which degrades mechanical performance. To improve surface quality, high current or high temperature annealing of graphene is commonly employed. Previous studies of graphene mechanics have focused on performance after annealing or temperature-dependent behavior from 4K-300K. Here we present real-time, in-situ measurements of graphene mechanical resonance during high temperature annealing from 300K-600K. Upon heating, reversible changes in mechanical frequency are indicative of graphene thermal contraction. Discontinuous and irreversible changes are also seen, corresponding to graphene slipping and mass desorption. Both reversible and irreversible changes in quality factor are also observed. Characterizing the effects of annealing on the structural properties of graphene will enable more precise engineering for particular applications, such as mass sensing.

  17. State-of-the-art graphene high-frequency electronics.

    PubMed

    Wu, Yanqing; Jenkins, Keith A; Valdes-Garcia, Alberto; Farmer, Damon B; Zhu, Yu; Bol, Ageeth A; Dimitrakopoulos, Christos; Zhu, Wenjuan; Xia, Fengnian; Avouris, Phaedon; Lin, Yu-Ming

    2012-06-13

    High-performance graphene transistors for radio frequency applications have received much attention and significant progress has been achieved. However, devices based on large-area synthetic graphene, which have direct technological relevance, are still typically outperformed by those based on mechanically exfoliated graphene. Here, we report devices with intrinsic cutoff frequency above 300 GHz, based on both wafer-scale CVD grown graphene and epitaxial graphene on SiC, thus surpassing previous records on any graphene material. We also demonstrate devices with optimized architecture exhibiting voltage and power gains reaching 20 dB and a wafer-scale integrated graphene amplifier circuit with voltage amplification. PMID:22563820

  18. Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene

    SciTech Connect

    Park, Yeonggu; Choi, Jin Sik; Choi, Taekjib; Lee, Mi Jung; Jia, Quanxi; Park, Minwoo; Lee, Hoonkyung; Park, Bae Ho

    2015-03-24

    Ripples in graphene are extensively investigated because they ensure the mechanical stability of two-dimensional graphene and affect its electronic properties. They arise from spontaneous symmetry breaking and are usually manifested in the form of domains with long-range order. It is expected that topological defects accompany a material exhibiting long-range order, whose functionality depends on characteristics of domains and topological defects. However, there remains a lack of understanding regarding ripple domains and their topological defects formed on monolayer graphene. Here we explore configuration of ripple domains and their topological defects in exfoliated monolayer graphenes on SiO₂/Si substrates using transverse shear microscope. We observe three-color domains with three different ripple directions, which meet at a core. Furthermore, the closed domain is surrounded by an even number of cores connected together by domain boundaries, similar to topological vortex and anti-vortex pairs. In addition, we have found that axisymmetric three-color domains can be induced around nanoparticles underneath the graphene. This fascinating configuration of ripple domains may result from the intrinsic hexagonal symmetry of two-dimensional graphene, which is supported by theoretical simulation using molecular dynamics. Our findings are expected to play a key role in understanding of ripple physics in graphene and other two-dimensional materials.

  19. Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene

    DOE PAGESBeta

    Park, Yeonggu; Choi, Jin Sik; Choi, Taekjib; Lee, Mi Jung; Jia, Quanxi; Park, Minwoo; Lee, Hoonkyung; Park, Bae Ho

    2015-03-24

    Ripples in graphene are extensively investigated because they ensure the mechanical stability of two-dimensional graphene and affect its electronic properties. They arise from spontaneous symmetry breaking and are usually manifested in the form of domains with long-range order. It is expected that topological defects accompany a material exhibiting long-range order, whose functionality depends on characteristics of domains and topological defects. However, there remains a lack of understanding regarding ripple domains and their topological defects formed on monolayer graphene. Here we explore configuration of ripple domains and their topological defects in exfoliated monolayer graphenes on SiO₂/Si substrates using transverse shear microscope.more » We observe three-color domains with three different ripple directions, which meet at a core. Furthermore, the closed domain is surrounded by an even number of cores connected together by domain boundaries, similar to topological vortex and anti-vortex pairs. In addition, we have found that axisymmetric three-color domains can be induced around nanoparticles underneath the graphene. This fascinating configuration of ripple domains may result from the intrinsic hexagonal symmetry of two-dimensional graphene, which is supported by theoretical simulation using molecular dynamics. Our findings are expected to play a key role in understanding of ripple physics in graphene and other two-dimensional materials.« less

  20. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  1. Biomedical applications of graphene and graphene oxide.

    PubMed

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  2. Growth mechanism of graphene on graphene films grown by chemical vapor deposition.

    PubMed

    Kang, Cheong; Jung, Da Hee; Lee, Jin Seok

    2015-03-01

    We report an approach for the synthesis of mono- or bilayer graphene films by atmospheric-pressure chemical vapor deposition that can achieve a low defect density through control over the growth time. Different heating ramp rates were found to lead to variation in the smoothness and grain size of the Cu foil substrate, which directly influenced the density of the graphene domains. The rough Cu surface induced by rapid heating creates a high density of graphene domains in the initial stage, ultimately resulting in a graphene film with a high defect density due to an increased overlap between domains. Conversely, a slow heating rate resulted in a smooth and flat Cu surface, thereby lowering the density of the initial graphene domains and ensuring a uniform monolayer film. From this, we demonstrate that the growth mechanism of graphene on existing graphene films is dependent on the density of the initial graphene domains, which is affected by the heating ramp rate. PMID:25655906

  3. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-01

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast, the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. These findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.

  4. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    SciTech Connect

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast, the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.

  5. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    DOE PAGESBeta

    Chen, Wei; Cui, Ping; Zhu, Wenguang; Kaxiras, Efthimios; Gao, Yanfei; Zhang, Zhenyu

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast,more » the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.« less

  6. Mechanical Control of Graphene on Engineered Pyramidal Strain Arrays.

    PubMed

    Gill, Stephen T; Hinnefeld, John H; Zhu, Shuze; Swanson, William J; Li, Teng; Mason, Nadya

    2015-06-23

    Strain can tune desirable electronic behavior in graphene, but there has been limited progress in controlling strain in graphene devices. In this paper, we study the mechanical response of graphene on substrates patterned with arrays of mesoscale pyramids. Using atomic force microscopy, we demonstrate that the morphology of graphene can be controlled from conformal to suspended depending on the arrangement of pyramids and the aspect ratio of the array. Nonuniform strains in graphene suspended across pyramids are revealed by Raman spectroscopy and supported by atomistic modeling, which also indicates strong pseudomagnetic fields in the graphene. Our results suggest that incorporating mesoscale pyramids in graphene devices is a viable route to achieving strain-engineering of graphene. PMID:25970764

  7. Highly thermally conductive and mechanically strong graphene fibers.

    PubMed

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-01

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. PMID:26339027

  8. Highly thermally conductive and mechanically strong graphene fibers

    NASA Astrophysics Data System (ADS)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-01

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals.

  9. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  10. Ultraflexible In-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene.

    PubMed

    Liu, Zhaoyang; Wu, Zhong-Shuai; Yang, Sheng; Dong, Renhao; Feng, Xinliang; Müllen, Klaus

    2016-03-01

    A novel direct printing approach for fabrication of in-plane micro-supercapacitors (MSCs) is demonstrated. Solution-processed graphene/conductive-polymer hybrid inks are utilized. The fabricated MSCs on paper substrates offer significant areal capacitance and excellent rate capability. An ultrathin MSC on a poly(ethylene terephthalate) (PET) substrate (2.5 μm thick) exhibits "ultraflexiblity," making it suitable for next-generation flexible microelectrochemical energy-storage devices. PMID:26784382

  11. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-01

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg-1 or 1.9 Wh L-1 at a maximum power density of 3.2 kW kg-1 or 0.7 kW L-1 these performances were based on the mass or packing density of the electrode materials.

  12. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes

    PubMed Central

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-01

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all–solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg−1 or 1.9 Wh L−1 at a maximum power density of 3.2 kW kg−1 or 0.7 kW L−1; these performances were based on the mass or packing density of the electrode materials. PMID:26813878

  13. Electrochemical exfoliation of graphite in quaternary ammonium-based deep eutectic solvents: a route for the mass production of graphane.

    PubMed

    Abdelkader, Amr M; Patten, Hollie V; Li, Zheling; Chen, Yiqiang; Kinloch, Ian A

    2015-07-14

    We demonstrate a facile and scalable electrochemical approach to exfoliate graphite, which permits in situ hydrogenation of the resultant graphene via a solvated NR(4+) graphite compound in quaternary ammonium-based deep eutectic solvents. Spectroscopic studies reveal the presence of sp(3) C-H bonds in the hydrogenated graphene. The resulting materials consist of micrometre-sized and predominantly monolayer to few layers thick hydrogenated graphenic flakes. A large band gap (∼4 eV) further establishes the high level of hydrogenation. It is also possible to tune the band gap introduced to the graphene by controlling the level of hydrogenation. The mechanism of the exfoliation and hydrogenation is also discussed. PMID:26074262

  14. Induced superconductivity in graphene

    NASA Astrophysics Data System (ADS)

    Heersche, Hubert B.; Jarillo-Herrero, Pablo; Oostinga, Jeroen B.; Vandersypen, Lieven M. K.; Morpurgo, Alberto F.

    2007-07-01

    Graphene layers, prepared by mechanical exfoliation, were contacted by superconducting electrodes consisting of a titanium-aluminium bilayer. Quantum hall measurements in the normal state confirmed the single layer nature of the graphene samples. Proximity induced supercurrents were observed in all samples, below 1 K. Using a backgate, the Fermi energy could be swept from valence to conduction band via the Charge neutrality point, demonstrating supercurrents carried by holes and electrons, respectively. Interestingly, a finite supercurrent was also observed at the charge neutrality (or Dirac) point, where the density of carrier states vanishes. Our results demonstrate phase coherence in graphene.

  15. Loss-of-Function Mutations in SERPINB8 Linked to Exfoliative Ichthyosis with Impaired Mechanical Stability of Intercellular Adhesions.

    PubMed

    Pigors, Manuela; Sarig, Ofer; Heinz, Lisa; Plagnol, Vincent; Fischer, Judith; Mohamad, Janan; Malchin, Natalia; Rajpopat, Shefali; Kharfi, Monia; Lestringant, Giles G; Sprecher, Eli; Kelsell, David P; Blaydon, Diana C

    2016-08-01

    SERPINS comprise a large and functionally diverse family of serine protease inhibitors. Here, we report three unrelated families with loss-of-function mutations in SERPINB8 in association with an autosomal-recessive form of exfoliative ichthyosis. Whole-exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA (p.Lys316Serfs(∗)90), and a nonsense mutation, c.850C>T (p.Arg284(∗)), respectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA; nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex. Using Sanger sequencing, a homozygous missense mutation, c.2T>C (p.Met1?), predicted to result in an N-terminal truncated protein, was identified in an additional family from UAE. Histological analysis of a skin biopsy from an individual homozygous for the variant p.Arg284(∗) showed disadhesion of keratinocytes in the lower epidermal layers plus decreased SERPINB8 levels compared to control. In vitro studies utilizing siRNA-mediated knockdown of SERPINB8 in keratinocytes demonstrated that in the absence of the protein, there is a cell-cell adhesion defect, particularly when cells are subjected to mechanical stress. In addition, immunoblotting and immunostaining revealed an upregulation of desmosomal proteins. In conclusion, we report mutations in SERPINB8 that are associated with exfoliative ichthyosis and provide evidence that SERPINB8 contributes to the mechanical stability of intercellular adhesions in the epidermis. PMID:27476651

  16. Manipulation of Dirac Cones in Mechanical Graphene

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-12-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases.

  17. Manipulation of Dirac Cones in Mechanical Graphene.

    PubMed

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton's law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the "Chern number" occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton's law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  18. Manipulation of Dirac Cones in Mechanical Graphene

    PubMed Central

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  19. Sorption mechanisms of metals to graphene oxide

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.; Na, Chongzheng; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.

  20. Effect of graphene modification on thermo-mechanical and microwave absorption properties of polystyrene/graphene nanocomposites.

    PubMed

    Hatui, Goutam; Das, Chapal Kumar

    2012-10-01

    In the present study the effect of graphene percentage and graphene modification on the microwave absorption properties of the polystyrene/graphene nanocomposites was studied in detail. Acid modified graphene was prepared by the mixed acid route. Polystyrene/graphene nanocomposites with various percentages of graphene and modified graphene were prepared by solution mixing process. The dispersion of graphene sheets in the polystyrene matrix was analyzed by TEM and SEM and found to be uniform for the 1%, 2 wt% of graphene and 1 wt% of modified graphene loading. Microwave absorption of modified graphene containing nanocomposite was found to be superior among the nanocomposites. Incorporation of 1 wt% of ferrite particles enhanced the microwave absorption of the nanocomposite above all the nanocomposites, in the whole range of X-band, due to the effective cancellation of both electrical and magnetic components of the microwave. Incorporation of graphene enhanced the thermal and mechanical properties of the nanocomposites. PMID:23421175

  1. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide-Co3O4 nanocomposite.

    PubMed

    Ensafi, Ali A; Jafari-Asl, M; Rezaei, B

    2013-01-15

    Electrochemical detection of H(2)O(2) was investigated on a Nafion/exfoliated graphene oxide/Co(3)O(4) nanocomposite (Nafion/EGO/Co(3)O(4)) coated glassy carbon electrode. The morphological characterization was examined by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The modified electrode showed well defined and stable redox couples signal in both alkaline and natural aqueous solutions with excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of the modified electrode to H(2)O(2) was examined using amperometry (at 0.76 V vs. Ag/AgCl reference electrode) in a phosphate buffer solution (pH 7.4). The detection limit was 0.3 μmol L(-1) with a linearity of up to four orders of magnitude and a sensitivity of 560 μA mmol(-1)Lcm(-2). The response time of the electrode to achieve 95% of the steady-state current was recorded at 4s. The ability of the sensor for routine analyses was demonstrated by the detection of H(2)O(2) presents in milk samples with appreciable recovery values. In addition, the Nafion/EGO/Co(3)O(4)-GCE showed good selectivity for H(2)O(2) detection in the presence of ascorbic acid, uric acid, and glucose. The attractive analytical performances such as remarkable catalytic activity, good reproducibility, long term stability, and facile preparation method made this novel nanocomposite electrode promising for the development of effective H(2)O(2) sensor. PMID:23200394

  2. Spin diffusion and non-local spin-valve effect in an exfoliated multilayer graphene with a Co electrode

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho

    2016-08-01

    We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, {τ }s, obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence ∼ {T}-0.065 while the spin-diffusion constant D decreases. At room temperature, {τ }s exceeds 100 ps and the spin-diffusion length, {λ }s, is ∼2 μm. The temperature dependence of {λ }s is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices.

  3. Spin diffusion and non-local spin-valve effect in an exfoliated multilayer graphene with a Co electrode.

    PubMed

    Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho

    2016-08-19

    We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, [Formula: see text], obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence [Formula: see text] while the spin-diffusion constant D decreases. At room temperature, [Formula: see text] exceeds 100 ps and the spin-diffusion length, [Formula: see text], is ∼2 μm. The temperature dependence of [Formula: see text] is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices. PMID:27378597

  4. Carbon nanosheet-titania nanocrystal composites from reassembling of exfoliated graphene oxide layers with colloidal titania nanoparticles

    SciTech Connect

    Liu Yongjun; Aizawa, Mami; Peng Wenqing; Wang Zhengming; Hirotsu, Takahiro

    2013-01-15

    Nanoporous composites of carbon nanosheets (CNS) and titania nanoparticles (NPs) were synthesized by reassembling of delaminated graphite oxide (GO) layers with titania clear sol (TCS), and their structural and porous properties were examined by various physico-chemical methods such as XRD, TG/DTA, FT-IR, Raman, FE-SEM/TEM, and low temperature N{sub 2} adsorption. It was found that the facile approach, which utilizes the electrostatic attraction between the negatively charged GO layers and the positively charged TCS particles, leads to a well composed CNS and ultrafine TiO{sub 2} NPs material whose titania amount reaches up to 71 wt%. The titania phase in these composite materials is mainly anatase, which is resistible against high temperature calcination, but also contains a little amount of rutile and brookite depending on synthesis condition. The porosity of the composite is improved and partially affected by the size distributions of TiO{sub 2} NPs. The unique structure, better porosity, and compatible surface affinity of these composites bring about an adsorption concentration-promoted photocatalytic effects toward organic dyes by successfully combining both properties of CNS and titania NPs. - Graphical Abstract: Carbon nanosheet-titania nanocrystal composites can be synthesized by a facile delamination-reassembling method from graphene oxide and colloidal titania. Highlights: Black-Right-Pointing-Pointer A facile delamination-reassembling method for graphene oxide-titania nanocomposite. Black-Right-Pointing-Pointer A nanoporous composite containing mixed phase titania nanocrystals. Black-Right-Pointing-Pointer Partition effect of carbon nanosheets preventing TiO{sub 2} nanoparticles from aggregating. Black-Right-Pointing-Pointer Adsorption concentration-promoted photocatalysis.

  5. Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    2010-03-01

    Graphite has attracted large attention as a reinforcement for polymers due to its ability to modify electrical conductivity, mechanical and gas barrier properties of host polymers and its potentially lower cost than carbon nanotubes. If graphite can be exfoliated into atomically thin graphene sheets, it is possible to achieve the highest property enhancements at the lowest loading. However, small spacing and strong van der Waals forces between graphene layers make exfoliation of graphite via conventional composite manufacturing strategies challenging. Recently, two different approaches to obtain exfoliated graphite prior to blending were reported: thermal treatment (Schniepp et al., JACS 2006) and chemical modification (Stankovich et al., J Mat Chem 2006). Both start from graphite oxide. We will describe and evaluate these exfoliation approaches and the methods used to produce graphene reinforced thermoplastics, particularly polyester, polycarbonate and polyurethane nanocomposites. Three different dispersion methods - melt blending, solution mixing and in-situ polymerization -- are compared. Characterization of dispersion quality is illustrated with TEM, rheology and in electrical conductivity, tensile modulus and gas barrier property improvement.

  6. Mechanically Robust Polymer-Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher

    2015-03-01

    Graphene has been intensely studied for the past several years due to its many attractive properties. Graphene oxide (GO) aerogels are particularly interesting due to their light weight and excellent performance in various applications, such as environmental remediation, super-hydrophobic and super-oleophilic materials, energy storage, etc. However, GO aerogels are generally weak and delicate which complicates their handling and potentially limits their application outside the research lab. The focus of this work is to synthesize mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their low density. To overcome this challenge, we found that by intermixing a small amount of readily available and thermally crosslinkable polymer can enhance the mechanical properties without disrupting other characteristic intrinsic properties of the aerogel itself. This method is a simple straight-forward procedure that does not include any tedious chemical reactions or harsh chemicals. Furthermore, we will demonstrate the performance of these materials as a super-absorbent and pressure sensor.

  7. Binding mechanisms of molecular oxygen and moisture to graphene

    NASA Astrophysics Data System (ADS)

    Yang, Yinxiao; Murali, Raghu

    2011-02-01

    We report on the binding mechanisms of oxygen and water to graphene by comparing the doping of graphene in a dry O2 environment versus in ambient. It is seen that dry oxygen dopes graphene from the basal plane while the ambient dopes graphene from the edges or from the substrate in the vicinity of the edge. Upon vacuum annealing, doping is fully reversible in the former case and only partially reversible in the latter case. We observe a thickness-dependent doping as a result of the difference in host sites for doping (basal plane versus edge). Finally, hysteresis is shown to be triggered even in dry oxygen.

  8. Mechanically and optically controlled graphene valley filter

    SciTech Connect

    Qi, Fenghua; Jin, Guojun

    2014-05-07

    We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

  9. Fabrication of Boron Nitride Nanosheets by Exfoliation.

    PubMed

    Wang, Zifeng; Tang, Zijie; Xue, Qi; Huang, Yan; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Jiang, Hongbo; Fu, Chenxi; Zhi, Chunyi

    2016-06-01

    Nanomaterials with layered structures, with their intriguing properties, are of great research interest nowadays. As one of the primary two-dimensional nanomaterials, the hexagonal boron nitride nanosheet (BNNS, also called white graphene), which is an analogue of graphene, possesses various attractive properties, such as high intrinsic thermal conductivity, excellent chemical and thermal stability, and electrical insulation properties. After being discovered, it has been one of the most intensively studied two-dimensional non-carbon nanomaterials and has been applied in a wide range of applications. To support the exploration of applications of BNNSs, exfoliation, as one of the most promising approaches to realize large-scale production of BNNSs, has been intensively investigated. In this review, methods to yield BNNSs by exfoliation will be summarized and compared with other potential fabrication methods of BNNSs. In addition, the future prospects of the exfoliation of h-BN will also be discussed. PMID:27062213

  10. Enhanced mechanical properties of nanocomposites at low graphene content.

    PubMed

    Rafiee, Mohammad A; Rafiee, Javad; Wang, Zhou; Song, Huaihe; Yu, Zhong-Zhen; Koratkar, Nikhil

    2009-12-22

    In this study, the mechanical properties of epoxy nanocomposites with graphene platelets, single-walled carbon nanotubes, and multi-walled carbon nanotube additives were compared at a nanofiller weight fraction of 0.1 +/- 0.002%. The mechanical properties measured were the Young's modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material's resistance to fatigue crack propagation. The results indicate that graphene platelets significantly out-perform carbon nanotube additives. The Young's modulus of the graphene nanocomposite was approximately 31% greater than the pristine epoxy as compared to approximately 3% increase for single-walled carbon nanotubes. The tensile strength of the baseline epoxy was enhanced by approximately 40% with graphene platelets compared to approximately 14% improvement for multi-walled carbon nanotubes. The mode I fracture toughness of the nanocomposite with graphene platelets showed approximately 53% increase over the epoxy compared to approximately 20% improvement for multi-walled carbon nanotubes. The fatigue resistance results also showed significantly different trends. While the fatigue suppression response of nanotube/epoxy composites degrades dramatically as the stress intensity factor amplitude is increased, the reverse effect is seen for graphene-based nanocomposites. The superiority of graphene platelets over carbon nanotubes in terms of mechanical properties enhancement may be related to their high specific surface area, enhanced nanofiller-matrix adhesion/interlocking arising from their wrinkled (rough) surface, as well as the two-dimensional (planar) geometry of graphene platelets. PMID:19957928

  11. Temperature-dependent mechanics in suspended graphene systems

    NASA Astrophysics Data System (ADS)

    Storch, Isaac Robert

    Graphene is an atomically thin material with unique electrical, optical, and mechanical properties. In this thesis, we explore some of the interesting temperature-dependent mechanics of graphene membranes. We start by presenting the typical mechanical theory used by experimentalists to model a suspended graphene membrane in the presence of an electrostatic force, and we expand it to account for various effects, such as slack, capacitive softening, and dynamic changes in tension. We also perform finite element analysis using COMSOL Multiphysics software and compare the results with the analytic solution. Then, we show how to use the transfer matrix technique to model graphene optically as an infinitesimal conducting boundary. We solve for the reflectance of a graphene sheet parallel to a perfect mirror, which is important for measurements using optical detection. Next, we summarize the first measurement of photothermal optomechanics in graphene resonators, demonstrate both self-oscillation and cooling, and develop a theory to predict the optomechanical spring constant induced by photothermal forces. Finally, we develop an optical technique for sensing the static deflection of a graphene membrane and use it to measure the temperature dependence of the Young's modulus of graphene for the first time. We find that the room temperature modulus is much softer than expected from thermal rippling theories, but it stiffens significantly at low temperature.

  12. Low interfacial contact resistance of Al-graphene composites via interface engineering.

    PubMed

    Hahm, Myung Gwan; Nam, Jaewook; Choi, Minseok; Park, Chi-Dong; Cho, Byungjin; Kazunori, Sanada; Kim, Yoong Ahm; Kim, Dong Young; Endo, Morinobu; Kim, Dong-Ho; Vajtai, Robert; Ajayan, Pulickel M; Song, Sung Moo

    2015-05-29

    Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode. PMID:25944839

  13. Graphene NanoElectroMechanical Resonators and Oscillators

    NASA Astrophysics Data System (ADS)

    Chen, Changyao

    Made of only one sheet of carbon atoms, graphene is the thinnest yet strongest material ever exist. Since its discovery in 2004, graphene has attracted tremendous research effort worldwide. Guaranteed by the superior electrical and excellent mechanical properties, graphene is the ideal building block for NanoElectroMechanical Systems (NEMS). In the first parts of the thesis, I will discuss the fabrications and measurements of typical graphene NEMS resonators, including doubly clamped and fully clamped graphene mechanical resonators. I have developed a electrical readout technique by using graphene as frequency mixer, demonstrated resonant frequencies in range from 30 to 200 MHz. Furthermore, I developed the advanced fabrications to achieve local gate structure, which led to the real-time resonant frequency detection under resonant channel transistor (RCT) scheme. Such real-time detection improve the measurement speed by 2 orders of magnitude compared to frequency mixing technique, and is critical for practical applications. Finally, I employed active balanced bridge technique in order to reduce overall electrical parasitics, and demonstrated pure capacitive transduction of graphene NEMS resonators. Characterizations of graphene NEMS resonators properties are followed, including resonant frequency and quality factor (Q) tuning with tension, mass and temperatures. A simple continuum mechanics model was constructed to understand the frequency tuning behavior, and it agrees with experimental data extremely well. In the following parts of the thesis, I will discuss the behavior of graphene mechanical resonators in applied magnetic field, i.e. in Quantum Hall (QH) regime. The couplings between mechanical motion and electronic band structure turned out to be a direct probe for thermodynamic quantities, i.e., chemical potential and compressibility. For a clean graphene resonators, with quality factors of 1 x 104, it underwent resonant frequency oscillations as applied

  14. Non-oxidative, controlled exfoliation of graphite in aqueous medium.

    PubMed

    Srivastava, Pawan Kumar; Yadav, Premlata; Ghosh, Subhasis

    2016-08-25

    We present a simple, non-oxidative and controlled method to synthesize graphene monolayers by exfoliation in water from different solid carbon sources, such as highly ordered pyrolytic graphite and low density graphite. Any water based method is highly desirable due to several attractive features, such as environmental friendliness, low cost and wide compatibility with other water based processes. We show that thin graphene layers can be exfoliated controllably and reproducibly by varying different parameters during exfoliation in aqueous medium. It has been possible to obtain high quality graphene monolayers with a yield of ∼2.45 wt%, which can be increased up to 16.6 wt% by recycling the sediments. Field effect transistors based on exfoliated graphene monolayers have shown n-type doping and a high carrier mobility of 4500 cm(2) V(-1) s(-1) at room temperature and ∼20 000 cm(2) V(-1) s(-1) at low temperature. Density functional calculations corroborate the infrared spectroscopic results and also indicate that the charge transfer preferentially occurs from water molecules to the graphene sheets resulting in n-type doping. We anticipate that exfoliation of high quality graphene layers in aqueous medium would open up a pathway for various graphene based electronic and biological applications. PMID:27523721

  15. Graphene-hBN-Graphene Photodetector with Low Dark Current

    NASA Astrophysics Data System (ADS)

    Zhang, Ruyue; Liu, Zhibo

    Graphene is a highly promising material for high speed, broadband, and high responsivity photo detection. However, the only 2.3% absorption of incident infrared-to-visible lights in graphene significantly limits their potential for applications. What is more, most of them are based on field effect transistor structures containing mechanically exfoliated graphene with high dark current, not suitable for practical large-scale device applications. We are aimed to study the photo response of pure monolayer graphene prepared by chemical vapor deposition and fabricate high efficient photodetectors by varying its structure. We performed the transfer of CVD-grown graphene by PMMA, studied the dark and photo I-V characteristics and the photosensitivity properties of pure monolayer graphene. A ``graphene-hBN-graphene'' structure of photodetector was designed, in which a boron nitride layer was sandwiched between two CVD graphene layers. Low dark current compared with the pure monolayer graphene photodetector was easily obtained for 532 nm incident lights due to the dielectric properties of boron nitride. And because of the low dark current, photocurrents can be easily distinguished from the background. High responsivity was obtained because incident light act on two layers of graphene simultaneously. The new structure graphene photodetector shows a great promise for a wide variety of application fields.

  16. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates.

    PubMed

    Griep, Mark H; Sandoz-Rosado, Emil; Tumlin, Travis M; Wetzel, Eric

    2016-03-01

    The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene. PMID:26882091

  17. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-11-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties.

  18. Mechanical and vibrational responses of gate-tunable graphene resonator

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Sun, Jiangping; Gong, Xionghui

    2015-03-01

    The vibrational mechanical properties of gate-tunable graphene resonator were investigated in detail using finite element analysis (FEA) and simulation. Treating the graphene resonator as a two-dimensional (2D) thin plate, the relationship between resonance frequency and driving force was explored. The effects of built-in tension, adsorbates and graphene size on the performance of resonator including resonance frequency and tunability were also studied. It was shown that resonance frequency could be tuned by the electrostatically induced average tension due to driving force, and exponentially increased with increasing driving force. When the single-layer graphene resonator without any adsorbates had no or very small built-in tension, the tunability of resonator was greater. However, for a high-frequency-range resonator, the resonator with high built-in tension should be used. The simulation results suggested potential applications of graphene resonators tuned by a driving force, such as widely tunable or ultrahigh frequency nanoelectromechanical systems (NEMS) devices.

  19. Negative nonlinear damping of a multilayer graphene mechanical resonator

    NASA Astrophysics Data System (ADS)

    Singh, Vibhor; Shevchuk, Olga; Blanter, Ya. M.; Steele, Gary A.

    2016-06-01

    We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induced transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction further, we observe instabilities in the mechanical response.

  20. Mechanical tearing of graphene on an oxidizing metal surface

    NASA Astrophysics Data System (ADS)

    George, Lijin; Gupta, Aparna; Shaina, P. R.; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ˜0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  1. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material

    NASA Astrophysics Data System (ADS)

    Khanra, Partha; Lee, Chang-No; Kuila, Tapas; Kim, Nam Hoon; Park, Min Jun; Lee, Joong Hee

    2014-04-01

    electrolytes was described. TCNQ is an organic charge-transfer complex with electron accepting and noteworthy electrical properties. The exfoliation of graphite to a few-layer graphene sheets was confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM) image analysis. The chemical state, surface functional groups and chemical compositions of bulk graphite as well as TCNQ-functionalized graphene sheets were investigated by Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. Adsorption of TCNQ onto the surface of graphene sheets was confirmed by the appearance of the N1s peak at ~399.4 eV in the XPS of TCNQ-functionalized graphene. Exfoliation of bulk graphite to functionalized graphene sheets was further confirmed by the appearance of a sharp single peak at ~2695 cm-1 along with increased intensity ratios of the D-band to the G-band. Electrochemical performance of a TCNQ-functionalized graphene sheet was investigated using 1 M Na2SO4 and 1 M KOH aqueous solutions. Cyclic voltammetry (CV) and galvanometric charge-discharge experiments revealed that TCNQ-functionalized graphene could be used as a supercapacitor electrode material. The specific capacitance values of TCNQ-modified graphene measured with electrolytes (1 M KOH and 1 M Na2SO4) were 324 and 140 F g-1, respectively, at a current density of 1 A g-1. Impedance spectroscopic analysis revealed that the charge transfer process was dependent on surface functionalization and interaction between the electrode and the electrolyte. Electronic supplementary information (ESI) available: Schematic diagram of the electrochemical exfoliation mechanism, XPS survey spectra of pure graphite, TCNQG1 and TCNQG2, deconvoluted C1s spectra of graphite and comparison of materials preparation and electrochemical performance of TCNQ functionalized graphene sheets with the existing state-of-the-art compounds. See DOI: 10.1039/c3nr05307e

  2. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors.

    PubMed

    Liu, Zhaoyang; Parvez, Khaled; Li, Rongjin; Dong, Renhao; Feng, Xinliang; Müllen, Klaus

    2015-01-27

    A novel solution fabrication of large-area, highly conductive graphene films by spray-coating of a hybrid ink of exfoliated graphene (EG)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000) is demonstrated. The fabricated graphene films exhibit excellent mechanical properties, thus enabling their application as bottom electrodes in ultrathin organic photodetector devices with performance comparable to that of the state-of-the-art Si-based inorganic photodetectors. PMID:25448315

  3. Mechanical Robustness of Graphene on Flexible Transparent Substrates.

    PubMed

    Kang, Moon H; Prieto López, Lizbeth O; Chen, Bingan; Teo, Ken; Williams, John A; Milne, William I; Cole, Matthew T

    2016-08-31

    This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend-relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium-tin oxide on PET. After 10(4) bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes

  4. Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective.

    PubMed

    Palermo, Vincenzo; Kinloch, Ian A; Ligi, Simone; Pugno, Nicola M

    2016-08-01

    Graphene shows considerable promise in structural composite applications thanks to its unique combination of high tensile strength, Young's modulus and structural flexibility which arise due to its maximal chemical bond strength and minimal atomic thickness. However, the ultimate performance of graphene composites will depend, in addition to the properties of the matrix and interface, on the morphology of the graphene used, including the size and shape of the sheets and the number of chemical defects present. For example, whilst oxidized sp(3) carbon atoms and vacancies in a graphene sheet can degrade its mechanical strength, they can also increase its interaction with other materials such as the polymer matrix of a composite, thus maximizing stress transfer and leading to more efficient mechanical reinforcement. Herein, we present an overview of some recently published work on graphene mechanical properties and discuss a list of challenges that need to be overcome (notwithstanding the strong hype existing on this material) for the development of graphene-based materials into a successful technology. PMID:26960186

  5. Transport Properties of Graphene and Suspended Graphene with EMC: The Role of Various Scattering Mechanisms

    NASA Astrophysics Data System (ADS)

    Özdemir, M. D.; Atasever, Ö. S.; Özdemir, B.; Yarar, Z.; Özdemir, M.

    2016-08-01

    The electronic transport properties of graphene and suspended (intrinsic) graphene sheets are studied using an ensemble Monte Carlo (EMC) technique. The combined scattering mechanisms that are taken into account for both cases are nonpolar optic and acoustic phonons, ionized impurity, interface roughness, and surface polar phonon scatterings. The effect of screening is also considered in the ionized impurity and surface polar phonon scatterings of electrons. A rejection technique is used in EMC simulations to account for the occupancy of the final states. Velocity-field characteristics of graphene and suspended graphene sheets are obtained using various values of acoustic deformation potential constants. The variation of electron mobility of graphene is studied as a function of electron concentration and its variation as a function of temperature are investigated for the case of suspended graphene. For the former case, the mobility increases with electron concentration first and after a certain value of electron concentration it begins to decrease, while for the latter case the mobility decreases almost linearly with temperature. The mobility results from EMC simulations are compatible with the existing experimental studies for the unsuspended graphene case.

  6. Transfer-free batch fabrication of single layer graphene transistors.

    PubMed

    Levendorf, Mark P; Ruiz-Vargas, Carlos S; Garg, Shivank; Park, Jiwoong

    2009-12-01

    Full integration of graphene into conventional device circuitry would require a reproducible large scale graphene synthesis that is compatible with conventional thin film technology. We report the synthesis of large scale single layer graphene directly onto an evaporated copper film. A novel fabrication method was used to directly pattern these graphene sheets into devices by simply removing the underlying copper film. Raman and conductance measurements show that the mechanical and electrical properties of our single layer graphene are uniform over a large area, ( Ferrari, A. C. et al. Phys. Rev. Lett. 2006, 97, 187401.) which leads to a high device yield and successful fabrication of ultra long (>0.5 mm) graphene channels. Our graphene based devices present excellent electrical properties including a promising carrier mobility of 700 cm(2)/V.s and current saturation characteristics similar to devices based on exfoliated graphene ( Meric, I.. et al. Nat Nanotechnol. 2008, 3, 654-659). PMID:19860406

  7. Mechanical properties of graphene and boronitrene

    NASA Astrophysics Data System (ADS)

    Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N.

    2012-03-01

    We present an equation of state (EOS) that describes how the hydrostatic change in surface area is related to two-dimensional in-plane pressure (F) and yields the measure of a material's resilience to isotropic stretching (the layer modulus γ) as one of its fit parameters. We give results for the monolayer systems of graphene and boronitrene, and we also include results for Si, Ge, GeC, and SiC in the isostructural honeycomb structure for comparison. Our results show that, of the honeycomb structures, graphene is the most resilient to stretching with a value of γC = 206.6 N m-1, second is boronitrene with γBN = 177.0 N m-1, followed by γSiC = 116.5 N m-1, γGeC = 101.0 N m-1, γSi = 44.5 N m-1, and γGe = 29.6 N m-1. We calculate the Young's and shear moduli from the elastic constants and find that, in general, they rank according to the layer modulus. We also find that the calculated layer modulus matches the one obtained from the EOS. We use the EOS to predict the isotropic intrinsic strength of the various systems and find that, in general, the intrinsic stresses also rank according to the layer modulus. Graphene and boronitrene have comparable strengths with intrinsic stresses of 29.4 and 26.0 N m-1, respectively. We considered four graphene allotropes including pentaheptite and graphdiyne and find that pentaheptite has a value for γ comparable to graphene. We find a phase transition from graphene to graphdiyne at F = -7.0 N m-1. We also consider bilayer, trilayer, and four-layered graphene and find that the addition of extra layers results in a linear dependence of γ with F.

  8. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Loya, Phillip E.; Lou, Jun; Thomas, Edwin L.

    2014-11-01

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second.

  9. Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping.

    PubMed

    Li, Baolei; Cheng, Yingwen; Liu, Jie; Yi, Congwen; Brown, April S; Yuan, Hsiangkuo; Vo-Dinh, Tuan; Fischer, Martin C; Warren, Warren S

    2012-11-14

    Nonlinear optical microscopy, based on femtosecond laser spectral reshaping, characterized and imaged graphene samples made from different methods, both on slides and in a biological environment. This technique clearly discriminates between graphene flakes with different numbers of layers and reveals the distinct nonlinear optical properties of reduced graphene oxide as compared to mechanically exfoliated or chemical vapor deposition grown graphene. The nonlinearity makes it applicable to scattering samples (such as tissue) as opposed to previous methods, such as transmission. This was demonstrated by high-resolution imaging of breast cancer cells incubated with graphene flakes. PMID:23101475

  10. Mechanisms of monovacancy diffusion in graphene

    NASA Astrophysics Data System (ADS)

    Wadey, Jack D.; Markevich, Alexander; Robertson, Alex; Warner, Jamie; Kirkland, Angus; Besley, Elena

    2016-03-01

    A comprehensive investigation of monovacancy diffusion in graphene has been carried out with the use of density functional theory and the climbing image nudged elastic band method. An out-of-plane spiro structure is found for the first-order saddle point, which defines the transition state in the vacancy diffusion pathway. The obtained activation energy for diffusion is significantly lower than the reported values for the in-plane saddle point structures. The time between consecutive vacancy jumps in graphene is estimated to be in the range of 100-200 s at room temperature in a good agreement with experimental observations.

  11. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  12. The Effect of Defects on Mechanical Properties and Failure Mechanisms of Graphene

    NASA Astrophysics Data System (ADS)

    Willman, Jonathan; Gonzalez, Joseph; Perriot, Romain; Oleynik, Ivan

    Recent experiments involving nanoindentation of graphene have demonstrated counterintuitive increasing of Young's modulus with increasing concentrations of point defects in graphene. To fully resolve this controversy we perform large-scale molecular dynamics simulations of graphene nanoindentation. The relaible description of interatomic interactions is achieved by using recently developed screened environment-dependent bond order (SED-REBO) potential. The elastic properties of the defective graphene, the breaking strength and the mechanisms of fracture under indenter are investigated as a function of defect concentration and other factors specific to Atomic Force Microscopy (AFM) nanoindentation experiments.

  13. Towards industrial applications of graphene electrodes

    NASA Astrophysics Data System (ADS)

    Bae, Sukang; Kim, Sang Jin; Shin, Dolly; Ahn, Jong-Hyun; Hong, Byung Hee

    2012-01-01

    Since the first isolation of graphene in 2004 by mechanical exfoliation from graphite, many people have tried to synthesize large-scale graphene using various chemical methods. In particular, there has been a great number of advances in the synthesis of graphene using chemical vapor deposition (CVD) on metal substrates such as Ni and Cu. Recently, a method to synthesize ultra-large-scale (~30 inch) graphene films using roll-to-roll transfer and chemical doping processes was developed that shows excellent electrical and physical properties suitable for practical applications on a large scale. Considering the outstanding scalability/processibility of roll-to-roll and CVD methods as well as the extraordinary flexibility/conductivity of graphene films, we expect that transparent graphene electrodes can replace indium tin oxide in the near future.

  14. Production of graphene oxide from pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; in, Insik

    2015-07-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  15. Production of graphene oxide from pitch-based carbon fiber

    PubMed Central

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; In, Insik

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA. PMID:26156067

  16. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage

    NASA Astrophysics Data System (ADS)

    Jing, Mingjun; Wang, Chiwei; Hou, Hongshuai; Wu, Zhibin; Zhu, Yirong; Yang, Yingchang; Jia, Xinnan; Zhang, Yan; Ji, Xiaobo

    2015-12-01

    A green and one-step method of electrochemical alternating voltage has been utilized to form NiO quantum dots/graphene flakes (NiO-dots/Gh) for supercapacitor applications. NiO quantum dots (∼3 nm) are uniformly deposited on few-layer graphene surfaces by oxygen functional groups on graphene surface that is naturally utilized to bridge NiO and graphene through Ni-O-C bands, which exhibits outstanding specific capacitance 1181.1 F g-1 at a current density of 2.1 A g-1 and rate behavior 66.2% at 42 A g-1 as NiO dots can be fleetly wired up to current collector through the underlying graphene two-dimensional layers. The NiO-dots/Gh composite is further undertaken in asymmetric supercapacitors with high energy density (27.3 Wh kg-1 at 1562.6 W kg-1).

  17. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites

    PubMed Central

    Naebe, Minoo; Wang, Jing; Amini, Abbas; Khayyam, Hamid; Hameed, Nishar; Li, Lu Hua; Chen, Ying; Fox, Bronwyn

    2014-01-01

    Thermally reduced graphene nanoplatelets were covalently functionalised via Bingel reaction to improve their dispersion and interfacial bonding with an epoxy resin. Functionalised graphene were characterized by microscopic, thermal and spectroscopic techniques. Thermal analysis of functionalised graphene revealed a significantly higher thermal stability compared to graphene oxide. Inclusion of only 0.1 wt% of functionalised graphene in an epoxy resin showed 22% increase in flexural strength and 18% improvement in storage modulus. The improved mechanical properties of nanocomposites is due to the uniform dispersion of functionalised graphene and strong interfacial bonding between modified graphene and epoxy resin as confirmed by microscopy observations. PMID:24625497

  18. Anisotropic mechanical properties of graphene: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Zeng, Anna; Zeng, Kevin

    2014-03-01

    The anisotropic mechanical properties of monolayer graphene with different shapes have been studied using an efficient quantum mechanics molecular dynamics scheme based on a semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. We have found the anisotropic nature of the membrane stress. The stresses along the armchair direction are slightly stronger than that along the zigzag direction, showing strong direction selectivity. The graphene with the rectangular shape could sustain strong load (i . e ., 20%) in both armchair and zigzag directions. The graphene with the rhombus shape show large difference in the strain direction: it will quickly crack after 18 % of strain in armchair the direction, but slowly destroyed after 20% in the zigzag direction. The obtained 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus are in good consistent with the experimental observation.

  19. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  20. Chemical vapor deposition growth of patterned graphene on copper

    NASA Astrophysics Data System (ADS)

    Gutierrez, Humberto; Wang, Bei; Zhu, J.

    2010-03-01

    Graphene possesses unique electronic properties and application potentials. However, the synthesis of high-quality, single-layer graphene on large scale remains challenging. Mechanical exfoliation from graphite crystals yields graphene of the highest quality but in an uncontrolled and non-scalable way. Epitaxial growth on SiC has made significant advances in large-scale synthesis, although the cost is relatively high. Very recently, chemical vapor deposition (CVD) is used to grow graphene on Ni and Cu surfaces and has also produced large-area graphene of reasonably high quality. Cracks and ripples, however, present considerable challenges to the CVD growth and transfer process. We report the CVD growth of single-layer graphene on patterned, micron-size copper templates. Raman spectra of the films show low D-band and relatively narrow 2D peak, suggesting high quality. We present and discuss the transport properties of graphene films transferred onto an insulating substrate.

  1. Exploring Transport Effects in Nanoscale Graphene Devices

    NASA Astrophysics Data System (ADS)

    Worne, Jeff; Galande, Charudatta; Gullapalli, Hemtej; Ajayan, Pulickel; Natelson, Douglas

    2011-03-01

    Graphene, the single- to few-atomic layers cousin to graphite, has become a very interesting topic of research owing to its unique mechanical, optical, thermal and electrical properties. Many of the properties of graphene can be traced to its structural uniformity, allowing both electrons and holes to travel long distances (up to several microns) before scattering. However, studying graphene on the micron level can mask its true nanoscale behavior. Using very short length scales allows for the investigation of the behavior of charge impurities, contact effects and ballistic transport. In this work, we fabricate sub-30 nanometer suspended graphene 3-terminal devices on gold and platinum electrodes. We present data from electrical measurements on charge impurities that are apparent at this length scale and the effect of electrode work function on contact resistance. We compare this to mechanically exfoliated graphene on a silicon/SiO2 substrate with gold electrodes.

  2. Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation.

    PubMed

    Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2016-05-01

    Multigenerational graphene oxide architectures can be programmed by specific sequences of mechanical deformations. Each new deformation results in a progressively larger set of features decorated by smaller preexisting patterns, indicating a structural "memory." It is shown that these multiscale architectures are superhydrophobic and display excellent functionality as electrochemical electrodes. PMID:26996525

  3. Mechanical control over valley magnetotransport in strained graphene

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Shengli; Liu, Daqing

    2016-05-01

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov-de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm "valleytronics" applications.

  4. Effect of initial tension on mechanics of adhered graphene blisters

    NASA Astrophysics Data System (ADS)

    Liao, Pinzhen; Xu, Pei

    2015-09-01

    The effect of initial tension on mechanics of adhered graphene blisters is investigated by extending Hencky's solution to cases with an initial tension. The system parameters including maximum blister deflection, pressure difference across the membrane, and critical delamination pressure under various initial tensions are modeled and calculated. The dependences of critical pressure on the radius and depth of etched microcavity are also demonstrated and compared with the previous work which does not consider the initial tension. The results show that the added adhesion energy between monolayer graphene membrane and SiO2 substrate can reach 0.0954 J/m2 with a reported maximum initial tension of 2.4 N/m taken into account, which accounts for 21.2 % of the measured average value 0.45 J/m2. Thus, the initial tension should be considered in further adhesion energy measurements of graphene/substrate interfaces.

  5. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance.

    PubMed

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing

    2011-08-14

    Fibrous nanocomposites of carbon nanotubes, graphene-oxide or graphene were prepared by a simple coagulation spinning technique exhibiting synergetic enhancement of mechanical strength, electronic conductivity and electrical actuation performance. PMID:21725531

  6. Graphene Topographies: Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation (Adv. Mater. 18/2016).

    PubMed

    Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2016-05-01

    P.-Y. Chen, R. H. Hurt, I. Y. Wong and co-workers demonstrate a hierarchical graphene surface architecture generated by using various sequences and combinations of extreme mechanical deformation, as shown in the false-colored SEM image. As described on page 3564, the sequential patterning approach enables the design of feature sizes and orientations across multiple length scales which are retained during mechanical deformations of similar extent. This results in sequence-dependent surface topographies with structural memory. PMID:27151628

  7. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  8. Mechanical strength of nanoporous graphene as a desalination membrane.

    PubMed

    Cohen-Tanugi, David; Grossman, Jeffrey C

    2014-11-12

    Recent advances in the development of nanoporous graphene (NPG) hold promise for the future of water supply by reverse osmosis (RO) desalination. But while previous studies have highlighted the potential of NPG as an RO membrane, there is less understanding as to whether NPG is strong enough to maintain its mechanical integrity under the high hydraulic pressures inherent to the RO desalination process. Here, we show that an NPG membrane can maintain its mechanical integrity in RO but that the choice of substrate for graphene is critical to this performance. Using molecular dynamics simulations and continuum fracture mechanics, we show that an appropriate substrate with openings smaller than 1 μm would allow NPG to withstand pressures exceeding 57 MPa (570 bar) or ten times more than typical pressures for seawater RO. Furthermore, we demonstrate that NPG membranes exhibit an unusual mechanical behavior in which greater porosity may help the membrane withstand even higher pressures. PMID:25357231

  9. Determination of Young's Modulus of Graphene by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ung; Yoon, Duhee; Cheong, Hyeonsik

    2012-02-01

    The mechanical properties of graphene are interesting research subjects because its Young's modulus and strength are extremely high. Values of ˜1 TPa for the Young's modulus have been reported [Lee et al. Science, 321, 385 (2008), Koenig et al. Nat. Nanotech. 6, 543 (2011)]. We made a graphene sample on a SiO2/Si substrate with closed-bottom holes by mechanical exfoliation. A pressure difference across the graphene membrane was applied by putting the sample in a vacuum chamber. This pressure difference makes the graphene membrane bulge upward like a balloon. By measuring the shifts of the Raman G and 2D bands, we estimated the amount of strain on the graphene membrane. By comparing the strain estimated from the Raman measurements with numerical simulations based on the finite element method, we obtained the Young's modulus of graphene.

  10. Tuning transport properties on graphene multiterminal structures by mechanical deformations

    NASA Astrophysics Data System (ADS)

    Latge, Andrea; Torres, Vanessa; Faria, Daiara

    The realization of mechanical strain on graphene structures is viewed as a promise route to tune electronic and transport properties such as changing energy band-gaps and promoting localization of states. Using continuum models, mechanical deformations are described by effective gauge fields, mirrored as pseudomagnetic fields that may reach quite high values. Interesting symmetry features are developed due to out of plane deformations on graphene; lift sublattice symmetry was predicted and observed in centrosymmetric bumps and strained nanobubbles. Here we discuss the effects of Gaussian-like strain on a hexagonal graphene flake connected to three leads, modeled as perfect graphene nanoribbons. The Green function formalism is used within a tight-binding approximation. For this particular deformation sharp resonant states are achieved depending on the strained structure details. We also study a fold-strained structure in which the three leads are deformed extending up to the very center of the hexagonal flake. We show that conductance suppressions can be controlled by the strain intensity and important transport features are modeled by the electronic band structure of the leads.

  11. Electronic and Mechanical Properties of Hydrogenated Irradiated and Amorphous Graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Defect engineering and chemical functionalization of graphene are promising routes for fabrication of carbon nanostructures and 2D metamaterials with unique properties and function. Here, we use hydrogenation of irradiated, including irradiation-induced amorphous, graphene as a means of studying chemical functionalization effects on its electronic structure and mechanical response. We use molecular-dynamics simulations based on a reliable bond-order potential to prepare the hydrogenated configurations and carry out dynamic deformation tests at constant strain rate and temperature. Our mechanical tests show that hydrogenation does not affect the ultimate tensile strength (UTS) of the irradiated graphene sheet if the hydrogenated C atoms remain sp2-hybridized; however, upon inducing sp3 hybridization of these C atoms, UTS decreases by about 10 GPa. Furthermore, the fracture strain of the irradiated structure decreases by up to 30% upon hydrogenation independent of the hybridization type. We also report results for the electronic structure of hydrogenated configurations based on a density-functional tight-binding approach and assess the potential for tuning the electronic properties of these defective, functionalized graphenes.

  12. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.

    PubMed

    Costescu, Bogdan I; Gräter, Frauke

    2014-06-28

    Previous Atomic Force Microscopy (AFM) experiments found single layers of defect-free graphene to rupture at unexpectedly high loads in the micronewton range. Using molecular dynamics simulations, we modeled an AFM spherical tip pressing on a circular graphene sheet and studied the stress distribution during the indentation process until rupture. We found the graphene rupture force to have no dependency on the sheet size and a very weak dependency on the indenter velocity, allowing a direct comparison to experiment. The deformation showed a non-linear elastic behavior, with a two-dimensional elastic modulus in good agreement with previous experimental and computational studies. In line with theoretical predictions for linearly elastic sheets, rupture forces of non-linearly elastic graphene are proportional to the tip radius. However, as a deviation from the theory, the atomic stress concentrates under the indenter tip more strongly than predicted and causes a high probability of bond breaking only in this area. In turn, stress levels decrease rapidly towards the edge of the sheet, most of which thus only serves the role of mechanical support for the region under the indenter. As a consequence, the high ratio between graphene sheets and sphere radii, hitherto supposed to be necessary for reliable deformation and rupture studies, could be reduced to a factor of only 5-10 without affecting the outcome. Our study suggests time-resolved analysis of forces at the atomic level as a valuable tool to predict and interpret the nano-scale response of stressed materials beyond graphene. PMID:24834440

  13. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  14. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    PubMed Central

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  15. Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery

    PubMed Central

    Sahu, Tuhin Subhra; Mitra, Sagar

    2015-01-01

    Three dimensional (3D) MoS2 nanoflowers are successfully synthesized by hydrothermal method. Further, a composite of as prepared MoS2 nanoflowers and rGO is constructed by simple ultrasonic exfoliation technique. The crystallography and morphological studies have been carried out by XRD, FE-SEM, TEM, HR-TEM and EDS etc. Here, XRD study revealed, a composite of exfoliated MoS2 with expanded spacing of (002) crystal plane and rGO can be prepared by simple 40 minute of ultrasonic treatment. While, FE-SEM and TEM studies depict, individual MoS2 nanoflowers with an average diameter of 200 nm are uniformly distributed throughout the rGO surface. When tested as sodium-ion batteries anode material by applying two different potential windows, the composite demonstrates a high reversible specific capacity of 575 mAhg−1 at 100 mAg−1 in between 0.01 V–2.6 V and 218 mAhg−1 at 50 mAg−1 when discharged in a potential range of 0.4 V–2.6 V. As per our concern, the results are one of the best obtained as compared to the earlier published one on MoS2 based SIB anode material and more importantly this material shows such an excellent reversible Na-storage capacity and good cycling stability without addition of any expensive additive stabilizer, like fluoroethylene carbonate (FEC), in comparison to those in current literature. PMID:26215284

  16. Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery

    NASA Astrophysics Data System (ADS)

    Sahu, Tuhin Subhra; Mitra, Sagar

    2015-07-01

    Three dimensional (3D) MoS2 nanoflowers are successfully synthesized by hydrothermal method. Further, a composite of as prepared MoS2 nanoflowers and rGO is constructed by simple ultrasonic exfoliation technique. The crystallography and morphological studies have been carried out by XRD, FE-SEM, TEM, HR-TEM and EDS etc. Here, XRD study revealed, a composite of exfoliated MoS2 with expanded spacing of (002) crystal plane and rGO can be prepared by simple 40 minute of ultrasonic treatment. While, FE-SEM and TEM studies depict, individual MoS2 nanoflowers with an average diameter of 200 nm are uniformly distributed throughout the rGO surface. When tested as sodium-ion batteries anode material by applying two different potential windows, the composite demonstrates a high reversible specific capacity of 575 mAhg-1 at 100 mAg-1 in between 0.01 V-2.6 V and 218 mAhg-1 at 50 mAg-1 when discharged in a potential range of 0.4 V-2.6 V. As per our concern, the results are one of the best obtained as compared to the earlier published one on MoS2 based SIB anode material and more importantly this material shows such an excellent reversible Na-storage capacity and good cycling stability without addition of any expensive additive stabilizer, like fluoroethylene carbonate (FEC), in comparison to those in current literature.

  17. Carbon Dioxide Gas Sensing Application of GRAPHENE/Y2O3 Quantum Dots Composite

    NASA Astrophysics Data System (ADS)

    Nemade, K. R.; Waghuley, S. A.

    Graphene/Y2O3 quantum dots (QDs) composite was investigated towards the carbon dioxide (CO2) gas at room temperature. Graphene synthesized by electrochemical exfoliation of graphite. The composite prepared by mixing 20-wt% graphene into the 1 g Y2O3 in organic medium (acetone). The chemiresistor of composite prepared by screen-printing on glass substrate. The optimum value of sensing response (1.08) was showed by 20-wt% graphene/Y2O3 QDs composite. The excellent stability with optimum sensing response evidenced for the composite. The gas sensing mechanism discussed on the basis of electron transfer reaction.

  18. Efficiency enhancement in PCDTBT:PCBM solar cells using graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Gusain, Abhay; Chauhan, A. K.; Jha, P.; Koiry, S. P.; Veerender, P.; Saxena, Vibha; Varde, P. V.; Aswal, D. K.; Gupta, S. K.

    2015-06-01

    Experiments were carried out to improve the efficiency of PCDTBT:PCBM solar cells using thinner graphene sheets as an additive in the hole transport layer (HTL) and active layers of these solar cells. The required graphene nano-sheets were exfoliated by mechanical process using rigorous sonication of graphene flakes. It has been found that devices with graphene nanosheets mixed in the HTL have shown improvement in the efficiency, however other devices shown a degradation. The improvement in the efficiency in the devices has been attributed to the improved charge transport for photo-generated carriers across the interfaces.

  19. Epitaxial growth mechanisms of graphene and effects of substrates

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  20. Mechanism of strength reduction along the graphenization pathway

    PubMed Central

    Gamboa, Antonio; Farbos, Baptiste; Aurel, Philippe; Vignoles, Gérard L.; Leyssale, Jean-Marc

    2015-01-01

    Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline graphene models of increasing thermodynamic stability, as obtained from a long molecular dynamics simulation at an elevated temperature. All of the models show the typical and well-documented brittle fracture behavior of polycrystalline graphene; however, a clear decrease in all fracture properties is observed with increasing annealing time. The remarkably high fracture properties obtained for the most disordered (less annealed) structures arise from the formation of many nonpropagating prefracture cracks, significantly retarding failure. The stability of these reversible cracks is due to the nonlocal character of load transfer after a bond rupture in very disordered systems. It results in an insufficient strain level on neighboring bonds to promote fracture propagation. Although polycrystallinity seems to be an unavoidable feature of chemically synthesized graphenes, these results suggest that targeting highly disordered states might be a convenient way to obtain improved mechanical properties. PMID:26702443

  1. Mechanism of strength reduction along the graphenization pathway.

    PubMed

    Gamboa, Antonio; Farbos, Baptiste; Aurel, Philippe; Vignoles, Gérard L; Leyssale, Jean-Marc

    2015-11-01

    Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline graphene models of increasing thermodynamic stability, as obtained from a long molecular dynamics simulation at an elevated temperature. All of the models show the typical and well-documented brittle fracture behavior of polycrystalline graphene; however, a clear decrease in all fracture properties is observed with increasing annealing time. The remarkably high fracture properties obtained for the most disordered (less annealed) structures arise from the formation of many nonpropagating prefracture cracks, significantly retarding failure. The stability of these reversible cracks is due to the nonlocal character of load transfer after a bond rupture in very disordered systems. It results in an insufficient strain level on neighboring bonds to promote fracture propagation. Although polycrystallinity seems to be an unavoidable feature of chemically synthesized graphenes, these results suggest that targeting highly disordered states might be a convenient way to obtain improved mechanical properties. PMID:26702443

  2. Fabrication of graphene field-effect transistor on top of ferroelectric single-crystal substrate

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Yourack; Kim, Jeong-Gyun; Kim, Joong-Gyu; Yun, Yoojoo; Park, Jeongmin; Kim, Taesoo; Kim, Jung Ho; Jin, Youngjo; Shin, Yong Seon; Lee, Young Hee; Suh, Dongseok

    2015-03-01

    In the analysis of Graphene field-effect transistor, the substrate material which has the direct contact with Graphene layer plays an important in the device performance. In this presentation, we have tested PMN-PT(i.e.(1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) substrate as a gate dielectric of Graphene field-effect transistor. Unlike the case of previously used substrates such as silicon oxide or hexagonal Boron-Nitride(h-BN), the PMN-PT substrate can induce giant amount of surface charge that is directly injected to the attached Graphene layer due to its ferroelectric property. And the hysteresis of polarization versus electric field of PMN-PT can cause the device to show the ferroelectric nonvolatile memory operation. We had successfully fabricated Graphene field-effect transistor using the mechanically exfoliated Graphene layer transferred on the PMN-PT(001) substrate. Unlike the case of mechanical exfoliation on the surface of silicon-oxide or the Poly(methyl methacrylate) (PMMA), the weak adhesion properties between graphene and PMNPT required the pretreatment on PMMA before the exfoliation process. The device performance is analyzed in terms of the effect of ferro- and piezo-electric effect of PMNPT substrate.

  3. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  4. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    PubMed Central

    Jarosz, Anna; Skoda, Marta; Dudek, Ilona; Szukiewicz, Dariusz

    2016-01-01

    Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines. PMID:26649139

  5. Promising applications of graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  6. Mechanisms of molecular doping of graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Saha, Srijan Kumar; Chandrakanth, Reddy Ch.; Krishnamurthy, H. R.; Waghmare, U. V.

    2009-10-01

    Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.

  7. Graphene- and graphene oxide- based multisensor arrays for selective gas analysis

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Varezhnikov, Alexey; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2014-03-01

    Arrays of nearly identical graphene devices on Si/SiO2 exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectode array of CVD graphene devices on a Si/SiO2 substrate, and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol and isopropanol. The diversity of graphene devices on Si/SiO2 could possibly be used to construct multisensor systems trained to recognize other analytes as well. Similar multisensory arrays based on graphene oxide (GO) devices are also capable of discriminating these short-chain alcohols. We will discuss the possibility of chemical modification of GO for further increase the selectivity of GO multisensory arrays.

  8. Facile solvothermal synthesis of graphene-MnOOH nanocomposites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Huang Huajie; Zeng Guiyu; Nie Fude; Wang Xin

    2010-11-15

    In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites. - Graphical abstract: Manganese oxyhydroxide nanocrystals have been successfully attached onto the graphene sheets via an oriented attachment and dissolution-crystallization process, forming a nanocomposite with unusual catalytic capabilities. Display Omitted

  9. Electrical and mechanical properties of graphene oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Kang, Shao-Hui; Fang, Te-Hua; Hong, Zheng-Han

    2013-12-01

    Graphene oxide (GO) was deposited via the electrophoretic deposition (EPD) method to lower the oxygen concentration of graphene sheets for large-scale production. In addition, the direct synthesis of large-scale GO films using transfer processes on a polydimethylsiloxane (PDMS) substrate was conducted. The thickness of the GO films was controlled to adjust the optical, electrical, and mechanical properties. The Young's modulus values of films with thicknesses of 100-200 nm were 324-529 GPa. Moreover, the GO films exhibited excellent conductivity, with a sheet resistance of 276-2024 Ω/sq at 23-77% transparency. Experiments show that transfer processes for flexible substrates can produce high-quality cost-effective transparent conductive films.

  10. Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.

    PubMed

    Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon

    2016-04-01

    Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid. PMID:26966918

  11. Mechanisms of the Antimicrobial Activities of Graphene Materials.

    PubMed

    Zou, Xuefeng; Zhang, Li; Wang, Zhaojun; Luo, Yang

    2016-02-24

    A thorough understanding of the antimicrobial mechanisms of graphene materials (GMs) is critical to the manipulation of highly efficient antimicrobial nanomaterials for future biomedical applications. Here we review the most recent studies of GM-mediated antimicrobial properties. This review covers the physicochemical properties of GMs, experimental surroundings, and selected microorganisms as well as the interaction between GMs and selected microorganisms to explore controversial antimicrobial activities. Finally, we rationally analyze the strengths and weaknesses of the proposed mechanisms and provide new insights into the remaining challenges and perspectives for future studies. PMID:26824139

  12. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene.

    PubMed

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-09-25

    Bernal-stacked (AB-stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electric field. Mechanical exfoliation can be used to produce AB-stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB- and randomly stacked structures. Herein we report a rational approach to produce large-area high-quality AB-stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H(2)/CH(4) ratio in a low-pressure CVD process to enable the continued growth of bilayer graphene. A high-temperature and low-pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90%) and high coverage (up to 99%). The electrical transport studies demonstrate that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB-stacked bilayer graphene with the highest carrier mobility exceeding 4000 cm(2)/V · s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  13. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.

    PubMed

    Shao, Wei; Wang, Shuxia; Liu, Hui; Wu, Jimin; Zhang, Rui; Min, Huihua; Huang, Min

    2016-03-15

    Graphene has been considered to be a promising nanofiller material for building polymeric nanocomposites because it has large specific surface area and unique mechanical property. In the study, BC/graphene composites were prepared by a simple blending method. The resulting structure and thermal stability of the composites were investigated by several techniques including TEM, SEM, XRD, TG and Raman spectrum. These results indicate graphene nanosheets were successfully impregnated and uniformly dispersed in the BC matrix. Water contact angles result showed that the addition of graphene decreased hydrophilic property since water contact angle of BC increased from 51.2° to 84.3° with 4wt% graphene added. The mechanical performances of BC/graphene composites were highly evaluated. When compared to pristine BC, the incorporation of 4wt% graphene improved the tensile strength from 96MPa to 155MPa and Young's modulus from 369MPa to 530MPa, respectively. PMID:26794749

  14. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance

    PubMed Central

    Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa·m1/2 with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications. PMID:24736662

  15. Enhanced hydrogen storage from nanostructured graphene and nickel hybrids based on spillover mechanism

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Mao, Yuanbing

    2015-03-01

    As a fascinating 2-dimentional carbon material, graphene has been decorated with metal nanoparticles to enhance its hydrogen storage performance based on the spillover mechanism. In this work, Ni and Ni alloys have been used to decorate the surface of graphene. Graphene oxide was fabricated from graphite by improved Hummer method. To form Ni/graphene and Ni/Pd/graphene hybrids, the graphene oxide water dispersion was mixted with nickel chloride (and palladium chloride). Ni(OH)2/graphene and Ni(OH)2/Pd(OH)2/graphene hybrids were synthesized through hydrothermal treatment, using water as a solvent and HMT as a capping agent. After heat treatment and in situ reduction with hydrogen flow, the nanostructured Ni/graphene and Ni/Pd graphene hybrids were obtained. The nanostructured Ni/Pd/Ag/graphene hybrid was synthesized from graphene oxide in the ethylene glycol solution and metal nitrates using similar reactions. XRD, Raman, SEM, AFM were used to characterize these products. ASAP 2020 was used to test the hydrogen adsorption and desorption capacities.

  16. Pressure dependence of quality factors of graphene nano-mechanical resonators

    NASA Astrophysics Data System (ADS)

    Khaksaran, M. Hadi; Yanik, Cenk; Karakan, M. Cagatay; Ari, Atakan Bekir; Hanay, M. Selim; Kaya, Ismet I.

    In recent few years, low mass density and high stiffness of graphene has drawn attention for developing high frequency mechanical resonators with high quality factor at the same time. As a single-atom thick material, graphene has many desirable properties for high-frequency sensor applications compared to top-down nano-mechanical resonators . In this work we address the energy dissipation in graphene resonators due to viscous damping. We experimentally measure the pressure dependence of the quality factor of a graphene nano-mechanical resonator to understand its interaction with fluids at high frequencies. This work is supprted by TUBITAK under Grant Number 112T990.

  17. Exfoliation corrosion susceptibility and mechanisms of Al -- Li 2060 T8E30 aluminum lithium alloy in acidic media

    NASA Astrophysics Data System (ADS)

    Karayan, Ahmad Ivan

    The Al - Li 2060 aluminum lithium alloy was first launched in 2011. This alloy is a potential candidate for the use at wing/fuselage forgings, lower wing, and fuselage/pressure cabin. However, since its first launching, the corrosion properties of this alloy has not been extensively explored. There are three common laboratory tests for assessing the exfoliation corrosion (EFC) susceptibility of aluminum alloy 2XXX, namely EFC test in EXCO, modified EXCO and MASTMAASIS media. The objectives of this work is to study the susceptibility and mecahnism of corrosion of this alloy in EXCO, modified EXCO and MATSMAASIS media. These three media are acid. In the EXCO solution, this alloy suffers EFC after a 96-hour EFC test. The pH dramatically increases in the first 11 hours from 0.25 to 0.30. The pH then slightly increases and tends to remain constant at pH of 3.45 after 96 hours. The cyclic potentiodynamic polarization (CPP) test results show the presence of negative hysteresis and one breakdwon potential. This negative hysteresis suggests the absence of pitting corrosion due to the breakdown of passive film. The potentiostatic tests at potentials below and above the breakdown potential show an abrupt increase in potential in the first minutes and the presence of current transients. The scanning electron microscopy (SEM)-energy dispersive x-ray spectroscopy (EDS) examination confirms that the Al 20Cu2Mn3 particles preferentially dissolve, leaving the pitting after a potentiostatic test below the breakdown potential. From the potentiostatic test at a potential above the breakdown potential and an SEM examination after this potentiostatic test, intergranular corrosion (IGC) was observed. The electrochemical impedance spectroscopy (EIS) test and mathematical modeling indicates that the adsorption of intermediates in reduction of hydrogen ions is dominant in the first hours of immersion. The two time constants are observed when EFC occurs. The video capture microscopy

  18. Materials science of graphene: a flagship perspective

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Mar; Coleman, Jonathan

    2016-03-01

    Driving the superlative properties of mechanically exfoliated graphene to real world applications requires a large effort to develop synthetic routes providing cost effective high quality materials. It can also be agreed, that when it comes to reality, one should not refer just to Graphene but ‘Graphenes’ as each synthesis method renders a material characterized by different properties. Recently, Graphene and other 2D materials scalable synthesis methods have provided improved materials at highly competitive costs. However, a long way is ahead to approach the properties of mechanically exfoliated materials. Also, as a scalable method succeeds and it is indeed upscaled for industrial production, new characterization protocols and metrics have to be devised to enable efficient on line quality control of the produced materials. Significant advances can be reported recently in the synthesis of high quality graphene although a shift towards other 2D materials research is clearly observed. An overview of the progress made by several groups in WP ‘ Materials‘ of the Graphene Flagship is given.

  19. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials. PMID:27059403

  20. Two-dimensional Clay and Graphene Nanosheets for Polymer Nanocomposites and Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Qian, Yuqiang

    Clay and graphene nanosheets are attractive to materials scientists due to their unique structural and physical properties and potentially low cost. This thesis focuses on the surface modification and structure design of clay and graphene nanosheets, targeting special requirements in polymer nanocomposites and energy storage applications. The high aspect ratio and stiffness of clay and graphene nanosheets make them promising candidates to reinforce polymers. However, it is challenging to achieve a good dispersion of the nanosheets in a polymer matrix. It is demonstrated in this study that organic modifications of clay and graphene nanosheets lead to better filler dispersion in polymer matrices. A prepolymer route was developed to achieve clay exfoliation in a polyurethane-vermiculite system. However, the phase-separated structure of the polyurethane matrix was disrupted. Intragallery catalysis was adopted to promote the clay exfoliation during polymerization. With both catalytic and reactive groups on the clay modifier, the polyurethane-vermiculite nanocomposites showed a significant increase in modulus and improved barrier performance, compared to neat polyurethane. The toughening effect of graphene on thermosetting epoxies and unsaturated polyesters (UPs) was also investigated. Various types of graphene with different structures and surface functionalities were incorporated into the thermosetting resin by in situ polymerization. The toughening effect was observed for epoxy nanocomposites at loading levels of less than 0.1 wt%, and a peak of fracture toughness was observed at 0.02 or 0.04 wt% of graphene loadings for all epoxy-graphene systems. A microcrack-crazing mechanism was proposed to explain the fracture behavior of epoxy-graphene systems based on fractography observations. Similar peak behavior of fracture toughness was not observed in UP system. UP nanocomposites with modified graphene oxide showed better mechanical performance than those with unmodified

  1. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    PubMed

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-01

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications. PMID:26797529

  2. Facile solvothermal synthesis of graphene-MnOOH nanocomposites

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Zhu, Junwu; Huang, Huajie; Zeng, Guiyu; Nie, Fude; Wang, Xin

    2010-11-01

    In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites.

  3. Interface structure and mechanics between graphene and metal substrates: a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Buehler, Markus J.

    2010-12-01

    Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of critical importance in applications of graphene in integrated electronics, as thermal materials, and in electromechanical devices. Here we investigate the structure and mechanical interactions at a graphene-metal interface through density functional theory (DFT)-based calculations. We focus on copper (111) and nickel (111) surfaces adhered to a monolayer of graphene, and find that their cohesive energy, strength and electronic structure correlate directly with their atomic geometry. Due to the strong coupling between open d-orbitals, the nickel-graphene interface has a much stronger cohesive energy with graphene than copper. We also find that the interface cohesive energy profile features a well-and-shoulder shape that cannot be captured by simple pair-wise models such as the Lennard-Jones potential. Our results provide a detailed understanding of the interfacial properties of graphene-metal systems, and help to predict the performance of graphene-based nanoelectronics and nanocomposites. The availability of structural and energetic data of graphene-metal interfaces could also be useful for the development of empirical force fields for molecular dynamics simulations.

  4. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene

    NASA Astrophysics Data System (ADS)

    Li, D. W.; Zhou, Y. S.; Huang, X.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-02-01

    Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. In this study, we demonstrate an approach to precisely thin graphene films to a specific thickness using femtosecond (fs) laser raster scanning. By using appropriate laser fluence and scanning times, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. The fs laser used was configured in a four-wave mixing (FWM) system which can be used to distinguish graphene layer thickness and count the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process. This method can not only realize the large-scale thinning of graphene with atomic layer precision, but also provide in situ, rapid imaging capability of graphene for an accurate assessment of the number of layers.Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. In this study, we demonstrate an approach to precisely thin graphene films to a specific thickness using femtosecond (fs) laser raster scanning. By using appropriate laser fluence and scanning times, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. The fs laser used was configured in a four-wave mixing (FWM) system which can be used to distinguish graphene layer thickness and count the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process. This method can not

  5. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites

    PubMed Central

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar. PMID:24574878

  6. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  7. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Khan, Umar; May, Peter; O'Neill, Arlene; Bell, Alan P.; Boussac, Elodie; Martin, Arnaud; Semple, James; Coleman, Jonathan N.

    2012-12-01

    We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and dσB/dVf = 47 GPa. The former value matches theory based on continuum mechanics while the latter value is consistent with remarkably high polymer-filler interfacial strength. However, because the mechanical properties increase over such a narrow volume fraction range, the maximum values of both modulus and strength are only ~40% higher than the pure polymer. This phenomenon has also been observed for graphene-filled composites and represents a serious hurdle to the production of high performance polymer-nanosheet composites.We have exfoliated hexagonal boron nitride by ultrasonication in solutions of polyvinylalcohol in water. The resultant nanosheets are sterically stabilised by adsorbed polymer chains. Centrifugation-based size-selection was used to give dispersions of nanosheets with aspect ratio (length/thickness) of ~1400. Such dispersions can be used to produce polyvinylalcohol-BN composite films. Helium ion microscopy of fracture surfaces shows the nanosheets to be well dispersed and the composites to fail by pull-out. We find both modulus, Y, and strength, σB, of these composites to increase linearly with volume fraction, Vf, up to Vf ~ 0.1 vol% BN before falling off. The rates of increase are extremely high; dY/dVf = 670 GPa and d

  8. Strong and electrically conductive graphene-based composite fibers and laminates

    SciTech Connect

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; Ivanov, Ilia N.; Keum, Jong Kahk; Paulauskas, Felix L.; Datskos, Panos G.; Smirnov, Sergei

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layer graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.

  9. Strong and electrically conductive graphene-based composite fibers and laminates

    DOE PAGESBeta

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; Ivanov, Ilia N.; Keum, Jong Kahk; Paulauskas, Felix L.; Datskos, Panos G.; Smirnov, Sergei

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layermore » graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.« less

  10. Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study.

    PubMed

    Al-Mulla, Talal; Qin, Zhao; Buehler, Markus J

    2015-09-01

    Experiments and simulations demonstrating reversible and repeatable crumpling of graphene warrant a detailed understanding of the underlying mechanisms of graphene crumple formation, especially for design of tailored nanostructures. To systematically study the formation of crumples in graphene, we use a simple molecular dynamics model, and perform a series of simulations to characterize the finite number of deformation regimes of graphene on substrate after compression. We formulate a quantitative measure of predicting these deformations based on observed results of the simulations and distinguish graphene crumpling considered in this study from others. In our study, graphene is placed on a model substrate while controlling and varying the interfacial energy between graphene and substrate and the substrate roughness through a set of particles embedded in the substrate. We find that a critical value of interfacial adhesion energy marks a transition point that separates two deformation regimes of graphene on substrate under uniaxial compression. The interface between graphene and substrate plays a major role in the formation of crumples, and we show that the choice of substrate can help in designing desired topologies in graphene. PMID:26252422

  11. Mechanical manipulations on electronic transport of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Guiping; Ye, Fei; Wang, Xiaoqun

    2015-06-01

    We study the effects of uniaxial strains on the transport properties of graphene nanoribbons (GNRs) connected with two metallic leads in heterojunctions, using the transfer matrix method. Two typical GNRs with zigzag and armchair boundaries are considered and the tension is applied either parallel or perpendicular to the ribbon axis. It turns out that the electron-hole symmetry is missing in the gate voltage dependence of the conductance data of the armchair GNRs, while it persists in the zigzag ribbons under any strains. For an armchair GNR with a vertical tension applied, a sharp drop of conductance is found near the critical value of the strain inducing a quantum phase transition, which allows one to determine the critical strain accurately via measuring the conductance. In the zigzag ribbon, there exists a range of gate voltage around zero, where the conductance is insensitive to the small horizontal strains. The band structures and low-energy properties are calculated to elucidate the mechanism on the strain effects in GNRs. We expect that our results can be useful in developing graphene-based strain sensors.

  12. Mechanical properties of graphene nanosheets/polypropylene composites

    NASA Astrophysics Data System (ADS)

    Hsu, P.; Chen, S.; Tsai, I.

    2015-03-01

    In this study, the effect of the various solid contents of graphene nanosheets (GNSs) on the mechanical properties (tensile, flexural and impact strength) of nanosheets and polypropylene (PP) composites formed by injection molding was determined. The material was used with graphene microencapsulated PP pellets. The experimental results indicated that the GNS/PP composites had a maximal tensile strength of 29.54 MPa when the solid GNS content was 0.2 wt%, which increased 8.24 % compared with that of the neat PP matrix. The flexural strength of the GNS/PP composites achieved a maximal value of 25.47 MPa when the solid GNS content was 0.4 wt%, which increased % compared with that of the neat PP matrix. In determining the impact energy, the GNS/PP composites exhibited a maximal value of 861.39 J/m when the solid GNS content was 0.2 wt%, which increased 33.95 % compared with that of the neat PP matrix.

  13. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    SciTech Connect

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  14. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    NASA Astrophysics Data System (ADS)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-01

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  15. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics.

    PubMed

    Bartolomeo, Antonio Di; Giubileo, Filippo; Romeo, Francesco; Sabatino, Paolo; Carapella, Giovanni; Iemmo, Laura; Schroeder, Thomas; Lupina, Grzegorz

    2015-11-27

    We fabricate back-gated field effect transistors using niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10(-4) mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface. PMID:26535591

  16. Graphene Growth on Low Carbon Solubility Metals

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph Monroe

    Advances in synthesis are imperative if graphene is to fulfill its scientific and technological potential. Single crystal graphene of is currently available only in the small flakes generated by mechanical exfoliation. Layers of larger size may be grown either by the thermal decomposition of SiC or by chemical vapor deposition on metals. However, as they are currently implemented, these methods yield graphene films of inferior quality. Thus the requirement for wafer-scale, high-quality graphene films remains unmet. This dissertation addresses this issue by examining graphene growth on metal surfaces. Through a survey of the fundamental underlying processes, it provides guidance for improving the quality of the resulting graphene films. Graphene was grown on Cu(100), Cu(111), and Au(111) by physical vapor deposition of elemental C. The nucleation and growth behaviors of graphene were evaluated by low-energy electron microscopy. Graphene tends to nucleate heterogeneously at surface imperfections although it also does so homogeneously on Cu(111) and Au(111). Graphene growing on Cu(100) is governed by the attachment kinetics of C at the propagating crystal front. The resulting angularly dependent growth rate sculpts individual crystals into elongated lobes. In contrast, graphene growth on both Cu(111) and Au(111) is surface diffusion limited. This yields ramified, dendritic graphene islands. Graphene films grown on Cu(100) contain significant rotational disorder. This disorder is partially attributable to the symmetry mismatch between film and substrate. The common symmetry between graphene and Cu(111) contributes to a significant reduction in disorder in films grown on this surface. Most graphene domains occupy a ˜6º arc of orientations. On Au(111) the vast majority of graphene domains are locked into alignment with the substrate surface. The extraordinary extent of their orientational homogeneity is such that the resulting graphene film is a quasi-single crystal

  17. Strong coupling and parametric amplification in mechanical modes of graphene

    NASA Astrophysics Data System (ADS)

    Mathew, John; Patel, Raj; Borah, Abhinandan; Vijayaraghavan, Rajamani; Deshmukh, Mandar

    We demonstrate strong dynamical coupling and parametric amplification in mechanical modes of a graphene drum using an all electrical configuration. Low tension in the system allows large electrostatic tunability of the modes thus enabling dynamic pumping experiments. In the strong coupling regime a red detuned pump gives rise to new eigenmodes having highly tunable mode splitting (cooperativity ~60) with coherent energy transfer. The coupling is also used to amplify the modes under the action of a blue detuned pump. In addition, self-oscillations and parametric amplification of the fundamental vibrational mode is demonstrated with a gain of nearly 3. The low mass and high frequency of these atomically thin resonators could prove useful for studying mode coupling in the quantum regime.

  18. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure.

    PubMed

    Li, Zan; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Zhang, Di

    2015-12-01

    Bulk graphene (reduced graphene oxide)-reinforced Al matrix composites with a bioinspired nanolaminated microstructure were fabricated via a composite powder assembly approach. Compared with the unreinforced Al matrix, these composites were shown to possess significantly improved stiffness and tensile strength, and a similar or even slightly higher total elongation. These observations were interpreted by the facilitated load transfer between graphene and the Al matrix, and the extrinsic toughening effect as a result of the nanolaminated microstructure. PMID:26574873

  19. The effect of intrinsic crumpling on the mechanics of free-standing graphene.

    PubMed

    Nicholl, Ryan J T; Conley, Hiram J; Lavrik, Nickolay V; Vlassiouk, Ivan; Puzyrev, Yevgeniy S; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T; Bolotin, Kirill I

    2015-01-01

    Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20-100 N m(-1) at room temperature, much smaller than 340 N m(-1) (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 N m(-1) when the aspect ratio of graphene membranes is increased. These results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Together, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties. PMID:26541811

  20. The effect of intrinsic crumpling on the mechanics of free-standing graphene

    PubMed Central

    Nicholl, Ryan J.T.; Conley, Hiram J.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Puzyrev, Yevgeniy S.; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T.; Bolotin, Kirill I.

    2015-01-01

    Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20–100 N m−1 at room temperature, much smaller than 340 N m−1 (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 N m−1 when the aspect ratio of graphene membranes is increased. These results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Together, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties. PMID:26541811

  1. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

    PubMed Central

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2016-01-01

    Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young’s modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet. PMID:27527371

  2. The effect of intrinsic crumpling on the mechanics of free-standing graphene

    NASA Astrophysics Data System (ADS)

    Nicholl, Ryan J. T.; Conley, Hiram J.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Puzyrev, Yevgeniy S.; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T.; Bolotin, Kirill I.

    2015-11-01

    Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20-100 N m-1 at room temperature, much smaller than 340 N m-1 (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 N m-1 when the aspect ratio of graphene membranes is increased. These results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Together, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties.

  3. The effect of intrinsic crumpling on the mechanics of free-standing graphene

    SciTech Connect

    Nicholl, Ryan J. T.; Conley, Hiram J.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Puzyrev, Yevgeniy S.; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T.; Bolotin, Kirill I.

    2015-11-06

    Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20–100 N m–1 at room temperature, much smaller than 340 N m–1 (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 N m–1 when the aspect ratio of graphene membranes is increased. Finally, these results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Altogether, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties.

  4. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets.

    PubMed

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2016-01-01

    Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young's modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet. PMID:27527371

  5. The effect of intrinsic crumpling on the mechanics of free-standing graphene

    DOE PAGESBeta

    Nicholl, Ryan J. T.; Conley, Hiram J.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Puzyrev, Yevgeniy S.; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T.; Bolotin, Kirill I.

    2015-11-06

    Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20–100 N m–1 at room temperature, much smaller than 340 N m–1 (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 Nmore » m–1 when the aspect ratio of graphene membranes is increased. Finally, these results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Altogether, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties.« less

  6. Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    NASA Technical Reports Server (NTRS)

    Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.

    2007-01-01

    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.

  7. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    SciTech Connect

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui; Xu, Ke Wang, Jianfeng; Ren, Guoqiang

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  8. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-01-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  9. Electronic and Mechanical Properties of Graphene-Germanium Interfaces Grown by Chemical Vapor Deposition.

    PubMed

    Kiraly, Brian; Jacobberger, Robert M; Mannix, Andrew J; Campbell, Gavin P; Bedzyk, Michael J; Arnold, Michael S; Hersam, Mark C; Guisinger, Nathan P

    2015-11-11

    Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110) leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this work, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene-Ge interface. PMID:26506006

  10. Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination.

    PubMed

    Li, Xiaoyin; Zhang, Shunhong; Wang, Fancy Qian; Guo, Yaguang; Liu, Jie; Wang, Qian

    2016-06-01

    Penta-graphene has recently been proposed as a new allotrope of carbon composed of pure pentagons, and displays many novel properties going beyond graphene [Zhang et al., Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 2372]. To further explore the property modulations, we have carried out a theoretical investigation of the hydrogenated and fluorinated penta-graphene sheets. Our first-principles calculations reveal that hydrogenation and fluorination can effectively tune the electronic and mechanical properties of penta-graphene: turning the sheet from semiconducting to insulating; changing the Poisson's ratio from negative to positive, and reducing the Young's modulus. Moreover, the band gaps of the hydrogenated and fluorinated penta-graphene sheets are larger than those of fully hydrogenated and fluorinated graphene by 0.37 and 0.04 eV, respectively. The phonon dispersions and ab initio molecular dynamics simulations confirm that the surface modified penta-graphene sheets are dynamically and thermally stable, and show that the hydrogenated penta-graphene has more Raman-active modes with higher frequencies as compared to the fluorinated penta-graphene. PMID:27063837

  11. Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Ban, Shuai; Jing, Xie; Zhou, Hongjun; Zhang, Lei; Zhang, Jiujun

    2014-12-01

    A symmetrical graphene-based supercapacitor is constructed for studying the charge-transfer mechanism within the graphene-based electrodes using both experiment measurements and molecular simulation. The in-house synthesized graphene is characterized by XRD, SEM and BET measurements for morphology and surface area. It is observed that the electric capacity of graphene electrode can be reduced by both high internal resistance and limited mass transfer. Computer modeling is conducted at the molecular level to characterize the diffusion behavior of electrolyte ions to the interior of electrode with emphasis on the unique 2D confinement imposed by graphene layers. Although graphene powder poses a moderate internal surface of 400 m2 g-1, the capacitance performance of graphene electrode can be as good as that of commercial activated carbon which has an overwhelming surface area of 1700 m2 g-1. An explanation to this abnormal correlation is that graphene material has an intrinsic capability of adaptively reorganizing its microporous structure in response to intercalation of ions and immergence of electrolyte solvent. The accessible surface of graphene is believed to be dramatically enlarged for ion adsorption during the charging process of capacitor.

  12. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials.

    PubMed

    Shahil, Khan M F; Balandin, Alexander A

    2012-02-01

    We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (~10-15%) present simultaneously with the thicker multilayers of large lateral size (~1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ~5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface. PMID:22214526

  13. Adsorption of Ar on individual carbon nanotubes, graphene, and graphite

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Boris; Kahn, Joshua; Vilches, Oscar; Cobden, David

    2015-03-01

    We compare and contrast results of adsorption measurements of Ar on single-walled carbon nanotubes, graphene, and graphite. Adsorption isotherms on individual suspended nanotubes were obtained using both the mechanical resonance frequency shift (sensitive to mass adsorption) and the electrical conductance. Isotherms on graphene mounted on hexagonal boron nitride were obtained using only the conductance. New volumetric adsorption isotherms on bulk exfoliated graphite were also obtained, paying special attention to the very low coverage region (less than 2% of a monolayer). This allowed us to compare the degree of heterogeneity on the three substrate types, the binding energies, and the van der Waals 2D parameters. Research supported by NSF DMR 1206208.

  14. Fabrication and electrical characterization of graphene formed chemically on nickel nano electro mechanical system (NEMS) switch.

    PubMed

    Choe, Byeong-In; Lee, Jung-Kyu; Lee, Bora; Kim, Kwanyong; Choi, Woo Young; Hong, Byung Hee; Lee, Jong-Ho

    2014-12-01

    In this work, we successfully fabricated a reliable nano-electro-mechanical system (NEMS) switch with graphene formed chemically on pre-patterned nickel (Ni) film movable beam. Its electrical characteristics were investigated in terms of current-voltage (I-V) and repetitive switching (on/off) properties. The graphene in the movable beam was selectively formed chemically only on the patterned Ni film. Graphene material may help overcome the stiction and reliability problems in nano-electro-mechanical devices. A study on graphene cantilever already has been reported by using only single or multi-layer of transferred graphene. However, the graphene selectively grown on Ni film has not been reported for NEMS switch. The graphene grown on Ni film by chemical vapor deposition method (CVD) were characterized by Raman spectroscopy. The fabricated lateral NEMS switch has w/l/t = 500 nm/20 μm/150 nm as a Ni dimension and an air-gap of -300 nm in lateral direction. The fabricated graphene movable beam formed chemically on Ni film shows reduced pull-in voltage and improved endurance (extended repetitive switching operations). PMID:25971076

  15. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    PubMed Central

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-01-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties. PMID:26568039

  16. CVD graphene growth and transfer techniques for the fabrication of micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Losowyj, Daniel; Storch, Isaac; McCune, Thomas; McEuen, Paul

    2013-03-01

    Graphene's superlative mechanical strength, electrical mobility, low mass, and large surface area make it a prime candidate for use in micromechanical resonators, which have potential applications in mass and force sensing, radio frequency signal processing, and optomechanics. Our resonators use graphene grown by chemical vapor deposition (CVD) and have excellent mechanical performance, but their electrical performance is comparatively worse than that of exfoliated graphene devices. We attribute these limitations to contamination from copper oxidation during the growth and solvents used in the transfer process. To remedy this, we have performed CVD growths on copper foils with long anneal times, confirming with Raman spectroscopy and SEM that the graphene is single layer and high quality. We have also found that graphene suspended on a substrate can survive high temperature air annealing, provided that the temperature ramp is gradual. Improving the electrical performance of these novel devices will facilitate their use in a variety of new experiments and applications.

  17. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  18. Biomass derived solvents for the scalable production of single layered graphene from graphite.

    PubMed

    Sharma, Mukesh; Mondal, Dibyendu; Singh, Nripat; Prasad, Kamalesh

    2016-07-12

    Among four different biomass derived green and sustainable solvents namely levulinic acid (LA), ethyl lactate (EL), γ-valerolactone (GVL) and formic acid (FA) only LA was found to exfoliate graphite to single and few layered graphene sheets. During exfoliation, the formation of LA crystals embedded with single layered graphene sheets was observed. The process is scalable and the solvent can be recovered and reused in five subsequent cycles of exfoliation for the large scale production of graphene sheets. PMID:26898386

  19. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators.

    PubMed

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Qian, Rong; Jiang, Pingkai

    2013-10-18

    We present a novel strategy for the fabrication of ordered and flexible polymer-based graphene foams by self-assembly of graphene sheets on a 3D polymer skeleton. The obtained graphene foams show excellent mechanical, electrical, and hydrophobic properties, thus holding great potential as elastic conductors and oil-water separators. PMID:23913816

  20. Penta-graphene: A new carbon allotrope.

    PubMed

    Zhang, Shunhong; Zhou, Jian; Wang, Qian; Chen, Xiaoshuang; Kawazoe, Yoshiyuki; Jena, Puru

    2015-02-24

    A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson's ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics. PMID:25646451

  1. Penta-graphene: A new carbon allotrope

    PubMed Central

    Zhang, Shunhong; Zhou, Jian; Wang, Qian; Chen, Xiaoshuang; Kawazoe, Yoshiyuki; Jena, Puru

    2015-01-01

    A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson’s ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics. PMID:25646451

  2. One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids

    PubMed Central

    Bernal, M. Mar; Pérez, Emilio M.

    2015-01-01

    A simple one-pot process to exfoliate graphite and synthesize nanographene-dimesitylporphyrin hybrids has been developed. Despite the bulky mesityl groups, which are expected to hinder the efficient π–π stacking between the porphyrin core and graphene, the liquid-phase exfoliation of graphite is significantly favored by the presence of the porphyrins. Metallation of the porphyrin further enhances this effect. The resulting graphene/porphyrin hybrids were characterized by spectroscopy (UV-visible, fluorescence, and Raman) and microscopy (STEM, scanning transmission electron microscopy). PMID:25984598

  3. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries.

    PubMed

    Liu, Wanshuang; Zhao, Chenyang; Zhou, Rui; Zhou, Dan; Liu, Zhaolin; Lu, Xuehong

    2015-06-01

    In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 ± 0.08 mg mL(-1), which is much higher than the typical reported concentrations (<1.0 mg mL(-1)) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications. PMID:25970569

  4. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    PubMed Central

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  5. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-06-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy.

  6. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy.

    PubMed

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  7. Electronic and mechanical properties of graphene-germanium interfaces grown by chemical vapor deposition

    DOE PAGESBeta

    Kiraly, Brian T.; Jacobberger, Robert M.; Mannix, Andrew J.; Campbell, Gavin P.; Bedzyk, Michael J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.

    2015-10-27

    Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110)more » leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this study, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene–Ge interface.« less

  8. Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2016-08-01

    Spintronics—the all-electrical control of the electron spin for quantum or classical information storage and processing—is one of the most promising applications of the two-dimensional material graphene. Although pristine graphene has negligible spin-orbit coupling (SOC), both theory and experiment suggest that SOC in graphene can be enhanced by extrinsic means, such as functionalization by adatom impurities. We present a theory of transport in graphene that accounts for the spin-coherent dynamics of the carriers, including hitherto-neglected spin precession processes taking place during resonant scattering in the dilute impurity limit. We uncover an "anisotropic spin precession" (ASP) scattering process in graphene, which contributes a large current-induced spin polarization and modifies the standard spin Hall effect. ASP scattering arises from two dimensionality and extrinsic SOC, and apart from graphene, it can be present in other 2D materials or in the surface states of 3D materials with a fluctuating SOC. Our theory also yields a comprehensive description of the spin relaxation mechanisms present in adatom-decorated graphene, including Elliot-Yafet and D'yakonov-Perel relaxation rates, the latter of which can become an amplification process in a certain parameter regime of the SOC disorder potential. Our work provides theoretical foundations for designing future graphene-based integrated spintronic devices.

  9. Electronic and mechanical properties of graphene-germanium interfaces grown by chemical vapor deposition

    SciTech Connect

    Kiraly, Brian T.; Jacobberger, Robert M.; Mannix, Andrew J.; Campbell, Gavin P.; Bedzyk, Michael J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.

    2015-10-27

    Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110) leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this study, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene–Ge interface.

  10. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism.

    PubMed

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2015-01-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials. PMID:26289729

  11. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism

    PubMed Central

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A.; Paci, Jeffrey T.; Espinosa, Horacio D.

    2015-01-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials. PMID:26289729

  12. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A.; Paci, Jeffrey T.; Huang, Jiaxing; Nguyen, Sonbinh T.; Espinosa, Horacio D.

    2015-08-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials.

  13. Scaling properties of charge transport in polycrystalline graphene.

    PubMed

    Van Tuan, Dinh; Kotakoski, Jani; Louvet, Thibaud; Ortmann, Frank; Meyer, Jannik C; Roche, Stephan

    2013-04-10

    Polycrystalline graphene is a patchwork of coalescing graphene grains of varying lattice orientations and size, resulting from the chemical vapor deposition (CVD) growth at random nucleation sites on metallic substrates. The morphology of grain boundaries has become an important topic given its fundamental role in limiting the mobility of charge carriers in polycrystalline graphene, as compared to mechanically exfoliated samples. Here we report new insights to the current understanding of charge transport in polycrystalline geometries. We created realistic models of large CVD-grown graphene samples and then computed the corresponding charge carrier mobilities as a function of the average grain size and the coalescence quality between the grains. Our results reveal a remarkably simple scaling law for the mean free path and conductivity, correlated to atomic-scale charge density fluctuations along grain boundaries. PMID:23448361

  14. Strain and morphology of graphene membranes on responsive microhydrogel patterns

    SciTech Connect

    Shaina, P. R.; Jaiswal, Manu

    2014-11-10

    We study the configuration of atomically-thin graphene membranes on tunable microhydrogel patterns. The polyethylene oxide microhydrogel structures patterned by electron-beam lithography show increase in height, with a persistent swelling ratio up to ∼10, upon exposure to vapors of an organic solvent. We demonstrate that modifying the height fluctuations of the microhydrogel affects the strain and morphology of ultrathin graphene membrane over-layer. Raman spectroscopic investigations indicate that small lattice strains can be switched on in mechanically exfoliated few-layer graphene membranes that span these microhydrogel structures. In case of chemical-vapor deposited single-layer graphene, we observe Raman signatures of local depinning of the membranes upon swelling of microhydrogel pillars. We attribute this depinning transition to the competition between membrane-substrate adhesion energy and membrane strain energy, where the latter is tuned by hydrogel swelling.

  15. Modulation of mechanical resonance by chemical potential oscillation in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Changyao; Deshpande, Vikram V.; Koshino, Mikito; Lee, Sunwoo; Gondarenko, Alexander; MacDonald, Allan H.; Kim, Philip; Hone, James

    2016-03-01

    The classical picture of the force on a capacitor assumes a large density of electronic states, such that the electrochemical potential of charges added to the capacitor is given by the external electrostatic potential and the capacitance is determined purely by geometry. Here we consider capacitively driven motion of a nano-mechanical resonator with a low density of states, in which these assumptions can break down. We find three leading-order corrections to the classical picture: the first of which is a modulation in the static force due to variation in the internal chemical potential; the second and third are changes in the static force and dynamic spring constant due to the rate of change of chemical potential, expressed as the quantum (density of states) capacitance. As a demonstration, we study capacitively driven graphene mechanical resonators, where the chemical potential is modulated independently of the gate voltage using an applied magnetic field to manipulate the energy of electrons residing in discrete Landau levels. In these devices, we observe large periodic frequency shifts consistent with the three corrections to the classical picture. In devices with extremely low strain and disorder, the first correction term dominates and the resonant frequency closely follows the chemical potential. The theoretical model fits the data with only one adjustable parameter representing disorder-broadening of the Landau levels. The underlying electromechanical coupling mechanism is not limited by the particular choice of material, geometry, or mechanism for variation in the chemical potential, and can thus be extended to other low-dimensional systems.

  16. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.

    PubMed

    Li, Xuesong; Colombo, Luigi; Ruoff, Rodney S

    2016-08-01

    Over the past decade, graphene has advanced rapidly as one of the most promising materials changing human life. Development of production-worthy synthetic methodologies for the preparation of various types of graphene forms the basis for its investigation and applications. Graphene can be used in the forms of either microflake powders or large-area thin films. Graphene powders are prepared by the exfoliation of graphite or the reduction of graphene oxide, while graphene films are prepared predominantly by chemical vapor deposition (CVD) on a variety of substrates. Both metal and dielectric substrates have been explored; while dielectric substrates are preferred over any other substrate, much higher quality graphene large-area films have been grown on metal substrates such as Cu. The focus here is on the progress of graphene synthesis on Cu foils by CVD, including various CVD techniques, graphene growth mechanisms and kinetics, strategies for synthesizing large-area graphene single crystals, graphene transfer techniques, and, finally, challenges and prospects are discussed. PMID:26991960

  17. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  18. Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications

    PubMed Central

    Qiu, Yang; Guo, Fei; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Thermal reduction of graphene oxide or graphite oxide (GO) is an important processing step in the fabrication of many graphene-based materials and devices. Here we show that some bulk solid GO samples can undergo explosive decomposition when small samples are heated slowly in inert gas environments, while others do not. These micro-explosions can occur for samples as small as few milligrams and are sufficiently energetic to cause laboratory equipment damage. Thermochemical analysis methods are used to understand the factors that lead to the explosive reduction mode. The studies show that the explosive mode of reduction is caused by the exothermicity of GO reduction coupled with a threshold sample mass/size that causes heat and mass transfer limitations leading to local temperature rise and a thermal runaway reaction. The explosive mode of reduction is not caused or promoted by interstitial water, and its onset temperature can be lowered by immersion in potassium hydroxide solution. By allowing early release of internal gas pressure, the explosive mode reduces the extent of surface area development in GO exfoliation from an optimum value of 1470 m2g−1 obtained under non-explosive reduction conditions. Explosive reduction of bulk GO poses industrial safety hazards during large-scale storage, handling, and processing. PMID:25018560

  19. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    SciTech Connect

    Sun, Jie Lindvall, Niclas; Yurgens, August; Nam, Youngwoo; Cole, Matthew T.; Teo, Kenneth B. K.; Woo Park, Yung

    2014-04-14

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature.

  20. Mechanical strain induced valley-dependent quantum magnetotransport of Dirac particles in graphene

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Shengli; Liu, Daqing; Wang, Vei

    2015-12-01

    We have explored the mechanical strain effects on the magnetotransport in graphene with a 1D electrostatic periodic potential in the presence of a perpendicular magnetic field. We find that, in a strong magnetic field regime, the conductivity exhibits a superposition of the Shubnikov-de Haas and Weiss oscillations in each valley due to the electrical modulation. Especially, the strain removes the valley degeneracy of Landau levels in inversion symmetric Dirac cones. Accordingly, this causes the valley-dependence of the conductivity. These phenomena, absent in a freestanding graphene, are a consequence of the anomalous spectrum of carriers in a fully stained graphene.

  1. Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals.

    PubMed

    Zaretski, Aliaksandr V; Root, Samuel E; Savchenko, Alex; Molokanova, Elena; Printz, Adam D; Jibril, Liban; Arya, Gaurav; Mercola, Mark; Lipomi, Darren J

    2016-02-10

    This article describes an effect based on the wetting transparency of graphene; the morphology of a metallic film (≤20 nm) when deposited on graphene by evaporation depends strongly on the identity of the substrate supporting the graphene. This control permits the formation of a range of geometries, such as tightly packed nanospheres, nanocrystals, and island-like formations with controllable gaps down to 3 nm. These graphene-supported structures can be transferred to any surface and function as ultrasensitive mechanical signal transducers with high sensitivity and range (at least 4 orders of magnitude of strain) for applications in structural health monitoring, electronic skin, measurement of the contractions of cardiomyocytes, and substrates for surface-enhanced Raman scattering (SERS, including on the tips of optical fibers). These composite films can thus be treated as a platform technology for multimodal sensing. Moreover, they are low profile, mechanically robust, semitransparent and have the potential for reproducible manufacturing over large areas. PMID:26765039

  2. Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals

    PubMed Central

    2016-01-01

    This article describes an effect based on the wetting transparency of graphene; the morphology of a metallic film (≤20 nm) when deposited on graphene by evaporation depends strongly on the identity of the substrate supporting the graphene. This control permits the formation of a range of geometries, such as tightly packed nanospheres, nanocrystals, and island-like formations with controllable gaps down to 3 nm. These graphene-supported structures can be transferred to any surface and function as ultrasensitive mechanical signal transducers with high sensitivity and range (at least 4 orders of magnitude of strain) for applications in structural health monitoring, electronic skin, measurement of the contractions of cardiomyocytes, and substrates for surface-enhanced Raman scattering (SERS, including on the tips of optical fibers). These composite films can thus be treated as a platform technology for multimodal sensing. Moreover, they are low profile, mechanically robust, semitransparent and have the potential for reproducible manufacturing over large areas. PMID:26765039

  3. Doping mechanisms in graphene-MoS{sub 2} hybrids

    SciTech Connect

    Sachs, B. Lichtenstein, A. I.; Britnell, L.; Eckmann, A.; Novoselov, K. S.; Wehling, T. O.; Jalil, R.; Belle, B. D.; Katsnelson, M. I.

    2013-12-16

    We present a joint theoretical and experimental investigation of charge doping and electronic potential landscapes in hybrid structures composed of graphene and semiconducting single layer molybdenum disulfide (MoS{sub 2}). From first-principles simulations, we find electron doping of graphene due to the presence of rhenium impurities in MoS{sub 2}. Furthermore, we show that MoS{sub 2} edges give rise to charge reordering and a potential shift in graphene, which can be controlled through external gate voltages. The interplay of edge and impurity effects allows the use of the graphene-MoS{sub 2} hybrid as a photodetector. Spatially resolved photocurrent signals can be used to resolve potential gradients and local doping levels in the sample.

  4. Wrinkled bilayer graphene with wafer scale mechanical strain

    NASA Astrophysics Data System (ADS)

    Mikael, Solomon; Seo, Jung-Hun; Javadi, Alireza; Gong, Shaoqin; Ma, Zhenqiang

    2016-05-01

    Wafer-scale strained bilayer graphene is demonstrated by employing a silicon nitride (Si3N4) stressor layer. Different magnitudes of compressive stress up to 840 MPa were engineered by adjusting the Si3N4 deposition recipes, and different strain conditions were analyzed using Raman spectroscopy. The strained graphene displayed significant G peak shifts and G peak splitting with 16.2 cm-1 and 23.0 cm-1 of the G band and two-dimensional band shift, which corresponds to 0.26% of strain. Raman mapping of large regions of the graphene films found that the largest shifts/splitting occurred near the bilayer regions of the graphene films. The significance of our approach lies in the fact that it can be performed in a conventional microfabrication process, i.e., the plasma enhanced chemical vapor deposition system, and thus easily implemented for large scale production.

  5. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Wanshuang; Zhao, Chenyang; Zhou, Rui; Zhou, Dan; Liu, Zhaolin; Lu, Xuehong

    2015-05-01

    In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications.In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved

  6. The effect of graphene content and sliding speed on the wear mechanism of nickel-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-12-01

    Nickel-graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  7. Fabrication, Characterization, and Applications of Graphene-based Flexible Films

    NASA Astrophysics Data System (ADS)

    Naik, Gautam

    Scientific interest in the field of nanotechnology has increased multifold since the discovery of multi-walled carbon nanotubes in the early 1990s. This further received a tremendous boost with the isolation of graphene, a single layer of sp2-hybridized carbon atoms, in 2004. Graphene has exceptional mechanical and electrical properties, which makes it an attractive candidate for electronics and composites. In order to realize the implementation of graphene for such applications, scalable production of graphene-based materials needs to be accomplished. Graphene oxide, the product of oxidation and exfoliation of graphite, is a promising precursor for bulk-production of graphene and graphene-like materials. The oxidation of graphite to synthesize graphene oxide results in the decoration of the basal plane of graphene with oxygen-containing functional groups. The presence of these functional groups makes graphene oxide strongly hydrophilic, making it soluble in water and a good candidate for solution-based processing. This hydrophilic nature of graphene oxide can also be utilized to fabricate highly sensitive and flexible humidity sensors, the results of which are included in this research. The fabricated humidity sensors show high sensitivity and a fast response time. A difference in response is observed at low and high humidity, with hysteresis observed at high humidity levels. A method to "reset" the sensor and a mechanism to explain the response is also proposed. Although the hydrophilic nature of graphene oxide makes it suitable for bulk processing, the presence of functional groups makes it defective and insulating. Graphene oxide needs to be reduced to make it electrically active. Numerous methodologies proposed for reduction of graphene oxide result in the simultaneous reduction and exfoliation of graphene oxide films. But for instances where flexible graphene films are required for certain applications, a method for reduction of graphene oxide flexible films

  8. Directed Therapy for Exfoliation Syndrome

    PubMed Central

    Angelilli, Allison; Ritch, Robert

    2009-01-01

    Exfoliation syndrome (XFS) is an age-related disorder of the extracellular matrix that leads the production of abnormal fibrillar material that leads to elevated intraocular pressure and a relatively severe glaucoma. Exfoliation material is deposited in numerous ocular tissues and extraocular organs. XFS is associated with ocular ischemia, cerebrovascular disease, neurodegenerative disease and cardiovascular disease. Current modalities of treatment include intraocular pressure lowering with topical antihypertensives, laser trabeculoplasty and filtration surgery. The disease paradigm for XFS should be expanded to include directed therapy designed specifically to target the underlying disease process. Potential targets include preventing the formation or promoting the depolymerization of exfoliation material. Novel therapies targeting trabecular meshwork may prove particularly useful in the care of exfoliative glaucoma. The systemic and ocular associations of XFS underscore the need for a comprehensive search for neuroprotective agents in its treatment. PMID:19888433

  9. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    PubMed

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  10. Comparative study on graphene growth mechanism using Ni films, Ni/Mo sheets, and Pt substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Joo; Jeong, Goo-Hwan

    2014-07-01

    We demonstrate a comparative study on graphene growth mechanism using various catalytic metal substrates such as Ni thin films, Ni-deposited Mo (Ni/Mo) sheets, and Pt sheets during chemical vapor deposition (CVD). Depending on the substrates, two kinds of graphene growth mechanisms that involve either precipitation or surface adsorption of carbon have been reported. We synthesized graphene, focusing especially on the initial growth stage during CVD, by varying synthesis parameters such as synthesis time, amount of feedstock, and cooling rate after synthesis. We concluded that precipitation-driven synthesis is dominant in the case of Ni substrates whereas adsorption-driven growth is dominant in the Ni/Mo system. In the case of the Pt substrate, which is generally believed to grow by carbon precipitation, graphene growth by adsorption was found to be dominant. We believe that our results will contribute to a clearer understanding of the graphene synthesis mechanism, and development of manufacturing routes for controllable synthesis of high-quality graphenes.

  11. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces

    PubMed Central

    Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.

    2016-01-01

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process. PMID:27531322

  12. Towards the Intrinsic Limit in As-Exfoliated MoS2

    NASA Astrophysics Data System (ADS)

    Sutton, Erin; George, Edward; Whapham, Emily; Burch, Kenneth; Burch Group Team

    In recent years, two-dimensional transition metal dichalcogenide (TMDC) semiconductors have been intensively studied as exciting non-zero band gap analogs to graphene. For example, molybdenum disulfide (MoS2), a TMDC, is a van der Waals material which can be thinned down to single atomic layers less than a nanometer thick via micro-mechanical cleavage. In this regime, quantum confinement effects give rise to properties not seen in the bulk crystal. The attractive properties of ultrathin MoS2 have inspired myriad applications, including spin- and valley-tronics, and LED and photo-detecting devices. As the performance of these devices is optimized, a method of modulating these properties is strongly desired. Through exfoliating MoS2 on various substrates in an inert glovebox environment, we have produced as-exfoliated MoS2 doped at the intrinsic level. We study the changes in the MoS2 via Raman and photoluminescence spectra and see shifts in excitonic behavior. The ability to create intrinsic MoS2 without the need for chemical doping or gating has exciting implications for optical studies of the material in addition to device applications such as photovoltaic, photocatalytic, and LED devices.

  13. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    PubMed

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-01

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin. PMID:26364925

  14. Determination of graphene layer thickness using optical image processing

    NASA Astrophysics Data System (ADS)

    Cook, Monica; Mani, R. G.

    2015-03-01

    Graphene, a single atomic layer of carbon arranged in a hexagonal lattice structure, is a valuable material in a wide range of research. A significant impediment to graphene research is the need to manually characterize the thickness of high-quality graphene produced via mechanical exfoliation. Traditional methods of characterizing the layer thickness of graphene, including Raman spectroscopy and atomic force microscopy, require expensive equipment and can be damaging to the graphene sample. We examine here a known alternative method for quantitatively determining the layer thickness of graphene on SiO2/Si based on optical image processing, which is quick, inexpensive, and non-invasive. Using RGB images of a candidate graphene sample and a background image, taken with a simple optical microscope and charge-coupled device (CCD) camera, we process the images with an algorithm based on Fresnel's law to obtain the contrast spectrum. Each layer of graphene exhibits a unique contrast spectrum for its particular substrate, which is measured and used for accurate layer identification. We also discuss how this algorithm can be generalized to characterize the thickness of other promising two-dimensional materials as well as more complex structures on a variety of substrates.

  15. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    NASA Astrophysics Data System (ADS)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  16. Complex transport behaviors of rectangular graphene quantum dots subject to mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Xu, Mengke; Wang, Yisen; Bao, Rui; Huang, Liang; Lai, Ying-Cheng

    2016-05-01

    Graphene-based mechanical resonators have attracted much attention due to their superior elastic properties and extremely low mass density. We investigate the effects of mechanical vibrations on electronic transport through graphene quantum dots, under the physically reasonable assumption that the time scale associated with electronic transport is much shorter than that with mechanical vibration so that, at any given time, an electron “sees” a static but deformed graphene sheet. We find that, besides periodic oscillation in the quantum transmission at the same frequency as that of mechanical vibrations, structures at finer scales can emerge as an intermediate state, which may lead to spurious higher-frequency components in the current through the device.

  17. Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties.

    PubMed

    Gao, Rungang; Hu, Nantao; Yang, Zhi; Zhu, Qirong; Chai, Jing; Su, Yanjie; Zhang, Liying; Zhang, Yafei

    2013-01-01

    In this paper, we have reported that paper-like graphene-Ag composite films could be prepared by a facile and novel chemical reduction method at a large scale. Using ascorbic acid as a reducing agent, graphene oxide films dipped in Ag+ aqueous solutions can be easily reduced along with the decoration of different sizes of Ag particles distributed uniformly. The results reveal that the obtained films exhibit improved mechanical properties with the enhancement of tensile strength and Young's modulus by as high as 82% and 136%, respectively. The electrical properties of graphene-Ag composite films were studied as well, with the sheet resistance of which reaching lower than approximately 600 Ω/□. The graphene-Ag composite films can be expected to find interesting applications in the area of nanoelectronics, sensors, transparent electrodes, supercapacitors, and nanocomposites. PMID:23324465

  18. Mechanism of DNA adsorption and desorption on graphene oxide.

    PubMed

    Park, Joon Soo; Goo, Nam-In; Kim, Dong-Eun

    2014-10-28

    Graphene oxide (GO) adsorbing a fluorophore-labeled single-stranded (ss) DNA serves as a sensor system because subsequent desorption of the adsorbed probe DNA from GO in the presence of complementary target DNA enhances the fluorescence. In this study, we investigated the interaction of single- and double-stranded (ds) DNAs with GO by using a fluorescently labeled DNA probe. Although GO is known to preferentially interact with ssDNA, we found that dsDNA can also be adsorbed on GO, albeit with lower affinity. Furthermore, the status of ssDNA or dsDNA previously adsorbed on the GO surface was investigated by adding complementary or noncomplementary DNA (cDNA or non-cDNA) to the adsorption complex. We observed that hybridization occurred between the cDNA and the probe DNA on the GO surface. On the basis of the kinetics driven by the incoming additional DNA, we propose a mechanism for the desorption of the preadsorbed probe DNA from the GO surface: the desorption of the GO-adsorbed DNA was facilitated following its hybridization with cDNA on the GO surface; when the GO surface was almost saturated with the adsorbed DNA, nonspecific desorption dominated the process through a simple displacement of the GO-adsorbed DNA molecules by the incoming DNA molecules because of the law of mass action. Our results can be applied to design appropriate DNA probes and to choose proper GO concentrations for experimental setups to improve specific signaling in many biosensor systems based on the GO platform. PMID:25283243

  19. Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Lian, Ke-Yan; Liu, Lingling; Wu, Yingchao; Qiu, Qi; Jiang, Jun; Deng, Mingsen; Luo, Yi

    2016-03-01

    Nitrogen-doped graphene (N-graphene) has attractive properties that has been widely studied over the years. However, its possible formation process still remains unclear. Here, we propose a highly feasible formation mechanism of the graphitic-N doing in thermally treated graphene with ammonia by performing ab initio molecular dynamic simulations at experimental conditions. Results show that among the commonly native point defects in graphene, only the single vacancy 5–9 and divacancy 555–777 have the desirable electronic structures to trap N-containing groups and to mediate the subsequent dehydrogenation processes. The local structure of the defective graphene in combining with the thermodynamic and kinetic effect plays a crucial role in dominating the complex atomic rearrangement to form graphitic-N which heals the corresponding defect perfectly. The importance of the symmetry, the localized force field, the interaction of multiple trapped N-containing groups, as well as the catalytic effect of the temporarily formed bridge-N are emphasized, and the predicted doping configuration agrees well with the experimental observation. Hence, the revealed mechanism will be helpful for realizing the targeted synthesis of N-graphene with reduced defects and desired properties.

  20. Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia

    PubMed Central

    Li, Xiao-Fei; Lian, Ke-Yan; Liu, Lingling; Wu, Yingchao; Qiu, Qi; Jiang, Jun; Deng, Mingsen; Luo, Yi

    2016-01-01

    Nitrogen-doped graphene (N-graphene) has attractive properties that has been widely studied over the years. However, its possible formation process still remains unclear. Here, we propose a highly feasible formation mechanism of the graphitic-N doing in thermally treated graphene with ammonia by performing ab initio molecular dynamic simulations at experimental conditions. Results show that among the commonly native point defects in graphene, only the single vacancy 5–9 and divacancy 555–777 have the desirable electronic structures to trap N-containing groups and to mediate the subsequent dehydrogenation processes. The local structure of the defective graphene in combining with the thermodynamic and kinetic effect plays a crucial role in dominating the complex atomic rearrangement to form graphitic-N which heals the corresponding defect perfectly. The importance of the symmetry, the localized force field, the interaction of multiple trapped N-containing groups, as well as the catalytic effect of the temporarily formed bridge-N are emphasized, and the predicted doping configuration agrees well with the experimental observation. Hence, the revealed mechanism will be helpful for realizing the targeted synthesis of N-graphene with reduced defects and desired properties. PMID:27002190

  1. Superior Mobility in Chemical Vapor Deposition Synthesized Graphene by Grain Size Engineering

    NASA Astrophysics Data System (ADS)

    Petrone, Nicholas; Dean, Cory; Meric, Inanc; van der Zande, Arend; Huang, Pinshane; Wang, Lei; Muller, David; Shepard, Kenneth; Hone, James

    2012-02-01

    Chemical vapor deposition (CVD) offers a promising method to produce large-area films of graphene, crucial for commercial realization of graphene-based applications. However, electron transport in CVD grown graphene has continued to fall short of the performance demonstrated by graphene derived from mechanical exfoliation. Lattice defects and grain boundaries developed during growth, structural defects and chemical contamination introduced during transfer, and charged scatterers present in sub-optimal dielectric substrates have all been identified as sources of disorder in CVD grown graphene devices. We grow CVD graphene and fabricate field-effect transistors, attempting to minimize potential sources of disorder. We reduce density of grain boundaries in CVD graphene by controlling domain sizes up to 250 microns. By transferring CVD graphene onto h-BN utilizing a dry-transfer method, we minimize trapped charges at the interface between graphene and in the underlying substrate. We report field-effect mobilities up to 110,000 cm2V-1s-1 and oscillations in magnetotransport measurements below 1 T, confirming the high quality and low disorder in our CVD graphene devices.

  2. Triggering the Growth of Large Single Crystal Graphene by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wu, Tianru; Wang, Haomin; Ding, Guqiao; Jiang, Da; Xie, Xiaoming; Jiang, Mianheng

    2013-03-01

    Graphene, a monolayer of sp2 carbon atoms, has been attracting great interests as an ideal two dimensional crystalline material. Fabrication technique for wafer scale graphene via chemical vapor deposition (CVD) was developed several years ago. However, large scale graphene films from CVD method so far are found to be polycrystalline, consisting of numerous grain boundaries, which greatly degrade the electrical and mechanical properties of graphene. Recently, we obtained hexagonal-shaped single-crystal monolayer graphene domains (~1.2 mm). We adapted a strategy to synthesize larger size single crystal grains by regulating the supply of reactants and hytrogen. Nucleation density can be decreased to less than 1000 nuclei /m2. Gradually increase in the supply of reactants could break the equilibrium of growth and etching at the edge of hexagonal-shaped graphene grains. It drives the reaction toward quick growth of graphene domains during the whole CVD process. The graphene grains we obtained show high crystalline quality with high mobility of ~13000 cm2V-1s-1, which is comparable to that of exfoliated graphene. The results achieved will definitely benefit for further practical application of graphene electronics.

  3. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  4. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  5. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  6. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    PubMed

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. PMID:27042978

  7. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)-graphene oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zheng, Guangping; Zhan, Ke; Han, Zhuo; Wang, Hao

    2016-04-01

    Polarization switching in graphene oxides (GOs) and poly(vinylidene fluoride) (PVDF)-GO nanocomposite is investigated by piezoelectric force microscopy (PFM). The dynamical switching results reveal that GO films exhibit ferroelectric and piezoelectric properties with two-dimensional characteristics. Abnormal polarization switching is observed in PVDF-GO films, which is promising for electronic applications.

  8. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Nandy, Krishanu

    The quest for new materials with ever improving properties has motivated interest in bulk nanostructured materials. Graphene, a two-dimensional sheet of hexagonally arranged carbon atoms, has been of particular interest given its exceptional mechanical, thermal, optical and electrical properties. Graphene oxide is a chemically modified form of graphene in which the honeycomb lattice of carbon atoms is decorated with oxygen bearing functional groups. Graphene oxide represents a facile route for the production of large quantities of graphene based materials, is stable in aqueous and polar organic solvents and has the potential for further chemical modification. In this dissertation, the origin and influence of hierarchical structure on the mechanical properties of graphene oxide paper and graphene oxide paper based materials has been investigated. Free-standing papers derived from graphene oxide are of interest as structural materials due to their impressive mechanical properties. While studies have investigated the mechanical properties of graphene oxide papers, little is known about the formation mechanism. Using a series of flash-freezing experiments on graphene oxide papers undergoing formation, a stop-motion animation of the fabrication process was obtained. The results explain the origin of the hierarchical nature of graphene oxide papers and provide a method for the tailoring of graphene oxide based materials. An in depth study of fusion of graphene oxide papers demonstrates a simple single-step route for the fabrication of practical materials derived from graphene oxide papers. Fused papers retain the properties of constituent papers allowing for the fabrication of mechanical heterostructures that replicate the hierarchical nature of natural materials. The contribution of the hierarchical nature of graphene oxide papers to the mechanical properties was examined by comparing papers formed by two different mechanisms. The intermediate length scale structures

  9. Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates

    NASA Astrophysics Data System (ADS)

    Paolicelli, G.; Tripathi, M.; Corradini, V.; Candini, A.; Valeri, S.

    2015-02-01

    Friction characteristics of graphene deposited on different substrates have been studied by atomic force microscopy (AFM). In particular, we compared mechanically exfoliated graphene transferred over Si/SiO2 with respect to monolayer (ML) graphene grown in our laboratory by low temperature chemical vapor deposition on Ni(111) single crystal. Friction force measurements by AFM have been carried out as function of load under different environment conditions, namely vacuum (10-5 Torr), nitrogen and air. The typical decrease of friction force with increasing number of layers has been observed on graphene over Si/SiO2 in all environment including vacuum. Continuum mechanical approximation has been used to analyze the friction versus load curves of ML graphene on Ni(111). Analysis shows that Derjaguin-Mueller-Toporov model is in good agreement with our experimental data indicating that overall behavior of the interface graphene-Ni(111) is relatively rigid respect to out of plane deformations. This result is consistent with the structural characteristics of the interface since graphene grows in registry with Ni(111) surface with covalent bonding character. Finally, the shear strength and the work of adhesion of the two systems with respect to AFM tip in vacuum have been compared. The result of this procedure indicates that shear strength and work of adhesion measured on graphene-Si/SiO2 interface are always greater than those on graphene-Ni(111) interface.

  10. Equilibrium at the edge and atomistic mechanisms of graphene growth

    PubMed Central

    Artyukhov, Vasilii I.; Liu, Yuanyue; Yakobson, Boris I.

    2012-01-01

    The morphology of graphene is crucial for its applications, yet an adequate theory of its growth is lacking: It is either simplified to a phenomenological-continuum level or is overly detailed in atomistic simulations, which are often intractable. Here we put forward a comprehensive picture dubbed nanoreactor, which draws from ideas of step-flow crystal growth augmented by detailed first-principles calculations. As the carbon atoms migrate from the feedstock to catalyst to final graphene lattice, they go through a sequence of states whose energy levels can be computed and arranged into a step-by-step map. Analysis begins with the structure and energies of arbitrary edges to yield equilibrium island shapes. Then, it elucidates how the atoms dock at the edges and how they avoid forming defects. The sequence of atomic row assembly determines the kinetic anisotropy of growth, and consequently, graphene island morphology, explaining a number of experimental facts and suggesting how the growth product can further be improved. Finally, this analysis adds a useful perspective on the synthesis of carbon nanotubes and its essential distinction from graphene. PMID:22949702

  11. Equilibrium at the edge and atomistic mechanisms of graphene growth.

    PubMed

    Artyukhov, Vasilii I; Liu, Yuanyue; Yakobson, Boris I

    2012-09-18

    The morphology of graphene is crucial for its applications, yet an adequate theory of its growth is lacking: It is either simplified to a phenomenological-continuum level or is overly detailed in atomistic simulations, which are often intractable. Here we put forward a comprehensive picture dubbed nanoreactor, which draws from ideas of step-flow crystal growth augmented by detailed first-principles calculations. As the carbon atoms migrate from the feedstock to catalyst to final graphene lattice, they go through a sequence of states whose energy levels can be computed and arranged into a step-by-step map. Analysis begins with the structure and energies of arbitrary edges to yield equilibrium island shapes. Then, it elucidates how the atoms dock at the edges and how they avoid forming defects. The sequence of atomic row assembly determines the kinetic anisotropy of growth, and consequently, graphene island morphology, explaining a number of experimental facts and suggesting how the growth product can further be improved. Finally, this analysis adds a useful perspective on the synthesis of carbon nanotubes and its essential distinction from graphene. PMID:22949702

  12. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    PubMed Central

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334

  13. Electronic and Mechanical Properties of Graphene-Germanium Interfaces Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kiraly, Brian; Jacobberger, Robert; Mannix, Andrew; Campbell, Gavin; Bedzyk, Michael; Arnold, Michael; Hersam, Mark; Guisinger, Nathan

    Epitaxial graphene grown directly on semiconducting Ge wafers holds potential for fundamental science and electronics applications. However, since the initial demonstration, little work has been done on the structural and electronic properties of this system. To gain insight into the interface between graphene and Ge, we performed ultra-high vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy experiments to probe the atomic structure and chemistry at the interface. STS confirms stronger interfacial interaction on Ge(110), consistent with models of epitaxial growth. Raman spectroscopy shows that strain is highly prevalent after growth. Furthermore, the native strain modifies the atomic structure of the Germanium, inducing new and metastable Ge surface reconstructions following annealing. These reconstructions, in turn, modify both the electronic and mechanical properties of the graphene. Finally, graphene/Ge(001) represents the extremely strained case. Here graphene forces restructuring of the Ge surface into [107] facets. From this work, we see that the interaction between graphene and Ge is both dependent on the substrate crystallographic orientation and tunable.

  14. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    NASA Astrophysics Data System (ADS)

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication.

  15. Electric field effects in graphene/LaAlO{sub 3}/SrTiO{sub 3} heterostructures and nanostructures

    SciTech Connect

    Huang, Mengchen; Jnawali, Giriraj; Hsu, Jen-Feng; Dhingra, Shonali; Bi, Feng; Chen, Lu; D’Urso, Brian; Irvin, Patrick; Levy, Jeremy; Lee, Hyungwoo; Ryu, Sangwoo; Eom, Chang-Beom; Ghahari, Fereshte; Ravichandran, Jayakanth; Kim, Philip

    2015-06-01

    We report the development and characterization of graphene/LaAlO{sub 3}/SrTiO{sub 3} heterostructures. Complex-oxide heterostructures are created by pulsed laser deposition and are integrated with graphene using both mechanical exfoliation and transfer from chemical-vapor deposition on ultraflat copper substrates. Nanoscale control of the metal-insulator transition at the LaAlO{sub 3}/SrTiO{sub 3} interface, achieved using conductive atomic force microscope lithography, is demonstrated to be possible through the graphene layer. LaAlO{sub 3}/SrTiO{sub 3}-based electric field effects using a graphene top gate are also demonstrated. The ability to create functional field-effect devices provides the potential of graphene-complex-oxide heterostructures for scientific and technological advancement.

  16. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    SciTech Connect

    Murakami, Katsuhisa Dong, Tianchen; Kajiwara, Yuya; Takahashi, Teppei; Fujita, Jun-ichi; Hiyama, Takaki; Takai, Eisuke; Ohashi, Gai; Shiraki, Kentaro

    2014-06-16

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  17. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhisa; Dong, Tianchen; Kajiwara, Yuya; Hiyama, Takaki; Takahashi, Teppei; Takai, Eisuke; Ohashi, Gai; Shiraki, Kentaro; Fujita, Jun-ichi

    2014-06-01

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm2/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  18. Stacking order dependent mechanical properties of graphene/MoS{sub 2} bilayer and trilayer heterostructures

    SciTech Connect

    Elder, Robert M. E-mail: mahesh.neupane.ctr@mail.mil; Neupane, Mahesh R. E-mail: mahesh.neupane.ctr@mail.mil; Chantawansri, Tanya L.

    2015-08-17

    Transition metal dichalcogenides (TMDC) such as molybdenum disulfide (MoS{sub 2}) are two-dimensional materials that show promise for flexible electronics and piezoelectric applications, but their weak mechanical strength is a barrier to practical use. In this work, we perform nanoindentation simulations using atomistic molecular dynamics to study the mechanical properties of heterostructures formed by combining MoS{sub 2} with graphene. We consider both bi- and tri-layer heterostructures formed with MoS{sub 2} either supported or encapsulated by graphene. Mechanical properties, such as Young's modulus, bending modulus, ultimate tensile strength, and fracture strain, are extracted from nanoindentation simulations and compared to the monolayer and homogeneous bilayer systems. We observed that the heterostructures, regardless of the stacking order, are mechanically more robust than the mono- and bi-layer MoS{sub 2}, mainly due to the mechanical reinforcement provided by the graphene layer. The magnitudes of ultimate strength and fracture strain are similar for both the bi- and tri-layer heterostructures, but substantially larger than either the mono- and bi-layer MoS{sub 2}. Our results demonstrate the potential of graphene-based heterostructures to improve the mechanical properties of TMDC materials.

  19. Nanoscale Mechanical Characterization of Graphene/Polymer Nanocomposites using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Minzhen

    Graphene materials, exhibiting outstanding mechanical properties, are excellent candidates as reinforcement in high-performance polymer nanocomposites. In this dissertation, advanced atomic force microscopy (AFM) techniques are applied to study the nanomechanics of graphene/polymer nanocomposites, specifically the graphene/polymer interfacial strength and the stress transfer at the interface. Two novel methods to directly characterize the interfacial strength between individual graphene sheets and polymers using AFM are presented and applied to a series of polymers and graphene sheets. The interfacial strength of graphene/polymer varies greatly for different combinations. The strongest interaction is found between graphene oxide (GO) and polyvinyl alcohol (PVA), a strongly polar, water-based polymer. On the other hand, polystyrene, a non polar polymer, has the weakest interaction with GO. The interfacial bond strength is attributed to hydrogen bonding and physical adsorption. Further, the stress transfer in GO/PVA nanocomposites is studied quantitatively by monitoring the strain in individual GO sheet inside the polymer via AFM and Raman spectroscopy. For the first time, the strains of individual GO sheets in nanocomposites are imaged and quantified as a function of the applied external strains. The matrix strain is directly transferred to GO sheets for strains up to 8%. At higher strain levels, the onset of the nanocomposite failure and a stick-slip behavior is observed. This study reveals that GO is superior to pure graphene as reinforcement in nanocomposites. These results also imply the potential to make a new generation of nanocomposites with exceptional high strength and toughness. In the second part of this dissertation, AFM is used to study the structure of silk proteins and the morphology of spider silks. For the first time, shear-induced self-assembly of native silk fibroin is observed. The morphology of the Brown Recluse spider silk is investigated and a

  20. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Shen, Jianxiang; Zheng, Zijian; Wu, Youping; Zhang, Liqun

    2015-07-01

    By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction {\\varepsilon }np, volume fraction of graphene φ , thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as {{{C}}}60, CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of {\\varepsilon }np and φ , and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > {{{C}}}60. Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which

  1. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.

    PubMed

    Park, Sungjin; Lee, Kyoung-Seok; Bozoklu, Gulay; Cai, Weiwei; Nguyen, Sonbinh T; Ruoff, Rodney S

    2008-03-01

    Significant enhancement in mechanical stiffness (10-200%) and fracture strength (approximately 50%) of graphene oxide paper, a novel paperlike material made from individual graphene oxide sheets, can be achieved upon modification with a small amount (less than 1 wt %) of Mg(2+) and Ca(2+). These results can be readily rationalized in terms of the chemical interactions between the functional groups of the graphene oxide sheets and the divalent metals ions. While oxygen functional groups on the basal planes of the sheets and the carboxylate groups on the edges can both bond to Mg(2+) and Ca(2+), the main contribution to mechanical enhancement of the paper comes from the latter. PMID:19206584

  2. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.

    2011-06-01

    The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

  3. Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries

    NASA Astrophysics Data System (ADS)

    Yong, Ge; Hong-Xiang, Sun; Yi-Jun, Guan; Gan-He, Zeng

    2016-06-01

    The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures. The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries. More interestingly, at high temperatures, the ultimate strengths of the graphene with the zigzag-orientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures, which is determined by inner initial stress in grain boundaries. The results indicate that the finite temperature, especially the high one, has a significant effect on the ultimate strength of graphene with grain boundaries, which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications. Project supported by the Nation Natural Science Foundation of China (Grant Nos. 11347219 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the Training Project of Young Backbone Teacher of Jiangsu University, the Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University, China, and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201308).

  4. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    SciTech Connect

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Pan, Wei Shen, Wenzhong; Wan, Neng

    2014-12-28

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp{sup 2} domains.

  5. Negative differential resistance in boron nitride graphene heterostructures: physical mechanisms and size scaling analysis.

    PubMed

    Zhao, Y; Wan, Z; Xu, X; Patil, S R; Hetmaniuk, U; Anantram, M P

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  6. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  7. CMOS integration of inkjet-printed graphene for humidity sensing

    NASA Astrophysics Data System (ADS)

    Santra, S.; Hu, G.; Howe, R. C. T.; de Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-11-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things.

  8. CMOS integration of inkjet-printed graphene for humidity sensing.

    PubMed

    Santra, S; Hu, G; Howe, R C T; De Luca, A; Ali, S Z; Udrea, F; Gardner, J W; Ray, S K; Guha, P K; Hasan, T

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  9. CMOS integration of inkjet-printed graphene for humidity sensing

    PubMed Central

    Santra, S.; Hu, G.; Howe, R. C. T.; De Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10–80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  10. Microscopic mechanisms of graphene electrolytic delamination from metal substrates

    SciTech Connect

    Fisichella, G.; Di Franco, S.; Roccaforte, F.; Giannazzo, F.; Ravesi, S.

    2014-06-09

    In this paper, hydrogen bubbling delamination of graphene (Gr) from copper using a strong electrolyte (KOH) water solution was performed, focusing on the effect of the KOH concentration (C{sub KOH}) on the Gr delamination rate. A factor of ∼10 decrease in the time required for the complete Gr delamination from Cu cathodes with the same geometry was found increasing C{sub KOH} from ∼0.05 M to ∼0.60 M. After transfer of the separated Gr membranes to SiO{sub 2} substrates by a highly reproducible thermo-compression printing method, an accurate atomic force microscopy investigation of the changes in Gr morphology as a function of C{sub KOH} was performed. Supported by these analyses, a microscopic model of the delamination process has been proposed, where a key role is played by graphene wrinkles acting as nucleation sites for H{sub 2} bubbles at the cathode perimeter. With this approach, the H{sub 2} supersaturation generated at the electrode for different electrolyte concentrations was estimated and the inverse dependence of t{sub d} on C{sub KOH} was quantitatively explained. Although developed in the case of Cu, this analysis is generally valid and can be applied to describe the electrolytic delamination of graphene from several metal substrates.

  11. Infrared two-wave mixing technique for characterization of graphene THz plasmonic devices

    NASA Astrophysics Data System (ADS)

    Drew, Dennis; Jadidi, Mohammad; Sushkov, Andrei; Cai, Xinghan; Suess, Ryan; Mittendorff, Martin; Murphy, Thomas; Fuhrer, Michael; Daniels, Kevin; Gaskill, Kurt

    We have studied the heterodyne mixing of two beams from infrared lasers on graphene plasmonic devices and detectors. The nonlinear thermal response of graphene allows us to measure a DC photovoltage that depends on the heterodyne difference frequency and gate voltage. The inversion symmetry of the graphene device is broken by using dissimilar metal contacts to allow a net photo-thermoelectric signal. The power, frequency, and temperature dependence of the photoresponse are used to probe the graphene hot-electron cooling rates and mechanisms. We will discuss the use of photothermal effects in graphene to excite surface plasmons at the difference frequency. The high mobility of the free carriers in graphene is important for this experiment. We have measured exfoliated graphene on SiO2/Si substrate detector and we are working on BN graphene and intercalated SiC graphene devices. This work was sponsored by the U.S. ONR (N000141310865) and the U.S. NSF (ECCS 1309750).

  12. New-Generation Graphene from Electrochemical Approaches: Production and Applications.

    PubMed

    Yang, Sheng; Lohe, Martin R; Müllen, Klaus; Feng, Xinliang

    2016-08-01

    Extensive research suggests a bright future for the graphene market. However, for a long time there has been a huge gap between laboratory-scale research and commercial application due to the challenging task of reproducible bulk production of high-quality graphene at low cost. Electrochemical exfoliation of graphite has emerged as a promising wet chemical method with advantages such as upscalability, solution processability and eco-friendliness. Recent progress in the electrochemical exfoliation of graphite and prospects for the application of exfoliated graphene, mainly in the fields of composites, electronics, energy storage and conversion are discussed. PMID:26836313

  13. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges.

    PubMed

    Gan, Zhixing; Xu, Hao; Hao, Yanling

    2016-04-21

    Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application. PMID:27030656

  14. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges

    NASA Astrophysics Data System (ADS)

    Gan, Zhixing; Xu, Hao; Hao, Yanling

    2016-04-01

    Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application.

  15. Synthesis of Large Scale MoS2 -Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Friedman, Adam; Robinson, Jeremy; Jonker, Berend

    2014-03-01

    A rapidly progressing field involves the stacking of multiple two dimensional materials to form heterostructures. These heterosctructures have exhibited unique and interesting properties. For the most part, heterostructure devices are produced via mechanical exfoliation followed by careful aligning and stacking of the various components, limiting dimensions to micron-scale devices. Chemical vapor deposition (CVD) has proven to be a useful tool in the production of graphene and has very recently been investigated as a means for the growth of other 2D materials such as MoS2, hexagonal boron nitride and WS2. Using a two-step CVD process we are able to synthesize MoS2 on CVD grown graphene. AFM and Raman microscopy of the MoS2-graphene heterostructure show a uniform and continuous film on the cm scale.

  16. Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties

    NASA Astrophysics Data System (ADS)

    Duguay, Alex J.; Nader, Jacques W.; Kiziltas, Alper; Gardner, Douglas J.; Dagher, Habib J.

    2013-03-01

    Exfoliated graphite nanoplatelets (xGnP)-filled impact-modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt % xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride (PP-g-MA). The nanoparticles used were xGnP with three different sizes: xGnP5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP15 and xGnP25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better flexural and tensile properties for both neat and compatibilized composites. For composites containing a coupling agent, tensile and flexural modulus and strength increased with the addition of xGnP. In the case of neat composites, both tensile and flexural modulus and strength decreased at higher filler loading levels. Increasing xGnP loading resulted in reduction of elongation at break for both neat and composites containing coupling agent. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using scanning electron microscopy and transmission electron microscopy.

  17. Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties

    NASA Astrophysics Data System (ADS)

    Duguay, Alex J.; Nader, Jacques W.; Kiziltas, Alper; Gardner, Douglas J.; Dagher, Habib J.

    2014-03-01

    Exfoliated graphite nanoplatelets (xGnP)-filled impact-modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt % xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride (PP-g-MA). The nanoparticles used were xGnP with three different sizes: xGnP5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP15 and xGnP25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better flexural and tensile properties for both neat and compatibilized composites. For composites containing a coupling agent, tensile and flexural modulus and strength increased with the addition of xGnP. In the case of neat composites, both tensile and flexural modulus and strength decreased at higher filler loading levels. Increasing xGnP loading resulted in reduction of elongation at break for both neat and composites containing coupling agent. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using scanning electron microscopy and transmission electron microscopy.

  18. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels.

    PubMed

    Qiu, Ling; Liu, Diyan; Wang, Yufei; Cheng, Chi; Zhou, Kun; Ding, Jie; Truong, Van-Tan; Li, Dan

    2014-05-28

    The architecture of the nanofiller phase in polymer nanocomposites matters! Polymer hydrogels that can combine stimuli-responsiveness with excellent electrically conductivity and mechanical strength can be fabricated by incorporation of the polymer into an ultralight and superelastic graphene aerogel to form a binary network. PMID:24634392

  19. Resonant Scattering off Magnetic Impurities in Graphene: Mechanism for Ultrafast Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Kochan, D.; Gmitra, M.; Fabian, J.

    We give a tutorial account of our recently proposed mechanism for spin relaxation based on spin-flip resonant scattering off local magnetic moments. The mechanism is rather general, working in any material with a resonant local moment, but we believe that its particular niche is graphene, whose measured spin relaxation time is 100-1000 ps. Conventional spin-orbit coupling based mechanisms (Elliott-Yafet or Dyakonov-Perel) would require large concentrations (1000 ppm) of impurities to explain this. Our mechanism needs only 1 ppm of resonant local moments, as these act as local spin hot spots: the resonant scatterers do not appear to substantially affect graphene's measured resistivity, but are dominating spin relaxation. In principle, the local moments can come from a variety of sources. Most likely would be organic molecule adsorbants or metallic adatoms. As the representative model, particularly suited for a tutorial, we consider hydrogen adatoms which are theoretically and experimentally demonstrated to yield local magnetic moments when chemisorbed on graphene. We introduce the scattering formalism and apply it to graphene, to obtain the T-matrix and spin-flip scattering rates using the generalized Fermi golden rule.

  20. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation.

    PubMed

    Liu, Jun; Shen, Jianxiang; Zheng, Zijian; Wu, Youping; Zhang, Liqun

    2015-07-24

    By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction ε(np) volume fraction of grapheme φ thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as C60 CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of ε(np) and φ and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > C60 Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which can be greatly improved by the strong

  1. DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect.

    PubMed

    Bang, Gyeong Sook; Cho, Suhyung; Son, Narae; Shim, Gi Woong; Cho, Byung-Kwan; Choi, Sung-Yool

    2016-01-27

    This study reports a method for the facile and high-yield exfoliation of WX2 (X = S, Se) by sonication under aqueous conditions using single-stranded DNA (abbreviated as ssDNA) of high molecular weight. The ssDNA provided a high degree of stabilization and prevented reaggregation, and it enhanced the exfoliation efficiency of WX2 nanosheets due to adsorption on the WX2 surface and the electrostatic repulsion of sugars in the ssDNA backbone. The exfoliation yield was higher with ssDNA (80%-90%) than without (2%-4%); the yield with ssDNA was also higher than the value previously reported for aqueous exfoliation (∼10%). Given that two-dimensional nanomaterials have potential health and environmental applications, we investigated antibacterial activity of exfoliated WX2-ssDNA nanosheets, relative to graphene oxide (GO), and found that WSe2-ssDNA nanosheets had higher antibacterial activity against Escherichia coli K-12 MG1655 cells than GO. Our method enables large-scale exfoliation in an aqueous environment in a single step with a short reaction time and under ambient conditions, and it can be used to produce surface-active or catalytic materials that have broad applications in biomedicine and other areas. PMID:26734845

  2. Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water

    PubMed Central

    Engström, Ann-Christine; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Olin, Håkan

    2016-01-01

    The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process. PMID:27128841

  3. Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water.

    PubMed

    Blomquist, Nicklas; Engström, Ann-Christine; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Olin, Håkan

    2016-01-01

    The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process. PMID:27128841

  4. A molecular dynamic simulation study of mechanical properties of graphene-polythiophene composite with Reax force field

    NASA Astrophysics Data System (ADS)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2016-02-01

    In this paper, we performed molecular dynamic simulations by Reax force field to study the mechanical properties of graphene-polythiophene nanocomposite. By computing elastic constant, breaking stress, breaking strain and Young's modulus from the stress-strain curve for the nanocomposites, we investigated effects of tension orientation, graphene loading to the polymer, temperature of nanocomposite and defect of graphene on these mechanical characters. It is found that mechanical characters of tension along the zigzag orientation are higher than other directions. Also, by increasing the weight concentration of graphene in composite, the Young's modulus and breaking strain increase. Our results showed that the Young's modulus decreased with increasing temperature. Finally by applying defect on graphene structure, we found that one atom missing defect has lower Young's modulus. Also, by increasing the defects concentration, elastic modulus decreases gradually.

  5. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  6. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  7. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review

    NASA Astrophysics Data System (ADS)

    Page, A. J.; Ding, F.; Irle, S.; Morokuma, K.

    2015-02-01

    The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation—that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D → 1D → 2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp2-carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon-metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area.

  8. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.

    2014-09-01

    In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.

  9. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review.

    PubMed

    Page, A J; Ding, F; Irle, S; Morokuma, K

    2015-02-01

    The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation-that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D → 1D → 2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp(2)-carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon-metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area. PMID:25746411

  10. SPM Study and Growth Mechanism of Graphene Directly CVD-Grown on h-BN Film

    NASA Astrophysics Data System (ADS)

    Song, Young Jae; Kim, Minwoo; Wu, Qinke; Lee, Joohyun; Lee, Sungjoo; Wang, Min

    2014-03-01

    We present our Scanning Tunneling Microscopy (STM)/Spectroscopy (STS) and Kelvin Probe Force Microscope (KPFM) study for graphene directly CVD-grown on h-BN film. High resolution STM image shows perfect honeycomb lattice structure of graphene on top surface and Moiré pattern indicating the structural interference patter with the underlying h-BN crystal. Non-disturbed electronic structure of graphene on h-BN film is also confirmed by spatially-resolved STS measurements, which show very sharp and symmetric V shape with a Dirac point at Fermi level. To confirm the graphene growth mechanism on h-BN film/Cu foil, careful Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM) measurements were performed on different thickness of h-BN film on a SiO2 substrate to unveil the catalytic origin of graphene growth on h-BN/Cu. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (Grant Numbers: 2009-0083540, 2011-0030046, 2012R1A1A2020089 and 2012R1A1A1041416).

  11. The electro-mechanical responses of suspended graphene ribbons for electrostatic discharge applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ma, Rui; Chen, Qi; Xia, Ming; Ng, Jimmy; Wang, Albert; Xie, Ya-Hong

    2016-04-01

    This work presents a suspended graphene ribbon device for electrostatic discharge (ESD) applications. The device structure was proposed and fabricated after careful design considerations. Compared to the conventional ESD devices such as diodes, bipolar junction transistors, and metal-oxide-semiconductor field effect transistors, the proposed device structure is believed to render several advantages including zero leakage, low parasitic effects, fast response, and high critical current density. A process flow was developed for higher yield and reliability of the suspended graphene ribbons. Direct current (DC) and transmission-line pulse (TLP) measurements were carried out to investigate the switching behavior of the device, which is crucial for ESD operation. DC measurements with a different configuration were used to assess the mechanical shape evolution of the graphene ribbon upon biasing. Finite Element Simulations were conducted and agreed well with the experimental results. Furthermore, the current carrying capability of non-suspended graphene ribbons was tested using TLP. It was found that the critical current density of graphene is higher than that of copper wires widely used as interconnects in integrated circuits (ICs).

  12. Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Li, Jian

    2016-02-01

    In this paper, novel graphene/cellulose (GC) aerogels were prepared based on a green NaOH/PEG solution. Scanning electron microscope observation indicates that the three-dimensional network skeleton structure of cellulose aerogels is tightly covered by the compact sheet structure. X-ray diffraction and Raman spectroscopy analyses demonstrate that the graphene nanosheets have been successfully synthesized and embedded in the cellulose aerogels. The incorporation of graphene nanosheets gives rise to the significant improvement in the specific surface area and pore volume, thermal stability, mechanical strength, and oil adsorption efficiency of GC aerogels. Therefore, the green hybrid GC aerogels have more advantages over the pure cellulose aerogels in treating oil-containing wastewater or oil spills under the harsh environment.

  13. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    SciTech Connect

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  14. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  15. Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility.

    PubMed

    Hu, Feng; Patel, Mehulkumar; Luo, Feixiang; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin; Szostak, Michal

    2015-11-18

    Transition-metal-catalyzed alkylation reactions of arenes have become a central transformation in organic synthesis. Herein, we report the first general strategy for alkylation of arenes with styrenes and alcohols catalyzed by carbon-based materials, exploiting the unique property of graphenes to produce valuable diarylalkane products in high yields and excellent regioselectivity. The protocol is characterized by a wide substrate scope and excellent functional group tolerance. Notably, this process constitutes the first general application of graphenes to promote direct C-C bond formation utilizing polar functional groups anchored on the GO surface, thus opening the door for an array of functional group alkylations using benign and readily available graphene materials. Mechanistic studies suggest that the reaction proceeds via a tandem catalysis mechanism in which both of the coupling partners are activated by interaction with the GO surface. PMID:26496423

  16. Self-Assembly and Relaxation Behavior of Graphene Containing Acrylic Triblock Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Zabet, Mahla; Hashemnejad, Seyedmeysam; Kundu, Santanu

    2015-03-01

    Investigation of gel mechanical properties as a function of their structure is a significant research interest. This study presents the effect of graphene (or few-layer graphene) on the self-assembly and the relaxation behavior of a thermoreversible gel consists of a physically cross-linked poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] triblock copolymer in 2-ethyl-1-hexanol, a midblock selective solvent. Graphene was obtained by sonicating exfoliated graphite in 2-ethyl-1-hexanol at various concentrations. Filtration technique and spectrophotometry were utilized to measure the graphene concentration in the dispersions. The dispersed graphene was then incorporated in a series of gels and the effect of graphene on mechanical properties, including the relaxation behavior were studied. Small angle X-ray scattering (SAXS) was used to investigate the microstructure of these gels at room temperature. SAXS data were analyzed to estimate the number of end blocks per junction zone, the average spacing between the junctions, and the change of these properties as a function of graphene concentration. The results indicate that the presence of graphene affects the self-assembly process.

  17. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films

    PubMed Central

    2013-01-01

    Background Graphene oxide (GO)can be dispersed through functionalization, or chemically converted to make different graphene-based nanocomposites with excellent mechanical and thermal properties. Chitosan, a partially deacetylated derivative of chitin, is extensively used for food packaging, biosensors, water treatment, and drug delivery. GO can be evenly dispersed in chitosan matrix through the formation of amide linkages between them, which is different from previous reports focusing on preparing GO/chitosan nanocomposites through physical mixing. Results In this study, free-standing graphene oxide-chitosan (GO-chitosan) nanocomposite films have been prepared. The GO-chitosan films are biologically compatible and mechanically reinforced. Through the formation of amide linkages between GO’s carboxylic acid groups and chitosan's amine groups, GO could be evenly dispersed within the chitosan matrix. We also characterized the GO-chitosan composite films using element analysis, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, differential scanning calorimetry, and thermo gravimetric analysis. Compared to pristine chitosan film, the tensile strength of GO-chitosan film is improved by 2.5 folds and Young’s modulus increases by nearly 4.6 folds. The glass transition temperature of GO-chitosan composite film shifts from 118°C to 158°C compared to the pristine chitosan, indicating its enhanced thermal stability. GO-chitosan composite film was also evaluated for its biocompatibility with C3H10T1/2 cells by in vitro fluorescent staining. The graphene oxide-reinforced chitosan composite films could have applications in functional biomaterials. Conclusion The present study describes a useful and simple method to chemically attach biocompatible chitosan onto graphene oxide. We envision that the GO-chitosan film will open avenues for next-generation graphene applications in the realm of functional biomaterial. PMID:23442350

  18. Quantum mechanics of graphene with a one-dimensional potential

    SciTech Connect

    Miserev, D. S.; Entin, M. V.

    2012-10-15

    Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.

  19. Mechanism of carbon nanotubes unzipping into graphene ribbons

    NASA Astrophysics Data System (ADS)

    Rangel, Norma L.; Sotelo, Juan C.; Seminario, Jorge M.

    2009-07-01

    The fabrication of graphene nanoribbons from carbon nanotubes (CNTs) treated with potassium permanganate in a concentrated sulfuric acid solution has been reported by Kosynkin et al. [Nature (London) 458, 872 (2009)]. Here we report ab initio density functional theory calculations of such unzipping process. We find that the unzipping starts with the potassium permanganate attacking one of the internal C-C bonds of the CNT, stretching and breaking it. The created defect weakens neighboring bonds along the length of the CNT, making them energetically prone to be attacked too.

  20. Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications

    NASA Astrophysics Data System (ADS)

    Sanjeeva Rao, Kodepelly; Senthilnathan, Jaganathan; Ting, Jyh-Ming; Yoshimura, Masahiro

    2014-10-01

    This study reports the ``continuous production'' of high-quality, few-layer nitrogen-functionalized graphene nanosheets in aqueous solutions directly from graphite via a two-step method. The initial step utilizes our recently developed peroxide-mediated soft and green electrochemical exfoliation approach for the production of few-layer graphene nanosheets. The subsequent step, developed here, produces nitrogen-functionalized graphene nanosheets via selective alkylation/basic hydrolysis reactions using rather a simple nitrogen precursor bromoacetonitrile, which was never reported in the literature. A possible reaction mechanism of the nitrogen-functionalized graphene formation is proposed. The proposed method allows the quantification of the phenolic and hydroxyl functional groups of anodic few-layer graphene via the derivatization chemistry approach. Additionally, a nitrogen-functionalized graphene-gold nanocrystal hybrid is prepared using gold nanocrystals obtained via the microwave irradiation of H[AuCl4] and trisodium citrate solution. A systematic investigation demonstrates that the nitrogen-functionalized graphene-gold nanocrystal hybrid shows enhanced catalytic reduction of carbonyl compounds such as benzaldehyde.This study reports the ``continuous production'' of high-quality, few-layer nitrogen-functionalized graphene nanosheets in aqueous solutions directly from graphite via a two-step method. The initial step utilizes our recently developed peroxide-mediated soft and green electrochemical exfoliation approach for the production of few-layer graphene nanosheets. The subsequent step, developed here, produces nitrogen-functionalized graphene nanosheets via selective alkylation/basic hydrolysis reactions using rather a simple nitrogen precursor bromoacetonitrile, which was never reported in the literature. A possible reaction mechanism of the nitrogen-functionalized graphene formation is proposed. The proposed method allows the quantification of the phenolic

  1. Soliton-dependent plasmon reflection at bilayer graphene domain walls

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Shi, Zhiwen; Zeng, Bo; Wang, Sheng; Kang, Ji-Hun; Joshi, Trinity; Jin, Chenhao; Ju, Long; Kim, Jonghwan; Lyu, Tairu; Shen, Yuen-Ron; Crommie, Michael; Gao, Hong-Jun; Wang, Feng

    2016-08-01

    Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system that features stacking solitons structurally and quantum valley Hall boundary states electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons.

  2. Quantum resistance metrology using graphene.

    PubMed

    Janssen, T J B M; Tzalenchuk, A; Lara-Avila, S; Kubatkin, S; Fal'ko, V I

    2013-10-01

    In this paper, we review the recent extraordinary progress in the development of a new quantum standard for resistance based on graphene. We discuss the unique properties of this material system relating to resistance metrology and discuss results of the recent highest-ever precision direct comparison of the Hall resistance between graphene and traditional GaAs. We mainly focus our review on graphene expitaxially grown on SiC, a system which so far resulted in the best results. We also briefly discuss progress in the two other graphene material systems, exfoliated graphene and chemical vapour deposition graphene, and make a critical comparison with SiC graphene. Finally, we discuss other possible applications of graphene in metrology. PMID:24088373

  3. Quantum resistance metrology using graphene

    NASA Astrophysics Data System (ADS)

    Janssen, T. J. B. M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Fal'ko, V. I.

    2013-10-01

    In this paper, we review the recent extraordinary progress in the development of a new quantum standard for resistance based on graphene. We discuss the unique properties of this material system relating to resistance metrology and discuss results of the recent highest-ever precision direct comparison of the Hall resistance between graphene and traditional GaAs. We mainly focus our review on graphene expitaxially grown on SiC, a system which so far resulted in the best results. We also briefly discuss progress in the two other graphene material systems, exfoliated graphene and chemical vapour deposition graphene, and make a critical comparison with SiC graphene. Finally, we discuss other possible applications of graphene in metrology.

  4. Efficient and Scalable Production of 2D Material Dispersions using Hexahydroxytriphenylene as a Versatile Exfoliant and Dispersant.

    PubMed

    Liu, Gang; Komatsu, Naoki

    2016-06-01

    Thin-layer 2D materials have been attracting enormous interest, and various processes have been investigated to obtain these materials efficiently. In view of their practical applications, the most desirable source for the preparation of these thin-layer materials is the pristine bulk materials with stacked layers, such as pristine graphite. There are many options in terms of conditions for the exfoliation of thin-layer materials, and these include wet and dry processes, with or without additives, and the kind of solvent. In this context, we found that the versatile exfoliant hexahydroxytriphenylene works efficiently for the exfoliation of typical 2D materials such as graphene, MoS2 , and hexagonal boron nitride (h-BN) by both wet and dry processes by using sonication and ball milling, respectively, in aqueous and organic solvents. As for graphene, stable dispersions with relatively high concentrations (up to 0.28 mg mL(-1) ) in water and tetrahydrofuran were obtained from graphite in the presence of hexahydroxytriphenylene by a wet process with the use of bath sonication and by a dry process involving ball milling. Especially, most of the graphite was exfoliated and dispersed as thin-layer graphene in both aqueous and organic solvents through ball milling, even on a large scale (47-86 % yield). In addition, the exfoliant was easily removed from the precipitated composite by heat treatment without disturbing the graphene structure. Bulk MoS2 and h-BN were also exfoliated by both wet and dry processes. Similar to graphene, dispersions of MoS2 and h-BN of high concentrations in water and DMF were produced in high yields through ball milling. PMID:26918302

  5. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  6. Preparation and mechanical characterization of polycaprolactone/graphene oxide biocomposite nanofibers

    NASA Astrophysics Data System (ADS)

    Lopresti, Francesco; Maio, Andrea; Botta, Luigi; Scaffaro, Roberto

    2016-05-01

    Biocomposite nanofiber scaffolds of polycaprolactone (PCL) filled with graphene oxide (GO) were prepared using electrospinning technology. Morphological and mechanical properties of the scaffolds were characterized in dry and wet environment. The results showed that the successful incorporation of GO nanosheets into PCL polymer nanofibers improved their mechanical properties. Furthermore it was demonstrated the higher performance achieved when GO is filled at low concentration in the nanofibers.

  7. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    SciTech Connect

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo E-mail: kbh37@incheon.ac.kr; Park, Min; Lee, Minwoo; Jeong, Dae Hong; Shin, Dong Seok; Kim, Byung Hoon E-mail: kbh37@incheon.ac.kr; Kubatkin, Sergey

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  8. Verification of electron doping in single-layer graphene due to H2 exposure with thermoelectric power

    NASA Astrophysics Data System (ADS)

    Hong, Sung Ju; Park, Min; Kang, Hojin; Lee, Minwoo; Soler-Delgado, David; Shin, Dong Seok; Kim, Kyung Ho; Kubatkin, Sergey; Jeong, Dae Hong; Park, Yung Woo; Kim, Byung Hoon

    2015-04-01

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H2 molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  9. A study on nanofabricated fully suspended graphene microribbons and their photophysics

    NASA Astrophysics Data System (ADS)

    Patil, Vikram

    Graphene exhibits extraordinary electrical, mechanical and optical properties which have attracted tremendous attention for applications in nanoelectronics, nanophotonics and novel sensor technologies. Properties such as wavelength-independent optical absorption and high carrier motilities are of particular interest for photodetection applications. While photodetectors made from mechanically exfoliated graphene are well reported in literature, a scalable approach, such as photodetectors made from chemical vapor deposition (CVD)-grown graphene, is highly desired from a practical standpoint. However, the photophysics of CVD-graphene involves complex mechanisms arising from inherent grain boundaries and defect levels, which are not well understood. Furthermore, the fabrication and characterization of suspended CVD-graphene structures are challenging, since they require the incorporation of several unique methodologies to create high performance photodetectors. This dissertation presents a study of CVD- graphene microribbons suspended between the metal contacts in photodetector applications. Several fabrication techniques, including larger-area CVD growth and polymer free transfer of monolayer graphene, full suspension of graphene microribbons and laser-current annealing, are utilized to obtain high-quality suspended graphene microribbons. In this study, Full suspension of CVD-graphene microribbons is found to enable four-fold improvement in photoresponse over substrate-supported microribbons, which is a significant step towards enhancing responsivity of future generation photodetectors. The photophysics of fully suspended graphene microribbons is analyzed using light-current input/output (L-I) analysis, which describes incident power dependent characteristics of photoelectric and/or photo-thermoelectric effects. From the analysis, it is found that the photoelectric effect dominates the photocurrent generation mechanism in fully suspended graphene, in contrast to the

  10. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids

    NASA Astrophysics Data System (ADS)

    Kovtyukhova, Nina I.; Wang, Yuanxi; Berkdemir, Ayse; Cruz-Silva, Rodolfo; Terrones, Mauricio; Crespi, Vincent H.; Mallouk, Thomas E.

    2014-11-01

    Graphite intercalation compounds are formed by inserting guest molecules or ions between sp2-bonded carbon layers. These compounds are interesting as synthetic metals and as precursors to graphene. For many decades it has been thought that graphite intercalation must involve host-guest charge transfer, resulting in partial oxidation, reduction or covalent modification of the graphene sheets. Here, we revisit this concept and show that graphite can be reversibly intercalated by non-oxidizing Brønsted acids (phosphoric, sulfuric, dichloroacetic and alkylsulfonic acids). The products are mixtures of graphite and first-stage intercalation compounds. X-ray photoelectron and vibrational spectra indicate that the graphene layers are not oxidized or reduced in the intercalation process. These observations are supported by density functional theory calculations, which indicate a dipolar interaction between the guest molecules and the polarizable graphene sheets. The intercalated graphites readily exfoliate in dimethylformamide to give suspensions of crystalline single- and few-layer graphene sheets.

  11. Prediction of structural and mechanical properties of atom-decorated porous graphene via density functional calculations

    NASA Astrophysics Data System (ADS)

    Ansari, Reza; Ajori, Shahram; Malakpour, Sina

    2016-04-01

    The considerable demand for novel materials with specific properties has motivated the researchers to synthesize supramolecular nanostructures through different methods. Porous graphene is the first two-dimensional hydrocarbon synthesized quite recently. This investigation is aimed at studying the mechanical properties of atom-decorated (functionalized) porous graphene by employing density functional theory (DFT) calculation within both local density approximations (LDA) and generalized gradient approximations (GGA). The atoms are selected from period 3 of periodic table as well as Li and O atom from period 2. The results reveal that metallic atoms and noble gases are adsorbed physically on porous graphene and nonmetallic ones form chemical bonds with carbon atom in porous graphene structure. Also, it is shown that, in general, atom decoration reduces the values of mechanical properties such as Young's, bulk and shear moduli as well as Poisson's ratio, and this reduction is more considerable in the case of nonmetallic atoms (chemical adsorption), especially oxygen atoms, as compared to metallic atoms and noble gases (physical adsorption).

  12. Line defects in Graphene: How doping cures the electronic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Berger, Daniel; Ratsch, Christian

    Graphene and carbon nanotubes have extraordinary mechanical properties. Intrinsic line defects such as local non-hexagonal reconstructions or grain boundaries, however, significantly reduce the tensile strength and destroy its unique electronic properties. Here, we address the properties of line defects in graphene from first-principles on the level of full-potential density functional theory, and assess doping as one strategy to strengthen such materials. We carefully disentangle the global and local effect of doping by comparing results from the virtual crystal approximation with those from local substitution of chemical species, in order to gain a detailed understanding of the breaking and stabilization mechanisms. We find that n-type doping or local substitution with electron rich species increases the ultimate tensile strength significantly. In particular, it can stabilize the defects beyond the ultimate tensile strength of the pristine material. We therefore propose that this should be a key strategy to strengthen graphenic materials. We find that doping can furthermore lead to semi-conducting behaviour along line defects, ultimately restoring the unique electronic properties of graphene.

  13. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  14. Strategy and mechanism for controlling the direction of defect evolution in graphene: preparation of high quality defect healed and hierarchically porous graphene

    NASA Astrophysics Data System (ADS)

    Cao, Kecheng; Tian, Yin; Zhang, Yongzhi; Yang, Xiaodan; Bai, Chiyao; Luo, Yue; Zhao, Xiaosheng; Ma, Lijian; Li, Shoujian

    2014-10-01

    In this paper, a novel approach for controlling the direction of defect evolution in graphene through intercalation of organic small molecules into graphite oxide (GO) combined with a one-pot microwave-assisted reaction is reported. By using ethanol as intercalator, the bulk production of high quality graphene with its defects being satisfactorily healed is achieved. The repair of defects using extraneous carbon atoms and the hybrid state of these carbon atoms are definitely demonstrated using isotopic tracing studies with 13C-labeled ethanol combined with 13C solid-state NMR. The defect healed graphene shows excellent crystallinity, extremely low oxygen content (C : O ratio of 23.8) and has the highest sheet conductivity (61 500 S m-1) compared to all other reported graphene products derived from GO. By using methanol or benzene as intercalators, hierarchically porous graphene with a self-supported 3-dimensional framework (~917 m2 g-1) containing both macropores and mesopores (2-5 nm) is obtained. This graphene possesses a distinctive amorphous carbon structure around the edge of the nanopores, which could be conducive to enhancing the lithium storage performance (up to 580 mA h g-1 after 300 cycles) when tested as an anode of lithium ion batteries, and might have promising applications in the field of electrode materials, catalysis, and separation, and so on. The mechanism involved for the controlled defect evolution is also proposed. The simple, ultrafast and unified strategy developed in this research provides a practical and effective approach to harness structural defects in graphene-based materials, which could also be expanded for designing and preparing other ordered carbon materials with specific structures.In this paper, a novel approach for controlling the direction of defect evolution in graphene through intercalation of organic small molecules into graphite oxide (GO) combined with a one-pot microwave-assisted reaction is reported. By using ethanol as

  15. Transfer-Free, Wafer-Scale Manufacturing of Graphene-Based Electromechanical Resonant Devices

    NASA Astrophysics Data System (ADS)

    Cullinan, Michael; Gorman, Jason

    2013-03-01

    Nanoelectromechanical (NEMS) resonators offer the potential to extend the limits of force and mass detection due to their small size, high natural frequencies and high Q-factors. Graphene-based NEMS resonators are particularly promising due to their high elastic modulus and atomic thickness. However, widespread use of graphene in such systems is limited by the way in which graphene-based devices are typically fabricated. Most graphene-based NEMS devices are fabricated in a ``one-off'' manner using slow, limited scale methods such as mechanical exfoliation, electron beam lithography, or transfer from copper foils which can't be incorporated into standard micro/nanofabrication lines. This talk will present a method that can be used to manufacture graphene-based NEMS devices at the wafer scale using conventional microfabrication techniques. In this method graphene is grown directly on thin film copper using chemical vapor deposition. The copper film is then patterned and etched to produce graphene-based NEMS resonators. This talk will also address some of the challenges in fabricating a large number of graphene devices at the wafer scale including achieving high uniformity across the wafer, increasing device-to-device repeatability, and producing high device yields.

  16. Fast and fully-scalable synthesis of reduced graphene oxide

    PubMed Central

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-01-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene. PMID:25976732

  17. Fast and fully-scalable synthesis of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-05-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.

  18. Fast and fully-scalable synthesis of reduced graphene oxide.

    PubMed

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-01-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene. PMID:25976732

  19. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    PubMed Central

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-01-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m−1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s−1) and generating additional microbubbling by aeration at the liquid surface. PMID:24875584

  20. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-05-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m-1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s-1) and generating additional microbubbling by aeration at the liquid surface.

  1. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components.

    PubMed

    Shen, Jianfeng; He, Yongmin; Wu, Jingjie; Gao, Caitian; Keyshar, Kunttal; Zhang, Xiang; Yang, Yingchao; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-08-12

    Exfoliation of two-dimensional (2D) materials into mono- or few layers is of significance for both fundamental studies and potential applications. In this report, for the first time surface tension components were directly probed and matched to predict solvents with effective liquid phase exfoliation (LPE) capability for 2D materials such as graphene, h-BN, WS2, MoS2, MoSe2, Bi2Se3, TaS2, and SnS2. Exfoliation efficiency is enhanced when the ratios of the surface tension components of the applied solvent is close to that of the 2D material in question. We enlarged the library of low-toxic and common solvents for LPE. Our study provides distinctive insight into LPE and has pioneered a rational strategy for LPE of 2D materials with high yield. PMID:26200657

  2. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

    PubMed

    Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2012-04-17

    Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while

  3. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    SciTech Connect

    Tian, Zhengshan; Xu, Chunxiang Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-24

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, π-π stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  4. Mechanically tunable strain fields in suspended graphene by micro electromechanical systems

    NASA Astrophysics Data System (ADS)

    Khodkov, Tymofiy; Goldsche, Matthias; Sonntag, Jens; Reichardt, Sven; Verbiest, Gerard; Trellenkamp, Stephan; Stampfer, Christoph

    The discovery of graphene triggered an enormous interest on the class of two-dimensional (2D) materials. 2D materials manifested high sensitivity of their thermal, optical or electric response to applied tensile stress. Therefore, a rigorous and systematic investigation of their mechanical properties is extremely important. On the example of graphene - a top candidate for future flexible electronic devices and sensors - we demonstrate fully controlled and restorable realization of various strain fields in 2D membranes by coupling them to Si-based electrostatic micro-actuators (comb-drives). The comb-drive actuators are capable to provide significant forces and they are made of highly-doped silicon, i.e. they can be operated down to cryogenic temperatures allowing the investigation of quantum effects in electromechanical systems. Using confocal Raman spectroscopy we characterize strain distribution in suspended mono- and bilayer graphene sheets under induced tension (up to 0.5%). A detailed analysis clearly show that graphene samples reproducibly experience strain in different directions only while applying voltages to the micro-actuator. This approach empowers accurate tuning of applied tension in any isolated 2D materials independent on other crucial parameters.

  5. Spin dynamics in bilayer graphene: Role of electron-hole puddles and Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Van Tuan, Dinh; Adam, Shaffique; Roche, Stephan

    2016-07-01

    We report on spin transport features which are unique to high quality bilayer graphene, in the absence of magnetic contaminants and strong intervalley mixing. The time-dependent spin polarization of a propagating wave packet is computed using an efficient quantum transport method. In the limit of vanishing effects of substrate and disorder, the energy dependence of the spin lifetime is similar to monolayer graphene with an M -shaped profile and minimum value at the charge neutrality point, but with an electron-hole asymmetry fingerprint. In sharp contrast, the incorporation of substrate-induced electron-hole puddles (characteristics of supported graphene either on SiO2 or hBN ) surprisingly results in a large enhancement of the low-energy spin lifetime and a lowering of its high-energy values. Such a feature, unique to the bilayer, is explained in terms of a reinforced Dyakonov-Perel mechanism at the Dirac point, whereas spin relaxation at higher energies is driven by pure dephasing effects. This suggests further electrostatic control of the spin transport length scales in graphene devices.

  6. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  7. Characterization of SiO{sub 2}/SiN{sub x} gate insulators for graphene based nanoelectromechanical systems

    SciTech Connect

    Tóvári, E.; Csontos, M. Kriváchy, T.; Csonka, S.; Fürjes, P.

    2014-09-22

    The structural and magnetotransport characterization of graphene nanodevices exfoliated onto Si/SiO{sub 2}/SiN{sub x} heterostructures are presented. Improved visibility of the deposited flakes is achieved by optimal tuning of the dielectric film thicknesses. The conductance of single layer graphene Hall-bar nanostructures utilizing SiO{sub 2}/SiN{sub x} gate dielectrics were characterized in the quantum Hall regime. Our results highlight that, while exhibiting better mechanical and chemical stability, the effect of non-stoichiometric SiN{sub x} on the charge carrier mobility of graphene is comparable to that of SiO{sub 2}, demonstrating the merits of SiN{sub x} as an ideal material platform for graphene based nanoelectromechanical applications.

  8. Terahertz spectroscopy of a multilayers flake of graphene

    NASA Astrophysics Data System (ADS)

    Clericò, V.; Delgado Notario, J. A.; Campos, N.; Gómez, D.; Diez, E.; Velazquez, J. E.; Meziani, Y. M.

    2015-10-01

    Terahertz Time Domain Spectroscopy (THz-TDS) technique has been used to characterize two graphene based samples produced by exfoliation and CVD methods. In both cases, we find two interesting bands, in both CVD and exfoliated graphene, in the 0.2-2 THz range. Quality information can be extracted with this non-destructive technique. The obtained values of the conductivity are in the same range of those obtained in the literature.

  9. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  10. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties.

    PubMed

    Zhao, Zhisheng; Wang, Erik F; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-01-01

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young's moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson's ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications. PMID:25648723

  11. The Nanoparticle Size Effect in Graphene Cutting: A "Pac-Man" Mechanism.

    PubMed

    Qiu, Zongyang; Song, Li; Zhao, Jin; Li, Zhenyu; Yang, Jinlong

    2016-08-16

    Metal-nanoparticle-catalyzed cutting is a promising way to produce graphene nanostructures with smooth and well-aligned edges. Using a multiscale simulation approach, we unambiguously identified a "Pac-Man" cutting mechanism, characterized by the metal nanoparticle "biting off" edge carbon atoms through a synergetic effect of multiple metal atoms. By comparing the reaction rates at different types of edge sites, we found that etching of an entire edge carbon row could be triggered by a single zigzag-site etching event, which explains the puzzling linear dependence of the overall carbon-atom etching rate on the nanoparticle surface area observed experimentally. With incorporation of the nanoparticle size effect, the mechanisms revealed herein open a new avenue to improve controllability in graphene cutting. PMID:27218224

  12. All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector

    NASA Astrophysics Data System (ADS)

    Yanzhen, Tan; Fan, Yang; Jun, Ma; Hoi Lut, Ho; Wei, Jin

    2015-09-01

    We demonstrate an all-optical-fiber photoacoustic (PA) spectrometric gas sensor with a graphene nano-mechanical resonator as the acoustic detector. The acoustic detection is performed by a miniature ferrule-top nano-mechanical resonator with a ˜100-nm-thick, 2.5-mm-diameter multilayer graphene diaphragm. Experimental investigation showed that the performance of the PA gas sensor can be significantly enhanced by operating at the resonance of the grapheme diaphragm where a lower detection limit of 153 parts-per-billion (ppb) acetylene is achieved. The all-fiber PA sensor which is immune to electromagnetic interference and safe in explosive environments is ideally suited for real-world remote, space-limited applications and for multipoint detection in a multiplexed fiber optic sensor network.

  13. Novel Growth Mechanism of Low-Temperature-Grown Graphene by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Chih; Boyd, David; Lin, Wei-Hisang; Yeh, Nai-Chang

    2014-03-01

    We show a one-step method that employs PECVD for rapidly producing superior quality, large-area (~ 1 cm2) , monolayer graphene on Cu at low temperature (LT). The key to our approach is that deposition of high-quality graphene on Cu can be achieved through balancing carbon deposition by methyl radicals with etching of amorphous carbon by atomic hydrogen, while concurrently preparing the Cu surface for growth by cyano radicals. We find that removal of Cu always accompanies graphene growth, as evidenced by the presence of Cu deposits on the quartz tube and sample holder for each successful growth. We are also able to fabricate monolayer graphene by PECVD growth in 3 minutes. Even if the growth time is increased to 20 minutes, we still observe monolayer instead of multilayer graphene, suggesting that the growth mechanism differs from high-temperature CVD grown graphene. Electrical mobility determined by the field-effect-transistor configuration exhibits consistently high values, up to 60,000 cm2/V-s on BN at 300K, exceeding the best values reported for thermal-CVD graphene on BN. Our findings suggest a promising pathway to large-scale, superior-quality and one-step inexpensive graphene fabrication for scientific research and technological applications. Work supported by NSF under the IQIM at Caltech.

  14. Viscoelastic properties of graphene-based epoxy resins

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  15. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide.

    PubMed

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Dang, Tram T; Topkaya, Seda Nur; Gao, Xiguang; Yang, Seung Yun; Jung, Sung Mi; Oh, Jong Hyun; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2013-11-26

    Incorporating graphene oxide inside GelMA hydrogels enhances their mechanical properties and reduces UV-induced cell damage while preserving their favorable characteristics for 3D cell encapsulation. NIH-3T3 fibroblasts encapsulated in GO-GelMA microgels demonstrate excellent cellular viability, proliferation, spreading, and alignment. GO reinforcement combined with a multi-stacking approach offers a facile engineering strategy for the construction of complex artificial tissues. PMID:23996513

  16. Sheared graphene: Electronic properties shaped by a mechanical instability

    NASA Astrophysics Data System (ADS)

    Concha, Andres; Cheng, Shengfeng; Covaci, Lucian; Mahadevan, L.

    2015-03-01

    We explore the effects of shearing graphene ribbons on its geometry, and electronic properties. Inspired by macroscopic experiments, we show that spontaneous patterns appear when a wide ribbon is subject to shear. We compared this pattern and different regimes obtained via MD simulations with macroscopic experiments, and find good agreement between them. Beyond the low shear regime a second generation of wrinkles emerge when the system relaxes trying to keep the bond lengths as close to the relaxed length as possible. Remarkably, for all shear ratios the induced superlattice generates a momentum kick when electronic excitations enter the deformed region, an effective pseudo-magnetic superlattice, and a strong Fermi velocity renormalization. These effects modify electronic properties and suggest a simple route to engineer electronic waveguides and switches at the nanoscale. Our proposal is a concrete realization of a quantum device that takes full advantage of an elastic instability that spans from the nano to macro -scales. AC was partially supported by Conicyt Grant 79112004, and Fondecyt under Grant 11130075. LC acknowledges individual support from FWO-Vlaanderen.

  17. Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging.

    PubMed

    Toumia, Yosra; Domenici, Fabio; Orlanducci, Silvia; Mura, Francesco; Grishenkov, Dmitry; Trochet, Philippe; Lacerenza, Savino; Bordi, Federico; Paradossi, Gaio

    2016-06-29

    Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin. PMID:27269868

  18. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst.

    PubMed

    Huang, Dahong; Yin, Lifeng; Niu, Junfeng

    2016-06-01

    Cleavage of the strong carbon-fluorine bonds is critical for elimination of perfluorooctanoic acid (PFOA) from the environment. In this work, we investigated the decomposition of PFOA with the SiC/graphene catalyst under UV light irradiation. The decomposition rate constant (k) with SiC/graphene was 0.096 h(-1), 2.2 times higher than that with commercial nano-TiO2. Surface fluorination on SiC/graphene was analyzed by X-ray photoelectron spectroscopy (XPS), revealing the conversions of Si-H bonds into Si-F bonds. A different route was found to generate the reactive Si-H bonds on SiC/graphene, substituting for silylium (R3Si(+)) to activate C-F bonds. During the activation process, photogenerated electrons on SiC transfer rapidly to perfluoroalkyl groups by the medium of graphene, further reducing the electron cloud density of C-F bonds to promote the activation. The hydrogen-containing hydrodefluorination intermediates including (CF3(CF2)2CFH, CF3(CF2)3CH2, CF3(CF2)4CH2, and CF3(CF2)4CFHCOOH) were detected to verify the hydrodefluorination process. The photoinduced hydrodefluorination mechanisms of PFOA can be consequently inferred as follows: (1) fluorine atoms in perfluoroalkyl groups were replaced by hydrogen atoms due to the nucleophilic substitution reaction via the Si-H/C-F redistribution, and (2) generation of CH2 carbene from the hydrogen-containing perfluoroalkyl groups and the C-C bonds scission by the Photo-Kolbe decarboxylation reaction under UV light excitation. This photoinduced hydrodefluorination provides insight into the photocatalytic decomposition of perfluorocarboxylic acids (PFCAs) in an aqueous environment. PMID:27128100

  19. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.

    PubMed

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-01-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070

  20. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation

    NASA Astrophysics Data System (ADS)

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-03-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.

  1. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation

    PubMed Central

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-01-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070

  2. Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation.

    PubMed

    Li, Chen; Wang, Tailin; Wu, Yongzhong; Ma, Fukun; Zhao, Gang; Hao, Xiaopeng

    2014-12-12

    Layered materials, if exfoliated effectively, will exhibit several unique properties, offering great potential for diverse applications. To this end, in this study, we develop a novel, universal, and environmentally friendly method named as 'water freezing expansion exfoliation' for producing two-dimensional nanosheets. This method exploits the expansion in the volume of water upon freezing. When the water freezing expansion condition is reproduced in layered materials, the layers exfoliate to overcome the van der Waals force between them. The expansion process is performed by repeated cycling between 4 °C and -20 °C to effectively exfoliate layered materials of graphite, hexagonal boron nitride (h-BN), MoS2 and WS2. Systematic characterization of the samples thus obtained using electron microscopy and optical studies substantiate the formation of thin flakes (graphene, h-BN, MoS2, and WS2 nanosheets). The method demonstrated in this study is cost-effective and does not demand sophisticated equipment and stringent high temperature conditions. Given this general applicability, this method holds great promise for exfoliating layered materials that are sensitive to elevated temperature. PMID:25414167

  3. Graphene on Au-coated SiOx substrate: Its visibility and intrinsic core-level photoemission

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Chen, Jhih-Wei; Wang, Chiang-Lun; Chen, Chia-Hao; Chen, Yi-Chun

    2012-02-01

    With the motivation of precisely and intrinsically characterizing a exfoliate graphene using photoelectron spectroscopy, a conducting substrate having high optical contrast is greatly desired. Here, we demonstrate that exfoliated graphene can be optically visible on a thin 9-nm Au-coated SiOx substrate, and can be easily conducted into scanning photoelectron microscopy/spectroscopy (SPEM/S) studies. Because of the elimination of charging effect, precisely core-level characterization of exfoliated graphene is presented with different numbers of layers. Consequently, the usage of Au-coated SiOx substrate serves a simple but effective method to study pristine graphene by photoelectron spectroscopy and other electron-detection techniques.

  4. Strategy and mechanism for controlling the direction of defect evolution in graphene: preparation of high quality defect healed and hierarchically porous graphene.

    PubMed

    Cao, Kecheng; Tian, Yin; Zhang, Yongzhi; Yang, Xiaodan; Bai, Chiyao; Luo, Yue; Zhao, Xiaosheng; Ma, Lijian; Li, Shoujian

    2014-11-21

    In this paper, a novel approach for controlling the direction of defect evolution in graphene through intercalation of organic small molecules into graphite oxide (GO) combined with a one-pot microwave-assisted reaction is reported. By using ethanol as intercalator, the bulk production of high quality graphene with its defects being satisfactorily healed is achieved. The repair of defects using extraneous carbon atoms and the hybrid state of these carbon atoms are definitely demonstrated using isotopic tracing studies with (13)C-labeled ethanol combined with (13)C solid-state NMR. The defect healed graphene shows excellent crystallinity, extremely low oxygen content (C : O ratio of 23.8) and has the highest sheet conductivity (61 500 S m(-1)) compared to all other reported graphene products derived from GO. By using methanol or benzene as intercalators, hierarchically porous graphene with a self-supported 3-dimensional framework (∼917 m(2) g(-1)) containing both macropores and mesopores (2-5 nm) is obtained. This graphene possesses a distinctive amorphous carbon structure around the edge of the nanopores, which could be conducive to enhancing the lithium storage performance (up to 580 mA h g(-1) after 300 cycles) when tested as an anode of lithium ion batteries, and might have promising applications in the field of electrode materials, catalysis, and separation, and so on. The mechanism involved for the controlled defect evolution is also proposed. The simple, ultrafast and unified strategy developed in this research provides a practical and effective approach to harness structural defects in graphene-based materials, which could also be expanded for designing and preparing other ordered carbon materials with specific structures. PMID:25265966

  5. Confocal microscopy and exfoliative cytology

    PubMed Central

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-01-01

    Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a

  6. Experimental study on the multisoliton pattern formation in an erbium-doped fiber laser passively mode-locked by graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Qi; Chen, Yu; Zhao, Chujun; Li, Ying; Wen, Jianguo; Zhang, Han

    2013-04-01

    We demonstrate an erbium-doped fiber laser passively mode-locked by few layers of graphene prepared by the mechanical exfoliation of the high oriented pyrolytic graphite through the Scotch-tape method. This all-fiber ring cavity delivered a pulse train with a repetition rate of 1.646 MHz and pulse duration of 1.656 ps. By continuously adjusting the laser cavity parameters, one can observe various soliton patterns, such as ordered-, chaotic-, bunched-, and harmonic-multisoliton state. This evidenced that a mode-locked fiber laser based on graphene saturable absorber indeed provided a well-controlled nonlinear optics platform for soliton dynamics study.

  7. Exfoliated graphite nanoplatelets as reinforcement for multifunctional polypropylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Kalaitzidou, Kyriaki

    The focus of this research is to investigate the interactions between exfoliated graphite nanoplatelets (graphene sheets ˜10nm thickness, ˜1 um diameter), a new nanomaterial developed by Drzal's group, with polyolefin based thermoplastics. The goal is: (i) to fabricate exfoliated graphite nanoplatelet (xGnP) polypropylene nanocomposites and determine properties and (ii) to elucidate the fundamental interfacial (i.e. adhesion and dispersion), processing and property mechanisms in polyolefin thermoplastics. This research provides an understanding about how the fabrication method and processing conditions used, which were optimized using factorial design of experiments, affect the properties of these xGnP/PP nanocomposites and therefore can lead to materials with desired properties. A significant development is a new compounding method, i.e., premixing of xGnP and PP powder in isopropyl alcohol using sonication to disperse the xGnP by coating individual PP powder particles. The premixing method is more effective than the solution method widely used, in terms of lowering the percolation threshold of thermoplastic nanocomposites, and enhancing the probability that the large platelet morphology of xGnP can be preserved in the final composite. The feasibility of using xGnP-PP nanocomposites was investigated by evaluating the properties of this system and comparing the xGnP-PP with composites made with commercial available reinforcements. It was found that xGnP can be used at very low concentrations as a nucleating agent for the beta-form of PP crystals which have higher impact strength and toughness compared to the most common occurring beta-form. The aspect ratio and concentration of xGnP combined with the crystallization conditions can also affect the population and size distribution of PP spherulites, which were found to nucleate and grow on the xGnP surface, are closely related to the mechanical and barrier properties. In addition, the crystal structure of the

  8. An experimental investigation on the mechanical properties of the interface between large-sized graphene and a flexible substrate

    NASA Astrophysics Data System (ADS)

    Xu, Chaochen; Xue, Tao; Guo, Jiangang; Qin, Qinghua; Wu, Sen; Song, Haibin; Xie, Haimei

    2015-04-01

    In this paper, the interfacial mechanical properties of large-sized monolayer graphene attached to a flexible polyethylene terephthalate (PET) substrate are investigated. Using a micro-tensile test and Raman spectroscopy, in situ measurements are taken to obtain the full-field deformation of graphene subjected to a uniaxial tensile loading and unloading cycle. The results of the full-field deformation are subsequently used to identify the status of the interface between the graphene and the substrate as one of perfect adhesion, one showing slide or partial debonding, and one that is fully debonded. The interfacial stress/strain transfer and the evolution of the interface from one status to another during the loading and unloading processes are discussed and the mechanical parameters, such as interfacial strength and interfacial shear strength, are obtained quantitatively demonstrating a relatively weak interface between large-sized graphene and PET.

  9. An experimental investigation on the mechanical properties of the interface between large-sized graphene and a flexible substrate

    SciTech Connect

    Xu, Chaochen; Guo, Jiangang Song, Haibin; Xie, Haimei; Xue, Tao; Qin, Qinghua; Wu, Sen

    2015-04-28

    In this paper, the interfacial mechanical properties of large-sized monolayer graphene attached to a flexible polyethylene terephthalate (PET) substrate are investigated. Using a micro-tensile test and Raman spectroscopy, in situ measurements are taken to obtain the full-field deformation of graphene subjected to a uniaxial tensile loading and unloading cycle. The results of the full-field deformation are subsequently used to identify the status of the interface between the graphene and the substrate as one of perfect adhesion, one showing slide or partial debonding, and one that is fully debonded. The interfacial stress/strain transfer and the evolution of the interface from one status to another during the loading and unloading processes are discussed and the mechanical parameters, such as interfacial strength and interfacial shear strength, are obtained quantitatively demonstrating a relatively weak interface between large-sized graphene and PET.

  10. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction.

    PubMed

    Bai, Hao; Jiang, Wentao; Kotchey, Gregg P; Saidi, Wissam A; Bythell, Benjamin J; Jarvis, Jacqueline M; Marshall, Alan G; Robinson, Renã A S; Star, Alexander

    2014-05-15

    Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150-1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed. PMID:24860637

  11. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction

    PubMed Central

    2015-01-01

    Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150–1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed. PMID:24860637

  12. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhang, Peipei; Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang

    2014-10-01

    This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO3 to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  13. Planar Porous Graphene Woven Fabric/Epoxy Composites with Exceptional Electrical, Mechanical Properties, and Fracture Toughness.

    PubMed

    Liu, Xu; Sun, Xinying; Wang, Zhenyu; Shen, Xi; Wu, Ying; Kim, Jang-Kyo

    2015-09-30

    Planar interconnected graphene woven fabrics (GWFs) are prepared by template-based chemical vapor deposition and the GWFs are employed as multifunctional filler for epoxy-based composites. Apart from flexibility, transparency, lightweight, and high electrical conductivity, the GWFs have unique morphological features consisting of orthogonally interweaved, inherently percolated, hollow graphene tubes (GTs). The orthogonal GT structure means that the GWF/epoxy composites hold significant anisotropy in mechanical and fracture properties. The composites with 0.62 wt % graphene deliver a combination of excellent electrical and fracture properties: e.g., an electrical conductivity of ~0.18 S/cm; and fracture toughness of 1.67 and 1.78 MPa·m(1/2) when loaded along the 0° and 45° directions relative to the GT direction, respectively, equivalent to notable 57% and 67% rises compared to the solid epoxy. Unique fracture processes in GWF/epoxy composites are identified by in situ examinations, revealing crack tip blunting that occurs when the crack impinges GTs, especially those at 45° to the crack growth direction, as well as longitudinal tearing of hollow GTs as the two major toughening mechanisms. PMID:26331902

  14. Line defects in graphene: How doping affects the electronic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Berger, Daniel; Ratsch, Christian

    2016-06-01

    Graphene and carbon nanotubes have extraordinary mechanical and electronic properties. Intrinsic line defects such as local nonhexagonal reconstructions or grain boundaries, however, significantly reduce the tensile strength, but feature exciting electronic properties. Here, we address the properties of line defects in graphene from first principles on the level of full-potential density-functional theory, and assess doping as one strategy to strengthen such materials. We carefully disentangle the global and local effect of doping by comparing results from the virtual crystal approximation with those from local substitution of chemical species, in order to gain a detailed understanding of the breaking and stabilization mechanisms. We find that doping primarily affects the occupation of the frontier orbitals. Occupation through n -type doping or local substitution with nitrogen increases the ultimate tensile strength significantly. In particular, it can stabilize the defects beyond the ultimate tensile strength of the pristine material. We therefore propose this as a key strategy to strengthen graphenic materials. Furthermore, we find that doping and/or applying external stress lead to tunable and technologically interesting metal/semiconductor transitions.

  15. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    SciTech Connect

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  16. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion. PMID:26301319

  17. Separation medium containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  18. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-11-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.

  19. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    PubMed Central

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-01-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms. PMID:26608479

  20. [Staphylococcal epidermal exfoliation (Ritter's disease)].

    PubMed

    Ruiz Maldonado, R; Tamayo, L; Vazquez, V; Dominguez, J

    1976-01-01

    According to the authors the best designation of Ritter's disease would be "staphilococcic epidermal exfoliation" SEE. The physiopathological and agnoslogical basis for this denomination could be the following: 1st The "S. aureus" is the ehtiological agent of the SSE in man. The Koch postulates necessary to confirm this hypothesis have been accomplished. 2nd "Staphylococcus aureus" produces a thermostable toxin that is active indepently of the staphilococcus and gives rise to the separation of the cells of the stratum granulosus of the epidermis and eventually exfoliation in suckling babies and in the newborn mouse. 3rd The "Staphylococcus aureus" may be present on the skin or in other localisations such as the bowel or pharinx. 4th The viable "S. aureus" when administered subcutaneously to the adult mice gives rise to lesions clinically and histologically similar to the impetigo observed in children. 5th The "S. aureus" killed by means of autoclave (that is, the staphylococcic toxine by itself does not give rise to any lesion when administered to the healthy adult mouse). Neijther has the SEE been observed in healthy adult man. The authors reach the conclusion that the SSE and the toxic epidermal necrolysis are basically different according to the histopathology therapeutic response and prognosis and they must be considered as independant entities. PMID:138775

  1. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds.

    PubMed

    Zanin, H; Rosa, C M R; Eliaz, N; May, P W; Marciano, F R; Lobo, A O

    2015-06-14

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes. PMID:25990927

  2. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds

    NASA Astrophysics Data System (ADS)

    Zanin, H.; Rosa, C. M. R.; Eliaz, N.; May, P. W.; Marciano, F. R.; Lobo, A. O.

    2015-05-01

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  3. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Song, Yu; Feng, Dong-Yang; Liu, Tian-Yu; Li, Yat; Liu, Xiao-Xia

    2015-02-01

    Here we demonstrate a controlled two-step partial exfoliation method to synthesize functionalized exfoliated graphite substrates. Ultrathin and functionalized graphene sheets anchoring on the graphite provide a large conductive surface area for loading pseudo-capacitive MnO2 nanosheets. The functionalized exfoliated graphite/MnO2 electrode achieved an excellent areal capacitance of 244 mF cm-2, corresponding to an estimated MnO2 based gravimetric capacitance of 1061 F g-1, which is just slightly lower than its theoretical value of 1110 F g-1. More importantly, the seamless integration of graphene sheets and the graphite substrate minimizes the contact resistance, and substantially improves the rate capability of pseudo-capacitive materials. The electrode retained 44.8% of its capacitance when the charging current density increased 50 times from 0.23 to 11.5 mA cm-2. This novel functionalized exfoliated graphite substrate serves as a promising supporting material that could address the relatively low electrical conductivity of various pseudo-capacitive materials, and increase the mass loading and rate capability of pseudo-capacitors.Here we demonstrate a controlled two-step partial exfoliation method to synthesize functionalized exfoliated graphite substrates. Ultrathin and functionalized graphene sheets anchoring on the graphite provide a large conductive surface area for loading pseudo-capacitive MnO2 nanosheets. The functionalized exfoliated graphite/MnO2 electrode achieved an excellent areal capacitance of 244 mF cm-2, corresponding to an estimated MnO2 based gravimetric capacitance of 1061 F g-1, which is just slightly lower than its theoretical value of 1110 F g-1. More importantly, the seamless integration of graphene sheets and the graphite substrate minimizes the contact resistance, and substantially improves the rate capability of pseudo-capacitive materials. The electrode retained 44.8% of its capacitance when the charging current density increased 50

  4. Synthesis and characterization of electrically conductive polyethylene-supported graphene films

    PubMed Central

    2014-01-01

    We describe a simple mechanical approach for low-density polyethylene film coating by multilayer graphene. The technique is based on the exfoliation of nanocrystalline graphite (few-layer graphene) by application of shear stress and allows to obtain thin graphene layers on the plastic substrate. We report on the temperature dependence of electrical resistance behaviors in films of different thickness. The experimental results suggest that the semiconducting behavior observed at low temperature can be described in the framework of the Efros-Shklovskii variable-range-hopping model. The obtained films exhibit good electrical conductivity and transparency in the visible spectral region. PACS 72.80.Vp; 78.67.Wj; 78.66.Qn; 85.40.Hp PMID:25288910

  5. Graphene and its derivatives for cell biotechnology.

    PubMed

    Yang, Mei; Yao, Jun; Duan, Yixiang

    2013-01-01

    Every few years, a novel material with salient and often unique properties emerges and attracts both academic and industrial interest from the scientific community. The latest blockbuster is graphene, an increasingly important nanomaterial with atomically thin sheets of carbon, which has become a shining star and has shown great promise in the field of material science and nanotechnology. In recent years, it has changed from being the exclusive domain of physicists to the new passion of chemists and biologists. Graphene and its derivatives are now at the forefront of nearly every rapidly developing field of science and engineering, including biochemistry, biomedicine and certain cutting-edge interdisciplines that have intense popularity. The aim of this review is, firstly, to provide readers with a comprehensive, systematic and in-depth prospective of graphene's band structure and properties, and secondly, to concentrate on the recent progress in producing graphene-based nanomaterials, including mechanical exfoliation, chemical vapor deposition, plasma enhanced chemical vapor deposition, chemical reduction of graphene oxide, total organic synthesis, electrochemical synthesis and other fabrication strategies widely accepted by research scientists. At the same time, important definitions related to graphene are also introduced. The focus of this Tutorial Review is to emphasize the current situation and significance of using this new kind of two-dimensional material in the hot and emerging fields that are closely related to human life quality, for instance, cell biochemistry, bioimaging along with other frontier areas. Finally, the latest developments and possible impact that affect the heart of the whole scientific community have been discussed. In addition, the future trends along with potential challenges of this rapidly rising layered carbon have been pointed out in this paper. PMID:23115773

  6. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  7. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  8. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  9. Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Varezhnikov, Alexey; Augustin, Martin; Bruns, Michael; Sommer, Martin; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2014-01-01

    Arrays of nearly identical graphene devices on Si/SiO2 exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectrode array of CVD graphene devices on a Si/SiO2 substrate and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol, and isopropanol. The diversity of graphene devices on Si/SiO2 could possibly be used to construct similar multisensor systems trained to recognize other analytes as well.

  10. Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO{sub 2} substrate as a platform for discriminative gas sensing

    SciTech Connect

    Lipatov, Alexey; Varezhnikov, Alexey; Sysoev, Victor; Augustin, Martin; Sommer, Martin; Bruns, Michael; Kolmakov, Andrei; Sinitskii, Alexander

    2014-01-06

    Arrays of nearly identical graphene devices on Si/SiO{sub 2} exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectrode array of CVD graphene devices on a Si/SiO{sub 2} substrate and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol, and isopropanol. The diversity of graphene devices on Si/SiO{sub 2} could possibly be used to construct similar multisensor systems trained to recognize other analytes as well.

  11. Aromatic graphene

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  12. Commercialization of graphene-based technologies: a critical insight.

    PubMed

    Ciriminna, Rosaria; Zhang, Nan; Yang, Min-Quan; Meneguzzo, Francesco; Xu, Yi-Jun; Pagliaro, Mario

    2015-04-28

    Carbon in its single layer atomic morphology has exceptional thermal, optical, electronic and mechanical properties, which may form the basis for several functional products and enhanced technologies that go from electricity storage to polymer nanocomposites of so far unsurpassed characteristics. Due to the high cost, however, the current global production of graphene does not exceed 120 tonnes. New chemical and physical methods to exfoliate graphite, however, were recently engineered and commercialized, which open the route to massive adoption of graphene as the "enabler" of numerous important technologies, including enhanced electricity storage. This feature article presents an updated, critical overview that will be useful to nanochemistry and nanotechnology research practitioners and to entrepreneurs in advanced materials. PMID:25764997

  13. Failure Processes in Embedded Monolayer Graphene under Axial Compression

    PubMed Central

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S.; Galiotis, Costas

    2014-01-01

    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained. PMID:24920340

  14. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.

    PubMed

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-08-01

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 ± 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites. PMID:22706725

  15. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition.

    PubMed

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Shaygan, Mehrdad; Turner, Kevin T; Bargatin, Igor

    2016-04-15

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young's modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young's modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed. PMID:26926386

  16. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Shaygan, Mehrdad; Turner, Kevin T.; Bargatin, Igor

    2016-04-01

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young’s modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young’s modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed.

  17. High quality graphitized graphene as an anode material for lithium ion batteries.

    PubMed

    Jiao, LianSheng; Wu, Tongshun; Li, HongYan; Li, Fenghua; Niu, Li

    2015-11-14

    High quality graphitized graphene has been successfully synthesized by solid-exfoliation of graphite and a subsequent wet chemical process. The as-obtained graphene exhibits charge-discharge behaviour quite different from that of reduced graphene oxide and shows enhanced cycling and rate performance compared with commercial mesocarbon microbeads (MCMBs) for lithium ion batteries. PMID:26383086

  18. Preparation and photocatalytic activity of TiO2-exfoliated graphite oxide composite using an ecofriendly graphite oxidation method

    NASA Astrophysics Data System (ADS)

    Baldissarelli, Vanessa Zanon; de Souza, Thiago; Andrade, Luisa; Oliveira, Luiz Fernando Cappa de; José, Humberto Jorge; Moreira, Regina de Fátima Peralta Muniz

    2015-12-01

    A simple and effective stepwise-method was developed to produce expanded exfoliated graphite oxide (EGO). Using a combination of ozone exposure and thermal treatment we demonstrate that a graphite surface can be modified to generate a graphene-like surface containing oxygen and sp3 carbon. This expanded exfoliated graphite oxide is useful for the production, through thermal treatment, of photocatalytic TiO2-EGO composites which are more active than those produce by the Hummers method. The photocatalytic activity of TiO2-EGO in methylene blue (MB) bleaching under UV light is enhanced in comparison with TiO2 P25.

  19. Electronic Properties of Large-scale Graphene Chemical Vapor Synthesized on Nickel and on Sapphire

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Zhang, Liyuan; Chen, Yong; Yu, Qingkai; Li, Hao

    2009-03-01

    We have studied the electronic transport properties of large area few-layer graphene/graphitic films grown by two different chemical vapor based methods. The first type of samples (metal-transfer graphene) is synthesized by carbon segregation from Ni, then transferred to SiO2/Si substrates. The second type of samples is synthesized by direct chemical vapor deposition (CVD) on sapphire. We measured these samples under variable temperatures (from 2K to 300 K) and transverse magnet fields (from 0 to 7 T). For both types of samples, we found a negative magnetoresistance at low field, and carrier mobilities on the order of several hundreds of cm^2/V-s. For metal-transfer graphene in particular, we were able to measure a moderate field effect response, using the highly doped Si substrate as back gate. The observed magnetoresistance shows characteristic features of weak localization, from which we extract various carrier scattering lengths in the metal-transfer graphene samples. Comparison with those measured in mechanically exfoliated graphene suggests possibly different carrier scattering mechanisms for graphene materials prepared with different methods.

  20. Soliton-dependent plasmon reflection at bilayer graphene domain walls.

    PubMed

    Jiang, Lili; Shi, Zhiwen; Zeng, Bo; Wang, Sheng; Kang, Ji-Hun; Joshi, Trinity; Jin, Chenhao; Ju, Long; Kim, Jonghwan; Lyu, Tairu; Shen, Yuen-Ron; Crommie, Michael; Gao, Hong-Jun; Wang, Feng

    2016-08-01

    Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system that features stacking solitons structurally and quantum valley Hall boundary states electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons. PMID:27240109