Science.gov

Sample records for mechanisms underlying fibronectin-induced

  1. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling.

    PubMed

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-01

    Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these

  2. Small GTPase Rab21 Mediates Fibronectin Induced Actin Reorganization in Entamoeba histolytica: Implications in Pathogen Invasion

    PubMed Central

    Emmanuel, Merlyn; Nakano, Yumiko Saito; Nozaki, Tomoyoshi; Datta, Sunando

    2015-01-01

    The protozoan parasite Entamoeba histolytica causes a wide spectrum of intestinal infections. In severe cases, the trophozoites can breach the mucosal barrier, invade the intestinal epithelium and travel via the portal circulation to the liver, where they cause hepatic abscesses, which can prove fatal if left untreated. The host Extra Cellular Matrix (ECM) plays a crucial role in amoebic invasion by triggering an array of cellular responses in the parasite, including induction of actin rich adhesion structures. Similar actin rich protrusive structures, known as ‘invadosomes’, promote chemotactic migration of the metastatic cancer cells and non-transformed cells by remodeling the ECM. Recent studies showed a central role for Rab GTPases, the master regulators of vesicular trafficking, in biogenesis of invadosomes. Here, we showed that fibronectin, a major host ECM component induced actin remodeling in the parasite in a Rab21 dependent manner. The focalized actin structures formed were reminiscent of the mammalian invadosomes. By using various approaches, such as immunofluorescence confocal microscopy and scanning electron microscopy, along with in vitro invasion assay and matrix degradation assay, we show that the fibronectin induced formation of amoebic actin dots depend on the nucleotide status of the GTPase. The ECM components, fibronectin and collagen type I, displayed differential control over the formation of actin dots, with fibronectin positively and collagen type I negatively modulating it. The cell surface adhesion molecule Gal/GalNAc complex was also found to impose additional regulation on this process, which might have implication in collagen type I mediated suppression of actin dots. PMID:25730114

  3. Snapping mechanical metamaterials under tension.

    PubMed

    Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano

    2015-10-21

    A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior. PMID:26314680

  4. Identification of a PEAK1/ZEB1 signaling axis during TGFβ/fibronectin-induced EMT in breast cancer

    SciTech Connect

    Agajanian, Megan; Runa, Farhana; Kelber, Jonathan A.

    2015-09-25

    Transforming Growth Factor beta (TGFβ) is the archetypal member of the TGFβ superfamily of ligands and has pleiotropic functions during normal development, adult tissue homeostasis and pathophysiological processes such as cancer. In epithelial cancers TGFβ signaling can either suppress tumor growth or promote metastasis via the induction of a well-characterized epithelial–mesenchymal transition (EMT) program. We recently reported that PEAK1 kinase mediates signaling cross talk between TGFβ receptors and integrin/Src/MAPK pathways and functions as a critical molecular regulator of TGFβ-induced breast cancer cell proliferation, migration, EMT and metastasis. Here, we examined the breast cancer cell contexts in which TGFβ induces both EMT and PEAK1, and discovered this event to be unique to oncogene-transformed mammary epithelial cells and triple-negative breast cancer cells. Using the Cancer BioPortal database, we identified PEAK1 co-expressors across multiple malignancies that are also common to the TGFβ response gene signature (TBRS). We then used the ScanSite database to identify predicted protein–protein binding partners of PEAK1 and the PEAK1-TBRS co-expressors. Analysis of the Cytoscape interactome and Babelomics-derived gene ontologies for a novel gene set including PEAK1, CRK, ZEB1, IL11 and COL4A1 enabled us to hypothesize that PEAK1 may be regulating TGFβ-induced EMT via its interaction with or regulation of these other genes. In this regard, we have demonstrated that PEAK1 is necessary for TGFβ to induce ZEB1-mediated EMT in the context of fibronectin/ITGB3 activation. These studies and future mechanistic studies will pave the way toward identifying the context in which TGFβ blockade may significantly improve breast cancer patient outcomes. - Highlights: • PEAK1 is upregulated in mammary epithelial cells during TGFβ-induced EMT. • TGFβ-induced EMT upregulates PEAK1 in triple negative breast cancer. • PEAK1 is necessary for TGFβ/fibronectin-induced

  5. Neural Mechanisms Underlying Breathing Complexity

    PubMed Central

    Hess, Agathe; Yu, Lianchun; Klein, Isabelle; De Mazancourt, Marine; Jebrak, Gilles; Mal, Hervé; Brugière, Olivier; Fournier, Michel; Courbage, Maurice; Dauriat, Gaelle; Schouman-Clayes, Elisabeth; Clerici, Christine; Mangin, Laurence

    2013-01-01

    Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can

  6. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    PubMed

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors. PMID:26718581

  7. Mechanisms Underlying Inflammation in Neurodegeneration

    PubMed Central

    Glass, Christopher K.; Saijo, Kaoru; Winner, Beate; Marchetto, Maria Carolina; Gage, Fred H.

    2010-01-01

    Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. PMID:20303880

  8. Metacognitive mechanisms underlying lucid dreaming.

    PubMed

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. PMID:25609624

  9. Cognitive Mechanisms Underlying Second Language Listening Comprehension

    ERIC Educational Resources Information Center

    Hu, Guiling

    2009-01-01

    This dissertation research investigates the cognitive mechanisms underlying second language (L2) listening comprehension. I use three types of sentential contexts, congruent, neutral and incongruent, to look at how L2 learners construct meaning in spoken sentence comprehension. The three types of contexts differ in their context predictability.…

  10. Growth instabilities in mechanical breakdown under mechanical and thermal stresses

    NASA Astrophysics Data System (ADS)

    Zhang, S.-Z.; Louis, E.; Plá, O.; Guinea, F.

    1995-12-01

    A linear stability analysis is used to investigate crack growth in two dimensional elastic media, and under mechanical or thermal stresses. Although in most cases a circular geometry is considered, the instability of a planar crack is also discussed. Several boundary conditions and size effects are considered. The results indicate that the tendency towards instabilities in mechanical breakdown is stronger than in the case of growth in fields governed by the Laplace equation (diffusion or electrostatic fields), in line with the smaller fractal dimensions obtained in the first case. Instabilities under thermal stresses are shown to depend on the actual thermal gradients. Finally, a model previously investigated numerically is used to show that plasticity decreases the strength of the instability. (c) 1995 The American Physical Society

  11. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  12. Scleral Mechanisms Underlying Ocular Growth and Myopia

    PubMed Central

    Metlapally, Ravi; Wildsoet, Christine F.

    2015-01-01

    In the regulation of ocular growth, scleral events critically determine eye size and thus the refractive status of the eye. Increased scleral matrix remodeling can lead to exaggerated eye growth causing myopia and additionally increased risk of ocular pathological complications. Thus, therapies targeting these changes in sclera hold potential to limit such complications since sclera represents a relatively safe and accessible drug target. Understanding the scleral molecular mechanisms underlying ocular growth is essential to identifying plausible therapeutic targets in the sclera. This section provides a brief update on molecular studies that pertain to the sclera in the context of ocular growth regulation and myopia. PMID:26310158

  13. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  14. Protein under tension and mechanical unfolding

    NASA Astrophysics Data System (ADS)

    Shen, Tongye; Canino, Larry; Wolynes, Peter G.; McCammon, J. Andrew

    2003-03-01

    The mechanical properties of proteins are important for a wide variety of functions ranging from stabilizing cellular structures to the transduction of signals across the membrane. We examined changes in protein conformation under external force fields by simple theoretical methods and new simulation techniques. The theoretical model solved a Gaussian chain plus native contact residue-level model under approximations. The simulations used the force ensemble replica exchange method and all-atom stochastic dynamics with a generalized Born plus solvent accessible surface as the solvation model. We applied these methods to study the protein spectrin as well as the domains of titin. Both global properties (such as energy and extension) and local roperties (especially, the specific contacts maintained and the secondary structure) are shown as functions of external force.

  15. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  16. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  17. Mechanisms underlying Children's susceptibility to environmental toxicants.

    PubMed Central

    Faustman, E M; Silbernagel, S M; Fenske, R A; Burbacher, T M; Ponce, R A

    2000-01-01

    An important public health challenge has been the need to protect children's health. To accomplish this goal, the scientific community needs scientifically based child-specific risk assessment methods. Critical to their development is the need to understand mechanisms underlying children's sensitivity to environmental toxicants. Risk is defined as the probability of adverse outcome and when applied to environmental risk assessment is usually defined as a function of both toxicity and exposure. To adequately evaluate the potential for enhanced health risks during development, both child-specific factors affecting toxicity and exposure need to be considered. In the first section of this article, example mechanisms of susceptibility relevant for toxicity assessment are identified and discussed. In the second section, examples of exposure factors that help define children's susceptibility are presented. Examples of pesticide research from the newly funded Child Health Center at the University of Washington will be given for illustration. The final section discusses the importance of putting these considerations of children's susceptibility into an overall framework for ascertaining relevancy for human risk assessment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10698720

  18. Mechanical buckling of veins under internal pressure.

    PubMed

    Martinez, Ricky; Fierro, Cesar A; Shireman, Paula K; Han, Hai-Chao

    2010-04-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 +/- 5.4 and 26.4 +/- 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts. PMID:20094913

  19. Mechanical Buckling of Veins under Internal Pressure

    PubMed Central

    Martinez, Ricky; Fierro, Cesar A.; Shireman, Paula K.; Han, Hai-Chao

    2010-01-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 ± 5.4 mmHg and 26.4 ± 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy and vein grafts. PMID:20094913

  20. Two distinct neural mechanisms underlying indirect reciprocity.

    PubMed

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  1. Two distinct neural mechanisms underlying indirect reciprocity

    PubMed Central

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-01-01

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  2. Epigenetic mechanisms underlying cardiac degeneration and regeneration*

    PubMed Central

    Chaturvedi, Pankaj; Tyagi, Suresh C.

    2014-01-01

    Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyl transferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by mir122, they have profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies. PMID:24636549

  3. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  4. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    PubMed

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy. PMID:26916018

  5. The Mechanism Underlying Inhibition of Saccadic Return

    ERIC Educational Resources Information Center

    Ludwig, Casimir J. H.; Farrell, Simon; Ellis, Lucy A.; Gilchrist, Iain D.

    2009-01-01

    Human observers take longer to re-direct gaze to a previously fixated location. Although there has been some exploration of the characteristics of inhibition of saccadic return (ISR), the exact mechanisms by which ISR operates are currently unknown. In the framework of accumulation models of response times, in which evidence is integrated over…

  6. Molecular mechanisms underlying alcohol-drinking behaviours.

    PubMed

    Ron, Dorit; Barak, Segev

    2016-09-01

    The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways. PMID:27444358

  7. Cellular and molecular mechanisms underlying presynapse formation

    PubMed Central

    Chia, Poh Hui; Li, Pengpeng

    2013-01-01

    Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation. PMID:24127213

  8. Mechanisms Underlying Induction of Tolerance to Foods.

    PubMed

    Berin, M Cecilia; Shreffler, Wayne G

    2016-02-01

    Oral tolerance refers to a systemic immune nonresponsiveness to antigens first encountered by the oral route, and a failure in development of this homeostatic process can result in food allergy. Clinical tolerance induced by allergen immunotherapy is associated with alterations in immune mechanisms relevant to the allergic response, including reduction of basophil reactivity, induction of IgG4, loss of effector Th2 cells, and induction of Tregs. The relative contribution of these immune changes to clinical tolerance to foods, and the duration of these immune changes after termination of immunotherapy, remains to be identified. PMID:26617229

  9. Mechanisms Underlying Early Medieval Droughts in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Chiang, J. C. H.

    2015-12-01

    Multidecadal drought during the early Medieval Climate Anomaly (MCA, 800-1200 CE) in Mesoamerica has been implicated in the demise of many pre-Columbian societies, including the Maya. The mechanisms behind these droughts, however, are poorly understood. Researchers most often interpret these records as tracking the mean position of the ITCZ, with a southward shifted ITCZ resulting in Mesoamerican drought. This is puzzling, however, because our dynamical understanding of the ITCZ and its role in interhemispheric heat transport would suggest a more northward shifted ITCZ during the MCA. Here, we evaluate two hypotheses to reconcile existing proxies and dynamics. First, we assess whether evidence for dry conditions during the MCA is robust across multiple Mesoamerican proxy records, focusing on the influence of radiometric dating uncertainty on estimates of drought timing. Second, we use control simulations of CCSM4 and HadCM3, as well as a broader synthesis of oceanic and terrestrial proxies, to explore the mechanisms responsible for long-term drought in Mesoamerica. Ultimately, we suggest that a temporary slowdown of the AMOC, either internally or externally forced, combined with local and regional land surface feedbacks can explain these droughts in Mesoamerica.

  10. Synaptic mechanisms underlying persistent cocaine craving.

    PubMed

    Wolf, Marina E

    2016-06-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction. PMID:27150400

  11. Biophysical mechanisms underlying olfactory receptor neuron dynamics

    PubMed Central

    Nagel, Katherine I.; Wilson, Rachel I.

    2010-01-01

    Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding. PMID:21217763

  12. Environmental genotoxicity: Probing the underlying mechanisms

    SciTech Connect

    Shugart, L.; Theodorakis, C.

    1993-12-31

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  13. Neural mechanisms underlying the evolvability of behaviour

    PubMed Central

    Katz, Paul S.

    2011-01-01

    The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour. PMID:21690127

  14. On the physical mechanism underlying asymptotic safety

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2013-01-01

    We identify a simple physical mechanism which is at the heart of Asymptotic Safety in Quantum Einstein Gravity (QEG) according to all available effective average action-based investigations. Upon linearization the gravitational field equations give rise to an inverse propagator for metric fluctuations comprising two pieces: a covariant Laplacian and a curvature dependent potential term. By analogy with elementary magnetic systems they lead to, respectively, dia- and paramagnetic-type interactions of the metric fluctuations with the background gravitational field. We show that above 3 spacetime dimensions the gravitational antiscreening occurring in QEG is entirely due to a strong dominance of the ultralocal paramagnetic interactions over the diamagnetic ones that favor screening. (Below 3 dimensions both the dia- and paramagnetic effects support antiscreening.) The spacetimes of QEG are interpreted as a polarizable medium with a "paramagnetic" response to external perturbations, and similarities with the vacuum state of Yang-Mills theory are pointed out. As a by-product, we resolve a longstanding puzzle concerning the beta function of Newton's constant in 2 + ɛ dimensional gravity.

  15. Cellular and circuit mechanisms underlying spinocerebellar ataxias.

    PubMed

    Meera, Pratap; Pulst, Stefan M; Otis, Thomas S

    2016-08-15

    Degenerative ataxias are a common form of neurodegenerative disease that affect about 20 individuals per 100,000. The autosomal dominant spinocerebellar ataxias (SCAs) are caused by a variety of protein coding mutations (single nucleotide changes, deletions and expansions) in single genes. Affected genes encode plasma membrane and intracellular ion channels, membrane receptors, protein kinases, protein phosphatases and proteins of unknown function. Although SCA-linked genes are quite diverse they share two key features: first, they are highly, although not exclusively, expressed in cerebellar Purkinje neurons (PNs), and second, when mutated they lead ultimately to the degeneration of PNs. In this review we summarize ataxia-related changes in PN neurophysiology that have been observed in various mouse knockout lines and in transgenic models of human SCA. We also highlight emerging evidence that altered metabotropic glutamate receptor signalling and disrupted calcium homeostasis in PNs form a common, early pathophysiological mechanism in SCAs. Together these findings indicate that aberrant calcium signalling and profound changes in PN neurophysiology precede PN cell loss and are likely to lead to cerebellar circuit dysfunction that explains behavioural signs of ataxia characteristic of the disease. PMID:27198167

  16. Changes of trabecular bone under control of biologically mechanical mechanism

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  17. EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling.

    PubMed

    Kohan, Martin; Muro, Andres F; White, Eric S; Berkman, Neville

    2010-11-01

    Fibroblast differentiation is an essential step during wound healing and fibrosis. Fibronectin (FN) is a major component of the extracellular matrix and occurs in two main forms: plasma and cellular FN. The latter includes the alternatively spliced domain A (EDA). Although EDA-containing cellular fibronectin (EDA-FN) is associated with fibroblast differentiation, how EDA-FN promotes differentiation is incompletely understood. In this study, we investigate the mechanism by which EDA-FN contributes to fibroblast differentiation with emphasis on the characterization of the EDA-FN receptor. We show that EDA-FN increases α-SMA expression (immunofluorescence), collagen deposition, cell contractility, and focal adhesion kinase (FAK) activation (immunoblotting); whereas plasma FN, a form lacking EDA, shows no effect. Primary lung fibroblasts constitutively express α(4)β(7) integrin receptor (FACS and RT-PCR). Blocking of α(4)β(7) reduces fibroblast adhesion to EDA-FN and inhibits α-SMA expression, collagen deposition, and FAK activation induced by EDA-FN. Using recombinant EDA-containing peptides, we demonstrate that the EDA segment is sufficient to induce fibroblast differentiation via binding to α(4)β(7). EDA-FN induces MAPK-Erk1/2 activation and inhibition of MEK1/2 attenuates EDA-FN-induced α-SMA expression. Our findings demonstrate that EDA-FN induces fibroblast differentiation by a mechanism that involves binding of EDA to α(4)β(7) integrin followed by activation of FAK and MAPK-associated signaling pathways. PMID:20643910

  18. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    ERIC Educational Resources Information Center

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological…

  19. The Intricate Interplay between Mechanisms Underlying Aging and Cancer

    PubMed Central

    Piano, Amanda; Titorenko, Vladimir I.

    2015-01-01

    Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We summarize our knowledge of these mechanisms, outline the most important unanswered questions and suggest directions for future research. PMID:25657853

  20. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  1. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    SciTech Connect

    Schaaf, A. De Monte, M. Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-15

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  2. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions.

    PubMed

    Ares, Pablo; Aguilar-Galindo, Fernando; Rodríguez-San-Miguel, David; Aldave, Diego A; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando; Gómez-Herrero, Julio; Zamora, Félix

    2016-08-01

    Antimonene fabricated by mechanical exfoliation is highly stable under atmospheric conditions over periods of months and even when immersed in water. Density functional theory confirms the experiments and predicts an electronic gap of ≈1 eV. These results highlight the use of antimonene for optoelectronics applications. PMID:27272099

  3. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  4. Mechanisms Underlying Language Acquisition: Benefits from a Comparative Approach

    ERIC Educational Resources Information Center

    Weiss, Daniel J.; Newport, Elissa L.

    2006-01-01

    One of the longstanding issues in language research has been the extent to which the mechanisms underlying language acquisition are uniquely human. The primary goal of this article is to introduce the reader to some of the recent developments in comparative language research that have shed new light on this issue. To appreciate the significance of…

  5. Linkages of plant-soil feedbacks and underlying invasion mechanisms.

    PubMed

    Inderjit; Cahill, James F

    2015-01-01

    Soil microbial communities and processes have repeatedly been shown to impact plant community assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities. Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several known and well-described mechanisms of plant invasion. Critically, a given soil community process may either facilitate or limit invasion, depending upon local conditions and the specific mechanisms of soil processes involved. Additionally, as soil communities typically consist of species with short generation times, the net consequences of plant-soil feedbacks for invasion trajectories are likely to change over time, as ecological and evolutionary adjustments occur. Here we provide an overview of the ecological linkages of plant-soil feedbacks and underlying mechanisms of invasion. PMID:25784668

  6. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Sheng, Junjie; Liu, Lei; Wang, Yongquan; Jia, Shuhai

    2014-07-01

    This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.

  7. Thermal and mechanical response of PBX 9501 under contact excitation

    NASA Astrophysics Data System (ADS)

    Mares, J. O.; Miller, J. K.; Sharp, N. D.; Moore, D. S.; Adams, D. E.; Groven, L. J.; Rhoads, J. F.; Son, S. F.

    2013-02-01

    The thermal and mechanical responses of a cyclotetramethylene-tetranitramine-based explosive (PBX 9501) and two non-energetic mock materials (900-21 and PBS 9501) under high-frequency mechanical excitation are presented. Direct contact ultrasound transducers were used to excite samples through a frequency range of 50 kHz to 40 MHz. The mechanical response of each sample was approximated from a contact receiving transducer and trends were confirmed via laser Doppler vibrometry. The steady-state thermal response of the samples was measured at discrete excitation frequencies via infrared thermography. A maximum temperature rise of approximately 15 K was observed in PBX 9501, and the mock materials exhibited similar thermal characteristics. Temperature gradients were calculated to estimate the total heat generated within the samples due to the mechanical excitation. The active heating mechanisms were found to be highly dependent on the frequency of excitation. Possible mechanisms of heating at frequencies below 1 MHz are likely related to bulk motion. Above this frequency, the active heating mechanisms are likely related to particle-scale processes. The observed phenomena may prove useful in the aid of current trace vapor detection methods for explosives.

  8. Investigation of defect nucleation in titanium under mechanical loading

    SciTech Connect

    Zolnikov, Konstantin P. Kryzhevich, Dmitrij S.; Korchuganov, Aleksandr V.; Psakhie, Sergey G.

    2014-11-14

    The paper undertakes a study of plastic deformation in a titanium crystallite under mechanical loading (uniaxial tension and indentation) in terms of atomic mechanisms of its generation and development. The molecular dynamics method with many-body interatomic potentials is employed. It is shown that there is a threshold strain, at which a crystal reveals the generation of local structural transformations associated with changes in atomic configurations of the first and second coordination spheres. The onset of plastic deformation in a crystallite is accompanied by a stepwise decrease in potential energy. The effect of free surfaces and grain boundaries on the generation of local structural transformations in a titanium crystallite is investigated.

  9. Emotional responses to music: the need to consider underlying mechanisms.

    PubMed

    Juslin, Patrik N; Västfjäll, Daniel

    2008-10-01

    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction. PMID:18826699

  10. Experimental Analysis of the Mechanism of Hearing under Water

    PubMed Central

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975

  11. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  12. The mismatch negativity: a review of underlying mechanisms.

    PubMed

    Garrido, Marta I; Kilner, James M; Stephan, Klaas E; Friston, Karl J

    2009-03-01

    The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the "adaptation hypothesis" and the "model adjustment hypothesis" have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both. PMID:19181570

  13. Mechanical properties of graphynes under shearing and bending

    NASA Astrophysics Data System (ADS)

    Yi, Lijun; Zhang, Yingyan; Feng, Xiqiao; Chang, Tienchong; Wang, Ji; Du, Jianke; Zhou, Jianxin

    2016-05-01

    Graphynes are the allotrope of graphene. In this work, extensive molecular dynamics simulations are performed on four different graphynes ( α - , β - , γ - , and 6,6,12-graphynes) to explore their mechanical properties (shear modulus, shear strength, and bending rigidity) under shearing and bending. While the shearing properties are anisotropic, the bending rigidity is almost independent of the chirality of graphynes. We also find that the shear modulus and shear fracture strength of graphynes decrease with increasing temperature. The effect of the percentage of the acetylenic linkages on the shear mechanical properties and bending rigidity is investigated. It is shown that the fracture shear strengths and bending rigidities of the four types of graphynes decrease, while the fracture shear strain increases, with increasing percentages of the acetylenic linkages. Significant wrinkling is observed in graphyne under shear strain. The influence of the temperatures and percentages of the acetylenic linkages on the ratio of amplitude-to-wavelength in the wrinkles are examined.

  14. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  15. Analysis of Internal Crack Healing Mechanism under Rolling Deformation

    PubMed Central

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  16. Analysis of internal crack healing mechanism under rolling deformation.

    PubMed

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the 'hole filling method', is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  17. Closure mechanisms of ventilated supercavities under steady and unsteady flows

    NASA Astrophysics Data System (ADS)

    Karn, Ashish; De, Rohan; Hong, Jiarong; Arndt, Roger E. A.

    2015-12-01

    The present work reports some interesting experimental results for ventilated supercavitation in steady and unsteady flows. First, a variety of closure modes obtained as a result of systematic variation in Froude number and air entrainment, are reported. The closure mechanisms were found to differ from the standard criterion reported in the literature. Further, the occurrence of a variety of stable and unstable closure mechanisms were discovered that have not been reported in the literature. Next, a hypothesis is presented to explain the cause behind these different closure mechanisms. The proposed hypothesis is then validated by synchronized high-speed imaging and pressure measurements inside and outside of the supercavity. These measurements show that the supercavity closure is a function of instantaneous cavitation number under unsteady flow conditions. (Research sponsored by Office of Naval Research, USA)

  18. An NMDA receptor-dependent mechanism underlies inhibitory synapse development

    PubMed Central

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-01

    Summary In the mammalian brain GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, while GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain. PMID:26774487

  19. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    PubMed

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. PMID:23500480

  20. Understanding molecular mechanism of higher plant plasticity under abiotic stress.

    PubMed

    Shao, Hong-Bo; Guo, Qing-Jie; Chu, Li-Ye; Zhao, Xi-Ning; Su, Zhong-Liang; Hu, Ya-Chen; Cheng, Jiang-Feng

    2007-01-15

    Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses. PMID:16914294

  1. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. PMID:27498423

  2. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  3. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis

    PubMed Central

    Marcoux, Julien; Mangione, P Patrizia; Porcari, Riccardo; Degiacomi, Matteo T; Verona, Guglielmo; Taylor, Graham W; Giorgetti, Sofia; Raimondi, Sara; Sanglier-Cianférani, Sarah; Benesch, Justin LP; Cecconi, Ciro; Naqvi, Mohsin M; Gillmore, Julian D; Hawkins, Philip N; Stoppini, Monica; Robinson, Carol V; Pepys, Mark B; Bellotti, Vittorio

    2015-01-01

    The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. PMID:26286619

  4. Mechanisms underlying astringency: introduction to an oral tribology approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  5. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    NASA Astrophysics Data System (ADS)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  6. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.

    PubMed

    Zheng, Wei; Wei, Min; Li, Song; Le, Weidong

    2016-06-01

    Autophagy is an essential lysosome-dependent process that controls the quality of the cytoplasm and maintains cellular homeostasis, and dysfunction of this protein degradation system is correlated with various disorders. A growing body of evidence suggests that nanomaterials (NMs) have autophagy-modulating effects, thus predicting a valuable and promising application potential of NMs in the diagnosis and treatment of autophagy-related diseases. NMs exhibit unique physical, chemical and biofunctional properties, which may endow NMs with capabilities to modulate autophagy via various mechanisms. The present review highlights the impacts of various NMs on autophagy and their functional consequences. The possible underlying mechanisms for NM-modulated autophagy are also discussed. PMID:27193191

  7. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. PMID:25637747

  8. Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.

    PubMed

    Farber, N B; Kim, S H; Dikranian, K; Jiang, X P; Heinkel, C

    2002-01-01

    NMDA glutamate receptor antagonists are used in clinical anesthesia, and are being developed as therapeutic agents for preventing neurodegeneration in stroke, epilepsy, and brain trauma. However, the ability of these agents to produce neurotoxicity in adult rats and psychosis in adult humans compromises their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state might play a role in neurodegenerative and psychotic disorders, like Alzheimer's disease and schizophrenia. Thus, understanding the mechanism underlying NRHypo-induced neurotoxicity and psychosis could have significant clinically relevant benefits. NRHypo neurotoxicity can be prevented by several classes of agents (e.g. antimuscarinics, non-NMDA glutamate antagonists, and alpha(2) adrenergic agonists) suggesting that the mechanism of neurotoxicity is complex. In the present study a series of experiments was undertaken to more definitively define the receptors and complex neural circuitry underlying NRHypo neurotoxicity. Injection of either the muscarinic antagonist scopolamine or the non-NMDA antagonist NBQX directly into the cortex prevented NRHypo neurotoxicity. Clonidine, an alpha(2) adrenergic agonist, protected against the neurotoxicity when injected into the basal forebrain. The combined injection of muscarinic and non-NMDA Glu agonists reproduced the neurotoxic reaction. Based on these and other results, we conclude that the mechanism is indirect, and involves a complex network disturbance, whereby blockade of NMDA receptors on inhibitory neurons in multiple subcortical brain regions, disinhibits glutamatergic and cholinergic projections to the cerebral cortex. Simultaneous excitotoxic stimulation of muscarinic (m(3)) and glutamate (AMPA/kainate) receptors on cerebrocortical neurons appears to be the proximal mechanism by which the neurotoxic and psychotomimetic effects of NRHypo are mediated. PMID:11803444

  9. Thermal and mechanical responses of PBX 9501 under contact excitation under various driving intensities

    NASA Astrophysics Data System (ADS)

    Mares, J.; Miller, J.; Moore, D.; Groven, L.; Rhoads, J.; Son, S.

    2013-06-01

    The thermal and mechanical responses of a explosive (PBX 9501) and two non-energetic mock materials (900-21 and PBS 9501) under high-frequency mechanical excitation are presented with various driving intensities. Direct contact ultrasound transducers were used to excite samples through a frequency range of 50 kHz to 40 MHz. The mechanical response of each sample was approximated from a contact receiving transducer and trends were confirmed via laser Doppler vibrometry. The steady-state thermal response of the samples was measured at discrete excitation frequencies via infrared thermography. A maximum temperature rise of approximately 15 K was observed in PBX 9501, and the mock materials exhibited similar thermal characteristics. Temperature gradients were calculated to estimate the total heat generated within the samples due to the mechanical excitation. The active heating mechanisms were found to be highly dependent on the frequency of excitation. Possible mechanisms of heating at frequencies below 1 MHz are likely related to bulk motion. Above this frequency, the active heating mechanisms are likely related to particle-scale processes. The observed phenomena may prove useful in the aid of current trace vapor detection methods for explosives. Basic Research Challenge on ``Chemical decomposition in high energy density materials induced by coupled acoustic electromagnetic energy insult'' (through Grant No. N00014-11- 379 1-0466).

  10. Study of mechanical properties of nanomaterials under high pressure

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Kaur, Namrat; Srivastava, A. K.

    2015-08-01

    In the present work, the study of physical properties and behaviour of nanomaterials i.e. n-γ- Al2O3and n-Si3C4 under high pressure is done. For this purpose Murnaghan equation of state is used. The applicability of Murnaghan equation of state is fully tested by calculating mechanical properties of nano materials i.e. volume compression (V/Vo), bulk modulus (KT) and relative isothermal compression coefficient (α(P)/α0) at different pressures. The present calculated values of compression curve for the cited nanomaterials come out to be in reasonable good agreement with the available experimental data.

  11. Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad; Berryman, Joshua T.; Schilling, Tanja

    2014-09-01

    We present a molecular dynamics simulation study of crystal nucleation from undercooled melts of n-alkanes, and we identify the molecular mechanism of homogeneous crystal nucleation under quiescent conditions and under shear flow. We compare results for n-eicosane (C20) and n-pentacontahectane (C150), i.e., one system below the entanglement length and one above, at 20%-30% undercooling. Under quiescent conditions, we observe that entanglement does not have an effect on the nucleation mechanism. For both chain lengths, the chains first align and then straighten locally, then the local density increases and finally positional ordering sets in. At low shear rates the nucleation mechanism is the same as under quiescent conditions, while at high shear rates the chains align and straighten at the same time. We report on the effects of shear rate and temperature on the nucleation rates and estimate the critical shear rates, beyond which the nucleation rates increase with the shear rate. In agreement with previous experimental observation and theoretical work, we find that the critical shear rate corresponds to a Weissenberg number of order 1. Finally, we show that the viscosity of the system is not affected by the crystalline nuclei.

  12. Coping styles and behavioural flexibility: towards underlying mechanisms

    PubMed Central

    Coppens, Caroline M.; de Boer, Sietse F.; Koolhaas, Jaap M.

    2010-01-01

    A coping style (also termed behavioural syndrome or personality) is defined as a correlated set of individual behavioural and physiological characteristics that is consistent over time and across situations. This relatively stable trait is a fundamental and adaptively significant phenomenon in the biology of a broad range of species, i.e. it confers differential fitness consequences under divergent environmental conditions. Behavioural flexibility appears to be an important underlying attribute or feature of the coping style that might explain consistency across situations. Proactive coping is characterized by low flexibility expressed as rather rigid, routine-like behavioural tendencies and reduced impulse control (behavioural inhibition) in operant conditioning paradigms. This article summarizes some of the evidence that individual differentiation in behavioural flexibility emerges as a function of underlying variability in the activation of a brain circuitry that includes the prefrontal cortex and its key neurochemical signalling pathways (e.g. dopaminergic and serotonergic input). We argue that the multidimensional nature of animal personality and the terminology used for the various dimensions should reflect the differential pattern of activation of the underlying neuronal network and the behavioural control function of its components. Accordingly, unravelling the molecular mechanisms that give rise to individual differences in the coping style will be an important topic in biobehavioural neurosciences, ecology and evolutionary biology. PMID:21078654

  13. Mechanisms underlying the antidepressant response and treatment resistance

    PubMed Central

    Levinstein, Marjorie R.; Samuels, Benjamin A.

    2014-01-01

    Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance. PMID:25018708

  14. Continuous damage parameter calculation under thermo-mechanical random loading

    PubMed Central

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress–strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history. PMID:26150939

  15. Mechanical response of brain tissue under blast loading.

    PubMed

    Laksari, Kaveh; Sadeghipour, Keyanoush; Darvish, Kurosh

    2014-04-01

    In this study, a framework for understanding the propagation of stress waves in brain tissue under blast loading has been developed. It was shown that tissue nonlinearity and rate dependence are the key parameters in predicting the mechanical behavior under such loadings, as they determine whether traveling waves could become steeper and eventually evolve into shock discontinuities. To investigate this phenomenon, in the present study, brain tissue has been characterized as a quasi-linear viscoelastic (QLV) material and a nonlinear constitutive model has been developed for the tissue that spans from medium loading rates up to blast rates. It was shown that development of shock waves is possible inside the head in response to high rate compressive pressure waves. Finally, it was argued that injury to the nervous tissue at the microstructural level could be partly attributed to the high stress gradients with high rates generated at the shock front and this was proposed as a mechanism of injury in brain tissue. PMID:24457112

  16. Mechanisms underlying skin disorders induced by EGFR inhibitors

    PubMed Central

    Holcmann, Martin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities. PMID:27308503

  17. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  18. Sound source mechanisms in under-expanded impinging jets

    NASA Astrophysics Data System (ADS)

    Sinibaldi, Giorgia; Marino, Luca; Romano, Giovanni Paolo

    2015-05-01

    Experiments on the aeroacoustics of an under-expanded supersonic jet impinging on a flat plate are presented and thoroughly discussed. A wide range of nozzle pressure ratios and of nozzle-to-plate distances has been analyzed with particular attention to the behavior of the discrete component of the noise. The investigation has been carried out by means of acoustic, particle image velocimetry and wall pressure measurements. The analysis of the relationship between the acoustic data and the fluid dynamic fields allows to examine the different source mechanisms of the discrete component of the noise and to evaluate the link between the jet flow structure and the acoustic tone features. Specifically, two ranges of nozzle pressure ratio have been observed showing different acoustic behaviors, characterized by distinct mechanisms of discrete noise generation. These regions are separated by a range of nozzle pressure ratios where impinging tones are not observed. The present experimental data extend previously published results, improving the analysis of the connection between fluid dynamic and acoustic fields and leading to a better comprehension of the impinging tone source mechanisms.

  19. Piezoelectric compliant mechanism energy harvesters under large base excitations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  20. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading

    PubMed Central

    2012-01-01

    Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is

  1. Molecular mechanisms underlying the onset of degenerative aortic valve disease.

    PubMed

    Hakuno, Daihiko; Kimura, Naritaka; Yoshioka, Masatoyo; Fukuda, Keiichi

    2009-01-01

    Morbidity from degenerative aortic valve disease is increasing worldwide, concomitant with the ageing of the general population and the habitual consumption of diets high in calories and cholesterol. Immunohistologic studies have suggested that the molecular mechanism occurring in the degenerate aortic valve resembles that of atherosclerosis, prompting the testing of HMG CoA reductase inhibitors (statins) for the prevention of progression of native and bioprosthetic aortic valve degeneration. However, the effects of these therapies remain controversial. Although the molecular mechanisms underlying the onset of aortic valve degeneration are largely unknown, research in this area is advancing rapidly. The signaling components involved in embryonic valvulogenesis, such as Wnt, TGF-beta(1), BMP, and Notch, are also involved in the onset of aortic valve degeneration. Furthermore, investigations into extracellular matrix remodeling, angiogenesis, and osteogenesis in the aortic valve have been reported. Having noted avascularity of normal cardiac valves, we recently identified chondromodulin-I (chm-I) as a crucial anti-angiogenic factor. The expression of chm-I is restricted to cardiac valves from late embryogenesis to adulthood in the mouse, rat, and human. In human degenerate atherosclerotic valves, the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases and angiogenesis is observed in the area of chm-I downregulation. Gene targeting of chm-I resulted in VEGF expression, angiogenesis, and calcification in the aortic valves of aged mice, and aortic stenosis is detected by echocardiography, indicating that chm-I is a crucial factor for maintaining normal cardiac valvular function by preventing angiogenesis. The present review focuses on the animal models of aortic valve degeneration and recent studies on the molecular mechanisms underlying the onset of degenerative aortic valve disease. PMID:18766323

  2. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    SciTech Connect

    Maddocks, J.R.

    1995-05-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to {minus}184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool.

  3. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect

    Nguyen, Trung Dung; Gu, YuanTong

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  4. The mechanisms underlying fructose-induced hypertension: a review

    PubMed Central

    Klein, Alice Victoria; Kiat, Hosen

    2015-01-01

    We are currently in the midst of an epidemic of metabolic disorders, which may, in part, be explained by excess fructose intake. This theory is supported by epidemiological observations as well as experimental studies in animals and humans. Rising consumption of fructose has been matched with growing rates of hypertension, leading to concern from public health experts. At this stage, the mechanisms underlying fructose-induced hypertension have not been fully characterized and the bulk of our knowledge is derived from animal models. Animal studies have shown that high-fructose diets up-regulate sodium and chloride transporters, resulting in a state of salt overload that increases blood pressure. Excess fructose has also been found to activate vasoconstrictors, inactivate vasodilators, and over-stimulate the sympathetic nervous system. Further work is required to determine the relevance of these findings to humans and to establish the level at which dietary fructose increases the risk of developing hypertension PMID:25715094

  5. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives

    PubMed Central

    Linhart, Birgit; Valenta, Rudolf

    2015-01-01

    Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect. PMID:22100888

  6. Mechanisms Underlying Development of Visual Maps and Receptive Fields

    PubMed Central

    Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara

    2008-01-01

    Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864

  7. Mechanisms underlying Phalaris aquatica "sudden death" syndrome in sheep.

    PubMed

    Bourke, C A; Carrigan, M J

    1992-07-01

    Twenty outbreaks of Phalaris aquatica "sudden death" syndrome in sheep were investigated between 1981 and 1991. Four were confirmed and one was suspected, to be a cardiac disorder; 5 were confirmed and 3 were suspected, to be a polioencephalomalacic disorder; the aetiology of the remaining 7 outbreaks could not be determined. Potentially toxic levels of hydrocyanic acid (20 to 36 mg/100 g) were measured in the 3 toxic phalaris pastures tested. The measurement of potentially toxic levels of nitrate nitrogen (2920 micrograms/g) in toxic phalaris pastures by others, was noted. It is suggested that phalaris "sudden death" syndrome could have as many as 4 different underlying mechanisms, and that these might reflect the presence in the plant of a cardio-respiratory toxin, a thiaminase and amine co-substate, cyanogenic compounds, and nitrate compounds. PMID:1445081

  8. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia

    PubMed Central

    Zhang, Yan; Wildsoet, Christine F.

    2016-01-01

    Myopia is the most common type of refractive errors and one of the world’s leading causes of blindness. Visual manipulations in animal models have provided convincing evidence for the role of environmental factors in myopia development. These models along with in vitro studies have provided important insights into underlying mechanisms. The key locations of the retinal pigment epithelium (RPE) and choroid make them plausible conduits for relaying growth regulatory signals originating in the retina to the sclera, which ultimately determines eye size and shape. Identifying the key signal molecules and their targets may lead to the development of new myopia control treatments. This section summarizes findings implicating the RPE and choroid in myopia development. For RPE and/or choroid, changes in morphology, activity of ion channels/transporters, as well as in gene and protein expression, have been linked to altered eye growth. Both tissues thus represent potential targets for novel therapies for myopia. PMID:26310157

  9. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    PubMed Central

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  10. Simulation of Electrical Transport in Rocks under Mechanical Action

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.

    2015-12-01

    Rock's electrical properties can be changed by mechanical action, especially when deformation is accompanied by micro-fracturing processes. Knowing how electrical charge is generated in inelastically deformed rocks, the nature and properties of the generated charge carriers, and their spatial distribution and propagation is crucial to gain insight into the origin of seismo-electromagnetic signals. In this work, we describe briefly a model for the numerical simulation of electrical transport in rocks under mechanical action, assuming that high and low mobility charge carriers of opposite signs can be simultaneously generated by micro-fracturing processes and recombine, diffuse and drift across the sample rock. The electrical behavior can then be described using an adaptation of the formalism applied to semiconductors. We provide simulation results on a one-dimensional lattice using finite-difference discretization. Our results show that a large mobility contrast among charge carriers allows charge separation inside the deformation region, which leads to the formation of charged layers of alternate signs. Inside these layers, rapid electric field variations are observed which can lead to the emission of electromagnetic radiation. With proper positioning of current electrodes inside the deformation region, it is possible to collect electrical current even without any applied voltage. We discuss our results in the light of available experimental results on the generation of electrical and electromagnetic signals in deformed rocks.

  11. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    PubMed Central

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological chemistry in which some investigators tried to characterize the internal operations in the same terms as the overall physiological system while others appealed to elemental chemistry. In order for biochemistry to become successful, researchers had to identify a new level of operations involving operations over molecular groups. Existing attempts at mechanistic explanation of behavior are in a situation comparable to earlier approaches to physiological chemistry, drawing their inspiration either from overall psychology activities or from low-level neural processes. Successful mechanistic explanations of behavior require the discovery of the appropriate component operations. Such discovery is a daunting challenge but one on which success will be beneficial to both behavioral scientists and cognitive and neuroscientists. PMID:16596967

  12. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. PMID:26724698

  13. Mechanisms underlying the impacts of exotic plant invasions.

    PubMed Central

    Levine, Jonathan M; Vilà, Montserrat; D'Antonio, Carla M; Dukes, Jeffrey S; Grigulis, Karl; Lavorel, Sandra

    2003-01-01

    Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts. Here, we review over 150 studies to evaluate the mechanisms underlying the impacts of exotic plant invasions on plant and animal community structure, nutrient cycling, hydrology and fire regimes. We find that, while numerous studies have examined the impacts of invasions on plant diversity and composition, less than 5% test whether these effects arise through competition, allelopathy, alteration of ecosystem variables or other processes. Nonetheless, competition was often hypothesized, and nearly all studies competing native and alien plants against each other found strong competitive effects of exotic species. In contrast to studies of the impacts on plant community structure and higher trophic levels, research examining impacts on nitrogen cycling, hydrology and fire regimes is generally highly mechanistic, often motivated by specific invader traits. We encourage future studies that link impacts on community structure to ecosystem processes, and relate the controls over invasibility to the controls over impact. PMID:12737654

  14. Using Drosophila to discover mechanisms underlying type 2 diabetes

    PubMed Central

    Alfa, Ronald W.; Kim, Seung K.

    2016-01-01

    ABSTRACT Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis. PMID:27053133

  15. Neurosubstrates and mechanisms underlying the extinction of associative motor memory.

    PubMed

    Hu, Chen; Zhang, Li-Bin; Chen, Hao; Xiong, Yan; Hu, Bo

    2015-12-01

    Eyeblink conditioning is one of the most commonly used model systems to investigate the neural mechanisms underlying associative motor learning. It is well established that the acquisition and retention of conditioned eyeblink responses (CRs) involve neural plasticity in both the cerebellar cortex and deep cerebellar nuclei (DCN). Nevertheless, how learned CRs are extinguished remains relatively unclear. It has been suggested that extinguished CRs can recur spontaneously, can reappear by exposure to certain stimuli, and can be reacquired in fewer training trials than originally needed, indicating that associative motor memory is not merely erased by extinction training. Instead, the motor memory is preserved to some degree. Herein, we reviewed recent experimental findings demonstrating that the cerebellum subserves the preservation of learned CRs. In addition, several lines of evidence have suggested that forebrain structures (i.e., the medial prefrontal cortex and hippocampus) are involved in the CR extinction. We proposed possible mechanisms related to how preserved motor memory in the cerebellum is inhibited by the forebrain structures via the amygdalar complex. PMID:26209112

  16. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    PubMed

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning. PMID:27247385

  17. Different Neurophysiological Mechanisms Underlying Word and Rule Extraction from Speech

    PubMed Central

    De Diego Balaguer, Ruth; Toro, Juan Manuel; Rodriguez-Fornells, Antoni; Bachoud-Lévi, Anne-Catherine

    2007-01-01

    The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400) in the central electrodes is related to word-learning and development of a frontal positivity (P2) is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity) and clear lexical effects when presented in isolation (N400 modulation). The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language. PMID:18000546

  18. Investigating the mechanism(s) underlying switching between states in bipolar disorder.

    PubMed

    Young, Jared W; Dulcis, Davide

    2015-07-15

    Bipolar disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the 'holy grail' of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  19. Investigating the mechanism(s) underlying switching between states in bipolar disorder

    PubMed Central

    Young, Jared W.; Dulcis, Davide

    2015-01-01

    Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the ‘holy grail’ of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  20. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  1. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  2. Mechanical Modeling of a WIPP Drum Under Pressure

    SciTech Connect

    Smith, Jeffrey A.

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  3. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity.

    PubMed

    Parekh, Puja K; McClung, Colleen A

    2015-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  4. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  5. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    PubMed

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  6. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration

    PubMed Central

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  7. Mechanism Underlying Levofloxacin Uptake by Human Polymorphonuclear Neutrophils

    PubMed Central

    Vazifeh, Doina; Bryskier, André; Labro, Marie-Thérèse

    1999-01-01

    The mechanism of radiolabeled levofloxacin ([3H]levofloxacin) uptake by human polymorphonuclear neutrophils (PMNs) was investigated by a classical velocity centrifugation technique. PMNs were incubated with levofloxacin for 5 to 180 min under various conditions before centrifugation through an oil cushion. Radioactivity was measured in the cell pellet to determine the amount of cell-associated drug. The uptake of levofloxacin was moderate with a cellular concentration/extracellular concentration ratio of about 4 to 6. Levofloxacin accumulated in PMNs parallel to the extracellular concentration, without saturation, over the range of 2.5 to 200 mg/liter (linear regression analysis: r = 0.92; P < 0.001). The activation energy was low (36 ± 7.2 kJ/mol). Levofloxacin uptake was increased in Ca2+-depleted, EGTA-containing medium by approximately 33% (P = 0.022), while Ni2+, a Ca2+ channel inhibitor, inhibited it in a concentration-dependent manner, with the concentration that inhibited 50% of control uptake being approximately 2.65 mM. Verapamil (an l-type Ca2+ channel inhibitor) and other pharmacologic agents which modify Ca2+ homeostasis did not modify levofloxacin uptake. Interestingly, Ca2+ and Mg2+ inhibited levofloxacin uptake in a concentration-dependent manner. EGTA, Ni2+, and verapamil did not modify levofloxacin efflux; thapsigargin, a Ca2+ pool-releasing agent, modestly increased the intracellular retention of levofloxacin. In addition, contrary to other fluoroquinolones, probenecid at 1 to 10 mM did not modify either levofloxacin uptake or efflux. These data are consistent with a mechanism of passive accumulation of levofloxacin in PMNs. Extracellular Ca2+ and Mg2+ may influence the structural conformation of levofloxacin or the lipophilicity of PMN membranes, thus explaining their effect on levofloxacin uptake. PMID:9925513

  8. Mechanisms underlying reduced fertility in anovular dairy cows.

    PubMed

    Santos, J E P; Bisinotto, R S; Ribeiro, E S

    2016-07-01

    Resumption of ovulation after parturition is a coordinated process that involves recoupling of the GH/insulin-like growth factor 1 axis in the liver, increase in follicular development and steroidogenesis, and removal of negative feedback from estradiol in the hypothalamus. Infectious diseases and metabolic disorders associated with extensive negative energy balance during early lactation disrupt this pathway and delay first ovulation postpartum. Extended periods of anovulation postpartum exert long-lasting effects on fertility in dairy cows including the lack of spontaneous estrus, reduced pregnancy per artificial insemination (P/AI), and increased risk of pregnancy loss. Concentrations of progesterone in anovular cows subjected to synchronized programs for AI are insufficient to optimize follicular maturation, oocyte competence, and subsequent fertility to AI. Ovulation of first wave follicles, which develop under low concentrations of progesterone, reduces embryo quality in the first week after fertilization and P/AI in dairy cows. Although the specific mechanisms by which anovulation and low concentrations of progesterone impair oocyte quality have not been defined, studies with persistent follicles support the involvement of premature resumption of meiosis and degradation of maternal RNA. Suboptimal concentrations of progesterone before ovulation also increase the synthesis of PGF2α in response to oxytocin during the subsequent estrous cycle, which explains the greater incidence of short luteal phases after the first AI postpartum in anovular cows compared with estrous cyclic herd mates. It is suggested that increased spontaneous luteolysis early in the estrous cycle is one of the mechanisms that contributes to early embryonic losses in anovular cows. Anovulation also leads to major shifts in gene expression in elongated conceptuses during preimplantation stages of pregnancy. Transcripts involved with control of energy metabolism and DNA repair were

  9. Investigation of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    1996-01-01

    The focus of the present work is to experimentally study and to analytically/numerically model the mechanisms of growth of bubbles attached to, and sliding along, a heated surface. To control the location of the active cavities, the number, the spacing, and the nucleation superheat, artificial cavities will be formed on silicon wafers. In order to study the effect of magnitude of components of gravitational acceleration acting parallel to, and normal to the surface, experiments will be conducted on surfaces inclined at different angles including a downward facing surface. Information on the temperature field around bubbles, bubble shape and size, and bubble induced liquid velocities will be obtained through the use of holography, video/high speed photography and hydrogen bubble techniques, respectively. Analytical/numerical models will be developed to describe the heat transfer including that through the micro-macro layer underneath and around a bubble. In the micro layer model capillary and disjoining pressures will be included. Evolution of the interface along with induced liquid motion will be modelled. Subsequent to the world at normal gravity, experiments will be conducted in the KC-135 or the Lear jet especially to learn about bubble growth/detachment under low gravity conditions. Finally, an experiment will be defined to be conducted under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide microgravity data on bubble growth and detachment and will lead to a validation of the nucleate boiling heat transfer model developed from the preceding studies performed at normal and low gravity (KC-135 or Lear jet) conditions.

  10. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  11. On the mechanical properties of tooth enamel under spherical indentation.

    PubMed

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. PMID:25034644

  12. Psychophysiological mechanisms underlying response selection in multidimensional space

    PubMed Central

    Mückschel, Moritz; Beste, Christian

    2015-01-01

    In the outside world, response selection often requires the processing of information from different spatial dimensions. Yet, most neuroscientific approaches to the topic only employ variations in one dimension, namely the horizontal left-right axis. Hence, virtually nothing is known about the neuronal mechanisms underlying response selection in more than one dimension. We investigated this aspect with the help of a two-dimensional flanker task using EEG and source localization techniques. The data shows that response selection processes are differentially modulated across different dimensions. However, this modulation is restricted to conditions imposing increased demands on response selection. In such situations, a distributed fronto-parietal network mediates intensified conflict monitoring processes as well as response inhibition processes. In case response selection is carried out in the horizontal dimension, those brain areas are more active than during response selection in the vertical dimension. Attentional selection processes were not affected. The study's findings are of relevance to our understanding to everyday functioning where response selection is usually carried out in two or three dimensions and not a single dimension as usually investigated in cognitive neuroscience. PMID:25582443

  13. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    PubMed

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. PMID:24417933

  14. Mechanism of magnetic moment collapse under pressure in ferropericlase

    NASA Astrophysics Data System (ADS)

    Skorikov, N. A.; Shorikov, A. O.; Skornyakov, S. L.; Korotin, M. A.; Anisimov, V. I.

    2015-07-01

    We propose a new scenario for the magnetic collapse under pressure in ferropericlase (FP) (\\text{F}{{\\text{e}}1/4}\\text{M}{{\\text{g}}3/4} )O without the presence of intermediate spin state, which contradicts the mechanism proposed in (2013 Phys. Rev. B 87 165113). This scenario is supported by results of combined local density approximation + dynamical mean-field theory method calculations for the paramagnetic phase at ambient and high pressures. At ambient pressure, calculation gave (\\text{F}{{\\text{e}}1/4}\\text{M}{{\\text{g}}3/4} )O as an insulator with Fe 3d-shell in high-spin state. Experimentally observed high-spin to low-spin state transition of the \\text{F}{{\\text{e}}2+} ion in the pressure range of 35-75 GPa is successfully reproduced in our calculations. The spin crossover is characterized by coexistence of \\text{F}{{\\text{e}}2+} ions in high and low spin state but intermediate spin state is absent in the whole pressure range. Moreover, the probability of Fe ion {{\\text{d}}7} configuration with S=1 grows with pressure due to shortening of metal-oxygen distance. Also, no metal-insulator transition was obtained up to the pressure 140 GPa in agreement with experiment.

  15. Neural mechanisms underlying respiratory rhythm generation in the lamprey.

    PubMed

    Bongianni, Fulvia; Mutolo, Donatella; Cinelli, Elenia; Pantaleo, Tito

    2016-04-01

    The isolated brainstem of the adult lamprey spontaneously generates respiratory activity. The paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, has been anatomically and functionally characterized. It is sensitive to opioids, neurokinins and acetylcholine. Excitatory amino acids, but not GABA and glycine, play a crucial role in the respiratory rhythmogenesis. These results are corroborated by immunohistochemical data. While only GABA exerts an important modulatory control on the pTRG, both GABA and glycine markedly influence the respiratory frequency via neurons projecting from the vagal motoneuron region to the pTRG. Noticeably, the removal of GABAergic transmission within the pTRG causes the resumption of rhythmic activity during apnea induced by blockade of glutamatergic transmission. The same result is obtained by microinjections of substance P or nicotine into the pTRG during apnea. The results prompted us to present some considerations on the phylogenesis of respiratory pattern generation. They may also encourage comparative studies on the basic mechanisms underlying respiratory rhythmogenesis of vertebrates. PMID:25220696

  16. Mechanisms underlying subunit independence in pyramidal neuron dendrites.

    PubMed

    Behabadi, Bardia F; Mel, Bartlett W

    2014-01-01

    Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated "cross-talk" from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo-like spiking conditions. PMID:24357611

  17. Metabolite Recognition Principles and Molecular Mechanisms Underlying Riboswitch Function

    PubMed Central

    Serganov, Alexander; Patel, Dinshaw J.

    2015-01-01

    Riboswitches are mRNA elements capable of modulating gene expression in response to specific binding by cellular metabolites. Riboswitches exert their function through the interplay of alternative ligand-free and ligand-bound conformations of the metabolite-sensing domain, which in turn modulate the formation of adjacent gene expression controlling elements. X-ray crystallography and NMR spectroscopy have determined three-dimensional structures of virtually all the major riboswitch classes in the ligand-bound state and, for several riboswitches, in the ligand-free state. The resulting spatial topologies have demonstrated the wide diversity of riboswitch folds and revealed structural principles for specific recognition by cognate metabolites. The available three-dimensional information, supplemented by structure-guided biophysical and biochemical experimentation, has led to an improved understanding of how riboswitches fold, what RNA conformations are required for ligand recognition, and how ligand binding can be transduced into gene expression modulation. These studies have greatly facilitated the dissection of molecular mechanisms underlying riboswitch action and should in turn guide the anticipated development of tools for manipulating gene regulatory circuits. PMID:22577823

  18. CFRP Mechanical Anchorage for Externally Strengthened RC Beams under Flexure

    NASA Astrophysics Data System (ADS)

    Ali, Alnadher; Abdalla, Jamal; Hawileh, Rami; Galal, Khaled

    De-bonding of carbon fiber reinforced polymers (CFRP) sheets and plates from the concrete substrate is one of the major reasons behind premature failures of beams that are externally strengthened with such CFRP materials. To delay or prevent de-bonding and therefore enhancing the load carrying capacity of strengthened beams, several anchorage systems were developed and used. This paper investigates the use of CFRP mechanical anchorage of CFRP sheets and plates used to externally strengthen reinforced concrete beams under flexure. The pin-and-fan shape CFRP anchor, which is custom-made from typical rolled fiber sheets and bundles of loose fiber is used. Several reinforced concrete beams were casted and tested in standard four-point bending scheme to study the effectiveness of this anchorage system. The beams were externally strengthened in flexure with bonded CFRP sheets and plates and then fastened to the soffit of the beams' using various patterns of CFRP anchors. It is observed that the CFRP plates begins to separate from the beams as soon as de-bonding occurs in specimens without CFRP anchors, while in beams with CFRP anchors de-bonding was delayed leading to increase in the load carrying capacity over the un-anchored strengthened beams.

  19. Molecular mechanisms underlying neurodevelopmental disorders, ADHD and autism.

    PubMed

    Bădescu, George Mihai; Fîlfan, Mădălina; Sandu, Raluca Elena; Surugiu, Roxana; Ciobanu, Ovidiu; Popa-Wagner, Aurel

    2016-01-01

    Neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism represent a significant economic burden, which justify vigorous research to uncover its genetics and developmental clinics for a diagnostic workup. The urgency of addressing attention deficit hyperactivity disorder comorbidities is seen in the chilling fact that attention deficit hyperactivity disorder (ADHD), mood disorders, substance use disorders and obesity each increase the risk for mortality. However, data about comorbidity is mainly descriptive, with mechanistic studies limited to genetic epidemiological studies that document shared genetic risk factors among these conditions. Autism and intellectual disability affects 1.5 to 2% of the population in Western countries with many individuals displaying social-emotional agnosia and having difficulty in forming attachments and relationships. Underlying mechanisms include: (i) dysfunctions of neuronal miRNAs; (ii) deletions in the chromosome 21, subtelomeric deletions, duplications and a maternally inherited duplication of the chromosomal region 15q11-q13; (iii) microdeletions in on the long (q) arm of the chromosome in a region designated q21.1 increases the risk of delayed development, intellectual disability, physical abnormalities, and neurological and psychiatric problems associated with autism, schizophrenia, and epilepsy and weak muscle tone (hypotonia); (iv) interstitial duplications encompassing 16p13.11. PMID:27516006

  20. Cellular mechanisms underlying the interaction between cannabinoid and opioid system.

    PubMed

    Parolaro, D; Rubino, T; Viganò, D; Massi, P; Guidali, C; Realini, N

    2010-04-01

    Recently, the presence of functional interaction between the opioid and cannabinoid system has been shown in various pharmacological responses. Although there is an increasing interest for the feasible therapeutic application of a co-administration of cannabinoids and opioids in some disorders (i.e. to manage pain, to modulate immune system and emotions) and the combined use of the two drugs by drug abusers is becoming largely diffuse, only few papers focused on cellular and molecular mechanisms underlying this interaction. This review updates the biochemical and molecular underpinnings of opioid and cannabinoid interaction, both within the central nervous system and periphery. The most convincing theory for the explanation of this reciprocal interaction involves (i) the release of opioid peptides by cannabinoids or endocannabinoids by opioids, (ii) the existence of a direct receptor-receptor interaction when the receptors are co-expressed in the same cells, and (iii) the interaction of their intracellular pathways. Finally, the cannabinoid/opioid interaction might be different in the brain rewarding networks and in those accounting for other pharmacological effects (antinociception, modulation of emotionality and cognitive behavior), as well as between the central nervous system and periphery. Further insights about the cannabinoid/opioid interaction could pave the way for new and promising therapeutic approaches. PMID:20017730

  1. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    PubMed

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  2. [Molecular mechanisms underlying the formation of neuromuscular junction].

    PubMed

    Higuchi, Osamu; Yamanashi, Yuji

    2011-07-01

    The neuromuscular junction (NMJ) is a synapse between a motor neuron and skeletal muscle. The contraction of skeletal muscle is controlled by the neurotransmitter acetylcholine (ACh), which is released from the motor nerve terminal. To achieve efficient neuromuscular transmission, acetylcholine receptors (AChRs) must be densely clustered on the muscle membrane of the NMJ. Failure of AChR clustering is associated with disorders of neuromuscular transmission such as congenital myasthenic syndromes (CMS) and myasthenia gravis (MG). Motoneuronal agrin and muscle-specific receptor tyrosine kinase (MuSK) are known to play essential roles in the formation and maintenance of NMJs in the central region of each muscle. However, it had been unclear how agrin activates MuSK. Recent studies have elucidated the roles of several key molecules, including the cytoplasmic adaptor protein Dok-7 and LDL receptor-related protein 4 (Lrp4), in agrin-induced MuSK activation. Moreover, new evidence indicates that cyclin-dependent kinase 5 (Cdk5) regulates postsynaptic differentiation. In this review, we summarize the latest developments in molecular mechanisms underlying NMJ formation in vertebrates. PMID:21747134

  3. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  4. Decompaction mechanism of deep crystalline rocks under stress relief

    NASA Astrophysics Data System (ADS)

    Gorbatsevich, F. F.

    2003-07-01

    Within a geological massif in a stable geodynamical situation contacts on the grain boundaries in polycrystalline rocks at great depths are continuous and firm. The stress release of those rocks during drilling and excavation to the surface is accompanied by their disintegration (decompaction). The reason for the decompaction is generation of microcracks during stress release due to the difference between the elastic moduli of crystalline grains at their contacts. The mechanism of decompaction may occur not only in polymineral but in polycrystalline rocks as well. The method of decompaction evaluation of deep crystalline rocks under stress relief is presented. According to the calculations the initial manifestation of the decompaction effect in biotite gneisses will occur when they are extracted from the deep range of 0.8-1 km. The first microcracks arise on the grain borders between quartz-biotite and oligoclase-biotite. It is shown that the uplift of gneiss-granite varities of the rocks cut by the Kola superdeep borehole from depths exceeding 13-15 km will be possible in a form of separate mineral grains. Practical importance of the presented method is in an opportunity to evaluate the level of excavated decompaction. The method allow estimating the depth, from which the rock will be extracted only in a sludge form.

  5. Recent experimental developments concerning the mechanisms underlying dust emission

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, C. L.; Sanderson, R. S.; O'Brien, P.

    2012-12-01

    Field based studies have been invaluable in elucidating the great variability and complexity in natural surfaces that emit dust. Spanning hours to days, and meters to kilometers, measurements of the regional and global characteristics of dust emission and transport are contributing to a clearer understanding of these phenomena. This work has been complimented by the development of increasingly more sophisticated atmospheric dispersion models. Only very recently, however, has much attention been paid to the physics of dust emission from the bed surface that necessarily require precise, high frequency measurements over fractions of millimeters under carefully manipulated conditions. This paper provides an overview of recent advances in our understanding of the mechanisms of dust emission, as derived from experiments carried out in the Trent boundary layer wind tunnel by a variety of workers. Energy transfer to the bed surface through the impacts of saltating particles has long been recognized as crucial for the ejection of silt and clay sized particles from surfaces where interparticle bonding is significant. Using Particle Tracking Velocimetry (PTV) and laser Doppler anemometry (LDA), we are now able to measure the energy transfer to the surface and the consequent deformation/rupture for both loose and consolidated beds of silt. The coefficient of restitution is found to decrease with particle impact speed, although some compaction may also occur with plowing and displacement of loose bed material (Gordon and McKenna Neuman, 2009). Further consideration is given to wind pumping as an alternate mechanism for dust entrainment from surfaces that are armored; that is, where insufficient sand supply is available to the support the development of a saltation cloud. LDA and pressure tap measurements confirm that turbulent structures measured in the atmospheric boundary layer are able to penetrate into the pores of gravel sized material, and specifically, the smelter waste

  6. Mechanisms of enhanced taurine release under Ca2+ depletion.

    PubMed

    Molchanova, Svetlana M; Oja, Simo S; Saransaari, Pirjo

    2005-10-01

    The sulfur-containing amino acid taurine is an inhibitory neuromodulator in the brain of mammals, as well as a key substance in the regulation of cell volumes. The effect of Ca(2+) on extracellular taurine concentrations is of special interest in the context of the regulatory mechanisms of taurine release. The aim of this study was to characterize the basal release of taurine in Ca(2+)-free medium using in vivo microdialysis of the striatum of anesthetized rats. Perfusion of Ca(2+)-free medium via a microdialysis probe evoked a sustained release of taurine (up to 180 % compared to the basal levels). The Ca(2+) chelator EGTA (1mM) potentiated Ca(2+) depletion-evoked taurine release. The substitution of CaCl(2) by choline chloride did not alter the observed effect. Ca(2+)-free solution did not significantly evoke release of taurine from tissue loaded with the competitive inhibitor of taurine transporter guanidinoethanesulfonate (1mM), suggesting that in Ca(2+) depletion taurine is released by the transporter operating in the outward direction. The volume-sensitive chloride channel blocker diisothiocyanostilbene-2,2'-disulfonate (1mM) did not attenuate the taurine release evoked by Ca(2+) depletion. The non-specific blocker of voltage-sensitive Ca(2+) channels NiCl(2) (0.65 mM) enhanced taurine release in the presence of Ca(2+). CdCl(2) (0.25 mM) had no effect under these conditions. However, both CdCl(2) and NiCl(2) attenuated the effect of Ca(2+)-free medium on the release of taurine. The data obtained imply the involvement of both decreased influx of Ca(2+) and increased non-specific influx of Na(+) through voltage-sensitive calcium channels in the regulation of transporter-mediated taurine release in Ca(2+) depletion. PMID:15982785

  7. Neural Mechanisms Underlying Compensatory and Noncompensatory Strategies in Risky Choice.

    PubMed

    Van Duijvenvoorde, Anna C K; Figner, Bernd; Weeda, Wouter D; Van der Molen, Maurits W; Jansen, Brenda R J; Huizenga, Hilde M

    2016-09-01

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in risky choice. Here, we compared people using a compensatory expected value maximization with people using a simplified noncompensatory loss-minimizing choice strategy. To this end, we used a two-choice paradigm including a set of "simple" items (e.g., simple condition), in which one option was superior on all attributes, and a set of "conflict" items, in which one option was superior on one attribute but inferior on other attributes. A binomial mixture analysis of the decisions elicited by these items differentiated between decision-makers using either a compensatory or a noncompensatory strategy. Behavioral differences were particularly pronounced in the conflict condition, and these were paralleled by neural results. That is, we expected compensatory decision-makers to use an integrated value comparison during choice in the conflict condition. Accordingly, the compensatory group tracked the difference in expected value between choice options reflected in neural activation in the parietal cortex. Furthermore, we expected noncompensatory, compared with compensatory, decision-makers to experience increased conflict when attributes provided conflicting information. Accordingly, the noncompensatory group showed greater dorsomedial PFC activation only in the conflict condition. These pronounced behavioral and neural differences indicate the need for decision neuroscience to account for individual differences in risky choice strategies and to broaden its scope to noncompensatory risky choice strategies. PMID:27167399

  8. Mechanisms underlying obesity resistance associated with high spontaneous physical activity

    PubMed Central

    Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2013-01-01

    Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXR) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. We further tested whether orexin action on dopamine one receptors (DA1R) in the substantia nigra (SN) plays an important role in generation of SPA. To test this, SPA response was determined in lean and obese rats with cannulae targeted towards the rostral lateral hypothalamus (rLH) or SN. Sleep/wake states were also measured in rats with rLH cannula and EEG/EMG radiotelemetry transmitters. SPA in lean rats was more sensitive to antagonism of the orexin 1 receptor (OX1R) and in the early response to the orexin 2 agonist. OXA increased arousal equally in lean and obese rodents, which is discordant from the greater SPA response in lean rats. Obesity resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in OR rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in mediation of SPA and running wheel activity. PMID:24161277

  9. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  10. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  11. Cellular mechanisms underlying the pharmacological induction of phosphenes

    PubMed Central

    Cervetto, L; Demontis, G C; Gargini, C

    2007-01-01

    Visual sensations evoked by stimuli other than luminance changes are called phosphenes. Phosphenes may be an early symptom in a variety of diseases of the retina or of the visual pathways, but healthy individuals may perceive them as well. Phosphene-like phenomena are perhaps the most common side effect reported in clinical pharmacology. Ivabradine, a novel anti-anginal drug that reduces heart-rate by inhibiting the hyperpolarization activated current expressed in cardiac sinoatrial node cells (If) induces phosphenes in some patients. One hypothesis is that ivabradine interacts with the visual system by inhibiting hyperpolarization-activated current in retinal cells (Ih). An Ih current with properties similar to cardiac If has been reported in retinal neurones. Under normal circumstances most of the random fluctuations generated within the retinal circuits do not reach the level of conscious perception because they are filtered out. Presumably, filtering occurs mostly within the retina and one serious candidate for this action is the ability of Ih to act as a negative-feedback mechanism. Ih activation in the membrane of visual cells causes dampening of responses to slow noisy inputs thus tuning the visual system to perceptually more relevant signals of higher frequency. Ih inhibition, by altering at the retinal synapses the filtering of signals generated by thermal breakdown of rhodopsin or other fluctuations, is expected to increase the probability of phosphene occurrence. It is the purpose of the present paper to outline and discuss the features of the visual system and the pharmacological conditions relevant to phosphene perception. PMID:17211458

  12. Sex differences in the mechanisms underlying long QT syndrome.

    PubMed

    Salama, Guy; Bett, Glenna C L

    2014-09-01

    Sexual dimorphism is a well-established phenomenon, but its degree varies tremendously among species. Since the early days of Einthoven's development of the three-lead galvanometer ECG, we have known there are marked differences in QT intervals of men and women. It required over a century to appreciate the profound implications of sex-based electrophysiological differences in QT interval on the panoply of sex differences with respect to arrhythmia risk, drug sensitivity, and treatment modalities. Little is known about the fundamental mechanism responsible for sex differences in electrical substrate of the human heart, in large part due to the lack of tissue availability. Animal models are an important research tool, but species differences in the sexual dimorphism of the QT interval, the ionic currents underlying the cardiac repolarization, and effects of sex steroids make it difficult to interpolate animal to human sex differences. In addition, in some species, different strains of the same animal model yield conflicting data. Each model has its strengths, such as ease of genetic manipulation in mice or size in dogs. However, many animals do not reproduce the sexual dimorphism of QT seen in humans. To match sex linked prolongation of QT interval and arrhythmogenic phenotype, the current data suggest that the rabbit may be best suited to provide insight into sex differences in humans. In the future, emerging technologies such as induced pluripotent stem cell derived cardiac myocyte systems may offer the opportunity to study sex differences in a controlled hormonal situation in the context of a sex specific human model system. PMID:24973386

  13. Cognitive mechanisms underlying instructed choice exploration of small city maps

    PubMed Central

    Sakellaridi, Sofia; Christova, Peka; Christopoulos, Vassilios N.; Vialard, Alice; Peponis, John; Georgopoulos, Apostolos P.

    2015-01-01

    We investigated the cognitive mechanisms underlying the exploration and decision-making in realistic and novel environments. Twelve human subjects were shown small circular U.S. city maps with two locations highlighted on the circumference, as possible choices for a post office (“targets”). At the beginning of a trial, subjects fixated a spot at the center of the map and ultimately chose one of the two locations. A space syntax analysis of the map paths (from the center to each target) revealed that the chosen location was associated with the less convoluted path, as if subjects navigated mentally the paths in an “ant's way,” i.e., by staying within street boundaries, and ultimately choosing the target that could be reached from the center in the shortest way, and the fewest turns and intersections. The subjects' strategy for map exploration and decision making was investigated by monitoring eye position during the task. This revealed a restricted exploration of the map delimited by the location of the two alternative options and the center of the map. Specifically, subjects explored the areas around the two target options by repeatedly looking at them before deciding which one to choose, presumably implementing an evaluation and decision-making process. The ultimate selection of a specific target was significantly associated with the time spent exploring the area around that target. Finally, an analysis of the sequence of eye fixations revealed that subjects tended to look systematically toward the target ultimately chosen even from the beginning of the trial. This finding indicates an early cognitive selection bias for the ensuing decision process. PMID:25852452

  14. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  15. Inelastic deformation mechanisms in a transverse MMC lamina under compression

    NASA Technical Reports Server (NTRS)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1992-01-01

    An investigation was undertaken to study the inelastic deformation mechanisms in (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Both mechanical behavior and microstructural evaluation were undertaken at room temperature, 538 and 650 C. Results indicate that mechanical response and deformation characteristics are significantly different in monotonic tension and compression. The inelastic deformation mechanisms in compression are controlled by radial fiber fracture, matrix plasticity and fiber-matrix debonding. The radial fiber fracture is a new damage mode observed for metal-matrix composites (MMC).

  16. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  17. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors

    PubMed Central

    Klengel, Torsten; Ressler, Kerry J

    2014-01-01

    Gene expression and regulation is an important sculptor of the behavior of organisms. Epigenetic mechanisms regulate gene expression not by altering the genetic alphabet but rather by the addition of chemical modifications to proteins associated with the alphabet or of methyl marks to the alphabet itself. Being dynamic, epigenetic mechanisms of gene regulation serve as an important bridge between environmental stimuli and genotype. In this review, we outline epigenetic mechanisms by which gene expression is regulated in animals and humans. Using fear learning as a framework, we then delineate how such mechanisms underlie learning and stress responsiveness. Finally, we discuss how epigenetic mechanisms might inform us about the transgenerational inheritance of behavioral traits that are being increasingly reported. PMID:25544352

  18. Mechanical response of collagen molecule under hydrostatic compression.

    PubMed

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. PMID:25687001

  19. Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus.

    PubMed

    Panadero, Juan Alberto; Sencadas, Vitor; Silva, Sonia C M; Ribeiro, Clarisse; Correia, Vitor; Gama, Francisco M; Gomez Ribelles, José Luis; Lanceros-Mendez, Senentxu

    2016-02-01

    In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements. PMID:25772257

  20. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  1. A model for hierarchical patterns under mechanical stresses

    NASA Astrophysics Data System (ADS)

    Corson, F.; Henry, H.; Adda-Bedia, M.

    2010-01-01

    We present a model for mechanically-induced pattern formation in growing biological tissues and discuss its application to the development of leaf venation networks. Drawing an analogy with phase transitions in solids, we use a phase field method to describe the transition between two states of the tissue, e.g. the differentiation of leaf veins, and consider a layered system where mechanical stresses are generated by differential growth. We present analytical and numerical results for one-dimensional systems, showing that a combination of growth and irreversibility gives rise to hierarchical patterns. Two-dimensional simulations suggest that such a mechanism could account for the hierarchical, reticulate structure of leaf venation networks, yet point to the need for a more detailed treatment of the coupling between growth and mechanical stresses.

  2. Triggering Mechanisms of Thermosensitive Nanoparticles Under Hyperthermia Condition.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Abdullah, Hadijah; Hamdi, Mohd; Kasim, Noor Hayaty Abu

    2015-08-01

    Nanoparticle-based hyperthermia is an effective therapeutic approach that allows time- and site-specific treatment with minimized off-site effects. The recent advances in materials science have led to design a diversity of thermosensitive nanostructures that exhibit different mechanisms of thermal response to the external stimuli. This article aims to provide an extensive review of the various triggering mechanisms in the nanostructures used as adjuvants to hyperthermia modalities. Understanding the differences between various mechanisms of thermal response in these nanostructures could help researchers in the selection of appropriate materials for each experimental and clinical condition as well as to address the current shortcomings of these mechanisms with improved material design. PMID:26073304

  3. Behavior of cracked cylinders under combined thermal and mechanical loading

    SciTech Connect

    Ignaccolo, S.

    1996-12-01

    Nuclear pressure vessels and pipings can be submitted in their life to severe mechanical and thermal loadings. Engineering methods easy to apply, but sufficiently accurate, are needed to assess the flaws. In the field of non-linear fracture mechanics a lot of work has been achieved for structures submitted to mechanical loadings. But for thermal loadings, and particularly for thermal gradients, only few contributions are available. The authors propose, here, to present the main results of a complete set of finite element computations, conducted in France by CEA, EDF and FRAMATOME, on cracked cylinders submitted to combined mechanical and thermal loads. The interaction between these two types of loads is analyzed in the cases of austenitic and ferritic structures. Moreover, these results are compared to the predictions obtained by simplified engineering methods (R6 procedure, J{sub SA16}, and J{sub EDF} approaches). Their domain of validity is also discussed.

  4. Reaction mechanism underlying the in vitro transformation of thioarsenicals

    SciTech Connect

    Naranmandura, Hua; Suzuki, Noriyuki; Suzuki, Kazuo T.

    2008-09-15

    Thioarsenicals have been paid much attention due to the toxicity of arsenic, since some of them are highly toxic and commonly found in the urine of mammals. We previously reported that thioarsenicals might be produced in red blood cells (RBCs). Here, we further characterized the mechanism underlying the production and metabolism of thioarsenicals in RBCs using {sup 34}S-labeled dimethylmonothioarsinic acid ({sup 34}S-DMMTA{sup V}) and purified rat hemoglobin (Hb) or a rat RBC lysate. {sup 34}S-DMMTA{sup V} did not bind to Hb on incubation with purified rat Hb, remaining in its original form. However, when {sup 34}S-DMMTA{sup V} was incubated with a rat RBC lysate, only arsenic, i.e., not sulfur ({sup 34}S), was detected in a form bound to Hb (As-Hb). In addition, another arsenic product containing sulfur ({sup 34}S) in the molar ratio of {sup 34}S/As = 2 was detected, which was assigned as dimethyldithioarsinic acid (DMDTA{sup V}), suggesting that arsenic does not bind to Hb in the form of {sup 34}S-DMMTA{sup V} but does so in the form of dimethylarsinous acid (DMA{sup III}). Namely, DMMTA{sup V} appeared to be hydrolyzed into dimethylarsinic acid (DMA{sup V}) and H{sup 34}S{sup -}, and the released H{sup 34}S{sup -} reacted with DMMTA{sup V} to produce DMDTA{sup V}. Thus, DMMTA{sup V} was transformed into DMDTA{sup V} and DMA{sup V} (2DMMTA{sup V} - > DMDTA{sup V} + DMA{sup V}), the latter product being reduced to DMA{sup III} in the presence of GSH and bound to Hb. In a separate experiment, {sup 34}S-DMMTA{sup V} was incubated with sulfide (Na{sub 2}S) and GSH. Although DMMTA{sup V} was not transformed into DMDTA{sup V} in the presence of only Na{sub 2}S or GSH, it was transformed into DMDTA{sup V} in the presence of both Na{sub 2}S and GSH. Our results suggest that DMMTA{sup V} is hydrolyzed enzymatically into DMA{sup V} and sulfide, the former being reduced to DMA{sup III} and bound to Hb, and the latter reacting with DMMTA{sup V} to yield DMDTA{sup V}. Thus

  5. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  6. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms.

    PubMed

    Zilverstand, Anna; Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain's reward circuitry, and the recruitment and strengthening of the brain's inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means. PMID:26822363

  7. Mechanisms underlying the inhibition of interferon signaling by viruses

    PubMed Central

    Devasthanam, Anand S

    2014-01-01

    A hallmark of the antiviral response is the induction of interferons. First discovered in 1957 by Issac and Lindeman, interferons are noted for their ability to interfere with viral replication. Interferons act via autocrine and paracrine pathways to induce an antiviral state in infected cells and in neighboring cells containing interferon receptors. Interferons are the frontline defenders against viral infection and their primary function is to locally restrict viral propagation. Viruses have evolved mechanisms to escape the host interferon response, thus gaining a replicative advantage in host cells. This review will discuss recent findings on the mechanisms viruses use to evade the host interferon response. This knowledge is important because the treatment of viral infections is a challenge of global proportions and a better understanding of the mechanisms viruses use to persist in the host may uncover valuable insights applicable to the discovery of novel drug targets. PMID:24504013

  8. Common mechanism underlies repeated evolution of extreme pollution tolerance

    PubMed Central

    Whitehead, Andrew; Pilcher, Whitney; Champlin, Denise; Nacci, Diane

    2012-01-01

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants. PMID:21733895

  9. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome.

    PubMed

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-12-01

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies. PMID:26883355

  10. Coalescence kinetics under the action of alternative grain growth mechanisms

    SciTech Connect

    Gubanov, P. Yu. Maksimov, I. L.

    2008-01-15

    The coalescence process is considered for the case where the prevailing grain growth mechanism is block-to-block diffusion, during which the motion of atoms in a solution occurs in the form of diffusion flux along the block boundaries. Numerical and analytical investigation of the coalescence kinetics in a homogeneous supersaturated solution is performed with allowance for the finite maximum grain size, and the time evolution of the size distribution function of new-phase grains is theoretically described. Possible transition regimes arising during coalescence at a change in the dominant grain growth mechanism are considered.

  11. Tree growth variability under environmental changes - identifying underlying physiological mechanisms by stable C and O isotopes

    NASA Astrophysics Data System (ADS)

    Weigt, Rosemarie; Saurer, Matthias; Siegwolf, Rolf T. W.

    2014-05-01

    Long-term variability of tree growth is a result of changing environmental factors and physiological response mechanisms. Information about these relationships can be retrieved from tree ring width, but also from tree ring isotopes as proxies of photosynthetic rates (13C), stomatal conductance (13C, 18O), and source water (18O) used by the tree. With the interdisciplinary project iTREE, we aim to identify physiological mechanisms by relating time-series of tree ring isotopes from a network of sites to environmental factors, and compare resulting growth reponses with stand surveys and vegetation models. Linking these different scales - from individual trees to site and landscape - will contribute to reduce uncertainties in modeling large-scale variability of forest biomass production under current climate change. At a high altitude site in Switzerland (Loetschental, 2100m asl), ~400 yrs old larch (Larix dedicua) trees showed enhanced tree growth towards the end of the 20th century along with increasing CO2 concentrations and temperature, but also increasing variability between individual trees. At this temperature limited site, both environmental factors seem to act as growth drivers by increasing photosynthesis and cell growth. Because δ18O and δ13C (after correction for atmospheric CO2 increase and 13C decrease) remained rather unchanged over the past ~100 yrs, the stomatal behavior did not change according to the dual isotope model, indicating relatively constant water supply over time. At other sites throughout Central Europe, physiological responses to environmental changes may result in different carbon assimilation or allocation other than stem growth. First data of different sites and species along a temperature gradient in Central Europe show that year-to-year variability of tree ring δ13C and δ18O are positively correlated at most sites indicating pronounced responsiveness of stomatal conductance. A trend of increasing isotopic values across the past

  12. Horizontal and Vertical Simon Effect: Different Underlying Mechanisms?

    ERIC Educational Resources Information Center

    Vallesi, A.; Mapelli, D.; Schiff, S.; Amodio, P.; Umilta, C.

    2005-01-01

    Reaction times are usually faster when stimulus and response occur at the same location than when they do not, even if stimulus location is irrelevant to the task (Simon effect). This effect was found with both horizontal and vertical stimulus-response arrangements. The same mechanisms have been proposed to be involved in either case. Here, we…

  13. Mechanical behavior of carpal tunnel subsynovial connective tissue under compression.

    PubMed

    Goetz, Jessica E; Baer, Thomas E

    2011-01-01

    Subsynovial connective tissue (SSCT) is a fluid-permeated loose connective tissue that occupies the majority of the space in the carpal tunnel not occupied by the digital flexor tendons or the median nerve. It is arranged in layers around these more discrete structures, presumably to assist with tendon gliding. As a result of this arrangement, the compressive behavior and the fluid permeability of this tissue may substantially affect the stresses in the median nerve resulting from contact with its neighboring tendons or with the walls of the tunnel itself. These stresses may contribute to damage of the median nerve and the development of carpal tunnel syndrome. In this study, the fluid permeability and the compressive behavior of the SSCT were investigated to better understand the mechanics of this tissue and how it may mediate mechanical insult to the median nerve. A custom experimental apparatus was built to allow simultaneous measurement of tissue compression and fluid flow. Using Darcy's law, the average SSCT fluid permeability was 8.78×10(15) m(4)/Ns. The compressive behavior of the SSCT demonstrated time dependence, with an initial modulus of 395kPa gradually decreasing to a value of 285kPa. These baseline tissue data may serve as a mechanical norm (toward which pathological tissue might be returned, therapeutically) and may serve as essential properties to include in future mechanical models of the carpal tunnel. PMID:22096431

  14. MECHANICAL BEHAVIOR OF CARPAL TUNNEL SUBSYNOVIAL CONNECTIVE TISSUE UNDER COMPRESSION

    PubMed Central

    Goetz, Jessica E; Baer, Thomas E

    2011-01-01

    Subsynovial connective tissue (SSCT) is a fluid-permeated loose connective tissue that occupies the majority of the space in the carpal tunnel not occupied by the digital flexor tendons or the median nerve. It is arranged in layers around these more discrete structures, presumably to assist with tendon gliding. As a result of this arrangement, the compressive behavior and the fluid permeability of this tissue may substantially affect the stresses in the median nerve resulting from contact with its neighboring tendons or with the walls of the tunnel itself. These stresses may contribute to damage of the median nerve and the development of carpal tunnel syndrome. In this study, the fluid permeability and the compressive behavior of the SSCT were investigated to better understand the mechanics of this tissue and how it may mediate mechanical insult to the median nerve. A custom experimental apparatus was built to allow simultaneous measurement of tissue compression and fluid flow. Using Darcy’s law, the average SSCT fluid permeability was 8.78×1015 m4/Ns. The compressive behavior of the SSCT demonstrated time dependence, with an initial modulus of 395kPa gradually decreasing to a value of 285kPa. These baseline tissue data may serve as a mechanical norm (toward which pathological tissue might be returned, therapeutically) and may serve as essential properties to include in future mechanical models of the carpal tunnel. PMID:22096431

  15. Underlying mechanisms of transient luminous events: a review

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.; Hayakawa, M.

    2012-08-01

    Transient luminous events (TLEs) occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency) and ELF (extremely low frequency) phenomena associated with sprites.

  16. Mechanical Solder Characterisation Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Meier, Karsten; Roellig, Mike; Wiese, Steffen; Wolter, Klaus-Juergen

    2010-11-01

    Using a setup for high strain rate tensile experiments the mechanical behavior of two lead-free tin based solders is investigated. The first alloy is SnAg1.3Cu0.5Ni. The second alloy has a higher silver content but no addition of Ni. Solder joints are the main electrical, thermal and mechanical interconnection technology on the first and second interconnection level. With the recent rise of 3D packaging technologies many novel interconnection ideas are proposed with innovative or visionary nature. Copper pillar, stud bump, intermetallic (SLID) and even spring like joints are presented in a number of projects. However, soldering will remain one of the important interconnect technologies. Knowing the mechanical properties of solder joints is important for any reliability assessment, especially when it comes to vibration and mechanical shock associated with mobile applications. Taking the ongoing miniaturization and linked changes in solder joint microstructure and mechanical behavior into account the need for experimental work on that issue is not satisfied. The tests are accomplished utilizing miniature bulk specimens to match the microstructure of real solder joints as close as possible. The dogbone shaped bulk specimens have a crucial diameter of 1 mm, which is close to BGA solder joints. Experiments were done in the strain rate range from 20 s-1 to 600 s-1. Solder strengthening has been observed with increased strain rate for both SAC solder alloys. The yield stress increases by about 100% in the investigated strain rate range. The yield level differs strongly. A high speed camera system was used to assist the evaluation process of the stress and strain data. Besides the stress and strain data extracted from the experiment the ultimate fracture strain is determined and the fracture surfaces are evaluated using SEM technique considering rate dependency.

  17. Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation

    SciTech Connect

    Eapen, Dr. Jacob; Krishna, Dr Ram; Burchell, Timothy D; Murty, Prof K.L.

    2014-01-01

    Using Raman and X-ray photoelectron spectroscopy,we delineate the bond and defect structures in nuclear block graphite (NBG-18) under neutron and ion irradiation. The strengthening of the defect (D) peak in the Raman spectra under irradiation is attributed to an increase in the topological, sp2-hybridized defects. Using transmission electron microscopy, we provide evidence for prismatic dislocations as well as a number of basal dislocations dissociating into Shockley partials. The non-vanishing D peak in the Raman spectra, together with a generous number of dislocations, even at low irradiation doses, indicates a dislocation-mediated amorphization process in graphite.

  18. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    PubMed Central

    Luo, Guopei; Liu, Chen; Wu, Chuntao; Liu, Liang; Liu, Zuqiang; Ni, Quanxing; Long, Jiang; Yu, Xianjun

    2014-01-01

    As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs) and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer. PMID:24587996

  19. Peer influence: neural mechanisms underlying in-group conformity

    PubMed Central

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G.

    2012-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change. PMID:23482688

  20. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  1. Photooxidation of tetrahydrobiopterin under UV irradiation: possible pathways and mechanisms.

    PubMed

    Buglak, Andrey A; Telegina, Taisiya A; Lyudnikova, Tamara A; Vechtomova, Yulia L; Kritsky, Mikhail S

    2014-01-01

    Tetrahydrobiopterin (H4 Bip) is a cofactor for several key enzymes, including NO synthases and aromatic amino acid hydroxylases (AAHs). Normal functioning of the H4 Bip regeneration cycle is extremely important for the work of AAHs. Oxidized pterins may accumulate if the H4 Bip regeneration cycle is disrupted or if H4 Bip autoxidation occurs. These oxidized pterins can photosensitize the production of singlet molecular oxygen (1)O2 and thus cause oxidative stress. In this context, we studied the photooxidation of H4 Bip in phosphate buffer at pH 7.2. We found that UV irradiation of H4 Bip affected its oxidation rate (quantum yield Φ300 = (2.7 ± 0.4) × 10(-3)). The effect of UV irradiation at λ = 350 nm on H4 Bip oxidation was stronger, especially in the presence of biopterin (Bip) (Φ350 = (9.7 ± 1.5) × 10(-3)). We showed that the rate of H4 Bip oxidation linearly depends on Bip concentration. Experiments with KI, a selective quencher of triplet pterins at micromolar concentrations, demonstrated that the oxidation is sensitized by the triplet state biopterin (3) Bip. Apparently, electron transfer sensitization (Type-I mechanism) is dominant. Energy transfer (Type-II mechanism) and singlet oxygen generation play only a secondary role. The mechanisms of H4 Bip photooxidation and their biological meaning are discussed. PMID:24773158

  2. Investigations of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.; Hasan, M.; Chao, David (Technical Monitor)

    2003-01-01

    In this work a building block type of approach is used so that a basic understanding of the processes that contribute to nucleate boiling heat fluxes under microgravity conditions can be developed. This understanding will lead to development of a mechanistic model for nucleate boiling heat transfer which could eventually be used as a design tool in space applications. Task Description Task 1: Fabrication of the Experimental Setup. Under this task, the test section and liquid holding and viewing chambers will be fabricated. Artificial cylinder cavities will be formed on silicon wafers. A single cavity and two or four cavities, with a prescribed spacing and size, will be formed. The desired nucleation wall superheat will be used to determine the size of the mouth of the cavities. Task 2: Experiments. The basic experiments for flow and temperature field around single and multiple (2 or 4 separated or merged bubbles growing on downward facing or inclined surfaces) will be carried out under normal gravity conditions. The experiments will be conducted at one atmosphere pressure, but liquid subcooling will be varied from 0 to 30C. Water and PF-5050 will be used as test liquids. Task 3: Analytical/Numerical Models. In this task, transient temperature and flow field in vapor and liquid will be determined during growth of a single bubble. Analysis will include the evolution of the vapor-liquid interface and development of microlayer underneath the bubbles. For merged bubbles, detailed calculations of flow and temperature field will be carried out for transient shapes of vapor stems supporting a large bubble and the corresponding evaporation rate. Flow and temperature field for a bubble sliding along a heated wall will also be determined. Microgravity conditions will be simulated and a framework of a numerical tool for prediction of nucleate boiling heat fluxes under microgravity conditions will be developed. Task 4: Experiments in a KC-135. To understand bubble growth and

  3. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  4. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  5. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture < 200 μm. Color scale II (green/yellow) denotes reacted regions of the fracture surfaces and the matrix adjacent to the fracture. Persistent flow paths are clearly observed in panel (b) (color scale III corresponds to aperture > 200 μm) leading to negligible change in permeability after a 6-month run.

  6. Generalized coherent states under deformed quantum mechanics with maximum momentum

    NASA Astrophysics Data System (ADS)

    Ching, Chee Leong; Ng, Wei Khim

    2013-10-01

    Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.

  7. Electronic, mechanical and dielectric properties of silicane under tensile strain

    NASA Astrophysics Data System (ADS)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  8. Electronic, mechanical and dielectric properties of silicane under tensile strain

    SciTech Connect

    Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  9. Cellular mechanisms underlying growth asymmetry during stem gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.

  10. Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins*

    PubMed Central

    Mendes-Pinto, Maria M.; Galzerano, Denise; Telfer, Alison; Pascal, Andrew A.; Robert, Bruno; Ilioaia, Cristian

    2013-01-01

    The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets. PMID:23720734

  11. Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins.

    PubMed

    Mendes-Pinto, Maria M; Galzerano, Denise; Telfer, Alison; Pascal, Andrew A; Robert, Bruno; Ilioaia, Cristian

    2013-06-28

    The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets. PMID:23720734

  12. Mechanisms underlying vertebrate limb regeneration: lessons from the salamander.

    PubMed

    Brockes, Jeremy P; Gates, Phillip B

    2014-06-01

    Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach. PMID:24849229

  13. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  14. Molecular mechanisms underlying the exceptional adaptations of batoid fins.

    PubMed

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R; Shubin, Neil H

    2015-12-29

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  15. Analysis of thermal conductivity of polymeric nanocomposites under mechanical loading

    NASA Astrophysics Data System (ADS)

    Yu, Suyoung; Yang, Seunghwa; Cho, Maenghyo

    2013-12-01

    When the plastic deformation is applied to neat polymer, the polymer chains are aligned and the thermal conductivity of neat polymer increases linearly along the loading direction. However, the thermal conductivity change of nanocomposites consisting of polymer matrix and nanofillers during plastic deformation is not simple. The volume fraction and size of nanofillers scarcely affect the structural change of polymer chains during the plastic deformation. In this study, the structural change of polymeric materials according to the mechanical loading and its effect on the thermal transport properties are investigated through a molecular dynamics simulation. To investigate the effects of nanofiller, its volume fraction, and size on the thermal transport properties, the unit cells of neat amorphous nylon 6 and nanocomposites consisting of amorphous nylon 6 matrix and spherical silica particles are prepared. The molecular unit cells are uniaxially stretched by applying constant strain along the loading directions. Then, non-equilibrium molecular dynamics (NEMD) simulations are performed to estimate the thermal conductivities during plastic deformation. The alignment of polymer chains is analyzed by tracing the orientation correlation function of each polymer molecule and the free volume change during the mechanical loading is also analyzed.

  16. Implicit Misattribution as a Mechanism Underlying Evaluative Conditioning

    PubMed Central

    Jones, Christopher R.; Fazio, Russell H.; Olson, Michael A.

    2009-01-01

    Evaluative conditioning (EC) refers to the formation or change of an attitude towards an object following that object’s pairing with positively or negatively valenced stimuli. We provide evidence that EC can occur through an implicit misattribution mechanism in which an evaluative response evoked by a valenced stimulus is incorrectly and implicitly attributed to another stimulus, forming or changing an attitude towards this other stimulus. Five studies measured or manipulated variables related to the potential for the misattribution of an evaluation, or “source confusability.” Greater EC was observed when participants’ eye gaze shifted frequently between a valenced and neutral stimulus (Studies 1 & 2), when the two stimuli appeared in close spatial proximity (Study 3), and when the neutral stimulus was made more perceptually salient than the valenced stimulus due to its larger size (Study 4). In other words, conditions conducive to source confusability increased EC. Study 5 provided evidence for multiple mechanisms of EC by comparing the effects of mildly evocative valenced stimuli (those evoking responses that might more easily be misattributed to another object) to more strongly evocative stimuli. PMID:19379028

  17. Neuropharmacological Mechanisms Underlying the Neuroprotective Effects of Methylphenidate

    PubMed Central

    Volz, T.J

    2008-01-01

    Methylphenidate is a psychostimulant that inhibits the neuronal dopamine transporter. In addition, methylphenidate has the intriguing ability to provide neuroprotection from the neurotoxic effects of methamphetamine and perhaps also Parkinson’s disease; both of which may likely involve the abnormal accumulation of cytoplasmic dopamine inside dopaminergic neurons and the resulting formation of dopamine-associated reactive oxygen species. As delineated in this review, the neuroprotective effects of methylphenidate are due, at least in part, to its ability to attenuate or prevent this abnormal cytoplasmic dopamine accumulation through several possible neuropharmacological mechanisms. These may include 1) direct interactions between methylphenidate and the neuronal dopamine transporter which may attenuate or prevent the entry of methamphetamine into dopaminergic neurons and may also decrease the synthesis of cytoplasmic dopamine through a D2 receptor-mediated signal cascade process, and 2) indirect effects upon the functioning of the vesicular monoamine transporter-2 which may increase vesicular dopamine sequestration through both vesicle trafficking and the kinetic upregulation of the vesicular monoamine transporter-2 protein. Understanding these neuropharmacological mechanisms of methylphenidate neuroprotection may provide important insights into the physiologic regulation of dopaminergic systems as well as the pathophysiology of a variety of disorders involving abnormal dopamine disposition ranging from substance abuse to neurodegenerative diseases such as Parkinson’s disease. PMID:19587858

  18. Reliability of piezoceramic patch sensors under cyclic mechanical loading

    NASA Astrophysics Data System (ADS)

    Thielicke, Bärbel; Gesang, Thomas; Wierach, Peter

    2003-12-01

    Piezoceramic patch sensors have to withstand the primary stresses and strains of a structure during operation. In the leading project 'Adaptronics' a lifespan of 106 cycles at 0.1% strain was required for sensors applied on components of steel and carbon fibre reinforced plastic (CFRP). In order to test the reliability of the patches themselves and of their adhesion on the substrate, special four-point bending tests were carried out under quasistatic loading and under cyclic loading at different strain levels. The specimens consisted in sheets of steel and CFRP as substrates on which the newly developed patches with embedded piezoelectric foils and fibres were glued. In the quasistatic bending tests the performance of each sensor was characterized by measuring the sensor signal (charge) as a function of strain before and after cycling. Damage of the specimens would result in a decreasing slope of the charge-strain-curve after cycling. However, all the specimens tested survived 107 cycles up to 0.12% strain without marked loss of performance.

  19. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    PubMed

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. PMID:26006188

  20. Mechanical Behaviour of Reservoir Rock Under Brine Saturation

    NASA Astrophysics Data System (ADS)

    Shukla, Richa; Ranjith, P. G.; Choi, S. K.; Haque, A.; Yellishetty, Mohan; Hong, Li

    2013-01-01

    Acoustic emissions (AE) and stress-strain curve analysis are well accepted ways of analysing crack propagation and monitoring the various failure stages (such as crack closure, crack initiation level during rock failure under compression) of rocks and rock-like materials. This paper presents details and results of experimental investigations conducted for characterizing the brittle failure processes induced in a rock due to monocyclic uniaxial compression on loading of two types of sandstone core samples saturated in NaCl brines of varying concentration (0, 2, 5, 10 and 15 % NaCl by weight). The two types of sandstone samples were saturated under vacuum for more than 45 days with the respective pore fluid to allow them to interact with the rocks. It was observed that the uniaxial compressive strength and stress-strain behaviour of the rock specimens changed with increasing NaCl concentration in the saturating fluid. The acoustic emission patterns also varied considerably for increasing ionic strength of the saturating brines. These observations can be attributed to the deposition of NaCl crystals in the rock's pore spaces as well some minor geo-chemical interactions between the rock minerals and the brine. The AE pattern variations could also be partly related to the higher conductivity of the ionic strength of the high-NaCl concentration brine as it is able to transfer more acoustic energy from the cracks to the AE sensors.

  1. Mechanism and kinetics of parathion degradation under ultrasonic irradiation.

    PubMed

    Yao, Juan-Juan; Gao, Nai-Yun; Li, Cong; Li, Lei; Xu, Bin

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N(2) in air takes part in the parathion degradation through the formation of NO(2) under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations. PMID:19854573

  2. Mechanisms underlying the antimotion sickness effects of psychostimulants

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Lewis, Michael R.

    1987-01-01

    Data related to the mechanism responsible for the antimotion sickness effects of psychostimulants such as amphetamine are examined. From the analysis of current literature and new evidence, the following three hypotheses are suggested: (1) selective enhancement of dopaminergic, but not noradrenergic, transmission is sufficient to account for amphetamine-induced resistance and, perhaps, for natural resistance to motion sickness; (2) the site of this enhanced dopaminergic transmission is probably within the basal ganglia; and (3) the neuropharmacology of the basal ganglia, but not of the brain-stem vestibular areas, can account for the therapeutic synergism of scopolamine and amphetamine. The therapeutic action of psychostimulants may be dissociable from some of their side effects, particularly cardiovascular effects related to peripheral norepinephrine release.

  3. The CHAIN program: forging evolutionary links to underlying mechanisms.

    PubMed

    Neuwald, Andrew F

    2007-11-01

    Proteins evolve new functions by modifying and extending the molecular machinery of an ancestral protein. Such changes show up as divergent sequence patterns, which are conserved in descendent proteins that maintain the divergent function. After multiply-aligning a set of input sequences, the CHAIN program partitions the sequences into two functionally divergent groups and then outputs an alignment that is annotated to reveal the selective pressures imposed on divergent residue positions. If atomic coordinates are also provided, hydrogen bonds and other atomic interactions associated with various categories of divergent residues are graphically displayed. Such analyses establish links between protein evolutionary divergence and functionally crucial atomic features and, as a result, can suggest plausible molecular mechanisms for experimental testing. This is illustrated here by its application to bacterial clamp-loader ATPases. PMID:17962021

  4. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    PubMed

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory. PMID:19140656

  5. Neural Mechanisms Underlying Anxiety-Chronic Pain Interactions.

    PubMed

    Zhuo, Min

    2016-03-01

    Chronic pain is a major medical problem that is resistant to conventional medical intervention. It also causes emotional changes such as anxiety and fear. Furthermore, anxiety or fear often enhances the suffering of pain. Based on recent studies, I propose chronic anxiety triggered by injury or chronic pain is mediated through presynaptic long-term potentiation (LTP) in the anterior cingulate cortex (ACC), a key cortical region for pain perception. Conversely, NMDA receptor-dependent postsynaptic LTP plays a more important role in behavioral sensitization in chronic pain. Thus, postsynaptic and presynaptic LTP in ACC neurons are likely the key cellular mechanisms for causing chronic pain and its associated anxiety, respectively. This suggests potential targets for treating chronic pain and related anxiety. PMID:26878750

  6. Mechanisms underlying sporadic cerebral small vessel disease: insights from neuroimaging

    PubMed Central

    Wardlaw, JM; Smith, C; Dichgans, M

    2013-01-01

    The term “cerebral small vessel disease” (SVD) describes a range of neuroimaging, pathological and associated clinical features. The latter range from none, to discrete focal neurological symptoms (stroke), to insidious global neurological dysfunction and dementia. The public health burden is considerable. The pathogenesis is largely unknown. Although associated with vascular risk factors, and generally considered to result from an intrinsic cerebral arteriolar occlusive disease, the pathological processes leading to the arteriolar disease, how these result in brain disease, how SVD lesions contribute to neurological or cognitive symptoms and the relationship to risk factors, have been the subject of much speculation. Pathology often reflects end-stage disease making determination of the earliest stages difficult. Neuroimaging provides considerable insights: the small vessels are not easily seen themselves, but the effects of their malfunction on the brain can be tracked on detailed brain imaging. We review the growing evidence for the most likely mechanisms. PMID:23602162

  7. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum

    PubMed Central

    Lee, Ka Hung; Mathews, Paul J.; Reeves, Alexander M.B.; Choe, Katrina Y.; Jami, Shekib A.; Serrano, Raul E.; Otis, Thomas S.

    2015-01-01

    SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus. PMID:25843404

  8. Common Mechanisms Underlying Epileptogenesis and the Comorbidities of Epilepsy.

    PubMed

    Mazarati, Andrey; Sankar, Raman

    2016-01-01

    The importance of comorbidities in determining the quality of life of individuals with epilepsy and their families has received increasing attention in the past decade. Along with it has come a recognition that in some individuals, certain comorbidities may have preexisted, and may have contributed to their developing epilepsy. Many mechanisms are capable of interconnecting different dysfunctions that manifest as distinct disorders, often diagnosed and managed by different specialists. We review the human data from the perspective of epidemiology as well as insights gathered from neurodiagnostic and endocrine studies. Animal studies are reviewed to refine our mechanistic understanding of the connections, because they permit the narrowing of variables, which is not possible when studying humans. PMID:27371669

  9. Breather mechanism of the void ordering in crystals under irradiation

    NASA Astrophysics Data System (ADS)

    Dubinko, Vladimir

    2009-09-01

    The void ordering has been observed in very different radiation environments ranging from metals to ionic crystals. In the present paper the ordering phenomenon is considered as a consequence of the energy transfer along the close packed directions provided by self-focusing discrete breathers. The self-focusing breathers are energetic, mobile and highly localized lattice excitations that propagate great distances in atomic-chain directions in crystals. This points to the possibility of atoms being ejected from the void surface by the breather-induced mechanism, which is similar to the focuson-induced mechanism of vacancy emission from voids proposed in our previous paper. The main difference between focusons and breathers is that the latter are stable against thermal motion. There is evidence that breathers can occur in various crystals, with path lengths ranging from 104 to 107 unit cells. Since the breather propagating range can be larger than the void spacing, the voids can shield each other from breather fluxes along the close packed directions, which provides a driving force for the void ordering. Namely, the vacancy emission rate for "locally ordered" voids (which have more immediate neighbors along the close packed directions) is smaller than that for the "interstitial" ones, and so they have some advantage in growth. If the void number density is sufficiently high, the competition between them makes the "interstitial" voids shrink away resulting in the void lattice formation. The void ordering is intrinsically connected with a saturation of the void swelling, which is shown to be another important consequence of the breather-induced vacancy emission from voids.

  10. Multiple mechanisms underlying troglitazone-induced mitochondrial permeability transition

    SciTech Connect

    Okuda, Takuya; Norioka, Misaki; Shitara, Yoshihisa; Horie, Toshiharu

    2010-11-01

    Troglitazone, a thiazolidinedione class antidiabetic drug, was withdrawn from the market because of its severe idiosyncratic hepatotoxicity. It causes a mitochondrial permeability transition (MPT), which may in part contribute to its hepatotoxicity. In the present study, the mechanism of troglitazone mitochondrial toxicity was investigated in isolated rat liver mitochondria. Mitochondrial swelling induced by 10 {mu}M troglitazone was attenuated by bromoenol lactone (BEL), an inhibitor of Ca{sup 2+}-independent phospholipase A{sub 2} (iPLA{sub 2}). In contrast, that induced by 50 {mu}M troglitazone was exacerbated by BEL. This exacerbation was diminished by addition of 2 mM glutathione, an antioxidant. Oxygen consumption by state 3 respiration in isolated mitochondria was also decreased by troglitazone, but it was not affected by BEL. Mitochondrial swelling induced by 10 {mu}M troglitazone was completely attenuated in the absence of Ca{sup 2+} while that induced by 50 {mu}M troglitazone was not affected. Addition of 1 {mu}M cyclosporin A (CsA), an inhibitor of MPT pores, completely attenuated swelling induced by 10 {mu}M troglitazone while it only partly diminished that induced by 50 {mu}M troglitazone. Thus, the MPT induced by 10 and 50 {mu}M troglitazone are regulated by different mechanism; the MPT induced by 10 {mu}M troglitazone is regulated by the activation of iPLA{sub 2} and caused by the opening of CsA-regulating MPT pores followed by accumulation of Ca{sup 2+} in mitochondria, while that induced by 50 {mu}M troglitazone is partly regulated by reactive oxygen species and mainly caused by the opening of CsA-insensitive MPT pores.

  11. Mechanical behavior of enamel rods under micro-compression.

    PubMed

    Yilmaz, Ezgi D; Schneider, Gerold A

    2016-10-01

    Exploring the structural strategies behind the optimized mechanical performance of hierarchical materials has been a focal point of extensive research over the past decades. Dental enamel is one such natural material, comprising a complicated hierarchical structure with a high level of mineral content. Bundles of hydroxyapatite nanofibers (level-1) Ø: 50nm form enamel rods (level-2) Ø: 5µm, which constitute bands (level-3) Ø: 50µm. While a number of studies in the last decade using advanced fracture mechanical methods have revealed an increasing trend in the fracture toughness of enamel with each additional level of hierarchy, there is still no general agreement on how hierarchical structuring affects the stiffness and strength of enamel. In this study, we identified the stiffness and strength values of the isolated rods (level-2) via micro-compression. The rods were tested in three different orientations with respect to the loading direction: parallel, perpendicular and oblique. The highest stress level withstood before catastrophic fracture was observed to be ~1500MPa in perpendicular orientation. In the oblique loading, the specimens failed by shearing and exhibited a damage-tolerant deformation behavior, which was attributed to the conjugation spots identified between the rods and interrod sheets. The elastic modulus was ~60GPa on average and similar in all orientations. The isotropy in stiffness was attributed to the mineral contacts residing between rods. This was verified by an analytical model derived for level-1 and extended over higher hierarchical levels. The experimental results obtained at level-2 were comparable to the compressive strength and stiffness values reported for level-1 and bulk enamel in the literature. In general, our results suggest that hierarchy has only a minor influence on the compressive properties of enamel. PMID:27415405

  12. Algorithmic Mechanisms for Reliable Crowdsourcing Computation under Collusion

    PubMed Central

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A.; Pareja, Daniel

    2015-01-01

    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers’ decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game. PMID:25793524

  13. Assessing mechanical vulnerability in water distribution networks under multiple failures

    NASA Astrophysics Data System (ADS)

    Berardi, Luigi; Ugarelli, Rita; Røstum, Jon; Giustolisi, Orazio

    2014-03-01

    Understanding mechanical vulnerability of water distribution networks (WDN) is of direct relevance for water utilities since it entails two different purposes. On the one hand, it might support the identification of severe failure scenarios due to external causes (e.g., natural or intentional events) which result into the most critical consequences on WDN supply capacity. On the other hand, it aims at figure out the WDN portions which are more prone to be affected by asset disruptions. The complexity of such analysis stems from the number of possible scenarios with single and multiple simultaneous shutdowns of asset elements leading to modifications of network topology and insufficient water supply to customers. In this work, the search for the most disruptive combinations of multiple asset failure events is formulated and solved as a multiobjective optimization problem. The higher vulnerability failure scenarios are detected as those causing the lower supplied demand due to the lower number of simultaneous failures. The automatic detection of WDN topology, subsequent to the detachments of failed elements, is combined with pressure-driven analysis. The methodology is demonstrated on a real water distribution network. Results show that, besides the failures causing the detachment of reservoirs, tanks, or pumps, there are other different topological modifications which may cause severe WDN service disruptions. Such information is of direct relevance to support planning asset enhancement works and improve the preparedness to extreme events.

  14. Understanding the Mechanisms Underlying Gambling Behaviour and Sleep.

    PubMed

    Loft, Marisa H; Loo, Jasmine M Y

    2015-12-01

    Problem gambling and sleep difficulty threaten health. Using the basis of self-regulatory theory, potential mechanisms for these problems were investigated. Fifty-nine treatment-seeking gamblers completed the Pittsburgh Sleep Quality Index (sleep difficulty), the Sleep Hygiene Index (negative sleep habits), the Problem Gambling Severity Index and measures of self-regulatory capacity and arousability with data entered into regression analyses. Results supported the relationship between problem gambling and greater sleep difficulty (β = .18, t = 3.22, p < .01). Self-regulatory capacity mediated the relationship between problem gambling and sleep difficulty (R (2) change = .15, F(2, 57) = 12.14, β = -.45, t = -3.45, p < .001) as well as between problem gambling and negative sleep habits; R (2) change = .17, F(2, 57) = 13.57, β = -.28, t = -3.76, p < .001. Arousability predicted sleep difficulty (β = .15, t = 3.07, p < .01) and negative sleep habits (β = .40, t = 5.40, p < .01) but showed no relationship with problem gambling (r = .09, ns). Self-regulatory capacity represents an important mediator of the relationship between problem gambling and sleep-related behaviour and if targeted could reduce behavioural threats to health. PMID:25381635

  15. Consensus Paper: Pathological Mechanisms Underlying Neurodegeneration in Spinocerebellar Ataxias

    PubMed Central

    Matilla-Dueñas, A.; Ashizawa, T.; Brice, A.; Magri, S.; McFarland, K. N.; Pandolfo, M.; Pulst, S. M.; Riess, O.; Rubinsztein, D. C.; Schmidt, J.; Schmidt, T.; Scoles, D. R.; Stevanin, G.; Taroni, F.; Underwood, B. R.; Sánchez, I.

    2014-01-01

    Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice. PMID:24307138

  16. Coordination of frontline defense mechanisms under severe oxidative stress.

    PubMed

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays. PMID:20664639

  17. Molecular mechanisms underlying KVS-1-MPS-1 complex assembly.

    PubMed

    Wang, Yi; Sesti, Federico

    2007-11-01

    Formation of heteromeric complexes between voltage-gated K(+) (Kv) channels and accessory (beta) subunits is a widespread means to generate heterogeneity of K(+) current in the nervous system. Here we investigate the principles that determine the interactions of Caenorhabditis elegans MPS-1, a bifunctional beta-subunit that possesses kinase activity, with Kv channels. MPS-1 belongs to the evolutionarily conserved family of KCNE beta-subunits that modulate the functional properties of a variety of Kv channels and that, when defective, can cause congenital and acquired disease in Homo sapiens. In Chinese hamster ovary cells, MPS-1 forms stable complexes with different alpha-subunits. The transmembrane domain of MPS-1 is necessary and sufficient for MPS-1 complex formation. The hydropathicity of the transmembrane domain is an important factor controlling MPS-1 assembly. A highly hydrophobic MPS-1 mutant fails to interact with its endogenous channel partners when transgenically expressed in living worms. The hydropathic mechanism does not require specific points of contact between interacting proteins. This may allow MPS-1 to assemble with various Kv channels, presumably modifying the electrical properties of each. PMID:17604313

  18. Risk factors for pancreatic cancer: underlying mechanisms and potential targets

    PubMed Central

    Kolodecik, Thomas; Shugrue, Christine; Ashat, Munish; Thrower, Edwin C.

    2014-01-01

    Purpose of the review: Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer. Recent findings: Intracellular activation of both pancreatic enzymes and the transcription factor NF-κB are important mechanisms that induce acute pancreatitis (AP). Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogenic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16) can ultimately lead to development of pancreatic cancer. Summary: Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions. PMID:24474939

  19. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms

    PubMed Central

    Hernández, Antonio F.; Menéndez, Pablo

    2016-01-01

    Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events. PMID:27043530

  20. Pathological mechanisms underlying aneurysmal subarachnoid haemorrhage and vasospasm.

    PubMed

    Penn, David L; Witte, Samantha R; Komotar, Ricardo J; Sander Connolly, E

    2015-01-01

    Aneurysmal subarachnoid haemorrhage is a cerebrovascular disease associated with an overall mortality as high as 50%. Delayed ischaemic neurologic deficits are a major contributor to this statistic, as well as the significant morbidity associated with the disease. Studies examining the pathophysiologic events causing these devastating changes in cerebral blood flow have identified several mechanisms which are thought to contribute to the development of delayed ischaemic neurological deficits, perhaps the most damaging of which are increased intracranial pressure and cerebral vasospasm. In addition, the presence of blood in the subarachnoid space can trigger a myriad of reactions resulting in increased capillary permeability, breakdown of the blood-brain barrier, and inflammation in surrounding neural tissue that adds to the devastating effects of haemorrhage. A detailed understanding of the post-haemorrhagic cellular and molecular changes that contribute to the development of cerebral ischaemia and vasospasm is imperative to the formulation of treatment and prevention options for subarachnoid haemorrhage patients. Despite a large body of research within this field, a complete understanding of rupture and vasospasm remains elusive. This study reviews the role of vasoactive substances, such as endothelin-1, as well as the histochemistry and molecular pathology of post-haemorrhage inflammation in the development of vasospasm and cerebral ischaemia. PMID:25113969

  1. Improving beef color stability: practical strategies and underlying mechanisms.

    PubMed

    Suman, Surendranath P; Hunt, Melvin C; Nair, Mahesh N; Rentfrow, Gregg

    2014-11-01

    This paper overviewed the current literature on strategies to improve beef color and attempted to logically explain the fundamental mechanisms involved. Surface color and its stability are critical traits governing the marketability of fresh beef when sold, whereas internal cooked color is utilized as an indicator for doneness at the point of consumption. A multitude of exogenous and endogenous factors interact with the redox biochemistry of myoglobin in post-mortem skeletal muscles. The scientific principles of these biomolecular interactions are applied by the meat industry as interventions for pre-harvest (i.e. diet, animal management) and post-harvest (i.e. packaging, aging, antioxidants) strategies to improve color stability in fresh and cooked beef. Current research suggests that the effects of several of these strategies are specific to type of animal, feeding regimen, packaging system, and muscle source. Meat scientists should explore novel ways to manipulate these factors using a biosystems approach to achieve improved beef color stability, satisfy consumer perception, and increase market profitability. PMID:25041654

  2. Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment

    PubMed Central

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations. PMID:24349211

  3. Mechanisms underlying global stereopsis in fovea and periphery.

    PubMed

    Witz, Nirel; Hess, Robert F

    2013-07-19

    To better understand the pooling properties underlying global stereopsis we examined the relationship between carrier luminance spatial frequency and modulator disparity spatial frequency. Thresholds for detecting global sinusoidal disparity corrugations of spatially band-pass noise were measured as a function of modulator disparity spatial frequency for both centrally and peripherally located stimuli using a standard 2-IFC task. We found a characteristic relationship that depended on modulator disparity spatial frequency. At high modulator disparity spatial frequencies (>1c/d), there is an optimal ratio of around 2.6, whereas at low modulator disparity spatial frequencies, there is an optimal absolute carrier luminance spatial frequency (i.e., 3c/d). In the periphery, vision is restricted to modulator disparity spatial frequencies below 1c/d and, as a consequence, following the above rule, there is an optimum absolute carrier luminance spatial frequency that reduces in spatial frequency with increasing eccentricity. This finding is consistent with there being more than one channel processing global stereo that is subsequently confirmed using a 2×2 AFC detection/discrimination paradigm. Furthermore, because of the different carrier/modulator relationships in central and peripheral vision, peripheral global stereo cannot be simply related to central global stereo by a scaling factor and thus cannot be simply due to cortical magnification, as originally thought. PMID:23680486

  4. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  5. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    NASA Astrophysics Data System (ADS)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  6. Neural network mechanisms underlying stimulus driven variability reduction.

    PubMed

    Deco, Gustavo; Hugues, Etienne

    2012-01-01

    It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits. PMID:22479168

  7. Mechanisms underlying angiotensin II-induced calcium oscillations

    PubMed Central

    Edwards, Aurélie; Pallone, Thomas L.

    2008-01-01

    To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes. PMID:18562632

  8. Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower

    PubMed Central

    Theissen, Guenter; Melzer, Rainer

    2007-01-01

    Background Understanding the mode and mechanisms of the evolution of the angiosperm flower is a long-standing and central problem of evolutionary biology and botany. It has essentially remained unsolved, however. In contrast, considerable progress has recently been made in our understanding of the genetic basis of flower development in some extant model species. The knowledge that accumulated this way has been pulled together in two major hypotheses, termed the ‘ABC model’ and the ‘floral quartet model’. These models explain how the identity of the different types of floral organs is specified during flower development by homeotic selector genes encoding transcription factors. Scope We intend to explain how the ‘ABC model’ and the ‘floral quartet model’ are now guiding investigations that help to understand the origin and diversification of the angiosperm flower. Conclusions Investigation of orthologues of class B and class C floral homeotic genes in gymnosperms suggest that bisexuality was one of the first innovations during the origin of the flower. The transition from dimer to tetramer formation of floral homeotic proteins after establishment of class E proteins may have increased cooperativity of DNA binding of the transcription factors controlling reproductive growth. That way, we hypothesize, better ‘developmental switches’ originated that facilitated the early evolution of the flower. Expression studies of ABC genes in basally diverging angiosperm lineages, monocots and basal eudicots suggest that the ‘classical’ ABC system known from core eudicots originated from a more fuzzy system with fading borders of gene expression and gradual transitions in organ identity, by sharpening of ABC gene expression domains and organ borders. Shifting boundaries of ABC gene expression may have contributed to the diversification of the angiosperm flower many times independently, as may have changes in interactions between ABC genes and their target

  9. Untangling the web: Mechanisms underlying ER network formation

    PubMed Central

    Goyal, Uma; Blackstone, Craig

    2013-01-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970

  10. Mechanisms underlying optical spectroscopic changes in primate and human cortex

    NASA Astrophysics Data System (ADS)

    Hochman, Daryl

    2003-03-01

    The optical scattering and absorption properties of brain tissue are correlated with changes in the level of neuronal activity. These activity-evoked optical changes are known as 'intrinsic optical signals' (IOS). Such changes are thought to be generated by a combination of least three physiological mechanisms: i) changes in blood volume, ii) changes in blood oxygenation, and iii) blood-independent light scattering changes resulting from ion fluxes associated with neuronal activity. The usefulness of IOS depends upon knowledge of the spatial and temporal relationships between neuronal activity and changes in brain metabolism and cerebral hemodynamics. Our studies focus on better understanding these relationships. The two major hemodynamic changes evoked by increases in neuronal activity are i) increases in blood volume mediated by dilation of microscopic pial arterioles, and ii) increases in blood oxygenation in the veins draining regions of activated cortex. Our experimental strategy has been to acquire high-magnification data sufficient to resolve the dynamics occurring within the distinct microvascular compartments. At specific wavelengths, contributions of blood oxygenation and volume to the IOS can be directly determined by observing the optical changes occurring within the distinct microvascular compartments. In this way, we have directly identified wavelengths that are either highly 'volume-selective' or 'oxygenation-selective'. Blood volume maps correlate closely with the spatial locations of neuronal activity, while blood oxygenation maps are often maximal in the larger draining veins at sites distant to neuronal activity. We have characterized novel spatio-temporal phenomena including propagating circular waves of activity evoked by epileptic activity.

  11. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  12. Enhancement of sleep slow waves: underlying mechanisms and practical consequences

    PubMed Central

    Bellesi, Michele; Riedner, Brady A.; Garcia-Molina, Gary N.; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement. PMID:25389394

  13. The neural mechanisms underlying internally and externally guided task selection.

    PubMed

    Orr, Joseph M; Banich, Marie T

    2014-01-01

    While some prior work suggests that medial prefrontal cortex (MFC) regions mediate freely chosen actions, other work suggests that the lateral frontal pole (LFP) is responsible for control of abstract, internal goals. The present study uses fMRI to determine whether the voluntary selection of a task in pursuit of an overall goal relies on MFC regions or the LFP. To do so, we used a modified voluntary task switching (VTS) paradigm, in which participants choose an individual task to perform on each trial (i.e., a subgoal), under instructions to perform the tasks equally often and in a random order (i.e. the overall goal). In conjunction, we examined patterns of activation in the face of irrelevant, but task-related external stimuli that might nonetheless influence task selection. While there was some evidence that the MFC was involved in voluntary task selection, we found that the LFP and anterior insula (AI) were crucial to task selection in the pursuit of an overall goal. In addition, activation of the LFP and AI increased in the face of environmental stimuli that might serve as an interfering or conflicting external bias on voluntary task choice. These findings suggest that the LFP supports task selection according to abstract, internal goals, and leaves open the possibility that MFC may guide action selection in situations lacking in such top-down biases. As such, the current study represents a critical step towards understanding the neural underpinnings of how tasks are selected voluntarily to enable an overarching goal. PMID:23994316

  14. Lifestyle, health and disease prevention: the underlying mechanisms.

    PubMed

    Weisburger, J H

    2002-08-01

    International studies in geographic pathology provide background information that a disease may have a quite different incidence and resulting mortality as a function of area of residence. Investigations in animals can model fairly precisely what is learned through such international research, and provide the basis for examining relevant hypotheses and, more importantly, possible mechanisms of action. These approaches can yield public health recommendations and health promotion activities. Regular intake of foods rich in saturated fats, such as meat and certain dairy products, raises the risk of coronary heart disease, especially in smokers. The total mixed fat intake is associated with a higher incidence of the nutritionally linked cancers (i.e. of the postmenopausal breast, distal colon, prostate, pancreas, ovary and endometrium). Monounsaturated oils, such as olive or canola oil, are low-risk fats, as shown in animal models, and through the finding that the incidence of coronary heart and neoplastic diseases is lower in the Mediterranean region, where such oils are customarily used. Fish and fish oils are protective. The associated genotoxic carcinogens for several of these cancers, and also in heart disease causation, are heterocyclic amines, produced during the broiling and frying of creatinine-containing foods such as meats. Excessive salt intake is associated with high blood pressure and with stomach cancer, especially with inadequate intake of potassium, from fruits and vegetables, and calcium from certain vegetables and low-fat dairy products. Bran cereal fiber intake, especially with adequate calcium, yields an increased stool bulk, eliminating factors involved in colon and breast cancer. Vegetables and fruits, as well as soy products, are rich in antioxidants that are essential to lower disease risk stemming from reactive oxygen species in the body. Green and black tea are excellent sources of such beneficial antioxidants of a polyphenol nature, as are

  15. Corticonic models of brain mechanisms underlying cognition and intelligence

    NASA Astrophysics Data System (ADS)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  16. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  17. Activation of lipid peroxidation as a mechanism of plant cell rearrangements under microgravity

    NASA Astrophysics Data System (ADS)

    Baranenko, V. V.

    Activation of the lipid peroxidation (LP) is a universal process perturbating cell membranes under different unfavourable conditions. It is suggested that the LP can be one of the important mechanisms of plant cell rearrangements under altered gravity as well. The purpose of this investigation is to study the LP intensity in pea leaves and chloroplasts under 7- and 14-day clinorotation. The intensification of the LP under both terms of clinorotation particularly under more prolonged, is detected. The adaptive increase in the unsaturated fatty acid content under 7-day clinorotation and their minor decrease under 14-day clinorotation are revealed. The lowering of electron transport rate in both photosystems, particularly in PSI, is established. The results confirm that the LPmay be one of the mechanisms of plant cell rearrangements under microgravity.

  18. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments

    NASA Astrophysics Data System (ADS)

    Penso Mula, Jorge Antonio

    Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA

  19. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms.

    ERIC Educational Resources Information Center

    Meltzoff, Andrew N.; Moore, M. Keith

    1989-01-01

    Evaluated psychological mechanisms underlying imitation of facial actions in 40 newborn infants. Results showed imitation of head movement and a tongue-protrusion gesture. Subjects imitated from memory after displays had stopped. (RJC)

  20. Mechanisms Underlying Lexical Access in Native and Second Language Processing of Gender and Number Agreement

    ERIC Educational Resources Information Center

    Romanova, Natalia

    2013-01-01

    Despite considerable evidence suggesting that second language (L2) learners experience difficulties when processing morphosyntactic aspects of L2 in online tasks, the mechanisms underlying these difficulties remain unknown. The aim of this dissertation is to explore possible causes for the difficulties by comparing attentional mechanisms engaged…

  1. Recombination mechanism of point defect loss to coherent precipitates in alloys under irradiation

    NASA Astrophysics Data System (ADS)

    Turkin, A. A.; Bakai, A. S.

    A new mechanism of defect loss by enhanced recombination inside coherent precipitates in alloys under irradiation is described. The mechanism is examined quantitatively to find the microstructural parameters responsible for resistance to dimensional instability. The proposed model explains why radiation properties of Zr-Nb alloys depend on density of fine-grained precipitates of β Nb-phase.

  2. Diagnosing and treating chronic musculoskeletal pain based on the underlying mechanism(s).

    PubMed

    Clauw, Daniel J

    2015-02-01

    Until recently, most clinicians considered chronic pain to be typically due to ongoing peripheral nociceptive input (i.e., damage or inflammation) in the region of the body where the individual is experiencing pain. Clinicians are generally aware of a few types of pain (e.g., headache and phantom limb pain) where chronic pain is not due to such causes, but most do not realize there is not a single chronic pain state where any radiographic, surgical, or pathological description of peripheral nociceptive damage has been reproducibly shown to be related to the presence or severity of pain. The primary reason for this appears to be that both the peripheral and central nervous systems play a critical role in determining which nociceptive input being detected by sensory nerves in the peripheral tissues will lead to the perception of pain in humans. This manuscript reviews some of the latest findings regarding the neural processing of pain, with a special focus on how clinicians can use information gleaned from the history and physical examination to assess which mechanisms are most likely to be responsible for pain in a given individual, and tailors therapy appropriately. A critical construct is that, within any specific diagnostic category (e.g., fibromyalgia (FM), osteoarthritis (OA), and chronic low back pain (CLBP) are specifically reviewed), individual patients may have markedly different peripheral/nociceptive and neural contributions to their pain. Thus, just as low back pain has long been acknowledged to have multiple potential mechanisms, so also is this true of all chronic pain states, wherein some individuals will have pain primarily due to peripheral nociceptive input, whereas in others peripheral (e.g., peripheral sensitization) or central nervous system factors ("central sensitization" or "centralization" of pain via augmented pain processing in spinal and brain) may be playing an equally or even more prominent role in their pain and other symptoms. PMID

  3. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    NASA Astrophysics Data System (ADS)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  4. [The mechanical chemical attachment of artificial cartilage (PVA-hydrogel) to metal substrate (or underlying bone)].

    PubMed

    Gu, Z; Xiao, J; Lou, S

    2001-06-01

    The biocompatibility and tribological characteristics of PVA-hydrogel are excellent, but it is very difficult to make the artificial cartilage material (PVA-hydrogel) attach to the underlying bone. In this study, PVA-hydrogel is attached to the metal fibre mesh by means of micro-mechanical interlock methods at first, then the surface of metal fibre mesh is bonded to the underlying bone by the bone cement(PMMA). In this way, the artificial cartilage can be firmly attached to the underlying bone(or metal substrate). Microstructure analysis and mechanical tests show that the attachment between artificial cartilage and the metal substrate is firm. PMID:11450530

  5. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    NASA Astrophysics Data System (ADS)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  6. Selective Automated Perimetry Under Photopic, Mesopic, and Scotopic Conditions: Detection Mechanisms and Testing Strategies

    PubMed Central

    Simunovic, Matthew P.; Moore, Anthony T.; MacLaren, Robert E.

    2016-01-01

    Purpose Automated scotopic, mesopic, and photopic perimetry are likely to be important paradigms in the assessment of emerging treatments of retinal diseases, yet our knowledge of the photoreceptor mechanisms detecting targets under these conditions remains largely dependent on simian data. We therefore aimed to establish the photoreceptor/postreceptoral mechanisms detecting perimetric targets in humans under photopic, mesopic, and scotopic conditions and to make recommendations for suitable clinical testing strategies for selective perimetry. Methods Perimetric sensitivities within 30° of fixation were determined for eight wavelengths (410, 440, 480, 520, 560, 600, 640, and 680 nm) under scotopic, mesopic (1.3 cd.m−2) and photopic (10 cd.m−2) conditions. Data were fitted with vector combinations of rod, S-cone, nonopponent M+L-cone mechanism, and opponent M- versus L-cone mechanism templates. Results Scotopicperimetric sensitivity was determined by rods peripherally and by a combination of rods and cones at, and immediately around, fixation. Mesopic perimetric sensitivity was mediated by M+L-cones and S-cones centrally and by M+L-cones and rods more peripherally. Photopic perimetric sensitivity was determined by an opponent M- versus L-cone, a nonopponent M+L-cone, and an S-cone mechanism centrally and by a combination of an S-cone and an M+L-cone mechanism peripherally. Conclusions Under scotopic conditions, a 480-nm stimulus provides adequate isolation (≥28 dB) of the rod mechanism. Several mechanisms contribute to mesopic sensitivity: this redundancy in detection may cause both insensitivity to broadband white targets and ambiguity in determining which mechanism is being probed with short-wavelength stimuli. M- and L-cone–derived mechanisms are well isolated at 10 cd.m−2: these may be selectively probed by a stimulus at 640 nm (≥ 20 dB isolation). Translation Relevance In human observers, multiple mechanisms contribute to the detection of Goldmann

  7. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    SciTech Connect

    Kolmakova, T. V. Buyakova, S. P. Kul’kov, S. N.

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  8. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  9. Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Oderji, Hassan Yousefi; Farid, Nazar; Sun, Liying; Fu, Cailong; Ding, Hongbin

    2016-08-01

    A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

  10. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Ranjith, P. G.; Huang, Yan-Hua; Yin, Peng-Fei; Jing, Hong-Wen; Gui, Yi-Lin; Yu, Qing-Lei

    2015-05-01

    The mechanical damage characteristics of sandstone subjected to cyclic loading is very significant to evaluate the stability and safety of deep excavation damage zones. However to date, there are very few triaxial experimental studies of sandstone under cyclic loading. Moreover, few X-ray micro-computed tomography (micro-CT) observations have been adopted to reveal the damage mechanism of sandstone under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic loading tests and X-ray micro-CT observations were conducted to analyse the mechanical damage characteristics of sandstone with respect to different confining pressures. The results indicated that at lower confining pressures, the triaxial strength of sandstone specimens under cyclic loading is higher than that under monotonic loading; whereas at confining pressures above 20 MPa, the triaxial strength of sandstone under cyclic loading is approximately equal to that under monotonic loading. With the increase of cycle number, the crack damage threshold of sandstone first increases, and then significantly decreases and finally remains constant. Based on the damage evolution of irreversible deformation, it appears that the axial damage value of sandstone is all higher than the radial damage value before the peak strength; whereas the radial damage value is higher than the axial damage value after the peak strength. The evolution of Young's modulus and Poisson's ratio of sandstone can be characterized as having four stages: (i) Stage I: material strengthening; (ii) Stage II: material degradation; (iii) Stage III: material failure and (iv) Stage IV: structure slippage. X-ray micro-CT observations demonstrated that the CT scanning surface images of sandstone specimens are consistent with actual surface crack photographs. The analysis of the cross-sections of sandstone supports that the system of crack planes under triaxial cyclic loading is much more complicated than that under triaxial

  11. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  12. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    Basing on the analysis of available literature and the results of our own electron microscopic and radioautographic researches the data are presented about the morpho-functional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures under normal conditions and after exposure of animals (rats, monkeys, mice) to microgravity (SLS-2, Bion-11, BionM-1). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and surface osteocytes as well as to the bone-marrow stromal cells and to those lying on bone surfaces. As a response to the mechanical stimulus (microgravity) the system of stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, some of the osteoblasts undergo apoptosis. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts and bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn’t occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in these remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don’t result

  13. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    ERIC Educational Resources Information Center

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  14. Three-Month-Olds' Visual Preference for Faces and Its Underlying Visual Processing Mechanisms

    ERIC Educational Resources Information Center

    Turati, C.; Valenza, E.; Leo, I.; Simion, F.

    2005-01-01

    This study was aimed at investigating the face preference phenomenon and its underlying mechanisms at 3 months of age. Using an eye-tracker apparatus, Experiment 1 demonstrated that 3-month-olds prefer natural face images to unnatural ones, replicating and extending previous evidence obtained with schematic facelike stimuli. Experiments 2 and 3…

  15. Underlying Mechanisms in the Relationship between Africentric Worldview and Depressive Symptoms

    ERIC Educational Resources Information Center

    Neblett, Enrique W., Jr.; Hammond, Wizdom Powell; Seaton, Eleanor K.; Townsend, Tiffany G.

    2010-01-01

    This study examines underlying mechanisms in the relationship between an Africentric worldview and depressive symptoms. Participants were 112 African American young adults. An Africentric worldview buffered the association between perceived stress and depressive symptoms. The relationship between an Africentric worldview and depressive symptoms…

  16. Panoptic Performativity and School Inspection Regimes: Disciplinary Mechanisms and Life under Special Measures

    ERIC Educational Resources Information Center

    Perryman, Jane

    2006-01-01

    This paper looks at Ofsted and particularly special measures regimes as part of a disciplinary mechanism. It examines issues such as school effectiveness theories, the increasing powers of Ofsted, and life under special measures and links it to performativity, discipline and surveillance using the metaphor of the panopticon. The change in…

  17. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  18. A Framework for Studying Mechanisms Underlying Terminal Decline in Well-Being

    ERIC Educational Resources Information Center

    Gerstorf, Denis; Ram, Nilam

    2015-01-01

    Multiple facets of well-being are known to show steep end-of-life deteriorations. However, the underlying mechanisms and pathways are vague. Capitalizing on an earlier review of the existing empirical literature on terminal decline, we present a conceptual/methodological framework that can be used as a tool to structure future inquiry aimed at…

  19. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  20. Electronic and Mechanical Properties of Tetragonal Nb2Al Under High Pressure: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Wang, Wen-Peng; Wang, Yi-Gao; Li, Yong; Liu, Zheng-Tang

    2016-04-01

    We have investigated the structure, density of states, mechanical stability, elastic properties, and Debye temperature of tetragonal Nb2Al under high pressure using the generalized gradient approximation WC (GGA-WC) functional within density functional theory (DFT). Our obtained lattice constants were in good agreement with the reported experimental and theoretical data at zero pressure. The volume decreased with the increasing pressure. The effects of pressure on the electronic properties have been discussed. The elastic constants under pressure have been calculated, which all satisfied the stability criterion, meaning that tetragonal Nb2Al was mechanical stability from 0 to 100 GPa. Then, the mechanical properties including bulk modulus B, shear modulus G, Young's modulus E, G/B, and Poisson's ratio ν under pressure were determined using the Voigt-Reuss-Hill method. The G/B value suggested that tetragonal Nb2Al exhibited ductile behavior under pressure. Poisson's ratio indicated that the interatomic forces in tetragonal Nb2Al were mainly central forces. Finally, the transverse, longitudinal, and average sound velocities and Debye temperature of tetragonal Nb2Al under pressure have been estimated.

  1. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    NASA Astrophysics Data System (ADS)

    Qin, Qing-Hua; Wang, Ya-Nan

    2012-12-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper. The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model. Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model), but also predict the realtime development pattern of BMC and BFE, as well as the dynamics of osteoblasts (OBA), osteoclasts (OCA), nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme, which can hardly be monitored through experiment. In conclusion, the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass. More importantly, this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated. The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies. Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  2. Photolysis Kinetics, Mechanisms, and Pathways of Tetrabromobisphenol A in Water under Simulated Solar Light Irradiation.

    PubMed

    Wang, Xiaowen; Hu, Xuefeng; Zhang, Hua; Chang, Fei; Luo, Yongming

    2015-06-01

    The photolysis of tetrabromobisphenol A (TBBPA) in aqueous solution under simulated solar light irradiation was studied under different conditions to find out mechanisms and pathways that control the transformation of TBBPA during photoreaction. Particular attention was paid to the identification of intermediates and elucidation of the photolysis mechanism of TBBPA by UPLC, LC/MS, FT-ICR-MS, NMR, ESR, and stable isotope techniques ((13)C and (18)O). The results showed that the photolysis of TBBPA could occur under simulated solar light irradiation in both aerated and deaerated conditions. A magnetic isotope effect (MIE)-hydrolysis transformation was proposed as the predominant pathway for TBBPA photolysis in both cases. 2,6-Dibromophenol and two isopropylphenol derivatives were identified as photooxidation products of TBBPA by singlet oxygen. Reductive debromination products tribromobisphenol A and dibromobisphenol A were also observed. This is the first report of a photolysis pathway involving the formation of hydroxyl-tribromobisphenol A. PMID:25936366

  3. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest.

    PubMed

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  4. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest

    PubMed Central

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  5. Mechanism Underlying Stacking-Layer Effect of Dielectric Properties of Multilayer Ceramic Capacitors

    NASA Astrophysics Data System (ADS)

    Yokomizo, Satoshi; Hoshina, Takuya; Takeda, Hiroaki; Taniguchi, Katsuya; Mizuno, Youichi; Chazono, Hirokazu; Tsurumi, Takaaki

    2010-04-01

    The stacking-layer effect in multilayer ceramic capacitors (MLCCs) is a phenomenon in which the dielectric permittivity of dielectric layers increases with increasing number of layers. To elucidate the mechanism underlying this effect, we performed a simulation of residual stress in MLCCs by the finite element method (FEM) as well as dielectric measurements under uniaxial compressive stress. The FEM analysis revealed that tensile stress along the stacking direction was induced in dielectric layers owing to the difference in thermal expansion coefficient between internal electrodes and dielectric layers. The results of dielectric measurements indicated that the shell part in the dielectrics of MLCCs played an important role in the stress dependence of dielectric properties. The mechanism underlying the stacking-layer effect proposed in this study was based on the enhancement of polarization rotations in polar nanoregions in the relaxor by the tensile stress in dielectric layers.

  6. Mechanisms Underlying Sexual Violence Exposure and Psychosocial Sequelae: A Theoretical and Empirical Review

    PubMed Central

    Walsh, Kate; Galea, Sandro; Koenen, Karestan C.

    2015-01-01

    Sexual violence is associated with a range of negative mental health and behavioral sequelae, including posttraumatic stress disorder (PTSD), depression, substance abuse/dependence, risky sexual behavior, and interpersonal relationship problems. However, mechanisms underlying these associations are not well understood. Identifying mechanisms that explain linkages between sexual violence and poor outcomes is of paramount importance in determining when and how to intervene to prevent or reduce the magnitude of these outcomes. This review focuses on theories that have been proposed to explain risk of negative outcomes among sexual violence victims, including the development of traumagenic dynamics and emotion dysregulation. We also review promising biological mechanisms that may explain the risk of negative outcomes among sexual violence victims, including studies concerned with epigenetic and neurobiological mechanisms. PMID:25762853

  7. Effects of Delaying Transplanting on Agronomic Traits and Grain Yield of Rice under Mechanical Transplantation Pattern

    PubMed Central

    Liu, Qihua; Wu, Xiu; Ma, Jiaqing; Chen, Bocong; Xin, Caiyun

    2015-01-01

    A delay in the mechanical transplantation (MT) of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT). The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT. PMID:25875607

  8. Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H(+)-mediated mechanism.

    PubMed

    Zhang, Xue-Song; Tian, Ke; Hu, Jian-Yang; Jiang, Hong

    2015-12-01

    Graphitic carbon nitride (g-C3N4) is an emerging photocatalyst for organic pollutants degradation owing to its excellent stability and metal-free property. In this study, the photocatalytic activity of acidified g-C3N4 (ag-C3N4) was systematically investigated using rhodamine B (rhB) as a model organic pollutant. The results showed the photoreactivity of ag-C3N4 is significantly enhanced with the decrease of pH values. The apparent rate constant (kapp) of rhB degradation over ag-C3N4 is 11.59×10(-3)min(-1) at pH7.0 and it increases to 103.50×10(-3)min(-1) at pH3.0 under visible light. A series of analyses demonstrate that the photodegradation mechanism is a combination of a H(+)-promoted generation of OH and elevation of the redox potential of conduct band of C3N4. The change of surface properties of C3N4 caused by pH variation also affects the degradation of some zwitterionic compounds by changing the adsorption orientation of pollutants. The revealed mechanism of visible light-C3N4-rhB system is meaningful to broaden the usage of C3N4 to the photodegradation of other organic pollutants. PMID:26172516

  9. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  10. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning.

    PubMed

    Soares, Joao S; Sacks, Michael S

    2016-04-01

    While it has become axiomatic that mechanical signals promote in vitro engineered tissue formation, the underlying mechanisms remain largely unknown. Moreover, efforts to date to determine parameters for optimal extracellular matrix (ECM) development have been largely empirical. In the present work, we propose a two-pronged approach involving novel theoretical developments coupled with key experimental data to develop better mechanistic understanding of growth and development of dense connective tissue under mechanical stimuli. To describe cellular proliferation and ECM synthesis that occur at rates of days to weeks, we employ mixture theory to model the construct constituents as a nutrient-cell-ECM triphasic system, their transport, and their biochemical reactions. Dynamic conditioning protocols with frequencies around 1 Hz are described with multi-scale methods to couple the dissimilar time scales. Enhancement of nutrient transport due to pore fluid advection is upscaled into the growth model, and the spatially dependent ECM distribution describes the evolving poroelastic characteristics of the scaffold-engineered tissue construct. Simulation results compared favorably to the existing experimental data, and most importantly, distinguish between static and dynamic conditioning regimes. The theoretical framework for mechanically conditioned tissue engineering (TE) permits not only the formulation of novel and better-informed mechanistic hypothesis describing the phenomena underlying TE growth and development, but also the exploration/optimization of conditioning protocols in a rational manner. PMID:26055347