Sample records for mechanisms underlying effects

  1. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading

    PubMed Central

    2012-01-01

    Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is

  2. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa.

    PubMed

    Qamar, Hafiz Misbah-Ud-Din; Qayyum, Rahila; Salma, Umme; Khan, Shamim; Khan, Taous; Shah, Abdul Jabbar

    2018-12-01

    Rumex acetosa L. (Polygonaceae) is well known in traditional medicine for its therapeutic efficacy as an antihypertensive. The study investigates antihypertensive potential of crude methanol extract (Ra.Cr) and fractions of Rumex acetosa in normotensive and hypertensive rat models and probes the underlying vascular mechanisms. Ra.Cr and its fractions were tested in vivo on normotensive and hypertensive Sprague-Dawley rats under anaesthesia for blood pressure lowering effect. In vitro experiments on rat and Oryctolagus cuniculus rabbit aortae were employed to probe the underlying vasorelaxant mechanism. In normotensive rats under anaesthesia, Ra.Cr caused fall in MAP (40 mmHg) at 50 mg/kg with % fall of 27.88 ± 4.55. Among the fractions tested, aqueous fraction was more potent at the dose of 50 mg/kg with % fall of 45.63 ± 2.84. In hypertensive rats under similar conditions, extract and fractions showed antihypertensive effect at same doses while aqueous fraction being more potent, exhibited 68.53 ± 4.45% fall in MAP (70 mmHg). In isolated rat aortic rings precontracted with phenylephrine (PE), Ra.Cr and fractions induced endothelium-dependent vasorelaxation, which was partially blocked in presence of l-NAME, indomethacin and atropine. In isolated rabbit aortic rings pre-contracted with PE and K + -(80 mM), Ra.Cr induced vasorelaxation and shifted Ca 2+ concentration-response curves to the right and suppressed PE peak formation, similar to verapamil, in Ca 2+ -free medium. The data indicate that l-NAME and atropine-sensitive endothelial-derived NO and COX enzyme inhibitors and Ca 2+ entry blocking-mediated vasodilator effect of the extract explain its antihypertensive potential.

  3. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    PubMed Central

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  4. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation.

    PubMed

    Chervyakov, Alexander V; Chernyavsky, Andrey Yu; Sinitsyn, Dmitry O; Piradov, Michael A

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  5. Age Differences in the Underlying Mechanisms of Stereotype Threat Effects

    PubMed Central

    Hess, Thomas M.

    2015-01-01

    Objectives. The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Method. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Results. Older adults’ performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. Conclusions. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. PMID:24077743

  6. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.

    PubMed

    Jiang, Jing-Fei; Lei, Fan; Yuan, Zhi-Yi; Wang, Yu-Gang; Wang, Xin-Pei; Yan, Xiao-Jin; Yu, Xuan; Xing, Dong-Ming; DU, Li-Jun

    2017-03-01

    Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Age differences in the underlying mechanisms of stereotype threat effects.

    PubMed

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Investigating the mechanisms underlying affective priming effects using a conditional pronunciation task.

    PubMed

    Pecchinenda, Anna; Ganteaume, Christiane; Banse, Rainer

    2006-01-01

    Recently, using a conditional pronunciation task, De Houwer and Randell (2004) reported evidence of affective priming effects only when pronunciation depended on the semantic category of targets. Although these findings support the notion that spreading of activation is the mechanism underlying affective priming effects, an explanation in terms of postlexical mechanism could not be ruled out. To clarify this point, we conducted two experiments in which nouns for both the to-be-pronounced as well as the not-to-be pronounced targets were used and all stimuli were affectively valenced words. In Experiment 1, the to-be-pronounced targets were object-words, and the not-to-be-pronounced targets were person-words, whereas in Experiment 2, the instructions were reversed. Results of experiment 1 showed affective priming effects only when pronunciation of target words was conditional upon their semantic category. Most importantly, affective priming effects were observed for both object-words (Experiment 1) and person-words (Experiment 2). These results are compatible with a spreading activation account, but not with a postlexical mechanism account of affective priming effects in the pronunciation task.

  9. Selenium and Anticarcinogenesis: Underlying Mechanisms

    USDA-ARS?s Scientific Manuscript database

    The manuscript discusses recent research related to anticarcinogenic mechanisms of selenium (Se) action in light of the underlying chemical/biochemical functions of the selenium species likely to be executors of those effects. Recent studies in a variety of model systems have increased understanding...

  10. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    PubMed Central

    Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2014-01-01

    Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research. PMID:25238416

  11. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  12. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  13. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2016-01-01

    Diabetic patients are at higher risk of developing physical disabilities than non-diabetic subjects. Physical disability appears to be related, at least in part, to muscle dysfunction. Several studies have reported reduced muscle strength and power under dynamic and static conditions in both the upper and lower limbs of patients with type 2 diabetes. Additional effects of diabetes include a reduction in muscle mass, quality, endurance and an alteration in muscle fibre composition, though the available data on these parameters are conflicting. The impact of diabetes on neuromuscular function has been related to the co-existence of long-term complications. Peripheral neuropathy has been shown to affect muscle by impairing motor nerve conduction. Also, vascular complications may contribute to the decline in muscle strength. However, muscle dysfunction occurs early in the course of diabetes and affects also the upper limbs, thus suggesting that it may develop independently of micro and macrovascular disease. A growing body of evidence indicates that hyperglycaemia may cause an alteration of the intrinsic properties of the muscle to generate force, via several mechanisms. Recently, resistance exercise has been shown to be an effective strategy to counteract the deterioration of muscular performance. High-intensity exercise seems to provide greater benefits than moderate-intensity training, whereas the effect of a power training is yet unknown. This article reviews the available literature on the impairment of muscle function induced by diabetes, the underlying mechanisms, and the effect of resistance training on this defect. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    NASA Astrophysics Data System (ADS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  16. Investigating the mechanism(s) underlying switching between states in bipolar disorder

    PubMed Central

    Young, Jared W.; Dulcis, Davide

    2015-01-01

    Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the ‘holy grail’ of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  17. [Vascular effect of extract from mulberry leaves and underlying mechanism].

    PubMed

    Xia, Man-Li; Gao, Qin; Zhou, Xin-Mei; Qian, Ling-Bo; Shen, Zhong-Hua; Jiang, Hui-di; Xia, Qiang

    2007-01-01

    To investigate the vascular activity of extract from mulberry leaves (EML) on rat thoracic aorta and the underlying mechanism. Isolated thoracic rings of Sprague-Dawley rats were mounted on the organ bath and the tension of the vessel was recorded. (1) EML produced a concentration-dependent vasorelaxation of aorta preconstricted by high K(+) (60 mmol/L) or 10(-6) mol/L phenylephrine (PE) in endothelium-intact and endothelium-denuded arteries. (2) EML at EC(50) concentration reduced the calcium dose-response curve. (3) After incubation of aorta with verapamil, EML induced vasocontraction of aorta preconstricted by PE, which was abolished by ruthenium red. The vascular effect of EML is biphasic, the vasorelaxation is greater than the vasocontraction. The vasorelaxation induced by EML may be mediated by inhibition of voltage-and receptor-dependent calcium channels in vascular smooth muscle cells, while the vasocontraction is via activation of ryanodine receptor in endoplasmic reticulum.

  18. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  19. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  20. Effect of nature-based sounds' intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: a randomised controlled trial.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Zayeri, Farid; Vaismoradi, Mojtaba; Jasper, Melanie

    2013-07-01

    Few studies have been conducted to investigate the effect of nature-based sounds (N-BS) on agitation, anxiety level and physiological signs of stress in patients under mechanical ventilator support. Non-pharmacological nursing interventions such as N-BS can be less expensive and efficient ways to alleviate anxiety and adverse effects of sedative medications in patients under mechanical ventilator support. This study was conducted to identify the effect of the nature-based sounds' intervention on agitation, anxiety level and physiological stress responses in patients under mechanical ventilation support. A randomized placebo-controlled trial design was used to conduct this study. A total of 60 patients aged 18-65 years under mechanical ventilation support in an intensive care unit were randomly assigned to the control and experimental groups. The patients in the intervention group received 90 min of N-BS. Pleasant nature sounds were played to the patients using media players and headphones. Patients' physiological signs were taken immediately before the intervention and at the 30th, 60th, 90th minutes and 30 min after the procedure had finished. The physiological signs of stress assessed were heart rate, respiratory rate, and blood pressure. Data were collected over eight months from Oct 2011 to June 2012. Anxiety levels and agitation were assessed using the Faces Anxiety Scale and Richmond Agitation Sedation Scale, respectively. The experimental group had significantly lower systolic blood pressure, diastolic blood pressure, anxiety and agitation levels than the control group. These reductions increased progressively in the 30th, 60th, 90th minutes, and 30 min after the procedure had finished indicating a cumulative dose effect. N-BS can provide an effective method of decreasing potentially harmful physiological responses arising from anxiety in mechanically ventilated patients. Nurses can incorporate N-BS intervention as a non-pharmacologic intervention into the

  1. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  2. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanisms underlying the antimotion sickness effects of psychostimulants

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Lewis, Michael R.

    1987-01-01

    Data related to the mechanism responsible for the antimotion sickness effects of psychostimulants such as amphetamine are examined. From the analysis of current literature and new evidence, the following three hypotheses are suggested: (1) selective enhancement of dopaminergic, but not noradrenergic, transmission is sufficient to account for amphetamine-induced resistance and, perhaps, for natural resistance to motion sickness; (2) the site of this enhanced dopaminergic transmission is probably within the basal ganglia; and (3) the neuropharmacology of the basal ganglia, but not of the brain-stem vestibular areas, can account for the therapeutic synergism of scopolamine and amphetamine. The therapeutic action of psychostimulants may be dissociable from some of their side effects, particularly cardiovascular effects related to peripheral norepinephrine release.

  4. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  5. Effects of positive end-expiratory pressure on intracranial pressure in mechanically ventilated dogs under hyperbaric oxygenation.

    PubMed

    Sun, Qing; Wu, Di; Yu, Tao; Yang, Ying; Wei, Li; Lv, Fuxiang; Gao, Guangkai

    2014-01-01

    Mechanical ventilation with positive end-expiratory pressure (PEEP) has been advocated as an essential life support for critical patients. However, its side effect, which is demonstrated by an elevation of intracranial pressure (ICP) under normobaric (NBO2) conditions, is potentially detrimental to patients. Hyperbaric oxygen (HBO2) therapy, on the other hand, is frequently applied for the same group of patients, and its efficacy is shown by maintaining a higher PaO2 and a reduced ICP. Our study investigated the effect of HBO2 and NBO2 on ICP with or without PEEP ventilation on healthy dogs by comparing cerebrospinal fluid pressure (CSFP) and concluded that the elevation of PEEP resulted in a significant increase of ICP (CSFP) under both conditions (p < 0.05). HBO2 leads to a lower ICP increase compared to the NBO2 group. Under the same level of PEEP, the joint use of PEEP and HBO2 is safe and highly practical in clinical medicine.

  6. A Hypothesis Regarding the Molecular Mechanism Underlying Dietary Soy-Induced Effects on Seizure Propensity

    PubMed Central

    Westmark, Cara Jean

    2014-01-01

    Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold. PMID:25232349

  7. Amount of fear extinction changes its underlying mechanisms.

    PubMed

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-07-03

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  8. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression.

    PubMed

    Weng, Shayuan; Ning, Huiming; Fu, Tao; Hu, Ning; Zhao, Yinbo; Huang, Cheng; Peng, Xianghe

    2018-02-15

    Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.

  9. The effects of divided attention on encoding processes under incidental and intentional learning instructions: underlying mechanisms?

    PubMed

    Naveh-Benjamin, Moshe; Guez, Jonathan; Hara, Yoko; Brubaker, Matthew S; Lowenschuss-Erlich, Iris

    2014-01-01

    Divided attention (DA) at encoding has been shown to significantly disrupt later memory for the studied information. However, what type of processing gets disrupted during DA remains unresolved. In this study, we assessed the degree to which strategic effortful processes are affected under DA by comparing the effects of DA at encoding under intentional and pure incidental learning instructions. In three experiments, participants studied list of words or word pairs under either full or divided attention. Results of three experiments, which used different methodologies, converged to show that the effects of DA at encoding reduce memory performance to the same degree under incidental and intentional learning. Secondary task performance indicated that encoding under intentional learning instructions was more effortful than under incidental learning instructions. In addition, the results indicated enhanced attention to the initial appearance of the words under both types of learning instructions. Results are interpreted to imply that other processes, rather than only strategic effortful ones, might be affected by DA at encoding.

  10. Cerebral mechanisms underlying the effects of music during a fatiguing isometric ankle-dorsiflexion task.

    PubMed

    Bigliassi, Marcelo; Karageorghis, Costas I; Nowicky, Alexander V; Orgs, Guido; Wright, Michael J

    2016-10-01

    The brain mechanisms by which music-related interventions ameliorate fatigue-related symptoms during the execution of fatiguing motor tasks are hitherto under-researched. The objective of the present study was to investigate the effects of music on brain electrical activity and psychophysiological measures during the execution of an isometric fatiguing ankle-dorsiflexion task performed until the point of volitional exhaustion. Nineteen healthy participants performed two fatigue tests at 40% of maximal voluntary contraction while listening to music or in silence. Electrical activity in the brain was assessed by use of a 64-channel EEG. The results indicated that music downregulated theta waves in the frontal, central, and parietal regions of the brain during exercise. Music also induced a partial attentional switching from associative thoughts to task-unrelated factors (dissociative thoughts) during exercise, which led to improvements in task performance. Moreover, participants experienced a more positive affective state while performing the isometric task under the influence of music. © 2016 Society for Psychophysiological Research.

  11. Amount of fear extinction changes its underlying mechanisms

    PubMed Central

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-01-01

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that. DOI: http://dx.doi.org/10.7554/eLife.25224.001 PMID:28671550

  12. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    PubMed

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  13. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    PubMed

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  14. General equilibrium effects of a supply side GHG mitigation option under the Clean Development Mechanism.

    PubMed

    Timilsina, Govinda R; Shrestha, Ram M

    2006-09-01

    The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.

  15. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    NASA Astrophysics Data System (ADS)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  16. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    PubMed

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  17. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  18. Vasorelaxant effect of quercetin on cerebral basilar artery in vitro and the underlying mechanisms study.

    PubMed

    Yuan, Tian-Yi; Niu, Zi-Ran; Chen, Di; Chen, Yu-Cai; Zhang, Hui-Fang; Fang, Lian-Hua; Du, Guan-Hua

    2018-04-25

    The aim of this study is to investigate the vasorelaxant effect of quercetin on cerebral basilar artery in vitro and provide a preliminary discussion concerning the underlying mechanisms. Using a DMT-isolated micro vessel system, quercetin was found to exhibit a vasodilatory effect on basilar arteries contracted by potassium chloride (KCl), endothelin-1 (ET-1), and 5-hydroxytryptamine (5-HT). The vasorelaxant effect of quercetin was partially attenuated when endothelium cells were removed. L-NAME, indomethacin, and ODQ treatment also decreased the potency of quercetin. In endothelium-denuded rings, the vasorelaxant effect of quercetin was not influenced by K + channel inhibitors. However, quercetin inhibited KCl induced extracellular calcium influx and ET-1 induced transient intracellular calcium release in a Ca 2+ -free solution. In conclusion, quercetin induced relaxation of the basilar artery in vitro is partially dependent on endothelium, which is mainly related to NO and COX pathways. It also induces relaxation through blockage of calcium channels.

  19. Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes.

    PubMed

    Khan, Fazlullah; Momtaz, Saeideh; Niaz, Kamal; Hassan, Fatima Ismail; Abdollahi, Mohammad

    2017-09-01

    Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antiurolithic effect of Bergenia ligulata rhizome: an explanation of the underlying mechanisms.

    PubMed

    Bashir, Samra; Gilani, Anwar H

    2009-02-25

    Bergenia ligulata is widely used plant in South Asia, mainly India and Pakistan, as a traditional medicine for treatment of urolithiasis. To rationalize the Bergenia ligulata use in kidney stones and to explain the underlying mechanisms. The crude aqueous-methanolic extract of Bergenia ligulata rhizome (BLR) was studied using in vitro and in vivo methods. BLR inhibited calcium oxalate (CaC(2)O(4)) crystal aggregation as well as crystal formation in the metastable solutions and exhibited antioxidant effect against 1,1-diphenyl-2-picrylhydrazyl free radical and lipid peroxidation in the in vitro. BLR caused diuresis in rats accompanied by a saluretic effect. In an animal model of urolithiasis, developed in male Wistar rats by adding 0.75% ethylene glycol (EG) in drinking water, BLR (5-10 mg/kg) prevented CaC(2)O(4) crystal deposition in the renal tubules. The lithogenic treatment caused polyuria, weight loss, impairment of renal function and oxidative stress, manifested as increased malondialdehyde and protein carbonyl contents, depleted reduced glutathione and decreased antioxidant enzyme activities of the kidneys, which were prevented by BLR. Unlike the untreated animals, EG intake did not cause excessive hyperoxaluria and hypocalciuria in BLR treated groups and there was a significant increase in the urinary Mg(2+), instead of a slight decrease. These data indicate the antiurolithic activity in Bergenia ligulata mediated possibly through CaC(2)O(4) crystal inhibition, diuretic, hypermagneseuric and antioxidant effects and this study rationalizes its medicinal use in urolithiasis.

  1. Anti-inflammatory effects of nesfatin-1 in rats with acetic acid - induced colitis and underlying mechanisms.

    PubMed

    Ozturk, C C; Oktay, S; Yuksel, M; Akakin, D; Yarat, A; Kasimay Cakir, O

    2015-10-01

    Mucosal balance impairment, bacterial over-proliferation, cytokines, inflammatory mediators are known as responsible for inflammatory bowel disease. Besides known anorexigenic, neuroprotective, and anti-apoptotic effects, the major effect of nesfatin-1 on colitis is unknown. Our aim was to investigate the possible anti-inflammatory effects of nesfatin-1 in acetic acid induced colitis model and potential underlying mechanisms. Male Spraque-Dawley rats were anesthetized by intraperitoneal ketamine (100 mg/kg) and chlorpromazine (0.75 mg/kg). For nesfatin-1 and antagonist applications some of the rats were intracerebroventricularly (i.c.v.) cannulated. In colitis group, intrarectally (i.r.) 4% acetic acid solution (1 ml) and 10 minutes later i.c.v. nesfatin-1 (0.05 μg/5 μl) or vehicle (5 μl) were administered. Treatments continued for 3 days. In control group, physiological saline solution was used intrarectally. To identify the underlying effective mechanism of nesfatin-1, rats were divided into 3 subgroups, 5 minutes following colitis induction; i.c.v. atosiban (oxytocin receptor antagonist), SHU9119 (melanocortin receptor antagonist) or GHSR-1a antagonist (ghrelin receptor antagonist) were administered, 5 minutes later nesfatin-1 was administered for 3 days. On the fourth day, rats were decapitated, and colon tissues were sampled. Macroscopic and microscopic damage scores of distal colon, and colonic tissue malondialdehyde, glutathione, myeloperoxidase, superoxide dismutase, catalase, luminol and lucigenin chemiluminescence measurements were analysed. The increased myeloperoxidase activity, malondialdehyde levels, luminol and lucigenin chemiluminescence measurements, macroscopic and microscopic damage scores with colitis induction (P < 0.05 - 0.001) were decreased with nesfatin-1 treatment (P < 0.05 - 0.001). Nesfatin-1 may show this effect by inhibiting neutrophil infiltration through tissues and by decreasing formation of free oxygen radicals. Atosiban and

  2. Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation

    PubMed Central

    Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; de Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo

    2002-01-01

    The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV. PMID:11940271

  3. Peeling mechanism of tomato under infrared heating

    USDA-ARS?s Scientific Manuscript database

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  4. Effect of chronic undernutrition on body mass and mechanical bone quality under normoxic and altitude hypoxic conditions.

    PubMed

    Lezon, Christian; Bozzini, Clarisa; Agûero Romero, Alan; Pinto, Patricia; Champin, Graciela; Alippi, Rosa M; Boyer, Patricia; Bozzini, Carlos E

    2016-05-01

    Both undernutrition and hypoxia exert a negative influence on both growth pattern and bone mechanical properties in developing rats. The present study explored the effects of chronic food restriction on both variables in growing rats exposed to simulated high-altitude hypoxia. Male rats (n 80) aged 28 d were divided into normoxic (Nx) and hypoxic (Hx) groups. Hx rats were exposed to hypobaric air (380 mmHg) in decompression chambers. At T0, Nx and Hx rats were subdivided into four equal subgroups: normoxic control and hypoxic controls, and normoxic growth-restricted and hypoxic growth-restricted received 80 % of the amount of food consumed freely by their respective controls for a 4-week period. Half of these animals were studied at the end of this period (T4). The remaining rats in each group continued under the same environmental conditions, but food was offered ad libitum to explore the type of catch-up growth during 8 weeks. Structural bone properties (strength and stiffness) were evaluated in the right femur midshaft by the mechanical three-point bending test; geometric properties (length, cross-sectional area, cortical mass, bending cross-sectional moment of inertia) and intrinsic properties of the bone tissue (elastic modulus) were measured or derived from appropriate equations. Bone mineralisation was assessed by ash measurement of the left femur. These data indicate that the growth-retarded effects of diminished food intake, induced either by food restriction or hypoxia-related inhibition of appetite, generated the formation of corresponding smaller bones in which subnormal structural and geometric properties were observed. However, they seemed to be appropriate to the body mass of the animals and suggest, therefore, that the bones were not osteopenic. When food restriction was imposed in Hx rats, the combined effects of both variables were additive, inducing a further reduction of bone mass and bone load-carrying capacity. In all cases, the mechanical

  5. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  6. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    NASA Astrophysics Data System (ADS)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  7. Change of plans: an evaluation of the effectiveness and underlying mechanisms of successful talent transfer.

    PubMed

    Collins, Rosie; Collins, Dave; MacNamara, Aine; Jones, Martin Ian

    2014-01-01

    Talent transfer (TT) is a recently formalised process used to identify and develop talented athletes by selecting individuals who have already succeeded in one sport and transferring them to another. Despite the increasing popularity of TT amongst national organisations and sport governing body professionals, however, there is little empirical evidence as to its efficacy or how it may be most efficiently employed. Accordingly, this investigation was designed to gain a deeper understanding of the effectiveness and underlying mechanisms of TT, achieved through a two-part study. Stage 1 provided a quantitative analysis of the incidence and distribution or, in this respect, epidemiology of TT, finding the most popular transfer to be sprinting to bobsleigh, with an average transfer age of 19 years. Stage 2 scrutinised the TT process and explored the specific cases revealed in stage 1 by examining the perceptions of four sport science support specialists who had worked in TT settings, finding several emergent themes which, they felt, could explain the TT processes. The most prominent theme was the psychosocial mechanism of TT, an aspect currently missing from TT initiatives, suggesting that current TT systems are poorly structured and should redress their approach to develop a more integrated scheme that encompasses all potential mechanisms of transfer.

  8. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  9. Study on Mechanical Properties of Barite Concrete under Impact Load

    NASA Astrophysics Data System (ADS)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  10. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  11. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  12. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles

    PubMed Central

    el Jundi, Basil; Smolka, Jochen; Khaldy, Lana; Nilsson, Dan-Eric; Byrne, Marcus J.; Dacke, Marie

    2017-01-01

    Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals. This article is part of the themed issue ‘Vision in dim light’. PMID:28193823

  13. Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought

    PubMed Central

    Henry, Amelia; Swamy, B. P. Mallikarjuna; Dixit, Shalabh; Torres, Rolando D.; Batoto, Tristram C.; Manalili, Mervin; Anantha, M. S.; Mandal, N. P.; Kumar, Arvind

    2015-01-01

    Characterizing the physiological mechanisms behind major-effect drought-yield quantitative trait loci (QTLs) can provide an understanding of the function of the QTLs—as well as plant responses to drought in general. In this study, we characterized rice (Oryza sativa L.) genotypes with QTLs derived from drought-tolerant traditional variety AdaySel that were introgressed into drought-susceptible high-yielding variety IR64, one of the most popular megavarieties in South Asian rainfed lowland systems. Of the different combinations of the four QTLs evaluated, genotypes with two QTLs (qDTY 2.2 + qDTY 4.1) showed the greatest degree of improvement under drought compared with IR64 in terms of yield, canopy temperature, and normalized difference vegetation index (NDVI). Furthermore, qDTY 2.2 and qDTY 4.1 showed a potential for complementarity in that they were each most effective under different severities of drought stress. Multiple drought-response mechanisms were observed to be conferred in the genotypes with the two-QTL combination: higher root hydraulic conductivity and in some cases greater root growth at depth. As evidenced by multiple leaf water status and plant growth indicators, these traits affected transpiration but not transpiration efficiency or harvest index. The results from this study highlight the complex interactions among major-effect drought-yield QTLs and the drought-response traits they confer, and the need to evaluate the optimal combinations of QTLs that complement each other when present in a common genetic background. PMID:25680791

  14. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  15. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms

    PubMed Central

    Manning, Sean; Pucci, Andrea; Batterham, Rachel L.

    2015-01-01

    Bariatric surgery is the most effective treatment for severe obesity, producing marked sustained weight loss with associated reduced morbidity and mortality. Roux-en-Y gastric bypass surgery (RYGBP), the most commonly performed procedure, was initially viewed as a hybrid restrictive-malabsorptive procedure. However, over the last decade, it has become apparent that alternative physiologic mechanisms underlie its beneficial effects. RYGBP-induced altered feeding behavior, including reduced appetite and changes in taste/food preferences, is now recognized as a key driver of the sustained postoperative weight loss. The brain ultimately determines feeding behavior, and here we review the mechanisms by which RYGBP may affect central appetite-regulating pathways. PMID:25729850

  16. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    PubMed

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  17. Inhibitory effects and underlying mechanism of 7-hydroxyflavone phosphate ester in HeLa cells.

    PubMed

    Zhang, Ting; Du, Jiang; Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi

    2012-01-01

    Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C(19)H(19)O(6)P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca(2+)-calmodulin (CaM) and Ca(2+)-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca(2+)-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca(2+)-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent

  18. Inhibitory Effects and Underlying Mechanism of 7-Hydroxyflavone Phosphate Ester in HeLa Cells

    PubMed Central

    Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi

    2012-01-01

    Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential

  19. Coaching as a Developmental Intervention in Organisations: A Systematic Review of Its Effectiveness and the Mechanisms Underlying It

    PubMed Central

    Grover, Simmy; Furnham, Adrian

    2016-01-01

    Purpose The primary aim of this paper is to conduct a thorough and systematic review of the empirical and practitioner research on executive, leadership and business coaching to assess the current empirical evidence for the effectiveness of coaching and the mechanisms underlying it. Background Organisations are increasingly using business coaching as an intervention to improve the productivity and performance of their senior personnel. A consequence of this increased application is the demand for empirical data to understand the process by which it operates and its demonstrable efficacy in achieving pre-set goals. Method This paper is a systematic review of the academic and practitioner literature pertaining to the effectiveness of business and executive coaching as a developmental intervention for organisations. It focuses on published articles, conference papers and theses that cover business, leadership or executive coaching within organisations over the last 10 years. Conclusions The main findings show that coaching is an effective tool that benefits organisations and a number of underlying facets contribute to this effectiveness. However, there is deficiency and scope for further investigation in key aspects of the academic research and we identify several areas that need further research and practitioner attention. ​ PMID:27416061

  20. Coaching as a Developmental Intervention in Organisations: A Systematic Review of Its Effectiveness and the Mechanisms Underlying It.

    PubMed

    Grover, Simmy; Furnham, Adrian

    2016-01-01

    The primary aim of this paper is to conduct a thorough and systematic review of the empirical and practitioner research on executive, leadership and business coaching to assess the current empirical evidence for the effectiveness of coaching and the mechanisms underlying it. Organisations are increasingly using business coaching as an intervention to improve the productivity and performance of their senior personnel. A consequence of this increased application is the demand for empirical data to understand the process by which it operates and its demonstrable efficacy in achieving pre-set goals. This paper is a systematic review of the academic and practitioner literature pertaining to the effectiveness of business and executive coaching as a developmental intervention for organisations. It focuses on published articles, conference papers and theses that cover business, leadership or executive coaching within organisations over the last 10 years. The main findings show that coaching is an effective tool that benefits organisations and a number of underlying facets contribute to this effectiveness. However, there is deficiency and scope for further investigation in key aspects of the academic research and we identify several areas that need further research and practitioner attention. ​.

  1. Detoxification of aflatoxins on prospective approach: effect on structural, mechanical, and optical properties under pressures.

    PubMed

    Wei, Yong-Kai; Zhao, Xiao-Miao; Li, Meng-Meng; Yu, Jing-Xin; Gurudeeban, Selvaraj; Hu, Yan-Fei; Ji, Guang-Fu; Wei, Dong-Qing

    2018-06-01

    Aflatoxins are sequential of derivatives of coumarin and dihydrofuran with similar chemical structures and well-known carcinogenic agent. Many studies performed to detoxify aflatoxins, but the result is not ideal. Therefore, we studied structural, infrared spectrum, mechanical, and optical properties of these compounds in the aim of perspective physics. Mulliken charge distributions and infrared spectral analysis performed to understand the structural difference between the basic types of aflatoxins. In addition, the effect of pressure, different polarized, and incident directions on their structural changes was determined. It is found that AFB 1 is most stable structure among four basic types aflatoxins (AFB 1 , AFB 2 , AFG 1 , and AFG 2 ), and IR spectra are analyzed to exhibit the difference on structures of them. The mechanical properties of AFB 1 indicate that the structure of this toxin can be easily changed by pressure. The real [Formula: see text] and imaginary [Formula: see text] parts of the dielectric function, and the absorption coefficient [Formula: see text] and energy loss spectrum [Formula: see text] were also obtained under different polarized and incident directions. Furthermore, biological experiments needed to support the toxic level of AFB 1 using optical technologies.

  2. Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment.

    PubMed

    Baranchikov, Alexander Ye; Ivanov, Vladimir K; Tretyakov, Yuri D

    2007-02-01

    The effect of simultaneous ultrasonic and thermal treatment on kinetics and mechanism of nickel ferrite formation was studied. It was established that sonication leads to notable increase of the mean rate of this reaction and decrease of effective activation energy from 190+/-5 to 125+/-7 kJ/mol. XRD data show that ultrasonic treatment significantly affects the microstructure of both initial reagent (Fe(2)O(3)) and reaction product (NiFe(2)O(4)) thus promoting formation of well developed reaction zone. A general model of ferrite formation mechanism under high temperature ultrasonic treatment was proposed.

  3. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    gated ion channels form functional complexes in nociceptors. It is also important to further elucidate peripheral anti-nociceptive mechanisms to improve clinical utilization of currently available analgesics and uncover additional therapeutic targets. A side project examined the mechanisms underlying sex differences in the anti-hyperalgesic effects of delta opioid receptors (DORs). This study provides evidence of a sex difference in the potency at DORs that is mediated by differences in the expression of ATP-sensitive potassium channels. Collectively, understanding detailed molecular events that underlie the development of pathological pain conditions could benefit future pharmacotherapies.

  4. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  5. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  6. An Investigation of the Mechanism Underlying Teacher Aggression: Testing I[superscript 3] Theory and the General Aggression Model

    ERIC Educational Resources Information Center

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…

  7. The effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation.

    PubMed

    Bousarri, Mitra Payami; Shirvani, Yadolah; Agha-Hassan-Kashani, Saeed; Nasab, Nouredin Mousavi

    2014-05-01

    In patients undergoing mechanical ventilation, mucus production and secretion is high as a result of the endotracheal tube. Because endotracheal suction in these patients is essential, chest physiotherapy techniques such as expiratory rib cage compression before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretion and improving alveolar ventilation. As one of the complications of mechanical ventilation and endotracheal suctioning is decrease of cardiac output, this study was carried out to determine the effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation. This study was a randomized clinical trial with a crossover design. The study subjects included 50 mechanically ventilated patients, hospitalized in intensive care wards of Valiasr and Mousavi hospitals in Zanjan, Iran. Subjects were selected by consecutive sampling and randomly allocated to groups 1 and 2. The patients received endotracheal suctioning with or without rib cage compression, with a minimum of 3 h interval between the two interventions. Expiratory rib cage compression was performed for 5 min before endotracheal suctioning. Vital signs were measured 5 min before and 15 and 25 min after endotracheal suctioning. Data were recorded on a data recording sheet. Data were analyzed using paired t-tests. There were statistically significant differences in the means of vital signs measured 5 min before with 15 and 25 min after endotracheal suctioning with rib cage compression (P < 0. 01). There was no significant difference in the means of diastolic pressure measured 25 min after with baseline in this stage). But on the reverse mode, there was a significant difference between the means of pulse and respiratory rate 15 min after endotracheal suctioning and the baseline values (P < 0.002). This effect continued up to 25 min after endotracheal suctioning just for respiratory rate (P = 0

  8. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed

  9. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  10. General Anesthetics to Treat Major Depressive Disorder: Clinical Relevance and Underlying Mechanisms.

    PubMed

    Vutskits, Laszlo

    2018-01-01

    Major depressive disorder is a frequent and devastating psychological condition with tremendous public health impact. The underlying pathophysiological mechanisms involve abnormal neurotransmission and a relatedly impaired synaptic plasticity. Since general anesthetics are potent modulators of neuronal activity and, thereby, can exert long-term context-dependent impact on neural networks, an intriguing hypothesis is that these drugs could enhance impaired neural plasticity associated with certain psychiatric diseases. Clinical observations over the past few decades appear to confirm this possibility. Indeed, equipotency of general anesthesia alone in comparison with electroconvulsive therapy under general anesthesia has been demonstrated in several clinical trials. Importantly, in the past 15 years, intravenous administration of subanesthetic doses of ketamine have also been demonstrated to have rapid antidepressant effects. The molecular, cellular, and network mechanisms underlying these therapeutic effects have been partially identified. Although several important questions remain to be addressed, the ensemble of these experimental and clinical observations opens new therapeutic possibilities in the treatment of depressive disorders. Importantly, they also suggest a new therapeutic role for anesthetics that goes beyond their principal use in the perioperative period to facilitate surgery.

  11. Transformations of organic compounds under the action of mechanical stress

    NASA Astrophysics Data System (ADS)

    Dubinskaya, Aleksandra M.

    1999-08-01

    Transformations of organic compounds (monomeric and polymeric) under the action of mechanical stress are considered. Two types of processes occur under these conditions. The first type involves disordering and amorphisation of crystal structure and conformational transformations as a result of rupture of intermolecular bonds. The second type includes mechanochemical reactions activated by deformation of valence bonds and angles under mechanical stress, namely, the rupture of bonds, oxidation and hydrolysis. Data on the organic mechanochemical synthesis of new compounds or molecular complexes are systematised and generalised. It is demonstrated that mechanical treatment ensures mass transfer and the contact of reacting species in these reactions. Proteins are especially sensitive to mechanical stress and undergo denaturation; enzymes are inactivated. The bibliography includes 115 references.

  12. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  13. Mechanical properties of a collagen fibril under simulated degradation.

    PubMed

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin

    2017-11-01

    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy.

    PubMed

    Park, Soojin; Steiner, Peter M; Kaplan, David

    2018-06-01

    Considering that causal mechanisms unfold over time, it is important to investigate the mechanisms over time, taking into account the time-varying features of treatments and mediators. However, identification of the average causal mediation effect in the presence of time-varying treatments and mediators is often complicated by time-varying confounding. This article aims to provide a novel approach to uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying confounding. We provide different strategies for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous effects are those in which each individual experiences the same effect, and heterogeneous effects are those in which the effects vary over individuals. Most importantly, we provide an alternative definition of average causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other than through an intermediate confounding variable. We argue that this alternative definition allows us to better assess at least a part of the mediated effect and provides meaningful and unique interpretations. A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our proposed approach.

  15. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms.

    PubMed

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-31

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.

  16. Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms

    PubMed Central

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-01

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders. PMID:28140401

  17. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn

    2014-12-15

    A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less

  18. Mechanical behaviour of TWIP steel under shear loading

    NASA Astrophysics Data System (ADS)

    Vincze, G.; Butuc, M. C.; Barlat, F.

    2016-08-01

    Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.

  19. Effect of Positive End-Expiratory Pressure on Central Venous Pressure in Patients under Mechanical Ventilation.

    PubMed

    Shojaee, Majid; Sabzghabaei, Anita; Alimohammadi, Hossein; Derakhshanfar, Hojjat; Amini, Afshin; Esmailzadeh, Bahareh

    2017-01-01

    Finding the probable governing pattern of PEEP and CVP changes is an area of interest for in-charge physicians and researchers. Therefore, the present study was designed with the aim of evaluating the relationship between the mentioned pressures. In this quasi-experimental study, patients under mechanical ventilation were evaluated with the aim of assessing the effect of PEEP change on CVP. Non-trauma patients, over 18 years of age, who were under mechanical ventilation and had stable hemodynamics, with inserted CV line were entered. After gathering demographic data, patients underwent 0, 5, and 10 cmH 2 O PEEPs and the respective CVPs of the mentioned points were recorded. The relationship of CVP and PEEP in different cut points were measured using SPSS 21.0 statistical software. 60 patients with the mean age of 73.95 ± 11.58 years were evaluated (68.3% male). The most frequent cause of ICU admission was sepsis with 45.0%. 5 cmH 2 O increase in PEEP led to 2.47 ± 1.53 mean difference in CVP level. If the PEEP baseline is 0 at the time of 5 cmH 2 O increase, it leads to a higher raise in CVP compared to when the baseline is 5 cmH 2 O (2.47 ± 1.53 vs. 1.57 ± 1.07; p = 0.039). The relationship between CVP and 5 cmH 2 O (p = 0.279), and 10 cmH 2 O (p = 0.292) PEEP changes were not dependent on the baseline level of CVP. The findings of this study revealed the direct relationship between PEEP and CVP. Approximately, a 5 cmH 2 O increase in PEEP will be associated with about 2.5 cmH 2 O raise in CVP. When applying a 5 cmH 2 O PEEP increase, if the baseline PEEP is 0, it leads to a significantly higher raise in CVP compared to when it is 5 cmH 2 O (2.5 vs. 1.6). It seems that sex, history of cardiac failure, baseline CVP level, and hypertension do not have a significant effect in this regard.

  20. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Dayong; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000; Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptorsmore » of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships.

  1. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    PubMed

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  2. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure.

    PubMed

    Chang, Wendi; Akselrod, Gleb M; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole-dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopant molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole-dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole-dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.

  3. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Wendi; Akselrod, Gleb M.; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole–dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopantmore » molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole–dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole–dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.« less

  4. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  5. [Development of studies on bioeffects of ultrasound-acupuncture therapy and its underlying mechanism].

    PubMed

    Yang, Yu-Hua; Zhang, Di; Sa, Zhe-Yan; Huang, Meng; Ding, Guang-Hong

    2012-08-01

    The so-called ultrasound acupuncture is a therapeutic approach for clinical problems and health care by applying the ultrasound energy to the acupoints of the human body directly or indirectly. It has been applied in clinic for about 30 years since 1980s. In the present paper, the authors review the development of both experimental and clinical researches in the past 30 years. Its clinical application includes allergic rhinitis, local pain, mastitis, angina pectoris of coronary heart disease, stroke, etc. Regarding the researches on the underlying mechanism of ultrasound and ultrasound acupuncture, the authors make a summary from 1) bioeffects (thermal and nonthermal effects) of ultrasound intervention; 2) cell lysis and nonlysis effects of ultrasound intervention; and 3) effects of ultrasound acupuncture on the degranulation of mast cells. Based on the idea that "inflammatory reaction caused by mast cell degranulation is one of the initial factors of acupuncture for inducing therapeutic effects", bioeffects including cellular changes, especially mast cell degranulation caused by ultrasound stimulation, are thought to be the main possible mechanisms underlying the favorable efficacy of ultrasound acupuncture intervention. However, the ultrasound metrology and the specific superiority of ultrasound acupuncture remain unknown up to now.

  6. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA

    PubMed Central

    Zhang, Lie; Yin, Jun-Bin; Hu, Wei; Zhao, Wen-Jun; Fan, Qing-Rong; Qiu, Zhi-Chun; He, Ming-Jie; Ding, Tan; Sun, Yan; Kaye, Alan D.; Wang, En-Ren

    2018-01-01

    In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA. PMID:29692727

  7. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA.

    PubMed

    Zhang, Lie; Yin, Jun-Bin; Hu, Wei; Zhao, Wen-Jun; Fan, Qing-Rong; Qiu, Zhi-Chun; He, Ming-Jie; Ding, Tan; Sun, Yan; Kaye, Alan D; Wang, En-Ren

    2018-01-01

    In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.

  8. DNA under Force: Mechanics, Electrostatics, and Hydration.

    PubMed

    Li, Jingqiang; Wijeratne, Sithara S; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-02-25

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  9. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    PubMed

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  10. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    PubMed

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  11. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  12. Mechanism of Small Current Generation under Impulse Voltage Applications in Vacuum

    NASA Astrophysics Data System (ADS)

    Aoki, Keita; Yasukawa, Hideaki; Kojima, Hiroki; Homma, Mitsutaka; Shioiri, Tetsu; Okubo, Hitoshi

    Small discharge not to accompany breakdown can occur under high electric field in vacuum, however the mechanism is not well clarified. We have found that the current of small discharge decreases with repeated voltage applications, and leads to electrode conditioning effect of raising withstand voltage. The inception of the current is delayed with the decrease of current, and the inception time and waveform change by gap length. On the other hand, under low vacuum condition, the current increases and reaches saturation with repeated voltage applications. From these discussions, we concluded that the generating process of small current depended on the adsorption and absorption gas of electrodes.

  13. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain.

    PubMed

    Ju, Ziyong; Cui, Huashun; Guo, Xiaohui; Yang, Huayuan; He, Jinsen; Wang, Ke

    2013-09-05

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity following chronic constriction injury, es-pecially electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.

  14. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain

    PubMed Central

    Ju, Ziyong; Cui, Huashun; Guo, Xiaohui; Yang, Huayuan; He, Jinsen; Wang, Ke

    2013-01-01

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity following chronic constriction injury, es-pecially electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function. PMID:25206545

  15. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  16. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  17. Cost Effectiveness of Genotype-Guided Warfarin Dosing in Patients with Mechanical Heart Valve Replacement Under the Fee-for-Service System.

    PubMed

    Kim, Dong-Jin; Kim, Ho-Sook; Oh, Minkyung; Kim, Eun-Young; Shin, Jae-Gook

    2017-10-01

    Although studies assessing the cost effectiveness of genotype-guided warfarin dosing for the management of atrial fibrillation, deep vein thrombosis, and pulmonary embolism have been reported, no publications have addressed genotype-guided warfarin therapy in mechanical heart valve replacement (MHVR) patients or genotype-guided warfarin therapy under the fee-for-service (FFS) insurance system. The aim of this study was to evaluate the cost effectiveness of genotype-guided warfarin dosing in patients with MHVR under the FFS system from the Korea healthcare sector perspective. A decision-analytic Markov model was developed to evaluate the cost effectiveness of genotype-guided warfarin dosing compared with standard dosing. Estimates of clinical adverse event rates and health state utilities were derived from the published literature. The outcome measure was the incremental cost-effectiveness ratio (ICER) per quality-adjusted life-year (QALY). One-way and probabilistic sensitivity analyses were performed to explore the range of plausible results. In a base-case analysis, genotype-guided warfarin dosing was associated with marginally higher QALYs than standard warfarin dosing (6.088 vs. 6.083, respectively), at a slightly higher cost (US$6.8) (year 2016 values). The ICER was US$1356.2 per QALY gained. In probabilistic sensitivity analysis, there was an 82.7% probability that genotype-guided dosing was dominant compared with standard dosing, and a 99.8% probability that it was cost effective at a willingness-to-pay threshold of US$50,000 per QALY gained. Compared with only standard warfarin therapy, genotype-guided warfarin dosing was cost effective in MHVR patients under the FFS insurance system.

  18. Insights into the mechanisms underlying colonic motor patterns

    PubMed Central

    Dinning, Phil G.; Brookes, Simon J.; Costa, Marcello

    2016-01-01

    Abstract In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation. PMID:26990133

  19. Ferroelastic domain switching dynamics under electrical and mechanical excitations.

    PubMed

    Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing

    2014-05-02

    In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

  20. Ferroelastic domain switching dynamics under electrical and mechanical excitations

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing

    2014-05-01

    In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

  1. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  2. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  3. Mechanisms underlying the antihypertensive properties of Urtica dioica.

    PubMed

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar

    2016-09-01

    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  4. Visualization of hot spot formation in energetic materials under periodic mechanical excitation using phosphor thermography

    NASA Astrophysics Data System (ADS)

    Casey, Alex; Fenoglio, Gabriel; Detrinidad, Humberto

    2017-06-01

    Under mechanical excitation, energy is known to localize within an energetic material resulting in `hot spot' formation. While many formation mechanisms have been proposed, additional insight to heat generation mechanisms, the effect of binder/crystal interfaces, and predication capabilities can be gained by quantifying the initiation and growth of the hot spots. Phosphor thermography is a well established temperature sensing technique wherein an object's temperature is obtained by collecting the temperature dependent luminescence of an optically excited phosphor. Herein, the phosphor thermography technique has been applied to Dow Corning Sylgard® 184/octahydro 1,3,5,7 tetranitro 1,3,5,7 tetrazocine (HMX) composite materials under mechanical excitation in order to visualize the evolution of the temperature field, and thus hot spot formation, within the binder. Funded by AFOSR. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  5. Mechanisms underlying the biphasic effect of vitamin K1 (phylloquinone) on arterial blood pressure.

    PubMed

    Tirapelli, Carlos R; Resstel, Leonardo B M; de Oliveira, Ana M; Corrêa, Fernando M A

    2008-07-01

    Phylloquinone (vitamin K(1), VK(1)) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK(1) on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK(1) (0.5-20 mgkg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK(1) were dose-dependent. On the other hand, intravenous injection of VK(1) did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mgkg(-1)) reduced both the increase and decrease in blood pressure induced by VK(1) (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK(1). However, VK(1)-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK(1) induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK(1) involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

  6. Muscle-related side-effects of statins: from mechanisms to evidence-based solutions.

    PubMed

    Taylor, Beth A; Thompson, Paul D

    2015-06-01

    This article highlights the recent findings regarding statin-associated muscle side effects, including mechanisms and treatment as well as the need for more comprehensive clinical trials in statin myalgia. Statin myalgia is difficult to diagnose and treat, as major clinical trials have not routinely assessed muscle side-effects, there are few clinically relevant biomarkers and assessment tools for the symptoms, many apparent statin-related muscle symptoms may be nonspecific and related to other drugs or health conditions, and prevalence estimates vary widely. Data thus suggest that only 30-50% of patients with self-reported statin myalgia actually experience muscle pain on statins during blinded, placebo-controlled trials. In addition, evidence to date involving mechanisms underlying statin myalgia and its range of symptoms and presentations supports the hypothesis that there are multiple, interactive and potentially additive mechanisms underlying statin-associated muscle side-effects. There are likely multiple and interactive mechanisms underlying statin myalgia, and recent studies have produced equivocal data regarding prevalence of statin-associated muscle side-effects, contributing factors and effectiveness of common interventions. Therefore, more clinical trials on statin myalgia are critical to the field, as are systematic resources for quantifying, predicting and reporting statin-associated muscle side-effects.

  7. Neural mechanisms and personality correlates of the sunk cost effect

    PubMed Central

    Fujino, Junya; Fujimoto, Shinsuke; Kodaka, Fumitoshi; Camerer, Colin F.; Kawada, Ryosaku; Tsurumi, Kosuke; Tei, Shisei; Isobe, Masanori; Miyata, Jun; Sugihara, Genichi; Yamada, Makiko; Fukuyama, Hidenao; Murai, Toshiya; Takahashi, Hidehiko

    2016-01-01

    The sunk cost effect, an interesting and well-known maladaptive behavior, is pervasive in real life, and thus has been studied in various disciplines, including economics, psychology, organizational behavior, politics, and biology. However, the neural mechanisms underlying the sunk cost effect have not been clearly established, nor have their association with differences in individual susceptibility to the effect. Using functional magnetic resonance imaging, we investigated neural responses induced by sunk costs along with measures of core human personality. We found that individuals who tend to adhere to social rules and regulations (who are high in measured agreeableness and conscientiousness) are more susceptible to the sunk cost effect. Furthermore, this behavioral observation was strongly mediated by insula activity during sunk cost decision-making. Tight coupling between the insula and lateral prefrontal cortex was also observed during decision-making under sunk costs. Our findings reveal how individual differences can affect decision-making under sunk costs, thereby contributing to a better understanding of the psychological and neural mechanisms of the sunk cost effect. PMID:27611212

  8. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  9. Preterm Infant Weight Gain is Increased by Massage Therapy and Exercise Via Different Underlying Mechanisms

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria

    2014-01-01

    Objective To compare the effects of massage therapy (moderate pressure stroking) and exercise (flexion and extension of limbs) on preterm infants’ weight gain and to explore potential underlying mechanisms for those effects. Methods Weight gain and parasympathetic nervous system activity were assessed in 30 preterm infants randomly assigned to a massage therapy group or to an exercise group. Infants received 10 minutes of moderate pressure massage or passive flexion and extension of the limbs 3 times per day for 5 days, and EKGs were collected during the first session to assess vagal activity. Results Both massage and exercise led to increased weight gain. However, while exercise was associated with increased calorie consumption, massage was related to increased vagal activity. Conclusion Taken together, these findings suggest that massage and exercise lead to increased preterm infant weight gain via different underlying mechanisms. PMID:24480603

  10. Effects of infrasound on hippocampus-dependent learning and memory in rats and some underlying mechanisms.

    PubMed

    Yuan, Hua; Long, Hua; Liu, Jing; Qu, Lili; Chen, Jingzao; Mou, Xiang

    2009-09-01

    To investigate the effect of infrasound on the hippocampus-dependent spatial learning and memory as well as its underlying mechanisms, we measured the changes of cognitive abilities, brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signal transduction pathway and neurogenesis in the hippocampus of rats. The results showed that rats exposed to infrasound of 16 Hz at 130 dB for 14 days exhibited longer escape latency from day 2 and shortened time staying in the quadrant P in Morris water maze (MWM). It was found that mRNA and protein expression levels of hippocampal BDNF and TrkB were significantly decreased in real-time PCR and Western blot, and the number of BrdU-labeled cells in hippocampus was also reduced when compared to control. These results provided novel evidences that the infrasound of a certain exposure parameter can impair hippocampus-dependent learning and memory, in which the downregulation of the neuronal plasticity-related BDNF-TrkB signal pathway and less neurogenesis in hippocampus might be involved.

  11. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  12. Formononetin protects TBI rats against neurological lesions and the underlying mechanism.

    PubMed

    Li, Zhengzhao; Dong, Xianhong; Zhang, Jianfeng; Zeng, Guang; Zhao, Huimin; Liu, Yun; Qiu, Rubiao; Mo, Linjian; Ye, Yu

    2014-03-15

    Traumatic brain injury (TBI) is a major cause of disability or death worldwide, especially in the young. Thus, effective medication with few side effects needs to be developed. This work aimed to explore the potential benefits of formononetin (FN) on TBI rodent model and to discuss the regarding mechanism. These findings showed that FN effectively increased the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in brain tissue of TBI rats (P<0.01), while it reduced intracephalic malonaldehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations (P<0.01). Meanwhile, the hydrocephalus in the TBI rat was alleviated, and the injured nerve cell of the lesioned brain was reduced as showed in hematoxylin-eosin (HE) staining assay. In addition, the endogenous mRNA level of cyclooxygenase-2 (COX-2) in the brain of the TBI rat was significantly down-regulated (P<0.01). Furthermore, the protein expression of nuclear factor E2-related factor 2 (Nrf2) was effectively up-regulated (P<0.01). Taken together, we conclude that formononetin mediates the promising anti-TBI effects against neurocyte damage, which the underlying mechanisms are associated with inhibiting intracephalic inflammatory response and oxidative stress for neuroprotection. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less

  14. [Progress of researches on mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage].

    PubMed

    Wang, Fan; Wang, Hai-qiao; Dong, Gui-rong

    2011-04-01

    In the present paper, the authors review the progress of researches on the mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage from experimental studies and research methods. The effects of acupuncture intervention mainly involve (1) lessening inflammatory reactions, (2) reducing impairment of free radicals and excitatory amino acids on cerebral neurons, (3) balancing release of vascular bioactive substances to increase regional cerebral blood flow, and (4) promoting repair and regeneration of the neural tissue, etc. In regard to the research methods, many new biological techniques such as biological molecular approaches, neuro-cellular chemical methods, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real time-PCR, situ hybridization, western blotting, electron microscope, etc., have been extensively applied to researches on the underlying mechanism of acupuncture therapy for cerebral infarction. In addition, the authors also pointed out that in spite of achieving some bigger progresses in experimental studies, most of the results basically reflect static, isolated and regional changes rather than dynamic and whole body changes. For this reason, more vivo research techniques and noninvasive research methods are highly recommended to be used in the future research on the underlying mechanisms of acupuncture therapy for acute cerebral ischemia.

  15. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    PubMed

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  16. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect.

    PubMed

    Wang, Fan; Guo, Xiangmeng; Chen, Wanguang; Sun, Yaowen; Fan, Chaojie

    2017-12-01

    Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products (PPCPs), is a broad antibacterial and antifungal agent found in a lot of consumer products. However, TCS hormone effect mechanism in teleost female fish is not clear. Female Yellow River carp (Cyprinus carpio) were exposed to 1/20, 1/10 and 1/5 LC 50 TCS (96h LC 50 of TCS to carp) under semi-static conditions for 42days. Vitellogenin (Vtg), 17β-estradiol (E 2 ), testosterone(T), estrogen receptor (Er), gonadotropin (GtH), and gonadotropin-releasing hormone (GnRH) levels were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we also examined the mRNA expressions of aromatase, GtHs-β, GnRH, and Er by quantitative real-time PCR (qRT-PCR). The results indicated that 1/5 LC 50 TCS induced Vtg in hepatopancreas of female carps by interference with the hypothalamic-pituitary-gonadal (HPG) axis at multiple potential loci through three mechanisms: (a) TCS exposure enhanced the mRNA expression of hypothalamus and gonadal aromatase which converts androgens into estrogens, subsequently increasing serum concentrations of E 2 to induce Vtg in hepatopancreas; (b) TCS treatment increased GnRH and GtH-β mRNA expression and secretion, causing the disturbance of reproductive endocrine and the increase of E 2 to induce Vtg in hepatopancreas; (c) TCS exposure enhanced synthesis and secretion of Er, then it bound to Er to active Vtg synthesis. These mechanisms showed that TCS may induce Vtg production in female Yellow River carp by Er-mediated and non-Er-mediated pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli.

    PubMed

    Iyer, Sukanya; Le, Dai; Park, Bo Ryoung; Kim, Minsu

    2018-05-14

    Bacteria adapt to environmental stress by producing proteins that provide stress protection. However, stress can severely perturb the kinetics of gene expression, disrupting protein production. Here, we characterized how Escherichia coli mitigates such perturbations under nutrient stress through the kinetic coordination of transcription and translation. We observed that, when translation became limiting under nitrogen starvation, transcription elongation slowed accordingly. This slowdown was mediated by (p)ppGpp, the alarmone whose primary role is thought to be promoter regulation. This kinetic coordination by (p)ppGpp was critical for the robust synthesis of gene products. Surprisingly, under carbon starvation, (p)ppGpp was dispensable for robust synthesis. Characterization of the underlying kinetics revealed that under carbon starvation, transcription became limiting, and translation aided transcription elongation. This mechanism naturally coordinated transcription with translation, alleviating the need for (p)ppGpp as a mediator. These contrasting mechanisms for coordination resulted in the condition-dependent effects of (p)ppGpp on global protein synthesis and starvation survival. Our findings reveal a kinetic aspect of gene expression plasticity, establishing (p)ppGpp as a condition-dependent global effector of gene expression.

  18. Continuing to illuminate the mechanisms underlying UV-mediated melanomagenesis

    PubMed Central

    Dellinger, Ryan W.; Liu-Smith, Feng; Meyskens, Frank L.

    2014-01-01

    The incidence of melanoma is one of the fastest growing of all tumor types in the United States and the number of cases worldwide has doubled in the past 30 years. Melanoma, which arises from melanocytes, is an extremely aggressive tumor that invades the vascular and lymphatic systems to establish tumors elsewhere in the body. Melanoma is a particularly resilient cancer and systemic therapy approaches have achieved minimal success against metastatic melanoma resulting in only a few FDA-approved treatments with limited benefit. Leading treatments offer minimal efficacy with response rates generally under 15% in the long term with no clear effect on melanoma-related mortality. Even the recent success of the specific BRAF mutant inhibitor vemurafenib has been tempered somewhat since acquired resistance is rapidly observed. Thus, understanding the mechanism(s) of melanoma carcinogenesis is paramount to combating this deadly disease. Not only for the treatment of melanoma but, ultimately, for prevention. In this report, we will summarize our work to date regarding the characterization of ultraviolet radiation (UVR)-mediated melanomagenesis and highlight several promising avenues of ongoing research. PMID:25022944

  19. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    PubMed

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  20. Mechanisms underlying the antinociceptive effect of mangiferin in the formalin test.

    PubMed

    Izquierdo, Teresa; Espinosa de los Monteros-Zuñiga, Antonio; Cervantes-Durán, Claudia; Lozada, María Concepción; Godínez-Chaparro, Beatriz

    2013-10-15

    The purpose of this study was to investigate the possible antinociceptive effect of mangiferin, a glucosylxanthone present in Mangifera indica L., in inflammatory pain. Furthermore, we sought to investigate the possible mechanisms action that contributes to these effects. The ipsilateral local peripheral (1-30 µg/paw), intrathecal (1-30 µg/rat) and oral (1-30 mg/kg) administration of mangiferin produced a dose-dependent reduction in formalin-induced nociception. The antinociceptive effect of this drug was similar to that induced by diclofenac after oral and local peripheral administration. Furthermore, mangiferin was also able to reduce 0.1% capsaicin- and serotonin-induced nociceptive behavior. The local peripheral antinociceptive effect of mangiferin in the formalin test was blocked by naloxone (50 μg/paw), naltrindole (1 μg/paw), 5-guanidinonaltrindole (5-GNTI, 1 μg/paw), N(G)-L-nitro-arginine methyl ester (L-NAME, 100 µg/paw), 1H-(1,2,4)-oxadiazolo [4,2-a]quinoxalin-1-one (ODQ, 50 µg/paw) and glibenclamide (50 μg/paw), but not by methiothepin (30 μg/paw). These results suggest that the antinociceptive effects induced by mangiferin are mediated by the peripheral opioidergic system involving the activation of δ, κ, and probably µ, receptors, but not serotonergic receptors. Data also suggests that mangiferin activates the NO-cyclic GMP-ATP-sensitive K(+) channels pathway in order to produce its local peripheral antinociceptive effect in the formalin test. Mangiferin may prove to be effective in treating inflammatory pain in humans. © 2013 Elsevier B.V. All rights reserved.

  1. The mismatch negativity: A review of underlying mechanisms

    PubMed Central

    Garrido, Marta I.; Kilner, James M.; Stephan, Klaas E.; Friston, Karl J.

    2009-01-01

    The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain’s ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the “adaptation hypothesis” and the “model adjustment hypothesis” have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both. PMID:19181570

  2. Pharmacological mechanisms underlying the cardiovascular effects of the "bath salt" constituent 3,4-methylenedioxypyrovalerone (MDPV).

    PubMed

    Schindler, Charles W; Thorndike, Eric B; Suzuki, Masaki; Rice, Kenner C; Baumann, Michael H

    2016-12-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with stimulatory cardiovascular effects that can lead to serious medical complications. Here, we examined the pharmacological mechanisms underlying these cardiovascular actions of MDPV in conscious rats. Male Sprague-Dawley rats had telemetry transmitters surgically implanted for the measurement of BP and heart rate (HR). On test days, rats were placed individually in standard isolation cubicles. Following drug treatment, cardiovascular parameters were monitored for 3 h sessions. Racemic MDPV (0.3-3.0 mg·kg -1 ) increased BP and HR in a dose-dependent manner. The S(+) enantiomer (0.3-3.0 mg·kg -1 ) of MDPV produced similar effects, while the R(-) enantiomer (0.3-3.0 mg·kg -1 ) had no effects. Neither of the hydroxylated phase I metabolites of MDPV altered cardiovascular parameters significantly from baseline. Pretreatment with the ganglionic blocker chlorisondamine (1 and 3 mg·kg -1 ) antagonized the increases in BP and HR produced by 1 mg·kg -1 MDPV. The α 1 -adrenoceptor antagonist prazosin (0.3 mg·kg -1 ) attenuated the increase in BP following MDPV, while the β-adrenoceptor antagonists propranolol (1 mg·kg -1 ) and atenolol (1 and 3 mg·kg -1 ) attenuated the HR increases. The S(+) enantiomer appeared to mediate the cardiovascular effects of MDPV, while the metabolites of MDPV did not alter BP or HR significantly; MDPV increased BP and HR through activation of central sympathetic outflow. Mixed-action α/β-adrenoceptor antagonists may be useful as treatments in counteracting the adverse cardiovascular effects of MDPV. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Biological mechanisms underlying the role of physical fitness in health and resilience

    PubMed Central

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appears to buffer against stress-related disease owing to its blunting/optimizing effects on hormonal stress responsive systems, such as the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system. This blunting appears to contribute to reduced emotional, physiological and metabolic reactivity as well as increased positive mood and well-being. Another mechanism whereby regular exercise and/or physical fitness may confer resilience is through minimizing excessive inflammation. Chronic psychological stress, physical inactivity and abdominal adiposity have been associated with persistent, systemic, low-grade inflammation and exert adverse effects on mental and physical health. The anti-inflammatory effects of regular exercise/activity can promote behavioural and metabolic resilience, and protect against various chronic diseases associated with systemic inflammation. Moreover, exercise may benefit the brain by enhancing growth factor expression and neural plasticity, thereby contributing to improved mood and cognition. In summary, the mechanisms whereby physical fitness promotes increased resilience and well-being and positive psychological and physical health are diverse and complex. PMID:25285199

  4. Biological mechanisms underlying the role of physical fitness in health and resilience.

    PubMed

    Silverman, Marni N; Deuster, Patricia A

    2014-10-06

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appears to buffer against stress-related disease owing to its blunting/optimizing effects on hormonal stress responsive systems, such as the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. This blunting appears to contribute to reduced emotional, physiological and metabolic reactivity as well as increased positive mood and well-being. Another mechanism whereby regular exercise and/or physical fitness may confer resilience is through minimizing excessive inflammation. Chronic psychological stress, physical inactivity and abdominal adiposity have been associated with persistent, systemic, low-grade inflammation and exert adverse effects on mental and physical health. The anti-inflammatory effects of regular exercise/activity can promote behavioural and metabolic resilience, and protect against various chronic diseases associated with systemic inflammation. Moreover, exercise may benefit the brain by enhancing growth factor expression and neural plasticity, thereby contributing to improved mood and cognition. In summary, the mechanisms whereby physical fitness promotes increased resilience and well-being and positive psychological and physical health are diverse and complex.

  5. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  6. Experimental Analysis of the Mechanism of Hearing under Water

    PubMed Central

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975

  7. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  8. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.

    PubMed

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R; Gidley, Michael J

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.

  9. Degradation mechanism of SESAMs under intense ultrashort pulses in modelocked VECSELs

    NASA Astrophysics Data System (ADS)

    Addamane, Sadhvikas; Shima, Darryl; Laurain, Alexandre; Chan, Hsiu-Ting; Balakrishnan, Ganesh; Moloney, Jerome V.

    2018-02-01

    Mode-locked VECSELs using SESAMs are a relatively less complex and cost-effective alternative to state-of-the-art ultrafast lasers based on solid-state or fiber lasers. VECSELs have seen considerable progress in device performance in terms of pulse width and peak power in the recent years. However, it appears that the combination of high power and short pulses can cause some irreversible damage to the SESAM. The degradation mechanism, which can lead to a reduction of the VECSEL output power over time, is not fully understood and deserves to be investigated and alleviated in order to achieve stable mode-locking over long periods of time. It is particularly important for VECSEL systems meant to be commercialized, needing long term operation with a long product lifetime. Here, we investigate the performance and robustness of a SESAM-modelocked VECSEL system under intense pulse intensity excitation. The effect of the degradation on the VECSEL performance is investigated using the SESAM in a VECSEL cavity supporting ultrashort pulses, while the degradation mechanism was investigated by exciting the SESAMs with an external femtosecond laser source. The decay of the photoluminescence (PL) and reflectivity under high excitation was monitored and the damaged samples were further analyzed using a thorough Transmission Electron Microscopy (TEM) analysis. It is found that the major contribution to the degradation is the field intensity and that the compositional damage is confined to the DBR region of the SESAM.

  10. Fuel effects on flame lift-off under diesel conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlationmore » with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)« less

  11. Effects of soil mechanical resistance on nematode community structure under conventional sugarcane and remaining of Atlantic Forest.

    PubMed

    de Oliveira Cardoso, Mércia; Pedrosa, Elvira M R; Rolim, Mário M; Silva, Enio F F E; de Barros, Patrícia A

    2012-06-01

    Nematodes present high potential as a biological indicator of soil quality. In this work, it was evaluated relations between soil physical properties and nematode community under sugarcane cropping and remaining of Atlantic Forest areas in Northeastern Pernambuco, Brazil. Soil samples were collected from September to November 2009 along two 200-m transects in both remaining of Atlantic Forest and sugarcane field at deeps of 0-10, 10-20, 20-30, 30-40, and 40-50 cm. For soil characterization, it was carried out analysis of soil size, water content, total porosity, bulk density, and particle density. The level of soil mechanical resistance was evaluated through a digital penetrometer. Nematodes were extracted per 300 cm(3) of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit, and identified in level of genus or family. Data were analyzed using Pearson correlation at 5% of probability. Geostatistical analysis showed that the penetration resistance, water content, total porosity, and bulk density on both forest and cultivated area exhibited spatial dependence at the sampled scale, and their experimental semivariograms were fitted to spherical and exponential models. In forest area, the ectoparasites and free-living nematodes exhibited spherical model. In sugarcane field, the soil nematodes exhibited pure nugget effect. Pratylenchus sp. and Helicotylenchus sp. were prevalent in sugarcane field, but in forest, there was prevalence of Dorylaimidae and Rhabditidae. Total amount of nematode did not differ between environments; however, community trophic structure in forest presented prevalence of free-living nematodes: omnivores followed by bacterial-feeding soil nematodes, while plant-feeding nematodes were prevalent in sugarcane field. The nematode diversity was higher in the remaining of Atlantic Forest. However, the soil mechanical resistance was higher under sugarcane cropping, affecting more directly the free

  12. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    PubMed Central

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-01-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879

  13. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    NASA Astrophysics Data System (ADS)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  14. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    ERIC Educational Resources Information Center

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological…

  15. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  16. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    PubMed

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  17. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    NASA Astrophysics Data System (ADS)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  18. Music listening after stroke: beneficial effects and potential neural mechanisms.

    PubMed

    Särkämö, Teppo; Soto, David

    2012-04-01

    Music is an enjoyable leisure activity that also engages many emotional, cognitive, and motor processes in the brain. Here, we will first review previous literature on the emotional and cognitive effects of music listening in healthy persons and various clinical groups. Then we will present findings about the short- and long-term effects of music listening on the recovery of cognitive function in stroke patients and the underlying neural mechanisms of these music effects. First, our results indicate that listening to pleasant music can have a short-term facilitating effect on visual awareness in patients with visual neglect, which is associated with functional coupling between emotional and attentional brain regions. Second, daily music listening can improve auditory and verbal memory, focused attention, and mood as well as induce structural gray matter changes in the early poststroke stage. The psychological and neural mechanisms potentially underlying the rehabilitating effect of music after stroke are discussed. © 2012 New York Academy of Sciences.

  19. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    NASA Astrophysics Data System (ADS)

    Qin, Qing-Hua; Wang, Ya-Nan

    2012-12-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper. The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model. Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model), but also predict the realtime development pattern of BMC and BFE, as well as the dynamics of osteoblasts (OBA), osteoclasts (OCA), nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme, which can hardly be monitored through experiment. In conclusion, the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass. More importantly, this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated. The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies. Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  20. Klokwerk + study protocol: An observational study to the effects of night-shift work on body weight and infection susceptibility and the mechanisms underlying these health effects.

    PubMed

    Loef, Bette; van Baarle, Debbie; van der Beek, Allard J; van Kerkhof, Linda W; van de Langenberg, Daniëlla; Proper, Karin I

    2016-08-02

    Night-shift work may cause severe disturbances in the worker's circadian rhythm, which has been associated with the onset of health problems and diseases. As a substantial part of the workforce is exposed to night-shift work, harmful aspects of night-shift work should not be overlooked. The aim of the Klokwerk + study is to study the effects of night-shift work on body weight and infection susceptibility and the mechanisms underlying these health effects. First, we will study the relation between night-shift work exposure and body weight and between night-shift work exposure and infection susceptibility. Second, we will examine the mechanisms linking night-shift work exposure to body weight and infection susceptibility, with a specific focus on sleep, physical activity, diet, light exposure, vitamin D level, and immunological factors. Lastly, we will focus on the identification of biomarkers for chronic circadian disturbance associated with night-shift work. The design of this study is a prospective observational cohort study consisting of 1,960 health care workers aged 18-65 years. The study population will consist of a group of night-shift workers and an equally sized group of non-night-shift workers. During the study, there will be two measurement periods. As one of the main outcomes of this study is infection susceptibility, the measurement periods will take place at approximately the first (September/October) (T0) and the last month (April/May) (T1, after 6 months) of the flu season. The measurements will consist of questionnaires, anthropometric measurements, a smartphone application to determine infection susceptibility, food diaries, actigraphy, light sensors, and blood sample analyses. The Klokwerk + study will contribute to the current need for high-quality data on the health effects of night-shift work and its underlying behavioral and physiological mechanisms. The findings can be the starting point for the development of interventions that

  1. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:M{beta}CD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Li; Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001; Yang Yunbo

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogatedmore » the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.« less

  2. Modelling mechanical behaviour of limestone under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Carvalho Coelho, Lúcia; Soares, Antonio Claudio; Ebecken, Nelson Francisco F.; Drummond Alves, José Luis; Landau, Luiz

    2006-12-01

    High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright

  3. Protective effect of erythropoietin against myocardial injury in rats with sepsis and its underlying mechanisms

    PubMed Central

    ZHANG, XINLIANG; DONG, SHIMIN; QIN, YANJUN; BIAN, XIAOHUA

    2015-01-01

    The aim of this study was to investigate the protective effect of erythropoietin (EPO) against acute myocardial injury and its underlying mechanisms. Mice (n=146) were randomly divided in a double-blind manner into four groups, sham, Rocephin, EPO and sepsis, and mortality was observed on the seventh day after cecal ligation and puncture. In addition, a total of 252 rats were randomly divided into three groups, sham, EPO and sepsis, and indicators of cardiac function, inflammatory mediators and serum creatine kinase levels were assessed. Mitochondrial membrane potential, cell apoptosis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) p65 expression levels were detected using flow cytometry. Following intervention with EPO, the mortality rate in mice with sepsis was significantly reduced and the cardiac function of septic rats was significantly improved. In addition, the levels of inflammatory mediators, serum creatine kinase and apoptosis and the myocardial mitochondrial membrane potential and expression of NF-κB p65 in cardiac tissue were all improved following EPO treatment, and the differences between the results for the sepsis and EPO groups were statistically significant (P<0.05). These findings suggest that EPO reduces the myocardial inflammatory response in septic rats, attenuates the reduction in mitochondrial membrane potential and inhibits myocardial cell apoptosis by reducing NF-κB p65 expression, and therefore exerts a protective effect in the myocardium. PMID:25572660

  4. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  5. Consciousness, unconsciousness and death in the context of slaughter. Part I. Neurobiological mechanisms underlying stunning and killing.

    PubMed

    Terlouw, Claudia; Bourguet, Cécile; Deiss, Véronique

    2016-08-01

    This review describes the neurobiological mechanisms that are relevant for the stunning and killing process of animals in the abattoir. The mechanisms underlying the loss of consciousness depend on the technique used: mechanical, electrical or gas stunning. Direct exsanguination (without prior stun) causes also a loss of consciousness before inducing death. The underlying mechanisms may involve cerebral anoxia or ischemia, or the depolarisation, acidification and/or the destruction of brain neurons. These effects may be caused by shock waves, electrical fields, the reduction or arrest of the cerebral blood circulation, increased levels of CO2 or low levels of O2 in the inhaled air, or the mechanical destruction of neurons. The targeted brain structures are the reticular formation, the ascending reticular activating system or thalamus, or the cerebral hemispheres in a general manner. Some of the techniques, when properly used, induce an immediate loss of consciousness; other techniques a progressive loss of consciousness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multi-family group therapy for adolescent Internet addiction: exploring the underlying mechanisms.

    PubMed

    Liu, Qin-Xue; Fang, Xiao-Yi; Yan, Ni; Zhou, Zong-Kui; Yuan, Xiao-Jiao; Lan, Jing; Liu, Chao-Ying

    2015-03-01

    Internet addiction is one of the most common problems among adolescents and effective treatment is needed. This research aims to test the effectiveness and underlying mechanism of multi-family group therapy (MFGT) to reduce Internet addiction among adolescents. A total of 92 participants consisting of 46 adolescents with Internet addiction, aged 12-18years, and 46 their parents, aged 35-46years, were assigned to the experimental group (six-session MFGT intervention) or a waiting-list control. Structured questionnaires were administered at pre-intervention (T1), post-intervention (T2) and a three-month follow-up (T3). There was a significant difference in the decline both in the average score and proportion of adolescents with Internet addiction in MFGT group at post-intervention (MT1=3.40, MT2=2.46, p<0.001; 100 versus 4.8%, p<0.001) maintained for three months (MT3=2.06, p<0.001; 100 versus 11.1%, p<0.001). Reports from both adolescents and parents were significantly better than those in the control group. Further explorations of the underlying mechanisms of effectiveness based on the changed values of measured variables showed that the improvement in adolescent Internet use was partially explained by the satisfaction of their psychological needs and improved parent-adolescent communication and closeness. The six-session multi-family group therapy was effective in reducing Internet addiction behaviors among adolescents and could be implemented as part of routine primary care clinic services in similar populations. As family support system is critical in maintaining the intervention effect, fostering positive parent-adolescent interaction and addressing adolescents' psychological needs should be included in preventive programs for Internet addiction in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading

    NASA Astrophysics Data System (ADS)

    Baoxin, Qi; Yan, Shi; Bi, Jialiang

    2018-03-01

    Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.

  8. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  9. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF.

    PubMed

    Cheng, Ying; Shao, Can; Lathrop, Quinn N

    2016-02-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable or multiple variables that may completely or partially mediate the DIF effect. If complete mediation effect is found, the DIF effect is fully accounted for. Through our simulation study, we find that the mediated MIMIC model is very successful in detecting the mediation effect that completely or partially accounts for DIF, while keeping the Type I error rate well controlled for both balanced and unbalanced sample sizes between focal and reference groups. Because it is successful in detecting such mediation effects, the mediated MIMIC model may help explain DIF and give guidance in the revision of a DIF item.

  10. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    PubMed Central

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2015-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable or multiple variables that may completely or partially mediate the DIF effect. If complete mediation effect is found, the DIF effect is fully accounted for. Through our simulation study, we find that the mediated MIMIC model is very successful in detecting the mediation effect that completely or partially accounts for DIF, while keeping the Type I error rate well controlled for both balanced and unbalanced sample sizes between focal and reference groups. Because it is successful in detecting such mediation effects, the mediated MIMIC model may help explain DIF and give guidance in the revision of a DIF item.

  11. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  12. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: Underlying mechanisms

    PubMed Central

    Taub, Pam R.; Ramirez-Sanchez, Israel; Patel, Minal; Higginbotham, Erin; Moreno-Ulloa, Aldo; Román-Pintos, Luis Miguel; Phillips, Paul; Perkins, Guy; Ceballos, Guillermo; Villarreal, Francisco

    2016-01-01

    In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n=9), VO2 max increased (17% increase, p=0.056) as well as maximum work (watts) achieved (p=0.026) with no changes with placebo (n=8). The DC group evidenced increases in HDL levels (p=0.005) and decreased triglycerides (p=0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. PMID:27491778

  13. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    PubMed

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  14. Micro-mechanical damage of trabecular bone-cement interface under selected loading conditions: a finite element study.

    PubMed

    Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie

    2014-01-01

    In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.

  15. Portevin-Le Chatelier effect under cyclic loading: experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Mazière, M.; Pujol d'Andrebo, Q.

    2015-10-01

    The Portevin-Le Chatelier (PLC) effect is generally evidenced by the apparition of serrated yielding under monotonic tensile loading conditions. It appears at room temperature in some aluminium alloys, around ? in some steels and in many other metallic materials. This effect is associated with the propagation of bands of plastic deformation in tensile specimens and can in some cases lead to unexpected failures. The PLC effect has been widely simulated under monotonic conditions using finite elements and an appropriate mechanical model able to reproduce serrations and strain localization. The occurrence of serrations can be predicted using an analytical stability analysis. Recently, this serrated yielding has also been observed in specimens made of Cobalt-based superalloy under cyclic loading, after a large number of cycles. The mechanical model has been identified in this case to accurately reproduce this critical number of cycle where serrations appear. The associated apparition of localized bands of deformation in specimens and their influence on its failure has also been investigated using finite element simulations.

  16. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  17. Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis

    PubMed Central

    Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J

    2014-01-01

    Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID

  18. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    PubMed

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  19. Effects of Thermal Damage on Strain Burst Mechanism for Brittle Rocks Under True-Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Akdag, Selahattin; Karakus, Murat; Taheri, Abbas; Nguyen, Giang; Manchao, He

    2018-06-01

    Strain burst is a common problem encountered in brittle rocks in deep, high-stress mining applications. Limited research focuses on the effects of temperature on the strain burst mechanism and the kinetic energies of rocks. This study aims to investigate the effects of thermal damage on the strain burst characteristics of brittle rocks under true-triaxial loading-unloading conditions using the acoustic emission (AE) and kinetic energy analyses. The time-domain and frequency-domain responses related to strain burst were studied, and the damage evolution was quantified by b-values, cumulative AE energy and events rates. The ejection velocities of the rock fragments from the free face of the granite specimens were used to calculate kinetic energies. The experimental results showed that thermal damage resulted in a delay in bursting but increased the bursting rate at 95% of normalised stress level. This is believed to be due to the micro-cracks induced by temperature exposure, and thus the accumulated AE energy (also supported by cumulative AE counts) at the initial loading stage was reduced, causing a delay in bursting. The strain burst stress, initial rock fragment ejection velocity, and kinetic energy decreased from room temperature (25 °C) to 100 °C, whereas they resulted in a gradual rise from 100 to 150 °C demonstrating more intense strain burst behaviour.

  20. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  1. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    PubMed

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  2. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning

    PubMed Central

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489

  3. Interface traps contribution on transport mechanisms under illumination in metal-oxide-semiconductor structures based on silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Chatbouri, S.; Troudi, M.; Kalboussi, A.; Souifi, A.

    2018-02-01

    The transport phenomena in metal-oxide-semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer have been investigated, in dark condition and under visible illumination. At first, using deep-level transient spectroscopy (DLTS), we find the presence of series electron traps having very close energy levels (comprised between 0.28 and 0.45 eV) for ours devices (with/without Si-NCs). And a single peak appears at low temperature only for MOS with Si-NCs related to Si-NCs DLTS response. In dark condition, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap states for MOS without Si-NCs. The tunneling of charge carriers from highly poly-Si to Si substrate trough the trapping/detrapping mechanism in the Si-NCs, at low temperature, contributed to the conduction mechanism for MOS with Si-NCs. The light effect on transport mechanisms has been investigated using current-voltage ( I- V), and high frequency capacitance-voltage ( C- V) methods. We have been marked the photoactive trap effect in inversion zone at room temperature in I- V characteristics, which confirm the contribution of photo-generated charge on the transport mechanisms from highly poly-Si to Si substrate trough the photo-trapping/detrapping mechanism in the Si-NCs and interfaces traps levels. These results have been confirmed by an increasing about 10 pF in capacity's values for the C- V characteristics of MOS with Si-NCs, in the inversion region for inverse high voltage applied under photoexcitation at low temperature. These results are helpful to understand the principle of charge transport in dark condition and under illumination, of MOS structures having Si-NCs in the SiO x = 1.5 oxide matrix.

  4. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  5. COMPUTATIONAL ANALYSIS OF SWALLOWING MECHANICS UNDERLYING IMPAIRED EPIGLOTTIC INVERSION

    PubMed Central

    Pearson, William G.; Taylor, Brandon K; Blair, Julie; Martin-Harris, Bonnie

    2015-01-01

    Objective Determine swallowing mechanics associated with the first and second epiglottic movements, that is, movement to horizontal and full inversion respectively, in order to provide a clinical interpretation of impaired epiglottic function. Study Design Retrospective cohort study. Methods A heterogeneous cohort of patients with swallowing difficulties was identified (n=92). Two speech-language pathologists reviewed 5ml thin and 5ml pudding videofluoroscopic swallow studies per subject, and assigned epiglottic component scores of 0=complete inversion, 1=partial inversion, and 2=no inversion forming three groups of videos for comparison. Coordinates mapping minimum and maximum excursion of the hyoid, pharynx, larynx, and tongue base during pharyngeal swallowing were recorded using ImageJ software. A canonical variate analysis with post-hoc discriminant function analysis of coordinates was performed using MorphoJ software to evaluate mechanical differences between groups. Eigenvectors characterizing swallowing mechanics underlying impaired epiglottic movements were visualized. Results Nineteen of 184 video-swallows were rejected for poor quality (n=165). A Goodman-Kruskal index of predictive association showed no correlation between epiglottic component scores and etiologies of dysphagia (λ=.04). A two-way analysis of variance by epiglottic component scores showed no significant interaction effects between sex and age (f=1.4, p=.25). Discriminant function analysis demonstrated statistically significant mechanical differences between epiglottic component scores: 1&2, representing the first epiglottic movement (Mahalanobis distance=1.13, p=.0007); and, 0&1, representing the second epiglottic movement (Mahalanobis distance=0.83, p=.003). Eigenvectors indicate that laryngeal elevation and tongue base retraction underlie both epiglottic movements. Conclusion Results suggest that reduced tongue base retraction and laryngeal elevation underlie impaired first and second

  6. Study of mechanical behavior of AFM silicon tips under mechanical load

    NASA Astrophysics Data System (ADS)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  7. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  8. Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer.

    PubMed

    Wojcik, Marzena; Krawczyk, Michal; Wojcik, Pawel; Cypryk, Katarzyna; Wozniak, Lucyna Alicja

    2018-01-01

    The growing prevalence of age-related diseases, especially type 2 diabetes mellitus (T2DM) and cancer, has become global health and economic problems. Due to multifactorial nature of both diseases, their pathophysiology is not completely understood so far. Compelling evidence indicates that increased oxidative stress, resulting from an imbalance between production of reactive oxygen species (ROS) and their clearance by antioxidant defense mechanisms, as well as the proinflammatory state contributes to the development and progression of the diseases. Curcumin (CUR; diferuloylmethane), a well-known polyphenol derived from the rhizomes of turmeric Curcuma longa , has attracted a great deal of attention as a natural compound with beneficial antidiabetic and anticancer properties, partly due to its antioxidative and anti-inflammatory actions. Although this polyphenolic compound is increasingly being recognized for its growing number of protective health effects, the precise molecular mechanisms through which it reduces diabetes- and cancer-related pathological events have not been fully unraveled. Hence, CUR is the subject of intensive research in the fields Diabetology and Oncology as a potential candidate in the treatment of both T2DM and cancer, particularly since current therapeutic options for their treatment are not satisfactory in clinics. In this review, we summarize the recent progress made on the molecular targets and pathways involved in antidiabetic and anticancer activities of CUR that are responsible for its beneficial health effects.

  9. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  10. Developmental mechanisms underlying variable, invariant and plastic phenotypes

    PubMed Central

    Abley, Katie; Locke, James C. W.; Leyser, H. M. Ottoline

    2016-01-01

    Background Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. Scope Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. Conclusion In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner. PMID:27072645

  11. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    NASA Technical Reports Server (NTRS)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  12. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  13. Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm

    PubMed Central

    Hiett, S. Christopher; Owen, Meredith K.; Li, Wennan; Chen, Xingjuan; Riley, Ashley; Noblet, Jillian; Flores, Sarah; Sturek, Michael; Tune, Johnathan D.; Obukhov, Alexander G.

    2014-01-01

    Aims The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. Methods and results Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1–10 μM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with a Gq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 μM), capsaicin first induced transient dilation that was followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 μM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 μM nifedipine and 70 mM KCl. Capsaicin also potentiated 20 mM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that the Gq/11-phospholipase C (PLC)-protein kinase C (PKC) and Ca2+-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. Conclusion Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin–thromboxane agonists may unmask capsaicin

  14. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  15. Deformation mechanisms of idealised cermets under multi-axial loading

    NASA Astrophysics Data System (ADS)

    Bele, E.; Goel, A.; Pickering, E. G.; Borstnar, G.; Katsamenis, O. L.; Pierron, F.; Danas, K.; Deshpande, V. S.

    2017-05-01

    The response of idealised cermets comprising approximately 60% by volume steel spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric compressive stress states. Digital volume correlation (DVC) anal`ysis of X-ray micro-computed tomography scans (μ-CT), and the measured macroscopic stress-strain curves of the specimens revealed two deformation mechanisms. At low triaxialities the deformation is granular in nature, with dilation occurring within shear bands. Under higher imposed hydrostatic pressures, the deformation mechanism transitions to a more homogeneous incompressible mode. However, DVC analyses revealed that under all triaxialities there are regions with local dilatory and compaction responses, with the magnitude of dilation and the number of zones wherein dilation occurs decreasing with increasing triaxiality. Two numerical models are presented in order to clarify these mechanisms: (i) a periodic unit cell model comprising nearly rigid spherical particles in a porous metal matrix and (ii) a discrete element model comprising a large random aggregate of spheres connected by non-linear normal and tangential "springs". The periodic unit cell model captured the measured stress-strain response with reasonable accuracy but under-predicted the observed dilation at the lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid particles were not accurately accounted for in this model. By contrast, the discrete element model captured the kinematics and predicted both the overall levels of dilation and the simultaneous presence of both local compaction and dilatory regions with the specimens. However, the levels of dilation in this model are dependent on the assumed contact law between the spheres. Moreover, since the matrix is not explicitly included in the analysis, this model cannot be used to predict the stress-strain responses. These analyses have revealed that the complete constitutive response of cermets

  16. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Fabiano, Francesco; Terracciano, Rosa; Matera, Maria Gabriella; Maselli, Rosario

    2016-10-01

    Inhaled glucocorticoids are the mainstay of asthma treatment. Indeed, such therapeutic agents effectively interfere with many pathogenic circuits underpinning asthma. Among these drugs, during the last decades budesonide has been probably the most used molecule in both experimental studies and clinical practice. Therefore, a large body of evidence clearly shows that budesonide, either alone or in combination with long-acting bronchodilators, provides a successful control of asthma in many patients ranging throughout the overall spectrum of disease severity. These excellent therapeutic properties of budesonide basically depend on its molecular mechanisms of action, capable of inhibiting within the airways the activity of multiple immune-inflammatory and structural cells involved in asthma pathobiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mechanisms of anterior-posterior stability of the knee joint under load-bearing.

    PubMed

    Reynolds, Ryan J; Walker, Peter S; Buza, John

    2017-05-24

    The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior. Copyright © 2017. Published by Elsevier Ltd.

  18. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    PubMed Central

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  19. Effects of Tribulus terrestris saponins on exercise performance in overtraining rats and the underlying mechanisms.

    PubMed

    Yin, Liang; Wang, Qian; Wang, Xiaohui; Song, Liang-Nian

    2016-06-22

    The objective of this study was to determine the effects of Tribulus terrestris L. (TT) saponins on exercise performance and the underlying mechanisms. A rat overtraining model was established and animals were treated with TT extracts (120 mg/kg body mass) 30 min before each training session. Serum levels of testosterone and corticosterone and levels of androgen receptor (AR) and insulin growth factor-1 receptor (IGF-1R) in the liver, gastrocnemius, and soleus were determined by ELISA and Western blot. Treatment of rats with TT saponins significantly improved the performance of the overtraining rats, reflected by the extension of time to exhaustion, with a concomitant increase in body mass, relative mass, and protein levels of gastrocnemius. Overtraining alone induced a significant decrease in the serum level of testosterone. In contrast, treatment with TT saponins dramatically increased the serum level of testosterone in overtraining rats to about 150% of control and 216% of overtraining groups, respectively. In addition, TT saponins resulted in a further significant increase in AR in gastrocnemius and significantly suppressed the overtraining-induced increase in IGF-1R in the liver. These results indicated that TT saponins increased performance, body mass, and gastrocnemius mass of rats undergoing overtraining, which might be attributed to the changes in androgen-AR axis and IGF-1R signaling.

  20. Effects of competitive pressure on expert performance: underlying psychological, physiological, and kinematic mechanisms.

    PubMed

    Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Boardley, Ian D; Ring, Christopher

    2011-08-01

    Although it is well established that performance is influenced by competitive pressure, our understanding of the mechanisms which underlie the pressure-performance relationship is limited. The current experiment examined mediators of the relationship between competitive pressure and motor skill performance of experts. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 50 expert golfers, during a golf putting task. Elevated competitive pressure increased putting accuracy, anxiety, effort, and heart rate, but decreased grip force. Quadratic effects of pressure were noted for self-reported conscious processing and impact velocity. Mediation analyses revealed that effort and heart rate partially mediated improved performance. The findings indicate that competitive pressure elicits effects on expert performance through both psychological and physiological pathways. Copyright © 2011 Society for Psychophysiological Research.

  1. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study

    NASA Astrophysics Data System (ADS)

    Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui

    2017-09-01

    Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.

  2. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  3. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    PubMed

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.

    PubMed

    Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek

    2018-08-01

    Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    PubMed Central

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  6. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  7. Investigation on laser forming of stainless steel sheets under coupling mechanism

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shitanshu S.; Maji, Kuntal; Racherla, Vikranth; Nath, Ashish K.

    2015-08-01

    In laser forming of three dimensional surfaces simultaneous bending and thickening of the sheet being formed are often required. Laser forming by the coupling mechanism has the capability to generate both of them. However, literature is scarce on the study of laser forming under coupling mechanism. A part of this work investigates the effect of Fourier number and laser spot diameter on bending angle and thickness increment induced by laser scans promoting coupling mechanism. Peak surface temperature was maintained nearly constant. It was chosen so as to avoid surface melting and sensitization at the scan track on top surface. The required laser parameters were determined with the help of an analytical model for temperature estimation. The experimental results showed that while the bending angle reduced with the increase of Fourier number, the thickness increment increased. And, with the increase of laser spot diameter both bending angle and thickness increased. Finite element simulations were carried out using ABAQUS software on a three dimensional model for developing a better understanding of the deformation behaviour. Multimode intensity distribution of the laser beam and temperature dependant material properties were considered in the simulations. Finite element analysis and microstructure study showed that chances of sensitization are rare with the current laser parameter combinations. Based on temperature gradient and coupling mechanisms a different laser scanning strategy has been proposed for laser forming of deep pillow shaped surfaces retaining symmetry.

  8. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms

    PubMed Central

    Mustard, Julie A.

    2014-01-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine’s ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla. PMID:24162934

  9. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms.

    PubMed

    Mustard, Julie A

    2014-04-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine's ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.

  10. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  11. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    PubMed

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  12. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

    PubMed Central

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-01-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762

  13. Molecular Mechanisms Underlying Occult Hepatitis B Virus Infection

    PubMed Central

    Samal, Jasmine; Kandpal, Manish

    2012-01-01

    Summary: Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section. PMID:22232374

  14. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: the underlying mechanism.

    PubMed

    Mahmoud, Ayman M; Abd El-Twab, Sanaa M; Abdel-Reheim, Eman S

    2017-06-01

    Beneficial effects of white mulberry against diabetes mellitus have been reported. However, the molecular mechanisms of how white mulberry can attenuate diabetic retinopathy remain poorly understood. Here, the mechanism underlying the protective effect of Morus alba leaves ethanolic extract on oxidative stress, inflammation, apoptosis, and angiogenesis in diabetic retinopathy was investigated. Diabetes was induced by injection of streptozotocin. One week after, M. alba (100 mg/kg) was administrated to the rats daily for 16 weeks. Morus alba extract showed high content of polyphenolics and free radical scavenging activity. Oral M. alba administration significantly attenuated hyperglycemia and weight loss, and decreased sorbitol, fructose, protein kinase C, pro-inflammatory cytokines, and oxidative stress markers in retinas of the diabetic rats. Moreover, M. alba produced marked down-regulation of caspase-3 and Bax, with concomitant up-regulation of Bcl-2 in the diabetic retinas. M. alba also reduced the expression of VEGF in the retina. These results indicate that M. alba has protective effect on diabetic retinopathy with possible mechanisms of inhibiting hyperglycemia-induced oxidative stress, apoptosis, inflammation, polyol pathway activation, and VEGF expression in the retina.

  15. The molecular mechanisms underlying lens fiber elongation

    PubMed Central

    Audette, Dylan S.; Scheiblin, David A.; Duncan, Melinda K.

    2016-01-01

    Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons. PMID:27015931

  16. Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.

    PubMed

    Li, Weifeng; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Wang, Yu; Niu, Xiaofeng

    2016-09-01

    Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Spectrometric characteristics and underlying mechanisms of protective effects of selenium on Spirulina platensis against oxidative stress].

    PubMed

    Wu, Hua-lian; Chen, Tian-feng; Yin, Xi; Zheng, Wen-jie

    2012-03-01

    To investigate the possibility and the underlying mechanisms of sodium selenite as antagonist for oxidative stress, the authors examined the effects of pretreatment with selenium on the growth, morphology, spectrometric characteristics and content of reactive oxygen species (ROS) in Spirulina platensis (S. platensis) exposed to H2O2 stress for 24 h in the present study. The results showed that H2O2 induced obvious inhibition of growth and serious morphological damage. The intensity of absorbance peak at 440 nm increased, whereas the peaks at 620 and 680 nm decreased after exposed to H2O2. The emission and excitation spectrum of S. platensis decreased dramatically after H2O2 treatment, and the emission peak from phycocyanin exhibited blue-shift from 660 to 650 nm. The results of FTIR analysis showed that the positions of transmission peaks had no shift, but the relative intensity of characteristic bands from protein and polypeptides including amide I and amide II decreased. Furthermore, the intracellular ROS generation in S. platensis increased significantly in response to H2O2 treatment. In contrast, pretreatments of the cells with selenium for 24 h significantly prevented the H2O2-induced oxidative damages in a dose-dependent manner. Taken together, our results indicate that pretreatments with selenium could prevent ROS overproduction in S. platensis and improve its antioxidant ability. Moreover, selenium could also reduce the effects of free radicals on energy harvest and energy transfer in S. platensis that play vital roles in its photosynthesis.

  18. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  19. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less

  20. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions.

    PubMed

    Ares, Pablo; Aguilar-Galindo, Fernando; Rodríguez-San-Miguel, David; Aldave, Diego A; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando; Gómez-Herrero, Julio; Zamora, Félix

    2016-08-01

    Antimonene fabricated by mechanical exfoliation is highly stable under atmospheric conditions over periods of months and even when immersed in water. Density functional theory confirms the experiments and predicts an electronic gap of ≈1 eV. These results highlight the use of antimonene for optoelectronics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Underlying mechanism of drug-drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8.

    PubMed

    Takagi, Motoi; Sakamoto, Masaya; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-08-01

    While co-administered gemfibrozil can increase the area under the concentration/time curve (AUC) of pioglitazone more than 3-fold, the underlying mechanism of the drug-drug interaction between gemfibrozil and pioglitazone has not been fully understood. In the present study, gemfibrozil preincubation time-dependently inhibited the metabolism of pioglitazone in the cytochrome P450 (CYP)- and UDP-glucuronosyltransferase (UGT)-activated human liver microsomes. We estimated the kinact and K'app values, which are the maximum inactivation rate constant and the apparent dissociation constant, of gemfibrozil to be 0.071 min(-1) and 57.3 μM, respectively. In this study, the kobs, in vivo value was defined as a parameter that indicates the potency of the mechanism-based inhibitory effect at the blood drug concentration in vivo. The kobs, in vivo values of potent mechanism-based inhibitors, clarithromycin and erythromycin, were estimated to be 0.0096 min(-1) and 0.0051 min(-1), respectively. The kobs, in vivo value of gemfibrozil was 0.0060 min(-1), which was comparable to those of clarithromycin and erythromycin, suggesting that gemfibrozil could be a mechanism-based inhibitor as potent as clarithromycin and erythromycin in vivo. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  3. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    PubMed Central

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  4. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  5. Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy

    PubMed Central

    Cheng, Qiong; Kazemian, Majid; Pham, Hannah; Blatti, Charles; Celniker, Susan E.; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called “STAP,” to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed (“primary”) TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions

  6. Nanoparticle monolayers under stress: mechanically forced desorption from a fluid-fluid interface

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Crocker, John C.; Stebe, Kathleen J.

    2011-11-01

    Nanoparticle-laden interfaces are studied for applications to materials with tunable electronic and optical properties, as emulsion stabilizers, and in catalysis. The mechanical response of nanoparticle monolayers under applied stress is of emerging interest since it impacts the success of these applications. Here we focus on the response of nanoparticle-laden interfaces to compression. A monolayer of nanoparticles is allowed to spontaneously form by adsorption from an aqueous suspension onto a pendant drop of oil. The effective surface pressure Π of the composite interface is monitored by pendant drop tensiometry. As the drop is compressed, the nanoparticles are mechanically forced out of the interface into the aqueous phase. A new optical method is developed to measure the nanoparticle area density in situ. We show that desorption occurs at a coverage that corresponds to close packing of the ligand-capped particles, suggesting that ligand-induced repulsion plays a crucial role in the desorption process.

  7. Mechanisms underlying astringency: introduction to an oral tribology approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  8. Identification of the mechanism underlying a human chimera by SNP array analysis.

    PubMed

    Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju

    2012-09-01

    Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  9. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  10. Mechanisms Underlying the Anti-Tumoral Effects of Citrus bergamia Juice

    PubMed Central

    Delle Monache, Simona; Sanità, Patrizia; Trapasso, Elena; Ursino, Maria Rita; Dugo, Paola; Russo, Marina; Ferlazzo, Nadia; Calapai, Gioacchino; Angelucci, Adriano; Navarra, Michele

    2013-01-01

    Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment. PMID:23613861

  11. Mechanisms underlying the association between insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions.

    PubMed

    Blake, Matthew J; Trinder, John A; Allen, Nicholas B

    2018-05-28

    There is robust evidence of an association between insomnia, anxiety, and depression in adolescence. The aim of this review is to describe and synthesize potential mechanisms underlying this association and explore implications for the design of adolescent behavioral sleep interventions. Specifically, we examine whether insomnia symptoms are a mechanism for the development of internalizing symptoms in adolescence and whether sleep interventions are an effective treatment for both insomnia and internalizing symptoms in adolescence because they target the shared mechanisms underlying these disorders. Research using different methodologies points to the role of sequential, parallel, and interacting mechanisms. In this paper, we review a wide range of relevant biological (i.e., polymorphisms and dysregulation in serotonin, dopamine, and circadian clock genes; alterations in corticolimbic and mesolimbic brain circuits; cortisol reactivity to stress; inflammatory cytokine dysregulation; biased memory consolidation; changes in sleep architecture), psychological (i.e., cognitive inflexibility, interpretational biases, judgment biases, negative attribution styles, worry, rumination, biased attention to threat, dysfunctional beliefs and attitudes about sleep, misperception of sleep deficit), and social mechanisms (i.e., reduced and impaired social interactions, unhelpful parenting behaviors, family stress) and propose an integrative multilevel model of how these phenomena may interact to increase vulnerability to both insomnia and internalizing disorders. Several 'biopsychosocial' mechanisms hold promise as viable treatment targets for adolescent behavioral sleep interventions, which may reduce both insomnia and internalizing symptoms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  13. Effects of Number Scaling on Entangled States in Quantum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.

  14. Video analysis of concussion injury mechanism in under-18 rugby

    PubMed Central

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne

    2016-01-01

    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  15. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  16. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    NASA Astrophysics Data System (ADS)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  17. [Underlying Mechanisms and Management of Refractory Gastroesophageal Reflux Disease].

    PubMed

    Lee, Kwang Jae

    2015-08-01

    The prevalence of gastroesophageal reflux disease (GERD) in South Korea has increased over the past 10 years. Patients with erosive reflux disease (ERD) shows better response to proton pump inhibitors (PPIs) than those with non-erosive reflux disease (NERD). NERD is a heterogeneous condition, showing pathological gastroesophageal reflux or esophageal hypersensitivity to reflux contents. NERD patients with pathological gastroesophageal reflux or hypersensitivity to acid may respond to PPIs. However, many patients with esophageal hypersensitivity to nonacid or functional heartburn do not respond to PPIs. Therefore, careful history and investigations are required when managing patients with refractory GERD who show poor response to conventional dose PPIs. Combined pH-impedance studies and a PPI diagnostic trial are recommended to reveal underlying mechanisms of refractory symptoms. For those with ongoing reflux-related symptoms, split dose administration, change to long-acting PPIs or PPIs less influenced by CYP2C19 genotypes, increasing dose of PPIs, and the addition of alginate preparations, prokinetics, selective serotonin reuptake inhibitors, or tricyclic antidepressants can be considered. Pain modulators, selective serotonin reuptake inhibitors, or tricyclic antidepressants are more likely to be effective for those with reflux-unrelated symptoms. Surgery or endoscopic per oral fundoplication may be effective in selected patients.

  18. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps

    PubMed Central

    Bailey, Kathryn A.; Smith, Allan H.; Tokar, Erik J.; Graziano, Joseph H.; Kim, Kyoung-Woong; Navasumrit, Panida; Ruchirawat, Mathuros; Thiantanawat, Apinya; Suk, William A.; Fry, Rebecca C.

    2015-01-01

    Background Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. Objectives This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. Discussion Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. Conclusions Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes. Citation Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. 2016. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175; http://dx.doi.org/10.1289/ehp.1409360 PMID:26115410

  19. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    PubMed Central

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  20. Determination of Temperature- Dependent Mechanical Properties of Carbon Composites Under Tensile and Flexural Loading

    NASA Astrophysics Data System (ADS)

    Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes

    2014-06-01

    The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.

  1. Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong

    2018-03-01

    The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.

  2. [Experimental research on the effective mechanism of jianweiling].

    PubMed

    Li, Y Y

    1992-01-01

    The purpose of this study is to find out the effective mechanism of Jianweiling (JWL) in treating some gastrointestinal (GI) diseases. The functions of GI movement, bile and pancreatic secretion and intestinal absorption were measured after giving JWL to the experimental rats. The results showed that JWL could adjust GI movement once it was in abnormal conditions. When the gastrointestine was in paralysis under the influence of abdominal operation, JWL could make GI myoelectric activity return to normal; and JWL could relax it when the gastrointestine was in a cramp state resulted from Neostigmini Methylsulfurici injection. In addition, the pancreatic secretion, the amylase activity in pancreatic juice and the intestinal absorption for D-xylose in JWL group were obviously better than those of the control groups. These results suggested that the effective mechanism of JWL on some GI diseases can be realized by adjusting and promoting GI functions in various ways.

  3. Probing Mechanical Properties of Jurkat Cells under the Effect of ART Using Oscillating Optical Tweezers

    PubMed Central

    2015-01-01

    Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART). A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively. PMID:25928073

  4. Mechanical and tribological behaviour of molten salt processed self-lubricated aluminium composite under different treatments

    NASA Astrophysics Data System (ADS)

    Kannan, C.; Ramanujam, R.

    2018-05-01

    The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.

  5. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response

    PubMed Central

    Shahin, Mohamed H; Johnson, Julie A

    2016-01-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. PMID:26874237

  6. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    PubMed

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  7. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.

    PubMed

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-08-12

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level.

  8. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback

    PubMed Central

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  9. The effect of glycation on arterial microstructure and mechanical response.

    PubMed

    Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D T

    2014-08-01

    Like engineered materials, an artery's biomechanical behavior and function depend on its microstructure. Glycation is associated with both normal aging and diabetes and has been shown to increase arterial stiffness. In this study we examined the direct effect of glycation on the mechanical response of intact arteries and on the mechanical response and structure of elastin isolated from the arteries. Samples of intact arteries and isolated elastin were prepared from porcine aortas and glycated. The mechanical response of all samples was completed using a uniaxial material test system. Glycation levels were measured using ELISA. A confocal microscope was used to image differences in the structure of the glycated and untreated elastin fibers. We found that, under the conditions used in this study, glycation led to decreased stiffness of elastin isolated from arteries, which was associated with a thinning of elastin fibers as imaged by confocal microscopy. We observed no effect of glycation on collagen fibers under our treatment conditions. These results suggest that glycation leads to weakening of the elastin component of arteries that could contribute to vascular defects seen in diabetes and aging. Prevention of glycation reactions may be an important consideration for vascular health later in life. © 2013 Wiley Periodicals, Inc.

  10. Two distinct neural mechanisms underlying indirect reciprocity.

    PubMed

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  11. Two distinct neural mechanisms underlying indirect reciprocity

    PubMed Central

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-01-01

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  12. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  13. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  14. Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress.

    PubMed

    Fernandes, Isabel; Pascoal, Cláudia; Cássio, Fernanda

    2011-08-01

    Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass accumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.

  15. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  16. Stock price dynamics and option valuations under volatility feedback effect

    NASA Astrophysics Data System (ADS)

    Kanniainen, Juho; Piché, Robert

    2013-02-01

    According to the volatility feedback effect, an unexpected increase in squared volatility leads to an immediate decline in the price-dividend ratio. In this paper, we consider the properties of stock price dynamics and option valuations under the volatility feedback effect by modeling the joint dynamics of stock price, dividends, and volatility in continuous time. Most importantly, our model predicts the negative effect of an increase in squared return volatility on the value of deep-in-the-money call options and, furthermore, attempts to explain the volatility puzzle. We theoretically demonstrate a mechanism by which the market price of diffusion return risk, or an equity risk-premium, affects option prices and empirically illustrate how to identify that mechanism using forward-looking information on option contracts. Our theoretical and empirical results support the relevance of the volatility feedback effect. Overall, the results indicate that the prevailing practice of ignoring the time-varying dividend yield in option pricing can lead to oversimplification of the stock market dynamics.

  17. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  18. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  19. Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin

    PubMed Central

    Nowakowski, Sarah G.

    2017-01-01

    Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776

  20. Study on cavitation effect of mechanical seals with laser-textured porous surface

    NASA Astrophysics Data System (ADS)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  1. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress.

    PubMed

    Zheng, Yun-Chong; He, Hao; Wei, Xing; Ge, Sheng; Lu, Yan-Hua

    2016-11-23

    The effects of mulberry ingredients including 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) on insulin secretion under oxidative stress were investigated. The results revealed that they had distinct effects on insulin secretion in H 2 O 2 -induced MIN 6 cells, especially DNJ, C3G, and C3R, while RES and OXY showed modest effects in low dose (12.5 μM). The mechanisms were demonstrated in signal pathway that after treatment with DNJ, C3G, and C3R, the expressions of glucokinase (GK) were up-regulated, leading to intracellular ATP accumulation and insulin secretion. They also bound to glucagon-like peptide-1 receptor (GLP-1R), improved GLP-1R, duodenal homeobox factor-1 (PDX-1) expression, and stimulated insulin secretion. Moreover, ROS production was inhibited, followed by a decreasing apoptosis rate, while RES and OXY accelerated the apoptosis at high dose (50 μM). This work expounded the potential mechanisms of mulberry ingredients on insulin secretion, indicating the potential application in the intervention against hyperglycemia.

  2. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electronmore » track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  3. Low-invasive reconstruction of spine discs under thermo-mechanical effect of fiber laser

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Baskov, Andrey; Borshchenko, Igor; Shekhter, Anatoly

    2018-02-01

    The paper considers physical processes and mechanisms of laser reparation of spine cartilage, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces non-homogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 50 °C) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Non-destructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix in the in the immediate vicinity of chondrocytes. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in neurosurgery and orthopedics for the treatment cartilages of spine. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed (i) for more than 3,200 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care; and (ii) for 1100 patients underwent hernia removal surgery. Substantial relief of back pain was obtained in 92.5% of patients treated who returned to their daily activities. LRD allowed also to decrease secondary surgeries more than three times. Optical fiber technique based on light scattering measurements have been used to promote safety and efficacy of the laser procedures.

  4. Mechanisms Underlying the Influence of Disruptive Child Behavior on Interparental Communication

    PubMed Central

    Wymbs, Brian T.

    2012-01-01

    Prospective and experimental manipulations of child behavior have demonstrated that disruptive child behavior causes interparental discord. However, research has yet to test for mechanisms underlying this causal pathway. There is reason to suspect parent affect and parenting behavior explain child effects on interparental relations. To investigate this hypothesis, parent couples of 9- to 12-year-old boys and girls with attention-deficit/hyperactivity disorder (ADHD; n=51) and without ADHD (n=39) were randomly assigned to interact with a confederate child exhibiting “disruptive” or “typical” behavior. Parents rated their own affect as well as the quality of their partner's parenting and communication immediately following the interaction. Observers also coded the quality of parenting and communication behaviors parents exhibited during the interaction. Parents who interacted with disruptive confederates reported lower positive affect and higher negative affect than those who interacted with typical confederates. Parents were also noted by their partners and observers to parent disruptive confederates more negatively than typical confederates. Multilevel mediation models with observational coding and partner ratings both found that negative parenting explained the causal pathway between disruptive child behavior and negative communication. Exploratory analyses revealed that the strength of this pathway did not differ between parents of children with and without ADHD. Parent affect was not found to explain child effects on interparental communication. Though methodological issues limit the generalizability of these findings, results indicate that negative parenting may be one mechanism through which disruptive children cause interparental discord. PMID:21875193

  5. Effectiveness and underlying mechanisms of a group-based cognitive behavioural therapy-based indicative prevention program for children with elevated anxiety levels.

    PubMed

    van Starrenburg, Manon L A; Kuijpers, Rowella C W M; Hutschemaekers, Giel J M; Engels, Rutger C M E

    2013-07-05

    Anxiety is a problem for many children, particularly because of its negative consequences not only on the wellbeing of the child, but also on society. Adequate prevention and treatment might be the key in tackling this problem. Cognitive behavioural therapy (CBT) has been found effective for treating anxiety disorders. "Coping Cat" is one of the few evidence-based CBT programs designed to treat anxiety symptoms in children. The main aim of this project is to conduct a Randomized Controlled Trial (RCT) to evaluate the effectiveness of a Dutch version of Coping Cat as an indicative group-based prevention program. The second aim is to gain insight into the mechanisms underlying its effectiveness. Coping Cat will be tested in Dutch primary school children grades five through eight (ages 7 to 13) with elevated levels of anxiety. This RCT has two conditions: 130 children will be randomly assigned to the experimental (N=65, Coping Cat) and control groups (N=65, no program). All children and their mothers will be asked to complete baseline, post intervention, and 3-month follow-up assessments. In addition, children in both the experimental and control group will be asked to complete 12 weekly questionnaires matched to the treatment sessions. Main outcome measure will be the child's anxiety symptoms level (SCAS). Four potential mediators will be examined, namely active coping, positive cognitive restructuring, self efficacy and cognitions about ones coping ability (from now on coping cognitions). It is hypothesized that children in the experimental condition will experience reduced levels of anxiety in comparison with the control group. Further, active coping, positive cognitive restructuring, and coping cognitions are expected to mediate program effectiveness. If Coping Cat proves effective as a prevention program and working mechanisms can be found, this group-based approach might lead to the development of a cost-effective program suitable for prevention purposes that

  6. Underlying Mechanism of Antimicrobial Activity of Chitosan Microparticles and Implications for the Treatment of Infectious Diseases

    PubMed Central

    Jeon, Soo Jin; Oh, Manhwan; Yeo, Won-Sik; Galvão, Klibs N.; Jeong, Kwang Cheol

    2014-01-01

    The emergence of antibiotic resistant microorganisms is a great public health concern and has triggered an urgent need to develop alternative antibiotics. Chitosan microparticles (CM), derived from chitosan, have been shown to reduce E. coli O157:H7 shedding in a cattle model, indicating potential use as an alternative antimicrobial agent. However, the underlying mechanism of CM on reducing the shedding of this pathogen remains unclear. To understand the mode of action, we studied molecular mechanisms of antimicrobial activity of CM using in vitro and in vivo methods. We report that CM are an effective bactericidal agent with capability to disrupt cell membranes. Binding assays and genetic studies with an ompA mutant strain demonstrated that outer membrane protein OmpA of E. coli O157:H7 is critical for CM binding, and this binding activity is coupled with a bactericidal effect of CM. This activity was also demonstrated in an animal model using cows with uterine diseases. CM treatment effectively reduced shedding of intrauterine pathogenic E. coli (IUPEC) in the uterus compared to antibiotic treatment. Since Shiga-toxins encoded in the genome of bacteriophage is often overexpressed during antibiotic treatment, antibiotic therapy is generally not recommended because of high risk of hemolytic uremic syndrome. However, CM treatment did not induce bacteriophage or Shiga-toxins in E. coli O157:H7; suggesting that CM can be a potential candidate to treat infections caused by this pathogen. This work establishes an underlying mechanism whereby CM exert antimicrobial activity in vitro and in vivo, providing significant insight for the treatment of diseases caused by a broad spectrum of pathogens including antibiotic resistant microorganisms. PMID:24658463

  7. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  8. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  9. Coping styles and behavioural flexibility: towards underlying mechanisms

    PubMed Central

    Coppens, Caroline M.; de Boer, Sietse F.; Koolhaas, Jaap M.

    2010-01-01

    A coping style (also termed behavioural syndrome or personality) is defined as a correlated set of individual behavioural and physiological characteristics that is consistent over time and across situations. This relatively stable trait is a fundamental and adaptively significant phenomenon in the biology of a broad range of species, i.e. it confers differential fitness consequences under divergent environmental conditions. Behavioural flexibility appears to be an important underlying attribute or feature of the coping style that might explain consistency across situations. Proactive coping is characterized by low flexibility expressed as rather rigid, routine-like behavioural tendencies and reduced impulse control (behavioural inhibition) in operant conditioning paradigms. This article summarizes some of the evidence that individual differentiation in behavioural flexibility emerges as a function of underlying variability in the activation of a brain circuitry that includes the prefrontal cortex and its key neurochemical signalling pathways (e.g. dopaminergic and serotonergic input). We argue that the multidimensional nature of animal personality and the terminology used for the various dimensions should reflect the differential pattern of activation of the underlying neuronal network and the behavioural control function of its components. Accordingly, unravelling the molecular mechanisms that give rise to individual differences in the coping style will be an important topic in biobehavioural neurosciences, ecology and evolutionary biology. PMID:21078654

  10. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.

    PubMed

    Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian

    2018-03-02

    The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.

  11. Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Saito, Shigeki; Miyazaki, Hideki T.; Sato, Tomomasa; Takahashi, Kunio

    2002-11-01

    In this paper, the kinematics of mechanical and adhesional micromanipulation using a needle-shaped tool under a scanning electron microscope is analyzed. A mode diagram is derived to indicate the possible micro-object behavior for the specified operational conditions. Based on the diagram, a reasonable method for pick and place operation is proposed. The keys to successful analysis are to introduce adhesional and rolling-resistance factors into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate, and to consider the time dependence of these factors due to the electron-beam (EB) irradiation. Adhesional force and the lower limit of maximum rolling resistance are evaluated quantitatively in theoretical and experimental ways. This analysis shows that it is possible to control the fracture of either the tool-sphere or substrate-sphere interface of the system selectively by the tool-loading angle and that such a selective fracture of the interfaces enables reliable pick or place operation even under EB irradiation. Although the conventional micromanipulation was not repeatable because the technique was based on an empirically effective method, this analysis should provide us with a guideline to reliable micromanipulation.

  12. Neural Mechanisms Underlying 5-HTTLPR Related Sensitivity to Acute Stress

    PubMed Central

    Drabant, Emily M; Ramel, Wiveka; Edge, Michael D; Hyde, Luke W; Kuo, Janice R; Goldin, Philippe R; Hariri, Ahmad R; Gross, James J

    2013-01-01

    Objective Many studies have shown that 5-HTTLPR genotype interacts with exposure to stress in conferring risk for psychopathology. However, the specific neural mechanisms through which this gene-by-environment interaction confers risk remain largely unknown, and no study to date has directly examined the modulatory effects of the 5-HTTLPR on corticolimbic circuit responses during exposure to acute stress. Methods An acute laboratory stressor was administered to 51 healthy women during BOLD fMRI scanning. In this task, electric shocks of uncertain intensity were threatened and unpredictably delivered to the wrist after a long anticipatory cue period of unpredictable duration. Results Relative to those carrying the L allele, SS homozygotes showed enhanced activation during threat anticipation in a network of regions including amygdala, hippocampus, anterior insula, thalamus, pulvinar, caudate, precuneus, anterior cingulate cortex, and medial prefrontal cortex. SS homozygotes also displayed enhanced positive coupling between medial prefrontal cortex activation and anxiety experience, whereas individuals carrying the L allele displayed enhanced negative coupling between insula activation and perceived success at regulating anxiety. Conclusions The present findings suggest that, when exposed to stress, SS homozygotes may preferentially engage neural systems which enhance fear and arousal, modulate attention toward threat, and perseverate on emotional salience of the threat. This may be one mechanism underlying risk for psychopathology conferred by the S allele upon exposure to life stressors. PMID:22362395

  13. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    PubMed Central

    Yoshinari, Akira; Takano, Junpei

    2017-01-01

    Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148

  14. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.

    PubMed

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing

    2018-04-01

    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Laboratory measurements of the effective-stress law of carbonate rocks under deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Teufel, L.W.

    The behavior of rocks under the combined effects of confining stress and pore pressure is an important issue for any in situ petroleum process. In order to simplify the difficulties in dealing with two independent parameters, it is customary to introduce an effective-stress law which relates a net, or effective, stress to some combination of confining stress and pore pressure. This report documents laboratory tests of mechanical properties of five carbonate rocks.

  16. Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less

  17. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    PubMed Central

    Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  18. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  19. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  20. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    NASA Astrophysics Data System (ADS)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  1. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  2. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest

    PubMed Central

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  3. Underlying Mechanisms in the Relationship between Africentric Worldview and Depressive Symptoms

    ERIC Educational Resources Information Center

    Neblett, Enrique W., Jr.; Hammond, Wizdom Powell; Seaton, Eleanor K.; Townsend, Tiffany G.

    2010-01-01

    This study examines underlying mechanisms in the relationship between an Africentric worldview and depressive symptoms. Participants were 112 African American young adults. An Africentric worldview buffered the association between perceived stress and depressive symptoms. The relationship between an Africentric worldview and depressive symptoms…

  4. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    Basing on the analysis of available literature and the results of our own electron microscopic and radioautographic researches the data are presented about the morpho-functional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures under normal conditions and after exposure of animals (rats, monkeys, mice) to microgravity (SLS-2, Bion-11, BionM-1). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and surface osteocytes as well as to the bone-marrow stromal cells and to those lying on bone surfaces. As a response to the mechanical stimulus (microgravity) the system of stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, some of the osteoblasts undergo apoptosis. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts and bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn’t occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in these remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don’t result

  5. Neural Mechanisms Underlying Lower Urinary Tract Dysfunction

    PubMed Central

    Ogawa, Teruyuki; Miyazato, Minoru; Kitta, Takeya; Furuta, Akira; Chancellor, Michael B.; Tyagi, Pradeep

    2014-01-01

    This article summarizes anatomical, neurophysiological, and pharmacological studies in humans and animals to provide insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract and alterations in these mechanisms in lower urinary tract dysfunction. The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the bladder, urethra, and external urethral sphincter. During urine storage, the outlet is closed and the bladder smooth muscle is quiescent. When bladder volume reaches the micturition threshold, activation of a micturition center in the dorsolateral pons (the pontine micturition center) induces a bladder contraction and a reciprocal relaxation of the urethra, leading to bladder emptying. During voiding, sacral parasympathetic (pelvic) nerves provide an excitatory input (cholinergic and purinergic) to the bladder and inhibitory input (nitrergic) to the urethra. These peripheral systems are integrated by excitatory and inhibitory regulation at the levels of the spinal cord and the brain. Therefore, injury or diseases of the nervous system, as well as disorders of the peripheral organs, can produce lower urinary tract dysfunction, leading to lower urinary tract symptoms, including both storage and voiding symptoms, and pelvic pain. Neuroplasticity underlying pathological changes in lower urinary tract function is discussed. PMID:24578802

  6. Off-axis mirror fabrication from spherical surfaces under mechanical stress

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon

    2013-09-01

    The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.

  7. An analytical model of the mechanical properties of bulk coal under confined stress

    USGS Publications Warehouse

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.

    PubMed

    Zhang, T

    2011-09-01

    Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.

  9. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  10. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    NASA Astrophysics Data System (ADS)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  11. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-07-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  12. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  13. High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans.

    PubMed

    Li, Yiping; Li, Yinxia; Wu, Qiuli; Ye, Huayue; Sun, Lingmei; Ye, Boping; Wang, Dayong

    2013-01-01

    α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.

  14. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  15. [The mechanisms underlying the therapeutic effects of reflexotherapy and drinking mineral waters in the patients presenting with metabolic syndrome].

    PubMed

    Zhernov, V A; Frolkov, V K; Zubarkina, M M

    Both acupuncture and drinking mineral water can influence the metabolism of carbohydrates and lipids as well as their hormonal regulation, but the possibility of the application of these therapeutic factors for the correction of insulin resistance has not been studied in the patients presenting with metabolic syndrome. The objective of the present study was to evaluate the effects produced by the intake of drinking mineral water and acupuncture on the various parameters characterizing the patients suffering from metabolic syndrome in combination with altered insulin resistance. Ninety patients with this condition included in the study underwent the analysis of their the blood pressure, body mass index, blood glucose and lipid levels, insulin and cortisol secretion. We undertook the analysis of the effects of the single and repeated intakes of Essentuki No 17 mineral water included in the combined treatment of the patients with metabolic syndrome and revealed many common responses of the organism to its therapeutic action. Specifically, the stress-type reactions suggested the initiation of the adaptive processes in the system of hormonal regulation of carbohydrate and lipid metabolism. Simultaneously, the manifestations of insulin resistance became less pronounced indicating that both acupuncture and drinking mineral water suppressed the action of the main pathogenic mechanisms underlying the development of metabolic syndrome. Moreover, it was shown that acupuncture had a stronger hypotensive effect in the combination with the decrease of the overproduction of cortisol whereas the intake of the mineral water had a greater metabolic potential and contributed to the intensification of the basal secretion of glucocorticoids. Both reflexotherapy and drinking mineral water have a well apparent effect on the pathogenetic reactions of the metabolic syndrome and therefore can be used in addition to the standard therapy to activate the non-specific, phylogenetically

  16. Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile

    PubMed Central

    Lakshmanan, Meiyappan; Mohanty, Bijayalaxmi; Lim, Sun-Hyung; Ha, Sun-Hwa; Lee, Dong-Yup

    2014-01-01

    The ability of rice to germinate under anoxia by extending the coleoptile is a highly unusual characteristic and a key feature underpinning the ability of rice seeds to establish in such a stressful environment. The process has been a focal point for research for many years. However, the molecular mechanisms underlying the anoxic growth of the coleoptile still remain largely unknown. To unravel the key regulatory mechanisms of rice germination under anoxic stress, we combined in silico modelling with gene expression data analysis. Our initial modelling analysis via random flux sampling revealed numerous changes in rice primary metabolism in the absence of oxygen. In particular, several reactions associated with sucrose metabolism and fermentation showed a significant increase in flux levels, whereas reaction fluxes across oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway were down-regulated. The subsequent comparative analysis of the differences in calculated fluxes with previously published gene expression data under air and anoxia identified at least 37 reactions from rice central metabolism that are transcriptionally regulated. Additionally, cis-regulatory content analyses of these transcriptionally controlled enzymes indicate a regulatory role for transcription factors such as MYB, bZIP, ERF and ZnF in transcriptional control of genes that are up-regulated during rice germination and coleoptile elongation under anoxia. PMID:24894389

  17. Mechanical remodeling of normally sized mammalian cells under a gravity vector.

    PubMed

    Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian

    2017-02-01

    Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.

  18. Is the primary mechanism underlying COPD: inflammation or ischaemia?

    PubMed

    Pearson, Michael

    2013-08-01

    The mechanisms underlying the majority of COPD cases have remained ill-defined. Cigarette smoke contains many toxic chemicals that certainly cause some inflammatory responses, but this article advances a hypothesis that the nicotine and similar compounds within the smoke acting as vasoconstrictors of bronchiolar arterioles may be more important via multiple small infarcts that eventually destroy lung tissue. The hypothesis can explain many of the known features of COPD and if accepted would significantly alter the approach to this condition.

  19. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis

    PubMed Central

    2018-01-01

    Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words “pyro” and “ptosis” in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis. PMID:29706799

  20. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis.

    PubMed

    Gao, Yu-Lei; Zhai, Jian-Hua; Chai, Yan-Fen

    2018-01-01

    Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words " pyro " and " ptosis " in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis.

  1. Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Lemogne, T.; Montes, H.

    1985-01-01

    Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface.

  2. Neurocomputational mechanisms underlying subjective valuation of effort costs

    PubMed Central

    Giehl, Kathrin; Sillence, Annie

    2017-01-01

    In everyday life, we have to decide whether it is worth exerting effort to obtain rewards. Effort can be experienced in different domains, with some tasks requiring significant cognitive demand and others being more physically effortful. The motivation to exert effort for reward is highly subjective and varies considerably across the different domains of behaviour. However, very little is known about the computational or neural basis of how different effort costs are subjectively weighed against rewards. Is there a common, domain-general system of brain areas that evaluates all costs and benefits? Here, we used computational modelling and functional magnetic resonance imaging (fMRI) to examine the mechanisms underlying value processing in both the cognitive and physical domains. Participants were trained on two novel tasks that parametrically varied either cognitive or physical effort. During fMRI, participants indicated their preferences between a fixed low-effort/low-reward option and a variable higher-effort/higher-reward offer for each effort domain. Critically, reward devaluation by both cognitive and physical effort was subserved by a common network of areas, including the dorsomedial and dorsolateral prefrontal cortex, the intraparietal sulcus, and the anterior insula. Activity within these domain-general areas also covaried negatively with reward and positively with effort, suggesting an integration of these parameters within these areas. Additionally, the amygdala appeared to play a unique, domain-specific role in processing the value of rewards associated with cognitive effort. These results are the first to reveal the neurocomputational mechanisms underlying subjective cost–benefit valuation across different domains of effort and provide insight into the multidimensional nature of motivation. PMID:28234892

  3. Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction.

    PubMed

    Münzel, Thomas; Steven, Sebastian; Daiber, Andreas

    2014-12-01

    Given acutely, organic nitrates, such as nitroglycerin (GTN), isosorbide mono- and dinitrates (ISMN, ISDN), and pentaerythrityl tetranitrate (PETN), have potent vasodilator and anti-ischemic effects in patients with acute coronary syndromes, acute and chronic congestive heart failure and arterial hypertension. During long-term treatment, however, side effects such as nitrate tolerance and endothelial dysfunction occur, and therapeutic efficacy of these drugs rapidly vanishes. Recent experimental and clinical studies have revealed that organic nitrates per se are not just nitric oxide (NO) donors, but rather a quite heterogeneous group of drugs considerably differing for mechanisms underlying vasodilation and the development of endothelial dysfunction and tolerance. Based on this, we propose that the term nitrate tolerance should be avoided and more specifically the terms of GTN, ISMN and ISDN tolerance should be used. The present review summarizes preclinical and clinical data concerning organic nitrates. Here we also emphasize the consequences of chronic nitrate therapy on the supersensitivity of the vasculature to vasoconstriction and on the increased autocrine expression of endothelin. We believe that these so far rather neglected and underestimated side effects of chronic therapy with at least GTN and ISMN are clinically important. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    PubMed

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions

    PubMed Central

    Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash

    2014-01-01

    When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029

  6. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive

  7. Neural mechanism of electroacupuncture's hypotensive effects

    PubMed Central

    Li, Peng; Longhurst, John C.

    2010-01-01

    EA at P 5–6 and S 36–37 using low current and low frequency may be able to reduce elevated blood pressure in a subset of patients (~70%) with mild to moderate hypertension. The effect is slow in onset but is long-lasting. Experimental studies have shown that EA inhibition of cardiovascular sympathetic neurons that have been activated through visceral reflex stimulation is through activation of neurons in the arcuate nucleus of the hypothalamus, vlPAG in the midbrain and NRP in the medulla, which, in turn, inhibit the activity of premotor sympathetic neurons in the rVLM. The arcuate also provides direct projections to the rVLM that contain endorphins. Glutamate, acetylcholine, opioids, GABA, nociceptin, serotonin and endocannabinoids all appear to participate in the EA hypotensive response although their importance varies between nuclei. Thus, a number of mechanisms underlying the long-lasting effect of EA on cardiovascular function have been identified but clearly further investigation is warranted. PMID:20444652

  8. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    PubMed Central

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  9. Potential Underlying Mechanisms for Greater Weight Gain in Massaged Preterm Infants

    PubMed Central

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria

    2010-01-01

    In this paper, potential underlying mechanisms for massage therapy effects on preterm infant weight gain are reviewed. Path analyses are presented suggesting that: 1) increased vagal activity was associated with 2) increased gastric motility, which, in turn, was related to 3) greater weight gain; and 4) increased IGF-1 was related to greater weight gain. The change in vagal activity during the massage explained 49% of the variance in the change in gastric activity. And, the change in vagal activity during the massage explained 62% of the variance in the change in insulin. That the change in gastric activity was not related to the change in insulin suggests two parallel pathways via which massage therapy leads to increased weight gain: 1) insulin release via the celiac branch of the vagus; and 2) increased gastric activity via the gastric branch of the vagus. PMID:21570125

  10. Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation.

    PubMed

    Zhang, Xiaowei; Liu, Wenqing; Chen, Xiying; Cai, Junhui; Wang, Changlu; He, Weiwei

    2017-03-01

    The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content), and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g) and mycelium (darkness 2442 U/g, blue light 1900 U/g) cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g) than that in darkness (4352 U/g). However, the production of citrinin (88 μg/g) under blue light was evidently lower than that in darkness (150 μg/g). According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin.

  11. Contact force and mechanical loss of multistage cable under tension and bending

    NASA Astrophysics Data System (ADS)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  12. What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders.

    PubMed

    Zeisel, Steven H

    2011-10-01

    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.

  13. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  14. Protein conformational modulation by photons: a mechanism for laser treatment effects.

    PubMed

    Liebert, Ann D; Bicknell, Brian T; Adams, Roger D

    2014-03-01

    Responsiveness to low-level laser treatment (LLTT) at a wavelength of 450-910 nm has established it as an effective treatment of medical, veterinary and dental chronic pain, chronic inflammation conditions (arthritis and macular degeneration), wound repair, and lymphoedema, yet the mechanisms underlying the effectiveness of LLLT remain unclear. However, there is now sufficient evidence from recent research to propose an integrated model of LLLT action. The hypothesis presented in this paper is that external applications of photons (through laser at an appropriate dose) modulates the nervous system through an integrated mechanism. This stimulated mechanism involves protein-to-protein interaction, where two or more proteins bind together to facilitate molecular processes, including modification of proteins by members of SUMO (small ubiquitin-related modifier proteins) and also protein phosphorylation and tyrosination. SUMO has been shown to have a role in multiple nuclear and perinuclear targets, including ion channels, and in the maintenance of telomeres and the post-translational modification of genes. The consequence of laser application in treatment, therefore, can be seen as influencing the transmission of neural information via an integrated and rapid modulation of ion channels, achieved through both direct action on photo-acceptors (such as cytochrome c-oxidase) and through indirect modulation via enzymes, including tyrosine hydroxylase (TH), tyrosine kinases and tyrosine kinase receptors. This exogenous action then facilitates an existing photonic biomodulation mechanism within the body, and initiates ion channel modulation both in the periphery and the central nervous system (CNS). Evidence indicates that the ion channel modulation functions predominately through the potassium channels, including two pore leak channels (K2P), which act as signal integrators from the periphery to the cortex. Photonic action also transforms SUMOylation processes at the cell

  15. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field tomore » colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.« less

  16. Packing properties of starch-based powders under mild mechanical stress.

    PubMed

    Zanardi, I; Gabbrielli, A; Travagli, V

    2009-07-01

    This study reports the ability to settle of commercial pharmaceutical grade starch samples, both native and pregelatinized. The experiments were carried out under different relative humidity (RH%) conditions and the packing properties were evaluated using both official pharmacopoeial monograph conditions and also modified conditions in order to give a deeper knowledge of tapping under mild mechanical stress. The technique adopted, simulating common pharmaceutical operating practices, appears to be useful to estimate some technologically relevant features of diluent powder materials. Moreover, a general mathematical function has been applied to the experimental data; this could be appropriate for adequately describing material settling patterns and offers practical parameters for characterizing starch powders within the context of a pharmaceutical quality system.

  17. Human Cooperation and Its Underlying Mechanisms.

    PubMed

    Strang, Sabrina; Park, Soyoung Q

    Cooperation is a uniquely human behavior and can be observed across cultures. In order to maintain cooperative behavior in society, people are willing to punish deviant behavior on their own expenses and even without any personal benefits. Cooperation has been object of research in several disciplines. Psychologists, economists, sociologists, biologists, and anthropologists have suggested several motives possibly underlying cooperative behavior. In recent years, there has been substantial progress in understanding neural mechanisms enforcing cooperation. Psychological as well as economic theories were tested for their plausibility using neuroscientific methods. For example, paradigms from behavioral economics were adapted to be tested in the magnetic resonance imaging (MRI) scanner. Also, related brain functions were modulated by using transmagnetic brain stimulation (TMS). While cooperative behavior has often been associated with positive emotions, noncooperative behavior was found to be linked to negative emotions. On a neural level, the temporoparietal junction (TPJ), the striatum, and other reward-related brain areas have been shown to be activated by cooperation, whereas noncooperation has mainly been associated with activity in the insula.

  18. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. Y.; Gao, N.; Setyawan, W.

    Tensile response of irradiated symmetric grain boundaries to externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its under- taken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trap- ping efficiencymore » to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.« less

  19. [Three-dimensional finite element analysis on cell culture membrane under mechanical load].

    PubMed

    Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai

    2002-01-01

    A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.

  20. Transcriptional Mechanisms Underlying Hemoglobin Synthesis

    PubMed Central

    Katsumura, Koichi R.; DeVilbiss, Andrew W.; Pope, Nathaniel J.; Johnson, Kirby D.; Bresnick, Emery H.

    2013-01-01

    The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis. PMID:23838521

  1. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    PubMed

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  2. The Effects of Coping Interventions on Ability to Perform Under Pressure

    PubMed Central

    Kent, Sofie; Devonport, Tracey J.; Lane, Andrew M.; Nicholls, Wendy; Friesen, Andrew P.

    2018-01-01

    The ability to perform under pressure is necessary to achieve goals in various domains of life. We conducted a systematic review to synthesise findings from applied studies that focus on interventions developed to enhance an individual’s ability to cope under performance pressure. Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a comprehensive search of five electronic databases was conducted. This yielded 66,618 records, of which 23 peer review papers met inclusion criteria of containing an intervention that targeted coping skills for performing under pressure. Using the Standard Quality Assessment for evaluation of primary research papers (Kmet et al., 2004) to assess quality, included studies performed well on reporting research objectives, research design, and statistical procedures. Sixteen studies showed poor quality in controlling for potentially confounding factors and small sample sizes. A narrative aggregate synthesis identified intervention studies that provided an educational focus (n = 9), consultancy sessions (n = 6), simulation training (n = 5) and emotion regulation strategies (n = 3). Findings highlight a need to; 1) establish a contextualized pressure task which will generate high levels of ecological validity for participants. Having established a suitable pressure task, 2) research should assess the effects of pressure by evaluating conscious and nonconscious effects and associated coping mechanisms, which should inform the subsequent development of interventions, and 3) assess interventions to enhance understanding of the ways in which they improve coping with pressure, or may fail, and the mechanisms which may explain these outcomes. Key points Simulation studies that exposed individuals to ‘pressure’ settings produced the most consistent improvements to performance, in comparison to a control group. This systematic review highlights limitations with the design, execution, and

  3. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure

    PubMed Central

    Dong, Juncai; Zhu, Hailiang; Chen, Dongliang

    2015-01-01

    As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720

  4. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure.

    PubMed

    Dong, Juncai; Zhu, Hailiang; Chen, Dongliang

    2015-06-23

    As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.

  5. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  6. The effect of pre- and after-treatment of sevoflurane on central ischemia tolerance and the underlying mechanisms

    PubMed Central

    2018-01-01

    In recent years, with continuous research efforts targeted at studying the effects of pre- and after-treatment of inhaled anesthetics, significant progress has been made regarding the common clinical use of low concentrations of inhaled sevoflurane and its effect on induced central ischemia tolerance by pre- and post-treatment. In this study, we collected, analyzed, classified, and summarized recent literature regarding the effect of sevoflurane on central ischemia tolerance and its related mechanisms. In addition, we provide a theoretical basis for the clinical application of sevoflurane to protect the central nervous system and other important organs against ischemic injury. PMID:29556553

  7. Vasodilatory effects and underlying mechanisms of the ethyl acetate extracts from Gastrodia elata.

    PubMed

    Dai, Rong; Wang, Ting; Si, Xiaoqin; Jia, Yuanyuan; Wang, Lili; Yuan, Yan; Lin, Qing; Yang, Cui

    2017-05-01

    The objective of this study was to assess the ethyl acetate extracts of Gastrodia elata Blume (GEB) on vascular tone and the mechanisms involved. GEB was extracted with 95% EtOH followed by a further extraction with ethyl acetate. The effects of GEB and its ingredients on the isometric tensions of the aortic rings from rats were measured. The ethyl acetate extract of GEB induced a vasodilatory effect on rat aorta, which was partially dependent on endothelium. Four chemical compounds isolated from GEB were identified as 3,4-dihydroxybenzaldehyde (DB), 4-hydroxybenzaldehyde (HB), 4-methoxybenzyl alcohol (MA), and 4,4'-dihydroxydiphenyl methane (DM), respectively. All of these compounds induced vasodilatations, which were dependent on the endothelium to different degrees. After pretreatment with N ω -nitro-l-arginine methyl ester, indomethacin, or methylene blue, the vasodilatations induced by DB, HB, and MA were significantly decreased. In addition, the contractions of the rat aortic rings due to Ca 2+ influx and intracellular Ca 2+ release were also inhibited by DM. Furthermore, the administration of DB significantly enhanced the productions of nitric oxide (NO) and the activities of the endothelial NO synthase in aorta and in endothelial cells. Thus, GEB may play an important role in the amelioration of hypertension by modulating vascular tones.

  8. Computational study on the behaviors of granular materials under mechanical cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoliang; Ye, Minyou; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2015-11-07

    Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal forcemore » distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.« less

  9. Deuterium isotope effects in polymerization of benzene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  10. Deuterium isotope effects in polymerization of benzene under pressure

    DOE PAGES

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang; ...

    2017-04-10

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  11. Mechanical behavior, electronic and phonon properties of ZrB12 under pressure

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Yong, Yong-Liang; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-06-01

    The mechanical, phonon and electronic properties of ZrB12 under pressure are investigated by first-principles calculations. The research shows that ZrB12 is mechanically and dynamically stable up to 100 GPa. The elastic constants, bulk modulus B, shear modulus G, hardness Hv, B/G ratio, Debye temperature under different pressures are systematically investigated. The calculation of electronic properties shows that ZrB12 has metallic character. The Zr-d states dominate the DOS at the Fermi level, and the total DOS and PDOS change slightly with the increasing pressure. DOS (Ef) first decreases, then increases with the increasing pressure. At 50 GPa, ZrB12 has less electron carriers. The analysis of electron localization function shows that the strong B-B and Zr-B covalent bonds may be responsible for the high hardness and stability.

  12. Surface charge accumulation of solid insulator under nanosecond pulse in vacuum: 3D distribution features and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong

    2017-11-01

    Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.

  13. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    ERIC Educational Resources Information Center

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  14. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    PubMed Central

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  15. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    PubMed

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  16. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    NASA Astrophysics Data System (ADS)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  17. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    PubMed

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity.

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Herma Renkema, G; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-29

    Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.

  19. Ultrasonographic measurement of the mechanical properties of the sole under the metatarsal heads.

    PubMed

    Wang, C L; Hsu, T C; Shau, Y W; Shieh, J Y; Hsu, K H

    1999-09-01

    The sole under the metatarsal heads functions as a shock absorber during walking and running. The mechanical properties of the sole provide the primary defense against the development of metatarsalgia and foot ulceration. However, limited information about these properties has been documented. In this study, we used ultrasonography to evaluate the mechanical properties, including unloaded thickness, compressibility index, elastic modulus, and energy dissipation ratio, of the sole in 20 healthy subjects. The unloaded thickness decreased progressively from the first to the fifth metatarsal heads, with values of 1.50, 1.36, 1.25, 1.14, and 1.04 cm. The sole under the first metatarsal head had the greatest values for the compressibility index and elastic modulus (55.9% and 1.39 kg/cm2), and the sole under the third metatarsal head had the smallest values (50.8% and 1.23 kg/cm2). The sole under the fifth metatarsal head had the greatest energy dissipation ratio (33.7%), followed by that under the third, second, first, and fourth metatarsal heads. Multivariate adjusted linear regression showed that the unloaded thickness, compressibility index, and elastic modulus values increased significantly with age and body weight (p < 0.05) and that the energy dissipation ratio increased significantly with body weight (p < 0.05)

  20. Modulatory mechanisms of cortisol effects on emotional learning and memory: novel perspectives.

    PubMed

    van Ast, Vanessa A; Cornelisse, Sandra; Marin, Marie-France; Ackermann, Sandra; Garfinkel, Sarah N; Abercrombie, Heather C

    2013-09-01

    It has long been known that cortisol affects learning and memory processes. Despite a wealth of research dedicated to cortisol effects on learning and memory, the strength or even directionality of the effects often vary. A number of the factors that alter cortisol's effects on learning and memory are well-known. For instance, effects of cortisol can be modulated by emotional arousal and the memory phase under study. Despite great advances in understanding factors that explain variability in cortisol's effects, additional modulators of cortisol effects on memory exist that are less widely acknowledged in current basic experimental research. The goal of the current review is to disseminate knowledge regarding less well-known modulators of cortisol effects on learning and memory. Since several models for the etiology of anxiety, such as post-traumatic stress disorder (PTSD), incorporate stress and the concomitant release of cortisol as important vulnerability factors, enhanced understanding of mechanisms by which cortisol exerts beneficial as opposed to detrimental effects on memory is very important. Further elucidation of the factors that modulate (or alter) cortisol's effects on memory will allow reconciliation of seemingly inconsistent findings in the basic and clinical literatures. The present review is based on a symposium as part of the 42nd International Society of Psychoneuroendocrinology Conference, New York, USA, that highlighted some of those modulators and their underlying mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells.

    PubMed

    Kim, Ji Hye; Kim, Wang-Kyun; Sung, Young Kwan; Kwack, Mi Hee; Song, Seung Yong; Choi, Joon-Seok; Park, Sang Gyu; Yi, TacGhee; Lee, Hyun-Joo; Kim, Dae-Duk; Seo, Hyun Min; Song, Sun U; Sung, Jong-Hyuk

    2014-06-15

    Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.

  2. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  3. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    PubMed Central

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  4. Molecular Mechanisms of Antidiuretic Effect of Oxytocin

    PubMed Central

    Li, Chunling; Wang, Weidong; Summer, Sandra N.; Westfall, Timothy D.; Brooks, David P.; Falk, Sandor; Schrier, Robert W.

    2008-01-01

    Oxytocin is known to have an antidiuretic effect, but the mechanisms underlying this effect are not completely understood. We infused oxytocin by osmotic minipump into vasopressin-deficient Brattleboro rats for five days and observed marked antidiuresis, increased urine osmolality, and increased solute-free water reabsorption. Administration of oxytocin also significantly increased the protein levels of aquaporin-2 (AQP2), phosphorylated AQP2 (p-AQP2), and AQP3 in the inner medulla and in the outer medulla plus cortex. Immunohistochemistry demonstrated increased AQP2 and p-AQP2 expression and trafficking to the apical plasma membrane of principal cells in the collecting duct, and increased AQP3 expression in the basolateral membrane. These oxytocin-induced effects were blocked by treatment with the vasopressin V2 receptor antagonist SR121463B, but not by treatment with the oxytocin receptor antagonist GW796679X. We conclude that vasopressin V2 receptors mediate the antidiuretic effects of oxytocin, including increased expression and apical trafficking of AQP2, p-AQP2, and increased AQP3 protein expression. PMID:18057218

  5. Hepatic and renal mechanisms underlying the osmopressor response

    PubMed Central

    Mai, Tu H.; Garland, Emily M.; Diedrich, André; Robertson, David

    2017-01-01

    Increased blood pressure (BP) is observed in patients with impaired baroreflexes after water drinking. The stimulus for this effect is low blood osmolality, and it has been termed the osmopressor response (OPR). The BP increase is associated with activation of the sympathetic nervous system and a requirement for transient receptor potential vanilloid 4 (TRPV4) channels. However, the mechanisms underlying the OPR are poorly understood. We tested the hypothesis that hypotonicity is sensed in the portal area to initiate the OPR. Sino-aortic denervated mice were used and BP was monitored for 30 min after fluid infusion while mice were under anesthesia. Infusion of hypotonic fluid (0.45% saline), but not of isotonic 0.9% saline, directly into the portal vein, produced an immediate OPR (increase in BP with saline 0.45%: 15 ± 13 vs. 0.9%: −7 ± 2 mm Hg, p = 0.003; AUC: 0.45%: 150 ± 99, n = 7 vs. 0.9%: −74 ± 60 mm Hg · min, n = 5, p = 0.003). However, 0.45% saline was not able to trigger a similar response in TRPV4−/− mice (ΔBPTRPV4: −2 ± 5 mm Hg, n = 8, p = 0.009). Hypotonic saline did not raise BP when infused at the same speed and volume into the jugular vein (jugular: −5 ± 6 mm Hg, p = 0.002, compared to portal). Denervation of the splanchnic nerve by celiac ganglionectomy (CGX) did not abolish the OPR (CGX: 15 ± 11 vs. Sham: 16 ± 6 mm Hg, p = 0.34). Renal denervation diminished the OPR elicited by duodenal water infusion (denervation: 9 ± 4 vs. sham: 31 ± 15 mm Hg, p = 0.016). Therefore, hypotonicity in the portal circulation, probably sensed by TRPV4 channels, triggers the OPR and intact renal nerves are needed for the full response. PMID:28143710

  6. INSULIN RESISTANCE POST-BURN: UNDERLYING MECHANISMS AND CURRENT THERAPEUTIC STRATEGIES

    PubMed Central

    Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2014-01-01

    The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the post-burn hypermetabolic response have significantly improved the clinical outcome of these patients over the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a PPAR-γ agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance post-burn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia post-burn and outlines current therapeutic strategies that are being used to modulate hyperglycemia following thermal trauma. PMID:18695610

  7. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  8. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    PubMed

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  9. An evaluation of the underlying mechanisms of bloodstain pattern analysis error.

    PubMed

    Behrooz, Nima; Hulse-Smith, Lee; Chandra, Sanjeev

    2011-09-01

    An experiment was designed to explore the underlying mechanisms of blood disintegration and its subsequent effect on area of origin (AO) calculations. Blood spatter patterns were created through the controlled application of pressurized air (20-80 kPa) for 0.1 msec onto suspended blood droplets (2.7-3.2 mm diameter). The resulting disintegration process was captured using high-speed photography. Straight-line triangulation resulted in a 50% height overestimation, whereas using the lowest calculated height for each spatter pattern reduced this error to 8%. Incorporation of projectile motion resulted in a 28% height underestimation. The AO xy-coordinate was found to be very accurate with a maximum offset of only 4 mm, while AO size calculations were found to be two- to fivefold greater than expected. Subsequently, reverse triangulation analysis revealed the rotational offset for 26% of stains could not be attributed to measurement error, suggesting that some portion of error is inherent in the disintegration process. © 2011 American Academy of Forensic Sciences.

  10. Effect of surface finish on the failure mechanisms of flip-chip solder joints under electromigration

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Lai, Y. S.; Tsai, C. M.; Kao, C. R.

    2006-12-01

    Two substrate surface finishes, Au/Ni and organic solderable preservative (OSP), were used to study the effect of the surface finish on the reliability of flip-chip solder joints under electromigration at 150°C ambient temperature. The solder used was eutectic PbSn, and the applied current density was 5×103 A/cm2 at the contact window of the chip. The under bump metallurgy (UBM) on the chip was sputtered Cu/Ni. It was found that the mean-time-to-failure (MTTF) of the OSP joints was six times better than that of the Au/Ni joints (3080 h vs. 500 h). Microstructure examinations uncovered that the combined effect of current crowding and the accompanying local Joule heating accelerated the local Ni UBM consumption near the point of electron entrance. Once Ni was depleted at a certain region, this region became nonconductive, and the flow of the electrons was diverted to the neighboring region. This neighboring region then became the place where electrons entered the joint, and the local Ni UBM consumption was accelerated. This process repeated itself, and the Ni-depleted region extended further on, creating an ever-larger nonconductive region. The solder joint eventually, failed when the nonconductive region became too large, making the effective current density very high. Accordingly, the key factor determining the MTTF was the Ni consumption rate. The joints with the OSP surface finish had a longer MTTF because Cu released from the substrate was able to reduce the Ni consumption rate.

  11. Mechanical impact tests of materials in oxygen effects of contamination. [Teflon, stainless steel, and aluminum

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1980-01-01

    The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions; however, contamination with cutting oil, motor lubricating oil, and toolmakers dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

  12. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them?

    PubMed

    Groothuis, Ton G G; Schwabl, Hubert

    2008-05-12

    Over the past decade, birds have proven to be excellent models to study hormone-mediated maternal effects in an evolutionary framework. Almost all these studies focus on the function of maternal steroid hormones for offspring development, but lack of knowledge about the underlying mechanisms hampers further progress. We discuss several hypotheses concerning these mechanisms, point out their relevance for ecological and evolutionary interpretations, and review the relevant data. We first examine whether maternal hormones can accumulate in the egg independently of changes in hormone concentrations in the maternal circulation. This is important for Darwinian selection and female physiological trade-offs, and possible mechanisms for hormone accumulation in the egg, which may differ among hormones, are reviewed. Although independent regulation of plasma and yolk concentrations of hormones is conceivable, the data are as yet inconclusive for ovarian hormones. Next, we discuss embryonic utilization of maternal steroids, since enzyme and receptor systems in the embryo may have coevolved with maternal effect mechanisms in the mother. We consider dose-response relationships and action pathways of androgens and argue that these considerations may help to explain the apparent lack of interference of maternal steroids with sexual differentiation. Finally, we discuss mechanisms underlying the pleiotropic actions of maternal steroids, since linked effects may influence the coevolution of parent and offspring traits, owing to their role in the mediation of physiological trade-offs. Possible mechanisms here are interactions with other hormonal systems in the embryo. We urge endocrinologists to embark on suggested mechanistic studies and behavioural ecologists to adjust their interpretations to accommodate the current knowledge of mechanisms.

  13. Reactive transport under stress: Permeability evolution by chemo-mechanical deformation

    NASA Astrophysics Data System (ADS)

    Roded, R.; Holtzman, R.

    2017-12-01

    The transport of reactive fluids in porous media is important in many natural and engineering processes. Reaction with the solid matrix—e.g. dissolution—changes the transport properties, which in turn affect the rate of reagent transport and hence the reaction. The importance of this highly nonlinear problem has motivated intensive research. Specifically, there have been numerous studies concerning the permeability evolution, especially the process of "wormholing", where preferential dissolution of the most conductive regions leads to a runaway permeability increase. Much less attention, however, has been given to the effect of geomechanics; that is, how the fact that the medium is under stress changes the permeability evolution. Here, we present a novel, mechanistic pore-scale model, simulating the interplay between pore opening by matrix dissolution and pore closure by mechanical compaction, facilitated by weakening caused by the very same process of dissolution. We combine a pore network model of reactive transport with a block-spring model that captures the effect of geomechanics through the update of the network properties. Our simulations show that permeability enhancement is inhibited by stress concentration downstream, in the less dissolved (hence stiffer) regions. Higher stresses lead to stronger inhibition, in agreement with experiments. The effect of stress also depends on the Damkohler number (Da)—the ratio between the flow and the reaction rate. At rapid injection (small Da), where dissolution is relatively uniform, stress has a significant effect on permeability. At slower flow rates (high Da, wormholing regime), stress affects the permeability evolution mostly in early stages, with a much smaller effect on the injected volume required for a significant permeability increase (breakthrough) than at low Da. Interestingly, at higher Da, stress concentration downstream induced by the more heterogeneous dissolution leads to a more homogeneous reagent

  14. Partitioning-based mechanisms under personalized differential privacy.

    PubMed

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-05-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t -round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms.

  15. Partitioning-based mechanisms under personalized differential privacy

    PubMed Central

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-01-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms. PMID:28932827

  16. An investigation of the mechanism underlying teacher aggression: Testing I3 theory and the General Aggression Model.

    PubMed

    Montuoro, Paul; Mainhard, Tim

    2017-12-01

    Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. This study investigated whether the mechanism underlying teacher aggression follows I 3 theory or General Aggression Model (GAM) metatheory of human aggression. I 3 theory explains exceptional, catastrophic events of human aggression, whereas the GAM explains common human aggression behaviours. A total of 249 Australian teachers participated in this study, including 142 primary school teachers (Mdn [age] = 35-39 years; Mdn [years teaching] = 10-14 years; 84% female) and 107 secondary school teachers (Mdn [age] = 45-49 years; Mdn [years teaching] = 15-19 years; 65% female). Participants completed four online self-report questionnaires, which assessed caregiving responsiveness, trait self-control, misbehaviour provocation, and teacher aggression. Analyses revealed that the GAM most accurately captures the mechanism underlying teacher aggression, with lower caregiving responsiveness appearing to indirectly lead to teacher aggression via higher misbehaviour provocation and lower trait self-control in serial, controlling for gender, age, years teaching, and current role (primary, secondary). This study indicates that teacher aggression proceeds from 'the person in the situation'. Specifically, lower caregiving responsiveness appears to negatively shape a teacher's affective, cognitive, and arousal states, which influence how they perceive and interpret student misbehaviour. These internal states, in turn, appear to negatively influence appraisal and decision processes, leading to immediate appraisal and impulsive actions. These results raise the possibility that teacher aggression is a form of countertransference. © 2017 The British Psychological Society.

  17. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    PubMed

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of

  19. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better

  20. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    PubMed Central

    2018-01-01

    Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system. PMID:29736181

  1. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    PubMed

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  2. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  3. Effect of natural uranium on the UMR-106 osteoblastic cell line: impairment of the autophagic process as an underlying mechanism of uranium toxicity.

    PubMed

    Pierrefite-Carle, Valérie; Santucci-Darmanin, Sabine; Breuil, Véronique; Gritsaenko, Tatiana; Vidaud, Claude; Creff, Gaelle; Solari, Pier Lorenzo; Pagnotta, Sophie; Al-Sahlanee, Rasha; Auwer, Christophe Den; Carle, Georges F

    2017-04-01

    Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly in bone where it accumulates. Generally, U is found at oxidation state +VI in its oxocationic form [Formula: see text] in aqueous media. Although U(VI) has been reported to induce cell death in osteoblasts, the cells in charge of bone formation, the molecular mechanism for U(VI) effects in these cells remains poorly understood. The objective of our study was to explore U(VI) effect at doses ranging from 5 to 600 µM, on mineralization and autophagy induction in the UMR-106 model osteoblastic cell line and to determine U(VI) speciation after cellular uptake. Our results indicate that U(VI) affects mineralization function, even at subtoxic concentrations (<100 µM). The combination of thermodynamic modeling of U with EXAFS data in the culture medium and in the cells clearly indicates the biotransformation of U(VI) carbonate species into a meta-autunite phase upon uptake by osteoblasts. We next assessed U(VI) effect at 100 and 300 µM on autophagy, a survival process triggered by various stresses such as metal exposure. We observed that U(VI) was able to rapidly activate autophagy but an inhibition of the autophagic flux was observed after 24 h. Thus, our results indicate that U(VI) perturbs osteoblastic functions by reducing mineralization capacity. Our study identifies for the first time U(VI) in the form of meta-autunite in mammalian cells. In addition, U(VI)-mediated inhibition of the autophagic flux may be one of the underlying mechanisms leading to the decreased mineralization and the toxicity observed in osteoblasts.

  4. Investigation of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    1996-01-01

    The focus of the present work is to experimentally study and to analytically/numerically model the mechanisms of growth of bubbles attached to, and sliding along, a heated surface. To control the location of the active cavities, the number, the spacing, and the nucleation superheat, artificial cavities will be formed on silicon wafers. In order to study the effect of magnitude of components of gravitational acceleration acting parallel to, and normal to the surface, experiments will be conducted on surfaces inclined at different angles including a downward facing surface. Information on the temperature field around bubbles, bubble shape and size, and bubble induced liquid velocities will be obtained through the use of holography, video/high speed photography and hydrogen bubble techniques, respectively. Analytical/numerical models will be developed to describe the heat transfer including that through the micro-macro layer underneath and around a bubble. In the micro layer model capillary and disjoining pressures will be included. Evolution of the interface along with induced liquid motion will be modelled. Subsequent to the world at normal gravity, experiments will be conducted in the KC-135 or the Lear jet especially to learn about bubble growth/detachment under low gravity conditions. Finally, an experiment will be defined to be conducted under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide microgravity data on bubble growth and detachment and will lead to a validation of the nucleate boiling heat transfer model developed from the preceding studies performed at normal and low gravity (KC-135 or Lear jet) conditions.

  5. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving

    DTIC Science & Technology

    2014-09-30

    that are too small have less effective results with mechanical trituration that follows digestion). 5. Move dish and sample into the cell culture...Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving 5a

  6. Monitoring the effect of mechanical stress on mesenchymal stem cell collagen production by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Chang, Chia-Cheng; Chiou, Ling-Ling; Li, Tsung-Hsien; Liu, Yuan; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Tissue engineering is emerging as a promising method for repairing damaged tissues. Due to cartilage's common wear and injury, in vitro production of cartilage replacements have been an active area of research. Finding the optimal condition for the generation of the collagen matrix is crucial in reproducing cartilages that closely match those found in human. Using multiphoton autofluorescence and second-harmonic generation (SHG) microscopy we monitored the effect of mechanical stress on mesenchymal stem cell collagen production. Bone marrow mesenchymal stem cells in the form of pellets were cultured and periodically placed under different mechanical stress by centrifugation over a period of four weeks. The differently stressed samples were imaged several times during the four week period, and the collagen production under different mechanical stress is characterized.

  7. What Choline Metabolism Can Tell Us About the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders

    PubMed Central

    2013-01-01

    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD. PMID:21259123

  8. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Resizing procedure for structures under combined mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Narayanaswami, R.

    1976-01-01

    The fully-stressed design (FSD) appears to be the most widely used approach for sizing of flight structures under strength and minimum-gage constraints. Almost all of the experience with FSD has been with structures primarily under mechanical loading as opposed to thermal loading. In this method the structural sizes are iterated with the step size, depending on the ratio of the total stress to the allowable stress. In this paper, the thermal fully-stressed design (TFSD) procedure developed for problems involving substantial thermal stress is extended to biaxial stress members using a Von Mises failure criterion. The TFSD resizing procedure for uniaxial stress is restated and the new procedure for biaxial stress members is developed. Results are presented for an application of the two procedures to size a simplified wing structure.

  10. Additive effects of Na+ and Cl– ions on barley growth under salinity stress

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Coventry, Stewart; Rengasamy, Pichu; McDonald, Glenn K.

    2011-01-01

    Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. It has previously been suggested that Cl– toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na+ and Cl– reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na+, Cl–, and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na+ and Cl– stress. The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na+ reduced K+ and Ca2+ uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl– concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown. PMID:21273334

  11. TEMHD Effects on Solidification Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Kao, Andrew; Pericleous, Koulis

    2012-01-01

    An unexplored potential exists to control microstructure evolution through the use of external DC magnetic fields. Thermoelectric currents form during solidification and interact with this external field to drive microscopic fluid dynamics within the inter-dendritic region. The convective heat and mass transport can lead to profound changes on the dendritic structure. In this paper the effect of high magnetic fields is demonstrated through the use of both 3-dimensional and 2-dimensional numerical models. The results show that the application of a magnetic field causes significant disruption to the dendritic morphology. Investigation into the underlying mechanism gives initial indicators of how external magnetic fields can either lead to unexpected growth behaviour, or alternatively can be used to control the evolution of microstructure in undercooled melts as encountered in levitated droplet solidification.

  12. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    PubMed Central

    Beaudin, Anna E.; Stover, Patrick J.

    2015-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis. PMID:19180567

  13. Anxiolytic effects of aniracetam in three different mouse models of anxiety and the underlying mechanism.

    PubMed

    Nakamura, K; Kurasawa, M

    2001-05-18

    The anxiolytic effects of aniracetam have not been proven in animals despite its clinical usefulness for post-stroke anxiety. This study, therefore, aimed to characterize the anxiolytic effects of aniracetam in different anxiety models using mice and to examine the mode of action. In a social interaction test in which all classes (serotonergic, cholinergic and dopaminergic) of compounds were effective, aniracetam (10-100 mg/kg) increased total social interaction scores (time and frequency), and the increase in the total social interaction time mainly reflected an increase in trunk sniffing and following. The anxiolytic effects were completely blocked by haloperidol and nearly completely by mecamylamine or ketanserin, suggesting an involvement of nicotinic acetylcholine, 5-HT2A and dopamine D2 receptors in the anxiolytic mechanism. Aniracetam also showed anti-anxiety effects in two other anxiety models (elevated plus-maze and conditioned fear stress tests), whereas diazepam as a positive control was anxiolytic only in the elevated plus-maze and social interaction tests. The anxiolytic effects of aniracetam in each model were mimicked by different metabolites (i.e., p-anisic acid in the elevated plus-maze test) or specific combinations of metabolites. These results indicate that aniracetam possesses a wide range of anxiolytic properties, which may be mediated by an interaction between cholinergic, dopaminergic and serotonergic systems. Thus, our findings suggest the potential usefulness of aniracetam against various types of anxiety-related disorders and social failure/impairments.

  14. Loading rate effect on mechanical properties of cervical spine ligaments.

    PubMed

    Trajkovski, Ana; Omerovic, Senad; Krasna, Simon; Prebil, Ivan

    2014-01-01

    Mechanical properties of cervical spine ligaments are of great importance for an accurate finite element model when analyzing the injury mechanism. However, there is still little experimental data in literature regarding fresh human cervical spine ligaments under physiological conditions. The focus of the present study is placed on three cervical spine ligaments that stabilize the spine and protect the spinal cord: the anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The ligaments were tested within 24-48 hours after death, under two different loading rates. An increase trend in failure load, failure stress, stiffness and modulus was observed, but proved not to be significant for all ligament types. The loading rate had the highest impact on failure forces for all three ligaments (a 39.1% average increase was found). The observed increase trend, compared to the existing increase trends reported in literature, indicates the importance of carefully applying the existing experimental data, especially when creating scaling factors. A better understanding of the loading rate effect on ligaments properties would enable better case-specific human modelling.

  15. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  16. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    PubMed

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  17. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation.

    PubMed

    Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-01-01

    In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.

  18. Neural mechanisms underlying human consensus decision-making

    PubMed Central

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P.

    2015-01-01

    SUMMARY Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a novel computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority of group-members’ prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas: the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction and intraparietal sulcus, and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others and environments, processed in distinct brain modules. PMID:25864634

  19. Neural mechanisms underlying human consensus decision-making.

    PubMed

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    PubMed

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. Behavior of a Quasi-Isotropic Ply Metal Matrix Composite under Thermo-Mechanical and Isothermal Fatigue Loading

    DTIC Science & Technology

    1992-12-01

    tensile strength of the composite (20:14). After the heat treatment was accomplished, polishing was performed. Using an automated MAXIMET polishing machine ...AD-A258 902 AFIT/GAE/.ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading...115 AFIT/GAE/ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading THESIS

  2. Relative refractoriness of left ventricular contraction underlies human tachycardia-induced mechanical and electrical alternans.

    PubMed

    Kashimura, Takeshi; Kodama, Makoto; Watanabe, Tohru; Tanaka, Komei; Hayashi, Yuka; Ohno, Yukako; Obata, Hiroaki; Ito, Masahiro; Hirono, Satoru; Hanawa, Haruo; Minamino, Tohru

    2014-02-01

    Mechanical alternans (MA) and electrical alternans (EA) are predictors of cardiac events. Experimental studies have suggested that refractoriness of calcium cycling underlies these cardiac alternans. However, refractoriness of left ventricular contraction has not been examined in patients with cardiac alternans. In 51 patients with miscellaneous heart diseases, incremental right atrial pacing was performed to induce MA and EA. MA was quantified by alternans amplitude (AA: the difference between left ventricular dP/dt of a strong beat and that of a weak beat), and AA at 100/min (AA100) and maximal AA (AAmax) were measured. EA was defined as alternation of T wave morphology in 12-lead electrocardiogram. Relative refractoriness of left ventricular contraction was examined by drawing the mechanical restitution curve under a basal coupling interval (BCL) of 600 ms (100/min) and was assessed by the slope at BCL (Δmechanical restitution). Postextrasystolic potentiation (PESP) was also examined and the slope of PESP curve (ΔPESP) was assessed as a property to alternate strong and weak beats. MA and EA were induced in 19 patients and in none at 100/min or less, and at any heart rate in 32 and in 10, respectively. AA100 and AAmax correlated positively with Δmechanical restitution and negatively with ΔPESP. Patients with EA had a significantly larger Δmechanical restitution and a significantly larger absolute value of ΔPESP than those without. In patients with MA and EA, the left ventricular contractile force during tachycardia is under relative refractoriness and prone to cause large fluctuation of contractile force. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  3. Mechanisms Underlying Sexual Violence Exposure and Psychosocial Sequelae: A Theoretical and Empirical Review

    PubMed Central

    Walsh, Kate; Galea, Sandro; Koenen, Karestan C.

    2015-01-01

    Sexual violence is associated with a range of negative mental health and behavioral sequelae, including posttraumatic stress disorder (PTSD), depression, substance abuse/dependence, risky sexual behavior, and interpersonal relationship problems. However, mechanisms underlying these associations are not well understood. Identifying mechanisms that explain linkages between sexual violence and poor outcomes is of paramount importance in determining when and how to intervene to prevent or reduce the magnitude of these outcomes. This review focuses on theories that have been proposed to explain risk of negative outcomes among sexual violence victims, including the development of traumagenic dynamics and emotion dysregulation. We also review promising biological mechanisms that may explain the risk of negative outcomes among sexual violence victims, including studies concerned with epigenetic and neurobiological mechanisms. PMID:25762853

  4. Mechanisms underlying the rapid effects of estradiol and progesterone on hippocampal memory consolidation in female rodents.

    PubMed

    Frick, Karyn M; Kim, Jaekyoon

    2018-05-09

    Although rapid effects of 17β‑estradiol (E 2 ) and progesterone on cellular functions have been observed for several decades, a proliferation of data in recent years has demonstrated the importance of these actions to cognition. In particular, an emerging literature has demonstrated that these hormones promote the consolidation of spatial and object recognition memories in rodents via rapid activation of numerous cellular events including cell signaling, histone modifications, and local protein translation in the hippocampus. This article provides an overview of the evidence demonstrating that E 2 and progesterone enhance hippocampal memory consolidation in female rodents, and then discusses numerous molecular mechanisms thus far shown to mediate the beneficial effects of these hormones on memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Dissociable cognitive mechanisms underlying human path integration.

    PubMed

    Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas

    2011-01-01

    Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.

  6. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    PubMed Central

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  7. Mechanisms underlying the influence of saliency on value-based decisions

    PubMed Central

    Chen, Xiaomo; Mihalas, Stefan; Niebur, Ernst; Stuphorn, Veit

    2013-01-01

    Objects in the environment differ in their low-level perceptual properties (e.g., how easily a fruit can be recognized) as well as in their subjective value (how tasty it is). We studied the influence of visual salience on value-based decisions using a two alternative forced choice task, in which human subjects rapidly chose items from a visual display. All targets were equally easy to detect. Nevertheless, both value and salience strongly affected choices made and reaction times. We analyzed the neuronal mechanisms underlying these behavioral effects using stochastic accumulator models, allowing us to characterize not only the averages of reaction times but their full distributions. Independent models without interaction between the possible choices failed to reproduce the observed choice behavior, while models with mutual inhibition between alternative choices produced much better results. Mutual inhibition thus is an important feature of the decision mechanism. Value influenced the amount of accumulation in all models. In contrast, increased salience could either lead to an earlier start (onset model) or to a higher rate (speed model) of accumulation. Both models explained the data from the choice trials equally well. However, salience also affected reaction times in no-choice trials in which only one item was present, as well as error trials. Only the onset model could explain the observed reaction time distributions of error trials and no-choice trials. In contrast, the speed model could not, irrespective of whether the rate increase resulted from more frequent accumulated quanta or from larger quanta. Visual salience thus likely provides an advantage in the onset, not in the processing speed, of value-based decision making. PMID:24167161

  8. EndoBarrier gastrointestinal liner. Delineation of underlying mechanisms and clinical effects.

    PubMed

    Rohde, Ulrich

    2016-11-01

    Bariatric surgery (e.g. Roux-en-Y gastric bypass (RYGB)) has proven the most effective way of achieving sustainable weight losses and remission of type 2 diabetes (T2D). Studies indicate that the effectiveness of RYGB is mediated by an altered gastrointestinal tract anatomy, which in particular favours release of the gut incretin hormone glucagon-like peptide-1 (GLP-1). The EndoBarrier gastrointestinal liner or duodenal-jejunal bypass sleeve (DJBS) is an endoscopic deployable minimally invasive and fully reversible technique designed to mimic the bypass component of the RYGB. Not only GLP-1 is released when nutrients enter the gastrointestinal tract. Cholecystokinin (CCK), secreted from duodenal I cells, elicits gallbladder emptying. Traditionally, bile acids are thought of as essential elements for fat absorption. However, growing evidence suggests that bile acids have additional effects in metabolism. Thus, bile acids appear to increase GLP-1 secretion via activation of the TGR5 receptor on the intestinal L cell. Recently FXR receptors were postulated to contribute to GLP-1 secretion too. Furthermore, metformin has been shown to increase circulating GLP-1 levels but although the exact mechanism is not fully elucidated it may involve metformin-induced inhibition of bile acid reuptake from the small intestines. Small-sized studies reported varying degrees of weight loss and, in some, improvement of glucose metabolism. Therefore, the objectives of this thesis were to collect existing information on the DJBS in order to evaluate clinical efficacy and safety (study I and II). Furthermore, since the endocrine impact of the DJBS is not fully elucidated, and DJBS is expected to mimic RYGB, we investigated postprandial metabolic changes following 26 weeks of DJBS treatment in ten obese subjects with normal glucose tolerance (NGT) and nine matched patients with T2D (study III). Finally, we studied the single and combined effects of CCK induced gallbladder emptying and

  9. Mechanisms Underlying Lexical Access in Native and Second Language Processing of Gender and Number Agreement

    ERIC Educational Resources Information Center

    Romanova, Natalia

    2013-01-01

    Despite considerable evidence suggesting that second language (L2) learners experience difficulties when processing morphosyntactic aspects of L2 in online tasks, the mechanisms underlying these difficulties remain unknown. The aim of this dissertation is to explore possible causes for the difficulties by comparing attentional mechanisms engaged…

  10. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  11. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin.

    PubMed

    Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; He, Shang; Chen, Jingwen; Wang, Chengbin

    2018-01-15

    We aim to investigate the mechanism of aquaporin 4 (AQP 4) up-regulation during high-altitude cerebral edema (HACE) in rats under hypobaric hypoxia and preventative effect of puerarin. Rats were exposed to a hypobaric chamber with or without the preventative treatment of puerarin or dexamethasone. Morriz water maze was used to evaluate the spatial memory injury. HE staining and W/D ratio were used to evaluate edema injury. Rat astrocytes and microglia were co-cultured under the condition of hypoxia with the administration of p38 inhibitor, NF-κB inhibitor or puerarin. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF α) of cortex and culture supernatant were measured with ELISA. AQP4, phosphorylation of MAPKs, NF-κB pathway of cortex and astrocytes were measured by Western blot. Weakened spatial memory and cerebral edema were observed after hypobaric hypoxia exposure. AQP4, phosphorylation of NF-κB and MAPK signal pathway of cortex increased after hypoxia exposure and decreased with preventative treatment of puerarin. Hypoxia increased TNF-α and IL-6 levels in cortex and microglia and puerarin could prevent the increase of them. AQP4 of astrocytes increased after co-cultured with microglia when both were exposed to hypoxia. AQP4 showed a decrease after administered with p38 inhibitor, NF-κB inhibitor or puerarin. Hypoxia triggers inflammatory response, during which AQP4 of astrocytes can be up regulated through the release of TNF-α and IL-6 from microglia. Puerarin can exert a preventative effect on the increase of AQP4 through inhibiting the release of TNF-α and phosphorylation of NF-κB, MAPK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Differential effects of ethanol on feline rage and predatory attack behavior: an underlying neural mechanism.

    PubMed

    Schubert, K; Shaikh, M B; Han, Y; Poherecky, L; Siegel, A

    1996-08-01

    Previous studies have shown that, at certain dose levels, ethanol can exert a powerful, facilitatory effect on aggressive behavior in both animals and humans. In the cat, however, it was discovered that ethanol differentially alters two forms of aggression that are common to this species. Defensive rage behavior is significantly enhanced, whereas predatory attack behavior is suppressed by ethanol administration. One possible mechanism governing alcohol's potentiation of defensive rage behavior is that it acts on the descending pathway from the medial hypothalamus to the midbrain periaqueductal gray (PAG)-an essential pathway for the expression of defensive rage behavior that uses excitatory amino acids as a neurotransmitter. This hypothesis is supported by the finding that the excitatory effects of alcohol on defensive rage behavior are blocked by administration of the N-methyl-D-aspartate antagonist alpha-2-amino-7-phosphoheptanoic acid (AP-7) when microinjected into the periaqueductal gray, a primary neuronal target of descending fibers from the medial hypothalamus that mediate the expression of defensive rage behavior. Thus, the present study establishes for the first time a specific component of the neural circuit for defensive rage behavior over which the potentiating effects of ethanol are mediated.

  13. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent

    PubMed Central

    Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan

    2015-01-01

    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977

  14. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.

    PubMed

    Aleksandrova, Lily R; Phillips, Anthony G; Wang, Yu Tian

    2017-06-01

    The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N -methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.

  15. Mechanisms of resistance change under pressure for AgNP-based conducting wires

    NASA Astrophysics Data System (ADS)

    Qian, Zhentao; Liu, Liping; Huang, Han; Cheng, Xiong; Zhu, Xiaobo; Gu, Wenhua

    2018-02-01

    The silver nanoparticle (AgNP) based conducting wire is a fundamental element of flexible electronic devices, especially in the printing electronics area. Its resistance change mechanisms under pressure is of both scientific interest and practical importance. AgNP-based conducting wires were fabricated on flexible substrates by electrospraying printing technology, and three possible resistance change mechanisms were studied: vertical deformation (VD) of the AgNP wire due to vertical pressure, horizontal wire elongation (HWE) along with the flexible substrate due to vertical pressure, and local micro deformation (LMD) at the touching edge. Analysis of the experiment data revealed that the resistance change due to VD was negligible, the resistance change due to PWE was one order of magnitude smaller than the measured value, and the resistance change due to PWE was the dominating mechanism.

  16. Clinical phenotype network: the underlying mechanism for personalized diagnosis and treatment of traditional Chinese medicine.

    PubMed

    Zhou, Xuezhong; Li, Yubing; Peng, Yonghong; Hu, Jingqing; Zhang, Runshun; He, Liyun; Wang, Yinghui; Jiang, Lijie; Yan, Shiyan; Li, Peng; Xie, Qi; Liu, Baoyan

    2014-09-01

    Traditional Chinese medicine (TCM) investigates the clinical diagnosis and treatment regularities in a typical schema of personalized medicine, which means that individualized patients with same diseases would obtain distinct diagnosis and optimal treatment from different TCM physicians. This principle has been recognized and adhered by TCM clinical practitioners for thousands of years. However, the underlying mechanisms of TCM personalized medicine are not fully investigated so far and remained unknown. This paper discusses framework of TCM personalized medicine in classic literatures and in real-world clinical settings, and investigates the underlying mechanisms of TCM personalized medicine from the perspectives of network medicine. Based on 246 well-designed outpatient records on insomnia, by evaluating the personal biases of manifestation observation and preferences of herb prescriptions, we noted significant similarities between each herb prescriptions and symptom similarities between each encounters. To investigate the underlying mechanisms of TCM personalized medicine, we constructed a clinical phenotype network (CPN), in which the clinical phenotype entities like symptoms and diagnoses are presented as nodes and the correlation between these entities as links. This CPN is used to investigate the promiscuous boundary of syndromes and the co-occurrence of symptoms. The small-world topological characteristics are noted in the CPN with high clustering structures, which provide insight on the rationality of TCM personalized diagnosis and treatment. The investigation on this network would help us to gain understanding on the underlying mechanism of TCM personalized medicine and would propose a new perspective for the refinement of the TCM individualized clinical skills.

  17. Neural Mechanisms Underlying Conscious and Unconscious Gaze-Triggered Attentional Orienting in Autism Spectrum Disorder

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Toichi, Motomi

    2017-01-01

    Impaired joint attention represents the core clinical feature of autism spectrum disorder (ASD). Behavioral studies have suggested that gaze-triggered attentional orienting is intact in response to supraliminally presented eyes but impaired in response to subliminally presented eyes in individuals with ASD. However, the neural mechanisms underlying conscious and unconscious gaze-triggered attentional orienting remain unclear. We investigated this issue in ASD and typically developing (TD) individuals using event-related functional magnetic resonance imaging. The participants viewed cue stimuli of averted or straight eye gaze direction presented either supraliminally or subliminally and then localized a target. Reaction times were shorter when eye-gaze cues were directionally valid compared with when they were neutral under the supraliminal condition in both groups; the same pattern was found in the TD group but not the ASD group under the subliminal condition. The temporo–parieto–frontal regions showed stronger activation in response to averted eyes than to straight eyes in both groups under the supraliminal condition. The left amygdala was more activated while viewing averted vs. straight eyes in the TD group than in the ASD group under the subliminal condition. These findings provide an explanation for the neural mechanisms underlying the impairment in unconscious but not conscious gaze-triggered attentional orienting in individuals with ASD and suggest possible neurological and behavioral interventions to facilitate their joint attention behaviors. PMID:28701942

  18. Elucidation of the molecular mechanisms underlying adverse reactions associated with a kinase inhibitor using systems toxicology

    PubMed Central

    Amemiya, Takahiro; Honma, Masashi; Kariya, Yoshiaki; Ghosh, Samik; Kitano, Hiroaki; Kurachi, Yoshihisa; Fujita, Ken-ichi; Sasaki, Yasutsuna; Homma, Yukio; Abernethy, Darrel R; Kume, Haruki; Suzuki, Hiroshi

    2015-01-01

    Background/Objectives: Targeted kinase inhibitors are an important class of agents in anticancer therapeutics, but their limited tolerability hampers their clinical performance. Identification of the molecular mechanisms underlying the development of adverse reactions will be helpful in establishing a rational method for the management of clinically adverse reactions. Here, we selected sunitinib as a model and demonstrated that the molecular mechanisms underlying the adverse reactions associated with kinase inhibitors can efficiently be identified using a systems toxicological approach. Methods: First, toxicological target candidates were short-listed by comparing the human kinase occupancy profiles of sunitinib and sorafenib, and the molecular mechanisms underlying adverse reactions were predicted by sequential simulations using publicly available mathematical models. Next, to evaluate the probability of these predictions, a clinical observation study was conducted in six patients treated with sunitinib. Finally, mouse experiments were performed for detailed confirmation of the hypothesized molecular mechanisms and to evaluate the efficacy of a proposed countermeasure against adverse reactions to sunitinib. Results: In silico simulations indicated the possibility that sunitinib-mediated off-target inhibition of phosphorylase kinase leads to the generation of oxidative stress in various tissues. Clinical observations of patients and mouse experiments confirmed the validity of this prediction. The simulation further suggested that concomitant use of an antioxidant may prevent sunitinib-mediated adverse reactions, which was confirmed in mouse experiments. Conclusions: A systems toxicological approach successfully predicted the molecular mechanisms underlying clinically adverse reactions associated with sunitinib and was used to plan a rational method for the management of these adverse reactions. PMID:28725458

  19. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  20. Response mechanism of post-earthquake slopes under heavy rainfall

    NASA Astrophysics Data System (ADS)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  1. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  2. Enzymes approved for human therapy: indications, mechanisms and adverse effects.

    PubMed

    Baldo, Brian A

    2015-02-01

    Research and drug developments fostered under orphan drug product development programs have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of rare disorders. The introduction and regulatory approval of 20 different recombinant enzymes has enabled, often for the first time, effective enzyme-replacement therapy for some lysosomal storage disorders, including Gaucher (imiglucerase, taliglucerase, and velaglucerase), Fabry (agalsidase alfa and beta), and Pompe (alglucosidase alfa) diseases and mucopolysaccharidoses I (laronidase), II (idursulfase), IVA (elosulfase), and VI (galsulfase). Approved recombinant enzymes are also now used as therapy for myocardial infarction (alteplase, reteplase, and tenecteplase), cystic fibrosis (dornase alfa), chronic gout (pegloticase), tumor lysis syndrome (rasburicase), leukemia (L-asparaginase), some collagen-based disorders such as Dupuytren's contracture (collagenase), severe combined immunodeficiency disease (pegademase bovine), detoxification of methotrexate (glucarpidase), and vitreomacular adhesion (ocriplasmin). The development of these efficacious and safe enzyme-based therapies has occurred hand in hand with some remarkable advances in the preparation of the often specifically designed recombinant enzymes; the manufacturing expertise necessary for commercial production; our understanding of underlying mechanisms operative in the different diseases; and the mechanisms of action of the relevant recombinant enzymes. Together with information on these mechanisms, safety findings recorded so far on the various adverse events and problems of immunogenicity of the recombinant enzymes used for therapy are presented.

  3. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  4. Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism

    PubMed Central

    Niddam, Alexandra F.; Ebady, Rhodaba; Bansal, Anil; Koehler, Anne; Hinz, Boris

    2017-01-01

    Bacterial dissemination via the cardiovascular system is the most common cause of infection mortality. A key step in dissemination is bacterial interaction with endothelia lining blood vessels, which is physically challenging because of the shear stress generated by blood flow. Association of host cells such as leukocytes and platelets with endothelia under vascular shear stress requires mechanically specialized interaction mechanisms, including force-strengthened catch bonds. However, the biomechanical mechanisms supporting vascular interactions of most bacterial pathogens are undefined. Fibronectin (Fn), a ubiquitous host molecule targeted by many pathogens, promotes vascular interactions of the Lyme disease spirochete Borrelia burgdorferi. Here, we investigated how B. burgdorferi exploits Fn to interact with endothelia under physiological shear stress, using recently developed live cell imaging and particle-tracking methods for studying bacterial–endothelial interaction biomechanics. We found that B. burgdorferi does not primarily target insoluble matrix Fn deposited on endothelial surfaces but, instead, recruits and induces polymerization of soluble plasma Fn (pFn), an abundant protein in blood plasma that is normally soluble and nonadhesive. Under physiological shear stress, caps of polymerized pFn at bacterial poles formed part of mechanically loaded adhesion complexes, and pFn strengthened and stabilized interactions by a catch-bond mechanism. These results show that B. burgdorferi can transform a ubiquitous but normally nonadhesive blood constituent to increase the efficiency, strength, and stability of bacterial interactions with vascular surfaces. Similar mechanisms may promote dissemination of other Fn-binding pathogens. PMID:28396443

  5. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    NASA Astrophysics Data System (ADS)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  6. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    PubMed

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  7. Mechanisms underlying different onset patterns of focal seizures

    PubMed Central

    Trevelyan, Andrew J; Valentin, Antonio; Alarcon, Gonzalo

    2017-01-01

    Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types—low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the “healthy” surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome. PMID:28472032

  8. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  9. The effects and mechanism of action of methane on ileal motor function.

    PubMed

    Park, Y M; Lee, Y J; Hussain, Z; Lee, Y H; Park, H

    2017-09-01

    Methane has been associated with constipation-predominant irritable bowel syndrome, slowing intestinal transit time by augmenting contractile activity. However, the precise mechanism underlying this effect remains unclear. Therefore, we investigated the mechanisms underlying the effect of methane on contractile activity, and whether such effects are mediated by nerve impulses or muscular contraction. We connected guinea pig ileal muscle strips to a force/tension transducer and measured amplitudes of contraction in response to electrical field stimulation (EFS; 1, 2, 8, 16 Hz) following methane infusion in the presence of tetradotoxin (TTX), atropine, guanethidine, or GR 113808. We then performed calcium imaging using Oregon Green 488 BAPTA-1 AM in order to visualize changes in calcium fluorescence in response to EFS following methane infusion in the presence of TTX, atropine, or a high K + solution. Methane significantly increased amplitudes of contraction (P<.05), while treatment with TTX abolished such contraction. Methane-induced increases in amplitude were inhibited when lower-frequency (1, 2 Hz) EFS was applied following atropine infusion (P<.05). Neither guanethidine nor GR 113808 significantly altered contraction amplitudes. Methane significantly increased calcium fluorescence, while this increase was attenuated following atropine infusion (P<.05). Although calcium fluorescence was increased by the high K + solution under pretreatment with TTX, the intensity of fluorescence remained unchanged after methane infusion. The actions of methane on the intestine are influenced by the cholinergic pathway of the enteric nervous system. Our findings support the classification of methane as a gasotransmitter. © 2017 John Wiley & Sons Ltd.

  10. Molecular Mechanisms Underlying the Cardiovascular Benefits of SGLT2i and GLP-1RA.

    PubMed

    Khat, Dorrin Zarrin; Husain, Mansoor

    2018-06-09

    In addition to their effects on glycemic control, two specific classes of relatively new anti-diabetic drugs, namely the sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have demonstrated reduced rates of major adverse cardiovascular events (MACE) in subjects with type 2 diabetes (T2D) at high risk for cardiovascular disease (CVD). This review summarizes recent experimental results that inform putative molecular mechanisms underlying these benefits. SGLT2i and GLP-1RA exert cardiovascular effects by targeting in both common and distinctive ways (A) several mediators of macro- and microvascular pathophysiology: namely (A1) inflammation and atherogenesis, (A2) oxidative stress-induced endothelial dysfunction, (A3) vascular smooth muscle cell reactive oxygen species (ROS) production and proliferation, and (A4) thrombosis. These agents also exhibit (B) hemodynamic effects through modulation of (B1) natriuresis/diuresis and (B2) the renin-angiotensin-aldosterone system. This review highlights that while GLP-1RA exert direct effects on vascular (endothelial and smooth muscle) cells, the effects of SGLT2i appear to include the activation of signaling pathways that prevent adverse vascular remodeling. Both SGLT2i and GLP-1RA confer hemodynamic effects that counter adverse cardiac remodeling.

  11. The effect of hydrogenation on strain hardening and deformation mechanisms in <113> single crystals of Hadfield steel

    NASA Astrophysics Data System (ADS)

    Astafurova, Elena; Maier, Galina; Melnikov, Eugene; Koshovkina, Vera; Moskvina, Valentina; Smirnov, Alexander; Bataev, Vladimir

    2015-10-01

    The effect of hydrogenation on the strain-hardening behavior and the deformation mechanisms of <113>-oriented single crystals of Hadfield steel was investigated under tension at room temperature. The stages of plastic flow and deformation mechanisms for hydrogen-charged specimens are similar to one in hydrogen-free state: slip → slip + single twinning → slip + multiple twinning. Hydrogen alloying favors to mechanical twinning, micro- and macrolocalization of plastic flow.

  12. Underlying mechanisms of transient luminous events: a review

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.; Hayakawa, M.

    2012-08-01

    Transient luminous events (TLEs) occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency) and ELF (extremely low frequency) phenomena associated with sprites.

  13. Mechanical grooving effect on the gettering efficiency of crystalline silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Zarroug, Ahmed; Hamed, Zied Ben; Derbali, Lotfi; Ezzaouia, Hatem

    2017-04-01

    This paper examines a gettering process of Czochralski silicon (CZ) via mechanical texture, followed by two step heat treatment in the presence of porous silicon layer (PSL) under oxygen flow gas. It is shown that a process with PS has a positive trend of improvement in the electronic quality, and found to be more efficient when used in combination with mechanical grooving. We obtained a significant increase of the effective minority carrier lifetime and majority charge carriers mobility. Thus, there is an apparent decrease in the resistivity. These parameters were estimated through a The Quasi-Steady-State Photo-Conductance technique (QSSPC), the van Der Pauw method and Hall Effect. Particularly, we have made obvious that the large enhancement of the electronic quality of the wafers can be related to the presence of grooves, the influence during which the gettering process is of importance to overcome the unexpected saturation phenomena. The current voltage I-V characteristics of all samples had been measured under illumination. They were shown to enhance the photovoltaic properties of solar cells.

  14. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure.

    PubMed

    Liu, Cheng-Bin; Qu, Guang-Bo; Cao, Meng-Xi; Liang, Yong; Hu, Li-Gang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-12-01

    Inorganic divalent mercury complexes (Hg 2+ ) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg 2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg 2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg 2+ . The mechanisms responsible for the toxicity of MeHg and Hg 2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg 2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg 2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mechanism underlying the heart rate dependency of wave reflection in the aorta: a numerical simulation.

    PubMed

    Xiao, Hanguang; Tan, Isabella; Butlin, Mark; Li, Decai; Avolio, Alberto P

    2018-03-01

    Arterial wave reflection has been shown to have a significant dependence on heart rate (HR). However, the underlying mechanisms inherent in the HR dependency of wave reflection have not been well established. This study aimed to investigate the potential mechanisms and role of arterial viscoelasticity using a 55-segment transmission line model of the human arterial tree combined with a fractional viscoelastic model. At varying degrees of viscoelasticity modeled as fractional order parameter α, reflection magnitude (RM), reflection index (RI), augmentation index (AIx), and a proposed novel normalized reflection coefficient (Γ norm ) were estimated at different HRs from 60 to 100 beats/min with a constant mean flow of 70 ml/s. RM, RI, AIx, and Γ norm at the ascending aorta decreased linearly with increasing HR at all degrees of viscoelasticity. The means ± SD of the HR dependencies of RM, RI, AIx, and Γ norm were -0.042 ± 0.004, -0.018 ± 0.001, -1.93 ± 0.55%, and -0.037 ± 0.002 per 10 beats/min, respectively. There was a significant and nonlinear reduction in RM, RI, and Γ norm with increasing α at all HRs. In addition, HR and α have a more pronounced effect on wave reflection at the aorta than at peripheral arteries. The potential mechanism of the HR dependency of wave reflection was explained by the inverse dependency of the reflection coefficient on frequency, with the harmonics of the pulse waveform moving toward higher frequencies with increasing HR. This HR dependency can be modulated by arterial viscoelasticity. NEW & NOTEWORTHY This in silico study addressed the underlying mechanisms of how heart rate influences arterial wave reflection based on a transmission line model and elucidated the role of arterial viscoelasticity in the dependency of arterial wave reflection on heart rate. This study provides insights into wave reflection as a frequency-dependent phenomenon and demonstrates the validity of using reflection magnitude and

  16. Electric Field and Current Transport Mechanisms in Schottky CdTe X-ray Detectors under Perturbing Optical Radiation

    PubMed Central

    Cola, Adriano; Farella, Isabella

    2013-01-01

    Schottky CdTe X-ray detectors exhibit excellent spectroscopic performance but suffer from instabilities. Hence it is of extreme relevance to investigate their electrical properties. A systematic study of the electric field distribution and the current flowing in such detectors under optical perturbations is presented here. The detector response is explored by varying experimental parameters, such as voltage, temperature, and radiation wavelength. The strongest perturbation is observed under 850 nm irradiation, bulk carrier recombination becoming effective there. Cathode and anode irradiations evidence the crucial role of the contacts, the cathode being Ohmic and the anode blocking. In particular, under irradiation of the cathode, charge injection occurs and peculiar kinks, typical of trap filling, are observed both in the current-voltage characteristic and during transients. The simultaneous access to the electric field and the current highlights the correlation between free and fixed charges, and unveils carrier transport/collection mechanisms otherwise hidden. PMID:23881140

  17. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    PubMed

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  18. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms

    PubMed Central

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB. PMID:28848478

  19. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  20. Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Qin, Qing; Deng, Yun; Wang, Jiang; Liu, Jing; Cao, Yibin

    2017-04-01

    Reconstruction of effective connectivity between neurons is essential for neural systems with function-related significance, characterizing directionally causal influences among neurons. In this work, causal interactions between neurons in spinal dorsal root ganglion, activated by manual acupuncture at Zusanli acupoint of experimental rats, are estimated using Granger causality (GC) method. Different patterns of effective connectivity are obtained for different frequencies and types of acupuncture. Combined with synchrony analysis between neurons, we show a dependence of effective connection on the synchronization dynamics. Based on the experimental findings, a neuronal circuit model with synaptic connections is constructed. The variation of neuronal effective connectivity with respect to its structural connectivity and synchronization dynamics is further explored. Simulation results show that reciprocally causal interactions with statistically significant are formed between well-synchronized neurons. The effective connectivity may be not necessarily equivalent to synaptic connections, but rather depend on the synchrony relationship. Furthermore, transitions of effective interaction between neurons are observed following the synchronization transitions induced by conduction delay and synaptic conductance. These findings are helpful to further investigate the dynamical mechanisms underlying the reconstruction of effective connectivity of neuronal population.

  1. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia

    PubMed Central

    Huang, Chang-Bing; Lu, Zhong-Lin; Zhou, Yifeng

    2010-01-01

    What underlies contrast sensitivity improvements in adults with anisometropic amblyopia following perceptual learning in grating contrast detection? In this paper, we adopted the external noise approach (Z.-L. Lu & B. A. Dosher, 1998) to identify the mechanisms underlying perceptual learning in adults with anisometropic amblyopia. By measuring contrast thresholds in a range of external noise conditions at two performance levels (79.3% and 70.7%), we found that a mixture of internal additive noise reduction and external noise exclusion underlay training induced contrast sensitivity improvements in adults with anisometropic amblyopia. In comparison, normal adults exhibited only small amount of external noise exclusion under the same training conditions. The results suggest that neural plasticity may be more robust in amblyopia, lending further support of perceptual learning as a potential treatment for adult amblyopia. PMID:20053087

  3. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells.

    PubMed

    Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai

    2017-06-01

    Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Mechanical Behavior of Brittle Rock-Like Specimens with Pre-existing Fissures Under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke

    2016-03-01

    Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.

  5. Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.

  6. Molecular Mechanism Underlying the Action of Substituted Pro-Gly Dipeptide Noopept.

    PubMed

    Vakhitova, Y V; Sadovnikov, S V; Borisevich, S S; Ostrovskaya, R U; A Gudasheva, T; Seredenin, S B

    2016-01-01

    This study was performed in order to reveal the effect of Noopept (ethyl ester of N-phenylacetyl-Lprolylglycine, GVS-111) on the DNA-binding activity of transcriptional factors (TF) in HEK293 cells transiently transfected with luciferase reporter constructs containing sequences for CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, HSF1, and HIF-1. Noopept (10 μM) was shown to increase the DNA-binding activity of HIF-1 only, while lacking the ability to affect that of CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, and HSF1. Noopept provoked an additional increase in the DNA-binding activity of HIF-1 when applied in conditions of CoCl2-induced HIF- 1 stabilization. The degree of this HIF-positive effect of Noopept was shown to be concentration-dependent. Piracetam (1 mM) failed to affect significantly any of the TF under study. The results of molecular docking showed that Noopept (L-isomer), as well as its metabolite, L-isomer of N-phenyl-acetylprolyl, unlike its pharmacologically ineffective D-isomer, is able to bind to the active site of prolyl hydroxylase 2. Taking into account the important role of the genes activated by HIF-1 in the formation of an adaptive response to hypoxia, data on the ability of Noopept to provoke a selective increase in the DNA-binding activity of HIF-1 explain the wide spectrum of neurochemical and pharmacological effects of Noopept revealed before. The obtained data allow one to propose the HIF-positive effect as the primary mechanism of the activity of this Pro-Gly-containing dipeptide.

  7. Molecular Mechanism Underlying the Action of Substituted Pro-Gly Dipeptide Noopept

    PubMed Central

    Vakhitova, Y. V.; Sadovnikov, S. V.; Borisevich, S. S.; Ostrovskaya, R. U.; A.Gudasheva, T.; Seredenin, S. B.

    2016-01-01

    This study was performed in order to reveal the effect of Noopept (ethyl ester of N-phenylacetyl-Lprolylglycine, GVS-111) on the DNA-binding activity of transcriptional factors (TF) in HEK293 cells transiently transfected with luciferase reporter constructs containing sequences for CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, HSF1, and HIF-1. Noopept (10 μM) was shown to increase the DNA-binding activity of HIF-1 only, while lacking the ability to affect that of CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, and HSF1. Noopept provoked an additional increase in the DNA-binding activity of HIF-1 when applied in conditions of CoCl2-induced HIF- 1 stabilization. The degree of this HIF-positive effect of Noopept was shown to be concentration-dependent. Piracetam (1 mM) failed to affect significantly any of the TF under study. The results of molecular docking showed that Noopept (L-isomer), as well as its metabolite, L-isomer of N-phenyl-acetylprolyl, unlike its pharmacologically ineffective D-isomer, is able to bind to the active site of prolyl hydroxylase 2. Taking into account the important role of the genes activated by HIF-1 in the formation of an adaptive response to hypoxia, data on the ability of Noopept to provoke a selective increase in the DNA-binding activity of HIF-1 explain the wide spectrum of neurochemical and pharmacological effects of Noopept revealed before. The obtained data allow one to propose the HIF-positive effect as the primary mechanism of the activity of this Pro-Gly-containing dipeptide. PMID:27099787

  8. Effect of extraoral aging conditions on mechanical properties of maxillofacial silicone elastomer.

    PubMed

    Hatamleh, Muhanad M; Polyzois, Gregory L; Silikas, Nick; Watts, David C

    2011-08-01

    The purpose of this study was to investigate the effect of extraoral human and environmental conditions on the mechanical properties (tensile strength and modulus, elongation, tear strength hardness) of maxillofacial silicone elastomer. Specimens were fabricated using TechSil-S25 silicone elastomer (Technovent Ltd, Leeds, UK). Eight groups were prepared (21 specimens in each group; eight tensile, eight tear, five hardness) and conditioned differently as follows (groups 1 through 8): Dry storage for 24 hours; dry storage in dark for 6 months; storage in simulated sebum solution for 6 months; storage in simulated acidic perspiration for 6 months; accelerated artificial daylight aging under controlled moisture for 360 hours; outdoor weathering for 6 months; storage in antimicrobial silicone-cleaning solution for 30 hours; and mixed conditioning of sebum storage and light aging for 360 hours. The conditioning period selected simulated a prosthesis being in service for up to 12 months. Tensile and tear test specimens were fabricated and tested according to the International Standards Organization (ISO) standards no. 37 and 34, respectively. Shore A hardness test specimens were fabricated and tested according to the American Standards for Testing and Materials (ASTM) D 2240. Data were analyzed with one-way ANOVA, Bonferroni, and Dunnett's T3 post hoc tests (p < 0.05). Weibull analysis was also used for tensile strength and tear strength. Statistically significant differences were evident among all properties tested. Mixed conditioning of simulated sebum storage under accelerated artificial daylight aging significantly degraded mechanical properties of the silicone (p < 0.05). Mechanical properties of maxillofacial elastomers are adversely affected by human and environmental factors. Mixed aging of storage in simulated sebum under accelerated daylight aging was the most degrading regime. Accelerated aging of silicone specimens in simulated sebum under artificial daylight

  9. Music and literature: are there shared empathy and predictive mechanisms underlying their affective impact?

    PubMed Central

    Omigie, Diana

    2015-01-01

    It has been suggested that music and language had a shared evolutionary precursor before becoming mainly responsible for the communication of emotive and referential meaning respectively. However, emphasis on potential differences between music and language may discourage a consideration of the commonalities that music and literature share. Indeed, one possibility is that common mechanisms underlie their affective impact, and the current paper carefully reviews relevant neuroscientific findings to examine such a prospect. First and foremost, it will be demonstrated that considerable evidence of a common role of empathy and predictive processes now exists for the two domains. However, it will also be noted that an important open question remains: namely, whether the mechanisms underlying the subjective experience of uncertainty differ between the two domains with respect to recruitment of phylogenetically ancient emotion areas. It will be concluded that a comparative approach may not only help to reveal general mechanisms underlying our responses to music and literature, but may also help us better understand any idiosyncrasies in their capacity for affective impact. PMID:26379583

  10. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.

    PubMed

    Hou, Jiapeng; Veeregowda, Deepak H; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C

    2017-10-20

    The viscoelasticity of a biofilm's EPS (extracellular-polymeric-substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the response of a biofilm of an EPS producing (ATCC 12600) and non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal-Laser-Scanning-Microscopy confirmed absence of calcofluorwhite-stainable EPS in biofilms of S. aureus 5298. ATR-FTIR spectroscopy combined with tribometry indicated that the polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low shear and this increased EPS production extended to entire biofilms, as indicated by tribometrically measured coefficients of friction (CoF). CoFs of biofilms grown under high fluid shear were higher than when grown under low shear, likely due to wash-off of polysaccharides. Measurement of a biofilm's CoF implies application of mechanical pressure that yielded an immediate increase in polysaccharide band area of S. aureus ATCC 12600 biofilms due to their compression that decreased after relieving pressure to the level observed prior to mechanical pressure. For biofilms grown under high shear, this coincided with a higher %whiteness in Optical-Coherence-Tomography-images indicative of water outflow, returning back into the biofilm during stress relaxation. Biofilms grown under low shear however, were stimulated during tribometry to produce EPS, also after stress relieve. Knowledge of factors that govern EPS production and water flow in biofilms will allow better control of biofilms under mechanical challenge and understanding of the barrier properties of biofilms toward antimicrobial penetration. IMPORTANCE Adaptive responses of biofilm inhabitants in nature to environmental challenges such as fluid shear and mechanical pressure, often involve EPS production with the aim of protecting

  11. Buckling analysis of carbon nanotube bundles under axial compressive, bending and torsional loadings via a structural mechanics model

    NASA Astrophysics Data System (ADS)

    Lashkari Zadeh, Ali; Shariati, Mahmoud; Torabi, Hamid

    2012-11-01

    A structural mechanics model is employed for the investigation of the buckling behavior of carbon nanotube bundles of three single-walled carbon nanotubes (SWCNTs) under axial compressive, bending and torsional loadings. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element.The effects of different types of boundary conditions are studied for nanotubes with various aspect ratios. The results reveal that bundles comprising longer SWCNTs exhibit lower critical buckling load. Moreover, for the fixed-free boundary condition the rate of critical buckling load reduction is highest, while the lowest critical buckling load occurs. Simulations show good agreement between our model and molecular dynamics results.

  12. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Chen, Tian-Ming; Zhong, Yingbin

    This study was aimed to explore the mechanisms underlying cadmium-induced circadian rhythms disruption. Two groups of zebrafish larvae treated with or without 5 ppm CdCl{sub 2} were incubated in a photoperiod of 14-h light/10-h dark conditions. The mRNA levels of clock1a, bmal1b, per2 and per1b in two groups were determined. Microarray data were generated in two group of samples. Differential expression of genes were identified and the changes in expression level for some genes were validated by RT-PCR. Finally, Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) were performed. In comparison with normal group, the mRNAmore » levels of clock1a, bmal1b, and per2 were significantly changed and varied over the circadian cycle in CdCl2-treated group. DEGs were obtained from the light (84 h, ZT12) and dark (88 h, ZT16) phase. In addition, G-protein coupled receptor protein signaling pathway and immune response were both enriched by DEGs in both groups. While, proteolysis and amino acid metabolism were found associated with DEGs in light phase, and Neuroactive ligand-receptor interaction and oxidation-reduction process were significantly enriched by DEGs in dark phase. Besides, the expression pattern of genes including hsp70l and or115-11 obtained by RT-PCR were consistent with those obtained by microarray analysis. As a consequence, cadmium could make significant effects on circadian rhythms through immune response and G protein-coupled receptor signaling pathway. Besides, between the dark and the light phase, the mechanism by which cadmium inducing disruption of circadian rhythms were different to some extent. - Highlights: • Cadmium could affect the expression levels of circadian rhythm-related genes. • Genes expression in microarray data were consistent with those in RT-PCR analysis. • Immune response and G protein-coupled receptor signaling pathway were identified. • Cadmium induces circadian rhythm

  13. Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping; Du, Hongfei

    2015-11-01

    In this paper, we focus on the local mechanical response of superelastic NiTi SMA at different temperatures under uniaxial loading. In situ DIC is applied to measure the local strain of the specimen. Based on the experimental results, two types of mechanical response, which are characterized with localized phase transformation and homogenous phase transformation, are identified, respectively. Motivated by residual strain accumulation phenomenon of the superelastic mechanical response, we conduct controlled experiments, and infer that for a given material point, all (or most) of the irreversibility is accumulated when the transformation front is traversing the material point. A robust constitutive model is established to explain the experimental phenomena and we successfully simulate the evolution of local strain that agrees closely with the experimental results.

  14. Mechanisms of microstructure formation under the influence of ultrasonic vibrations

    NASA Astrophysics Data System (ADS)

    Rakita, Milan

    Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized

  15. A subliminal inhibitory mechanism for the negative compatibility effect: a continuous versus threshold mechanism.

    PubMed

    Liu, Peng; Chen, Xuhai; Dai, Dongyang; Wang, Yongchun; Wang, Yonghui

    2014-07-01

    The current study investigated the mechanism underlying subliminal inhibition using the negative compatibility effect (NCE) paradigm. We hypothesized that a decrease in prime activation affects the subsequent inhibitory process, delaying onset of inhibition and reducing its strength. Two experiments tested this hypothesis using arrow stimuli as primes and targets. Two different irrelevant masks (i.e., a mask sharing no prime features) were presented in succession in each trial to not only ensure that primes were processed subliminally, but also avoid feature updating between primes and masks. Prime/target compatibility and prime background density were manipulated in Experiment 1. Results showed that under subliminal inhibitory condition, the NCE disappears when the density increases (i.e., pixel density in the prime's background of 25 %) in Experiment 1. However, when we fixed the prime's background at the density of 25 % and manipulated prime/target compatibility as well as inter-stimuli-interval (ISI) between mask and target in Experiment 2, behavioral results showed marginally significant NCEs in the 150-ms ISI condition. Electrophysiological evidence showed the lateralized readiness potential for compatible trials was significantly more positive than that for incompatible trials during the two consecutive time windows (i.e., 400-450 and 450-500 ms) in the 150-ms ISI condition. In addition, the NCE size was significant smaller in Experiment 2 than in Experiment 1. All of the results support predictions of the continuous subliminal inhibitory mechanism hypothesis which posits that decreases in prime activation strength lead to delay in inhibitory onset and decline in inhibitory strength.

  16. Do emotion-induced blindness and the attentional blink share underlying mechanisms? An event-related potential study of emotionally-arousing words.

    PubMed

    MacLeod, Jeffrey; Stewart, Brandie M; Newman, Aaron J; Arnell, Karen M

    2017-06-01

    When two targets are presented within approximately 500 ms of each other in the context of rapid serial visual presentation (RSVP), participants' ability to report the second target is reduced compared to when the targets are presented further apart in time. This phenomenon is known as the attentional blink (AB). The AB is increased in magnitude when the first target is emotionally arousing. Emotionally arousing stimuli can also capture attention and create an AB-like effect even when these stimuli are presented as to-be-ignored distractor items in a single-target RSVP task. This phenomenon is known as emotion-induced blindness (EIB). The phenomenological similarity in the behavioral results associated with the AB with an emotional T1 and EIB suggest that these effects may result from similar underlying mechanisms - a hypothesis that we tested using event-related electrical brain potentials (ERPs). Behavioral results replicated those reported previously, demonstrating an enhanced AB following an emotionally arousing target and a clear EIB effect. In both paradigms highly arousing taboo/sexual words resulted in an increased early posterior negativity (EPN) component that has been suggested to represent early semantic activation and selection for further processing in working memory. In both paradigms taboo/sexual words also produced an increased late positive potential (LPP) component that has been suggested to represent consolidation of a stimulus in working memory. Therefore, ERP results provide evidence that the EIB and emotion-enhanced AB effects share a common underlying mechanism.

  17. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms?

    PubMed

    Feduccia, Allison A; Mithoefer, Michael C

    2018-06-08

    MDMA-assisted psychotherapy for treatment of PTSD has recently progressed to Phase 3 clinical trials and received Breakthrough Therapy designation by the FDA. MDMA used as an adjunct during psychotherapy sessions has demonstrated effectiveness and acceptable safety in reducing PTSD symptoms in Phase 2 trials, with durable remission of PTSD diagnosis in 68% of participants. The underlying psychological and neurological mechanisms for the robust effects in mitigating PTSD are being investigated in animal models and in studies of healthy volunteers. This review explores the potential role of memory reconsolidation and fear extinction during MDMA-assisted psychotherapy. MDMA enhances release of monoamines (serotonin, norepinephrine, dopamine), hormones (oxytocin, cortisol), and other downstream signaling molecules (BDNF) to dynamically modulate emotional memory circuits. By reducing activation in brain regions implicated in the expression of fear- and anxiety-related behaviors, namely the amygdala and insula, and increasing connectivity between the amygdala and hippocampus, MDMA may allow for reprocessing of traumatic memories and emotional engagement with therapeutic processes. Based on the pharmacology of MDMA and the available translational literature of memory reconsolidation, fear learning, and PTSD, this review suggests a neurobiological rationale to explain, at least in part, the large effect sizes demonstrated for MDMA in treating PTSD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    PubMed

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  19. The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Lee, Dae-Young; Kim, Yeon Bok; Lee, Sang-Won; Cha, Seon-Woo; Park, Hong-Woo; Kim, Geum-Soog; Kwon, Dong-Yeul; Lee, Min-Ho; Han, Sin-Hee

    2015-01-01

    Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N′-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds. PMID:26265924

  20. Mechanisms of the anomalous Pockels effect in bulk water

    NASA Astrophysics Data System (ADS)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  1. Polymer Composite Rebars under Moisture and Mechanical Loading

    NASA Astrophysics Data System (ADS)

    Adam, Mohamed Ibrahim

    structural GFRP composites will, through their design life, be exposed to a range of hygrothermal and other environmental conditions. This study aims to investigate the durability of glass fiber reinforced vinyl ester rebars exposed to moisture at different temperatures and under mechanical loading. Rebars of 10 mm, 13 mm, and 16 mm diameter were immersed in deionized water until saturation for 220 days at three different temperatures 30°C, 70°C, and 100°C. The rebars were examined as-received and following exposure to moisture by scanning electron microscopy and CT scan for possible microvoids and for modes of failures after being tested in both compression as well as non-tested specimens. Diffusion parameters were calculated and the accelerated hygrothermal effect on the compressive strength, modulus, and porosity was investigated. Significant decrease in compressive modulus and a much less degree of degradation in strength was observed. Three modes of failure were noted: splitting, fiber microbuckling, and fiber kinking. Presence of microvoids on both as-received and exposed to moisture specimens was evident. Despite this degradation due to hygrothermal exposure, GFRP rebars were able to maintain their strength. This can be regarded as an edge in their performance compared to steel. However this advantage may not hold with prolonged exposure. It was also noted that the specimens exposed to moisture and temperature exhibited an increase in microvoids of approximately 33% and new distribution of microvoids sizes was recorded. The degradation of the mechanical properties of the GFRP rebars was attributed to the hygrothermal effect that was facilitated by the presence of microvoids which allow moisture to diffuse. Presence and growth of Microvoids due to exposure to moisture and temperature was deemed the primary reason causing the degradation of GFRP rebars. Presence of microvoids needs to be addressed in order to enhance the durability and performance of GFRP rebar.

  2. Mechanical impedance measurements for improved cost-effective process monitoring

    NASA Astrophysics Data System (ADS)

    Clopet, Caroline R.; Pullen, Deborah A.; Badcock, Rodney A.; Ralph, Brian; Fernando, Gerard F.; Mahon, Steve W.

    1999-06-01

    The aerospace industry has seen a considerably growth in composite usage over the past ten years, especially with the development of cost effective manufacturing techniques such as Resin Transfer Molding and Resin Infusion under Flexible Tooling. The relatively high cost of raw material and conservative processing schedules has limited their growth further in non-aerospace technologies. In-situ process monitoring has been explored for some time as a means to improving the cost efficiency of manufacturing with dielectric spectroscopy and optical fiber sensors being the two primary techniques developed to date. A new emerging technique is discussed here making use of piezoelectric wafers with the ability to sense not only aspects of resin flow but also to detect the change in properties of the resin as it cures. Experimental investigations to date have shown a correlation between mechanical impedance measurements and the mechanical properties of cured epoxy systems with potential for full process monitoring.

  3. Epigenetic Mechanisms and the Transgenerational Effects of Maternal Care

    PubMed Central

    Champagne, Frances A.

    2009-01-01

    The transmission of traits across generations has typically been attributed to the inheritance by offspring of genomic information from parental generations. However, recent evidence suggests that epigenetic mechanisms are capable of mediating this type of transmission. In the case of maternal care, there is evidence for the behavioral transmission of postpartum behavior from mothers to female offspring. The neuroendocrine and molecular mediators of this transmission have been explored in rats and implicate estrogen-oxytocin interactions and the differential methylation of hypothalamic estrogen receptors. These maternal effects can influence multiple aspects of neurobiology and behavior of offspring and this particular mode of inheritance is dynamic in response to environmental variation. In this review, evidence for the generational transmission of maternal care and the mechanisms underlying this transmission will be discussed as will the implications of this inheritance system for offspring development and for the transmission of environmental information from parents to offspring. PMID:18462782

  4. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    PubMed

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Environmental genotoxicity: Probing the underlying mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shugart, L.; Theodorakis, C.

    1993-12-31

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort tomore » predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.« less

  6. Analysis of main constituents and mechanisms underlying antidepressant-like effects of Xiaochaihutang in mice.

    PubMed

    Zhang, Kuo; Wang, Fang; Yang, Jing-yu; Wang, Li-juan; Pang, Huan-huan; Su, Guang-yue; Ma, Jie; Song, Shao-jiang; Xiong, Zhi-li; Wu, Chun-fu

    2015-12-04

    Xiaochaihutang (XCHT), a famous Chinese herbal formula which consists of seven Chinese herbs, has been used clinically in depressive disorders in China. Our previous studies have demonstrated that XCHT improved depressive-like behavior in several animal models of depression. However, therapeutic basis of XCHT on depression are challenging, due to the complex active constituents of XCHT and the unclear pharmacological mechanism of action. To provide further insights into therapeutic basis of XCHT, the core in compatibility of XCHT on antidepressant therapy was assessed by the method of orthogonal array design. The comparative evaluations on antidepressant effects of XCHT and its core in compatibility were executed by tail suspension test (TST), forced swim test (FST), novelty suppressed feeding test (NSFT), reserpine-induced hypothermia and palpebral ptosis. Moreover, the potential mechanism was explored by investigating levels of monoamine neurotransmitters in hypothalamus and striatum and neurogenesis in hippocampus. Chemical profile of active constituents in plasma after oral administration of the core in compatibility of XCHT was revealed by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results of orthogonal array design experiment showed that Huangqin (Radix scutellariae), Renshen (Ginseng) and Gancao (Radix glycyrrhizae), defined as HRG, might be the core in compatibility of XCHT on antidepressant therapy. In accordance with XCHT, oral administration of HRG for 15 days significantly reduced immobility duration in TST and FST without affecting locomotor activity. Both HRG and XCHT increased immobility latency in FST, decreased the latency in NSFT, reversed reserpine-induced hypothermia and palpebral ptosis. Moreover, both HRG and XCHT significantly increased levels of 5-HT and DA in hypothalamus. In addition, HRG could remarkably increase Ki-67 and doublecortin (DCX) positive cells in hippocampus. A total 25 active

  7. Mechanical properties and microstructural change of W–Y2O3 alloy under helium irradiation

    PubMed Central

    Tan, Xiaoyue; Luo, Laima; Chen, Hongyu; Zhu, Xiaoyong; Zan, Xiang; Luo, Guangnan; Chen, Junling; Li, Ping; Cheng, Jigui; Liu, Dongping; Wu, Yucheng

    2015-01-01

    A wet-chemical method combined with spark plasma sintering was used to prepare a W–Y2O3 alloy. High-temperature tensile tests and nano-indentation microhardness tests were used to characterize the mechanical properties of the alloy. After He-ion irradiation, fuzz and He bubbles were observed on the irradiated surface. The irradiation embrittlement was reflected by the crack indentations formed during the microhardness tests. A phase transformation from α-W to γ-W was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Polycrystallization and amorphization were also observed in the irradiation damage layer. The W materials tended to exhibit lattice distortion, amorphization, polycrystallization and phase transformation under He-ion irradiation. The transformation mechanism predicted by the atomic lattice model was consistent with the available experimental observations. These findings clarify the mechanism of the structural transition of W under ion irradiation and provide a clue for identifying materials with greater irradiation resistance. PMID:26227480

  8. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  9. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.

    PubMed

    Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin

    2018-01-01

    Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    PubMed

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  11. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2013-09-30

    Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving 5a...two day period in September, 2012. The first major huddle to the study was to determine the effect of the overnight shipping of the viability of

  12. Denaturation of collagen structures and their transformation under the physical and chemical effects

    NASA Astrophysics Data System (ADS)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  13. An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Huang, Yan-Hua; Yang, Sheng-Qi; Tian, Wen-Ling; Zeng, Wei; Yu, Li-Yuan

    2016-06-01

    Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0° to 75°. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.

  14. Monitoring the mechanical behaviour of electrically conductive polymer nanocomposites under ramp and creep conditions.

    PubMed

    Pedrazzoli, D; Dorigato, A; Pegoretti, A

    2012-05-01

    Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.

  15. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism.

    PubMed

    Gong, Beini; Wu, Pingxiao; Ruan, Bo; Zhang, Yating; Lai, Xiaolin; Yu, Langfeng; Li, Yongtao; Dang, Zhi

    2018-05-05

    Natural and cost-effective materials such as minerals can serve as supportive matrices to enhance biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study we evaluated and compared the regulatory role of two common soil minerals, i.e. kaolinite and quartz in phenanthrene (a model PAH) degradation by a PAH degrader Sphingomonas sp. GY2B and investigated the underlying mechanism. Overall kaolinite was more effective than quartz in promoting phenanthrene degradation and bacterial growth. And it was revealed that a more intimate association was established between GY2B and kaolinite. Si and O atoms on mineral surface were demonstrated to be involved in GY2B-mineral interaction. There was an higher polysaccharide/lipid content in the EPS (extracellular polymeric substances) secreted by GY2B on kaolinite than on quartz. Altogether, these results showed that differential bacterial growth, enzymatic activity, EPS composition as well as the interface interaction may explain the effects minerals have on PAH biodegradation. It was implicated that different interface interaction between different minerals and bacteria can affect microbial behavior, which ultimately results in different biodegradation efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    PubMed Central

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  17. Effects and possible mechanisms of simulated-microgravity on zebrafish embryonic cell

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Cellular level studies are helpful for revealing the underlying mechanisms of microgravity effects on living organisms. Many cell types, ranging from bacteria to mammalian cells, are sensitive to the microgravity environment. In this study, zebrafish embryonic cells (ZF4) were exposed to simulated-microgravity (SMG) for different times to investigate the effects and possible mechanisms of microgravity on fibroblasts. A significant arrest in G2/M phase was detected in ZF4 cells after 24 or 48 hour of SMG exposure, respectively. The mRNA levels of G2/M phase regulators cyclinB1 and cdc2 were significantly decreased, while wee1 was significantly increased. Additionally, CEP135, a core centrosome protein throughout the cell cycle, seems to play a key role in modulating this effect. Quantitative analysis showed that cep135 expression was significantly increased, while CEP135 protein expression level was significantly decreased two times after SMG. Further investigation demonstrated the transfection of dre-miR-22a, a miRNA for targeting cep135, also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells may due to the regulation of dre-miR-22a and its target cep135. Key Words: Simulated-microgravity; zebrafish embryonic cell; G2/M arrest; molecular mechanism

  18. [Analysis on risk factors of endotracheal cuff under inflation in mechanically ventilated patients].

    PubMed

    Fu, You; Xi, Xiuming

    2014-12-01

    To investigate the prevalent condition of endotracheal cuff pressure and risk factors for under inflation. A prospective cohort study was conducted. Patients admitted to the Department of Critical Care Medicine of Fuxing Hospital Affiliated to Capital Medical University, who were intubated with a high-volume low-pressure endotracheal tube, and had undergone mechanical ventilation for at least 48 hours, were enrolled. The endotracheal cuff pressure was determined every 8 hours by a manual manometer connected to the distal edge of the valve cuff at 07 : 00, 15 : 00, and 23 : 00. Measurement of the endotracheal cuff pressure was continued until the extubation of endotracheal or tracheostomy tube, or death of the patient. According to the incidence of under inflation of endotracheal cuff, patients were divided into the incidence of under inflation lower than 25% group (lower low cuff pressure group) and higher than 25% group (higher low cuff pressure group). The possible influencing factors were evaluated in the two groups, including body mass index (BMI), size of endotracheal tube, duration of intubation, use of sedative or analgesic, number of leaving from intensive care unit (ICU), the number of turning over the patients, and aspiration of sputum. Logistic regression analysis was used to determine risk factors for under-inflation of the endotracheal cuff. During the study period, 53 patients were enrolled. There were 812 measurements, and 46.3% of them was abnormal, and 204 times (25.1%) of under inflation of endotracheal cuff were found. There were 24 patients (45.3%) in whom the incidence of under inflation rate was higher than 25%. The average of under inflation was 7 (4, 10) times. Compared with the group with lower rate of low cuff pressure, a longer time for intubation was found in group with higher rate of low cuff pressure [hours: 162 (113, 225) vs. 118 (97, 168), Z=-2.034, P=0.042]. There were no differences between the two groups in other factors

  19. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    PubMed

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  20. Examination of the Mechanisms Underlying Effectiveness of the Turtle Technique

    ERIC Educational Resources Information Center

    Drogan, Robin R.; Kern, Lee

    2014-01-01

    A significant number of young children exhibit challenging behaviors in preschool settings. A tiered framework of intervention has documented effectiveness in elementary and secondary schools, and recently has been extended to preschool settings. Although there is emerging research to support the effectiveness of Tier 1 (universal) and Tier 3…

  1. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation

    PubMed Central

    Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L.

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation. PMID:23029565

  2. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Gorgin Karaji, Zahra; Hedayati, Reza; Pouran, Behdad; Apachitei, Iulian; Zadpoor, Amir A

    2017-07-01

    Metallic porous biomaterials are recently attracting more attention thanks to the additive manufacturing techniques which help produce more complex structures as compared to conventional techniques. On the other hand, bio-functional surfaces on metallic biomaterials such as titanium and its alloys are necessary to enhance the biological interactions with the host tissue. This study discusses the effect of plasma electrolytic oxidation (PEO), as a surface modification technique to produce bio-functional layers, on the mechanical properties of additively manufactured Ti6Al4V scaffolds based on the cubic unit cell. For this purpose, the PEO process with two different oxidation times was applied on scaffolds with four different values of relative density. The effects of the PEO process were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy as well as static and dynamic (fatigue) mechanical testing under compression. SEM results indicated pore formation on the surface of the scaffolds after oxidation with a thickness of 4.85±0.36μm of the oxide layer after 2min and 9.04±2.27μm after 5min oxidation (based on optical images). The static test results showed the high effect of relative density of porous structure on its mechanical properties. However, oxidation did not influence most of the mechanical properties such as maximum stress, yield stress, plateau stress, and energy absorption, although its effect on the elastic modulus was considerable. Under fatigue loading, none of the scaffolds failed even after 10 6 loading cycles at 70% of their yield stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. MOLECULAR MECHANISMS OF DIABETOGENIC EFFECTS OF ARSENIC: INHIBITION OF INSULIN SIGNALING BY ARSENITE AND METHYLARSONOUS ACID

    EPA Science Inventory

    Increased prevalence of diabetes mellitus has been reported among individuals chronically exposed to inorganic arsenic (iAs). However, mechanisms underlying the diabetogenic effects of iAs have not been characterized. We have shown that trivalent metabolites of iAs inhibit insu...

  4. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force.

    PubMed

    Cheng, Hsin-Yi Kathy; Lin, Chun-Li; Wang, Hsien-Wen; Chou, Shih-Wei

    2008-01-01

    Stretching plays an important role in the treatment of plantar fasciitis. Information on the internal stresses/strains of the plantar fascia under stretch is useful in enhancing knowledge on the stretch mechanisms. Although direct measurement can monitor plantar fascia changes, it is invasive and gathers only localized information. The purpose of this paper was to construct a three-dimensional finite element model of the foot to calculate the stretch effects on plantar fascia and monitor its stress/strain distributions and concentrations. A three-dimensional foot model was developed and contained 26 bones with joint cartilages, 67 ligaments and a fan-like solid plantar fascia modeling. All tissues were idealized as linear elastic, homogeneous and isotropic whilst the plantar fascia was assigned as hyperelastic to represent its nonlinearity. The plantar fascia was monitored for its biomechanical responses under various stretch combinations: three toe dorsiflexion angles (windlass effect: 15 degrees , 30 degrees and 45 degrees ) and five Achilles tendon forces (100, 200, 300, 400 and 500N). Our results indicated that the plantar fascia strain increased as the dorsiflexion angles increased, and this phenomenon was enhanced by increasing Achilles tendon force. A stress concentration was found near the medial calcaneal tubercle, and the fascia stress was higher underneath the first foot ray and gradually decreased as it moved toward the fifth ray. The current model recreated the position of the foot when stretch is placed on the plantar fascia. The results provided a general insight into the mechanical and biomechanical aspects of the influences of windlass mechanism and Achilles tendon force on plantar fascia stress and strain distribution. These findings might have practical implications onto plantar fascia stretch approaches, and provide guidelines to its surgical release.

  5. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    NASA Astrophysics Data System (ADS)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  6. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  7. The effects of acute alcohol intoxication on the cognitive mechanisms underlying false facial recognition.

    PubMed

    Colloff, Melissa F; Flowe, Heather D

    2016-06-01

    False face recognition rates are sometimes higher when faces are learned while under the influence of alcohol. Alcohol myopia theory (AMT) proposes that acute alcohol intoxication during face learning causes people to attend to only the most salient features of a face, impairing the encoding of less salient facial features. Yet, there is currently no direct evidence to support this claim. Our objective was to test whether acute alcohol intoxication impairs face learning by causing subjects to attend to a salient (i.e., distinctive) facial feature over other facial features, as per AMT. We employed a balanced placebo design (N = 100). Subjects in the alcohol group were dosed to achieve a blood alcohol concentration (BAC) of 0.06 %, whereas the no alcohol group consumed tonic water. Alcohol expectancy was controlled. Subjects studied faces with or without a distinctive feature (e.g., scar, piercing). An old-new recognition test followed. Some of the test faces were "old" (i.e., previously studied), and some were "new" (i.e., not previously studied). We varied whether the new test faces had a previously studied distinctive feature versus other familiar characteristics. Intoxicated and sober recognition accuracy was comparable, but subjects in the alcohol group made more positive identifications overall compared to the no alcohol group. The results are not in keeping with AMT. Rather, a more general cognitive mechanism appears to underlie false face recognition in intoxicated subjects. Specifically, acute alcohol intoxication during face learning results in more liberal choosing, perhaps because of an increased reliance on familiarity.

  8. Three-Month-Olds' Visual Preference for Faces and Its Underlying Visual Processing Mechanisms

    ERIC Educational Resources Information Center

    Turati, C.; Valenza, E.; Leo, I.; Simion, F.

    2005-01-01

    This study was aimed at investigating the face preference phenomenon and its underlying mechanisms at 3 months of age. Using an eye-tracker apparatus, Experiment 1 demonstrated that 3-month-olds prefer natural face images to unnatural ones, replicating and extending previous evidence obtained with schematic facelike stimuli. Experiments 2 and 3…

  9. Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation.

    PubMed

    Sun, Yueting; Li, Yibing; Tan, Jin-Chong

    2018-04-18

    The structural flexibility of a topical zeolitic imidazolate framework with sodalite topology, termed ZIF-8, has been elucidated through liquid intrusion under moderate pressures (i.e. tens of MPa). By tracking the evolution of water intrusion pressure under cyclic conditions, we interrogate the role of the gate-opening mechanism controlling the size variation of the pore channels of ZIF-8. Interestingly, we demonstrate that its channel deformation is recoverable through structural relaxation over time, hence revealing the viscoelastic mechanical response in ZIF-8. We propose a simple approach employing a glycerol-water solution mixture, which can significantly enhance the sensitivity of intrusion pressure for the detection of structural deformation in ZIF-8. By leveraging the time-dependent gate-opening phenomenon in ZIF-8, we achieved a notable improvement (50%) in energy dissipation during multicycle mechanical deformation experiments.

  10. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.

    PubMed

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Koda, Shinobu; Yasuda, Keiji

    2017-11-01

    Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98kHz and near to the cavitation threshold at high frequency. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  12. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy.

  13. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  14. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications.

    PubMed

    Van Hooren, Bas; Zolotarjova, Julia

    2017-07-01

    Van Hooren, B and Zolotarjova, J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res 31(7): 2011-2020, 2017-Two movements that are widely used to monitor athletic performance are the countermovement jump (CMJ) and squat jump (SJ). Countermovement jump performance is almost always better than SJ performance, and the difference in performance is thought to reflect an effective utilization of the stretch-shortening cycle. However, the mechanisms responsible for the performance-enhancing effect of the stretch-shortening cycle are frequently undefined. Uncovering and understanding these mechanisms is essential to make an inference regarding the difference between the jumps. Therefore, we will review the potential mechanisms that explain the better performance in a CMJ as compared with a SJ. It is concluded that the difference in performance may primarily be related to the greater uptake of muscle slack and the buildup of stimulation during the countermovement in a CMJ. Elastic energy may also have a small contribution to an enhanced CMJ performance. Therefore, a larger difference between the jumps is not necessarily a better indicator of high-intensity sports performance. Although a larger difference may reflect the utilization of elastic energy in a small-amplitude CMJ as a result of a well-developed capability to co-activate muscles and quickly build up stimulation, a larger difference may also reflect a poor capability to reduce the degree of muscle slack and build up stimulation in the SJ. Because the capability to reduce the degree of muscle slack and quickly build up stimulation in the SJ may be especially important to high-intensity sports performance, training protocols might concentrate on attaining a smaller difference between the jumps.

  15. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.

    2017-08-01

    Tensile response of irradiated symmetric grain boundaries to the externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its undertaken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trapping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.

  16. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  17. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  18. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour

    PubMed Central

    Qin, Dong-dong; Rizak, Joshua; Feng, Xiao-li; Yang, Shang-chuan; Lü, Long-bao; Pan, Lei; Yin, Yong; Hu, Xin-tian

    2016-01-01

    Stress is associated with the onset of depressive episodes, and cortisol hypersecretion is considered a biological risk factor of depression. However, the possible mechanisms underlying stress, cortisol and depressive behaviours are inconsistent in the literature. This study examined the interrelationships among stress, cortisol and observed depressive behaviours in female rhesus macaques for the first time and explored the possible mechanism underlying stress and depressive behaviour. Female monkeys were video-recorded, and the frequencies of life events and the duration of huddling were analysed to measure stress and depressive behaviour. Hair samples were used to measure chronic cortisol levels, and the interactions between stress and cortisol in the development of depressive behaviour were further evaluated. Significant correlations were found between stress and depressive behaviour measures and between cortisol levels and depressive behaviour. Stress was positively correlated with cortisol levels, and these two factors interacted with each other to predict the monkeys’ depressive behaviours. This finding extends the current understanding of stress/cortisol interactions in depression, especially pertaining to females. PMID:27443987

  19. Study of the changes in the magnetic properties of stainless steels under mechanical treatment

    NASA Astrophysics Data System (ADS)

    Iankov, R.; Rusanov, V.; Paneva, D.; Mitov, I.; Trautwein, A. X.

    2016-12-01

    Six types of stainless steels (SS) were studied for changes in its structure and magnetic properties under mechanical treatment. Depending on intensity and duration of the process of plastic deformation and the SS type the paramagnetic austenite structure transforms partially to completely into ferrite structure with ferromagnetic behaviour. Some of the SS tested were found slightly modified yet in the process of its manufacturing. Only one SS type with high Ni content preserved its structure and paramagnetic properties even after very intense mechanical treatment.

  20. The Pro-Proliferative Effects of Nicotine and Its Underlying Mechanism on Rat Airway Smooth Muscle Cells

    PubMed Central

    He, Fang; Li, Bing; Zhao, Zhuxiang; Zhou, Yumin; Hu, Guoping; Zou, Weifeng; Hong, Wei; Zou, Yimin; Jiang, Changbin; Zhao, Dongxing; Ran, Pixin

    2014-01-01

    Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway. PMID:24690900

  1. [Concepts and monitoring of pulmonary mechanic in patients under ventilatory support in intensive care unit].

    PubMed

    Faustino, Eduardo Antonio

    2007-06-01

    In mechanical ventilation, invasive and noninvasive, the knowledge of respiratory mechanic physiology is indispensable to take decisions and into the efficient management of modern ventilators. Monitoring of pulmonary mechanic parameters is been recommended from all the review works and clinical research. The objective of this study was review concepts of pulmonary mechanic and the methods used to obtain measures in the bed side, preparing a rational sequence to obtain this data. It was obtained bibliographic review through data bank LILACS, MedLine and PubMed, from the last ten years. This review approaches parameters of resistance, pulmonary compliance and intrinsic PEEP as primordial into comprehension of acute respiratory failure and mechanic ventilatory support, mainly in acute respiratory distress syndrome (ARDS) and in chronic obstructive pulmonary disease (COPD). Monitoring pulmonary mechanics in patients under mechanical ventilation in intensive care units gives relevant informations and should be implemented in a rational and systematic way.

  2. Different intra- and interspecific facilitation mechanisms between two Mediterranean trees under a climate change scenario.

    PubMed

    Gimeno, Teresa E; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.

  3. Molecular mechanism underlying ethanol activation of G-protein–gated inwardly rectifying potassium channels

    PubMed Central

    Bodhinathan, Karthik; Slesinger, Paul A.

    2013-01-01

    Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein–gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction. PMID:24145411

  4. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Results- Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.

  5. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  6. Determination of the mechanical characteristics of nanomaterials under tension and compression

    NASA Astrophysics Data System (ADS)

    Filippov, A. A.; Fomin, V. M.

    2018-04-01

    In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.

  7. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Li, Dong; Xu, Li-yan; Chang, Zi-juan; Zhao, Guang-ju; Nan, Chao; Lu, Zhong-qiu

    2013-03-01

    To investigate the intervention effect of thalidomide on paraquat-induced acute lung injury in mice and its mechanism. Male ICR mice were randomly allocated to negative control group (n = 30), thalidomide control group (n = 30), paraquat poisoning group (n = 30), 50 mg/kg thalidomide treatment group (n = 30), 100 mg/kg thalidomide treatment group (n = 30), and 150 mg/kg thalidomide treatment group (n = 30). The negative control group was intraperitoneally injected with the same volume of saline; the thalidomide control group was intraperitoneally injected with thalidomide (150 mg/kg); the paraquat poisoning group was intraperitoneally injected with diluted paraquat solution (22 mg/kg); each thalidomide treatment group was intraperitoneally injected with the same volume of paraquat solution (22 mg/kg) and was injected with thalidomide (50, 100, or 150 mg/kg) 1 h later. All mice were anesthetized and sacrificed at 1, 3, or 7 d after paraquat poisoning, and their lung tissue was collected. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in lung tissue were measured by double-antibody sandwich ELISA; the mRNA expression of nuclear factor-kappa B (NF-κB) was measured by RT-PCR; the protein expression of nuclear NF-kgr;B p65 was measured by Western blot. The pathological changes of lung tissue were observed under light microscope; the wet/dry ratio of the lung was calculated. Compared with the negative control group, the paraquat poisoning group had significantly increased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratio of the lung (P < 0.05). Compared with the paraquat poisoning group, the thalidomide treatment groups had significantly decreased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratios of the lung (P < 0.05), and the 150 mg/kg thalidomide treatment group showed the most significant decrease in the levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF

  8. Effectiveness of oil-soluble corrosion inhibitors during corrosion-mechanical breakdown in acid and neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Egorov, V.V.; Forman, A.Y.

    1986-11-01

    The purpose of the present study is to ascertain the effectiveness of familiar additives and oil-soluble inhibitors under conditions of acid corrosion in comparison with their rapid action and waterreplacement efficiency, and the capacity to inhibit an electrolyte that forms in the oils, to protect against electrochemical corrosion, especially from pitting, and to reduce the mechanical-corrosion forms of wear. Characteristics of several oil-soluble corrosion inhibitors and the effectiveness of the oil-soluble inhibitors are shown. The additives M, ALOP, and MONIKA are most effective under fretting-corrosion conditions. It is shown that only the combined additives and compositions that provide for metalmore » protection in both acid and neutral media are sufficiently effective in preventing corrosion cracking, fatigue, corrosion fatigue and corrosion fretting.« less

  9. The effects of supine and prone positions on oxygenation in premature infants undergoing mechanical ventilation

    PubMed Central

    Abdeyazdan, Zahra; Nematollahi, Monirosadat; Ghazavi, Zohreh; Mohhamadizadeh, Majid

    2010-01-01

    BACKGROUND: Since the use of high concentrations of oxygen in infants may lead to chronic lung problems, using proper methods of care in infants under mechanical ventilation is one of the most important measures in NICU. This study aimed to investigate the effects of prone and supine positions on oxygenation (SPO2) in premature infants under mechanical ventilation and comparing infants’ oxygenation in the two positions. METHODS: In across over non randomized clinical trial study, 32 preterm infants under mechanical ventilation who had inclusion criteria were enrolled in simple convenient method. Firstly, they were placed in supine position for 120 minutes and further in prone position for 120 minutes .Their SPO2 were monitored by pulse oximeter continuously and was recorded every minute. Data analysis was done using Software SPSS15 by ANOVA test and post hoc test. RESULTS: The data showed that during 120 minutes of exposure of infants in each position there were no significant changes in SPO2. In addition, the SPO2 levels in the prone position were significantly higher than the SPO2 levels in the supine position from 15th minute to 120th minute (to the end). CONCLUSIONS: Neonatal positioning in prone position is a simple, non-invasive, and free of charge method that could lead to improve oxygenation in infants undergoing mechanical ventilation. PMID:22049286

  10. Mechanism of α-ketol-type rearrangement of benzoin derivatives under basic conditions.

    PubMed

    Karino, Masahiro; Kubouchi, Daiki; Hamaoka, Kazuki; Umeyama, Shintaro; Yamataka, Hiroshi

    2013-07-19

    The mechanism of base-catalyzed rearrangement of ring-substituted benzoins in aqueous methanol was examined by kinetic and product analyses. Substituent effects on the rate and equilibrium constants revealed that the kinetic process has a different electron demand compared to the equilibrium process. Reactions in deuterated solvents showed that the rate of H/D exchange of the α-hydrogen is similar to the overall rate toward the equilibrium state. A proton-inventory experiment using partially deuterated solvents showed a linear dependence of the rate on the deuterium fraction of the solvent, indicating that only one deuterium isotope effect contributes to the overall rate process. All these results point to a mechanism in which the rearrangement is initiated by the rate-determining α-hydrogen abstraction rather than a mechanism with initial hydroxyl hydrogen abstraction as in the general α-ketol rearrangement.

  11. Effects of stress on decisions under uncertainty: A meta-analysis.

    PubMed

    Starcke, Katrin; Brand, Matthias

    2016-09-01

    [Correction Notice: An Erratum for this article was reported in Vol 142(9) of Psychological Bulletin (see record 2016-39486-001). It should have been reported that the inverted u-shaped relationship between cortisol stress responses and decision-making performance was only observed in female, but not in male participants as suggested by the study by van den Bos, Harteveld, and Stoop (2009). Corrected versions of the affected sentences are provided.] The purpose of the present meta-analysis was to quantify the effects that stress has on decisions made under uncertainty. We hypothesized that stress increases reward seeking and risk taking through alterations of dopamine firing rates and reduces executive control by hindering optimal prefrontal cortex functioning. In certain decision situations, increased reward seeking and risk taking is dysfunctional, whereas in others, this is not the case. We also assumed that the type of stressor plays a role. In addition, moderating variables are analyzed, such as the hormonal stress response, the time between stress onset and decisions, and the participants' age and gender. We included studies in the meta-analysis that investigated decision making after a laboratory stress-induction versus a control condition (k = 32 datasets, N = 1829 participants). A random-effects model revealed that overall, stress conditions lead to decisions that can be described as more disadvantageous, more reward seeking, and more risk taking than nonstress conditions (d = .17). In those situations in which increased reward seeking and risk taking is disadvantageous, stress had significant effects (d = .26), whereas in other situations, no effects were observed (d = .01). Effects were observed under processive stressors (d = .19), but not under systemic ones (d = .09). Moderation analyses did not reveal any significant results. We concluded that stress deteriorates overall decision-making performance through the mechanisms proposed. The effects differ

  12. Underlying Mechanisms in the Relationship Between Africentric Worldview and Depressive Symptoms

    PubMed Central

    Neblett, Enrique W.; Seaton, Eleanor K.; Hammond, Wizdom Powell; Townsend, Tiffany G.

    2010-01-01

    This study examines underlying mechanisms in the relationship between an Africentric worldview and depressive symptoms. Participants were 112 African American young adults. An Africentric worldview buffered the association between perceived stress and depressive symptoms. The relationship between an Africentric worldview and depressive symptoms was mediated by perceived stress and emotion-focused coping. These findings highlight the protective function of an Africentric worldview in the context of African Americans’ stress experiences and psychological health and offer promise for enhancing African American mental health service delivery and treatment interventions. PMID:20445815

  13. Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?

    PubMed

    Zimova, Marketa; Hackländer, Klaus; Good, Jeffrey M; Melo-Ferreira, José; Alves, Paulo Célio; Mills, L Scott

    2018-03-05

    Animals that occupy temperate and polar regions have specialized traits that help them survive in harsh, highly seasonal environments. One particularly important adaptation is seasonal coat colour (SCC) moulting. Over 20 species of birds and mammals distributed across the northern hemisphere undergo complete, biannual colour change from brown in the summer to completely white in the winter. But as climate change decreases duration of snow cover, seasonally winter white species (including the snowshoe hare Lepus americanus, Arctic fox Vulpes lagopus and willow ptarmigan Lagopus lagopus) become highly contrasted against dark snowless backgrounds. The negative consequences of camouflage mismatch and adaptive potential is of high interest for conservation. Here we provide the first comprehensive review across birds and mammals of the adaptive value and mechanisms underpinning SCC moulting. We found that across species, the main function of SCC moults is seasonal camouflage against snow, and photoperiod is the main driver of the moult phenology. Next, although many underlying mechanisms remain unclear, mammalian species share similarities in some aspects of hair growth, neuroendocrine control, and the effects of intrinsic and extrinsic factors on moult phenology. The underlying basis of SCC moults in birds is less understood and differs from mammals in several aspects. Lastly, our synthesis suggests that due to limited plasticity in SCC moulting, evolutionary adaptation will be necessary to mediate future camouflage mismatch and a detailed understanding of the SCC moulting will be needed to manage populations effectively under climate change. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  14. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    PubMed

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  15. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  16. A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer

    PubMed Central

    ZHANG, HAO; ZHOU, LEI; SHI, WEI; SONG, NING; YU, KARU; GU, YUCHUN

    2012-01-01

    Breast cancer is the most frequent cancer in women. Evidence suggests that the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) affect breast cancer proliferation, differentiation and prognosis. However, the mechanism still remains unclear. In this study, the expression of transient receptor potential canonical (TRPC)3 was detected throughout the cell cytoplasm and at the cell surface of MCF-7 cells. Ca2+ entry was induced in these cells via activated TRPC3 by either the diacylglycerol analogue (OAG) or by intracellular Ca2+ store depletion. TRPC-mediated Ca2+ entry was inhibited by PUFAs including arachidonic acid (AA) and linolenic acid (LA) but not saturated fatty acids. Overexpression of the PUFA degradation enzyme, cyclooxygenase 2 (COX2), enhanced capacitative Ca2+ entry. In addition, inhibition of COX2 reduced [Ca2+]i. Nevertheless, inhibition of TRPC reduced the cell cycle S phase and cell migration, implicating a functional role for TRP-mediated Ca2+ entry in cell proliferation and invasion. Exogenous PUFA as well as a TRPC3 antagonist consistently attenuated breast cancer cell proliferation and migration, suggesting a mechanism in which PUFA restrains the breast cancer partly via its inhibition of TRPC channels. Additionally, our results also suggest that TRPC3 appears as a new mediator of breast cancer cell migration/invasion and represents a potential target for a new class of anticancer agent. PMID:22692672

  17. The effect of temperature and drawing ratio on the mechanical properties of polypropylene monofilaments

    NASA Astrophysics Data System (ADS)

    Taheri, Hesam; Nóbrega, João Miguel; Samyn, Pieter; Covas, José Antonio

    2014-05-01

    In this work, the simultaneous effect of both temperature and drawing ratio during processing of polypropylene monofilaments has been investigated. The basis of this work specifically aims at emphasizing the conditions of temperature and drawing ratio applied in the cooling bath, in order to find out under which conditions the named parameters can be applied in a processing line under continuous extrusion. The effects of temperature are studied for a constant total drawing ratio to analyze the influences on mechanical properties and structural differences of the final polypropylene monofilament. The quenched monofilaments were drawn around an adjustable guide assembly in the quench bath and first drawing stage, imparting thermal and mechanical treatments to the filaments. In the heating stage, monofilaments are affected to high-speed draw rolls while passing through the oven. As such, the best conditions to produce a polypropylene monofilament with high tenacity strength were determined. Results of this study show that the monofilament properties are significantly affected by temperature in the cooling zone. The nature of the first drawing had a significant effect on the end properties and monofilaments with modulus of 637 MPa have finally been manufactured. We have also proposed a new hypothesis, which is termed "gap nucleation" and determine this phenomenon in the gap between die and cooling bath.

  18. Relationship between sleep duration and childhood obesity: Systematic review including the potential underlying mechanisms.

    PubMed

    Felső, R; Lohner, S; Hollódy, K; Erhardt, É; Molnár, D

    2017-09-01

    The prevalence of obesity is continually increasing worldwide. Determining risk factors for obesity may facilitate effective preventive programs. The present review focuses on sleep duration as a potential risk factor for childhood obesity. The aim is to summarize the evidence on the association of sleep duration and obesity and to discuss the underlying potential physiological and/or pathophysiological mechanisms. The Ovid MEDLINE, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for papers using text words with appropriate truncation and relevant indexing terms. All studies objectively measuring sleep duration and investigating the association between sleep duration and obesity or factors (lifestyle and hormonal) possibly associated with obesity were included, without making restrictions based on study design or language. Data from eligible studies were extracted in tabular form and summarized narratively. After removing duplicates, 3540 articles were obtained. Finally, 33 studies (including 3 randomized controlled trials and 30 observational studies) were included in the review. Sleep duration seems to influence weight gain in children, however, the underlying explanatory mechanisms are still uncertain. In our review only the link between short sleep duration and the development of insulin resistance, sedentarism and unhealthy dietary patterns could be verified, while the role of other mediators, such as physical activity, screen time, change in ghrelin and leptin levels, remained uncertain. There are numerous evidence gaps. To answer the remaining questions, there is a need for studies meeting high methodological standards and including a large number of children. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All

  19. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    PubMed

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  20. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    PubMed

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  1. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue

    NASA Astrophysics Data System (ADS)

    Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni

    2017-12-01

    Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.

  2. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    PubMed

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.

    PubMed

    Walker, Mariah L; Wan, Xiaoping; Kirsch, Glenn E; Rosenbaum, David S

    2003-11-25

    T-wave alternans is due to alternation of membrane repolarization at the cellular level and is a risk factor for sudden cardiac death. Recently, a hysteresis effect has been reported in patients whereby T-wave alternans, once induced by rapid heart rate, persists even when heart rate is subsequently slowed. We hypothesized that alternans hysteresis is an intrinsic property of cardiac myocytes, directly related to an underlying mechanism for repolarization alternans that involves intracellular calcium cycling. Stepwise pacing was used to induce alternans in Langendorff-perfused guinea pig hearts from which optical action potentials were recorded simultaneously at 256 ventricular sites with voltage-sensitive dyes and in whole-cell patch-clamped cardiac myocytes treated with or without BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). Alternans hysteresis was observed in every isolated heart: threshold heart rate for alternans was 280+/-12 bpm, but during subsequent deceleration of pacing, alternans persisted to significantly slower heart rates (238+/-5 bpm, P<0.05). Optical mapping showed that this effect also applied to the threshold for spatially discordant alternans (313+/-2.2 bpm during acceleration versus 250+/-6.6 bpm during deceleration, P<0.05). Alternans hysteresis was also observed in isolated cardiac myocytes. Moreover, calcium chelation by BAPTA-AM raised the threshold for alternans and inhibited hysteresis in a dose-dependent manner with no effect on baseline action potential duration. Alternans hysteresis is an intrinsic property of cardiac myocytes that can lead to persistence of arrhythmogenic discordant alternans even after heart rate is slowed. These results also support an important underlying role of calcium cycling in the mechanism of alternans.

  4. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome

    PubMed Central

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.

    2006-01-01

    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  5. On fair, effective and efficient REDD mechanism design

    PubMed Central

    2009-01-01

    The issues surrounding 'Reduced Emissions from Deforestation and Forest Degradation' (REDD) have become a major component of continuing negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). This paper aims to address two key requirements of any potential REDD mechanism: first, the generation of measurable, reportable and verifiable (MRV) REDD credits; and secondly, the sustainable and efficient provision of emission reductions under a robust financing regime. To ensure the supply of MRV credits, we advocate the establishment of an 'International Emission Reference Scenario Coordination Centre' (IERSCC). The IERSCC would act as a global clearing house for harmonized data to be used in implementing reference level methodologies. It would be tasked with the collection, reporting and subsequent processing of earth observation, deforestation- and degradation driver information in a globally consistent manner. The IERSCC would also assist, coordinate and supervise the computation of national reference scenarios according to rules negotiated under the UNFCCC. To overcome the threats of "market flooding" on the one hand and insufficient economic incentives for REDD on the other hand, we suggest an 'International Investment Reserve' (IIR) as REDD financing framework. In order to distribute the resources of the IIR we propose adopting an auctioning mechanism. Auctioning not only reveals the true emission reduction costs, but might also allow for incentivizing the protection of biodiversity and socio-economic values. The introduced concepts will be vital to ensure robustness, environmental integrity and economic efficiency of the future REDD mechanism. PMID:19943927

  6. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms

    PubMed Central

    Zilverstand, Anna; Parvaz, Muhammad A.; Moeller, Scott J.; Goldstein, Rita Z.

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain’s reward circuitry, and the recruitment and strengthening of the brain’s inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means. PMID:26822363

  7. Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor.

    PubMed

    Lee, Hyunkyung; Jin, Yongxun; Hong, Seungkwan

    2018-06-07

    Since ultraviolet light emitting diodes (UV-LEDs) have emerged as an alternative light source for UV disinfection systems, enhancement of reactor performance is a demanding challenge to promote its practical application in water treatment process. This study explored the underlying mechanism of the inefficiency observed in flow-through mode UV disinfection tests to improve the light utilization of UV-LED applications. In particular, the disinfection performance of UV-LED reactors was evaluated using two different flow channel types, reservoir and pathway systems, in order to elucidate the impact of physical circumstances on germicidal efficiency as the light profile was adjusted. Overall, a significant reduction in germicidal efficiency was observed when exposure time was prolonged or a mixing chamber was integrated. Zeta analysis revealed that the repulsion rate between microorganisms decreased with UV fluence transfer, and that change might cause the shielding effect of UV delivery to target microorganisms. In line with the above findings, the reduction in efficiency intensified when opportunities for microbial collision increased. Thus, UV induced microbial aggregation was implicated as being a disinfection hindering factor, exerting its effect through uneven UV illumination. Ultimately, the results refuted the prevailing belief that UV has a cumulative effect. We found that the reservoir system achieved worse performance than the pathway system despite it providing 15 times higher UV fluence: the differences in germicidal efficiency were 1-log, 1.4-log and 1.7-log in the cases of P.aeruginosa, E.coli and S.aureus, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging.

    PubMed

    Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-03-06

    The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  10. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  11. Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review.

    PubMed

    Abdeen, G; le Roux, C W

    2016-02-01

    Various bariatric surgical procedures are effective at improving health in patients with obesity associated co-morbidities, but the aim of this review is to specifically describe the mechanisms through which Roux-en-Y gastric bypass (RYGB) surgery enables weight loss for obese patients using observations from both human and animal studies. Perhaps most but not all clinicians would agree that the beneficial effects outweigh the harm of RYGB; however, the mechanisms for both the beneficial and deleterious (for example postprandial hypoglycaemia, vitamin deficiency and bone loss) effects are ill understood. The exaggerated release of the satiety gut hormones, such as GLP-1 and PYY, with their central and peripheral effects on food intake has given new insight into the physiological changes that happen after surgery. The initial enthusiasm after the discovery of the role of the gut hormones following RYGB may need to be tempered as the magnitude of the effects of these hormonal responses on weight loss may have been overestimated. The physiological changes after RYGB are unlikely to be due to a single hormone, or single mechanism, but most likely involve complex gut-brain signalling. Understanding the mechanisms involved with the beneficial and deleterious effects of RYGB will speed up the development of effective, cheaper and safer surgical and non-surgical treatments for obesity.

  12. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less

  13. Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions

    NASA Astrophysics Data System (ADS)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst

    2018-01-01

    The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.

  14. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  15. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  16. Effects of Amplitude and Frequency of Mechanical Vibration Stimulation on Cultured Osteoblasts

    NASA Astrophysics Data System (ADS)

    Shikata, Tetsuo; Shiraishi, Toshihiko; Morishita, Shin; Takeuchi, Ryohei; Saito, Tomoyuki

    Mechanical stimulation to bones affects bone formation such as decrease of bone mass of astronauts under zero gravity, walking rehabilitation to bone fracture and fracture repair with ultrasound devices. Bone cells have been reported to sense and response to mechanical stimulation at cellular level morphologically and metabolically. In the view of mechanical vibrations, bone cells are deformed according to mechanical stimulation and their mechanical characteristics. In this study, sinusoidal inertia force was applied to cultured osteoblasts, which are a kind of bone cells, and effects of frequency and acceleration amplitude of mechanical vibration on the cells were investigated in respect of the cell proliferation, bone matrix generation and alkaline phosphatase (ALP) gene expression. The results to be obtained are as follows. The significant difference of cell density and bone mass generation between the non-vibrating and vibrating groups is found. ALP gene expression shows a peak to frequency at 50 Hz and the value of it is approximately 4.5 times as high as that of the non-vibrating group in the case of the acceleration amplitude of 0.5 G. ALP gene expression at 0.5 G is significantly larger than at 0, 0.125 or 0.25 G in the case of the frequency of 50 Hz.

  17. Mechanical responses of a-axis GaN nanowires under axial loads

    NASA Astrophysics Data System (ADS)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  18. Implicit Misattribution as a Mechanism Underlying Evaluative Conditioning

    PubMed Central

    Jones, Christopher R.; Fazio, Russell H.; Olson, Michael A.

    2009-01-01

    Evaluative conditioning (EC) refers to the formation or change of an attitude towards an object following that object’s pairing with positively or negatively valenced stimuli. We provide evidence that EC can occur through an implicit misattribution mechanism in which an evaluative response evoked by a valenced stimulus is incorrectly and implicitly attributed to another stimulus, forming or changing an attitude towards this other stimulus. Five studies measured or manipulated variables related to the potential for the misattribution of an evaluation, or “source confusability.” Greater EC was observed when participants’ eye gaze shifted frequently between a valenced and neutral stimulus (Studies 1 & 2), when the two stimuli appeared in close spatial proximity (Study 3), and when the neutral stimulus was made more perceptually salient than the valenced stimulus due to its larger size (Study 4). In other words, conditions conducive to source confusability increased EC. Study 5 provided evidence for multiple mechanisms of EC by comparing the effects of mildly evocative valenced stimuli (those evoking responses that might more easily be misattributed to another object) to more strongly evocative stimuli. PMID:19379028

  19. Mechanics of water pore formation in lipid membrane under electric field

    NASA Astrophysics Data System (ADS)

    Bu, Bing; Li, Dechang; Diao, Jiajie; Ji, Baohua

    2017-04-01

    Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

  20. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.