Sample records for medial tibial cartilage

  1. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    PubMed

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  2. Medial Meniscal Extrusion Relates to Cartilage Loss in Specific Femorotibial Subregions- Data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Wirth, W.; Guermazi, A.; Hunter, DJ; Resch, H.; Hochreiter, J.; Eckstein, F.

    2015-01-01

    Objective Medial meniscal extrusion is known to be related to structural progression of knee OA. However, it is unclear whether medial meniscal extrusion is more strongly associated with cartilage loss in certain medial femorotibial subregions than to others. Methods Segmentation of the medial tibial and femoral cartilage (baseline; 1-year follow-up) and the medial meniscus (baseline) was performed in 60 participants with frequent knee pain (age 61.3±9.2y, BMI 31.3±3.9 kg/m2) and with unilateral medial radiographic joint space narrowing (JSN) grade 1–3, using double echo steady state MR-images. Medial meniscal extrusion distance and extrusion area (%) between the external meniscal and tibial margin at baseline, and longitudinal medial cartilage loss in eight anatomical subregions were determined. Results A significant association (Pearson correlation coefficient) was seen between medial meniscus extrusion area in JSN knees and cartilage loss over one year throughout the entire medial femorotibial compartment. The strongest correlation was with cartilage loss in the external medial tibia (r=−0.34 [p<0.01] in JSN, and r=−0.30 [p=0.02] in noJSN knees). Conclusion Medial meniscus extrusion was associated with subsequent medial cartilage loss. The external medial tibial cartilage may be particularly vulnerable to thinning once the meniscus extrudes and its surface is “exposed” to direct, non-physiological, cartilage-cartilage contact. PMID:25988986

  3. Changes in articular cartilage following arthroscopic partial medial meniscectomy.

    PubMed

    Eichinger, Martin; Schocke, Michael; Hoser, Christian; Fink, Christian; Mayr, Raul; Rosenberger, Ralf E

    2016-05-01

    To examine degenerative changes in all cartilage surfaces of the knee following arthroscopic partial medial meniscectomy. For this prospective cohort study, 14 patients (five female) with a mean age of 47.9 ± 12.9 years who had undergone isolated arthroscopic partial medial meniscectomy were evaluated. Cartilage-sensitive magnetic resonance imaging (MRI) scans were acquired from the operated knees before the index operations, as well as at 6, 12, and 24 months after surgery. The MRI scans were assessed for the prevalence, severity, and size of cartilage degenerations. The clinical outcome was assessed using the SF-36 physical and mental component score and the International Knee Documentation Committee Knee Evaluation Form and was correlated with radiological findings. There was a significant increase in the severity of cartilage lesions in the medial tibial plateau (P = 0.019), as well as a trend towards an increase in the lateral tibial plateau. The size of the cartilage lesions increased significantly in the medial femoral condyle (P = 0.005) and lateral femoral condyle (P = 0.029), as well as in the patella (P = 0.019). Functional outcome scores improved significantly throughout the follow-up period. There was no correlation between cartilage wear and functional outcome. Arthroscopic partial medial meniscectomy is associated with adverse effects on articular cartilage and may lead to an increase in the severity and size of cartilage lesions. Post-operative cartilage wear predominantly affected the medial compartment and also affected the other compartments of the knee. Strategies to reduce subsequent osteoarthritic changes need to involve all compartments of the knee. IV.

  4. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    PubMed

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p < 0.05), allografts (1.43 ±0.98) and autografts (0.86 ±0.69); no statistical diferences existed between them. An increased level of metalloproteinases and TIMP-2 expression was obreved only after allografts with statistical differences among the allograft group, the autograft group nad the control group (p < 0.05). Our findings suggest that the meniscal graft does not protect the hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  5. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Kim, Raymond H

    2017-02-01

    Stress shielding is a well-recognized complication associated with total knee arthroplasty. However, this phenomenon has not been thoroughly described. Specifically, no study to our knowledge has evaluated the radiographic impact of utilizing various tibial component compositions on tibial stress shielding. We retrospectively reviewed 3 cohorts of 50 patients that had a preoperative varus deformity and were implanted with a titanium, cobalt chromium (CoCr), or an all polyethylene tibial implant. A radiographic comparative analysis was performed to evaluate the amount of medial tibial bone loss in each cohort. In addition, a clinical outcomes analysis was performed on the 3 cohorts. The CoCr was noted to have a statistically significant increase in medial tibial bone loss compared with the other 2 cohorts. The all polyethylene cohort had a statistically significantly higher final Knee Society Score and was associated with the least amount of stress shielding. The CoCr tray is the most rigid of 3 implants that were compared in this study. Interestingly, this cohort had the highest amount of medial tibial bone loss. In addition, 1 patient in the CoCr cohort had medial soft tissue irritation which was attributed to a prominent medial tibial tray which required revision surgery to mitigate the symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo

    PubMed Central

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E.; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  7. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  8. [Tibial periostitis ("medial tibial stress syndrome")].

    PubMed

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  9. Articular cartilage scores in cranial cruciate ligament-deficient dogs with or without bucket handle tears of the medial meniscus.

    PubMed

    Kaufman, Kathryn; Beale, Brian S; Thames, Howard D; Saunders, W Brian

    2017-01-01

    To compare articular cartilage scores in cranial cruciate ligament (CCL)-deficient dogs with or without concurrent bucket handle tears (BHT) of the medial meniscus. Retrospective case series. Client-owned dogs treated with arthroscopy and tibial plateau leveling osteotomy or extracapsular repair for complete CCL rupture (290 stifles from 264 dogs). Medical records and arthroscopic images were reviewed. Medial femoral condyle (MFC) and medial tibial plateau (MTP) cartilage was scored using the modified Outerbridge scale. Periarticular osteophytosis (PAO) and injury to the medial meniscus were recorded. Data were analyzed using Student's t-tests, Wilcoxon rank-sum test, and Fisher's exact test for changes in the stifle based on meniscal condition, body weight, and duration of lameness. PAO, MFC, and MTP articular cartilage scores were not significantly different in dogs with or without BHT. There were no significant differences in MFC or MTP scores when dogs were evaluated based on bodyweight and the presence or absence of a BHT. However, PAO formation was significantly increased in dogs weighing >13.6 kg and concurrent meniscal injury vs. dogs weighing <13.6 kg and concurrent meniscal injury (P < .001). Significantly more stifles with chronic lameness (40 of 89; 44.9%) had the highest PAO score of 2 reported compared to only 42 of 182 stifles (23.1%) with acute lameness (P < .001). The presence of a BHT of the medial meniscus was not associated with more severe arthroscopic articular cartilage lesions in the medial joint compartment at the time of surgery. © 2016 The American College of Veterinary Surgeons.

  10. Tibial avulsion fracture of the posterior root of the medial meniscus in children.

    PubMed

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2014-01-01

    Few reports have described avulsion fractures of the posterior root of the medial meniscus in skeletally immature patients. This lesion should not be overlooked as it damages the load absorptive (distributive) function of the meniscus, increasing the risk of cartilage degeneration. Two cases of displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures with a good clinical result at 2-years follow-up, and in one case, the avulsion was found at re-arthroscopy after 6 weeks to have healed.

  11. Larger medial femoral to tibial condylar dimension may trigger posterior root tear of medial meniscus.

    PubMed

    Chung, Jun Young; Song, Hyung Keun; Jung, Myung Kuk; Oh, Hyeong Tak; Kim, Joon Ho; Yoon, Ji-Sang; Min, Byoung-Hyun

    2016-05-01

    The major meniscal functions are load bearing, load distribution, and shock absorption by increasing the tibiofemoral joint (TFJ) contact area and dissipating axial loads by conversion into hoop stresses. The increased hoop strain stretches the meniscus in outward direction towards radius, causing extrusion, which is associated with the root tear and resultant degenerative osteoarthritis. Since the larger contact area of medial TFJ may increase the hoop stresses, we hypothesized that the larger medial femoral to tibial condylar dimension would contribute to the development of medial meniscus posterior root tear (MMPRT). Thus, the purpose of the study was to assess the relationship between MMPRT and medial femoral to tibial condylar dimension. A case-control study was conducted to compare medial femoral to tibial condylar dimensions of patients with complete MMPRT (n = 59) with those of demography-matched controls (n = 59) during the period from 2010 to 2013. In each patient, MRIs were reviewed and several parameters were measured including articulation width of medial femoral condyle (MFC) at 0°, 30°, 60°, and 90°, medial tibial condyle (MTC) width, degree of meniscal extrusion, and medial femoral to tibial condylar width ratio (MFC/MTC) at 0°, 30°, 60°, and 90°, respectively. Demographic and radiographic data were assessed. A larger medial femoral to tibial condylar dimension was associated with MMPRT at 0° and 30° knee angles. Patients with MFC/MTC greater than 0.9 at 0° also showed about 2.5-fold increase in the chance of MMPRT. Those with meniscal extrusion greater than 3 mm also had about 17.1 times greater chance for the presence of MMPRT accordingly. A larger medial femoral to tibial condylar dimension may be considered as one of the regional contributors to the outbreak of MMPRT, and medial femoral to tibial condylar width ratio greater than 0.9 at 0° knee angle may be considered as a significant risk factor for MMPRT. III.

  12. Tibial Tray Thickness Significantly Increases Medial Tibial Bone Resorption in Cobalt-Chromium Total Knee Arthroplasty Implants.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Miner, Todd M; Springer, Bryan D; Kim, Raymond H

    2017-01-01

    Stress shielding is an uncommon complication associated with primary total knee arthroplasty. Patients are frequently identified radiographically with minimal clinical symptoms. Very few studies have evaluated risk factors for postoperative medial tibial bone loss. We hypothesized that thicker cobalt-chromium tibial trays are associated with increased bone loss. We performed a retrospective review of 100 posterior stabilized, fixed-bearing total knee arthroplasty where 50 patients had a 4-mm-thick tibial tray (thick tray cohort) and 50 patients had a 2.7-mm-thick tibial tray (thin tray cohort). A clinical evaluation and a radiographic assessment of medial tibial bone loss were performed on both cohorts at a minimum of 2 years postoperatively. Mean medial tibial bone loss was significantly higher in the thick tray cohort (1.07 vs 0.16 mm; P = .0001). In addition, there were significantly more patients with medial tibial bone loss in the thick tray group compared with the thin tray group (44% vs 10%, P = .0002). Despite these differences, there were no statistically significant differences in range of motion, knee society score, complications, or revision surgeries performed. A thicker cobalt-chromium tray was associated with significantly more medial tibial bone loss. Despite these radiographic findings, we found no discernable differences in clinical outcomes in our patient cohort. Further study and longer follow-up are needed to understand the effects and clinical significance of medial tibial bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis.

    PubMed

    Hada, Shinnosuke; Ishijima, Muneaki; Kaneko, Haruka; Kinoshita, Mayuko; Liu, Lizu; Sadatsuki, Ryo; Futami, Ippei; Yusup, Anwajan; Takamura, Tomohiro; Arita, Hitoshi; Shiozawa, Jun; Aoki, Takako; Takazawa, Yuji; Ikeda, Hiroshi; Aoki, Shigeki; Kurosawa, Hisashi; Okada, Yasunori; Kaneko, Kazuo

    2017-09-12

    Medial meniscal extrusion (MME) is associated with progression of medial knee osteoarthritis (OA), but no or little information is available for relationships between MME and osteophytes, which are found in cartilage and bone parts. Because of the limitation in detectability of the cartilage part of osteophytes by radiography or conventional magnetic resonance imaging (MRI), the rate of development and size of osteophytes appear to have been underestimated. Because T2 mapping MRI may enable us to evaluate the cartilage part of osteophytes, we aimed to examine the association between MME and OA-related changes, including osteophytes, by using conventional and T2 mapping MRI. Patients with early-stage knee OA (n = 50) were examined. MRI-detected OA-related changes, in addition to MME, were evaluated according to the Whole-Organ Magnetic Resonance Imaging Score. T2 values of the medial meniscus and osteophytes were measured on T2 mapping images. Osteophytes surgically removed from patients with end-stage knee OA were histologically analyzed and compared with findings derived by radiography and MRI. Medial side osteophytes were detected by T2 mapping MRI in 98% of patients with early-stage knee OA, although the detection rate was 48% by conventional MRI and 40% by radiography. Among the OA-related changes, medial tibial osteophyte distance was most closely associated with MME, as determined by multiple logistic regression analysis, in the patients with early-stage knee OA (β = 0.711, p < 0.001). T2 values of the medial meniscus were directly correlated with MME in patients with early-stage knee OA, who showed ≥ 3 mm of MME (r = 0.58, p = 0.003). The accuracy of osteophyte evaluation by T2 mapping MRI was confirmed by histological analysis of the osteophytes removed from patients with end-stage knee OA. Our study demonstrates that medial tibial osteophyte evaluated by T2 mapping MRI is frequently observed in the patients with early-stage knee

  14. Association of baseline knee bone size, cartilage volume, and body mass index with knee cartilage loss over time: a longitudinal study in younger or middle-aged adults.

    PubMed

    Antony, Benny; Ding, Changhai; Stannus, Oliver; Cicuttini, Flavia; Jones, Graeme

    2011-09-01

    To determine the association of knee bone size, cartilage volume, and body mass index (BMI) at baseline with knee cartilage loss over 2 years in younger or middle-aged adults. A total of 324 subjects (mean age 45 yrs, range 26-61) were measured at baseline and about 2 years later. Knee cartilage volume and bone size were determined using T1-weighted fat-saturated magnetic resonance imaging. In multivariable analysis, baseline knee bone size was negatively associated with annual change in knee cartilage volume at medial and lateral tibial sites (ß = -0.62% to -0.47%/cm(2), all p < 0.001). The associations disappeared at medial tibial site after adjustment for baseline cartilage volume and became of borderline statistical significance at lateral tibial site after adjustment for both baseline cartilage volume and osteophytes (ß = -0.29, p = 0.059). Baseline knee cartilage volume was consistently and negatively associated with annual change in knee cartilage volume at all 3 medial tibial, lateral tibial, and patellar sites (ß = -4.41% to -1.37%/ml, all p < 0.001). Baseline BMI was negatively associated with an annual change in knee cartilage volume, but only in subjects within the upper tertile of baseline cartilage volume, even after adjusting for cartilage defects (ß = -0.16% to -0.34%/kg/m(2), all p < 0.05). Our study suggests that both higher baseline tibial bone area and knee cartilage volume (most likely due to cartilage swelling) are associated with greater knee cartilage loss over 2 years. A higher BMI was associated with greater knee cartilage loss only in subjects with higher baseline cartilage volume.

  15. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    PubMed

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  16. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    PubMed Central

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau. PMID:28660141

  17. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis?

    PubMed Central

    Wluka, A; Wolfe, R; Stuckey, S; Cicuttini, F

    2004-01-01

    Background: No consistent relationship between the severity of symptoms of knee osteoarthritis (OA) and radiographic change has been demonstrated. Objectives: To determine the relationship between symptoms of knee OA and tibial cartilage volume, whether pain predicts loss of cartilage in knee OA, and whether change in cartilage volume over time relates to change in symptoms over the same period. Method: 132 subjects with symptomatic, early (mild to moderate) knee OA were studied. At baseline and 2 years later, participants had MRI scans of their knee and completed questionnaires quantifying symptoms of knee OA (knee-specific WOMAC: pain, stiffness, function) and general physical and mental health (SF-36). Tibial cartilage volume was determined from the MRI images. Results: Complete data were available for 117 (89%) subjects. A weak association was found between tibial cartilage volume and symptoms at baseline. The severity of the symptoms of knee OA at baseline did not predict subsequent tibial cartilage loss. However, weak associations were seen between worsening of symptoms of OA and increased cartilage loss: pain (rs = 0.28, p = 0.002), stiffness (rs = 0.17, p = 0.07), and deterioration in function (rs = 0.21, p = 0.02). Conclusion: Tibial cartilage volume is weakly associated with symptoms in knee OA. There is a weak association between loss of tibial cartilage and worsening of symptoms. This suggests that although cartilage is not a major determinant of symptoms in knee OA, it does relate to symptoms. PMID:14962960

  18. Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study

    PubMed Central

    Beattie, Karen A; Duryea, Jeffrey; Pui, Margaret; O'Neill, John; Boulos, Pauline; Webber, Colin E; Eckstein, Felix; Adachi, Jonathan D

    2008-01-01

    Background The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging. Design For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH). Results Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m2. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm2 and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm2 and 1.71 (0.24) mm, respectively, in males. Conclusion These data suggest that medial mJSW values do not decrease with aging in healthy

  19. Opening the medial tibiofemoral compartment by pie-crusting the superficial medial collateral ligament at its tibial insertion: a cadaver study.

    PubMed

    Roussignol, X; Gauthe, R; Rahali, S; Mandereau, C; Courage, O; Duparc, F

    2015-09-01

    Arthroscopic treatment of tears in the middle and posterior parts of the medial meniscus can be difficult when the medial tibiofemoral compartment is tight. Passage of the instruments may damage the cartilage. The primary objective of this cadaver study was to perform an arthroscopic evaluation of medial tibiofemoral compartment opening after pie-crusting release (PCR) of the superficial medial collateral ligament (sMCL) at its distal insertion on the tibia. The secondary objective was to describe the anatomic relationships at the site of PCR (saphenous nerve, medial saphenous vein). We studied 10 cadaver knees with no history of invasive procedures. The femur was held in a vise with the knee flexed at 45°, and the medial aspect of the knee was dissected. PCR of the sMCL was performed under arthroscopic vision, in the anteroposterior direction, at the distal tibial insertion of the sMCL, along the lower edge of the tibial insertion of the semi-tendinosus tendon. Continuous 300-N valgus stress was applied to the ankle. Opening of the medial tibiofemoral compartment was measured arthroscopically using graduated palpation hooks after sequential PCR of the sMCL. The compartment opened by 1mm after release of the anterior third, 2.3mm after release of the anterior two-thirds, and 3.9mm after subtotal release. A femoral fracture occurred in 1 case, after completion of all measurements. Both the saphenous nerve and the medial saphenous vein were located at a distance from the PCR site in all 10 knees. PCR of the sMCL is chiefly described as a ligament-balancing method during total knee arthroplasty. This procedure is usually performed at the joint line, where it opens the compartment by 4-6mm at the most, with some degree of unpredictability. PCR of the sMCL at its distal tibial insertion provides gradual opening of the compartment, to a maximum value similar to that obtained with PCR at the joint space. The lower edge of the semi-tendinosus tendon is a valuable landmark

  20. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-07-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural changes in the articular cartilage in the lateral tibiofemoral compartment of adult sheep. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction), and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the contralateral knees that only received an arthrotomy. After 6 months, the macroscopic and microscopic characteristics of the articular cartilage of the lateral tibiofemoral compartment were assessed. The articular cartilage in the central region of the lateral tibial plateau in sheep had a higher safranin O staining intensity and was 4.6-fold thicker than in the periphery (covered by the lateral meniscus). No topographical variation in the type-II collagen immunoreactivity was seen. All lateral tibial plateaus showed osteoarthritic changes in regions not covered by the lateral meniscus. No osteoarthritis was seen in the peripheral submeniscal regions of the lateral tibial plateau and the lateral femoral condyle. Opening wedge HTO resulting in both standard and overcorrection was not associated with significant macroscopic and microscopic structural changes between groups in the articular cartilage of the lateral tibial plateau and femoral condyle after 6 months in vivo. Opening wedge HTO resulting in both standard and overcorrection is a safe procedure for the articular cartilage in an intact lateral tibiofemoral compartment of adult sheep at 6 months postoperatively.

  1. Regional differences of tibial and femoral cartilage in the chondrocyte gene expression, immunhistochemistry and composite in different stages of osteoarthritis.

    PubMed

    Lahm, A; Dabravolski, D; Spank, H; Merk, H; Esser, J; Kasch, R

    2017-04-01

    The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive. The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement. 60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically. In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan

  2. The medial tibial stress syndrome. A cause of shin splints.

    PubMed

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  3. Medial tibial pain. A prospective study of its cause among military recruits.

    PubMed

    Milgrom, C; Giladi, M; Stein, M; Kashtan, H; Margulies, J; Chisin, R; Steinberg, R; Swissa, A; Aharonson, Z

    1986-12-01

    In a prospective study of 295 infantry recruits during 14 weeks of basic training, 41% had medial tibial pain. Routine scintigraphic evaluation in cases of medial tibial bone pain showed that 63% had abnormalities. A stress fracture was found in 46%. Only two patients had periostitis. None had ischemic medial compartment syndrome. Physical examination could not differentiate between cases with medial tibial bone pain secondary to stress fractures and those with scintigraphically normal tibias. When both pain and swelling were localized in the middle one-third of the tibia, the lesion most likely proved to be a stress fracture.

  4. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    PubMed

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Contrast-Enhanced CT using a Cationic Contrast Agent Enables Non-Destructive Assessment of the Biochemical and Biomechanical Properties of Mouse Tibial Plateau Cartilage

    PubMed Central

    Lakin, Benjamin A.; Patel, Harsh; Holland, Conor; Freedman, Jonathan D.; Shelofsky, Joshua S.; Snyder, Brian D.; Stok, Kathryn S.; Grinstaff, Mark W.

    2017-01-01

    Mouse models of osteoarthritis (OA) are commonly used to study the disease’s pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of thirteen mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side’s indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R2=0.69, p<0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R2≥0.63, p<0.05) and E (R2≥0.63, p<0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. PMID:26697956

  6. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics

    PubMed Central

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J.

    2016-01-01

    Objective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. Results In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. Conclusions We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint. PMID:27936066

  7. Case report: comprehensive management of medial tibial stress syndrome

    PubMed Central

    Krenner, Bernard John

    2002-01-01

    Abstract Activity or exercise-induced leg pain is a common complication among competitive and “weekend warrior” athletes. Shin splints is a term that has been used to describe all lower leg pain as a result of activity. There are many different causes of “shin splints,” one of which is medial tibial stress syndrome, and the treating clinician must be aware of potentially serious causes of activity related leg pain. Restoring proper biomechanics to the entire kinetic chain and rehabilitation of the injured area should be the primary aim of treatment to optimize shock absorption. The role inflammation plays in medial tibial stress syndrome is controversial, but in this case, seemed to be a causative factor as symptomatology was dramatically decreased with the addition of proteolytic enzymes. Medial tibial stress syndrome can be quite difficult to treat and keeping athletes away from activities that will slow healing or aggravate the condition can be challenging. “Active” rest is the best way in which to allow proper healing while allowing the athlete to maintain their fitness. PMID:19674573

  8. Multiobjective optimization of cartilage stress for non-invasive, patient-specific recommendations of high tibial osteotomy correction angle - a novel method to investigate alignment correction.

    PubMed

    Zheng, Keke; Scholes, Corey J; Chen, Junning; Parker, David; Li, Qing

    2017-04-01

    Medial opening wedge high tibial osteotomy (MOWHTO) is a surgical procedure to treat knee osteoarthritis associated with varus deformity. However, the ideal final alignment of the Hip-Knee-Ankle (HKA) angle in the frontal plane, that maximizes procedural success and post-operative knee function, remains controversial. Therefore, the purpose of this study was to introduce a subject-specific modeling procedure in determining the biomechanical effects of MOWHTO alignment on tibiofemoral cartilage stress distribution. A 3D finite element knee model derived from magnetic resonance imaging of a healthy participant was manipulated in-silico to simulate a range of final HKA angles (i.e. 0.2°, 2.7°, 3.9° and 6.6° valgus). Loading and boundary conditions were assigned based on subject-specific kinematic and kinetic data from gait analysis. Multiobjective optimization was used to identify the final alignment that balanced compressive and shear forces between medial and lateral knee compartments. Peak stresses decreased in the medial and increased in the lateral compartment as the HKA was shifted into valgus, with balanced loading occurring at angles of 4.3° and 2.9° valgus for the femoral and tibial cartilage respectively. The concept introduced here provides a platform for non-invasive, patient-specific preoperative planning of the osteotomy for medial compartment knee osteoarthritis. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults.

    PubMed

    Antony, Benny; Venn, Alison; Cicuttini, Flavia; March, Lyn; Blizzard, Leigh; Dwyer, Terence; Cross, Marita; Jones, Graeme; Ding, Changhai

    2015-10-26

    Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors

  10. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Seidel, Roland; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2015-09-01

    First, to evaluate whether medial open wedge high tibial osteotomy (HTO) induces alterations of the microstructure of the lateral tibial subchondral bone plate of sheep. Second, to test the hypothesis that specific correlations exist between topographical structural alterations of the subchondral bone, the cartilage and the lateral meniscus. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction) and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the non-osteotomised contralateral proximal tibiae. After 6 months, subchondral bone structure indices were measured by computed tomography. Correlations between the subchondral bone, the articular cartilage and the lateral meniscus were determined. Increased loading by valgus overcorrection led to an enlarged specific bone surface (BS/BV) in the subarticular spongiosa compared with unloading by varisation. The subchondral bone plate was 3.9-fold thicker in the central region of the lateral tibial plateau than in the submeniscal periphery. Its thickness in the central region significantly correlated with the thickness of the articular cartilage. In the submeniscal region, such correlation did not exist. In general, a higher degree of osteoarthritis (OA) correlated with alterations of the subchondral bone plate microstructure. OA of the submeniscal articular cartilage also correlated with worse matrix staining of the lateral meniscus. Osteoarthritis changes are associated with alterations of the subchondral bone plate microstructure. Specific topographical relationships exist in the central region between the articular cartilage and subchondral bone plate thickness, and in the submeniscal periphery between and the articular cartilage and lateral meniscus. From a clinical perspective, the combined follow-up data from this and the previous two

  11. Effectiveness of concurrent procedures during high tibial osteotomy for medial compartment osteoarthritis: a systematic review and meta-analysis.

    PubMed

    Lee, O-Sung; Ahn, Soyeon; Ahn, Jin Hwan; Teo, Seow Hui; Lee, Yong Seuk

    2018-02-01

    The purpose of this systematic review and meta-analysis was to evaluate the efficacy of concurrent cartilage procedures during high tibial osteotomy (HTO) for medial compartment osteoarthritis (OA) by comparing the outcomes of studies that directly compared the use of HTO plus concurrent cartilage procedures versus HTO alone. Results that are possible to be compared in more than two articles were presented as forest plots. A 95% confidence interval was calculated for each effect size, and we calculated the I 2 statistic, which presents the percentage of total variation attributable to the heterogeneity among studies. The random effects model was used to calculate the effect size. Seven articles were included to the final analysis. Case groups were composed of HTO without concurrent procedures and control groups were composed of HTO with concurrent procedures such as marrow stimulation procedure, mesenchymal stem cell transplantation, and injection. The case group showed a higher hospital for special surgery score and mean difference was 4.10 [I 2 80.8%, 95% confidence interval (CI) - 9.02 to 4.82]. Mean difference of the mechanical femorotibial angle in five studies was 0.08° (I 2 0%, 95% CI - 0.26 to 0.43). However, improved arthroscopic, histologic, and MRI results were reported in the control group. Our analysis support that concurrent procedures during HTO for medial compartment OA have little beneficial effect regarding clinical and radiological outcomes. However, they might have some beneficial effects in terms of arthroscopic, histologic, and MRI findings even though the quality of healed cartilage is not good as that of original cartilage. Therefore, until now, concurrent procedures for medial compartment OA have been considered optional. Nevertheless, no conclusions can be drawn for younger patients with focal cartilage defects and concomitant varus deformity. This question needs to be addressed separately.

  12. Histological analysis of the tibial anterior cruciate ligament insertion.

    PubMed

    Oka, Shinya; Schuhmacher, Peter; Brehmer, Axel; Traut, Ulrike; Kirsch, Joachim; Siebold, Rainer

    2016-03-01

    This study was performed to investigate the morphology of the tibial anterior cruciate ligament (ACL) by histological assessment. The native (undissected) tibial ACL insertion of six fresh-frozen cadaveric knees was cut into four sagittal sections parallel to the long axis of the medial tibial spine. For histological evaluation, the slices were stained with haematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analysed at a magnification of 20×. The anterior tibial ACL insertion was bordered by a bony anterior ridge. The most medial ACL fibres inserted from the medial tibial spine and were adjacent to the articular cartilage of the medial tibial plateau. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact with the lateral part of the tibial ACL insertion. A small fat pad was located just posterior to the functional ACL fibres. The anterior-posterior length of the medial ACL insertion was an average of 10.8 ± 1.1 mm compared with the lateral, which was only 6.2 ± 1.1 mm (p < 0.001). There were no central or posterolateral inserting ACL fibres. The shape of the bony tibial ACL insertion was 'duck-foot-like'. In contrast to previous findings, the functional mid-substance fibres arose from the most posterior part of the 'duck-foot' in a flat and 'c-shaped' way. The most anterior part of the tibial ACL insertion was bordered by a bony anterior ridge and the most medial by the medial tibial spine. No posterolateral fibres nor ACL bundles have been found histologically. This histological investigation may improve our understanding of the tibial ACL insertion and may provide important information for anatomical ACL reconstruction.

  13. Histological Analysis of the Tibial Anterior Cruciate Ligament Insertion

    PubMed Central

    Siebold, Rainer; Oka, Shinya; Traut, Ulrike; Schuhmacher, Peter; Kirsch, Joachim

    2017-01-01

    Objective: To describe the morphology of the tibial ACL insertion by histological assessment in the sagittal plane. Methods: For histology the native (undissected) tibial ACL insertion of 6 fresh-frozen cadaveric knees was cut into 4 sagittal sections parallel to the long axis of the medial tibial spine. The slices were stained with hematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analyzed at a magnification of ×20. Results: From medial to lateral the anterior-posterior lengths of the ACL insertion were an average of 10.2, 9.3, 7.6 and 5.8 mm. The anterior margin of the tibial ACL insertion raised from an anterior ridge. The most medial ACL fibers rose along with a peak of the anterior part of the medial tibial spine in which the direct insertion was adjacent to the articular cartilage. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact to the lateral ACL insertion. A small fat pad was located just posterior to the tibial ACL insertion. There were no central or posterolateral inserting ACL fibers in the area intercondylaris anterior. Conclusion: The functional intraligamentous midsubstance ACL fibers arose from the most posterior part of its bony tibial insertion in a flat and “C-shape” way. The anterior border of this functional ACL started from a bony ‘anterior ridge’ and the medial border was along with a peak of the medial tibial spine.

  14. Gait retraining and incidence of medial tibial stress syndrome in army recruits.

    PubMed

    Sharma, Jagannath; Weston, Matthew; Batterham, Alan M; Spears, Iain R

    2014-09-01

    Gait retraining, comprising biofeedback and/or an exercise intervention, might reduce the risk of musculoskeletal conditions. The purpose was to examine the effect of a gait-retraining program on medial tibial stress syndrome incidence during a 26-wk basic military training regimen. A total of 450 British Army recruits volunteered. On the basis of a baseline plantar pressure variable (mean foot balance during the first 10% of stance), participants classified as at risk of developing medial tibial stress syndrome (n = 166) were randomly allocated to an intervention (n = 83) or control (n = 83) group. The intervention involved supervised gait retraining, including exercises to increase neuromuscular control and flexibility (three sessions per week) and biofeedback enabling internalization of the foot balance variable (one session per week). Both groups continued with the usual military training regimen. Diagnoses of medial tibial stress syndrome over the 26-wk regimen were made by physicians blinded to the group assignment. Data were modeled in a survival analysis using Cox regression, adjusting for baseline foot balance and time to peak heel rotation. The intervention was associated with a substantially reduced instantaneous relative risk of medial tibial stress syndrome versus control, with an adjusted HR of 0.25 (95% confidence interval, 0.05-0.53). The number needed to treat to observe one additional injury-free recruit in intervention versus control at 20 wk was 14 (11 to 23) participants. Baseline foot balance was a nonspecific predictor of injury, with an HR per 2 SD increment of 5.2 (1.6 to 53.6). The intervention was effective in reducing incidence of medial tibial stress syndrome in an at-risk military sample.

  15. Thirty Minutes of Running Exercise Decreases T2 Signal Intensity but Not Thickness of the Knee Joint Cartilage: A 3.0-T Magnetic Resonance Imaging Study.

    PubMed

    Karanfil, Yiğitcan; Babayeva, Naila; Dönmez, Gürhan; Diren, H Barış; Eryılmaz, Muzaffer; Doral, Mahmut Nedim; Korkusuz, Feza

    2018-04-01

    Objective Recent studies showed a potential of magnetic resonance imaging (MRI), which can be used as an additional tool for diagnosing cartilage degeneration in the early stage. We designed a cross-sectional study in order to evaluate knee joint cartilage adaptation to running, using 3.0-T MRI equipped with the 3-dimensional turbo spin echo (VISTA = Volume ISotropic Turbo spin echo Acquisition) software. By this thickness (mm) and signal intensity (mean pixel value) can be quantified, which could be closely related to the fluid content of the knee joint cartilage, before and after running. Methods A total of 22 males, aged 18 to 35 years, dominant (right) and nondominant (left) knees were assessed before and after 30 minutes of running. Cartilage thickness and signal intensity of surfaces of the patella, medial and lateral femoral and tibial condyles were measured. Results Cartilage thickness of the lateral condyle decreased at the dominant knee, while it increased at the medial tibial plateau. Signal intensity decreased at all locations, except the lateral patella in both knees. The most obvious decrease in signal intensity (10.6%) was at the medial tibial plateau from 949.8 to 849.0 of the dominant knee. Conclusion There was an increase in thickness measurements and decrease in signal intensity in medial tibial plateau of the dominant knee after 30 minutes of running. This outcome could be related to fluid outflow from the tissue. Greater reductions in the medial tibial plateau cartilage indicate greater load sharing by these areas of the joint during a 30-minute running.

  16. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  17. A new aiming guide can create the tibial tunnel at favorable position in transtibial pullout repair for the medial meniscus posterior root tear.

    PubMed

    Furumatsu, T; Kodama, Y; Fujii, M; Tanaka, T; Hino, T; Kamatsuki, Y; Yamada, K; Miyazawa, S; Ozaki, T

    2017-05-01

    Injuries to the medial meniscus (MM) posterior root lead to accelerated cartilage degeneration of the knee. An anatomic placement of the MM posterior root attachment is considered to be critical in transtibial pullout repair of the medial meniscus posterior root tear (MMPRT). However, tibial tunnel creation at the anatomic attachment of the MM posterior root is technically difficult using a conventional aiming device. The aim of this study was to compare two aiming guides. We hypothesized that a newly-developed guide, specifically designed, creates the tibial tunnel at an adequate position rather than a conventional device. Twenty-six patients underwent transtibial pullout repairs. Tibial tunnel creation was performed using the Multi-use guide (8 cases) or the PRT guide that had a narrow twisting/curving shape (18 cases). Three-dimensional computed tomography images of the tibial surface were evaluated using the Tsukada's measurement method postoperatively. Expected anatomic center of the MM posterior root attachment and tibial tunnel center were evaluated using the percentage-based posterolateral location on the tibial surface. Percentage distance between anatomic center and tunnel center was calculated. Anatomic center of the MM posterior root footprint located at a position of 78.5% posterior and 39.4% lateral. Both tunnels were anteromedial but tibial tunnel center located at a more favorable position in the PRT group: percentage distance was significantly smaller in the PRT guide group (8.7%) than in the Multi-use guide group (13.1%). The PRT guide may have great advantage to achieve a more anatomic location of the tibial tunnel in MMPRT pullout repair. III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Investigating the relationship between internal tibial torsion and medial collateral ligament injury in patients undergoing knee arthroscopy due to tears in the posterior one third of the medial meniscus.

    PubMed

    Guler, Olcay; Isyar, Mehmet; Karataş, Dilek; Ormeci, Tugrul; Cerci, Halis; Mahirogulları, Mahir

    2016-08-01

    To evaluate the relationship between medial collateral ligament (MCL) injury and degree of internal tibial torsion in patients who had undergone arthroscopic resection due to tears in the posterior one third of the medial meniscus. Seventy-one patients were allocated into two groups with respect to foot femur angle (FFA) and transmalleolar angle (TMA) (Group 1 31 patients with FFA<8° and Group 2 40 patients with FFA≥8°). The groups were compared in terms of valgus instability, Lysholm score, magnetic resonance view, FFA, and TMA, both before and after the operation. Lysholm scores were higher in Group 2 at both postoperative week 1 (p<0.001) and month 1 (p=0.045) relative to Group 1. Preoperative cartilage injury was encountered more frequently in Group 1 (p=0.037) than in Group 2. MCL injury was detected more frequently in Group 1 compared to Group 2 postoperatively at week 1 (p=0.001). We conclude that FFA and TFA, indicators of internal tibial torsion, may serve as markers for foreseeing clinical improvement and complications following arthroscopic surgery. level III retrospective comparative study. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Tibial dyschondroplasia associated proteomic changes in chicken growth plate cartilage

    USDA-ARS?s Scientific Manuscript database

    Tibial dyschondroplasia (TD) is a poultry leg problem that affects the proximal growth plate of tibia preventing its transition to bone. To understand the disease-induced proteomic changes we compared the protein extracts of cartilage from normal and TD- affected growth plates. TD was induced by fe...

  20. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  1. Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA).

    PubMed

    Bagi, C M; Berryman, E R; Teo, S; Lane, N E

    2017-12-01

    The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. The Combination of Preoperative Bone Marrow Lesions and Partial-Thickness Cartilage Loss Did Not Result in Inferior Outcomes After Medial Unicompartmental Knee Arthroplasty.

    PubMed

    Berend, Keith R; Lombardi, Adolph V; Jacobs, Cale A

    2017-10-01

    The purpose of this study is to compare patient-reported outcomes and revision rates between medial unicompartmental knee arthroplasty (UKA) patients based on the presence of medial bone marrow lesions (BMLs) and/or partial- vs full-thickness cartilage loss. BMLs were graded on preoperative magnetic resonance imaging (MRI) findings from 174 UKAs performed between 2009 and 2013 using the MRI Osteoarthritis Knee Score criteria by a single evaluator blinded to the patient's outcome. A second evaluator blinded to the MRI findings and postoperative outcomes assessed medial joint space present on both weight-bearing and valgus stress radiographs. Preoperative and postoperative Knee Society Knee Scores, Pain Scores, and Function Scores were then compared between 4 groups of patients: patients with BML with either partial- or full-thickness cartilage loss, and patients without BML with either partial- or full-thickness cartilage loss. In total, 152 of 174 (87%) patients had minimum 2-year follow-up. One patient in the no BML/full-thickness loss group was converted to total knee arthroplasty secondary to arthrofibrosis; however, there were no statistical differences in revision rate between the 4 groups as no other revisions were performed (P = .61). Similarly, preoperative and postoperative Knee Society Knee Scores, Pain Scores, and Function Scores did not differ between groups, nor did postoperative University of California, Los Angeles activity scores. Medial tibial BMLs were not associated with inferior outcomes, either in patients with partial- or full-thickness cartilage loss. Although the current results do not allow for the presence of preoperative BML to be considered an indication for UKA, these results definitively support that BMLs are not a contraindication for medial UKA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Does lateral versus medial exposure influence total knee tibial component final external rotation? A CT based study.

    PubMed

    Passeron, D; Gaudot, F; Boisrenoult, P; Fallet, L; Beaufils, P

    2009-10-01

    A previous study demonstrated that performing a total knee arthroplasty through a lateral approach including anterior tibial tuberosity (ATT) osteotomy (refixed in its original position) presented numerous advantages: correcting the preoperative patella lateral tilt and improving postoperative patella tracking. We hypothesized that these improvements in patella centering were, at least in part, due to an increased external rotation of the tibial component. Postoperative scannographic studies were, therefore, undertaken to measure tibial component rotation and analyze the results according the medial and lateral exposure used. Rotational positioning of the tibial component is influenced by the lateral or medial approach selected at surgery. Forty-five CAT scans, performed according to the protocol criteria of the French Hip and Knee Society (SFHG), were studied 3 months postoperatively: 15 knees operated through the lateral approach and 30 knees operated through a standard medial approach. The total knee utilized in all these cases was a posteriorly stabilized, fixed-bearing, design. We measured first the angle formed between the perpendicular to the transverse axis of the tibial component and the axis joining the ATT to the center of the knee; second we also measured the coronal distance between the center of the component and the anterior tibial tuberosity (ATT). In the group using the medial approach, the lateral position of the ATT was 7 + or - 3mm with a rotation angle of 18 degrees . In the group using the lateral approach these measurements were respectively 1 + or - 4mm and 2 degrees (p<0.0001). External rotation of the tibial component is substantially increased by the lateral approach compared to the medial approach. Better exposure of the lateral tibial plateau is probably responsible of this difference. This increased external rotation improves postoperative patella tracking. Prospective; comparative; non-randomized study; level 3. 2009 Elsevier Masson

  4. Arthroscopic pullout repair of a complete radial tear of the tibial attachment site of the medial meniscus posterior horn.

    PubMed

    Kim, Young-Mo; Rhee, Kwang-Jin; Lee, June-Kyu; Hwang, Deuk-Soo; Yang, Jun-Young; Kim, Sung-Jae

    2006-07-01

    We developed an effective arthroscopic pullout technique for repairing complete radial tears of the tibial attachment site of the medial meniscus posterior horn (MMPH). In our technique, the torn meniscus is reattached to the tibial plateau immediately medial or anteromedial to the posterior cruciate ligament (PCL) using two No. 2 Ethibond sutures (Ethicon, Somerville, NJ). After a complete radial tear of the tibial attachment site of the MMPH and its reparability were confirmed, using a Caspari suture loaded with a suture shuttle, one No. 2 Ethibond suture is placed through the meniscus, through the red-red zone, 3 to 5 mm medial to the torn edge of the MMPH, and the other is passed through the meniscocapsular junction 3 to 5 mm medial to the torn edge of the meniscus. Then, a tibial tunnel, 5-mm in diameter, is made from the anteromedial aspect of the proximal tibia to the previously prepared tibial plateau, immediately medial or anteromedial to the PCL, and the two No. 2 Ethibond sutures are pulled out through the tibial tunnel and then fixed to the proximal tibia using a 3.5-mm cortical screw and washer. Firm reattachment of the torn meniscus was confirmed arthroscopically.

  5. Etiologic factors in the development of medial tibial stress syndrome: a review of the literature.

    PubMed

    Tweed, Jo L; Avil, Steven J; Campbell, Jackie A; Barnes, Mike R

    2008-01-01

    Medial tibial stress syndrome is a type of exercise-induced leg pain that is common in recreational and competitive athletes. Although various studies have attempted to find the exact pathogenesis of this common condition, it remains unknown. Various theories in literature from 1976 to 2006 were reviewed using key words. Until recently, inflammation of the periosteum due to excessive traction was thought to be the most likely cause of medial tibial stress syndrome. This periostitis has been hypothesized by some authors to be caused by the tearing away of the muscle fibers at the muscle-bone interface, although there are several suggestions as to which, if any, muscle is responsible. Recent studies have supported the view that medial tibial stress syndrome is not an inflammatory process of the periosteum but instead a stress reaction of bone that has become painful.

  6. Chronic exertional compartment syndrome with medial tibial stress syndrome in twins.

    PubMed

    Banerjee, Purnajyoti; McLean, Christopher

    2011-06-14

    Chronic exertional compartment syndrome and medial tibial stress syndrome are uncommon conditions that affect long-distance runners or players involved in team sports that require extensive running. We report 2 cases of bilateral chronic exertional compartment syndrome, with medial tibial stress syndrome in identical twins diagnosed with the use of a Kodiag monitor (B. Braun Medical, Sheffield, United Kingdom) fulfilling the modified diagnostic criteria for chronic exertional compartment syndrome as described by Pedowitz et al, which includes: (1) pre-exercise compartment pressure level >15 mm Hg; (2) 1 minute post-exercise pressure >30 mm Hg; and (3) 5 minutes post-exercise pressure >20 mm Hg in the presence of clinical features. Both patients were treated with bilateral anterior fasciotomies through minimal incision and deep posterior fasciotomies with tibial periosteal stripping performed through longer anteromedial incisions under direct vision followed by intensive physiotherapy resulting in complete symptomatic recovery. The etiology of chronic exertional compartment syndrome is not fully understood, but it is postulated abnormal increases in intramuscular pressure during exercise impair local perfusion, causing ischemic muscle pain. No familial predisposition has been reported to date. However, some authors have found that no significant difference exists in the relative perfusion, in patients, diagnosed with chronic exertional compartment syndrome. Magnetic resonance images of affected compartments have indicated that the pain is not due to ischemia, but rather from a disproportionate oxygen supply versus demand. We believe this is the first report of chronic exertional compartment syndrome with medial tibial stress syndrome in twins, raising the question of whether there is a genetic predisposition to the causation of these conditions. Copyright 2011, SLACK Incorporated.

  7. Aspirin is associated with reduced cartilage loss in knee osteoarthritis: Data from a cohort study.

    PubMed

    Wluka, Anita E; Ding, Changhai; Wang, Yuanyuan; Jones, Graeme; Urquhart, Donna M; Cicuttini, Flavia M

    2015-07-01

    Aspirin, widely used in the prevention of cardiovascular disease, in low dose, has anti-inflammatory and vasculoprotective effects: both of these processes contribute to the pathogenesis of osteoarthritis. We examined whether use of low dose aspirin affects change in knee cartilage volume in osteoarthritis. Participants from the Melbourne osteoarthritis cohort were classified as users and non-users of aspirin, according to baseline use (≤300 mg/day). Their knees were imaged twice over 2 years. Tibial cartilage volumes were measured and change calculated. Twenty one (18%) of 117 eligible participants were aspirin users. Annual change in medial tibial cartilage volume was -43 mm(3) (95% confidence intervals (CI) -93, 10) in aspirin users and -101 mm(3) (95% CI -125, -77) in non-users (p=0.043 for difference) after adjusting for age, gender, BMI and radiographic severity. Similar results were seen for annual percentage loss (1.9% vs 5.4%, p=0.034). No difference was observed for lateral tibial cartilage change and annual change (p=0.98, 0.87 respectively) Low dose aspirin use was associated with reduced medial tibial cartilage loss over 2 years in people with knee osteoarthritis. This data is hypothesis generating and clinical trials are required to confirm efficacy. If this hypothesis is confirmed, low dose aspirin may be used to reduce the progression of knee osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  9. Resection of Grade III cranial horn tears of the equine medial meniscus alter the contact forces on medial tibial condyle at full extension: an in-vitro cadaveric study.

    PubMed

    Fowlie, Jennifer; Arnoczky, Steven; Lavagnino, Michael; Maerz, Tristan; Stick, John

    2011-12-01

    To evaluate the magnitude and distribution of joint contact pressure on the medial tibial condyle after grade III cranial horn tears of the medial meniscus. Experimental study. Cadaveric equine stifles (n = 6). Cadaveric stifles were mounted in a materials testing system and electronic pressure sensors were placed between the medial tibial condyle and medial meniscus. Specimens were loaded parallel to the longitudinal axis of the tibia to 1800 N at 130°, 140°, 150°, and 160° stifle angle. Peak pressure and contact area were recorded from the contact maps. Testing was repeated after surgical creation of a grade III cranial horn tear of the medial meniscus, and after resection of the simulated tear. In the intact specimens, a significantly smaller contact area was observed at 160° compared with the other angles (P < .05). Creation of a grade III cranial horn tear in the medial meniscus did not significantly alter the pressure or contact area measurements at any stifle angle compared with intact specimens (P > .05). Resection of the tear resulted in significantly higher peak pressures in the central region of the medial tibial condyle at a stifle angle of 160° relative to the intact (P = .026) and torn (P = .012) specimens. Resection of grade III cranial horn tears in the medial meniscus resulted in a central focal region of increased pressure on the medial tibial condyle at 160° stifle angle. © Copyright 2011 by The American College of Veterinary Surgeons.

  10. Ultrasonographic assessment of medial femoral cartilage deformation acutely following walking and running.

    PubMed

    Harkey, M S; Blackburn, J T; Davis, H; Sierra-Arévalo, L; Nissman, D; Pietrosimone, B

    2017-06-01

    To determine the magnitude of medial femoral cartilage deformation using ultrasonography (US) following walking and running in healthy individuals. Twenty-five healthy participants with no history of osteoarthritis or knee injury volunteered for this study. Medial femoral cartilage thickness was assessed using US before and after three separate 30-min loading conditions: (1) walking at a self-selected speed, (2) running at a self-selected speed, and (3) sitting on a treatment table (i.e., control). Cartilage deformation was calculated as the percent change score from pre to post loading in each loading condition. The magnitude of cartilage deformation was compared between the three loading conditions. There was no difference in baseline cartilage thickness between the three sessions (F 1,24  = 0.18, P = 0.68). Cartilage deformation was different between the loading conditions (F 1,24  = 47.54, P < 0.001). The walking (%Δ = -6.7, t 24  = 6.90, P < 0.001, d = -1.92) and running (%Δ = -8.9, t 24  = 8.14, P < 0.001, d = -1.85) conditions resulted in greater cartilage deformation when compared to the control condition (%Δ = +3.4). There was no difference in cartilage deformation between the running and walking conditions (t 24  = 1.10, P = 0.28, d = 0.33). US measured medial femoral cartilage thickness demonstrated reliability and precision within a single session (ICC 2,k  = 0.966, SEM = 0.07 mm) and between additional sessions separated by seven (ICC 2,k  = 0.964, SEM = 0.08 mm) and 16 days (ICC 2,k  = 0.919, SEM = 0.11 mm). US demonstrated to be a reliable and sensitive imaging modality at quantifying medial femoral cartilage deformation in healthy individuals. Both walking and running conditions created greater cartilage deformation when compared to the control conditions, but no difference was observed between the walking and running conditions. Copyright © 2016 Osteoarthritis Research Society International

  11. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.

    PubMed

    Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila

    2011-12-01

    To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P < 0.001) and the increased contact area in the medial compartment was significantly larger than in the lateral compartment (P < 0.05). Medial compartment contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P < 0.05). Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.

  12. Longitudinal analysis of MR spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age.

    PubMed

    Wirth, W; Eckstein, F; Boeth, H; Diederichs, G; Hudelmaier, M; Duda, G N

    2014-10-01

    Cartilage spin-spin magnetic resonance imaging (MRI) relaxation time (T2) represents a promising imaging biomarker of "early" osteoarthritis (OA) known to be associated with cartilage composition (collagen integrity, orientation, and hydration). However, no longitudinal imaging studies have been conducted to examine cartilage maturation in healthy subjects thus far. Therefore, we explore T2 change in the deep and superficial cartilage layers at the end of adolescence. Twenty adolescent and 20 mature volleyball athletes were studied (each 10 men and 10 women). Multi-echo spin-echo (MESE) images were acquired at baseline and 2-year follow-up. After segmentation, cartilage T2 was calculated in the deep and superficial cartilage layers of the medial tibial (MT) and the central, weight-bearing part of the medial femoral condyle (cMF), using five echoes (TE 19.4-58.2 ms). 16 adolescent (6 men, 10 women, baseline age 15.8 ± 0.5 years) and 17 mature (nine men, eight women, age 46.5 ± 5.2 years) athletes had complete baseline and follow-up images of sufficient quality to compute T2. In adolescents, a longitudinal decrease in T2 was observed in the deep layers of MT (-2.0 ms; 95% confidence interval (CI): [-3.4, -0.6] ms; P < 0.01) and cMF (-1.3 ms; [-2.4, -0.3] ms; P < 0.05), without obvious differences between males and females. No significant change was observed in the superficial layers, or in the deep or superficial layers of the mature athletes. In this first pilot study on quantitative imaging of cartilage maturation in healthy, athletic subjects, we find evidence of cartilage compositional change in deep cartilage layers of the medial femorotibial compartment in adolescents, most likely related to organizational changes in the collagen matrix. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  14. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  15. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  16. Monoplanar versus biplanar medial open-wedge proximal tibial osteotomy for varus gonarthrosis: a comparison of clinical and radiological outcomes.

    PubMed

    Elmalı, Nurzat; Esenkaya, Irfan; Can, Murat; Karakaplan, Mustafa

    2013-12-01

    We compared clinical and radiological results of two proximal tibial osteotomy (PTO) techniques: monoplanar medial open-wedge osteotomy and biplanar retrotubercle medial open-wedge osteotomy, stabilised by a wedged plate. We evaluated 88 knees in 78 patients. Monoplanar medial open-wedge PTO was performed on 56 knees in 50 patients with a mean age of 55 ± 9 years. Biplanar retrotubercle medial open-wedge PTO was performed on 32 knees in 28 patients with a mean age of 57 ± 7 years. Mean follow-up periods were 40.6 ± 7 months for the monoplanar PTO group and 38 ± 5 months for the biplanar retrotubercle PTO group. Clinical outcome was evaluated using the hospital for special surgery scoring system, and radiological outcome was evaluated by the measurements of femorotibial angle (FTA), patellar height and tibial slope changes. In both groups, post-operative HSS scores increased significantly. No significant difference was found between groups in FTA alteration, but the FTA decreased significantly in both groups. Patellar index ratios decreased significantly in the monoplanar PTO group (Insall-Salvati Index by 0.07, Blackburne-Peel Index by 0.07), but not in the biplanar retrotubercle PTO group. Tibial slopes were increased significantly in the monoplanar PTO group, but not in the retrotubercle PTO group. Biplanar retrotubercle medial open-wedge osteotomy and monoplanar medial open-wedge osteotomy are both clinically effective for the treatment for varus gonarthrosis. Retrotubercle osteotomy also prevents patella infera and tibial slope changes radiologically.

  17. The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis: a cross-sectional study.

    PubMed

    Hada, S; Kaneko, H; Sadatsuki, R; Liu, L; Futami, I; Kinoshita, M; Yusup, A; Saita, Y; Takazawa, Y; Ikeda, H; Kaneko, K; Ishijima, M

    2014-10-01

    The aim of the present study was to examine whether the degenerative and morphological changes of articular cartilage in early stage knee osteoarthritis (OA) occurred equally for both femoral- and tibial- or patellar- articular cartilage using magnetic resonance imaging (MRI)-based analyses. This cross-sectional study was approved by the ethics committee of our university. Fifty patients with early stage painful knee OA were enrolled. The patients underwent 3.0 T MRI on the affected knee joint. Healthy volunteers who did not show MRI-based OA changes were also recruited as controls (n = 19). The degenerative changes of the articular cartilage were quantified by a T2 mapping analysis, and any structural changes were conducted using Whole Organ Magnetic Resonance Imaging Score (WORMS) technique. All patients showed MRI-detected OA morphological changes. The T2 values of femoral condyle (FC) (P < 0.0001) and groove (P = 0.0001) in patients with early stage knee OA were significantly increased in comparison to those in the control, while no significant differences in the T2 values of patellar and tibial plateau (TP) were observed between the patients and the control. The WORMS cartilage and osteophyte scores of the femoral articular cartilage were significantly higher than those in the patellar- (P = 0.001 and P = 0.007, respectively) and tibial- (P = 0.0001 and P < 0.0001, respectively) articular cartilage in the patients with early stage knee OA. The degradation and destruction of the femoral articular cartilage demonstrated a greater degree of deterioration than those of the tibial- and patellar- articular cartilage in patients with early stage knee OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    PubMed

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Quantitative T2(*) assessment of knee joint cartilage after running a marathon.

    PubMed

    Hesper, Tobias; Miese, Falk R; Hosalkar, Harish S; Behringer, Michael; Zilkens, Christoph; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2015-02-01

    To study the effect of repetitive joint loading on the T2(*) assessment of knee joint cartilage. T2(*) mapping was performed in 10 non-professional marathon runners (mean age: 28.7±3.97 years) with no morphologically evident cartilage damage within 48h prior to and following the marathon and after a period of approximately four weeks. Bulk and zonal T2(*) values at the medial and lateral tibiofemoral compartment and the patellofemoral compartment were assessed by means of region of interest analysis. Pre- and post-marathon values were compared. There was a small increase in the T2(*) after running the marathon (30.47±5.16ms versus 29.84±4.97ms, P<0.05) while the T2(*) values before the marathon and those after the period of convalescence were similar (29.84±4.97ms versus 29.81±5.17ms, P=0.855). Regional analyses revealed lower T2(*) values in the medial tibial plateau (P<0.001). It appears that repetitive joint loading has a transient influence on the T2(*) values. However, this effect is small and probably not clinically relevant. The low T2(*) values in the medial tibial plateau may be related to functional demand or early cartilage degeneration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Ipsilateral Medial and Lateral Discoid Meniscus with Medial Meniscus Tear

    PubMed Central

    Shimozaki, Kengo; Nakase, Junsuke; Ohashi, Yoshinori; Numata, Hitoaki; Oshima, Takeshi; Takata, Yasushi; Tsuchiya, Hiroyuki

    2016-01-01

    Introduction: Discoid meniscus is a well-documented knee pathology, and there are many cases of medial or lateral discoid meniscus reported in the literature. However, ipsilateral concurrent medial and lateral discoid meniscus is very rare, and only a few cases have been reported. Herein, we report a case of concurrent medial and lateral discoid meniscus. Case Report: A 27-year-old Japanese man complained of pain on medial joint space in his right knee that was diagnosed as a complete medial and lateral discoid meniscus. In magnetic resonance imaging, although the lateral discoid meniscus had no tear, the medial discoid meniscus had a horizontal tear. Arthroscopic examination of his right knee similarly revealed that the medial discoid meniscus had a horizontal tear. In addition, the discoid medial meniscus also had an anomalous insertion to the anterior cruciate ligament, and there was also mild fibrillation of the medial tibial cartilage surface. We performed arthroscopic partial meniscectomy for the torn medial discoid meniscus but not for the asymptomatic lateral discoid meniscus. The latest follow-up at 18 months indicated satisfactory results. Conclusion: We report a rare case of ipsilateral medial and lateral discoid meniscus with medial meniscus tear. The medial discoid meniscus with tear was treated with partial meniscectomy, whereas the lateral discoid meniscus without tear was only followed up. PMID:28164045

  1. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  2. Subregional laminar cartilage MR spin-spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss - data from the Osteoarthritis Initiative (OAI).

    PubMed

    Wirth, W; Maschek, S; Beringer, P; Eckstein, F

    2017-08-01

    To explore whether subregional laminar femorotibial cartilage spin-spin relaxation time (T2) is associated with subsequent radiographic progression and cartilage loss and/or whether one-year change in subregional laminar femorotibial cartilage T2 is associated with concurrent progression in knees with established radiographic OA (ROA). In this case-control study, Osteoarthritis Initiative (OAI) knees with medial femorotibial progression were selected based on one-year loss in both quantitative cartilage thickness Magnetic resonance imaging (MRI) and radiographic joint space width (JSW). Non-progressor knees were matched by sex, Body mass index (BMI), baseline Kellgren-Lawrence-grade (2/3), and pain. Baseline and one-year follow-up superficial and deep cartilage T2 was analyzed in 16 femorotibial subregions using multi-echo spin-echo MRI. 37 knees showed medial femorotibial progression whereas 37 matched controls had no medial or lateral compartment progression. No statistically significant baseline differences between progressor and non-progressor knees in medial femorotibial cartilage T2 were observed in the superficial (48.9 ± 3.0 ms; 95% CI: [47.9, 49.9] vs 47.8 ± 3.6 ms; 95% CI: [46.6, 49.0], P = 0.07) or deep cartilage layer (40.8 ± 3.6 ms; 95% CI: [39.5, 42.0] vs 40.1 ± 4.7 ms; 95% CI: [38.5, 41.6], P = 0.29). Concurrent T2 change was more pronounced in the deep than the superficial cartilage layer. In the medial femorotibial compartment (MFTC), longitudinal change was greater in the deep layer of progressor than non-progressor knees (1.8 ± 4.5 ms; 95% CI: [0.3, 3.3] vs -0.2 ± 1.9 ms; 95% CI: [-0.8, 0.5], P = 0.02), whereas no difference was observed in the superficial layer. Medial compartment cartilage T2 did not appear to be a strong prognostic factor for subsequent structural progression in the same compartment of knees with established ROA, when appropriately controlling for covariates. Yet, deep layer T2 change in the

  3. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis.

    PubMed

    Chang, Alison; Moisio, Kirsten; Chmiel, Joan S; Eckstein, Felix; Guermazi, Ali; Almagor, Orit; Cahue, September; Wirth, Wolfgang; Prasad, Pottumarthi; Sharma, Leena

    2011-01-01

    Meniscal tears have been linked to knee osteoarthritis progression, presumably by impaired load attenuation. How meniscal tears affect osteoarthritis is unclear; subregional examination may help to elucidate whether the impact is local. This study examined the association between a tear within a specific meniscal segment and subsequent 2-year cartilage loss in subregions that the torn segment overlies. Participants with knee osteoarthritis underwent bilateral knee MRI at baseline and 2 years. Mean cartilage thickness within each subregion was quantified. Logistic regression with generalised estimating equations were used to analyse the relationship between baseline meniscal tear in each segment and baseline to 2-year cartilage loss in each subregion, adjusting for age, gender, body mass index, tear in the other two segments and extrusion. 261 knees were studied in 159 individuals. Medial meniscal body tear was associated with cartilage loss in external subregions and in central and anterior tibial subregions, and posterior horn tear specifically with posterior tibial subregion loss; these relationships were independent of tears in the other segments and persisted in tibial subregions after adjustment for extrusion. Lateral meniscal body and posterior horn tear were also associated with cartilage loss in underlying subregions but not after adjustment for extrusion. Cartilage loss in the internal subregions, not covered by the menisci, was not associated with meniscal tear in any segment. These results suggest that the detrimental effect of meniscal tears is not spatially uniform across the tibial and femoral cartilage surfaces and that some of the effect is experienced locally.

  4. Patella height is not altered by descending medial open-wedge high tibial osteotomy (HTO) compared to ascending HTO.

    PubMed

    Krause, Matthias; Drenck, Tobias Claus; Korthaus, Alexander; Preiss, Achim; Frosch, Karl-Heinz; Akoto, Ralph

    2018-06-01

    The primary purpose of the study was to gain insight into geometric changes of the patellar height (PH) and posterior tibial slope (PTS) after a biplanar ascending medial open-wedge high tibial osteotomy (HTO) compared to biplanar descending medial open-wedge HTO in patients with genu varum. Sixty-four patients (mean age 45.2 ± 8.7 years, females n = 24, males n = 40) with varus malalignment and medial gonarthrosis were retrospectively studied. Patients received either a biplanar ascending or descending medial open-wedge HTO. Radiographic analysis included the assessment of standing total leg axis, PH, and PTS prior to and after surgery. In the ascending HTO group, PH decreased significantly by 4.0% (p = 0.037, Caton-Deschamps index) after an average leg axis valgus-producing correction of 7.1° ± 2.8°. In the descending HTO group, with an average leg axis correction of 7.0° ± 3.7°, there were no significant PH changes. There were no significant differences between the ascending and descending HTO groups regarding PTS or leg axis. The mean post-operative leg axis between ascending (1.6° ± 1.9°) and descending HTO (1.9° ± 2.4°) was not significantly different. Compared to the biplanar ascending medial open-wedge HTO, the descending HTO did not influence patella height or increase the posterior tibial slope. In order to respect patellofemoral and slope-related knee kinematics, a biplanar descending medial open-wedge HTO has proven useful to control patella height and posterior tibial slope. These findings underscore the importance of the preoperative patella height assessment in the osteotomy planning and subsequent choice of the biplanar osteotomy direction. IV.

  5. Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty.

    PubMed

    Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori

    2013-12-01

    The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is

  6. Fixator-assisted medial tibial plateau elevation to treat severe Blount's disease: outcomes at maturity.

    PubMed

    Fitoussi, F; Ilharreborde, B; Lefevre, Y; Souchet, P; Presedo, A; Mazda, K; Penneçot, G F

    2011-04-01

    Severe forms of Blount's disease may be associated with medial tibial plateau (MTP) depression. Management should then take account of joint congruence, laxity, limb axis, torsional abnomality, leg length discrepancy (LLD) and eventual recurrence history. Eight knees (six patients) were managed in a single step comprising MTP elevation osteotomy, lateral epiphysiodesis and proximal tibia osteotomy to correct varus and rotational deformity. Fixation was achieved using an Ilizarov external fixator. Mean age was 10.5 years. Mean hip-knee-ankle (HKA) angle was 151°; distal femoral varus, 94°; metaphyseal-diaphyseal angle (MDA), 27°; and angle of depression of the medial tibial plateau (ADMTP), 42°. Predicted residual proximal tibial growth was 2.6 cm. At a mean 48 months' follow-up, results were good in six cases, medium in one and poor (due to incomplete lateral epiphysiodesis) in one. Mean lateral tibial torsion was 9° and final LLD 11 mm. Weight-bearing was resumed at 2 months, and the fixator was removed at 5.5 months postoperatively. At end of follow-up, mean HKA angle was 179.6°, MDA 7.3° and ADMTP 5.4°. This technically demanding procedure gave satisfactory results in terms of axes and congruence; longer term assessment remains needed. Level IV. Retrospective study. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Medial Meniscus Posterior Root Tear Repair Using a 2-Simple-Suture Pullout Technique.

    PubMed

    Samy, Tarek Mohamed; Nassar, Wael A M; Zakaria, Zeiad Mohamed; Farrag Abdelaziz, Ahmed Khaled

    2017-06-01

    Medial meniscus posterior root tear is one of the underestimated knee injuries in terms of incidence. Despite its grave sequelae, using simple but effective technique can maintain the native knee joint longevity. In the current note, a 2-simple-suture pullout technique was used to effectively reduce the meniscus posterior root to its anatomic position. The success of the technique depended on proper tool selection as well as tibial tunnel direction that allowed easier root suturing and better suture tensioning, without inducing any iatrogenic articular cartilage injury or meniscal tissue loss. Using anterior knee arthroscopy portals, anterolateral as a viewing portal and anteromedial as a working portal, a 7-mm tibial tunnel starting at Gerdy tubercle and ending at the medial meniscus posterior root bed was created. The 2 simple sutures were retrieved through the tunnel and tensioned and secured over a 12-mm-diameter washer at the tibial tunnel outer orifice. Anatomic reduction of the medial meniscus posterior root tear was confirmed arthroscopically intraoperatively and radiologically by postoperative magnetic resonance imaging.

  8. Medial meniscal posterior root/horn radial tears correlate with cartilage degeneration detected by T1ρ relaxation mapping.

    PubMed

    Takahashi, Kenji; Hashimoto, Sanshiro; Nakamura, Hiroshi; Mori, Atsushi; Sato, Akiko; Majima, Tokifumi; Takai, Shinro

    2015-06-01

    This study aimed to identify factors on routine pulse sequence MRI associated with cartilage degeneration observed on T1ρ relaxation mapping. This study included 137 subjects with knee pain. T1ρ values were measured in the regions of interest on the surface layer of the cartilage on mid-coronal images of the femorotibial joint. Assessment of cartilage, subchondral bone, meniscus and ligaments was performed using routine pulse sequence MRI. Radiographic evaluation for osteoarthritis was also performed. Multiple regression analysis revealed posterior root/horn tears to be independent factors increasing the T1ρ values of the cartilage in the medial compartment of the femorotibial joint. Even when adjusted for radiographically defined early-stage osteoarthritis, medial posterior meniscal radial tears significantly increased the T1ρ values. This study showed that posterior root/horn radial tears in the medial meniscus are particularly important MRI findings associated with cartilage degeneration observed on T1ρ relaxation mapping. Morphological factors of the medial meniscus on MRI provide findings useful for screening early-stage osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Cartilage Thickening in Early Radiographic Human Knee Osteoarthritis –Within-Person, Between-Knee Comparison

    PubMed Central

    Cotofana, Sebastian; Buck, Robert; Wirth, Wolfgang; Roemer, Frank; Duryea, Jeff; Nevitt, Michael; Eckstein, Felix

    2012-01-01

    Objective To determine whether the presence of definite osteophytes (in absence of joint space narrowing [JSN]) by radiograph is associated with (subregional) increases in cartilage thickness, in a within-person, between-knee cross-sectional comparison of participants in the Osteoarthritis Initiative (OAI). Based on previous results, external medial (ecMF) and external lateral weight-bearing femoral (ecLF) subregions were selected as primary endpoints. Methods Both knees of 61 (of 4798) OAI participants displayed definite tibial or femoral marginal osteophytes and no JSN in one knee, and no signs of radiographic OA in the contra-lateral knee; this being confirmed by an expert central reader. In these participants, cartilage thickness was measured in 16 femorotibial subregions of each knee, based on sagittal DESSwe magnetic resonance images. Location-specific joint space width from fixed flexion radiographs was determined using dedicated software. Location-specific associations of osteophytes with cartilage thickness were evaluated using paired t-tests and mixed effect models. Results Of the 61 participants, 48% had only medial, 36% only lateral, and 16% bi-compartmental osteophytes. Osteophyte knees had significantly thicker cartilage than contra-lateral non-osteophyte knees in the ecMF (+71±223μm, equivalent to +5.5%, p=0.015) and ecLF (+64±195μm, +4.1%, p=0.013). No significant differences between knees were noted in other subregions, nor in joint space width. Cartilage thickness in ecMF and ecLF was significantly associated with tibial osteophytes in the same (medial or lateral) compartment (p=0.003). Conclusion Knees with early radiographic OA display thicker cartilage than (contra-lateral) knees without radiographic findings of OA, specifically in the external femoral subregions of compartments with marginal osteophytes. PMID:22556039

  10. Chronic Changes in the Articular Cartilage and Meniscus Following Traumatic Impact to the Lapine Knee

    PubMed Central

    Fischenich, Kristine M.; Button, Keith D.; Coatney, Garrett A.; Fajardo, Ryan S.; Leikert, Kevin M.; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both the instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p = 0.036). In both the meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee. PMID:25523754

  11. Medial tibial stress syndrome: a critical review.

    PubMed

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  12. High tibial closing wedge osteotomy for medial compartment osteoarthrosis of knee

    PubMed Central

    Tuli, SM; Kapoor, Varun

    2008-01-01

    Background: Most patients of symptomatic osteoarthrosis of knee are associated with varus malalignment that is causative or contributory to painful arthrosis. It is rational to correct the malalignment to transfer the functional load to the unaffected or less affected compartment of the knee to relieve symptoms. We report the outcome of a simple technique of high tibial osteotomy in the medial compartment osteoarthrosis of the knee. Materials and Methods: Between 1996 and 2004 we performed closing wedge osteotomy in 78 knees in 65 patients. The patients selected for osteotomy were symptomatic essentially due to medial compartment osteoarthrosis associated with moderate genu varum. Of the 19 patients who had bilateral symptomatic disease 11 opted for high tibial osteotomy of their second knee 1-3 years after the first operation. Preoperative grading of osteoarthrosis and postoperative function was assessed using Japanese Orthopaedic Association (JOA) rating scale. Results: At a minimum follow-up of 2 years (range 2-9 years) 6-10° of valgus correction at the site of osteotomy was maintained, there was significant relief of pain while walking, negotiating stairs, squatting and sitting cross-legged. Walking distance in all patients improved by two to four times their preoperative distance of 200-400 m. No patient lost any preoperative knee function. The mean JOA scoring improved from preoperative 54 (40-65) to 77 (55-85) at final follow-up. Conclusion: Closing wedge high tibial osteotomy performed by our technique can be undertaken in any setup with moderate facilities. Operation related complications are minimal and avoidable. Kirschner wire fixation is least likely to interfere with replacement surgery if it becomes necessary. PMID:19823659

  13. Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears.

    PubMed

    Choi, Chul-Jun; Choi, Yun-Jin; Song, In-Bum; Choi, Chong-Hyuk

    2011-06-01

    The clinical and radiologic features of radial tears of the medial meniscus posterior horn were compared with those of horizontal tears. From January 2007 to December 2008, 387 consecutive cases of medial meniscal tears were treated arthroscopically. Among these, 91 were radial tears in the medial meniscus posterior horn, and 95 were horizontal tears in the posterior segment of the medial meniscus. The patients' data (age, gender, duration of symptom, body mass index, and injury history), radiographic findings (Kellgren and Lawrence score, posterior tibial slope, and femorotibial angle), and chondral lesions were recorded. The patient factors of age, gender, and body mass index were related to radial tears of the medial meniscus posterior horn. Radial tears were significantly correlated with Kellgren and Lawrence score, varus alignment, posterior tibial slope, and severity of the chondral lesion. Radial tears of the medial meniscus posterior horn are a unique clinical entity that are associated with older age, females and obesity, and are strongly associated with an increased incidence and severity of cartilage degeneration compared to horizontal tears.

  14. Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis.

    PubMed

    Wang, Yuanyuan; Wluka, Anita E; Berry, Patricia A; Siew, Terence; Teichtahl, Andrew J; Urquhart, Donna M; Lloyd, David G; Jones, Graeme; Cicuttini, Flavia M

    2012-12-01

    Although there is evidence for a beneficial effect of increased quadriceps strength on knee symptoms, the effect on knee structure is unclear. We undertook this study to examine the relationship between change in vastus medialis cross-sectional area (CSA) and knee pain, tibial cartilage volume, and risk of knee replacement in subjects with symptomatic knee osteoarthritis (OA). One hundred seventeen subjects with symptomatic knee OA underwent magnetic resonance imaging of the knee at baseline and at 2 and 4.5 years. Vastus medialis CSA was measured at baseline and at 2 years. Tibial cartilage volume was measured at baseline and at 2 and 4.5 years. Knee pain was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index at baseline and at 2 years. The frequency of knee joint replacement over 4 years was determined. Regression coefficients (B) and odds ratios were determined along with 95% confidence intervals (95% CIs). After adjusting for confounders, baseline vastus medialis CSA was inversely associated with current knee pain (r = -0.16, P = 0.04) and with medial tibial cartilage volume loss from baseline to 2 years (B coefficient -10.9 [95% CI -19.5, -2.3]), but not with baseline tibial cartilage volume. In addition, an increase in vastus medialis CSA from baseline to 2 years was associated with reduced knee pain over the same time period (r = 0.24, P = 0.007), reduced medial tibial cartilage loss from 2 to 4.5 years (B coefficient -16.8 [95% CI -28.9, -4.6]), and reduced risk of knee replacement over 4 years (odds ratio 0.61 [95% CI 0.40, 0.94]). In a population of patients with symptomatic knee OA, increased vastus medialis size was associated with reduced knee pain and beneficial structural changes at the knee, suggesting that management of knee pain and optimizing vastus medialis size are important in reducing OA progression and subsequent knee replacement. Copyright © 2012 by the American College of Rheumatology.

  15. Study of the anatomy of the tibial nerve and its branches in the distal medial leg.

    PubMed

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion .

  16. Repair of the posterior root of the medial meniscus.

    PubMed

    Jones, Christopher; Reddy, Sudheer; Ma, C Benjamin

    2010-01-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. Early identification and treatment of these tears help halt the progression of cartilage degeneration and osteoarthritis of the knee. Repair of these tears is essential for recreating the hoop stress of the medial meniscus. In this note, we describe a successful arthroscopic technique to repair this lesion. A posteromedial portal is established by which two 2-0 PDS sutures are placed through the meniscus root and pulled down through a trans-tibial tunnel and fixed using an EndoButton distally along the anterolateral cortex of the tibia. This has been performed successfully in five patients with no complications.

  17. Intra-articular Recombinant Human Proteoglycan 4 Mitigates Cartilage Damage Following Destabilization of the Medial Meniscus in the Yucatan Minipig

    PubMed Central

    Waller, Kimberly A.; Chin, Kaitlyn E.; Jay, Gregory D.; Zhang, Ling X.; Teeple, Erin; McAllister, Scott; Badger, Gary J.; Schmidt, Tannin A.; Fleming, Braden C.

    2016-01-01

    Background Lubricin, or proteoglycan 4 (PRG4), is a glycoprotein responsible for joint boundary lubrication. PRG4 has been previously shown to be down-regulated following traumatic joint injury such as a meniscal tear. There is preliminary evidence suggesting that intra-articular injection of PRG4 post-injury will reduce cartilage damage in rat models of surgically-induced post-traumatic osteoarthritis. Objective To determine the efficacy of intra-articular injection of full length recombinant human lubricin (rhPRG4) for reducing cartilage damage after medial meniscus destabilization (DMM) in a pre-clinical large animal model. Study Design Controlled laboratory study Methods Unilateral DMM was performed in 29 Yucutan minipigs. One week post-DMM, animals received 3 weekly intra-articular injections (3cc/injection): 1) rhPRG4 [1.3mg/ml; n=10], 2) rhPRG4+hyaluronan [1.3mg/ml rhPRG4 and 3mg/ml hyaluronan (~950 kDA); n=10], and 3) phosphate buffered saline [PBS; n=9]. Hind limbs were harvested 26 weeks post-surgery. Cartilage integrity was evaluated using macroscopic (India Ink) and microscopic (Safranin O-fast green and hematoxylin & eosin) scoring systems. Secondary outcomes evaluated using ELISA included PRG4 levels in synovial fluid, CTX-II concentrations in urine and serum, and IL-1β levels in synovial fluid and serum. Results The rhPRG4 group had significantly less macroscopic cartilage damage in the medial tibial plateau compared to the PBS group (p=.002). No difference was found between the rhPRG4+hyaluronan and PBS groups (p=.23). However, no differences in microscopic damage scores were observed between the three groups (p=.70). PRG4 production was elevated in the rhPRG4 group synovial fluid compared to the PBS group (p=.033). The rhPRG4 group presented significantly lower urinary CTX-II levels, but not serum levels, when compared to the PBS (p=.013) and rhPRG4+hyaluronan (p=.011) groups. In serum and synovial fluid, both rhPRG4 (p=.006; p=.017) and rhPRG4

  18. Study of the anatomy of the tibial nerve and its branches in the distal medial leg

    PubMed Central

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Objective Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Methods Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. Results The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion. PMID:24453596

  19. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage.

    PubMed

    Nguyen, Christelle; Bazin, Dominique; Daudon, Michel; Chatron-Colliet, Aurore; Hannouche, Didier; Bianchi, Arnaud; Côme, Dominique; So, Alexander; Busso, Nathalie; Busso, Nathalie; Lioté, Frédéric; Ea, Hang-Korng

    2013-01-01

    Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was

  20. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions.

    PubMed

    Shin, Young-Soo; Han, Seung-Beom; Hwang, Yeok-Ku; Suh, Dong-Won; Lee, Dae-Hee

    2015-05-01

    We aimed to compare posterior cruciate ligament (PCL) tibial tunnel location after tibial guide insertion medial (between the PCL remnant and the medial femoral condyle) and lateral (between the PCL remnant and the anterior cruciate ligament) to the PCL stump as determined by in vivo 3-dimensional computed tomography (3D-CT). Tibial tunnel aperture location was analyzed by immediate postoperative in vivo CT in 66 patients who underwent single-bundle PCL reconstruction, 31 by over-the-PCL and 35 by under-the-PCL tibial guide insertion techniques. Tibial tunnel positions were measured in the medial to lateral and proximal to distal directions of the posterior proximal tibia. The center of the tibial tunnel aperture was located more laterally (by 2.7 mm) in the over-the-PCL group than in the under-the-PCL group (P = .040) and by a relative percentage (absolute value/tibial width) of 3.2% (P = .031). Tibial tunnel positions in the proximal to distal direction, determined by absolute value and relative percentage, were similar in the 2 groups. Tibial tunnel apertures were located more laterally after lateral-to-the-PCL tibial guide insertion than after medial-to-the-PCL tibial guide insertion. There was, however, no significant difference between these techniques in distance from the joint line to the tibial tunnel aperture. Insertion lateral to the PCL stump may result in better placement of the PCL in its anatomic footprint. Level III, retrospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Biological knee reconstruction for combined malalignment, meniscal deficiency, and articular cartilage disease.

    PubMed

    Harris, Joshua D; Hussey, Kristen; Wilson, Hillary; Pilz, Kyle; Gupta, Anil K; Gomoll, Andreas; Cole, Brian J

    2015-02-01

    The aim of this study was to analyze patient-reported outcomes in those undergoing the triad of simultaneous osteotomy, meniscal transplantation, and articular cartilage repair. Patients undergoing simultaneous meniscal transplantation, distal femoral or proximal tibial osteotomy, and articular cartilage surgery by a single surgeon (B.J.C.) were analyzed. Meniscal transplantation was performed using bone-in-slot techniques. Distal femoral and high tibial osteotomies were performed for valgus and varus malalignment, respectively. Microfracture, autologous chondrocyte implantation, and osteochondral autograft or allograft were performed for articular cartilage disease. Validated patient-reported and surgeon-measured outcomes were collected. Preoperative and postoperative outcomes and medial versus lateral disease were compared using Student t tests. Eighteen participants (mean age, 34 ± 7.8 years; symptomatic patients, 7.4 ± 5.6 years; 2.4 ± 1.0 surgical procedures before study enrollment; mean follow-up, 6.5 ± 3.2 years) were analyzed. Two thirds of participants had medial compartment pathologic conditions and one third had lateral compartment pathologic processes. At final follow-up, there were statistically significant clinically meaningful improvements in International Knee Documentation Committee (IKDC) subjective classification, Lysholm score, and 4 Knee Injury and Osteoarthritis Outcome Score (KOOS) subscores. Postoperative 12-item short form (SF-12) physical and mental component scores were not significantly different from preoperative scores. The Kellgren-Lawrence classification grade was 1.5 ± 1.1 at 2.5 ± 3.0 years after surgery. There was a significantly higher preoperative SF-12 physical composite score (PCS) in participants with lateral compartment pathologic conditions (v medial compartment conditions) (P = .011). Although there were 13 reoperations in 10 patients (55.5% reoperation rate), only one patient was converted to knee arthroplasty (5

  2. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give

  3. Medial tibial stress syndrome: conservative treatment options.

    PubMed

    Galbraith, R Michael; Lavallee, Mark E

    2009-10-07

    Medial tibial stress syndrome (MTSS), commonly known as "shin splints," is a frequent injury of the lower extremity and one of the most common causes of exertional leg pain in athletes (Willems T, Med Sci Sports Exerc 39(2):330-339, 2007; Korkola M, Amendola A, Phys Sportsmed 29(6):35-50, 2001; Hreljac A, Med Sci Sports Exerc 36(5):845-849, 2004). Although often not serious, it can be quite disabling and progress to more serious complications if not treated properly. Often, the cause of MTSS is multi-factorial and involves training errors and various biomechanical abnormalities. Few advances have been made in the treatment of MTSS over the last few decades. Current treatment options are mostly based on expert opinion and clinical experience. The purpose of this article is to review published literature regarding conservative treatment options for MTSS and provide recommendations for sports medicine clinicians for improved treatment and patient outcomes.

  4. Trajectory of cartilage loss within 4 years of knee replacement--a nested case-control study from the osteoarthritis initiative.

    PubMed

    Eckstein, F; Boudreau, R M; Wang, Z; Hannon, M J; Wirth, W; Cotofana, S; Guermazi, A; Roemer, F; Nevitt, M; John, M R; Ladel, C; Sharma, L; Hunter, D J; Kwoh, C K

    2014-10-01

    Knee replacement (KR) represents a clinically important endpoint of knee osteoarthritis (KOA). Here we examine the 4-year trajectory of femoro-tibial cartilage thickness loss prior to KR vs non-replaced controls. A nested case-control study was performed in Osteoarthritis Initiative (OAI) participants: Cases with KR between 12 and 60 month (M) follow-up were each matched with one control (without KR through 60M) by age, sex, and baseline radiographic stage. Femoro-tibial cartilage thickness was measured quantitatively using magnetic resonance imaging (MRI) at the annual visit prior to KR occurrence (T0), and at 1-4 years prior to T0 (T-1 to T-4). Cartilage loss between cases and controls was compared using paired t-tests and conditional logistic regression. One hundred and eighty-nine knees of 164 OAI participants [55% women; age 64 ± 8.7; body mass index (BMI) 29 ± 4.5] had KR and longitudinal cartilage data. Comparison of annualized slopes of change across all time points revealed greater loss in the central medial tibia (primary outcome) in KRs than in controls [94 ± 137 vs 55 ± 104 μm; P = 0.0017 (paired t); odds ratio (OR) 1.36 (95% confidence interval (CI): 1.08-1.70)]. The discrimination was stronger for T-2 → T0 [OR 1.61 (1.33-1.95), n = 127] than for T-1 → T0, and was not statistically significant for intervals prior to T-2 [i.e., T-4 → T-2, OR 0.97 (0.67-1.41), n = 60]. Results were similar for total medial femoro-tibial cartilage loss (secondary outcome), and when adjusting for pain and BMI. In knees with subsequent replacement, cartilage loss accelerates in the 2 years, and particularly in the year prior to surgery, compared with controls. Whether slowing this cartilage loss can delay KR remains to be determined. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. The preclinical sheep model of high tibial osteotomy relating basic science to the clinics: standards, techniques and pitfalls.

    PubMed

    Pape, Dietrich; Madry, Henning

    2013-01-01

    To develop a preclinical large animal model of high tibial osteotomy to study the effect of axial alignment on the lower extremity on specific issues of the knee joint, such as in articular cartilage repair, development of osteoarthritis and meniscal lesions. Preoperative planning, surgical procedure and postoperative care known from humans were adapted to develop a HTO model in the adult sheep. Thirty-five healthy, skeletally mature, female Merino sheep between 2 and 4 years of age underwent a HTO of their right tibia in a medial open-wedge technique inducing a normal (group 1) and an excessive valgus alignment (group 2) and a closed-wedge technique (group 3) inducing a varus alignment with the aim of elucidating the effect of limb alignment on cartilage repair in vivo. Animals were followed up for 6 months. Solid bone healing and maintenance of correction are most likely if the following surgical principles are respected: (1) medial and longitudinal approach to the proximal tibia; (2) biplanar osteotomy to increase initial rotatory stability regardless of the direction of correction; (3) small, narrow but long implant with locking screws; (4) posterior plate placement to avoid slope changes; (5) use of bicortical screws to account for the brittle bone of the tibial head and to avoid tibial head displacement. Although successful high tibial osteotomy in sheep is complex, the sheep may--because of its similarities with humans--serve as an elegant model to induce axial malalignment in a clinically relevant environment, and osteotomy healing under challenging mechanical conditions.

  6. Early weight bearing versus delayed weight bearing in medial opening wedge high tibial osteotomy: a randomized controlled trial.

    PubMed

    Lansdaal, Joris Radboud; Mouton, Tanguy; Wascher, Daniel Charles; Demey, Guillaume; Lustig, Sebastien; Neyret, Philippe; Servien, Elvire

    2017-12-01

    The need for a period of non-weight bearing after medial opening wedge high tibial osteotomy remains controversial. It is hypothesized that immediate weight bearing after medial opening wedge high tibial osteotomy would have no difference in functional scores at one year compared to delayed weight bearing. Fifty patients, median age 54 years (range 40-65), with medial compartment osteoarthritis, underwent a medial opening wedge high tibial osteotomy utilizing a locking plate without bone grafting. Patients were randomized into an Immediate or a Delayed (2 months) weight bearing group. All patients were assessed at one-year follow-up and the two groups compared. The primary outcome measure was the IKS score. Secondary outcome measures included the IKDC score, the VAS pain score and rate of complications. The functional scores significantly improved in both groups. The IKS score increased from 142 ± 31 to 171 ± 26 in the Immediate group (p < 0.001) and from 148 ± 22 to 178 ± 23 in the Delayed group (p < 0.001). The IKDC score increased from 49 ± 17 pre-operatively to 68 ± 14 one-year post-operatively in the Immediate group (p < 0.0001) and from 44 ± 16 to 69 ± 19 in the Delayed group (p < 0.001). The average VAS for pain 2 months after surgery was 3 ± 3 in the Immediate group and 3 ± 2 in the Delayed (n.s.). There was no significant difference between the two groups in any of the outcome measures. The mean mechanical femorotibial angle changed from 6° of varus (0°-15° of varus, SD = 3°) to 4° of valgus (5°-11° of valgus, SD = 3°) in the Immediate group and from 5° of varus (0°-10° of varus, SD = 3°) to 3° of valgus (2° of varus to 8° of valgus, SD = 3°) in the Delayed group. No difference was seen between groups, and no loss of correction was observed in any patient. Two cases of non-union occurred, one in each group. One infection and one deep vein thrombosis occurred in the Immediate group. Immediate

  7. Differences in Medial and Lateral Posterior Tibial Slope: An Osteological Review of 1090 Tibiae Comparing Age, Sex, and Race.

    PubMed

    Weinberg, Douglas S; Williamson, Drew F K; Gebhart, Jeremy J; Knapik, Derrick M; Voos, James E

    2017-01-01

    Injuries to the anterior cruciate ligament (ACL) are common, and a number of knee morphological variables have been identified as risk factors for an ACL injury, including the posterior tibial slope (TS). However, limited data exist regarding innate population differences in the TS. To (1) establish normative values for the medial and lateral posterior TS; (2) determine what differences exist between ages, sexes, and races; and (3) determine how internal or external tibial rotation (as occurs during sagittal knee motion) influences the stereotactic perception of the TS. Cross-sectional study; Level of evidence, 3. A total of 545 cadaveric specimens (1090 tibiae) were obtained from the Hamann-Todd osteological collection. Specimens were leveled in the coronal, sagittal, and axial planes using a digital laser. Virtual representations of each bone were created with a 3-dimensional digitizer apparatus. The TS of the medial and lateral tibial plateaus were measured using techniques adapted from previous radiographic protocols. Medial and lateral TS were then again measured on 200 tibiae that were internally and externally rotated by 10° (axially). The mean (±SD) medial TS was 6.9° ± 3.7° posterior, which was greater than the mean lateral TS of 4.7° ± 3.6° posterior ( P < .001). Neither the medial nor lateral TS changed with age. Women had a greater mean TS compared with men on both the medial (7.5° ± 3.8° vs 6.8° ± 3.7°, respectively; P = .03) and lateral (5.2° ± 3.5° vs 4.6° ± 3.5°, respectively; P = .04) sides. Black specimens had a greater mean medial TS (8.7° ± 3.6° vs 5.8° ± 3.3°, respectively; P < .001) and lateral TS (5.9° ± 3.3° vs 3.8° ± 3.5°, respectively; P < .001) compared with white specimens. Axial rotation was shown to increase the perception of the medial and lateral TS ( P < .001). The medial TS was shown to be greater than the lateral TS. Important sex- and race-based differences exist in the TS. This study also

  8. Transplantation of free tibial periosteal grafts for the repair of articular cartilage defect: An experimental study

    PubMed Central

    Singh, Ravijot; Chauhan, Vijendra; Chauhan, Neena; Sharma, Sansar

    2009-01-01

    Background: Articular chondrocytes have got a long lifespan but rarely divides after maturity. Thus, an articular cartilage has a limited capacity for repair. Periosteal grafts have chondrogenic potential and have been used to repair defects in the articular cartilage. The purpose of the present study is to investigate the differentiation of free periosteal grafts in the patellofemoral joint where the cambium layer faces the subchondral bone and to investigate the applicability of periosteal grafts in the reconstruction of articular surfaces. Materials and Methods: The study was carried out over a period of 1 year on 25 adult, male Indian rabbits after obtaining permission from the institutional animal ethical committee. A full-thickness osteochondral defect was created by shaving off the whole articular cartilage of the patella of the left knee. The defect thus created was grafted with free periosteal graft. The patella of the right knee was taken as a control where no grafting was done after shaving off the articular cartilage. The first animal was used to study the normal histology of the patellar articular cartilage and periosteum obtained from the medial surface of tibial condyle. Rest 24 animals were subjected to patellectomy, 4 each at serial intervals of 2, 4, 8, 16, 32 and 48 weeks and the patellar articular surfaces were examined macroscopically and histologically. Results: The grafts got adherent to the underlying patellar articular surface at the end of 4 weeks. Microscopically, graft incorporation could be appreciated at 4 weeks. Mesenchymal cells of the cambium layer were seen differentiating into chondrocytes by the end of 4 weeks in four grafts (100%) and they were arranged in a haphazard manner. Till the end of 8 weeks, the cellular arrangement was mostly wooly. At 16 weeks, one graft (25%) had wooly arrangement of chondrocytes and three grafts (75%) had columnar formation of cells. Same percentage was maintained at 32 weeks. Four grafts (100%) at

  9. Monobloc Reconstruction of Dome, Medial Crura, and Columella with Gamma-Shaped Costal Cartilage Graft

    PubMed Central

    Bilgili, Ahmet Mert; Güven, Erdem

    2017-01-01

    Summary: In severe nasal deformities, the original cartilages are removed, or they become unusable because of previous operations. Costal cartilage (CC) is one of the most important tools for the replacement of deficient nasal osteocartilaginous framework. In 4 secondary and 1 tertiary rhinoplasty cases with severe deformities of medial and lateral crura of the lower lateral cartilages, we have prepared a long strut graft from a CC and then split the graft tip 5–6 mm vertically into 2 equal halves to create a gamma (ϒ)-shaped strut graft. We have sutured the base of this graft to the nasal spine and/or the bases of the medial crural remnants. Then, we have prepared lateral crural grafts and secured the grafts over lateral crural remnants. Then we curved the split tip winglets of the ϒ-shaped strut graft to both sides and sutured them to lateral crural grafts in order to create a new dome. Splitting of the CC strut graft reduces the need for extensive suturing at the tip, obtains smoother contours and ensures graft economy, and provides an original and stable dome shape. The bending capacity of the CC is limited in middle-aged patients. Costal allografts from a young cadaver can be a good alternative. ϒ-shaped costal crural graft is useful for medial crural and domal monobloc reconstruction in secondary and tertiary cases. PMID:29632798

  10. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    PubMed

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Tibial avulsion fracture of the posterior root of the medial meniscus in a skeletally-immature child - a case report.

    PubMed

    Matava, Matthew J; Kim, Young-Mo

    2011-01-01

    It has been theorized that a traumatic tibial avulsion fracture of the posterior root of the medial meniscus (MM) is the cause of the so-called meniscus ossicle (MO). We report the delayed appearance of a tibial avulsion fracture of the posterior root of the MM after a valgus, twisting injury in a 12-year-old boy with open physes. Magnetic resonance imaging (MRI) scans performed 3 days after the injury did not demonstrate a definitive tibial avulsion fracture of the posterior root of the MM; whereas, a repeat MRI for 3 months post-injury did. Medial extrusion of the MM was also noted on the 3 month MRI. Arthroscopic reattachment of the avulsed posterior root of the MM using a trans-physeal nonabsorbable suture tied over a proximal tibia staple was performed. Follow-up MRI at 6 months postoperatively demonstrated healing of the tibial avulsion fracture of the posterior root of the MM in an anatomic position. The patient had a complete resolution of symptoms and there was no angular deformity or limb-length discrepancy at 2 years postoperatively. To our knowledge, this is the first report describing a tibial avulsion fracture of the posterior root of the MM in a skeletally-immature patient successfully treated by a trans-physeal arthroscopic suture. This case also illustrates the development of the MO of the posterior root of the MM. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Anatomical significance of a posterior horn of medial meniscus: the relationship between its radial tear and cartilage degradation of joint surface.

    PubMed

    Kan, Akinori; Oshida, Midori; Oshida, Shigemi; Imada, Masato; Nakagawa, Takumi; Okinaga, Shuji

    2010-01-12

    Traumatic injury and surgical meniscectomy of a medial meniscus are known to cause subsequent knee osteoarthritis. However, the difference in the prevalence of osteoarthritis caused by the individual type of the medial meniscal tear has not been elucidated. The aim of this study was to investigate what type of tear is predominantly responsible for the degradation of articular cartilage in the medial compartment of knee joints. Five hundred and forty eight cadaveric knees (290 male and 258 female) were registered in this study. The average age of cadavers at death was 78.8 years old (range: 52-103 years). The knees were macroscopically examined and their medial menisci were classified into four groups according to types of tears: "no tear", "radial tear of posterior horn", "other types of tear" and "worn-out meniscus" groups. The severity of cartilage degradation in their medial compartment of knee joints was evaluated using the international cartilage repair society (ICRS) grading system. We statistically compared the ICRS grades among the groups using Mann-Whitney U test. The knees were assigned into the four groups: 416 "no tear" knees, 51 "radial tear of posterior horn" knees, 71 "other types of tear" knees, and 10 "worn-out meniscus" knees. The knees with substantial meniscal tears showed the severer ICRS grades of cartilage degradation than those without meniscal tears. In addition, the ICRS grades were significantly severer in the "radial tear of posterior horn" group than in the "other types of tear" group, suggesting that the radial tear of posterior horn in the medial meniscus is one of the risk factors for cartilage degradation of joint surface. We have clarified the relationship between the radial tear of posterior horn in the medial meniscus and the severer grade of cartilage degradation. This study indicates that the efforts should be made to restore the anatomical role of the posterior horn in keeping the hoop strain, when patients' physical activity

  13. Specific compartmental analysis of cartilage status in double-bundle ACL reconstruction patients: a comparative study using pre- and postoperative MR images.

    PubMed

    Lee, Yong Seuk; Jeong, Yu Mi; Sim, Jae Ang; Kwak, Ji Hoon; Kim, Kwang Hee; Nam, Shin Woo; Lee, Beom Koo

    2013-03-01

    The purpose of this study was to evaluate the changes in the site-specific cartilage status after a double-bundle ACL reconstruction using preoperative and follow-up MR images. Thirty-six knees that underwent a double-bundle ACL reconstruction from 2001 to 2009 with the available preoperative and follow-up magnetic resonance imaging were included. Patients with a meniscal injury were compared with those without a meniscal injury. The cartilage morphology was classified using a 6-grade scale [from 0 = normal thickness and signal, to 6 = diffuse full-thickness loss (>75 % of the region)]. The changes in cartilage status were evaluated at 14 sites. Cartilage changes were observed in all sites and were classified according to the site and degree of change. The majority of changes were grade 0 and 1, which accounted for 68 and 16.8 % of changes, respectively. The patella medial facet and anterolateral and centromedial femoral regions showed significantly more cartilage loss than the posteromedial, centrolateral, anterolateral, and anteromedial tibial regions. No significance was observed between the knees with or without combined injuries (n.s.). On the other hand, knees with or without combined injuries showed a different pattern of cartilage change, as demonstrated by different levels of grade change at sites. The change in cartilage status was minimal after a double-bundle ACL reconstruction. The patella medial facet, lateral femur anterior region, and medial femur central region showed significantly more cartilage loss than the medial tibia posterior, lateral tibia central, lateral tibia anterior, and medial tibia anterior regions. The presence of a combined injury did not affect the cartilage status changes, even though it was underpowered and too short term to assess the influence of the meniscal injury. Case series, Level IV.

  14. Moore I postero-medial articular tibial fracture in alpine skiers: Surgical management and return to sports activity.

    PubMed

    Morin, Vincent; Pailhé, Régis; Sharma, Akash; Rouchy, René-Christopher; Cognault, Jérémy; Rubens-Duval, Brice; Saragaglia, Dominique

    2016-06-01

    Over the past 10 years, like many authors, we observed an increasing number of Moore I tibial plateau fractures related to alpine skiing for which the surgeon may face difficult choices regarding surgical approach and fixation means. Some authors have recently been suggesting a posterior approach associated to open reduction and osteosynthesis by a buttress plate. But in our knowledge there is no specific study on sports activity recovery after Moore I tibial fractures. The aim of this work was to assess sports activities and clinical outcomes after surgically treated Moore I tibial plateau fractures in an athletic population of skiers. We conducted a prospective case series between 2012 and 2014. This included fifteen patients aged 39.6±7 years whom presented with a Moore I tibial plateau fracture during a skiing accident. 12 cases (80%) presented with an associated tibial spine fracture. Treatment consisted of a standard antero-medial approach, with a medial para patellar arthrotomy to allow direct visualisation of articular reduction and spinal fixation. Two or three 6.5mm long cancellous bone screws were placed antero-posteriorly so as to ensure perfect compression of the fracture site. Radiological and functional results were assessed by an independent observer (Lysholm-Tegner, UCLA, KOOS scores) at the longest follow-up. Mean follow-up was 18.2±6 months (12-28). An immediate postoperative anatomical reduction was achieved in all cases and remained stable in time. At last follow-up Lysholm mean score was 85±14 points (59-100), UCLA score was 7.3±1.6 (4-10) and Tegner score was 4.6±1.3 (3-6). Mean KOOS score was 77±15 (54-97). 87% of patients had resumed their skiing activity and 93% were satisfied or very satisfied from their post-operative surgical outcome. We observed no pseudarthrosis or secondary varus displacement. In our series 87% of patients had resumed back to their sporting activities. Surgical management of Moore I tibial plateau fractures by

  15. Site-specific ultrasound reflection properties and superficial collagen content of bovine knee articular cartilage

    NASA Astrophysics Data System (ADS)

    Laasanen, Mikko S.; Saarakkala, Simo; Töyräs, Juha; Rieppo, Jarno; Jurvelin, Jukka S.

    2005-07-01

    Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.

  16. Management of combined knee medial compartmental and patellofemoral osteoarthritis with lateral closing wedge osteotomy with anterior translation of the distal tibial fragment: Does the degree of anteriorization affect the functional outcome and posterior tibial slope?

    PubMed

    Sadek, Ahmed F; Osman, Mohammed K; Laklok, Mohamed A

    2016-10-01

    The aim of this study was to assess the effect of degree of anterior translation of the distal tibial fragment after lateral closing wedge high tibial osteotomy in patients having combined knee medial compartmental and patellofemoral osteoarthritis. A retrospective study was conducted on 64 patients who were operated on for combined knee medial compartmental and patellofemoral osteoarthritis, by lateral closing wedge high tibial osteotomy with anterior translation of the distal tibial fragment. They were divided into two groups; Group I comprising 32 patients (34 knees, mean age of 51.4±7years) whose degree of anterior translation was <1cm and Group II comprising 32 patients (33 knees, mean age of 52.2±8.3years) whose degree of anterior translation was >1.5cm. The final assessment was performed via: visual analog scale, postoperative Knee Society clinical rating system function score, active range of motion, time to union, degree of correction of mechanical axis, posterior tibial slope, and Insall-Salvati ratio. Group II patients exhibited statistically superior mean postoperative score and better return to their work than Group I (P=0.013, 0.076, respectively). Both groups showed statistically significant differences between the preoperative and postoperative evaluation parameters (P<0.001). The posterior tibial slope was decreased in both groups but with no significant difference (P=0.527). Lateral closing wedge high tibial osteotomy combined with anterior translation of the distal tibial fragment more than 1.5cm achieved significantly better postoperative functional knee score. Both groups exhibited comparatively decreased posterior tibial slope. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Analysis of Outcomes for High Tibial Osteotomies Performed With Cartilage Restoration Techniques.

    PubMed

    Kahlenberg, Cynthia A; Nwachukwu, Benedict U; Hamid, Kamran S; Steinhaus, Michael E; Williams, Riley J

    2017-02-01

    To evaluate reported medium- to long-term outcomes after high tibial osteotomy (HTO) with associated cartilage restoration procedures. A review of the MEDLINE database was performed. The inclusion criteria were English language, clinical outcome study with HTO as the primary procedure, use of a form of cartilage repair included, and the mean follow-up period of at least 2 years. Each identified study was reviewed for study design, patient demographics, type of procedures performed, clinical outcomes, progression to total knee arthroplasty, and complications. Eight hundred and twenty-seven patients (839 knees) were included. The most common cartilage preservation technique used in conjunction with HTO was microfracture (4 studies; 22.2%). The mean Lyscholm scores, reported in 50% of the studies, ranged from 40 to 65.7 preoperatively and improved to a range of 67 to 94.6 postoperatively. Four studies (22.2%) used a visual analog scale for evaluation of pain and all had a mean visual analog scale of less than 3 postoperatively. Among studies evaluating conversion to arthroplasty, the rate of conversion was 6.8% and the range of mean number of years from HTO to conversion was 4.9 to 13.0. The overall reported complication rate was 10.3%. HTO with cartilage restoration procedures provides reliable improvement in functional status in the medium- to long-term period after surgery and has potential to delay or avoid the need for knee arthroplasty surgery. Level IV, systematic review of Level I to IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Automatic detection of diseased regions in knee cartilage

    NASA Astrophysics Data System (ADS)

    Qazi, Arish A.; Dam, Erik B.; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2007-03-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. A central problem in clinical trials is quantification of progression and early detection of the disease. The accepted standard for evaluating OA progression is to measure the joint space width from radiographs however; there the cartilage is not visible. Recently cartilage volume and thickness measures from MRI are becoming popular, but these measures don't account for the biochemical changes undergoing in the cartilage before cartilage loss even occurs and therefore are not optimal for early detection of OA. As a first step, we quantify cartilage homogeneity (computed as the entropy of the MR intensities) from 114 automatically segmented medial compartments of tibial cartilage sheets from Turbo 3D T 1 sequences, from subjects with no, mild or severe OA symptoms. We show that homogeneity is a more sensitive technique than volume quantification for detecting early OA and for separating healthy individuals from diseased. During OA certain areas of the cartilage are affected more and it is believed that these are the load-bearing regions located at the center of the cartilage. Based on the homogeneity framework we present an automatic technique that partitions the region on the cartilage that contributes to maximum homogeneity discrimination. These regions however, are more towards the noncentral regions of the cartilage. Our observation will provide valuable clues to OA research and may lead to improving treatment efficacy.

  19. The Relationship between Chondromalacia Patella, Medial Meniscal Tear and Medial Periarticular Bursitis in Patients with Osteoarthritis.

    PubMed

    Resorlu, Mustafa; Doner, Davut; Karatag, Ozan; Toprak, Canan Akgun

    2017-12-01

    This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed all patients in terms of osteoarthritis, chondromalacia patella and medial meniscal tear. The second radiologist was blinded to these results and assessed the presence of bursitis in all patients. Mild osteoarthritis (grade I and II) was determined in 55 patients and severe osteoarthritis (grade III and IV) in 45 cases. At retropatellar cartilage evaluation, 25 patients were assessed as normal, while 29 patients were diagnosed with mild chondromalacia patella (grade I and II) and 46 with severe chondromalacia patella (grade III and IV). Medial meniscus tear was determined in 51 patients. Severe osteoarthritis and chondromalacia patella were positively correlated with meniscal tear (p < 0.001 and p = 0.018, respectively). Significant correlation was observed between medial meniscal tear and bursitis in the medial compartment (p = 0.038). Presence of medial periarticular bursitis was positively correlated with severity of osteoarthritis but exhibited no correlation with chondromalacia patella (p = 0.023 and p = 0.479, respectively). Evaluation of lateral compartment bursae revealed lateral collateral ligament bursitis in 2 patients and iliotibial bursitis in 5 patients. We observed a greater prevalence of bursitis in the medial compartment of the knee in patients with severe osteoarthritis and medial meniscus tear.

  20. Ideal tibial intramedullary nail insertion point varies with tibial rotation.

    PubMed

    Walker, Richard M; Zdero, Rad; McKee, Michael D; Waddell, James P; Schemitsch, Emil H

    2011-12-01

    The aim of the study was to investigate how superior entry point varies with tibial rotation and to identify landmarks that can be used to identify suitable radiographs for successful intramedullary nail insertion. The proximal tibia and knee were imaged for 12 cadaveric limbs undergoing 5° increments of internal and external rotation. Medial and lateral arthrotomies were performed, the ideal superior entry point was identified, and a 2-mm Kirschner wire inserted. A second Kirschner wire was sequentially placed at the 5-mm and then the 10-mm position, both medial and lateral to the initial Kirschner wire. Radiographs of the knee were obtained for all increments. The changing position of the ideal nail insertion point was recorded. A 30° arc (range, 25°-40°) provided a suitable anteroposterior radiograph. On the neutral anteroposterior radiograph, the Kirschner wire was 54% ± 1.5% (range, 51-56%) from the medial edge of the tibial plateau. For every 5° of rotation, the Kirschner wire moved 3% of the plateau width. During external rotation, a misleading medial entry point was obtained. A fibular bisector line correlated with an entry point that was ideal or up to 5 mm lateral to this but never medial. The film that best showed the fibular bisector line was between 0° and 10° of internal rotation of the tibia. The fibula head bisector line can be used to avoid choosing external rotation views and, thus, avoid medial insertion points. The current results may help the surgeon prevent malalignment during intramedullary nailing in proximal tibial fractures.

  1. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.

    PubMed

    Mononen, Mika E; Jurvelin, Jukka S; Korhonen, Rami K

    2015-01-01

    Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.

  2. Knee Joint Kinematics during Walking Influences the Spatial Cartilage Thickness Distribution in the Knee

    PubMed Central

    Koo, Seungbum; Rylander, Jonathan H.; Andriacchi, Thomas P.

    2010-01-01

    The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2±9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R2=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis. PMID:21371712

  3. Collagen Augmentation Improves the Quality of Cartilage Repair After Microfracture in Patients Undergoing High Tibial Osteotomy: A Randomized Controlled Trial.

    PubMed

    Kim, Man Soo; Koh, In Jun; Choi, Young Jun; Pak, Kyu Hyung; In, Yong

    2017-07-01

    The quality of cartilage repair after marrow stimulation is unpredictable. To overcome the shortcomings of the microfracture technique, various augmentation techniques have been developed. However, their efficacies remain unclear. The quality of cartilage repair and clinical outcomes would be superior in patients undergoing high tibial osteotomy (HTO) with microfracture and collagen augmentation compared to those undergoing HTO with microfracture alone without collagen augmentation for the treatment of medial compartment osteoarthritis (OA) of the knee. Randomized controlled trial; Level of evidence, 2. Twenty-eight patients undergoing HTO were randomized into 2 groups: microfracture alone (group 1, n = 14) or microfracture with collagen augmentation (group 2, n = 14). At 1 year postoperatively, second-look arthroscopic surgery and biopsy of repaired cartilage were performed at the time of HTO plate removal. Biopsy specimens were graded using the International Cartilage Repair Society Visual Assessment Scale II (ICRS II). In addition, imaging outcomes in terms of the magnetic resonance observation of cartilage repair tissue (MOCART) score were assessed based on magnetic resonance imaging (MRI). Finally, clinical outcomes in terms of the visual analog scale (VAS) for pain score, Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC) score, and Tegner activity scale score were evaluated. The mean ICRS II score in group 2 was significantly higher than that in group 1 (1053.2 vs 885.4, respectively; P = .002). Group 2 showed greater improvement in tissue morphology, cell morphology, surface architecture, middle/deep zone assessment, and overall assessment compared with group 1 ( P < .050 for all comparisons). Imaging outcomes based on the MOCART score were superior in group 2 compared to those in group 1 on MRI at 1 year postoperatively (64.6 vs 45.4, respectively; P = .001). The degree of defect repair was better in

  4. Early postoperative cartilage evaluation by magnetic resonance imaging using T2 mapping after arthroscopic partial medial meniscectomy.

    PubMed

    Kato, Kammei; Arai, Yuji; Ikoma, Kazuya; Nakagawa, Shuji; Inoue, Hiroaki; Kan, Hiroyuki; Matsuki, Tomohiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2015-12-01

    This study was performed to quantitatively evaluate postoperative changes in cartilage by T2 mapping after arthroscopic partial medial meniscectomy. The study enrolled 17 patients with 20 knees that underwent arthroscopic partial medial meniscectomy. MRI was performed preoperatively and at six months postoperatively, with subjects evaluated by T2 mapping of the central part of the medial condyle of the femur in the sagittal plane. Regions of interest (ROIs) were set at 10 points between the point of intersection of the anatomical axis of the femur and the articular surface of the medial condyle and posterior area approximately 90 degrees to the anatomical axis. Pre- and postoperative T2 values at each ROI were evaluated. Postoperative T2 values were significantly longer than preoperative values at approximately 20, 30, 40, and 50 degrees to the anatomical axis of the femur. The maximum change between pre- and postoperative T2 values was +6.65% at 30 degrees to the anatomical axis. Mechanical stress at positions approximately 20, 30, 40, and 50 degrees relative to the anatomical axis of the femur increased soon after arthroscopic medial meniscectomy. These findings indicate the start of degeneration, via disorganization of collagen arrays, of the articular cartilage and increased water content. Copyright © 2015. Published by Elsevier Inc.

  5. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.

    2013-01-01

    SUMMARY Introduction Meniscal extrusion is thought to be associated with less meniscus coverage of the tibial surface, but the association of radiographic disease stage with quantitative measures of tibial plateau coverage is unknown. We therefore compared quantitative and semi-quantitative measures of meniscus position and morphology in individuals with bilateral painful knees discordant on medial joint space narrowing (mJSN). Methods A sample of 60 participants from the first half (2,678 cases) of the Osteoarthritis Initiative cohort fulfilled the inclusion criteria: bilateral frequent pain, Osteoarthritis Research Society International (OARSI) mJSN grades 1–3 in one, no-JSN in the contra-lateral (CL), and no lateral JSN in either knee (43 unilateral mJSN1; 17 mJSN2/3; 22 men, 38 women, body mass index (BMI) 31.3 ± 3.9 kg/m2). Segmentation and three-dimensional quantitative analysis of the tibial plateau and meniscus, and semi-quantitative evaluation of meniscus damage (magnetic resonance imaging (MRI) osteoarthritis knee score – MOAKS) was performed using coronal 3T MR images (MPR DESSwe and intermediate-weighted turbo spin echo (IW-TSE) images). CL knees were compared using paired t-tests (between-knee, within-person design). Results Medial tibial plateau coverage was 36 ± 9% in mJSN1 vs 45 ± 8% in CL no-JSN knees, and was 31 ± 9% in mJSN2/3 vs 46 ± 6% in no-JSN knees (both P < 0.001). mJSN knees showed greater meniscus extrusion and damage (MOAKS), but no significant difference in meniscus volume. No significant differences in lateral tibial coverage, lateral meniscus morphology or position were observed. Conclusions Knees with medial JSN showed substantially less medial tibial plateau coverage by the meniscus. We suggest that the less meniscal coverage, i.e., less mechanical protection may be a reason for greater rates of cartilage loss observed in JSN knees. PMID:23220556

  6. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    PubMed

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  7. Massage treatment and medial tibial stress syndrome; A commentary to provoke thought about the way massage therapy is used in the treatment of MTSS.

    PubMed

    Fogarty, Sarah

    2015-07-01

    As students and practitioners we are taught about the treatment and causative factors of medial shin pain, in particular' shin splints' or the more recent term; medial tibial stress syndrome (MTSS). During the years there have been many theories, conjecture and misunderstandings about the mechanisms of 'shin splints/medial tibial stress syndrome' however the ramifications of these mechanisms on how massage treatment is delivered have not being discussed. The evidence for the treatment of MTSS is largely clinical with little evidence of any treatment being proven to be effective in treating MTSS. The aim of this article is to present a summary of the mechanisms of MTSS and a commentary to provoke thought about the way massage therapy is used in the treatment of MTSS based on these mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. In situ hybridization and immunohistochemistry of bone sialoprotein and secreted phosphoprotein 1 (osteopontin) in the developing mouse mandibular condylar cartilage compared with limb bud cartilage

    PubMed Central

    Shibata, Shunichi; Fukada, Kenji; Suzuki, Shoichi; Ogawa, Takuya; Yamashita, Yasuo

    2002-01-01

    Mandibular condylar cartilage is often classified as a secondary cartilage, differing from the primary cartilaginous skeleton in its rapid progress from progenitor cells to hypertrophic chondrocytes. In this study we used in situ hybridization and immunohistochemistry to investigate whether the formation of primary (tibial) and secondary (condylar) cartilage also differs with respect to the expression of two major non-collagenous glycoproteins of bone matrix, bone sialoprotein (BSP) and secreted phosphoprotein 1 (Spp1, osteopontin). The mRNAs for both molecules were never expressed until hypertrophic chondrocytes appeared. In the tibial cartilage, hypertrophic chondrocytes first appeared at E14 and the expression of BSP and Spp1 mRNAs was detected in the lower hypertrophic cell zone, but the expression of BSP mRNA was very weak. In the condylar cartilage, hypertrophic chondrocytes appeared at E15 as soon as cartilage tissue appeared. The mRNAs for both molecules were expressed in the newly formed condylar cartilage, although the proteins were not detected by immunostaining; BSP mRNA in the condylar cartilage was more extensively expressed than that in the tibial cartilage at the corresponding stage (first appearance of hypertrophic cell zone). Endochondral bone formation started at E15 in the tibial cartilage and at E16 in the condylar cartilage. At this stage (first appearance of endochondral bone formation), BSP mRNA was also more extensively expressed in the condylar cartilage than in the tibial cartilage. The hypertrophic cell zone in the condylar cartilage rapidly extended during E15–16. These results indicate that the formation process of the mandibular condylar cartilage differs from that of limb bud cartilage with respect to the extensive expression of BSP mRNA and the rapid extension of the hypertrophic cell zone at early stages of cartilage formation. Furthermore, these results support the hypothesis that, in vivo, BSP promotes the initiation of

  9. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression

    NASA Astrophysics Data System (ADS)

    Yin, Jianhua; Xia, Yang

    2014-12-01

    Fourier transform infrared imaging (FTIRI) combining with principal component regression (PCR) analysis were used to determine the reduction of proteoglycan (PG) in articular cartilage after the transection of the anterior cruciate ligament (ACL). A number of canine knee cartilage sections were harvested from the meniscus-covered and meniscus-uncovered medial tibial locations from the control joints, the ACL joints at three time points after the surgery, and their contralateral joints. The PG loss in the ACL cartilage was related positively to the durations after the surgery. The PG loss in the contralateral knees was less than that of the ACL knees. The PG loss in the meniscus-covered cartilage was less than that of the meniscus-uncovered tissue in both ACL and contralateral knees. The quantitative mapping of PG loss could monitor the disease progression and repair processes in arthritis.

  10. The Relationship between Chondromalacia Patella, Medial Meniscal Tear and Medial Periarticular Bursitis in Patients with Osteoarthritis

    PubMed Central

    Doner, Davut; Karatag, Ozan; Toprak, Canan Akgun

    2017-01-01

    Abstract Background This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Patients and methods Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed all patients in terms of osteoarthritis, chondromalacia patella and medial meniscal tear. The second radiologist was blinded to these results and assessed the presence of bursitis in all patients. Results Mild osteoarthritis (grade I and II) was determined in 55 patients and severe osteoarthritis (grade III and IV) in 45 cases. At retropatellar cartilage evaluation, 25 patients were assessed as normal, while 29 patients were diagnosed with mild chondromalacia patella (grade I and II) and 46 with severe chondromalacia patella (grade III and IV). Medial meniscus tear was determined in 51 patients. Severe osteoarthritis and chondromalacia patella were positively correlated with meniscal tear (p < 0.001 and p = 0.018, respectively). Significant correlation was observed between medial meniscal tear and bursitis in the medial compartment (p = 0.038). Presence of medial periarticular bursitis was positively correlated with severity of osteoarthritis but exhibited no correlation with chondromalacia patella (p = 0.023 and p = 0.479, respectively). Evaluation of lateral compartment bursae revealed lateral collateral ligament bursitis in 2 patients and iliotibial bursitis in 5 patients. Conclusions We observed a greater prevalence of bursitis in the medial compartment of the knee in patients with severe osteoarthritis and medial meniscus tear. PMID:29333118

  11. Postero-medial approach for complex tibial plateau injuries with a postero-medial or postero-lateral shear fragment.

    PubMed

    Berber, Reshid; Lewis, Charlotte P; Copas, David; Forward, Daren P; Moran, Christopher G

    2014-04-01

    This study demonstrates the utility of a modified postero-medial surgical approach to the knee in treating a series of patients with complex tibial plateau injuries with associated postero-medial and postero-lateral shear fractures. Posterior coronal shear fractures are underappreciated and their clinical relevance has recently been characterised. Less-invasive surgery and indirect reduction techniques are inadequate for treating these coronal plane fractures. Our approach includes an inverted 'L'-shaped incision situated within the posterior flexor knee crease, followed by the retraction or incision of the medial head of the gastrocnemius tendon, while protecting the neurovascular structures. This provides a more extensile exposure, as far as the postero-lateral corner, than previously described. Our case series included eight females and eight males. The average age was 53 years. The majority of these injuries were sustained through high-energy trauma. All patients' fractures were classified as Schatzker grade 4, or above, with a postero-medial split depression. Eight patients had associated postero-lateral corner fractures. Two were open, two had vascular compromise and one had neurological injury. The average time to surgery was 6.4 days (range 0-12), operative time 142 min (range 76-300) and length of stay 17 days (range 7-46). A total of 11 patients were treated using the postero-medial approach alone and in five the treatment was combined with an antero-lateral approach. Two patients suffered a reduced range of movement requiring manipulation and physiotherapy, and three patients had a 5-degree fixed flexion deformity. Two patients developed superficial wound infections treated with antibiotics alone. Anatomical reduction and fracture union was achieved in 15 patients. These are complex fractures to treat, and our modified posterior approach allows direct reduction and optimal positioning of plates to act as buttress devices. It can be extended across the

  12. Comparison of the effects of caudal pole hemi-meniscectomy and complete medial meniscectomy in the canine stifle joint.

    PubMed

    Johnson, K A; Francis, D J; Manley, P A; Chu, Q; Caterson, B

    2004-08-01

    To compare the effects of caudal pole hemi-meniscectomy (CPHM) and complete medial meniscectomy (MM), specifically with respect to development of secondary osteoarthritis, in the stifle joints of clinically normal dogs. 14 large-breed dogs. Unilateral CPHM (7 dogs) or MM (7) was performed, and the left stifle joints served as untreated control joints. Gait was assessed in all dogs before surgery and at 4, 8, 12, and 16 weeks postoperatively. After euthanasia, joints were evaluated grossly; Mankin cartilage scores, subchondral bone density assessment, and articular cartilage proteoglycan extraction and western blot analyses of 3B3(-) and 7D4 epitopes were performed. Weight distribution on control limbs exceeded that of treated limbs at 4 and 16 weeks after surgery in the CPHM group and at 4 and 8 weeks after surgery in the MM group; weight distribution was not significantly different between the 2 groups. After 16 weeks, incomplete meniscal regeneration and cartilage fibrillation on the medial aspect of the tibial plateau and medial femoral condyle were detected in treated joints in both groups. Mankin cartilage scores, subchondral bone density, and immunoexpression of 3B3(-) or 7D4 in articular cartilage in CPHM- or MM-treated joints were similar; 7D4 epitope concentration in synovial fluid was significantly greater in the MM-treated joints than in CPHM-treated joints. Overall severity of secondary osteoarthritis induced by CPHM and MM was similar. Investigation of 7D4 epitope concentration in synovial fluid suggested that CPHM was associated with less disruption of chondrocyte metabolism.

  13. Surgical anatomy of medial open-wedge high tibial osteotomy: crucial steps and pitfalls.

    PubMed

    Madry, Henning; Goebel, Lars; Hoffmann, Alexander; Dück, Klaus; Gerich, Torsten; Seil, Romain; Tschernig, Thomas; Pape, Dietrich

    2017-12-01

    To give an overview of the basic knowledge of the functional surgical anatomy of the proximal lower leg and the popliteal region relevant to medial high tibial osteotomy (HTO) as key anatomical structures in spatial relation to the popliteal region and the proximal tibiofibular joint are usually not directly visible and thus escape a direct inspection. The surgical anatomy of the human proximal lower leg and its relevance for HTO are illustrated with a special emphasis on the individual steps of the operation involving creation of the osteotomy planes and plate fixation. The posteriorly located popliteal neurovascular bundle, but also lateral structures such as the peroneal nerve, the head of the fibula and the lateral collateral ligament must be protected from the instruments used for osteotomy. Neither positioning the knee joint in flexion, nor the posterior thin muscle layer of the popliteal muscle offers adequate protection of the popliteal neurovascular bundle when performing the osteotomy. Tactile feedback through a loss-of-resistance when the opposite cortex is perforated is only possible when sawing and drilling is performed in a pounding fashion. Kirschner wires with a proximal thread, therefore, always need to be introduced under fluoroscopic control. Due to anatomy of the tibial head, the tibial slope may increase inadvertently. Enhanced surgical knowledge of anatomical structures that are at a potential risk during the different steps of osteotomy or plate fixation will help to avoid possible injuries. Expert opinion, Level V.

  14. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees.

    PubMed

    Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2017-08-01

    Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0

  15. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees

    PubMed Central

    Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.

    2017-01-01

    Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both

  16. Cartilage can be thicker in advanced osteoarthritic knees: a tridimensional quantitative analysis of cartilage thickness at posterior aspect of femoral condyles.

    PubMed

    Omoumi, Patrick; Babel, Hugo; Jolles, Brigitte M; Favre, Julien

    2018-04-16

    To test, through tridimensional analysis, whether (1) cartilage thickness at the posterior aspect of femoral condyles differs in knees with medial femorotibial osteoarthritis (OA) compared to non-OA knees; (2) the location of the thickest cartilage at the posterior aspect of femoral condyles differs between OA and non-OA knees. CT arthrograms of knees without radiographic OA (n = 30) and with severe medial femorotibial OA (n = 30) were selected retrospectively from patients over 50 years of age. The groups did not differ in gender, age and femoral size. CT arthrograms were segmented to measure the mean cartilage thickness, the maximal cartilage thickness and its location in a region of interest at the posterior aspect of condyles. For the medial condyle, mean and maximum cartilage thicknesses were statistically significantly higher in OA knees compared to non-OA knees [1.66 vs 1.46 mm (p = 0.03) and 2.56 vs 2.14 mm (p = 0.003), respectively]. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle for both groups, without significant difference between groups. For the lateral condyle, no statistically significant difference between non-OA and OA knees was found (p ≥ 0.17). Cartilage at the posterior aspect of the medial condyle, but not the lateral condyle, is statistically significantly thicker in advanced medial femorotibial OA knees compared to non-OA knees. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle. These results will serve as the basis for future research to determine the histobiological processes involved in this thicker cartilage. Advances in knowledge: This study, through a quantitative tridimensional approach, shows that cartilage at the posterior aspect of the medial condyles is thicker in severe femorotibial osteoarthritic knees compared to non-OA knees. In the posterior aspect of the medial condyle, the thickest cartilage is located in the vicinity

  17. Improvement in the medial meniscus posterior shift following anterior cruciate ligament reconstruction.

    PubMed

    Inoue, Hiroto; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Kodama, Yuya; Ozaki, Toshifumi

    2018-02-01

    Anterior cruciate ligament (ACL) reconstruction can reduce the risk of developing osteoarthritic knees. The goals of ACL reconstruction are to restore knee stability and reduce post-traumatic meniscal tears and cartilage degradation. A chronic ACL insufficiency frequently results in medial meniscus (MM) injury at the posterior segment. How ACL reconstruction can reduce the deformation of the MM posterior segment remains unclear. In this study, we evaluated the form of the MM posterior segment and anterior tibial translation before and after ACL reconstruction using open magnetic resonance imaging (MRI). Seventeen patients who underwent ACL reconstructions without MM injuries were included in this study. MM deformation was evaluated using open MRI before surgery and 3 months after surgery. We measured medial meniscal length (MML), medial meniscal height (MMH), medial meniscal posterior body width (MPBW), MM-femoral condyle contact width (M-FCW) and posterior tibiofemoral distance (PTFD) at knee flexion angles of 10° and 90°. There were no significant pre- and postoperative differences during a flexion angle of 10°. At a flexion angle of 90°, MML decreased from 43.7 ± 4.5 to 41.4 ± 4.5 mm (P < 0.001), MMH from 7.5 ± 1.4 to 6.9 ± 1.4 mm (P = 0.006), MPBW from 13.1 ± 2.0 to 12.2 ± 1.9 mm (P < 0.001) and M-FCW from 10.0 ± 1.5 to 8.5 ± 1.5 mm (P < 0.001) after ACL reconstruction. The PTFD increased from 2.1 ± 2.8 to 2.7 ± 2.4 mm after ACL reconstruction (P = 0.015). ACL reconstruction affects the contact pattern between the MM posterior segment and medial femoral condyle and can reduce the deformation of the MM posterior segment in the knee-flexed position by reducing abnormal anterior tibial translation. It possibly prevents secondary injury to the MM posterior segment and cartilage that progresses to knee osteoarthritis. IV.

  18. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.

    PubMed

    Mosher, T J; Liu, Y; Torok, C M

    2010-03-01

    To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and magnetic resonance imaging (MRI) T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 min of running. Runner and control groups were stratified by ageor=46 years. Multi-echo [(Time to Repetition (TR)/Time to Echo (TE) 1500 ms/9-109 ms)] MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using one-way analysis of variance (ANOVA). After running MRI T2 values decreased in superficial femoral (2 ms-4 ms) and tibial (1 ms-3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4%-8%, tibial: 0%-12%). Smaller decrease in cartilage T2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.

    PubMed

    Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T

    2009-07-01

    To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).

  20. Topographical and depth-dependent glycosaminoglycan concentration in canine medial tibial cartilage 3 weeks after anterior cruciate ligament transection surgery—a microscopic imaging study

    PubMed Central

    Mittelstaedt, Daniel; Kahn, David

    2016-01-01

    Background Medical imaging has become an invaluable tool to diagnose damage to cartilage. Depletion of glycosaminoglycans (GAG) has been shown to be one of the early signs of cartilage degradation. In order to investigate the topographical changes in GAG concentration caused by the anterior cruciate ligament transection (ACLT) surgery in a canine model, microscopic magnetic resonance imaging (µMRI) and microscopic computed tomography (µCT) were used to measure the GAG concentration with correlation from a biochemical assay, inductively coupled plasma optical emission spectroscopy (ICP-OES), to understand where the topographical and depth-dependent changes in the GAG concentration occur. Methods This study used eight knee joints from four canines, which were examined 3 weeks after ACLT surgery. From right (n=3) and left (n=1) medial tibias of the ACLT and the contralateral side, two ex vivo specimens from each of four locations (interior, central, exterior and posterior) were imaged before and after equilibration in contrast agents. The cartilage blocks imaged using µMRI were approximately 3 mm × 5 mm and were imaged before and after eight hours submersion in a gadolinium (Gd) contrast agent with an in-plane pixel resolution of 17.6 µm2 and an image slice thickness of 1 mm. The cartilage blocks imaged using µCT were approximately 2 mm × 1 mm and were imaged before and after 24 hours submersed in ioxaglate with an isotropic voxel resolution of 13.4 µm3. ICP-OES was used to quantify the bulk GAG at each topographical location. Results The pre-contrast µMRI and µCT results did not demonstrate significant differences in GAG between the ACLT and contralateral cartilage at all topographical locations. The post-contrast µMRI and µCT results demonstrated topographically similar significant differences in GAG concentrations between the ACLT and contralateral tibia. Using µMRI, the GAG concentrations (mg/mL) were measured for the ACLT and contralateral

  1. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    PubMed

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P < .01) and the MR group (P < .05) compared with that of the MI group, while there was no significant difference in articular cartilage T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values

  2. Lateral Meniscal Allograft Transplant via a Medial Approach Leads to Less Extrusion.

    PubMed

    Choi, Nam-Hong; Choi, Jeong-Ki; Yang, Bong-Seok; Lee, Doe-Hyun; Victoroff, Brian N

    2017-10-01

    Accurate positioning of the bony bridge is crucial to prevent extrusion of meniscal allografts after transplant. However, oblique or lateralized placement of the bony bridge of the lateral meniscal allograft may occur due to technical error or a limited visual field. The patellar tendon may be an obstacle to approaching the anterior horn of the lateral meniscus, resulting in a laterally placed allograft. Therefore, lateral meniscal transplant through a medial arthrotomy would be an alternative approach. However, no report exists regarding allograft extrusion when comparing medial and lateral arthrotomy techniques in lateral meniscal transplants. Extrusion of the midbody of the allograft is less severe and the rotation of the bony bridge is less oblique in lateral meniscal allograft transplants through the medial parapatellar approach than those through the lateral approach. Cohort study; Level of evidence, 3. A bony bridge was used to perform 55 lateral meniscal transplants through either a medial or a lateral arthrotomy. Thirty-two allografts were transplanted through a medial arthrotomy and 23 were transplanted through a lateral arthrotomy, not randomly. Because correct positioning of the bony trough through the medial arthrotomy was easier than that through the lateral arthrotomy, the method of the arthrotomy was changed for the latter. The procedure for both groups was identical except for the arthrotomy technique, and rehabilitation was identical for both groups. Follow-up magnetic resonance imaging was conducted for all patients to measure the postoperative extrusion and obliquity of the bony bridge of the allograft. On the coronal view, extrusion was measured as the distance between the outer edge of the articular cartilage of the lateral tibial plateau and the outer edge of the meniscal allograft. On the axial view, a line (line B) was drawn along the longitudinal axis of the bony bridge. The posterior tibial condylar tangential line was drawn between the

  3. Ceramic hemi-unicondylar arthroplasty in an adolescent patient with idiopathic tibial chondrolysis.

    PubMed

    Dombroski, Derek; Garino, Jonathan; Lee, Gwo-Chin

    2009-06-01

    Despite recent advances in cartilage regeneration and restoration procedures, isolated, large, full-thickness cartilage lesions in young patients continue to pose significant challenges to patients and orthopedic surgeons. Treatment options for this difficult problem have traditionally included arthrodesis, osteotomy, osteochondral allograft, and prosthetic reconstruction. We present a case of an adolescent patient with isolated idiopathic lateral tibial chondrolysis treated with a custom ceramic hemi-unicondylar hemiarthroplasty. Preoperatively, a 3-dimensional computed tomography scan of the patient's knee was obtained to begin manufacturing a conforming custom ceramic insert that would articulate between the tibial base plate and the patient's native lateral femoral cartilage. Through a lateral parapatellar approach, the tibial preparation was carried out using the Zimmer M/G unicompartmental knee system (Warsaw, Indiana), and the tibial base plate was cemented into position in the standard fashion. A custom, conforming, prefabricated ceramic insert (CeramTec, Memphis, Tennessee) was then inserted onto the tibial base plate. At 5-year follow-up, this salvage procedure was successful in relieving pain and restoring function in this young patient. There were no signs of implant loosening or lysis. Magnetic resonance imaging of the knee at last follow-up revealed that the cartilage thickness of the patient's lateral femoral condyle remained unchanged. Unicondylar hemiarthroplasty performed in patients with large unipolar lesions in the knee can provide durable and reliable pain relief. Ceramic is a viable material that can be considered for articulation with native cartilage.

  4. Does severity of femoral trochlear dysplasia affect outcome in patellofemoral instability treated by medial patellofemoral ligament reconstruction and anterior tibial tuberosity transfer?

    PubMed

    Moitrel, G; Roumazeille, T; Arnould, A; Migaud, H; Putman, S; Ramdane, N; Pasquier, G

    2015-10-01

    Medial patellofemoral ligament (MPFL) reconstruction associated to anterior tibial tuberosity transfer (ATTT) is recommended in objective patellofemoral instability (PFI). Efficacy, however, has not been precisely determined in trochlear dysplasia with spur. A case-control study was performed in a PFI population, comparing groups with trochlear dysplasia with and without spur (S+ vs. S-) to assess the impact of trochlear dysplasia on (1) patellofemoral stability, (2) functional results and complications, and (3) patellofemoral cartilage status on MRI. Trochlear spur does not affect outcome in PFI managed by MPFL reconstruction and ATTT. Twenty-eight knees (26 patients) with PFI were analyzed retrospectively and divided into 2 groups of 14 knees each according to presence of trochlear spur (S+ vs. S-). All 28 knees had undergone ATTT and MPFL reconstruction by semitendinosus autograft. Results were assessed on Lille and IKDC functional scores, and cartilage status was determined on MRI at last follow-up. At a mean 24 months' follow-up (range, 12-52 months), there was no recurrence of dislocation. IKDC and Lille scores tended to improve in both groups, although the only significant improvement was in IKDC score (S- gain, 21.3±16; S+ gain, 18.1±14) (P=0.01). IKDC scores at last follow-up were better in the S+ than S- group (79±19 [range, 21-92] vs. 68±13 [range, 35-84], respectively; P=0.012). Lille scores showed no significant inter-group differences in mean gain (P=0.492) or mean value (P=0.381). The S+ group showed more cartilage lesions (n=14/14 knees, including 12/14 with grade≥2 lesions) than the S- group (n=9/14 knees, all grade≤2). MPFL reconstruction with ATTT provided good short-term patellofemoral stability independently of the severity of trochlear dysplasia. Functional results and gain on IKDC, however, were poorer in case of dysplasia with trochlear spur. This is probably due to cartilage lesions, observed more frequently pre- and post

  5. Tibial component coverage based on bone mineral density of the cut tibial surface during unicompartmental knee arthroplasty: clinical relevance of the prevention of tibial component subsidence.

    PubMed

    Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo

    2014-01-01

    An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component

  6. Biological, biochemical and biomechanical characterisation of articular cartilage from the porcine, bovine and ovine hip and knee.

    PubMed

    Fermor, H L; McLure, S W D; Taylor, S D; Russell, S L; Williams, S; Fisher, J; Ingham, E

    2015-01-01

    This study aimed to determine the optimal starting material for the development of an acellular osteochondral graft. Osteochondral tissues from three different species were characterised; pig (6 months), cow (18 months) and two ages of sheep (8-12 months and >4 year old). Tissues from the acetabulum and femoral head of the hip, and the groove, medial and lateral condyles and tibial plateau of the knee were assessed. Histological analysis of each tissue allowed for qualification of cartilage histoarchitecture, glycosaminoglycan (GAG) distribution, assessment of cellularity and cartilage thickness. Collagen and GAG content were quantified and cartilage water content was defined. Following biomechanical testing, the percentage deformation, permeability and equilibrium elastic modulus was determined. Results showed that porcine cartilage had the highest concentration of sulphated proteoglycans and that the condyles and groove of the knee showed higher GAG content than other joint areas. Cartilage from younger tissues (porcine and young ovine) had higher cell content and was thicker, reflecting the effects of age on cartilage structure. Cartilage from older sheep had a much higher elastic modulus and was less permeable than other species.

  7. Quantitative evaluation of knee cartilage and meniscus destruction in patients with rheumatoid arthritis using T1ρ and T2 mapping.

    PubMed

    Meng, Xiang Hong; Wang, Zhi; Guo, Li; Liu, Xiu Chan; Zhang, Yu Wei; Zhang, Ze Wei; Ma, Xin Long

    2017-11-01

    To calculate T1ρ and T2 values of articular cartilage and menisci in knee joints of patients with RA, and compare the values between RA patients and healthy volunteers, to gain insight into the pathogenesis of cartilage and meniscus degradation in patients with RA. Nine patients with RA and knee joints symptoms were enrolled in the study, twenty healthy volunteers without knee joint diseases were included as controls. Sagittal fat-saturated T1ρ and T2 mapping images were obtained on a 3T MR scanner (GE750, GE Healthcare, Waukesha, WI), using a dedicated 8-channel knee coil. In the T1rho mapping sequence, the amplitude of the spin-lock pulse was 500Hz, spin lock durations=10/20/30/50ms. In the T2 mapping sequence,TR/TE were 1794/6.5, 13.4, 27, 40.7ms. Both sequences were performed with the following parameters: flip angle (FA)=90°, matrix: 320×256, FOV: 16×16cm 2 , slice thickness: 3mm, bandwidth: 62.5kHZ, and a total scan time of 5:11min. T1ρ- and T2-mapping images were used for the segmentation of the articular cartilage of the patella, femoral trochlea, medial and lateral femoral condyle, medial and lateral tibial plateau. These images were also used for the segmentation of the anterior and posterior horns of the medial and lateral menisci with livewire semi-automatic segmentation algorithm of MATLAB. A Mann-Whitney U test was performed to compare the T1ρ and T2 values of the above mentioned regions between the two groups. T1ρ (Z=-3.913 to -2.121, P=0.000-0.034) and T2 (Z=-3.866 to -2.216, P=0.000-0.026) values of knee cartilage in patients with RA were higher than that in healthy volunteers, except the cartilage of the patella (T1ρ: Z=-1.273, P=0.203,T2: Z=-0.236, P=0.814) and lateral tibial plateau (T1ρ:Z=-1.037, P=0.317). The T1ρ (Z=-1.462 to 0.572, P=0.095-0.908) and T2 (Z=-1.461 to 0.278, P=0.153-0.764) values of medial and lateral menisci showed no difference between the two groups. Patients with RA exhibit diffuse knee cartilage destruction in

  8. Utility of double-contrast multi-detector CT scans to assess cartilage thickness after tibial plafond fracture

    PubMed Central

    Thomas, Thaddeus P.; Van Hofwegen, Christopher J.; Anderson, Donald D.; Brown, Thomas D.; Marsh, J. Lawrence

    2010-01-01

    The pathophysiology of post-traumatic osteoarthritis (PTOA) after intra-articular fractures is poorly understood. Pursuit of a better understanding of this disease is complicated by inability to accurately monitor its onset, progression and severity. Common radiographic methods used to assess PTOA do not provide sufficient image quality for precise cartilage measurements. Double-contrast MDCT is an alternative method that may be useful, since it produces high-quality images in normal ankles. The purpose of this study was to assess this technique’s performance in assessing cartilage maintenance in ankles with an intra-articular fracture. Thirty-six tibial plafond fractures were followed over two years, with thirty-one MDCTs being obtained four months after injury, and twenty-two MDCTs after two years. Unfortunately, clinical results with this technique were unreliable due to pathology (presumed arthrofibrosis) and technical problems (pooling of contrast). The arthrofibrosis that developed in many patients inhibited proper joint access and contrast infiltration, although high-quality images were obtained in eleven patients. In this patient subset, in which focal regions of cartilage degeneration could be visualized, thickness could be measured with a high degree of fidelity. While thus useful in selected instances, double-contrast MDCT was too unreliable to be recommended to assess these particular types of injuries. PMID:20634971

  9. Three-dimensional knee motion before and after high tibial osteotomy for medial knee osteoarthritis.

    PubMed

    Takemae, Takashi; Omori, Go; Nishino, Katsutoshi; Terajima, Kazuhiro; Koga, Yoshio; Endo, Naoto

    2006-11-01

    High tibial osteotomy (HTO) is an established surgical option for treating medial knee osteoarthritis. HTO moves the mechanical load on the knee joint from the medial compartment to the lateral compartment by changing the leg alignment, but the effects of the operation remain unclear. The purpose of this study was to evaluate the change in three-dimensional knee motion before and after HTO, focusing on lateral thrust and screw home movement, and to investigate the relationship between the change in knee motion and the clinical results. A series of 19 patients with medial knee osteoarthritis who had undergone HTO were evaluated. We performed a clinical assessment, radiological evaluation, and motion analysis at 2.4 years postoperatively. The clinical assessment was performed using the Japanese Orthopaedic Association knee score. The score was significantly improved in all patients after operation. Motion analysis revealed that lateral thrust, which was observed in 18 of the 20 knees before operation, was reduced to 7 knees after operation. Regarding active terminal extension of the knee, three patterns of rotational movement were observed before operation: screw home movement (external rotation), reverse screw home movement (internal rotation), and no rotation. By contrast, after operation, only reverse screw home movement and no rotation were observed; the screw home movement disappeared in all patients. In the knees with reverse screw home movement after operation, the preoperative score was significantly lower than those in the knees with no rotation after operation. Kinetically, HTO was useful for suppressing lateral thrust in medial knee osteoarthritis, although the rotational movement of the knee joint was unchanged.

  10. American Society of Biomechanics Clinical Biomechanics Award 2017: Non-anatomic graft geometry is linked with asymmetric tibiofemoral kinematics and cartilage contact following anterior cruciate ligament reconstruction.

    PubMed

    Vignos, Michael F; Kaiser, Jarred M; Baer, Geoffrey S; Kijowski, Richard; Thelen, Darryl G

    2018-05-10

    Abnormal knee mechanics may contribute to early cartilage degeneration following anterior cruciate ligament reconstruction. Anterior cruciate ligament graft geometry has previously been linked to abnormal tibiofemoral kinematics, suggesting this parameter may be important in restoring normative cartilage loading. However, the relationship between graft geometry and cartilage contact is unknown. Static MR images were collected and segmented for eighteen subjects to obtain bone, cartilage, and anterior cruciate ligament geometries for their reconstructed and contralateral knees. The footprint locations and orientation of the anterior cruciate ligament were calculated. Volumetric, dynamic MR imaging was also performed to measure tibiofemoral kinematics, cartilage contact location, and contact sliding velocity while subjects performed loaded knee flexion-extension. Multiple linear regression was used to determine the relationship between non-anatomic graft geometry and asymmetric knee mechanics. Non-anatomic graft geometry was related to asymmetric knee mechanics, with the sagittal plane graft angle being the best predictor of asymmetry. A more vertical sagittal graft angle was associated with greater anterior tibial translation (β = 0.11mmdeg, P = 0.049, R 2  = 0.22), internal tibial rotation (β = 0.27degdeg, P = 0.042, R 2  = 0.23), and adduction angle (β = 0.15degdeg, P = 0.013, R 2  = 0.44) at peak knee flexion. A non-anatomic sagittal graft orientation was also linked to asymmetries in tibial contact location and sliding velocity on the medial (β = -4.2mmsdeg, P = 0.002, R 2  = 0.58) and lateral tibial plateaus (β = 5.7mmsdeg, P = 0.006, R 2  = 0.54). This study provides evidence that non-anatomic graft geometry is linked to asymmetric knee mechanics, suggesting that restoring native anterior cruciate ligament geometry may be important to mitigate the risk of early cartilage degeneration in these

  11. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments

    PubMed Central

    Franklyn, Melanie; Oakes, Barry

    2015-01-01

    Medial tibial stress syndrome (MTSS) is a debilitating overuse injury of the tibia sustained by individuals who perform recurrent impact exercise such as athletes and military recruits. Characterised by diffuse tibial anteromedial or posteromedial surface subcutaneous periostitis, in most cases it is also an injury involving underlying cortical bone microtrauma, although it is not clear if the soft tissue or cortical bone reaction occurs first. Nuclear bone scans and magnetic resonance imaging (MRI) can both be used for the diagnosis of MTSS, but the patient’s history and clinical symptoms need to be considered in conjunction with the imaging findings for a correct interpretation of the results, as both imaging modalities have demonstrated positive findings in the absence of injury. However, MRI is rapidly becoming the preferred imaging modality for the diagnosis of bone stress injuries. It can also be used for the early diagnosis of MTSS, as the developing periosteal oedema can be identified. Retrospective studies have demonstrated that MTSS patients have lower bone mineral density (BMD) at the injury site than exercising controls, and preliminary data indicates the BMD is lower in MTSS subjects than tibial stress fracture (TSF) subjects. The values of a number of tibial geometric parameters such as cross-sectional area and section modulus are also lower in MTSS subjects than exercising controls, but not as low as the values in TSF subjects. Thus, the balance between BMD and cortical bone geometry may predict an individual's likelihood of developing MTSS. However, prospective longitudinal studies are needed to determine how these factors alter during the development of the injury and to find the detailed structural cause, which is still unknown. Finite element analysis has recently been used to examine the mechanisms involved in tibial stress injuries and offer a promising future tool to understand the mechanisms involved in MTSS. Contemporary accurate diagnosis

  12. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments.

    PubMed

    Franklyn, Melanie; Oakes, Barry

    2015-09-18

    Medial tibial stress syndrome (MTSS) is a debilitating overuse injury of the tibia sustained by individuals who perform recurrent impact exercise such as athletes and military recruits. Characterised by diffuse tibial anteromedial or posteromedial surface subcutaneous periostitis, in most cases it is also an injury involving underlying cortical bone microtrauma, although it is not clear if the soft tissue or cortical bone reaction occurs first. Nuclear bone scans and magnetic resonance imaging (MRI) can both be used for the diagnosis of MTSS, but the patient's history and clinical symptoms need to be considered in conjunction with the imaging findings for a correct interpretation of the results, as both imaging modalities have demonstrated positive findings in the absence of injury. However, MRI is rapidly becoming the preferred imaging modality for the diagnosis of bone stress injuries. It can also be used for the early diagnosis of MTSS, as the developing periosteal oedema can be identified. Retrospective studies have demonstrated that MTSS patients have lower bone mineral density (BMD) at the injury site than exercising controls, and preliminary data indicates the BMD is lower in MTSS subjects than tibial stress fracture (TSF) subjects. The values of a number of tibial geometric parameters such as cross-sectional area and section modulus are also lower in MTSS subjects than exercising controls, but not as low as the values in TSF subjects. Thus, the balance between BMD and cortical bone geometry may predict an individual's likelihood of developing MTSS. However, prospective longitudinal studies are needed to determine how these factors alter during the development of the injury and to find the detailed structural cause, which is still unknown. Finite element analysis has recently been used to examine the mechanisms involved in tibial stress injuries and offer a promising future tool to understand the mechanisms involved in MTSS. Contemporary accurate diagnosis

  13. [Closing wedge osteotomy of the tibial head in treatment of single compartment arthrosis].

    PubMed

    Jakob, R P; Jacobi, M

    2004-02-01

    Closing wedge high tibial osteotomy is an efficient method for the treatment of medial osteoarthritis of the knee. Prerequisites of successful surgery are proper indication and planning as well as the understanding of biomechanics and pathophysiology. The technique of osteotomy to choose (opening or closing wedge) depends on the type of malalignment and on additional pathologies. The surgical technique demands high precision to realize the planned correction and to avoid complications. Implants with angular stability provide advantages compared to traditional implants. Correct indication and surgical technique results in a desirable follow-up, which often lasts for at least 10 years. The effect on the prognosis of the young patient with cartilage damage is still unclear.

  14. Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model.

    PubMed

    Chen, Hongmei; Chevrier, Anik; Hoemann, Caroline D; Sun, Jun; Picard, Genevieve; Buschmann, Michael D

    2013-11-01

    The influence of the location of cartilage lesions on cartilage repair outcome is incompletely understood. This study compared cartilage and bone repair in medial femoral condylar (MFC) versus femoral trochlear (TR) defects 3 months after bone marrow stimulation in mature rabbits. Intact femurs from adult rabbits served as controls. Results from quantitative histomorphometry and histological scoring showed that bone marrow stimulation produced inferior soft tissue repair in MFC versus TR defects, as indicated by significantly lower % Fill (p = 0.03), a significant increase in collagen type I immunostaining (p < 0.00001) and lower O'Driscoll scores (p < 0.05). 3D micro-CT analysis showed that repaired TR defects regained normal un-operated values of bone volume fraction, trabecular thickness, and trabecular number, whereas in MFC defects the repaired bone architecture appeared immature and less dense compared to intact un-operated MFC controls (p < 0.0001). Severe medial meniscal damage was found in 28% of operated animals and was strongly correlated with (i) low cartilage defect fill, (ii) incomplete bone repair in MFC, and (iii) with a more posterior defect placement in the weight-bearing region. We conclude that the location of cartilage lesions influences cartilage repair, with better outcome in TR versus MFC defects in rabbits. Meniscal degeneration is associated with cartilage damage. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Topographical variation of the elastic properties of articular cartilage in the canine knee.

    PubMed

    Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J

    2000-06-01

    Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.

  16. The effects of high-dose methotrexate on the development of cartilage lesions in a lapine model of osteoarthrosis.

    PubMed

    Neidel, J; Schroers, B; Sintermann, F

    1998-01-01

    To determine whether systemic administration of methotrexate (MTX) can prevent joint destruction in experimental osteoarthrosis (OA) in rabbits, the disorder was induced unilaterally in the knee joints of 40 rabbits by partial medial meniscectomy and sectioning of the medial collateral and both cruciate ligaments. A sham operation (arthrotomy only) was performed in another four animals. Effects on the cartilage of the femoral condyles were studied after 6 and 12 weeks. Twelve weeks after induction, femoral and tibial osteophyte formation was demonstrated on radiographs in all cases. Marked cartilage damage was found histologically (median Mankin score 10 vs 1 for non-operated controls; P < 0.05, Wilcoxon test). Cartilage proteoglycan (GAG) content (dye binding assay) was reduced in operated joints [63 +/- 8 (mean +/- SEM) vs 75 +/- 6 micrograms chondroitin sulfate/mg cartilage wet weight], and the leukocyte count in the joints was elevated (226 +/- 14 vs 7 +/- 3 leukocytes per microliter joint aspirate after injection of 0.5 ml saline solution; both P < 0.05, Wilcoxon test). The rate of GAG synthesis was unchanged (ex vivo labelling with 35S-sulfate). Treatment with MTX (30 mg x kg body weight-1 x week-1 i.m., starting 12 h postoperatively) reduced cartilage damage (median Mankin score 8 vs 10 for placebo, P < 0.05, Mann-Whitney U-test), but had no significant effect on the other parameters tested. No significant MTX effects were observed on cartilage from nonoperated joints. Our data indicate that MTX may have a limited therapeutic effect in experimental OA in the rabbit.

  17. Tibial component considerations in bicruciate-retaining total knee arthroplasty: A 3D MRI evaluation of proximal tibial anatomy.

    PubMed

    Saxena, Vishal; Anari, Jason B; Ruutiainen, Alexander T; Voleti, Pramod B; Stephenson, Jason W; Lee, Gwo-Chin

    2016-08-01

    Restoration of normal anatomy and proper ligament balance are theoretical prerequisites for reproducing physiological kinematics with bicruciate-retaining total knee arthroplasty (TKA). The purpose of this study was to use a 3D MRI technique to evaluate the topography of the proximal tibia and outline considerations in tibial component design for bicruciate-retaining TKA. We identified 100 consecutive patients (50 males and 50 females) between ages 20 and 40 years with knee MRIs without arthritis, dysplasia, ACL tears, or prior knee surgery. A novel 3D MRI protocol coordinating axial, coronal, and sagittal images was used to measure: 1) medial and lateral posterior tibial slopes; 2) medial and lateral coronal slopes; and 3) distance from the anterior tibia to the ACL footprint. There was no overall difference in medial and lateral posterior tibial slopes (5.5° (95% CI 5.0 to 6.0°) vs. 5.4° (95% CI 4.8 to 6.0°), respectively (p=0.80)), but 41 patients had side-to-side differences greater than 3°. The medial coronal slope was greater than the lateral coronal slope (4.6° (95% CI 4.0 to 5.1°) vs. 3.3° (95% CI 2.9 to 3.7°), respectively (p<0.0001)). Females had less clearance between the anterior tibia and ACL footprint than males (10.8mm (95% CI 10.4 to 11.2mm) vs. 13.0mm (95% CI 12.5 to 13.5mm), respectively (p<0.0001)). Due to highly variable proximal tibial topography, a monoblock bicruciate-retaining tibial baseplate may not reproduce normal anatomy in all patients. Level IV - Anatomic research study. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee.

    PubMed

    Yamagami, Ryota; Taketomi, Shuji; Inui, Hiroshi; Tahara, Keitaro; Tanaka, Sakae

    2017-03-01

    Medial meniscus posterior root tear (MMPRT) has been reported to play a key role in the development of spontaneous osteonecrosis of the knee (SONK) and osteoarthritis (OA) of the knee. However, little is known about the differences in the development of SONK and OA after MMPRT. The purpose of this study was to investigate the factors contributing to the development of these conditions. We evaluated the existence of MMPRT and the extent of medial meniscal extrusion in preoperative magnetic resonance images and proximal tibial morphology in radiographs of 45 patients with SONK and 104 patients with OA who underwent knee surgery. There were no significant differences in age, gender, height, weight, and body mass index between the two groups. The incidence of MMPRT and the mean posterior tibial slope (PTS) were significantly higher in SONK than in OA patients (62.2% versus 34.3%, P=0.002, and 12.8° versus 10.5°, P<0.001, respectively). The mean extent of meniscal extrusion was larger in OA than in SONK patients (7.5mm versus 5.3mm, P<0.001). The mean tibial varus angle was 4.8° in SONK and 5.4° in OA, with no significant difference between the two (P=0.088). Multivariable logistic regression analysis showed that compared with OA, SONK was more closely associated with the existence of MMPRT and had a smaller extent of medial meniscus extrusion and higher PTS. MMRPT and higher PTS were more closely associated with the development of SONK than with that of OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Function of the medial meniscus in force transmission and stability.

    PubMed

    Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun

    2015-06-01

    We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Automatic atlas-based three-label cartilage segmentation from MR knee images

    PubMed Central

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  1. A new surgical technique for traumatic dislocation of posterior tibial tendon with avulsion fracture of medial malleolus.

    PubMed

    Jeong, Soon-Taek; Hwang, Sun-Chul; Kim, Dong-Hee; Nam, Dae-Cheol

    2015-01-01

    We introduce a case of traumatic dislocation of the posterior tibial tendon with avulsion fracture of the medial malleolus in a 52-year-old female patient who was treated surgically with periosteal flap and suture anchor fixation. Based in the posteromedial ridge of the distal tibia, a quadrilateral periosteal flap was created and folded over the tendon, followed by fixation on the lateral aspect of the groove by use of multiple suture anchors. Clinical and radiological findings 25 months postoperatively showed well-preserved function of the ankle joint with stable tendon gliding.

  2. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    ERIC Educational Resources Information Center

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  3. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    PubMed

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  4. Longitudinal analysis of tibiofemoral cartilage contact area and position in ACL reconstructed patients.

    PubMed

    Chen, Ellison; Amano, Keiko; Pedoia, Valentina; Souza, Richard B; Ma, C Benjamin; Li, Xiaojuan

    2018-04-18

    Patients who have suffered ACL injury are more likely to develop early onset post-traumatic osteoarthritis despite reconstruction. The purpose of our study was to evaluate the longitudinal changes in the tibiofemoral cartilage contact area size and location after ACL injury and reconstruction. Thirty-one patients with isolated unilateral ACL injury were followed with T 2 weighted Fast Spin Echo, T 1ρ and T 2 MRI at baseline prior to reconstruction, and 6 months, 1 year, and 2 years after surgery. Areas were delineated in FSE images with an in-house Matlab program using a spline-based semi-automated segmentation algorithm. Tibiofemoral contact area and centroid position along the anterior-posterior axis were calculated along with T 1ρ and T 2 relaxation times on both the injured and non-injured knees. At baseline, the injured knees had significantly smaller and more posteriorly positioned contact areas on the medial tibial surface compared to corresponding healthy knees. These differences persisted 6 months after reconstruction. Moreover, subjects with more anterior medial centroid positions at 6 months had elevated T 1ρ and T 2 measures in the posterior medial tibial plateau at 1 year. Changes in contact area and centroid position after ACL injury and reconstruction may characterize some of the mechanical factors contributing to post-traumatic osteoarthritis. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Trifurcation of the tibial nerve within the tarsal tunnel.

    PubMed

    Develi, Sedat

    2018-05-01

    The tibial nerve is the larger terminal branch of the sciatic nerve and it terminates in the tarsal tunnel by giving lateral and medial plantar nerves. We present a rare case of trifurcation of the tibial nerve within the tarsal tunnel. The variant nerve curves laterally after branching from the tibial nerve and courses deep to quadratus plantae muscle. Interestingly, posterior tibial artery was also terminating by giving three branches. These branches were accompanying the terminal branches of the tibial nerve.

  6. Anthropometric measurements of tibial plateau and correlation with the current tibial implants.

    PubMed

    Erkocak, Omer Faruk; Kucukdurmaz, Fatih; Sayar, Safak; Erdil, Mehmet Emin; Ceylan, Hasan Huseyin; Tuncay, Ibrahim

    2016-09-01

    The aim of the study was to make an anthropometric analysis at the resected surfaces of the proximal tibia in the Turkish population and to compare the data with the dimensions of tibial components in current use. We hypothesized that tibial components currently available on the market do not fulfil the requirements of this population and a new tibial component design may be required, especially for female patients with small stature. Anthropometric data from the proximal tibia of 226 knees in 226 Turkish subjects were measured using magnetic resonance imaging. We measured the mediolateral, middle anteroposterior, medial and lateral anteroposterior dimensions and the aspect ratio of the resected proximal tibial surface. All morphological data were compared with the dimensions of five contemporary tibial implants, including asymmetric and symmetric design types. The dimensions of the tibial plateau of Turkish knees demonstrated significant differences according to gender (P < 0.05). Among the different tibial implants reviewed, neither asymmetric nor symmetric designs exhibited a perfect conformity to proximal tibial morphology in size and shape. The vast majority of tibial implants involved in this study tend to overhang anteroposteriorly, and a statistically significant number of women (21 %, P < 0.05) had tibial anteroposterior diameters smaller than the smallest available tibial component. Tibial components designed according to anthropometric measurements of Western populations do not perfectly meet the requirements of Turkish population. These data could provide the basis for designing the optimal and smaller tibial component for this population, especially for women, is required for best fit. II.

  7. Tibial stress injuries: decisive diagnosis and treatment of 'shin splints'.

    PubMed

    Couture, Christopher J; Karlson, Kristine A

    2002-06-01

    Tibial stress injuries, commonly called 'shin splints,' often result when bone remodeling processes adapt inadequately to repetitive stress. Physicians who care for athletic patients need a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are implications for appropriate diagnosis, management, and prevention.

  8. Combined medial displacement calcaneal osteotomy, subtalar joint arthrodesis, and ankle arthrodiastasis for end-stage posterior tibial tendon dysfunction.

    PubMed

    Stapleton, John J; Belczyk, Ronald; Zgonis, Thomas; Polyzois, Vasilios D

    2009-04-01

    Combining an ankle arthrodiastasis with a medial displacement calcaneal osteotomy and a subtalar joint arthrodesis offers surgeons a joint-sparing procedure for young and active patients who have end-stage posterior tibial tendon dysfunction and ankle joint involvement. An isolated subtalar joint arthrodesis or triple arthrodesis combined with an ankle arthrodiastasis is an option that can be used in certain case scenarios. Delaying the need for a joint destructive procedure through an ankle arthrodiastasis, however, may have a great impact in the near future, as advancements are underway to improve the use of ankle endoprosthesis.

  9. Medial Tibial Stress Syndrome: Evidence-Based Prevention

    PubMed Central

    Craig, Debbie I

    2008-01-01

    Reference: Thacker SB, Gilchrist J, Stroup DF, Kimsey CD. The prevention of shin splints in sports: a systematic review of literature. Med Sci Sports Exerc. 2002;34(1):32–40. Clinical Question: Among physically active individuals, which medial tibial stress syndrome (MTSS) prevention methods are most effective to decrease injury rates? Data Sources: Studies were identified by searching MEDLINE (1966–2000), Current Contents (1996–2000), Biomedical Collection (1993–1999), and Dissertation Abstracts. Reference lists of identified studies were searched manually until no further studies were identified. Experts in the field were contacted, including first authors of randomized controlled trials addressing prevention of MTSS. The Cochrane Collaboration (early stage of Cochrane Database of Systematic Reviews) was contacted. Study Selection: Inclusion criteria included randomized controlled trials or clinical trials comparing different MTSS prevention methods with control groups. Excluded were studies that did not provide primary research data or that addressed treatment and rehabilitation rather than prevention of incident MTSS. Data Extraction: A total of 199 citations were identified. Of these, 4 studies compared prevention methods for MTSS. Three reviewers independently scored the 4 studies. Reviewers were blinded to the authors' names and affiliations but not the results. Each study was evaluated independently for methodologic quality using a 100-point checklist. Final scores were averages of the 3 reviewers' scores. Main Results: Prevention methods studied were shock-absorbent insoles, foam heel pads, Achilles tendon stretching, footwear, and graduated running programs. No statistically significant results were noted for any of the prevention methods. Median quality scores ranged from 29 to 47, revealing flaws in design, control for bias, and statistical methods. Conclusions: No current evidence supports any single prevention method for MTSS. The most

  10. Medial tibial stress syndrome: evidence-based prevention.

    PubMed

    Craig, Debbie I

    2008-01-01

    Thacker SB, Gilchrist J, Stroup DF, Kimsey CD. The prevention of shin splints in sports: a systematic review of literature. Med Sci Sports Exerc. 2002;34(1):32-40. Among physically active individuals, which medial tibial stress syndrome (MTSS) prevention methods are most effective to decrease injury rates? Studies were identified by searching MEDLINE (1966-2000), Current Contents (1996-2000), Biomedical Collection (1993-1999), and Dissertation Abstracts. Reference lists of identified studies were searched manually until no further studies were identified. Experts in the field were contacted, including first authors of randomized controlled trials addressing prevention of MTSS. The Cochrane Collaboration (early stage of Cochrane Database of Systematic Reviews) was contacted. Inclusion criteria included randomized controlled trials or clinical trials comparing different MTSS prevention methods with control groups. Excluded were studies that did not provide primary research data or that addressed treatment and rehabilitation rather than prevention of incident MTSS. A total of 199 citations were identified. Of these, 4 studies compared prevention methods for MTSS. Three reviewers independently scored the 4 studies. Reviewers were blinded to the authors' names and affiliations but not the results. Each study was evaluated independently for methodologic quality using a 100-point checklist. Final scores were averages of the 3 reviewers' scores. Prevention methods studied were shock-absorbent insoles, foam heel pads, Achilles tendon stretching, footwear, and graduated running programs. No statistically significant results were noted for any of the prevention methods. Median quality scores ranged from 29 to 47, revealing flaws in design, control for bias, and statistical methods. No current evidence supports any single prevention method for MTSS. The most promising outcomes support the use of shock-absorbing insoles. Well-designed and controlled trials are critically needed

  11. Influence of medial parapatellar nail insertion on alignment in proximal tibia fractures--special consideration of the fracture level.

    PubMed

    Weninger, Patrick; Tschabitscher, Manfred; Traxler, Hannes; Pfafl, Veronika; Hertz, Harald

    2010-04-01

    Although a lateral starting point for tibial nailing is recommended to avoid valgus misalignment, higher rates of intra-articular damage were described compared with a medial parapatellar approach. The aim of this anatomic study was to evaluate the fracture level allowing for a safe medial nail entry point without misalignment or dislocation of fragments. Thirty-two fresh-frozen cadaver lower extremities were used to create 1-cm osteotomies at four different levels (n = 8) from 2 cm to 8 cm below the tibial tuberosity. Nine-millimeter unreamed solid titanium tibial nails (Connex, I.T.S. Spectromed, Lassnitzhohe, Austria) were inserted from a medial parapatellar incision. Misalignment (degree) and dislocation of the distal fragment were measured in the frontal and sagittal plane. A medial parapatellar approach for tibial nail insertion mainly caused valgus and anterior bow misalignment and ventral and medial fragment displacement. Mean misalignment and fragment displacement did not exceed 0.5 degree if the osteotomy was performed 8 cm to 9 cm below the tibial tuberosity. According to the results of this study, a medial parapatellar approach can be performed without misalignment and fragment dislocation in proximal tibia fractures extending 8 cm or more below the tibial tuberosity.

  12. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?

    PubMed

    Verschueren, J; van Tiel, J; Reijman, M; Bron, E E; Klein, S; Verhaar, J A N; Bierma-Zeinstra, S M A; Krestin, G P; Wielopolski, P A; Oei, E H G

    2017-09-01

    To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P < 0.001) with a change exceeding the SDC. Because dGEMRIC protocol elements resulted in only small differences in T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Does location of patellofemoral chondral lesion influence outcome after Oxford medial compartmental knee arthroplasty?

    PubMed

    Konan, S; Haddad, F S

    2016-10-01

    Medial unicompartmental knee arthroplasty (UKA) is associated with successful outcomes in carefully selected patient cohorts. We hypothesised that severity and location of patellofemoral cartilage lesions significantly influences functional outcome after Oxford medial compartmental knee arthroplasty. We reviewed 100 consecutive UKAs at minimum eight-year follow-up (96 to 132). A single surgeon performed all procedures. Patients were selected based on clinical and plain radiographic assessment. All patients had end-stage medial compartment osteoarthritis (OA) with sparing of the lateral compartment and intact anterior cruciate ligaments. None of the patients had end-stage patellofemoral OA, but patients with anterior knee pain or partial thickness chondral loss were not excluded. There were 57 male and 43 female patients. The mean age at surgery was 69 years (41 to 82). At surgery the joint was carefully inspected for patellofemoral chondral loss and this was documented based on severity of cartilage loss (0 to 4 Outerbridge grading) and topographic location (medial, lateral, central, and superior or inferior). Functional scores collected included Oxford Knee Score (OKS), patient satisfaction scale and University College Hospital (UCH) knee score. Intraclass correlation was used to compare chondral damage to outcomes. All patients documented significant improvement in pain and improved functional scores at mid-term follow-up. There were four revisions (mean 2.9 years, 2 to 4; standard deviation (sd) 0.9) in this cohort, three for tibial loosening and one for femoral loosening. There was one infection that was treated with debridement and insert exchange. The mean OKS improved from 23.2 (sd 7.1) to 39.1 (sd 6.9); p < 0.001. The cohort with central and lateral grade 3 patellofemoral OA documented lower mean satisfaction with pain (90, sd 11.8) and function (87.5, sd 10.3) on the patient satisfaction scale. On the UCH scale, patients reported significantly decreased

  14. Does location of patellofemoral chondral lesion influence outcome after Oxford medial compartmental knee arthroplasty?

    PubMed Central

    Konan, S.; Haddad, F. S.

    2016-01-01

    Aims Medial unicompartmental knee arthroplasty (UKA) is associated with successful outcomes in carefully selected patient cohorts. We hypothesised that severity and location of patellofemoral cartilage lesions significantly influences functional outcome after Oxford medial compartmental knee arthroplasty. Patients and Methods We reviewed 100 consecutive UKAs at minimum eight-year follow-up (96 to 132). A single surgeon performed all procedures. Patients were selected based on clinical and plain radiographic assessment. All patients had end-stage medial compartment osteoarthritis (OA) with sparing of the lateral compartment and intact anterior cruciate ligaments. None of the patients had end-stage patellofemoral OA, but patients with anterior knee pain or partial thickness chondral loss were not excluded. There were 57 male and 43 female patients. The mean age at surgery was 69 years (41 to 82). At surgery the joint was carefully inspected for patellofemoral chondral loss and this was documented based on severity of cartilage loss (0 to 4 Outerbridge grading) and topographic location (medial, lateral, central, and superior or inferior). Functional scores collected included Oxford Knee Score (OKS), patient satisfaction scale and University College Hospital (UCH) knee score. Intraclass correlation was used to compare chondral damage to outcomes. Results All patients documented significant improvement in pain and improved functional scores at mid-term follow-up. There were four revisions (mean 2.9 years, 2 to 4; standard deviation (sd) 0.9) in this cohort, three for tibial loosening and one for femoral loosening. There was one infection that was treated with debridement and insert exchange. The mean OKS improved from 23.2 (sd 7.1) to 39.1 (sd 6.9); p < 0.001. The cohort with central and lateral grade 3 patellofemoral OA documented lower mean satisfaction with pain (90, sd 11.8) and function (87.5, sd 10.3) on the patient satisfaction scale. On the UCH scale, patients

  15. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty.

    PubMed

    Miyatake, Naohisa; Sugita, Takehiko; Aizawa, Toshimi; Sasaki, Akira; Maeda, Ikuo; Kamimura, Masayuki; Fujisawa, Hirokazu; Takahashi, Atsushi

    2016-09-01

    Precise matching of the tibial component and resected bony surfaces and proper rotational implanting of the tibial component are crucial for successful total knee arthroplasty. We aimed to analyze the exact anthropometric proximal tibial data of Japanese patients undergoing total knee arthroplasty and correlate the measurements with the dimensions of current total knee arthroplasty systems. A total of 703 knees in 566 Japanese patients who underwent total knee arthroplasty for osteoarthritis were included. The bone resection in the proximal tibia was performed perpendicular to the tibial axis in the frontal plane. Measurements of the proximal tibia were intraoperatively obtained after proximal tibial preparation. There were significant positive correlations between the lateral anteroposterior and medial anteroposterior and mediolateral dimensions. A progressive decrease in the mediolateral/lateral anteroposterior ratio with an increasing lateral anteroposterior dimension or the mediolateral/anteroposterior ratio with an increasing anteroposterior dimension was observed. The lateral anteroposterior dimension was smaller than the medial anteroposterior dimension by a mean of 4.8 ± 2.0 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. A comparison of the morphological data and dimensions of the implants, one of which was a symmetric tibial component (NexGen) and the others were asymmetric (Genesis II and Persona), indicated that an asymmetric tibial component could be beneficial to maximize tibial plateau coverage. This study provided important reference data for designing a proper tibial component for Japanese people. The proximal tibial cut surface was asymmetric. There was wide dispersion in the lateral anteroposterior, medial anteroposterior, and mediolateral dimensions depending on the patient. Our data showed that the tibial components of the Genesis II and Persona rather than that of the NexGen may be preferable for

  16. The developmental morphology of a "periosteal" ligament insertion: growth and maturation of the tibial insertion of the rabbit medial collateral ligament.

    PubMed

    Matyas, J R; Bodie, D; Andersen, M; Frank, C B

    1990-05-01

    The structural properties of ligament insertions change dramatically during growth and maturation, but little is known about their developmental anatomy. This study describes and quantifies changes in the gross and microscopic anatomy of the tibial insertion of the rabbit medial collateral ligament (MCL) during development and at skeletal maturity. Eighty animals were used for growth and descriptive studies. From this group, 27 animals, ranging in age from 1 to 24 months, were injected with fluorescent bone markers and their tibial insertions were processed undecalcified for histology. Sections were examined by polarized light and fluorescence microscopy to identify matrix and cells and to quantify mineral formation. Results showed that animals achieved histological skeletal maturity between 9 and 12 months of age. Body weights were a poor index of skeletal maturity. The tibial insertion was composed of five tissue layers, which changed proportions during growth and maturation. In immature animals, MCL fibers entered the periosteum; in older animals, MCL fibers were cemented to the tibia by advancing mineral. The tibial attachment of the MCL was thus transferred from the periosteum to the cortex during growth, suggesting that the term "periosteal insertion" is imprecise in adults. The hypothesis is put forward that these structural changes account for the reported increase in tensile failure of this insertion near skeletal maturity.

  17. Intraoperative study on anthropometry and gender differences of the proximal tibial plateau at the arthroplasty resection surface.

    PubMed

    Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying

    2014-01-01

    The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.

  18. What Components Comprise the Measurement of the Tibial Tuberosity-Trochlear Groove Distance in a Patellar Dislocation Population?

    PubMed

    Tensho, Keiji; Akaoka, Yusuke; Shimodaira, Hiroki; Takanashi, Seiji; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2015-09-02

    The tibial tuberosity-trochlear groove distance is used as an indicator for medial tibial tubercle transfer; however, to our knowledge, no studies have verified whether this distance is strongly affected by tubercle lateralization at the proximal part of the tibia. We hypothesized that the tibial tuberosity-trochlear groove distance is mainly affected by tibial tubercle lateralization at the proximal part of the tibia. Forty-four patients with a history of patellar dislocation and forty-four age and sex-matched controls were analyzed with use of computed tomography. The tibial tuberosity-trochlear groove distance, tibial tubercle lateralization, trochlear groove medialization, and knee rotation were measured and were compared between the patellar dislocation group and the control group. The association between the tibial tuberosity-trochlear groove distance and three other parameters was calculated with use of the Pearson correlation coefficient and partial correlation analysis. There were significant differences in the tibial tuberosity-trochlear groove distance (p < 0.001) and knee rotation (p < 0.001), but there was no difference in the tibial tubercle lateralization (p = 0.13) and trochlear groove medialization (p = 0.08) between the patellar dislocation group and the control group. The tibial tuberosity-trochlear groove distance had no linear correlation with tubercle lateralization (r = 0.21) or groove medialization (r = -0.15); however, knee rotation had a good positive correlation in the patellar dislocation group (r = 0.62). After adjusting for the remaining parameters, knee rotation strongly correlated with the tibial tuberosity-trochlear groove distance (r = 0.69, p < 0.001), whereas tubercle lateralization showed moderate significant correlations in the patellar dislocation group (r = 0.42; p = 0.005). Because the tibial tuberosity-trochlear groove distance is affected more by knee rotation than by tubercle malposition, its use as an indicator for

  19. Do modern total knee replacements improve tibial coverage?

    PubMed

    Meier, Malin; Webb, Jonathan; Collins, Jamie E; Beckmann, Johannes; Fitz, Wolfgang

    2018-01-25

    The purpose of the present study is to compare newer designs of various symmetric and asymmetric tibial components and measure tibial bone coverage using the rotational safe zone defined by two commonly utilized anatomic rotational landmarks. Computed tomography scans (CT scans) of one hundred consecutive patients scheduled for total knee arthroplasty were obtained pre-operatively. A virtual proximal tibial cut was performed and two commonly used rotational axes were added for each image: the medio-lateral axis (ML-axis) and the medial 1/3 tibial tubercle axis (med-1/3-axis). Different symmetric and asymmetric implant designs were then superimposed in various rotational positions for best cancellous and cortical coverage. The images were imported to a public domain imaging software, and cancellous and cortical bone coverage was computed for each image, with each implant design in various rotational positions. One single implant type could not be identified that provided the best cortical and cancellous coverage of the tibia, irrespective of using the med-1/3-axis or the ML-axis for rotational alignment. However, it could be confirmed that the best bone coverage was dependent on the selected rotational landmark. Furthermore, improved bone coverage was observed when tibial implant positions were optimized between the two rotational axes. Tibial coverage is similar for symmetric and asymmetric designs, but depends on the rotational landmark for which the implant is designed. The surgeon has the option to improve tibial coverage by optimizing placement between the two anatomic rotational alignment landmarks, the medial 1/3 and the ML-axis. Surgeons should be careful assessing intraoperative rotational tibial placement using the described anatomic rotational landmarks to optimize tibial bony coverage without compromising patella tracking. III.

  20. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3Tesla MR-based T2 relaxation time measurements – Data from the Osteoarthritis Initiative

    PubMed Central

    YU, A.; Heilmeier, U.; Kretzschmar, M.; Joseph, G.B.; Liu, F.; Liebl, H.; McCulloch, C.E.; Nevitt, M.C.; Lane, Nancy E.; Link, T.M.

    2015-01-01

    Objective To determine whether knee cartilage composition differs between African-American and Caucasian-American women at risk for Osteoarthritis using in-vivo 3 Tesla MRI T2 relaxation time measurements. Methods Right knee MRI studies of 200 subjects (100 African-American women, and 100 closely matched Caucasian-American women) were selected from the Osteoarthritis Initiative. Knee cartilage was segmented in the patellar (PAT), medial and lateral femoral (MF/LF), and medial and lateral tibial compartments (MT/LT)). Mean T2 relaxation time values per compartment and per whole joint cartilage were generated and analyzed spatially via laminar and grey-level co-occurrence matrix texture methods. Presence and severity of cartilage lesions per compartment were graded using a modified WORMS grading. Statistical analysis employed paired t- and McNemar testing. Results While African-American women and Caucasian-Americans had similar WORMS cartilage lesion scores (p=0.970), African-Americans showed significantly lower mean T2 values (~1ms difference; ~0.5SD) than Caucasian-Americans in the whole knee cartilage (p<0.001), and in the subcompartments (LF: p=0.001, MF: p<0.001, LT: p=0.019, MT: p=0.001) and particularly in the superficial cartilage layer (whole cartilage: p<0.001, LF: p<0.001, MF: p<0.001, LT: p=0.003, MT: p<0.001). T2 texture parameters were also significantly lower in the whole joint cartilage of African-Americans than in Caucasian-Americans (variance: p=0.001; contrast: p=0.018). In analyses limited to matched pairs with no cartilage lesions in a given compartment, T2 values remained significantly lower in African-Americans. Conclusion Using T2 relaxation time as a biomarker for the cartilage collagen network, our findings suggest racial differences in the biochemical knee cartilage composition between African-American and Caucasian-American women. PMID:25937026

  1. Visualisation of collagen fibrils in joint cartilage using STIM

    NASA Astrophysics Data System (ADS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM.

  2. Adverse event rates and classifications in medial opening wedge high tibial osteotomy.

    PubMed

    Martin, Robin; Birmingham, Trevor B; Willits, Kevin; Litchfield, Robert; Lebel, Marie-Eve; Giffin, J Robert

    2014-05-01

    Previously reported complications in medial opening wedge (MOW) high tibial osteotomy (HTO) vary considerably in both rate and severity. (1) To determine the rates of adverse events in MOW HTO classified into different grades of severity based on the treatments required and (2) to compare patient-reported outcomes between the different adverse event classifications. Case series; Level of evidence, 4. All patients receiving MOW HTO at a single medical center from 2005 to 2009 were included. Internal fixation was used in all cases, with either a nonlocking (Puddu) or locking (Tomofix) plate. Patients were evaluated at 2, 6, and 12 weeks; 6 and 12 months; and annually thereafter. Types of potential surgical and postoperative adverse events, categorized into 3 classes of severity based on the subsequent treatments, were defined a priori. Medical records and radiographs were then reviewed by an independent observer. The Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared in subgroups of patients based on the categories of adverse events observed. A total of 323 consecutive procedures (242 males) were evaluated (age, mean ± standard deviation, 46 ± 9 years; body mass index, mean ± standard deviation, 30 ± 5 kg/m(2)). Adverse events requiring no additional treatment (class 1) were undisplaced lateral cortical breaches (20%), displaced (>2 mm) lateral hinge fracture (6%), delayed wound healing (6%), undisplaced lateral tibial plateau fracture (3%), hematoma (3%), and increased tibial slope ≥10° (1%). Adverse events requiring additional or extended nonoperative management (class 2) were delayed union (12%), cellulitis (10%), limited hardware failure (1 broken screw; 4%), postoperative stiffness (1%), deep vein thrombosis (1%), and complex regional pain syndrome (CRPS) type 1 (1%). Adverse events requiring additional or revision surgery and/or long-term medical care (class 3) were aseptic nonunion (3%), deep infection (2%), CRPS type

  3. Subclinical cartilage degeneration in young athletes with posterior cruciate ligament injuries detected with T1ρ magnetic resonance imaging mapping.

    PubMed

    Okazaki, Ken; Takayama, Yukihisa; Osaki, Kanji; Matsuo, Yoshio; Mizu-Uchi, Hideki; Hamai, Satoshi; Honda, Hiroshi; Iwamoto, Yukihide

    2015-10-01

    Prediction of the risk of osteoarthritis in asymptomatic active patients with an isolated injury of the posterior cruciate ligament (PCL) is difficult. T1ρ magnetic resonance imaging (MRI) enables the quantification of the proteoglycan content in the articular cartilage. The purpose of this study was to evaluate subclinical cartilage degeneration in asymptomatic young athletes with chronic PCL deficiency using T1ρ MRI. Six athletes with chronic PCL deficiency (median age 17, range 14-36 years) and six subjects without any history of knee injury (median age 31.5, range 24-33 years) were recruited. Regions of interest were placed on the articular cartilage of the tibia and the distal and posterior areas of the femoral condyle, and T1ρ values were calculated. On stress radiographs, the mean side-to-side difference in posterior laxity was 9.8 mm. The T1ρ values at the posterior area of the lateral femoral condyle and the superficial layer of the distal area of the medial and lateral femoral condyle of the patients were significantly increased compared with those of the normal controls (p < 0.05). At the tibial plateau, the T1ρ values in both the medial and lateral compartments were significantly higher in patients compared with those in the normal controls (p < 0.05). T1ρ MRI detected unexpected cartilage degeneration in the well-functioning PCL-deficient knees of young athletes. One should be alert to the possibility of subclinical cartilage degeneration even in asymptomatic patients who show no degenerative changes on plain radiographs or conventional MRI. IV.

  4. The potential effect of anatomic relationship between the femur and the tibia on medial meniscus tears.

    PubMed

    Bozkurt, Murat; Unlu, Serhan; Cay, Nurdan; Apaydin, Nihal; Dogan, Metin

    2014-10-01

    The anatomic and the kinematical relationships between the femur and the tibia have been previously examined in both normal and diseased knees. However, less attention has been directed to the effect of these relationships on the meniscal diseases. Therefore, we aimed to investigate the impact of femorotibial incongruence on both lateral and medial meniscal tears. A total of 100 images obtained from MRI of 100 patients (39 males and 61 females) were included in the study. Diameters of the medial and the lateral femoral condyles, thicknesses of the menisci, and diameters of the medial and the lateral tibial articular surfaces were measured. The medial meniscus tear was detected in 40 (40 %) patients. However, no lateral meniscus tear was found. Significant relationships were found between the diameters of the posterior medial femoral condyle and the medial tibial superior articular surface and between the diameters of the posterior lateral femoral condyle and the lateral tibial superior articular surface. The mean values for the diameter of the medial condyle of the femur, the lateral condyle of the femur, the medial superior articular surface of the tibia, and the lateral superior articular surface of the tibia were found to be significantly higher in cases with meniscus tear compared to cases without meniscus tear. However, no significant difference was present regarding the thicknesses of the medial and the lateral menisci. A positive relationship between the diameter of the posterior medial femoral condyle and the tibial medial superior articular surface was found in cases with (n = 40) (r (2) = 0.208, p = 0.003) and without tear (n = 60) (r (2) = 0.182, p = 0.001). In addition, a significant positive relationship was found between the diameter of the posterior medial femoral condyle and the medial tibial superior articular surface in cases with and without tear. The impact of femorotibial incongruence on the medial meniscus tear is important for

  5. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis.

    PubMed

    Lamb, Joshua; Murawski, Christopher D; Deyer, Timothy W; Kennedy, John G

    2013-06-01

    The purpose of this study was to retrospectively evaluate a large series of patients for functional, radiographic and MRI outcomes after a Chevron-type medial malleolar osteotomy. Sixty-two patients underwent a Chevron-type medial malleolar osteotomy with a median follow-up of 34.5 months. Standard digital radiographs were used to determine bony union and the angle of the osteotomy relative to the longitudinal axis of the tibia. Morphologic and quantitative T2-mapping MRI was also analysed in 32 patients. Fifty-eight patients (94 %) reported being asymptomatic at the site of the medial malleolar osteotomy. The median time to healing on standard radiograph was 6 weeks (range, 4-6 weeks) with an angle of 31.7° ± 6.9°. Quantitative T2-mapping MRI analysis demonstrated that the deep half of interface repair tissue had relaxation times that were not significantly different from normal tibial cartilage. In contrast, interface repair tissue in the superficial half demonstrated significant prolongation from normal relaxation time values, indicating a more fibrocartilaginous repair. Four patients (6 %) reported pain post-operatively. A Chevron-type medial malleolar osteotomy demonstrates satisfactory healing and fixation, with fibrocartilaginous tissue evident superficially at the osteotomy interface. Further investigation is warranted in the form of longitudinal study to assess the long-term outcomes of medial malleolar osteotomy.

  6. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis.

    PubMed

    Kay, Jeffrey; Memon, Muzammil; Shah, Ajay; Yen, Yi-Meng; Samuelsson, Kristian; Peterson, Devin; Simunovic, Nicole; Flageole, Helene; Ayeni, Olufemi R

    2018-06-06

    To evaluate the association between surgical timing and the incidence of secondary meniscal or chondral damage in children and adolescents with anterior cruciate ligament (ACL) ruptures. Three electronic databases, PubMed, MEDLINE, and EMBASE, were systematically searched from database inception until October 16, 2017 by two reviewers independently and in duplicate. The inclusion criteria were English language studies that reported the incidence of meniscal and articular cartilage damage in children or adolescent athletes with ACL injuries as well as the timing of their ACL reconstruction (ACLR). Risk ratios were combined in a meta-analysis using a random effects model. A total of nine studies including 1353 children and adolescents met the inclusion criteria. The mean age of patients included was 14.2 years (range 6-19), and 45% were female. There was a significantly decreased risk of concomitant medial meniscal injury in those reconstructed early (26%) compared to those with delayed reconstruction (47%) [pooled risk ratio (RR) = 0.49, 95% CI 0.36-0.65, p < 0.00001]. There was also a significantly reduced risk of medial femoral chondral (RR = 0.48, 95% CI 0.31-0.75, p = 0.001), lateral femoral chondral (RR = 0.38, 95% CI 0.20-0.75, p = 0.005), tibial chondral (RR = 0.45, 95% CI 0.27-0.75, p = 0.002), and patellofemoral chondral (RR = 0.41, 95% CI 0.20-0.82, p = 0.01) damage in the early reconstruction group in comparison to the delayed group. Pooled results from observational studies suggest that early ACLR results in a significantly decreased risk of secondary medial meniscal injury, as well as secondary medial, lateral, and patellofemoral compartment chondral damage in children and adolescents. This study provides clinicians with valuable information regarding the benefits of early ACL reconstruction in children and adolescents, and can be used in the decision making for athletes in this population. IV.

  7. What Preoperative Radiographic Parameters Are Associated With Increased Medial Release in Total Knee Arthroplasty?

    PubMed

    Martin, J Ryan; Jennings, Jason M; Levy, Daniel L; Watters, Tyler Steven; Miner, Todd M; Dennis, Douglas A

    2017-03-01

    Preoperative varus deformity of the knee is a common malalignment in patients undergoing primary total knee arthroplasty (TKA). We are unaware of any studies that have correlated how various preoperative radiographic parameters can predict the amount of medial releases performed to achieve optimal coronal alignment and ligamentous balance. A retrospective review was performed on 67 patients who required at least a medial tibial reduction osteotomy (MTRO) during primary TKA to achieve coronal balance. This patient population was matched 1:1 to another cohort of TKA patients by age, gender, and body mass index who did not require an MTRO. A radiographic evaluation was used to compare the 2 cohorts. Preoperatively, the MTRO cohort was noted to have significantly increased varus tibiofemoral (86.12° vs 93.43°), tibial articular surface (85.79° vs 87.54°), and medial tibial articular surface angles (75.22° vs 85.34°) compared to the control cohort. The MTRO cohort had 3.13 mm of medial tibial offset and 9.06 mm of lateral joint space opening and the control cohort had 0.09 mm and 4.07 mm, respectively. The medial tibial articular surface angle and lateral joint space widening were statistically associated with the MTRO cohort. The final tibiofemoral angle in the MTRO cohort was 92.43° and was 93.40° in the control cohort. The MTRO cohort was noted to have several preoperative radiographic parameters that were significantly different than the control cohort. However, the medial tibial articular surface angle and lateral joint space widening were the only radiographic parameters that were statistically associated with requiring an MTRO. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Medial meniscus posterior horn avulsion.

    PubMed

    Marzo, John M

    2009-05-01

    Avulsion of the posterior horn of the medial meniscus can occur from acute trauma or chronic degeneration, leading to meniscus extrusion, articular cartilage loss, osteophyte formation, and medial joint space narrowing. With meniscus extrusion, the meniscus is unable to resist hoop stresses and cannot shield the adjacent articular cartilage from excessive axial load. Over time, this can lead to symptomatic knee osteoarthritis. Patients typically report pain, swelling, mechanical symptoms, and general functional loss. Although nonsurgical care may relieve symptoms, it is unlikely to alter either the natural history of meniscal loss or the fate of the medial compartment. Surgical repair of posterior horn meniscal avulsion is done in an attempt to restore the anatomy and biomechanical function of the meniscus, and to slow or prevent degenerative joint disease. Meniscal transplantation is reserved for salvage situations.

  9. Regional fibrocartilage variations in human anterior cruciate ligament tibial insertion: a histological three-dimensional reconstruction.

    PubMed

    Dai, Can; Guo, Lin; Yang, Liu; Wu, Yi; Gou, Jingyue; Li, Bangchun

    2015-02-01

    We studied anterior cruciate ligament (ACL) tibial insertion architecture in humans and investigated regional differences that could suggest unequal force transmission from ligament to bone. ACL tibial insertions were processed histologically. With Photoshop software, digital images taken from the histological slides were collaged, contour lines were drawn, and different gray values were filled based on the structure. The data were exported to Amira software for three-dimensional reconstruction. The uncalcified fibrocartilage (UF) layer was divided into three regions: lateral, medial and posterior according to the architecture. The UF zone was significantly thicker laterally than medially or posteriorly (p < 0.05). Similarly, the calcified fibrocartilage (CF) thickness was significantly greater in the lateral part of the enthesis compared to the medial and posterior parts (p < 0.05). The UF quantity (more UF laterally) corresponding to the CF quantity (more CF laterally) at the ACL tibial insertion provides further evidence suggesting that the load transferred from the ACL to the tibia was greater laterally than medially and posteriorly.

  10. Treatment of recurrent patellar dislocation via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament.

    PubMed

    Li, Li; Wang, Hongbo; He, Yun; Si, Yu; Zhou, Hongyu; Wang, Xin

    2018-06-01

    Recurrent patellar dislocations were treated via knee arthroscopy combined with C-arm fluoroscopy, and reconstruction of the medial patellofemoral ligaments. Between October 2013 and March 2017, 52 cases of recurrent patellar dislocation [27 males and 25 females; age, 16-47 years (mean, 21.90 years)] were treated. Arthroscopic exploration was performed and patellofemoral joint cartilage injuries were repaired. It was subsequently determined whether it was necessary to release the lateral patellofemoral support belt. Pre-operative measurements were used to decide whether tibial tubercle osteotomy was required. Medial patellofemoral ligaments were reconstructed using autologous semitendinosus tendons. Smith and Nephew model 3.5 line anchors were used to double-anchor the medial patellofemoral margin. On the femoral side, the medial patellofemoral ligament was fixed using 7-cm, absorbable, interfacial compression screws. All cases were followed for 1-40 months (average, 21 months). The Q angle, tibial tuberosity trochlear groove distance, Insall-Salvati index, patellofemoral angle, lateral patellofemoral angle and lateral shift were evaluated on X-Ray images using the picture archiving and communication system. Subjective International Knee Documentation Committee (IKDC) knee joint functional scores and Lysholm scores were recorded. Post-operative fear was absent, and no patellar re-dislocation or re-fracture was noted during follow-up. At the end of follow-up, the patellofemoral angle (0.22±4.23°), lateral patellofemoral angle (3.44±1.30°), and lateral shift (0.36+0.14°) differed significantly from the pre-operative values (all, P<0.05). Furthermore, IKDC and Lysholm scores (87.84+3.74 and 87.48+3.35, respectively) differed significantly from the pre-operative values (both, P<0.05). These findings suggest that, in the short term, recurrent patellar dislocation treatment via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial

  11. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Frontal plane knee mechanics and medial cartilage MR relaxation times in individuals with ACL reconstruction : A pilot study

    PubMed Central

    Kumar, Deepak; Kothari, Abbas; Souza, Richard B.; Wu, Samuel; Ma, C. Benjamin; Li, Xiaojuan

    2014-01-01

    Background The objective of this pilot study was to evaluate cartilage T1ρ and T2 relaxation times and knee mechanics during walking and drop-landing for individuals with anterior cruciate ligament reconstruction (ACL-R). Methods Nine patients (6 men and 3 women, Age 35.8±5.4 years, BMI 23.5±2.5 kg/m2) participated 1.5±0.8 years after single-bundle two-tunnel ACL reconstruction. Peak knee adduction moment (KAM), flexion moment (KFM), extension moment (KEM), and peak varus were calculated from kinematic and kinetic data obtained during walking and drop-landing tasks. T1ρ and T2 times were calculated for medial femur (MF), and medial tibia (MT) cartilage and compared between subjects with low KAM and high KAM. Biomechanical variables were compared between limbs. Results The high KAM group had higher T1ρ for MT (p = 0.01), central MT (p = 0.05), posterior MF (p = 0.04), posterior MT (p = 0.01); and higher T2 for MT (p = 0.02), MF (p = 0.05) posterior MF (p = 0.002) and posterior MT (p = 0.01). During walking, ACL-R knees had greater flexion at initial contact (p =0.04), and lower KEM (p = 0.02). During drop-landing, the ACL-R knees had lower KAM (p = 0.03) and KFM (p = 0.002). Conclusion Patients with ACL-R who have higher KAM during walking had elevated MR relaxation times in the medial knee compartments. These data suggest that those individuals who have undergone ACL-R and have higher frontal plane loading, may be at a greater risk of knee osteoarthritis. PMID:24993277

  13. The Effect of Arch Drop on Tibial Rotation and Tibiofemoral Contact Stress in Postpartum Women.

    PubMed

    Rabe, Kaitlin; Segal, Neil A; Waheed, Saphia; Anderson, Donald D

    2018-04-26

    Women are at greater risk for knee osteoarthritis and numerous other lower limb musculoskeletal disorders. Arch drop during pregnancy and the resultant excessive pronation of the feet may alter loading patterns and contribute to the greater prevalence of knee osteoarthritis in women. To determine the effect of arch drop on tibial rotation and tibiofemoral contact stress. Interventional study with internal control. Biomechanics laboratory. Eleven postpartum women (age 33.4 ± 5.3 years, body mass 76.1 ± 13.5 kg) who had lost arch height with pregnancy in a previous study. Subjects underwent standing computed tomography (SCT) with their knees in a 20° fixed-flexed position with and without semirigid arch supports to reconstitute prepregnancy arch height. Magnetic resonance imaging of the knee was acquired at a flexion angle equivalent to that of SCT. Bone and cartilage were manually segmented on the magnetic resonance images and segmented surfaces were registered to the 3-dimensional SCT image sets for the arch-supported and -unsupported conditions. These models were used to measure changes in tibial rotation, as well as to estimate contact stress in the medial and lateral tibiofemoral compartments, using computational methods. Change in tibial rotation and tibiofemoral contact stress with arch drop. Arch drop resulted in a mean tibial internal rotation of 0.75 ± 1.33° (P < .05). Changes in mean or peak contact stress were not detected. Arch drop causes internal tibial rotation, resulting in a shift in the tibiofemoral articulation. An associated increase in contact stress was not detected. Internal rotation of the tibia increases stress on the anterior cruciate ligament and menisci, potentially explaining the greater prevalence of knee disorders in postpartum women. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Progressive valgus angulation of the ankle secondary to loss of fibular congruity treated with medial tibial hemiepiphysiodesis and fibular reconstruction.

    PubMed

    Lesiak, Alex C; Esposito, Paul W

    2014-06-01

    The fibula is an important stabilizer of the lateral ankle. Discontinuity of the fibular shaft can lead to progressive pain and shortening of the fibula, ultimately causing loss of lateral support to the ankle. Two children, who sustained segmental bone loss of the shaft of the fibula, developed progressive symptomatic valgus of the ankle with widening of the mortice and lateral subluxation of the talus. Both patients were treated with fibular plating and grafting with tricalcium sulfate with acute reconstitution of fibular length. Distal medial tibial hemiepiphysiodesis was simultaneously performed. One patient required revision plating and grafting 14 months after the index surgery because of plate failure. The valgus angulation and the widened medial mortice were corrected in the ankles of both patients, who returned to full activities. The patients were followed to maturity; the correction has been maintained, and they remain asymptomatic. The technique used in these cases can correct valgus angulation secondary to loss of fibular congruity rather than only halting progression of the deformity.

  15. Risk Factors for Medial Tibial Stress Syndrome in Active Individuals: An Evidence-Based Review.

    PubMed

    Winkelmann, Zachary K; Anderson, Dustin; Games, Kenneth E; Eberman, Lindsey E

    2016-12-01

    Reference/Citation: Hamstra-Wright KL, Bliven KC, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):362-369. What factors put physically active individuals at risk to develop medial tibial stress syndrome (MTSS)? The authors performed a literature search of CINAHL, the Cochrane Central Register of Controlled Trials, EMBASE, and MEDLINE from each database's inception to July 2013. The following key words were used together or in combination: armed forces, athlete, conditioning, disorder predictor, exercise, medial tibial stress syndrome, militaries, MTSS, military, military personnel, physically active, predictor, recruit, risk, risk characteristic, risk factor, run, shin pain, shin splints, and vulnerability factor. Studies were included in this systematic review based on the following criteria: original research that (1) investigated risk factors associated with MTSS, (2) compared physically active individuals with and without MTSS, (3) was printed in English, and (4) was accessible in full text in peer-reviewed journals. Two authors independently screened titles or abstracts (or both) of studies to identify inclusion criteria and quality. If the article met the inclusion criteria, the authors extracted demographic information, study design and duration, participant selection, MTSS diagnosis, investigated risk factors, mean difference, clinical importance, effect size, odds ratio, and any other data deemed relevant. After the data extraction was complete, the authors compared findings for accuracy and completeness. When the mean and standard deviation of a particular risk factor were reported 3 or more times, that risk factor was included in the meta-analysis. In addition, the methodologic quality was assessed with an adapted checklist developed by previous researchers. The checklist contained 5 categories: study objective

  16. Risk Factors for Medial Tibial Stress Syndrome in Active Individuals: An Evidence-Based Review

    PubMed Central

    Winkelmann, Zachary K.; Anderson, Dustin; Games, Kenneth E.; Eberman, Lindsey E.

    2016-01-01

    Reference/Citation: Hamstra-Wright KL, Bliven KC, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):362–369. Clinical Question: What factors put physically active individuals at risk to develop medial tibial stress syndrome (MTSS)? Data Sources: The authors performed a literature search of CINAHL, the Cochrane Central Register of Controlled Trials, EMBASE, and MEDLINE from each database's inception to July 2013. The following key words were used together or in combination: armed forces, athlete, conditioning, disorder predictor, exercise, medial tibial stress syndrome, militaries, MTSS, military, military personnel, physically active, predictor, recruit, risk, risk characteristic, risk factor, run, shin pain, shin splints, and vulnerability factor. Study Selection: Studies were included in this systematic review based on the following criteria: original research that (1) investigated risk factors associated with MTSS, (2) compared physically active individuals with and without MTSS, (3) was printed in English, and (4) was accessible in full text in peer-reviewed journals. Data Extraction: Two authors independently screened titles or abstracts (or both) of studies to identify inclusion criteria and quality. If the article met the inclusion criteria, the authors extracted demographic information, study design and duration, participant selection, MTSS diagnosis, investigated risk factors, mean difference, clinical importance, effect size, odds ratio, and any other data deemed relevant. After the data extraction was complete, the authors compared findings for accuracy and completeness. When the mean and standard deviation of a particular risk factor were reported 3 or more times, that risk factor was included in the meta-analysis. In addition, the methodologic quality was assessed with an adapted checklist developed by

  17. Strenuous running exacerbates knee cartilage erosion induced by low amount of mono-iodoacetate in rats.

    PubMed

    Saito, Ryusuke; Muneta, Takeshi; Ozeki, Nobutake; Nakagawa, Yusuke; Udo, Mio; Yanagisawa, Katsuaki; Tsuji, Kunikazu; Tomita, Makoto; Koga, Hideyuki; Sekiya, Ichiro

    2017-01-25

    It is still debated whether strenuous running in the inflammatory phase produces beneficial or harmful effect in rat knees. We examined (1) the dropout rate of rats during a 30-km running protocol, (2) influences of strenuous running and/or low amounts of mono-iodoacetate injection on cartilage, and (3) the effect of strenuous running on synovitis. Rats were forced to run 30 km over 6 weeks and the dropout rate was examined. One week after 0.1 mg mono-iodoacetate was injected into the right knee, rats were forced to run either 15 km or not run at all over 3 weeks, after which knee cartilage was evaluated. Synovium at the infrapatellar fat pad was also examined histologically. Even though all 12 rats run up to 15 km, only 6 rats completed 30 km of running. Macroscopically, 0.1 mg mono-iodoacetate induced erosion at the tibial cartilage irrespective of 15 km of running. Histologically, 0.1 mg mono-iodoacetate induced loss of cartilage matrix in the tibial cartilage, and an additional 15 km of strenuous running significantly exacerbated the loss. Synovitis caused by mono-iodoacetate improved after running. Only 50% of rats completed 30 km of running because of foot problems. Strenuous running further exacerbated tibial cartilage erosion but did not influence synovitis induced by mono-iodoacetate.

  18. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae.

    PubMed

    Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H

    2013-06-01

    Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.

  19. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability.

    PubMed

    Ahn, Jin Hwan; Bae, Tae Soo; Kang, Ki-Ser; Kang, Soo Yong; Lee, Sang Hak

    2011-10-01

    Longitudinal tears of the medial meniscus posterior horn (MMPH) are commonly associated with a chronic anterior cruciate ligament (ACL) deficiency. Many studies have demonstrated the importance of the medial meniscus in terms of limiting the amount of anterior-posterior tibial translation in response to anterior tibial loads in ACL-deficient knees. An MMPH tear in an ACL-deficient knee increases the anterior-posterior tibial translation and rotatory instability. In addition, MMPH repair will restore the tibial translation to the level before the tear. Controlled laboratory study. Ten human cadaveric knees were tested sequentially using a custom testing system under 5 conditions: intact, ACL deficient, ACL deficient with an MMPH peripheral longitudinal tear, ACL deficient with an MMPH repair, and ACL deficient with a total medial meniscectomy. The knee kinematics were measured at 0°, 15°, 30°, 60°, and 90° of flexion in response to a 134-N anterior and 200-N axial compressive tibial load. The rotatory kinematics were also measured at 15° and 30° of flexion in a combined rotatory load of 5 N·m of internal tibial torque and 10 N·m of valgus torque. Medial meniscus posterior horn longitudinal tears in ACL-deficient knees resulted in a significant increase in anterior-posterior tibial translation at all flexion angles except 90° (P < .05). An MMPH repair in an ACL-deficient knee showed a significant decrease in anterior-posterior tibial translation at all flexion angles except 60° compared with the ACL-deficient/MMPH tear state (P < .05). The total anterior-posterior translation of the ACL-deficient/MMPH repaired knee was not significantly increased compared with the ACL (only)-deficient knee but was increased compared with the ACL-intact knee (P > .05). A total medial meniscectomy in an ACL-deficient knee did not increase the anterior-posterior tibial translation significantly compared with MMPH tears in ACL-deficient knees at all flexion angles (P > .05

  20. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration.

    PubMed

    Hadjab, I; Sim, S; Karhula, S S; Kauppinen, S; Garon, M; Quenneville, E; Lavigne, P; Lehenkari, P P; Saarakkala, S; Buschmann, M D

    2018-03-01

    To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and

  1. Medial tibial stress syndrome.

    PubMed

    Reshef, Noam; Guelich, David R

    2012-04-01

    MTSS is a benign, though painful, condition, and a common problem in the running athlete. It is prevalent among military personnel, runners, and dancers, showing an incidence of 4% to 35%. Common names for this problem include shin splints, soleus syndrome, tibial stress syndrome, and periostitis. The exact cause of this condition is unknown. Previous theories included an inflammatory response of the periosteum or periosteal traction reaction. More recent evidence suggests a painful stress reaction of bone. The most proven risk factors are hyperpronation of the foot, female sex, and history of previous MTSS. Patient evaluation is based on meticulous history taking and physical examination. Even though the diagnosis remains clinical, imaging studies, such as plain radiographs and bone scans are usually sufficient, although MRI is useful in borderline cases to rule out more significant pathology. Conservative treatment is almost always successful and includes several options; though none has proven more superior to rest. Prevention programs do not seem to influence the rate of MTSS, though shock-absorbing insoles have reduced MTSS rates in military personnel, and ESWT has shortened the duration of symptoms. Surgery is rarely indicated but has shown some promising results in patients who have not responded to all conservative options.

  2. Retropatellar chondromalacia associated with medial osteoarthritis after meniscus injury. One year of observations in sheep.

    PubMed

    Burger, C; Kabir, K; Mueller, M; Rangger, C; Minor, T; Tolba, R H

    2006-01-01

    In an ovine meniscal repair model, the patellofemoral (PF) osteoarthritis due to a non-sutured tear or failed repair was investigated. A radial meniscus tear was either sutured with polydioxanone (PDS), with a slow degrading polylactide long-term suture(LTS) or left without treatment. Knee joint cartilage in the PF and medial compartment was evaluated compared to normal knees (healthy controls). Retropatellar osteoarthritis in the non-sutured and sutured animals was intense in contrast to the control knees after 6 months in all groups (p < 0.001), and after 12 months in the PDS group (p < 0.001), LTS group and non-sutured animals (p < 0.05). Non-sutured meniscus tears and failed repair lead fast to intense PF osteoarthritis corresponding with tibial damage of the injured compartment.

  3. Site Specific Effects of Zoledronic Acid during Tibial and Mandibular Fracture Repair

    PubMed Central

    Yu, Yan Yiu; Lieu, Shirley; Hu, Diane; Miclau, Theodore; Colnot, Céline

    2012-01-01

    Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones. PMID:22359627

  4. Medial Tibial Stress Syndrome in Active Individuals: A Systematic Review and Meta-analysis of Risk Factors

    PubMed Central

    Reinking, Mark F.; Austin, Tricia M.; Richter, Randy R.; Krieger, Mary M.

    2016-01-01

    Context: Medial tibial stress syndrome (MTSS) is a common condition in active individuals and presents as diffuse pain along the posteromedial border of the tibia. Objective: To use cross-sectional, case-control, and cohort studies to identify significant MTSS risk factors. Data Sources: Bibliographic databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE, EBM Reviews, PEDRo), grey literature, electronic search of full text of journals, manual review of reference lists, and automatically executed PubMed MTSS searches were utilized. All searches were conducted between 2011 and 2015. Study Selection: Inclusion criteria were determined a priori and included original research with participants’ pain diffuse, located in the posterior medial tibial region, and activity related. Study Design: Systematic review with meta-analysis. Level of evidence: Level 4. Data Extraction: Titles and abstracts were reviewed to eliminate citations that did not meet the criteria for inclusion. Study characteristics identified a priori were extracted for data analysis. Statistical heterogeneity was examined using the I2 index and Cochran Q test, and a random-effects model was used to calculate the meta-analysis when 2 or more studies examined a risk factor. Two authors independently assessed study quality. Results: Eighty-three articles met the inclusion criteria, and 22 articles included risk factor data. Of the 27 risk factors that were in 2 or more studies, 5 risk factors showed a significant pooled effect and low statistical heterogeneity, including female sex (odds ratio [OR], 2.35; CI, 1.58-3.50), increased weight (standardized mean difference [SMD], 0.24; CI, 0.03-0.45), higher navicular drop (SMD, 0.44; CI, 0.21-0.67), previous running injury (OR, 2.18; CI, 1.00-4.72), and greater hip external rotation with the hip in flexion (SMD, 0.44; CI, 0.23-0.65). The remaining risk factors had a nonsignificant pooled effect or significant pooled effect with high statistical heterogeneity

  5. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  6. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2010-04-01

    To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.

  7. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study.

    PubMed

    Burne, S G; Khan, K M; Boudville, P B; Mallet, R J; Newman, P M; Steinman, L J; Thornton, E

    2004-08-01

    To investigate in a military setting the potential role of intrinsic biomechanical and anthropometric risk factors for, and the incidence of, exertional medial tibial pain (EMTP). A prospective clinical outcome study in a cohort of 122 men and 36 women at the Australian Defence Force Academy. Each cadet underwent measurements of seven intrinsic variables: hip range of motion, leg length discrepancy, lean calf girth, maximum ankle dorsiflexion range, foot type, rear foot alignment, and tibial alignment. Test-retest reliability was undertaken on each variable. A physician recorded any cadet presenting with diagnostic criteria of EMTP. Records were analysed at 12 months for EMTP presentation and for military fitness test results. 23 cadets (12 men, 11 women) met the criteria for EMTP after 12 months, with a cross gender (F/M) odds ratio of 3.1. In men, both internal and external range of hip motion was greater in those with EMTP: left internal (12 degrees, p = 0.000), right internal (8 degrees, p = 0.014), left external (8 degrees, p = 0.042), right external (9 degrees, p = 0.026). Lean calf girth was lower by 4.2% for the right leg (p = 0.040) but by only 2.9% for the left leg (p = 0.141). No intrinsic risk factor was associated with EMTP in women. EMTP was the major cause for non-completion of the run component of the ADFA fitness test in both men and women. Greater internal and external hip range of motion and lower lean calf girth were associated with EMTP in male military cadets. Women had high rates of injury, although no intrinsic factor was identified. Reasons for this sex difference need to be identified.

  8. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study

    PubMed Central

    Burne, S; Khan, K; Boudville, P; Mallet, R; Newman, P; Steinman, L; Thornton, E

    2004-01-01

    Objective: To investigate in a military setting the potential role of intrinsic biomechanical and anthropometric risk factors for, and the incidence of, exertional medial tibial pain (EMTP). Methods: A prospective clinical outcome study in a cohort of 122 men and 36 women at the Australian Defence Force Academy. Each cadet underwent measurements of seven intrinsic variables: hip range of motion, leg length discrepancy, lean calf girth, maximum ankle dorsiflexion range, foot type, rear foot alignment, and tibial alignment. Test–retest reliability was undertaken on each variable. A physician recorded any cadet presenting with diagnostic criteria of EMTP. Records were analysed at 12 months for EMTP presentation and for military fitness test results. Results: 23 cadets (12 men, 11 women) met the criteria for EMTP after 12 months, with a cross gender (F/M) odds ratio of 3.1. In men, both internal and external range of hip motion was greater in those with EMTP: left internal (12°, p = 0.000), right internal (8°, p = 0.014), left external (8°, p = 0.042), right external (9°, p = 0.026). Lean calf girth was lower by 4.2% for the right leg (p = 0.040) but by only 2.9% for the left leg (p = 0.141). No intrinsic risk factor was associated with EMTP in women. EMTP was the major cause for non-completion of the run component of the ADFA fitness test in both men and women. Conclusions: Greater internal and external hip range of motion and lower lean calf girth were associated with EMTP in male military cadets. Women had high rates of injury, although no intrinsic factor was identified. Reasons for this sex difference need to be identified. PMID:15273181

  9. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    PubMed

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Combined closing-wedge high tibial osteotomy with arthroscopy for varus knee and medial compartment osteoarthritis: clinical results at a minimum follow-up for five years].

    PubMed

    Liu, Jin-Song; Li, Zhi-Yao

    2013-09-01

    To study the results of closing-wedge high tibial osteotomy and arthroscopy for the treatment of medial compartment osteoarthritis of the knee. From October 2005 to June 2007, 25 patients met with our inclusion criteria. All the patients with medial compartment knee osteoarthritis were treated with arthroscopy and closing-wedge high tibial osteotomy. There were 11 males and 14 females,with a mean age of 53 years old. The pre-operative HSS knee score was 67.6 +/- 2.8, FTA was (185.54 +/- 1.11) degrees, and aLPTA was (96.54 +/- 0.52) degrees in average. The patients were followed up and evaluated according to HSS knee score. The efficacy of the osteotomy was evaluated by FTA and aLPTA. All surgeries were successful without serious complication. All the patients were followed up, and the duration ranged from 5 to 7 years. The HSS was 85.5 +/- 3.7 at the 1st year and 80.3 +/- 5.4 at the latest follow-up. There was significant difference between every two scores of before operation and the two after operation (t = -33.135, P = 0.000; t = -13.215, P = 0.000). The FTA was (173.65 +/- 0.92) degrees at the 1st year and (174.34 +/- 0.53) degrees at the latest follow-up. There was significant difference between every two angles of before operation and after operation (t = 28.739, P = 0.000; t = 2.331, P = 0.048). The aLPTA was (87.32 +/- 0.33) degrees at the 1st year and (87.67 +/- 2.82) degrees at the latest follow-up. There was significant difference between every two angles of before operation and after operation (t = 37.264, P = 0.000; t = 2.469, P = 0.039). Indication is important and good surgical technique is critical for good clinical outcome. A detailed plan before operation is essential for the operation. Arthroscopy is helpful for treating the intra-articular pathology. The osteoarthritis is still in progress but in a slow mode. The combined method of arthroscopy and closing-wedge high tibial osteotomy is a reliable way for medial compartment osteoarthritis of the

  11. Clinical and radiographic outcomes of medial open-wedge high tibial osteotomy with Anthony-K plate: prospective minimum five year follow-up data.

    PubMed

    Altay, Mehmet Akif; Ertürk, Cemil; Altay, Nuray; Mercan, Ahmet Şükrü; Sipahioğlu, Serkan; Kalender, Ali Murat; Işıkan, Uğur Erdem

    2016-07-01

    The purpose of this study was to prospectively evaluate the clinical and radiographic outcomes, and complication rates, after a minimum of five years of follow-up after medial open wedge high tibial osteotomy (MOWHTO) using an Anthony-K plate. MOWHTO was performed on 35 knees of 34 consecutive patients. A visual analogue scale (VAS), and Western Ontario and McMaster University Osteoarthritis (WOMAC) and Lysholm scores, were used in clinical evaluation. Upon radiographic assessment, alignment was expressed as the femorotibial angle (FTA). The posterior tibial slope (PTS) and the Insall-Salvati Index (ISI) were also measured. VAS, WOMAC, and Lysholm scores improved significantly upon follow-up (p < 0.001 for all). The overall mean FTA was 4.68 ± 4.39° varus pre-operatively; at the last post-operative follow-up, the value was 8.43 ± 2.02° valgus. The mean correction angle was 13.1 ± 2.7°. A significant increase in PTS was evident (p < 0.01), as was a significant decrease in the ISI (p < 0.01). The overall complication rate was 8.6 %. The Anthony-K plate affords accurate correction, initially stabilises the osteotomy after surgery, and maintains such stability until the osteotomy gap is completely healed, without correction loss. The plate survival rate was 97.2 % after a minimum of five years of follow-up. The plate increased the PTS, as do other medial osteotomy fixation plates.

  12. [Influence of the posterior tibial tendon on the medial arch of the foot: an in vitro kinetic and kinematic study].

    PubMed

    Emmerich, J; Wülker, N; Hurschler, C

    2003-04-01

    The respective contributions of the active and passive structures of the foot to the stability of the medical arch were investigated using an in vitro kinetic and kinematic model. The effect of the tibialis posterior tendon on foot and ankle movements, and plantar pressure distribution of the foot were tested in a cadaveric human foot. The stance phase from heel-contact to toe-off of normal walking gait and after tibialis posterior tendon rupture was simulated in eight roentenographically normal human feet (age 66 +/- 19 years, males). Ground reaction force and tibial inclination was simulated by means of a tilting angle and force-controlled translation stage. Plantar pressure was measured using a pressure-measuring platform. The force developed by the flexors and extensor muscles of the foot were simulated via cables attached to 7 force-controlled hydraulic cylinders. Tibial rotation was produced by an electric servo-motor, and foot movements measured with an ultrasonic analysis system. The model was verified against the plantar distribution and kinematics of healthy subjects measured during normal gait. Tibialis posterior deficit did not result in any detectable changes in pressure or force-time integral in the medial regions of the foot--a common sign of flat foot (pressure: midfoot 0.2 < or = 0.9; medial forefoot 0.5 < or = p < or = 0.9; hallux 0.5 < or = p < or = 0.9; force-time integral: midfoot p = 0-871; medial forefoot p = 0.632; hallux p = 0.068). Only small tendential changes in the kinematics of the talus and calcaneus were observed in dorsiflexion (0-58 sec; talus 0.1 < or = p < or = 0.6; calcaneus 0.4 < or = p < or = 0.06) and eversion (talus: 0-60 sec. 0.1 < or = p < or = 0.6; calcaneus: 37-60 sec. 0.2 < or = p < or = 0.7). The results of this in vitro study show that defective tibialis posterior alone does not produce significant changes in the kinetics or kinematics of the stance phase of normal gait. This suggests that the development of flat foot

  13. Vastus medialis fat infiltration - a modifiable determinant of knee cartilage loss.

    PubMed

    Teichtahl, A J; Wluka, A E; Wang, Y; Wijethilake, P N; Strauss, B J; Proietto, J; Dixon, J B; Jones, G; Forbes, A; Cicuttini, F M

    2015-12-01

    There is growing interest in the role of intramuscular fat and how it may influence clinical outcomes. Vastus medialis (VM) is a functionally important quadriceps muscle that helps to stabilise the knee joint. This longitudinal study examined the determinants of VM fat infiltration and whether VM fat infiltration influenced knee cartilage volume. 250 participants without any diagnosed arthropathy were assessed at baseline between 2005 and 2008, and 197 participants at follow-up between 2008 and 2010. Ambulatory and sporting activity were assessed and magnetic resonance imaging (MRI) was used to determine knee cartilage volume and VM fat infiltration. Age, female gender, BMI and weight were positively associated with baseline VM fat infiltration (P ≤ 0.03), while ambulatory and sporting activity were negatively associated with VM fat infiltration (P ≤ 0.05). After adjusting for confounders, a reduction in VM fat infiltration was associated with a reduced annual loss of medial tibial (β = -10 mm(3); 95% CI -19 to 0 mm(3); P = 0.04) and patella (β = -18 mm(3); 95% CI -36 to 0 mm(3); P = 0.04) cartilage volume. This community-based study of healthy adults has shown that VM fat infiltration can be modified by lifestyle factors including weight loss and exercise, and reducing fat infiltration in VM has beneficial effect on knee cartilage preservation. The findings suggest that modifying VM fat infiltration via lifestyle interventions may have the potential to reduce the risk of knee OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Avulsion of the anterior medial meniscus root: case report and surgical technique.

    PubMed

    Feucht, Matthias J; Minzlaff, Philipp; Saier, Tim; Lenich, Andreas; Imhoff, Andreas B; Hinterwimmer, Stefan

    2015-01-01

    Injuries of the meniscus roots have become increasingly recognised as a serious pathology of the knee joint. However, the current available literature focuses primarily on posterior meniscus root tears. In this article, a case with an isolated avulsion of the anterior medial meniscus root is presented, and a new arthroscopic technique to treat this type of injury is described. The anterior horn of the medial meniscus was sutured with a double-looped nonabsorbable suture and reattached to the tibial plateau using a knotless suture anchor. This technique may also be useful to treat avulsion injuries of the anterolateral or posteromedial meniscus root, and symptomatic subluxation of the medial meniscus in case of a variant insertion anatomy with an absent attachment of the anterior horn of the medial meniscus to the tibial plateau. Level of evidence V.

  15. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    PubMed

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  16. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    PubMed Central

    Bin Abd Razak, Hamid Rahmatullah; Amit Kanta, Mitra

    2016-01-01

    We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis. PMID:28070434

  17. Large meniscus extrusion ratio is a poor prognostic factor of conservative treatment for medial meniscus posterior root tear.

    PubMed

    Kwak, Yoon-Ho; Lee, Sahnghoon; Lee, Myung Chul; Han, Hyuk-Soo

    2018-03-01

    The purpose of this study was to find a prognostic factor of medial meniscus posterior root tear (MMPRT) for surgical decision making. Eighty-eight patients who were diagnosed as acute or subacute MMPRT without severe degeneration of the meniscus were treated conservatively for 3 months. Fifty-seven patients with MMPRT showed good response to conservative treatment (group 1), while the remaining 31 patients who failed to conservative treatment (group 2) received arthroscopic meniscus repair. Their demographic characteristics and radiographic features including hip-knee-ankle angle, joint line convergence angle, Kellgren-Lawrence grade in plain radiographs, meniscus extrusion (ME) ratio (ME-medial femoral condyle ratio, ME-medial tibial plateau ratio, ME-meniscus width ratio), the location of bony edema, and cartilage lesions in MRI were compared. Receiver operating characteristic (ROC) curve analysis was also performed to determine the cut-off values of risk factors. The degree of ME-medial femoral condyle and medial tibia plateau ratio of group 2 was significantly higher than group 1 (0.08 and 0.07 vs. 0.1 and 0.09, respectively, both p < 0.001). No significant (n.s.) difference in other variables was found between the two groups. On ROC curve analysis, ME-medial femoral condyle ratio was confirmed as the most reliable prognostic factor of conservative treatment for MMPRT (area under ROC = 0.8). The large meniscus extrusion ratio was the most reliable poor prognostic factor of conservative treatment for MMPRT. Therefore, for MMPRT patients with large meniscus extrusion, early surgical repair could be considered as the primary treatment option. III.

  18. Effect of thiram on chicken growth plate cartilage

    USDA-ARS?s Scientific Manuscript database

    Thiram is a general use dithiocarbamate pesticide. It causes tibial dyschondroplasia, a growth plate cartilage defect in poultry characterized by growth plate broadening due to the accumulation of nonviable chondrocytes which lead to lameness. Since proteins play significant roles in all aspects cel...

  19. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus.

    PubMed

    Huang, Henry; Skelly, Jordan D; Ayers, David C; Song, Jie

    2017-02-09

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.

  20. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus

    PubMed Central

    Huang, Henry; Skelly, Jordan D.; Ayers, David C.; Song, Jie

    2017-01-01

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research. PMID:28181577

  1. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  2. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae

    PubMed Central

    Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.

    2013-01-01

    Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303

  3. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.

    PubMed

    Schütte, Kurt H; Seerden, Stefan; Venter, Rachel; Vanwanseele, Benedicte

    2018-01-01

    Medial tibial stress syndrome (MTSS) is a common overuse running injury with pathomechanics likely to be exaggerated by fatigue. Wearable accelerometry provides a novel alternative to assess biomechanical parameters continuously while running in more ecologically valid settings. The purpose of this study was to determine the influence of outdoor running fatigue and MTSS on both dynamic loading and dynamic stability derived from trunk and tibial accelerometery. Runners with (n=14) and without (n=16) history of MTSS performed an outdoor fatigue run of 3200m. Accelerometer-based measures averaged per lap included dynamic loading of the trunk and tibia (i.e. axial peak positive acceleration, signal power magnitude, and shock attenuation) as well as dynamic trunk stability (i.e. tri-axial root mean square ratio, step and stride regularity, and sample entropy). Regression coefficients from generalised estimating equations were used to evaluate group by fatigue interactions. No evidence could be found for dynamic loading being higher with fatigue in runners with MTSS history (all measures p>0.05). One significant group by running fatigue interaction effect was detected for dynamic stability. Specifically, in MTSS only, decreases mediolateral sample entropy i.e. loss of complexity was associated with running fatigue (p<0.01). The current results indicate that entire acceleration waveform signals reflecting mediolateral trunk control is related to MTSS history, a compensation that went undetected in the non-fatigued running state. We suggest that a practical outdoor running fatigue protocol that concurrently captures trunk accelerometry-based movement complexity warrants further prospective investigation as an in-situ screening tool for MTSS individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Age-related changes in the articular cartilage of the stifle joint in non-working and working German Shepherd dogs.

    PubMed

    Francuski, J V; Radovanović, A; Andrić, N; Krstić, V; Bogdanović, D; Hadzić, V; Todorović, V; Lazarević Macanović, M; Sourice Petit, S; Beck-Cormier, S; Guicheux, J; Gauthier, O; Kovacević Filipović, M

    2014-11-01

    The aims of this study were to define age-related histological changes in the articular cartilage of the stifle joint in non-chondrodystrophic dogs and to determine whether physical activity has a positive impact on preservation of cartilage structure during ageing. Twenty-eight German shepherd dogs were included in the study. These dogs had no evidence of joint inflammation as defined by clinical assessment, radiology and synovial fluid analysis (specifically absence of synovial fluid serum amyloid A). The dogs were grouped as young working (n ¼ 4), young non-working (n ¼ 5), aged working (n ¼ 13) and aged non-working (n ¼ 6) animals. Gross changes in the stifle joints were recorded and biopsy samples of femoral and tibial articular cartilage were evaluated for thickness; chondrocyte number, density, surface area and morphology; isogenous group morphology; tidemark integrity; subchondral bone structure; presence of proteoglycans/ glycosaminoglycans; and expression of type I, II and X collagens. The major age-related changes, not related to type of physical activity, included elevated chondrocyte density and thinning of tibial cartilage and increased chondrocyte surface area in the superficial and intermediate zone of the femoral cartilage. There was also expression of type X collagen in the femoral and tibial calcified and non-calcified cartilage; however, type X collagen was not detected in the superficial zone of old working dogs. Therefore, ageing, with or without physical activity, leads to slight cartilage degeneration, while physical activity modulates the synthesis of type X collagen in the superficial cartilage zone, partially preserving the structure of hyaline cartilage. 2014 Elsevier Ltd. All rights reserved.

  5. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis.

    PubMed

    Krause, Matthias; Hubert, Jan; Deymann, Simon; Hapfelmeier, Alexander; Wulff, Birgit; Petersik, Andreas; Püschel, Klaus; Amling, Michael; Hawellek, Thelonius; Frosch, Karl-Heinz

    2018-05-07

    Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly. Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.3 ± 4.9 years) and eight female healthy controls (45.5 ± 6.9 years). To visualize region-specific structural bony alterations with age, the bone mineral density (Hounsfield units) was additionally analyzed in 168 human proximal tibiae. Statistical analysis was based on evolutionary learning using globally optimal regression trees. Bone structure deterioration of the tibial plateau due to osteoporosis was region-specific. Compared to healthy controls (20.5 ± 4.7%) the greatest decrease in bone volume fraction was found in the medio-medial segments (9.2 ± 3.5%, p < 0.001). The lowest bone volume was found in central segments (tibial spine). Trabecular connectivity was severely reduced. Importantly, in the anterior and posterior 25% of the lateral and medial tibial plateaux, trabecular support and subchondral cortical bone thickness itself were also reduced. Thinning of subchondral cortical bone and marked bone loss in the anterior and posterior 25% of the tibial plateau should require special attention when osteoporotic patients require fracture fixation of the posterior segments. This knowledge may help to improve the long-term, fracture-specific fixation of complex tibial plateau fractures in osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Patellofemoral Instability in Children: Correlation Between Risk Factors, Injury Patterns, and Severity of Cartilage Damage.

    PubMed

    Kim, Hee Kyung; Shiraj, Sahar; Kang, Chang Ho; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-06-01

    The purpose of this study was to compare MRI findings between groups with and without patellofemoral instability and to correlate the MRI findings with the severity of patellar cartilage damage. Fifty-three children with patellofemoral instability and 53 age- and sex-matched children without patellofemoral instability (15.9 ± 2.4 years) were included. Knee MRI with T2-weighted mapping was performed. On MR images, femoral trochlear dysplasia, patellofemoral malalignment, medial retinaculum injury, and bone marrow edema were documented. The degree of patellar cartilage damage was evaluated on MR images by use of a morphologic grading scale (0-4) and on T2 maps with mean T2 values at the medial, central, and lateral facets. MRI findings were compared between the two groups. In cases of patellofemoral instability, MRI findings were correlated with the severity of cartilage damage at each region. Trochlear structure and alignment were significantly different between the two groups (Wilcoxon p < 0.0001). In patellofemoral instability, a high-riding patella was associated with central patellar cartilage damage with a higher morphologic grade and T2 value (Spearman p < 0.05). The severity of medial retinacular injury and presence of bone marrow edema at either the medial patella or the lateral femoral condyle were associated with a higher grade of medial patellar cartilage damage (Wilcoxon p < 0.05). None of the other findings correlated with the severity of patellar cartilage damage. Patients with patellofemoral instability have significantly different trochlear structure and alignment than those who do not, and these differences are known risk factors for patellofemoral instability. However, the only risk factors or injury patterns that directly correlated with the severity of patellar cartilage damage were patella alta, medial stabilizer injury, and bone marrow edema.

  7. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  8. Loading of the medial meniscus in the ACL deficient knee: A multibody computational study.

    PubMed

    Guess, Trent M; Razu, Swithin

    2017-03-01

    The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5Nm external tibial torque was applied about the long axis of the tibia. Combining a 100N anterior tibial force and a 5Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Loading of the Medial Meniscus in the ACL deficient knee: a Multibody Computational Study

    PubMed Central

    Razu, Swithin

    2017-01-01

    The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100 N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5 Nm external tibial torque was applied about the long axis of the tibia. Combining a 100 N anterior tibial force and a 5 Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. PMID:28089224

  10. [Application of pie-crusting the medial collateral ligament release in arthroscopic surgery for posterior horn of 
medial meniscus in knee joint].

    PubMed

    Zhu, Weihong; Tang, Qi; Liao, Lele; Li, Ding; Yang, Yang; Chen, You

    2017-09-28

    To explore the effectiveness and safety of pie-crusting the medial collateral ligament release (MCL) in treating posterior horn of medial meniscus (PHMM) tear in tight medial tibiofemoral compartment of knee joint.
 Methods: Thirty-two consecutive patients with PHMM tear in tight medial tibiofemoral compartment of knee joint were admitted to our department from January, 2013 to December, 2014. All patients were performed pie-crusting the MCL release at its tibial insertion with 18-gauge intravenous needle. All patients were evaluated by valgus stress test and bilateral valgus stress radiograph at postoperative 1st day, 4th week and 12th week. Visual Analogue Scales (VAS), Lysholm scores, Tegner scores and International Knee Documentation Committee (IKDC) scores were recorded at the 1st, 3th, 6th month follow-up, then follow-up every 6 months.
 Results: The mean follow-up was 28 (24-36) months. All cases were negative in valgus stress test. MCL rupture, femoral fracture, articular cartilage lesion and neurovascular injury were not found at the last follow-up. The median medial joint space width of affected side and unaffected side for valgus stress radiographs were 6.8 mm and 4.3 mm (P<0.05) at the 1st day, 5.5 mm and 4.2 mm 
(P<0.05) in the 4th week and 4.8 mm and 4.3 mm (P>0.05) at the 12th week, respectively. VAS scores was changed from 4.5±1.5 preoperatively to 1.7±1.0 at the final follow-up (t=16.561, P<0.05). Lysholm scores was changed from 52.3±5.8 preoperatively to 93.2±6.3 at the final follow-up (t=-41.353, P<0.05). Tegner scores was changed from 4.1±1.1 preoperatively to 5.5±0.6 at the final follow-up (t=-18.792, P<0.05). IKDC scores was changed from 54.5±6.2 preoperative to 93.8±4.5 at the final follow-up (t=-38.253, P<0.05).
 Conclusion: Pie-crusting the medial collateral ligament release is a safe, minimal invasive and effective surgical option for posterior horn of medial meniscus tear in tight medial tibiofemoral compartment of knee

  11. Relationship between the tibial mechanical axis and bony anatomical landmarks of the calf and foot as measured on radiographs obtained with a new laser-calibrated position.

    PubMed

    He, Peiheng; Zhu, Qi; Zhang, Zhaohui; Zou, Xuenong; Xu, Dongliang

    2013-01-01

    To investigate relationship between the tibial mechanical axis and bony landmarks of the calf and foot by developing a new laser-calibrated position for radiography of the lower limb. A total of 120 volunteers were randomly divided into two groups. All subjects were marked with skin projection of the hypothetical axis of the calf on the frontal and sagittal planes. Radiographs of weight-bearing full-length lower-limb were obtained by the laser-calibrated positioning in the experimental group, and by the use of conventional technique in the control group. To consider the rotation of the calf, radiological features of the knee and ankle were investigated. The relationship between the tibial mechanical axis and the bony landmarks of the calf and foot were also measured. Anteroposterior view depicted a tangential projection on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus in ankle mortise in the experimental group. Bony overlap on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus was seen in control group. On the tangential projection, it also presented a clear wheel-like contour of the medial femoral condyle, but a partial overlap between medial femoral condyle and tibial plateau. The femoral joint angle between the connecting line at the lowest point of the medial and lateral femoral condyles and the tibial mechanical axis was 83.6° ± 2.49° in the experimental group and 85.3° ± 2.18° in the control group (P < 0.001). The tibial tubercle-axis distance from the center of the medial and middle one-third of the tibial tubercle to the tibial mechanical axis was 1.5 mm in the experimental group and 3.7 mm in the control group (P < 0.05). The malleoli-axis distance from the midpoint of the bimalleolar line joining the tips of the medial and lateral malleoli to the tibial mechanical axis was 1.9 mm in the experimental group and 6.9 mm in the control group (P < 0.001). Lateral view showed no

  12. Improved arthroscopic one-piece excision technique for the treatment of symptomatic discoid medial meniscus.

    PubMed

    Wang, Hong-De; Li, Tong; Gao, Shi-Jun

    2017-10-30

    Discoid medial meniscus is an extremely rare abnormality of the knee. During arthroscopic meniscectomy for symptomatic discoid medial meniscus, it is difficult to remove the posterior portion of the meniscus because of the confined working space within the compartment and the obstruction caused by the anterior cruciate ligament and the tibial intercondylar eminence. To overcome these problems, we describe an improved arthroscopic technique for one-piece excision of symptomatic discoid medial meniscus through three unique portals. Three improved portals were made in the injured knee: a standard anteromedial portal, a central transpatellar tendon portal, and a high anterolateral portal. The anterior side of the discoid medial meniscus was cut 7 mm from the periphery of the meniscus. Next, the anterior portion of the free discoid meniscus fragment was pulled in the anterolateral direction with tension. A curve-shaped cut was made along the longitudinal tear to the posterior horn using basket forceps through the standard anteromedial portal. Then, the anterior portion of the free discoid meniscus was pulled in the anteromedial direction. Pulling the fragment under tension made it easier to cut the posterior side of the discoid meniscus. The posterior side of the discoid meniscus was cut 7 mm from the periphery of the meniscus with straight scissors or basket forceps through the central transpatellar tendon portal. This technique resulted in satisfactory results. Excellent visualization of the posterior part of the discoid medial meniscus was gained during the procedure, and it was easy to cut the posterior part of the discoid medial meniscus. No recurrent symptoms were found. This improved arthroscopic one-piece excision technique for the treatment of symptomatic discoid medial meniscus enables the posterior part of the meniscus to be cut satisfactorily. Moreover, compared with previous techniques, this novel technique causes less formation of foreign bodies and less

  13. High tibial osteotomy in knee laxities: Concepts review and results

    PubMed Central

    Robin, Jonathan G.; Neyret, Philippe

    2016-01-01

    Patients with unstable, malaligned knees often present a challenging management scenario, and careful attention must be paid to the clinical history and examination to determine the priorities of treatment. Isolated knee instability treated with ligament reconstruction and isolated knee malalignment treated with periarticular osteotomy have both been well studied in the past. More recently, the effects of high tibial osteotomy on knee instability have been studied. Lateral closing-wedge high tibial osteotomy tends to reduce the posterior tibial slope, which has a stabilising effect on anterior tibial instability that occurs with ACL deficiency. Medial opening-wedge high tibial osteotomy tends to increase the posterior tibia slope, which has a stabilising effect in posterior tibial instability that occurs with PCL deficiency. Overall results from recent studies indicate that there is a role for combined ligament reconstruction and periarticular knee osteotomy. The use of high tibial osteotomy has been able to extend the indication for ligament reconstruction which, when combined, may ultimately halt the evolution of arthritis and preserve their natural knee joint for a longer period of time. Cite this article: Robin JG, Neyret P. High tibial osteotomy in knee laxities: Concepts review and results. EFORT Open Rev 2016;1:3-11. doi: 10.1302/2058-5241.1.000001. PMID:28461908

  14. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report.

    PubMed

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients.

  15. A Reference Database of Cartilage 3 Tesla MRI T2 Values in Knees without Diagnostic Evidence of Cartilage Degeneration: Data from the Osteoarthritis Initiative

    PubMed Central

    Joseph, Gabby B.; McCulloch, Charles E.; Nevitt, Michael C.; Heilmeier, Ursula; Nardo, Lorenzo; Lynch, John A.; Liu, Felix; Baum, Thomas; Link, Thomas M.

    2015-01-01

    Objective The purpose of this study was 1) to establish a gender- and BMI-specific reference database of cartilage T2 values, and 2) to assess the associations between cartilage T2 values and gender, age, and BMI in knees without radiographic osteoarthritis or MRI-based (WORMS 0/1) evidence of cartilage degeneration. Design 481 subjects between the ages of 45-65 years with Kellgren-Lawrence Scores 0/1 in the study knee were selected from the Osteoarthritis Initiative database. Baseline morphologic cartilage 3T MRI readings (WORMS scoring) and T2 measurements (resolution=0.313mmx0.446mm) were performed in the medial femur, lateral femur, medial tibia, lateral tibia, and patella compartments. In order to create a reference database, a logarithmic transformation was applied to the data to obtain the 5th-95th percentile values for T2. Results Significant differences in mean cartilage T2 values were observed between joint compartments. Although females had slightly higher T2 values than males in a majority of compartments, the differences were only significant in the medial femur (p<0.0001). A weak positive association was seen between age and T2 in all compartments, and was most pronounced in the patella (3.27% increase in median T2/10 years, p=0.009). Significant associations between BMI and T2 were observed, and were most pronounced in the lateral tibia (5.33% increase in median T2/5 kg/m2 increase in BMI, p<0.0001), and medial tibia (4.81% increase in median T2 /5 kg/m2 increase in BMI, p<0.0001). Conclusions This study established the first reference database of T2 values in a large sample of morphologically normal cartilage plates in knees without radiographic knee osteoarthritis. While cartilage T2 values were weakly associated with age and gender, they had the highest correlations with BMI. PMID:25680652

  16. Treatment of Medial Tibial Stress Syndrome With Radial Soundwave Therapy in Elite Athletes: Current Evidence, Report on Two Cases, and Proposed Treatment Regimen.

    PubMed

    Saxena, Amol; Fullem, Brian; Gerdesmeyer, Ludger

    Two case reports of high-level athletes with medial tibial stress syndrome (MTSS), 1 an Olympian with an actual stress fracture, are presented. Successful treatment included radial soundwave therapy, pneumatic leg braces, relative rest using an antigravity treadmill, and temporary foot orthoses. Radial soundwave therapy has a high level of evidence for treatment of MTSS. We also present recent evidence of the value of vitamin D assessment. Both patients had a successful outcome with minimal downtime. Finally, a suggested treatment regimen for MTSS is presented. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear.

    PubMed

    Choi, Chul-Jun; Choi, Yun-Jin; Lee, Jae-Jeong; Choi, Chong-Hyuk

    2010-12-01

    The purpose of this study was to evaluate the relation between meniscal extrusion on magnetic resonance imaging (MRI) and tearing of the posterior root of the medial meniscus, as well as to understand the relation between meniscal extrusion and chondral lesions. From January 2007 to December 2008, 387 consecutive cases of medial meniscal tears were treated arthroscopically. Of these cases, 248 (64.1%) with MRI were reviewed. Arthroscopic findings were reviewed for the type of tear and medial compartment cartilage lesion. Root tear was defined as a radial tear in the posterior horn of the medial meniscus near the tibial spine (i.e., within 5 mm of the root attachment). An MRI scan of the knee was used to evaluate the presence and extent of meniscal extrusion. Meniscal extrusion of 3 mm or greater was considered pathologic. Arthroscopic findings were compared with respect to the extent of meniscal extrusion. There were 98 male patients and 150 female patients. The mean age was 53.5 years (range, 15 to 81 years). The results showed 127 cases (51.2%) in which the medial meniscus had meniscal extrusion of 3 mm or greater. Posterior root tears were found in 66 (26.6%) of the 248 knees. The mean meniscal extrusion in patients with root tear was 3.8 ± 1.4 mm, whereas the mean extrusion of those who had no root tear was 2.7 ± 1.3 mm. We found an association between pathologic meniscal extrusion and root tear (P < .001). Meniscal extrusion showed a low positive predictive value (39%) and specificity (58%) with regard to the meniscal root tear. Meniscal extrusion was also significantly correlated with severity of chondral lesions (P < .001). Considerable extrusion (≥3 mm) can be associated with tearing of the medial meniscus root and chondral lesion of the medial femoral condyle. Level IV, therapeutic case series. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Relationship between meniscal integrity and risk factors for cartilage degeneration.

    PubMed

    Arno, Sally; Bell, Christopher P; Xia, Ding; Regatte, Ravinder R; Krasnokutsky, Svetlana; Samuels, Jonathan; Oh, Cheongeun; Abramson, Steven; Walker, Peter S

    2016-08-01

    The purpose of this study was to use MRI to determine if a loss of meniscal intra-substance integrity, as determined by T2* relaxation time, is associated with an increase of Kellgren-Lawrence (KL) grade, and if this was correlated with risk factors for cartilage degeneration, namely meniscal extrusion, contact area and anterior-posterior (AP) displacement. Eleven symptomatic knees with a KL 2 to 4 and 11 control knees with a KL 0 to 1 were studied. A 3 Tesla MRI scanner was used to scan all knees at 15° of flexion. With a 222N compression applied, a 3D SPACE sequence was obtained, followed by a spin echo 3D T2* mapping sequence. Next, an internal tibial torque of 5Nm was added and a second 3D SPACE sequence obtained. The MRI scans were post-processed to evaluate meniscal extrusion, contact area, AP displacement and T2* relaxation time. KL grade was correlated with T2* relaxation time for both the anterior medial meniscus (r=0.79, p<0.001) and the posterior lateral meniscus (r=0.55, p=0.009). In addition, T2* relaxation time was found to be correlated with risk factors for cartilage degeneration. The largest increases in meniscal extrusion and decreases in contact area were noted for those with meniscal tears (KL 3 to 4). All patients with KL 3 to 4 indicated evidence of meniscal tears. This suggests that a loss of meniscal integrity, in the form of intra-substance degeneration, is correlated with risk factors for cartilage degeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Contour interpolated radial basis functions with spline boundary correction for fast 3D reconstruction of the human articular cartilage from MR images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javaid, Zarrar; Unsworth, Charles P., E-mail: c.unsworth@auckland.ac.nz; Boocock, Mark G.

    2016-03-15

    Purpose: The aim of this work is to demonstrate a new image processing technique that can provide a “near real-time” 3D reconstruction of the articular cartilage of the human knee from MR images which is user friendly. This would serve as a point-of-care 3D visualization tool which would benefit a consultant radiologist in the visualization of the human articular cartilage. Methods: The authors introduce a novel fusion of an adaptation of the contour method known as “contour interpolation (CI)” with radial basis functions (RBFs) which they describe as “CI-RBFs.” The authors also present a spline boundary correction which further enhancesmore » volume estimation of the method. A subject cohort consisting of 17 right nonpathological knees (ten female and seven male) is assessed to validate the quality of the proposed method. The authors demonstrate how the CI-RBF method dramatically reduces the number of data points required for fitting an implicit surface to the entire cartilage, thus, significantly improving the speed of reconstruction over the comparable RBF reconstruction method of Carr. The authors compare the CI-RBF method volume estimation to a typical commercial package (3D DOCTOR), Carr’s RBF method, and a benchmark manual method for the reconstruction of the femoral, tibial, and patellar cartilages. Results: The authors demonstrate how the CI-RBF method significantly reduces the number of data points (p-value < 0.0001) required for fitting an implicit surface to the cartilage, by 48%, 31%, and 44% for the patellar, tibial, and femoral cartilages, respectively. Thus, significantly improving the speed of reconstruction (p-value < 0.0001) by 39%, 40%, and 44% for the patellar, tibial, and femoral cartilages over the comparable RBF model of Carr providing a near real-time reconstruction of 6.49, 8.88, and 9.43 min for the patellar, tibial, and femoral cartilages, respectively. In addition, it is demonstrated how the CI-RBF method matches the

  20. Is the posterior cruciate ligament necessary for medial pivot knee prostheses with regard to postoperative kinematics?

    PubMed

    Fang, Chao-Hua; Chang, Chia-Ming; Lai, Yu-Shu; Chen, Wen-Chuan; Song, Da-Yong; McClean, Colin J; Kao, Hao-Yuan; Qu, Tie-Bing; Cheng, Cheng-Kung

    2015-11-01

    Excellent clinical and kinematical performance is commonly reported after medial pivot knee arthroplasty. However, there is conflicting evidence as to whether the posterior cruciate ligament should be retained. This study simulated how the posterior cruciate ligament, post-cam mechanism and medial tibial insert morphology may affect postoperative kinematics. After the computational intact knee model was validated according to the motion of a normal knee, four TKA models were built based on a medial pivot prosthesis; PS type, modified PS type, CR type with PCL retained and CR type with PCL sacrificed. Anteroposterior translation and axial rotation of femoral condyles on the tibia during 0°-135° knee flexion were analyzed. There was no significant difference in kinematics between the intact knee model and reported data for a normal knee. In all TKA models, normal motion was almost fully restored, except for the CR type with PCL sacrificed. Sacrificing the PCL produced paradoxical anterior femoral translation and tibial external rotation during full flexion. Either the posterior cruciate ligament or post-cam mechanism is necessary for medial pivot prostheses to regain normal kinematics after total knee arthroplasty. The morphology of medial tibial insert was also shown to produce a small but noticeable effect on knee kinematics. V.

  1. Predictive formula for the length of tibial tunnel in anterior crucitate ligament reconstruction.

    PubMed

    Chernchujit, Bancha; Barthel, Thomas

    2009-12-01

    The anterior cruciate ligament (ACL) reconstruction using bone-patellar tendon bone graft is a common procedure in orthopedics. One challenging problem found is a graft-tunnel mismatch. Previous studies have reported the mathematic formula to predict the tibial angle length and angle to avoid graft-tunnel mismatch but these formulas have shown limited predictability. To propose a predictive formula for the length of tibial tunnel and to examine its predictability. Thirty six patients (26 males, 14 females) with ACL injury were included in this study. The preoperativemedial proximal tibial angle was measured. Intraoperatively, the tibial tunnel length and tibial entry point were measured. The postoperative coronal and saggital angle of tibial tunnel were measured from knee radiograph. The data were analysed by using trigonometry correlation and formulate the predictive formula of tibial tunnel length. We found that tibial tunnel length (T) has trigonometric correlation between the location of tibial tunnel entry point (w), coronal angle of tibial tunnel (b), saggital angle of tibial tunnel (a) and the medial proximal tibial slope (c) by using this formula T = Wcos(c)tan(b)/sin(a) This proposed predictive formula can well predict the length of the tibial tunnel at preoperative period to avoid graft-tunnel mismatch.

  2. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report

    PubMed Central

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Introduction: Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. Case Report: A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. Conclusion: A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients. PMID:29181350

  3. The associations between parity, other reproductive factors and cartilage in women aged 50-80 years.

    PubMed

    Wei, S; Venn, A; Ding, C; Martel-Pelletier, J; Pelletier, J-P; Abram, F; Cicuttini, F; Jones, G

    2011-11-01

    Sex hormones and reproductive factors may be important for osteoarthritis (OA). The aim of this study was to describe the associations of parity, use of hormone replacement therapy (HRT) and oral contraceptives (OCs) with cartilage volume, cartilage defects and radiographic OA in a population-based sample of older women. Cross-sectional study of 489 women aged 50-80 years. Parity, use of HRT and OC was assessed by questionnaire; knee cartilage volume and defects by magnetic resonance imaging and knee joint space narrowing (JSN) and osteophytes by X-ray. Parity was associated with a deficit in total knee cartilage volume [adjusted β=-0.69 ml, 95% confidence interval (CI) -1.34, -0.04]. Increasing parity was associated with decreasing cartilage volume in both the tibial compartment and total knee (both P trend <0.05). Parity was also associated with greater cartilage defects in the patella compartment [adjusted odds ratio (OR)=2.87, 95% CI=1.39, 5.93] but not other sites. There was a consistent but non-significant increase in knee JSN (OR=2.78, 95% CI=0.75, 10.31) and osteophytes (OR=1.69, 95% CI=0.59, 4.82) for parous women. Use of HRT and/or OC was not associated with cartilage volume, cartilage defects or radiographic change. Parity (but not use of HRT or OC) is independently associated with lower cartilage volume primarily in the tibial compartment and higher cartilage defects in the patella compartment in this population-based sample of older women. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Landing strategies focusing on the control of tibial rotation in the initial contact period of one-leg forward hops.

    PubMed

    Chen, W-L; Chen, Y-T; Huang, S-Y; Yang, C-Y; Wu, C-D; Chang, C-W

    2017-08-01

    Anterior cruciate ligament (ACL) reconstruction (ACLR) surgeries successfully restore anterior tibial translation but not tibial rotation. This study aimed to explore landing strategies focusing on the control of tibial rotation at landing when the ACL is most vulnerable. Three groups of male subjects (50 ACLRs, 26 basketball players, and 31 controls) participated in one-leg forward hop tests for determining the tibial rotatory landing strategies adopted during the initial landing phase. The differences in knee kinematics and muscle activities between internal and external tibial rotatory (ITR, ETR) landing strategies were examined. A higher proportion of basketball players (34.6%) were found to adopt ITR strategies (controls: 6.5%), exhibiting significantly greater hopping distance and knee strength. After adjusting for hopping distance, subjects adopting ITR strategies were found to hop faster with straighter knees at foot contact and with greater ITR and less knee adduction angular displacement during the initial landing phase. However, significantly greater angular displacement in knee flexion, greater medial hamstring activities, and greater co-contraction index of hamstrings and medial knee muscles were also found during initial landing. Our results support the importance of the recruitments of medial hamstrings or the local co-contraction in assisting the rotatory control of the knee during initial landing for avoiding ACL injuries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Is a synthetic augmentation in medial open wedge high tibial osteotomies superior to no augmentation in terms of bone-healing?

    PubMed

    Ferner, Felix; Dickschas, Joerg; Ostertag, Helmut; Poske, Ulrich; Schwitulla, Judith; Harrer, Joerg; Strecker, Wolf

    2016-01-01

    Medial open-wedge high tibial osteotomy (MOWHTO) is an established method to treat unicompartimental osteoarthritis of the knee joint. However, augmentation of the created tibial gap after osteotomy is controversially discussed. We performed a prospective investigation of 49 consecutive cases of MOWHTO at our department. Patients were divided into two groups: group A consisted of 19 patients while group B consisted of 30 patients. In group A, the augmentation of the opening gap after osteotomy was filled with a synthetic bone graft, whereas group B received no augmentation. As an indicator for bone healing we investigated the non-union rate in our study population and compared the non-union-rate between the two groups. The non-union rate was 28% in group A (five of 19 patients had to undergo revision) which received synthetic augmentation, while it was 3.3% in group B (one of 30 patients had to undergo revision) which received no augmentation. The difference between the groups was statistically significant (p-value 0.027). With regard to bone healing after MOWHTO, synthetic augmentation was not superior to no augmentation in terms of non-union rates after surgery. In fact, we registered a significantly higher rate of non-union after augmentation with synthetic bone graft. III. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Medial-to-lateral Ratio of Tibiofemoral Subchondral Bone Area is Adapted to Alignment and Mechanical Load

    PubMed Central

    Eckstein, Felix; Hudelmaier, Martin; Cahue, September; Marshall, Meredith; Sharma, Leena

    2010-01-01

    Malalignment is known to impact the medial-to-lateral load distribution in the tibiofemoral joint. In this longitudinal study, we test the hypothesis that subchondral bone surface areas functionally adapt to the load distribution in malaligned knees. Alignment (hip-knee-ankle angle) was measured from full limb films in 174 participants with knee osteoarthritis. Coronal MR images were acquired at baseline and 26.6±5.4 months later. The subchondral bone surface area of the weight-bearing tibiofemoral cartilages was segmented, with readers blinded to the order of acquisition. The size of the subchondral bone surface areas was computed after triangulation using proprietary software. The hip-knee-ankle angle showed a significant correlation with the tibial (r2=0.25, p<0.0001) and femoral (r2=0.07, p<0.001) ratio of medial-to-lateral subchondral bone surface area. In the tibia, the ratio was significantly different between varus (1.28:1), neutral (1.18:1) and valgus (1.13:1) knees (ANOVA; p<0.00001). Similar observations were made in the weight-bearing femur (0.94:1 in neutral, 0.97.1 in varus, 0.91:1 in valgus knees; ANOVA p=0.018). The annualized longitudinal increase in subchondral bone surface area was significant (p<0.05) in the medial tibia (+0.13%), medial femur (+0.26%) and lateral tibia (+0.19%). In the medial femur, the change between baseline and follow-up was significantly different (ANOVA; p=0.020) between neutral, varus and valgus knees, the increase in surface area being significantly greater (p=0.019) in varus than in neutral knees. Tibiofemoral subchondral bone surface areas are shown to be functionally adapted to the medial-to-lateral load distribution. The longitudinal findings indicate that this adaptational process may continue to take place at advanced age. PMID:19148562

  7. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes.

    PubMed

    Golditz, T; Steib, S; Pfeifer, K; Uder, M; Gelse, K; Janka, R; Hennig, F F; Welsch, G H

    2014-10-01

    The aim of this study was to investigate, using T2-mapping, the impact of functional instability in the ankle joint on the development of early cartilage damage. Ethical approval for this study was provided. Thirty-six volunteers from the university sports program were divided into three groups according to their ankle status: functional ankle instability (FAI, initial ankle sprain with residual instability); ankle sprain Copers (initial sprain, without residual instability); and controls (without a history of ankle injuries). Quantitative T2-mapping magnetic resonance imaging (MRI) was performed at the beginning ('early-unloading') and at the end ('late-unloading') of the MR-examination, with a mean time span of 27 min. Zonal region-of-interest T2-mapping was performed on the talar and tibial cartilage in the deep and superficial layers. The inter-group comparisons of T2-values were analyzed using paired and unpaired t-tests. Statistical analysis of variance was performed. T2-values showed significant to highly significant differences in 11 of 12 regions throughout the groups. In early-unloading, the FAI-group showed a significant increase in quantitative T2-values in the medial, talar regions (P = 0.008, P = 0.027), whereas the Coper-group showed this enhancement in the central-lateral regions (P = 0.05). Especially the comparison of early-loading to late-unloading values revealed significantly decreasing T2-values over time laterally and significantly increasing T2-values medially in the FAI-group, which were not present in the Coper- or control-group. Functional instability causes unbalanced loading in the ankle joint, resulting in cartilage alterations as assessed by quantitative T2-mapping. This approach can visualize and localize early cartilage abnormalities, possibly enabling specific treatment options to prevent osteoarthritis in young athletes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Articular cartilage changes in chondromalacia patellae.

    PubMed

    Bentley, G

    1985-11-01

    Full thickness samples of articular cartilage were removed from areas of chondromalacia on the medial and "odd" facets of the patellae of 21 adults and examined by histology, autoradiography and electron microscopy. Surface fibrillation, loss of superficial matrix staining and reduced 35SO4 labelling was seen, with little change in the deep zone. Ten cases showed "fibrous metaplasia" of the superficial cartilage with definite evidence of cell division and apparent smoothing of the surface. Scattered chondrocyte replication appeared to occur in the surrounding intact cartilage. The findings suggest that early lesions in chondromalacia patellae may heal either by cartilage or fibrous metaplasia and that this may account for the resolution of clinical symptoms.

  9. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal.

    PubMed

    Markolf, Keith L; Jackson, Steven R; McAllister, David R

    2012-02-01

    Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.

  11. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

    PubMed Central

    2014-01-01

    Objective This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI). Methods Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected. Results The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements. Conclusion Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry. PMID:25142267

  13. Menopause is associated with articular cartilage degeneration: a clinical study of knee joint in 860 women.

    PubMed

    Lou, Chao; Xiang, Guangheng; Weng, Qiaoyou; Chen, Zhaojie; Chen, Deheng; Wang, Qingqing; Zhang, Di; Zhou, Bin; He, Dengwei; Chen, Hongliang

    2016-11-01

    The purpose of this study was to investigate the association between menopause and severity of knee joint cartilage degeneration using a magnetic resonance imaging-based six-level grading system, with six cartilage surfaces, the medial and lateral femoral condyle, the femoral trochlea, the medial and lateral tibia plateau, and the patella. The study cohort comprised 860 healthy women (age 36-83 y), and 5,160 cartilage surfaces were analyzed. Age, weight, height, age at natural menopause, and years since menopause (YSM) were obtained. Cartilage degeneration was assessed using a magnetic resonance imaging-based six-level grading system. After removing the age, height, and weight effects, postmenopausal women had more severe cartilage degeneration than pre- and perimenopausal women (P < 0.001). A positive trend was observed between YSM and severity of cartilage degeneration (P < 0.05). Postmenopausal women were divided into seven subgroups by every five YSM. When YSM was less than 25 years, the analysis of covariance indicated a significant difference in medial tibia plateau, medial femoral condyle, trochlea, patella, and total surfaces (P < 0.05 or 0.01) between every two groups. When YSM was more than 25 years, the significant difference, however, disappeared in these four surfaces (P > 0.05). No significant difference was observed in lateral tibia plateau and lateral femoral condyle in postmenopausal women. Menopause is associated with cartilage degeneration of knee joint. After menopause, cartilage showed progressive severe degeneration that occurred in the first 25 YSM, suggesting estrogen deficiency might be a risk factor of cartilage degeneration of the knee joint. Further studies are needed to investigate whether age or menopause plays a more important role in the progression of cartilage degeneration in the knee joint.

  14. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    PubMed

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P < .05). Increasing the posterior slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P < .05) but had no significant effect on the dial test at 30°, dial test at 90°, or RPS. Conversely, reversing the slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P < .05) during posterior drawer and an 8.6-mm increase in lateral compartment translation and 9.0-mm increase in medial compartment translation during RPS (vs deficient state; P < .05). Increasing posterior tibial slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the

  15. Comparison between Closing-Wedge and Opening-Wedge High Tibial Osteotomy in Patients with Medial Knee Osteoarthritis: A Systematic Review and Meta-analysis.

    PubMed

    Sun, Hao; Zhou, Lin; Li, Fengsheng; Duan, Jun

    2017-02-01

    Young active patients with medial knee osteoarthritis (OA) combined with varus leg alignment can be treated with high tibial osteotomy (HTO) to stop the progression of OA and avoid or postpone total knee arthroplasty (TKA). Closing-wedge osteotomy (CWO) and opening-wedge osteotomy (OWO) are the most commonly used osteotomy techniques. The purpose of this study was to compare the clinical and radiologic outcomes and complications between OWO and CWO. We retrospectively evaluated 23 studies including 17 clinical trials from published databases from their inception to May 2015. We evaluated the clinical outcomes including operation time, visual analog scale (VAS), maximal flexion, and hospital for special surgery knee (HSS) score. The radiologic outcomes included patellar height measured by posterior tibial slope angle, hip-knee-ankle (HKA) angle, femorotibial (FT) axis, and limb length. Complications recorded included the incidence of deep vein thrombosis (DVT), common peroneal nerve injury, opposite cortical fracture, etc. There were no differences in most of the clinical outcomes except the operation time. OWO increased the posterior slope angle and limb length, decreased the patellar height, and provided higher accuracy of correction. CWO led to a higher incidence of opposite cortical fracture. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors.

    PubMed

    Plisky, Melody S; Rauh, Mitchell J; Heiderscheit, Bryan; Underwood, Frank B; Tank, Robert T

    2007-02-01

    Prospective cohort. To determine (1) the cumulative seasonal incidence and overall injury rate of medial tibial stress syndrome (MTSS) and (2) risk factors for MTSS with a primary focus on the relationship between navicular drop values and MTSS in high school cross-country runners. MTSS is a common injury among runners. However, few studies have reported the injury rate and risk factors for MTSS among adolescent runners. Data collected included measurement of bilateral navicular drop and foot length, and a baseline questionnaire regarding the runner's height, body mass, previous running injury, running experience, and orthotic or tape use. Runners were followed during the season to determine athletic exposures (AEs) and occurrence of MTSS. The overall injury rate for MTSS was 2.8/1000 AEs. Although not statistically different, girls had a higher rate (4.3/1000 AEs) than boys (1.7/1000 AEs) (P = .11). Logistic regression modeling indicated that only gender and body mass index (BMI) were significantly associated with the occurrence of MTSS. However, when controlled for orthotic use, only BMI was associated with risk of MTSS. No significant associations were found between MTSS and navicular drop or foot length. Our findings suggest that navicular drop may not be an appropriate measure to identify runners who may develop MTSS during a cross-country season; thus, additional studies are needed to identify appropriate preseason screening tools.

  17. Treatment of deep hyalin cartilage defects with autologous perichondrial grafts.

    PubMed

    Bruns, J; Steinhagen, J

    2003-07-01

    Perichondrial transplantation was performed in 29 patients suffering from a deep chondral lesion with different etiologies. Only those patients with a cartilage lesion in the knee joint were included. Patients were initially and postoperatively examined using the Lysholm- and HSS-Score. In most of the patients (20/29) trauma and the recurrence of osteochondrosis dissecans (6/29) were the cause of the cartilage lesion. Most often the medial femoral condyle (19/29) and, secondly, the lateral femoral condyle (5/29) were involved. In six patients additional therapeutic measures (ACL-plasty, n = 2; high tibial osteotomy because of varus mal-alignment, n = 4) had to be adopted. Follow-up examination was possible in 26/29 patients after a minimum postoperative period of 12 months. All patients exhibited a distinct and significant increase in both the Lysholm and the HSS-score. A follow-up after a minimum of 24 months was possible in 13/29 patients. Even these patients exhibited a distinct and significant improvement. Multiple follow-up examinations in 9/29 patients demonstrated maintenance of the first postoperative results obtained after one postoperative year for a maximum of 49 months in most of the patients. Only in one female patient, implantation of a semi-constrained total knee replacement was necessary because of osteoarthrosis resulting from crystal arthropathy (chondrocalcinosis). It was possible to obtain biopsies from three patients at the time osteosynthetic material was removed. In all cases hyaline-like cartilage was histologically observed. In the treatment of selected patients suffering from a circumscript cartilaginous lesion resulting from trauma or the recurrence of osteochondritis dissecans with a concomitant cartilage lesion but without major signs of osteoarthritis, perichondrial grafting can achieve acceptable clinical results, after a short follow-up period. In order to achieve satisfying results a good selection of patients and additional

  18. Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial.

    PubMed

    van der Woude, J A D; Wiegant, K; van Heerwaarden, R J; Spruijt, S; van Roermund, P M; Custers, R J H; Mastbergen, S C; Lafeber, F P J G

    2017-03-01

    Both, knee joint distraction as a relatively new approach and valgus-producing opening-wedge high tibial osteotomy (HTO), are knee-preserving treatments for knee osteoarthritis (OA). The efficacy of knee joint distraction compared to HTO has not been reported. Sixty-nine patients with medial knee joint OA with a varus axis deviation of <10° were randomized to either knee joint distraction (n = 23) or HTO (n = 46). Questionnaires were assessed at baseline and 3, 6, and 12 months. Joint space width (JSW) as a surrogate measure for cartilage thickness was determined on standardized semi-flexed radiographs at baseline and 1-year follow-up. All patient-reported outcome measures (PROMS) improved significantly over 1 year (at 1 year p < 0.02) in both groups. At 1 year, the HTO group showed slightly greater improvement in 4 of the 16 PROMS (p < 0.05). The minimum medial compartment JSW increased 0.8 ± 1.0 mm in the knee joint distraction group (p = 0.001) and 0.4 ± 0.5 mm in the HTO group (p < 0.001), with minimum JSW improvement in favour of knee joint distraction (p = 0.05). The lateral compartment showed a small increase in the knee joint distraction group and a small decrease in the HTO group, leading to a significant increase in mean JSW for knee joint distraction only (p < 0.02). Cartilaginous repair activity, as indicated by JSW, and clinical outcome improvement occurred with both, knee joint distraction and HTO. These findings suggest that knee joint distraction may be an alternative therapy for medial compartmental OA with a limited mechanical leg malalignment. Randomized controlled trial, Level I.

  19. Total knee arthroplasty after failed high tibial osteotomy: a systematic review of open versus closed wedge osteotomy.

    PubMed

    Han, Jae Hwi; Yang, Jae-Hyuk; Bhandare, Nikhl N; Suh, Dong Won; Lee, Jong Seong; Chang, Yong Suk; Yeom, Ji Woong; Nha, Kyung Wook

    2016-08-01

    Medial opening wedge high tibial osteotomy (HTO) has become increasingly popular as an alternative to lateral closing wedge osteotomy for the treatment of medial compartment knee osteoarthritis with varus deformity. The present systematic review was conducted to provide an objective analysis of total knee arthroplasty (TKA) outcomes following previous knee osteotomy (medial opening wedge vs. lateral closing wedge). A literature search of online databases (MEDLINE, EMBASE, Cochrane Library database) was made, in addition to manual search of major orthopaedic journals. The methodological quality of each of the studies was assessed on the Newcastle-Ottawa Scale and Effective Practice and Organization of Care. A total of ten studies were included in the review. There were eight studies with Level IV and two studies with Level III evidence. Eight studies reported clinical and radiologic scores. Comparative studies between TKA following medial opening and lateral closing wedge HTO did not demonstrate statistically significant clinical and radiologic differences. The revision rates were similar. However, more technical issues during TKA surgery after lateral closing wedge HTO were mentioned than the medial open wedge group. The quadriceps snip, tibial tubercle osteotomy, and lateral soft tissue release were more frequently needed in the lateral closing wedge HTO group. In addition, because of loss of proximal tibia bone geometry in the lateral closing wedge HTO group, concerns such as tibia stem impingement in the lateral tibial cortex was noted. The present systematic review suggests that TKA after medial opening and lateral closing wedge HTO showed similar performance. Clinical and radiologic outcome including revision rates did not statistically differ from included studies. However, there are more surgical technical concerns in TKA conversion from lateral closing wedge HTO than from the medial opening wedge HTO group. IV.

  20. Relationship between patellar mobility and patellofemoral joint cartilage degeneration after anterior cruciate ligament reconstruction.

    PubMed

    Ota, Susumu; Kurokouchi, Kazutoshi; Takahashi, Shigeo; Yoda, Masaki; Yamamoto, Ryuichiro; Sakai, Tadahiro

    2017-11-01

    Patellofemoral cartilage degeneration is a potential complication of anterior cruciate ligament reconstruction (ACLR) surgery. Hypomobility of the patella in the coronal plane is often observed after ACLR. Few studies, however, have examined the relationship between cartilage degeneration in the patellofemoral joint and mobility after ACLR. The present study investigated 1) the coronal mobility of the patella after ACLR, 2) the relationship between patellar mobility and cartilage degeneration of the patellofemoral joint, and 3) the relationship between patellar mobility and knee joint function after ACLR. Forty patients who underwent medial hamstring-based ACLR participated in the study. Lateral and medial patellar displacements were assessed with a modified patellofemoral arthrometer, and the absolute values of the displacements were normalized to patient height. The International Cartilage Repair Society (ICRS) cartilage injury classification of the patellar and femoral (trochlear) surfaces, and the Lysholm Knee Scoring Scale were used to evaluate knee function. Lateral and medial patellar displacements were reduced compared with the non-operated knee at the second-look arthroscopy and bone staple extraction operation (second operation; 24.4 ± 7.9 months after ACLR, P<0.01). The ICRS grades of the patellofemoral joint (patella and trochlea) were significantly worse than those pre-ACLR. Neither lateral nor medial patellar mobility, however, were significantly correlated with the ICRS grade or the Lysholm score. Although patellar mobility at approximately 2 years after ACLR was decreased compared to the non-operated knee, small displacement of the patella was not related to cartilage degeneration or knee joint function at the time of the second operation.

  1. Baseline Vitamin D Status is Predictive of Longitudinal Change in Tibial BMD in Knee Osteoarthritis (OA)

    USDA-ARS?s Scientific Manuscript database

    With its lack of effective treatment and high prevalence, the public health impact of OA is substantial. Peri-articular bone in OA can be evaluated with the medial:lateral tibial BMD ratio (M:L BMD) obtained from dual x-ray absorptiometry (DXA). Higher M:L BMD is associated with medial OA features...

  2. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study.

    PubMed

    Balamoody, Sharon; Williams, Tomos G; Wolstenholme, Chris; Waterton, John C; Bowes, Michael; Hodgson, Richard; Zhao, Sha; Scott, Marietta; Taylor, Chris J; Hutchinson, Charles E

    2013-04-01

    The transverse relaxation time (T2) in MR imaging has been identified as a potential biomarker of hyaline cartilage pathology. This study investigates whether MR assessments of T2 are comparable between 3-T scanners from three different vendors. Twelve subjects with symptoms of knee osteoarthritis and one or more risk factors had their knee scanned on each of the three vendors' scanners located in three sites in the U.K. MR data acquisition was based on the United States National Institutes of Health Osteoarthritis Initiative protocol. Measures of cartilage T2 and R2 (inverse of T2) were computed for precision error assessment. Intrascanner reproducibility was also assessed with a phantom (all three scanners) and a cohort of 5 subjects (one scanner only). Whole-organ magnetic resonance (WORM) semiquantitative cartilage scores ranged from minimal to advanced degradation. Intrascanner R2 root-mean-square coefficients of variation (RMSCOV) were low, within the range 2.6 to 6.3% for femoral and tibial regions. For one scanner pair, mean T2 differences ranged from -1.2 to 2.8 ms, with no significant difference observed for the medial tibia and patella regions (p < 0.05). T2 values from the third scanner were systematically lower, producing interscanner mean T2 differences within the range 5.4 to 10.0 ms. Significant interscanner cartilage T2 differences were found and should be accounted for before data from scanners of different vendors are compared.

  3. Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness

    PubMed Central

    Williams, Ashley; Winalski, Carl S.; Chu, Constance R.

    2018-01-01

    Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48–0.72, p ≤ 0.05). Both mean T2 and texture differed (p < 0.05) between ALCR subjects and uninjured controls. Clinical Significance These results show that short-term longitudinal evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. PMID:27381512

  4. Effect of Posterior Horn Medial Meniscus Root Tear on In Vivo Knee Kinematics.

    PubMed

    Marsh, Chelsea A; Martin, Daniel E; Harner, Christopher D; Tashman, Scott

    2014-07-01

    Medial meniscus root tear (MMRT) is a recently recognized yet frequently missed meniscal tear pattern that biomechanically creates an environment approaching meniscal deficiency. The purpose of this study was to assess the effect of MMRT on tibiofemoral kinematics and arthrokinematics during daily activities by comparing the injured knees of subjects with isolated MMRT to their uninjured contralateral knees. The hypothesis was that the injured knee will demonstrate significantly more lateral tibial translation and adduction than the uninjured knee, and that the medial compartment will exhibit significantly different arthrokinematics than the lateral compartment in the affected limb. Cross-sectional study; Level of evidence, 3. Seven subjects with isolated MMRT were recruited and volumetric, density-based 3-dimensional models of their distal femurs and proximal tibia were created from computed tomography scans. High-speed, biplane radiographs were obtained of both their affected and unaffected knees. Moving 3-dimensional models of tibiofemoral kinematics were calculated using model-based tracking to assess overall kinematic variables and specific measures of tibiofemoral joint contact. The affected knees of the subjects were then compared to their unaffected contralateral knees. Affected knees demonstrated significantly more lateral tibial translation than the uninjured contralateral limb in all dynamic activities. Additionally, the medial compartment displayed greater amounts of mobility than the lateral compartment in the injured limbs. This study suggests that MMRT causes significant changes in in vivo knee kinematics and arthrokinematics and that the magnitude of these changes is influenced by dynamic task difficulty. Medial meniscus root tears lead to significant changes in joint arthrokinematics, with increased lateral tibial translation and greater medial compartment excursion. With complete root tears, essentially 100% of circumferential fibers are lost

  5. The presence of lysylpyridinoline in the hypertrophic cartilage of newly hatched chicks

    NASA Technical Reports Server (NTRS)

    Orth, M. W.; Martinez, D. A.; Cook, M. E.; Vailas, A. C.

    1993-01-01

    The presence of lysylpyridinoline (LP) as a nonreducible cross-link in appreciable quantities has primarily been limited to the mineralized tissues, bone and dentin. However, the results reported here show that LP is not only present in the hypertrophic cartilage of the tibiotarsus isolated from newly hatched broiler chicks, but it is approx. 4-fold as concentrated as hydroxylysylpyridinoline (HP). Bone and articular cartilage surrounding the hypertrophic cartilage do not contain measurable quantities of LP. Purified LP has a fluorescent scan similar to purified HP and literature values, confirming that we indeed were measuring LP. Also, the cartilage lesion produced by immature chondrocytes from birds with tibial dyschondroplasia had LP but the HP:LP ratio was > 1. Thus, the low HP:LP ratio could be a marker for hypertrophic cartilage in avians.

  6. A comparative analysis of 7.0-Tesla magnetic resonance imaging and histology measurements of knee articular cartilage in a canine posterolateral knee injury model: a preliminary analysis.

    PubMed

    Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F

    2009-11-01

    There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the

  7. The medial tibial stress syndrome score: a new patient-reported outcome measure.

    PubMed

    Winters, Marinus; Moen, Maarten H; Zimmermann, Wessel O; Lindeboom, Robert; Weir, Adam; Backx, Frank Jg; Bakker, Eric Wp

    2016-10-01

    At present, there is no validated patient-reported outcome measure (PROM) for patients with medial tibial stress syndrome (MTSS). Our aim was to select and validate previously generated items and create a valid, reliable and responsive PROM for patients with MTSS: the MTSS score. A prospective cohort study was performed in multiple sports medicine, physiotherapy and military facilities in the Netherlands. Participants with MTSS filled out the previously generated items for the MTSS score on 3 occasions. From previously generated items, we selected the best items. We assessed the MTSS score for its validity, reliability and responsiveness. The MTSS score was filled out by 133 participants with MTSS. Factor analysis showed the MTSS score to exhibit a single-factor structure with acceptable internal consistency (α=0.58) and good test-retest reliability (intraclass correlation coefficient=0.81). The MTSS score ranges from 0 to 10 points. The smallest detectable change in our sample was 0.69 at the group level and 4.80 at the individual level. Construct validity analysis showed significant moderate-to-large correlations (r=0.34-0.52, p<0.01). Responsiveness of the MTSS score was confirmed by a significant relation with the global perceived effect scale (β=-0.288, R(2)=0.21, p<0.001). The MTSS score is a valid, reliable and responsive PROM to measure the severity of MTSS. It is designed to evaluate treatment outcomes in clinical studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping

  9. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee

    PubMed Central

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees. PMID:28367081

  10. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    PubMed

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees.

  11. The effects of orally administered diacerein on cartilage and subchondral bone in an ovine model of osteoarthritis.

    PubMed

    Hwa, S Y; Burkhardt, D; Little, C; Ghosh, P

    2001-04-01

    An ovine model of osteoarthritis (OA) induced by bilateral lateral meniscectomy (BLM) was used to evaluate in vivo effects of the slow acting antiarthritic drug diacerein (DIA) on degenerative changes in cartilage and subchondral bone of the operated joints. Twenty of 30 adult age matched Merino wethers were subjected to BLM in the knee joints and the remainder served as non-operated controls (NOC). Half of the BLM group (n = 10) were given DIA (25 mg/kg orally) daily for 3 mo, then 50 mg/kg daily for a further 6 mo. The remainder of the meniscectomized (MEN) group served as OA controls. Five DIA, 5 MEN, and 5 NOC animals were sacrificed at 3 mo and the remainder at 9 mo postsurgery. One knee joint of each animal was used for bone mineral density (BMD) studies. Osteochondral slabs from the lateral femoral condyle and lateral tibial plateau were cut from the contralateral joint and were processed for histological and histomorphometric examination to assess the cartilage and subchondral bone changes. No significant difference was observed in the modified Mankin scores for cartilage from the DIA and MEN groups at 3 or 9 mo. However, in animals treated with DIA, the thickness of cartilage (p = 0.05) and subchondral bone (p = 0.05) in the lesion (middle) zone of the lateral tibial plateau were decreased relative to the corresponding zone of the MEN group at 3 mo (p = 0.05). At 9 mo subchondral bone thickness in this zone remained the same as NOC but BMD, which included both subchondral and trabecular bone, was significantly increased relative to the NOC group (p = 0.01). In contrast, the subchondral bone thickness of the outer zone of lateral tibial plateau and lateral femoral condyle of both MEN and DIA groups increased after 9 mo, while BMD remained the same as in the NOC. DIA treatment of meniscectomized animals mediated selective responses of cartilage and subchondral bone to the altered mechanical stresses induced across the joints by this procedure. While

  12. An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2017-04-01

    Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

  13. The percutaneous pie-crusting medial release during arthroscopic procedures of the medial meniscus does neither affect valgus laxity nor clinical outcome.

    PubMed

    Jeon, Sang-Woo; Jung, Min; Chun, Yong-Min; Lee, Su-Keon; Jung, Woo Seok; Choi, Chong Hyuk; Kim, Sung-Jae; Kim, Sung-Hwan

    2017-12-28

    To analyze the effect of percutaneous pie-crusting medial release on valgus laxity before and after surgery and on clinical outcomes. Eight-hundred fourteen consecutive patients who underwent an arthroscopic procedure for the medial compartment of the knee were evaluated retrospectively. Sex, age, type of operation (meniscectomy, meniscal repair, and posterior root repair), type of accompanying surgery (none, cartilage procedure, ligament procedure and osteotomy) were documented. Sixty-four patients who underwent percutaneous pie-crusting medial release (release group) and 64 who did not undergo medial release (non-release group) were matched using the propensity score method. Each patient was evaluated for the following variables: degree of valgus laxity on stress radiographs, Lysholm knee score, visual analog scale score, and International Knee Documentation Committee knee score and grade. At the 24-month follow-up, no significant increase in side-to-side differences in the valgus gap was observed in comparison to the preoperative value in the release group [preoperative, - 0.1 ± 1.3 mm; follow-up, - 0.1 ± 1.4 mm; (n.s.)]. The follow-up Lysholm score, visual analog scale score and International Knee Documentation Committee knee score and grade were similar between the two groups. Percutaneous pie-crusting medial release is an additional procedure that can be performed during arthroscopic surgery for patients with a narrow medial joint space of the knee. Percutaneous pie-crusting medial release reduces iatrogenic injury to the cartilage and does not produce any residual valgus laxity of the knee. IV.

  14. Reliability of magnetic resonance imaging in evaluating meniscal and cartilage injuries in anterior cruciate ligament-deficient knees.

    PubMed

    Wong, Kenneth Pak Leung; Han, Audrey XinYun; Wong, Jeannie Leh Ying; Lee, Dave Yee Han

    2017-02-01

    The accuracy of magnetic resonance (MR) imaging in assessing meniscal and cartilage injuries in anterior cruciate ligament (ACL)-deficient knees as compared to arthroscopy was evaluated in the present study. The results of all preoperative MR imaging performed within 3 months prior to the ACL reconstruction were compared against intraoperative arthroscopic findings. A total of 206 patients were identified. The location and type of meniscal injuries as well as the location and grade of the cartilage injuries were studied. The negative predictive value, positive predictive value, sensitivity, specificity and accuracy of MR imaging for these 206 cases were calculated and analysed. In patients with an ACL injury, the highest incidence of concomitant injury was that of medial meniscus tears, 124 (60.2 %), followed by lateral meniscus tears, 105 (51.0 %), and cartilage injuries, 66 (32.0 %). Twenty-three (11.2 %) patients sustained injuries to all of the previously named structures. MR imaging was most accurate in detecting medial meniscus tears (85.9 %). MR imaging for medial meniscus tears also had the highest sensitivity (88.0 %) and positive predictive value (88.7 %), while MR imaging for cartilage injuries had the largest specificity (84.1 %) and negative predictive value (87.1 %). It was least accurate in evaluating lateral meniscus tears (74.3 %). The diagnostic accuracy of medial meniscus imaging is significantly influenced by age and the presence of lateral meniscus tears, while the duration between MR imaging and surgery has greater impact on the likelihood of lateral meniscus and cartilage injuries actually being present during surgery. The majority of meniscus tears missed by MR imaging affected the posterior horn and were complex in nature. Cartilage injuries affecting the medial femoral condyle or medial patella facet were also often missed by MR imaging. MR imaging remains a reliable tool for assessing meniscus tears and cartilage defects

  15. Acute changes in knee cartilage transverse relaxation time after running and bicycling.

    PubMed

    Gatti, Anthony A; Noseworthy, Michael D; Stratford, Paul W; Brenneman, Elora C; Totterman, Saara; Tamez-Peña, José; Maly, Monica R

    2017-02-28

    To compare the acute effect of running and bicycling of an equivalent cumulative load on knee cartilage composition and morphometry in healthy young men. A secondary analysis investigated the relationship between activity history and the change in cartilage composition after activity. In fifteen men (25.8±4.2 years), the vertical ground reaction force was measured to determine the cumulative load exposure of a 15-min run. The vertical pedal reaction force was recorded during bicycling to define the bicycling duration of an equivalent cumulative load. On separate visits that were spaced on average 17 days apart, participants completed these running and bicycling bouts. Mean cartilage transverse relaxation times (T 2 ) were determined for cartilage on the tibia and weight-bearing femur before and after each exercise. T 2 was measured using a multi-echo spin-echo sequence and 3T MRI. Cartilage of the weight bearing femur and tibia was segmented using a highly-automated segmentation algorithm. Activity history was captured using the International Physical Activity Questionnaire. The response of T 2 to bicycling and running was different (p=0.019; mean T 2 : pre-running=34.27ms, pre-bicycling=32.93ms, post-running=31.82ms, post-bicycling=32.36ms). While bicycling produced no change (-1.7%, p=0.300), running shortened T 2 (-7.1%, p<0.001). Greater activity history predicted smaller changes in tibial, but not femoral, T 2 . Changes in knee cartilage vary based on activity type, independent of total load exposure, in healthy young men. Smaller changes in T 2 were observed after bicycling relative to running. Activity history was inversely related to tibial T 2 , suggesting cartilage conditioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The treatment of medial tibial stress syndrome in athletes; a randomized clinical trial

    PubMed Central

    2012-01-01

    Background The only three randomized trials on the treatment of MTSS were all performed in military populations. The treatment options investigated in this study were not previously examined in athletes. This study investigated if functional outcome of three common treatment options for medial tibial stress syndrome (MTSS) in athletes in a non-military setting was the same. Methods The study design was randomized and multi-centered. Physical therapists and sports physicians referred athletes with MTSS to the hospital for inclusion. 81 athletes were assessed for eligibility of which 74 athletes were included and randomized to three treatment groups. Group one performed a graded running program, group two performed a graded running program with additional stretching and strengthening exercises for the calves, while group three performed a graded running program with an additional sports compression stocking. The primary outcome measure was: time to complete a running program (able to run 18 minutes with high intensity) and secondary outcome was: general satisfaction with treatment. Results 74 Athletes were randomized and included of which 14 did not complete the study due a lack of progress (18.9%). The data was analyzed on an intention-to-treat basis. Time to complete a running program and general satisfaction with the treatment were not significantly different between the three treatment groups. Conclusion This was the first randomized trial on the treatment of MTSS in athletes in a non-military setting. No differences were found between the groups for the time to complete a running program. Trial registration CCMO; NL23471.098.08 PMID:22464032

  17. Evaluation of knee cartilage thickness: A comparison between ultrasound and magnetic resonance imaging methods.

    PubMed

    Schmitz, Randy J; Wang, Hsin-Min; Polprasert, Daniel R; Kraft, Robert A; Pietrosimone, Brian G

    2017-03-01

    Establishing clinically accessible measures of cartilage health is critical for assessing effectiveness of protocols to reduce risk of osteoarthritis (OA) development and progression. Cartilage thickness is one important measure in describing both OA development and progression. The objective was to determine the relationship between ultrasound and MRI measures of cartilage thickness in the medial femoral condyle. Mean cartilage thicknesses of the left medial femoral cartilage were measured via T1 weighted MRI and ultrasound imaging from transverse, anterior, middle, and posterior medial femoral regions in 10 healthy females (Mean±Std Dev) (1.66±0.08m, 59.5±8.3kg, 21.6±1.4years) and nine healthy males (1.80±0.08m, 79.1±6.2kg, 21.7±1.5years). Pearson correlations examined relationships between MRI and ultrasound measures. Bland-Altman plots evaluated agreement between the imaging modalities. Transverse ultrasound thickness measures were significantly positively correlated with MRI middle (r=.67, P≤.05) and posterior thicknesses (r=.49, P≤.05) while the middle and posterior longitudinal ultrasound measures were significantly correlated to their respective MRI regions (r=.67, P≤.05 & r=.59 P≤.05, respectively). There was poor absolute agreement between correlated measures with ultrasound thickness measures being between 1.9 and 2.8mm smaller than MRI measures. These results suggest that ultrasound may be a viable clinical tool to assess relative cartilage thickness in the middle and posterior medial femoral regions. However, the absolute validity of the ultrasound measure is called into question due to the larger MRI-based thickness measures. Level IV. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Biomechanical Study of Posteromedial Tibial Plateau Fracture Stability: Do They All Require Fixation?

    PubMed

    Cuéllar, Vanessa G; Martinez, Danny; Immerman, Igor; Oh, Cheongeun; Walker, Peter S; Egol, Kenneth A

    2015-07-01

    Although the posteromedial fragment in tibial plateau fractures is often considered unstable, biomechanical evidence supporting this view is lacking. We aimed to evaluate the stability of the fragment in a cadaver model. Our hypothesis was that under the expected small axial force during rehabilitation and the combined effects of this force with shear force, internal rotation torque, and varus moment, the most common posteromedial tibial fragment morphology could maintain stability in early flexion. Axial compression force alone or combined with posterior shear, internal rotation torque, or varus moment was applied to the femurs of 5 fresh cadaveric knees. A Tekscan pressure mapping system was used to measure pressure and contact area between the femoral condyles, meniscus, and tibial plateau. A Microscribe 3D digitizer was used to define the 3-dimensional positions of the femur and tibia. A 10-mm and then a 20-mm osteotomy was created with a saw at an angle of 30 degrees in the axial plane with respect to the tangent of the posterior tibial plateau and 75 degrees in the sagittal plane, representing a typical posteromedial fracture fragment. At each flexion angle (15, 30, 60, 90, and 120 degrees) and loading condition (axial compression only, compression with shear force, torque, and varus moment), distal displacement of the medial femoral condyle and the tibial fracture fragments was determined. For the 10-mm fragment, medial femoral condyle displacement was little affected up to approximately 30-degree flexion, after which it increased. For the 20-mm fragment, there was progressive medial femoral condyle displacement with increasing flexion from baseline. However, for the 10- and 20-mm fragments themselves, displacements were noted at every flexion angle, starting at 1.7 mm inferior displacement with 15 degrees of flexion and internal rotation torque and up to 10.2 mm displacement with 90 degrees of flexion and varus bending moment. In this cadaveric model of a

  19. Relationship of compartment-specific structural knee status at baseline with change in cartilage morphology: a prospective observational study using data from the osteoarthritis initiative

    PubMed Central

    Eckstein, Felix; Wirth, Wolfgang; Hudelmaier, Martin I; Maschek, Susanne; Hitzl, Wolfgang; Wyman, Bradley T; Nevitt, Michael; Hellio Le Graverand, Marie-Pierre; Hunter, David

    2009-01-01

    Introduction The aim was to investigate the relationship of cartilage loss (change in medial femorotibial cartilage thickness measured with magnetic resonance imaging (MRI)) with compartment-specific baseline radiographic findings and MRI cartilage morphometry features, and to identify which baseline features can be used for stratification of fast progressors. Methods An age and gender stratified subsample of the osteoarthritis (OA) initiative progression subcohort (79 women; 77 men; age 60.9 ± 9.9 years; body mass index (BMI) 30.3 ± 4.7) with symptomatic, radiographic OA in at least one knee was studied. Baseline fixed flexion radiographs were read centrally and adjudicated, and cartilage morphometry was performed at baseline and at one year follow-up from coronal FLASH 3 Tesla MR images of the right knee. Results Osteophyte status at baseline was not associated with medial cartilage loss. Knees with medial joint space narrowing tended to show higher rates of change than those without, but the relationship was not statistically significant. Knees with medial femoral subchondral bone sclerosis (radiography), medial denuded subchondral bone areas (MRI), and low cartilage thickness (MRI) at baseline displayed significantly higher cartilage loss than those without, both with and without adjusting for age, sex, and BMI. Participants with denuded subchondral bone showed a standardized response mean of up to -0.64 versus -0.33 for the entire subcohort. Conclusions The results indicate that radiographic and MRI cartilage morphometry features suggestive of advanced disease appear to be associated with greater cartilage loss. These features may be suited for selecting patients with a higher likelihood of fast progression in studies that attempt to demonstrate the cartilage-preserving effect of disease-modifying osteoarthritis drugs. PMID:19534783

  20. The interaction between physical activity and amount of baseline knee cartilage.

    PubMed

    Teichtahl, Andrew J; Wang, Yuanyuan; Heritier, Stephane; Wluka, Anita E; Strauss, Boyd J; Proietto, Joseph; Dixon, John B; Jones, Graeme; Cicuttini, Flavia M

    2016-07-01

    Conflicting reports of the effect of physical activity on knee cartilage may be due to the heterogeneity of populations examined and, in particular, the underlying health of the knee joint. This study examined the influence of recreational and occupational physical activity on cartilage volume loss. A total of 250 participants with no significant musculoskeletal disease were recruited. A gender-specific median cartilage volume split was used to define people in the lowest and highest 50% of baseline cartilage volume. Baseline recreational and occupational activity was examined by questionnaire, while cartilage volume was assessed by MRI at baseline and 2.4 years later. Significant interactions were demonstrable between physical activity and cartilage volume loss based on stratification of baseline cartilage volume (all P ⩽ 0.03). There was a dose-response relationship between frequently performed baseline occupational activities and medial cartilage volume loss in both the low (B = 0.2% per annum, 95% CI: 0.0, 0.04% per annum) and high (B = -0.2% per annum, 95% CI: -0.4, 0.0% per annum) baseline cartilage volume groups (P = 0.001 for interaction). Individuals with low baseline cartilage volume who were active in their occupation and/or recreational activity had greater medial cartilage volume loss than their more inactive counterparts (2.4% per annum vs 1.5% per annum, P = 0.02). Whereas people with less baseline cartilage volume are more at risk of structural knee damage with either heavy occupational or recreational workloads or both, individuals with high baseline cartilage volume may advantageously modify their risk for knee OA by participating in more frequent occupational physical activities. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically

  2. The contribution of 3D quantitative meniscal and cartilage measures to variation in normal radiographic joint space width-Data from the Osteoarthritis Initiative healthy reference cohort.

    PubMed

    Roth, Melanie; Wirth, Wolfgang; Emmanuel, Katja; Culvenor, Adam G; Eckstein, Felix

    2017-02-01

    To explore to what extent three-dimensional measures of the meniscus and femorotibial cartilage explain the variation in medial and lateral femorotibial radiographic joint space width (JSW), in healthy men and women. The right knees of 87 Osteoarthritis Initiative healthy reference participants (no symptoms, radiographic signs or risk factors of osteoarthritis; 37 men, 50 women; age 55.0±7.6; BMI 24.4±3.1) were assessed. Quantitative measures of subregional femorotibial cartilage thickness and meniscal position and morphology were computed from segmented magnetic resonance images. Minimal and medial/lateral fixed-location JSW were determined from fixed-flexion radiographs. Correlation and regression analyses were used to explore the contribution of demographic, cartilage and meniscal parameters to JSW in healthy subjects. The correlation with (medial) minimal JSW was somewhat stronger for cartilage thickness (0.54≤r≤0.67) than for meniscal (-0.31≤r≤0.50) or demographic measures (-0.15≤r≤0.48), in particular in men. In women, in contrast, the strength of the correlations of cartilage thickness and meniscal measures with minimal JSW were in the same range. Fixed-location JSW measures showed stronger correlations with cartilage thickness (r≥0.68 medially; r≥0.59 laterally) than with meniscal measures (r≤|0.32| medially; r≤|0.32| laterally). Stepwise regression models revealed that meniscal measures added significant independent information to the total variance explained in minimal JSW (adjusted multiple r 2 =58%) but not in medial or lateral fixed-location JSW (r 2 =60/51%, respectively). In healthy subjects, minimal JSW was observed to reflect a combination of cartilage and meniscal measures, particularly in women. Fixed-location JSW, in contrast, was found to be dominated by variance in cartilage thickness in both men and women, with somewhat higher correlations between cartilage and JSW in the medial than lateral femorotibial compartment. The

  3. Evaluation of Fibular Fracture Type vs Location of Tibial Fixation of Pilon Fractures.

    PubMed

    Busel, Gennadiy A; Watson, J Tracy; Israel, Heidi

    2017-06-01

    Comminuted fibular fractures can occur with pilon fractures as a result of valgus stress. Transverse fibular fractures can occur with varus deformation. No definitive guide for determining the proper location of tibial fixation exists. The purpose of this study was to identify optimal plate location for fixation of pilon fractures based on the orientation of the fibular fracture. One hundred two patients with 103 pilon fractures were identified who were definitively treated at our institution from 2004 to 2013. Pilon fractures were classified using the AO/OTA classification and included 43-A through 43-C fractures. Inclusion criteria were age of at least 18 years, associated fibular fracture, and definitive tibial plating. Patients were grouped based on the fibular component fracture type (comminuted vs transverse), and the location of plate fixation (medial vs lateral) was noted. Radiographic outcomes were assessed for mechanical failures. Forty fractures were a result of varus force as evidenced by transverse fracture of the fibula and 63 were due to valgus force with a comminuted fibula. For the transverse fibula group, 14.3% mechanical complications were noted for medially placed plate vs 80% for lateral plating ( P = .006). For the comminuted fibular group, 36.4% of medially placed plates demonstrated mechanical complications vs 16.7% for laterally based plates ( P = .156). Time to weight bearing as tolerated was also noted to be significant between groups plated medially and laterally for the comminuted group ( P = .013). Correctly assessing the fibular component for pilon fractures provides valuable information regarding deforming forces. To limit mechanical complications, tibial plates should be applied in such a way as to resist the original deforming forces. Level of Evidence Level III, comparative study.

  4. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  5. Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint.

    PubMed

    Fick, J M; P Ronkainen, A; Madden, R; Sawatsky, A; Tiitu, V; Herzog, W; Korhonen, R K

    2016-12-08

    We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Minimizing Alteration of Posterior Tibial Slope During Opening Wedge High Tibial Osteotomy: a Protocol with Experimental Validation in Paired Cadaveric Knees

    PubMed Central

    Westermann, Robert W; DeBerardino, Thomas; Amendola, Annunziato

    2014-01-01

    Introduction The High Tibial Osteotomy (HTO) is a reliable procedure in addressing uni- compartmental arthritis with associated coronal deformities. With osteotomy of the proximal tibia, there is a risk of altering the tibial slope in the sagittal plane. Surgical techniques continue to evolve with trends towards procedure reproducibility and simplification. We evaluated a modification of the Arthrex iBalance technique in 18 paired cadaveric knees with the goals of maintaining sagittal slope, increasing procedure efficiency, and decreasing use of intraoperative fluoroscopy. Methods Nine paired cadaveric knees (18 legs) underwent iBalance medial opening wedge high tibial osteotomies. In each pair, the right knee underwent an HTO using the modified technique, while all left knees underwent the traditional technique. Independent observers evaluated postoperative factors including tibial slope, placement of hinge pin, and implant placement. Specimens were then dissected to evaluate for any gross muscle, nerve or vessel injury. Results Changes to posterior tibial slope were similar using each technique. The change in slope in traditional iBalance technique was -0.3° ±2.3° and change in tibial slope using the modified iBalance technique was -0.4° ±2.3° (p=0.29). Furthermore, we detected no differences in posterior tibial slope between preoperative and postoperative specimens (p=0.74 traditional, p=0.75 modified). No differences in implant placement were detected between traditional and modified techniques. (p=0.85). No intraoperative iatrogenic complications (i.e. lateral cortex fracture, blood vessel or nerve injury) were observed in either group after gross dissection. Discussion & Conclusions Alterations in posterior tibial slope are associated with HTOs. Both traditional and modified iBalance techniques appear reliable in coronal plane corrections without changing posterior tibial slope. The present modification of the Arthrex iBalance technique may increase the

  7. Rupture of the anterior tibial tendon: three clinical cases, anatomical study, and literature review.

    PubMed

    Anagnostakos, Konstantinos; Bachelier, Felix; Fürst, Oliver Alexander; Kelm, Jens

    2006-05-01

    We report three cases of anterior tibial tendon ruptures and the results of an anatomical study in regard to the tendon's insertion site and a literature review. Three patients were referred to our hospital with anterior tibial tendon ruptures. In the anatomical study, 53 feet were dissected, looking in particular for variants of the bony insertion of the tendon. Two patients had surgical treatment (one primary repair and one semimembranosus tendon graft) and one conservative treatment. After a mean followup of 14 weeks all patients had satisfactory outcomes. In the anatomical study, we noted three different insertion sites: in 36 feet the tendon inserted into the medial side of the cuneiform and the base of the first metatarsal bone and in 13 feet only into the medial side of the cuneiform bone. In the remaining four feet the tendon inserted into the cuneiform and the first metatarsal bone, but an additional tendon was noted taking its origin from the anterior tibial tendon near its insertion into the medial cuneiform and attaching to the proximal part of the first metatarsal. According to literature, surgical repair is the treatment of choice for acute ruptures and for patients with high activity levels. For chronic ruptures and patients with low demands, conservative management may lead to an equally good outcome. Knowledge of the anatomy in this region may be helpful for diagnosis and for the interpretation of intraoperative findings and choosing the most appropriate surgical procedure.

  8. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study.

    PubMed

    Li, Yue; Hong, Lei; Feng, Hua; Wang, Qianqian; Zhang, Jin; Song, Guanyang; Chen, Xingzuo; Zhuo, Hongwu

    2014-04-01

    Posterior tibial slope (PTS) has recently been identified as a risk factor for anterior cruciate ligament (ACL) injuries because of an associated increase in anterior tibial translation (ATT) and ACL loading. However, few studies concerning the correlation between PTS and postoperative ATT have been published. To analyze the relationship between PTS and postoperative ATT in ACL reconstruction (ACLR). Case control study; Level of evidence, 3. Included in this retrospective study were 40 consecutive patients who underwent ACLR (28 male, 12 female; median age, 22 years; range, 14-44 years) from October 2010 to June 2011. The patients were divided into 3 groups based on medial and lateral PTS values as measured on MRI. Demographic data and results of the manual maximum side-to-side difference with a KT-1000 arthrometer at 30° of knee flexion before ACLR and at final follow-up were collected; results were divided into ATT ≤2 mm, 2 mm < ATT < 5 mm, and ATT ≥5 mm. First, the distribution of ATT in the 3 groups was compared, and then correlation analysis and logistic regression were conducted to determine the correlation between PTS and ATT. Finally, the thresholds of medial and lateral PTS were calculated. Results of the ATT measurements were collected at a mean of 27.5 months (range, 24.0-37.0 months) after ACLR. The group with a PTS ≥5° had significantly more cases of ATT ≥5 mm than the group with a PTS <3° (medial PTS: P = .005; lateral PTS: P = .016). There were statistically significant correlations with ATT for both medial (r = 0.43, P = .005) and lateral (r = 0.36, P = .02) PTS. Medial or lateral PTS resulted in the increased probability of ATT ≥5 mm, with an odds ratio of 1.76 (P = .011) and 1.68 (P = .008), respectively. The threshold of an increased risk of ATT ≥5 mm was a medial PTS >5.6° (P = .003) or a lateral PTS >3.8° (P = .002). There was a significant correlation between PTS and postoperative anterior knee static stability in this study

  9. Posterior medial meniscus-femoral insertion into the anterior cruciate ligament. A case report.

    PubMed

    Bhargava, A; Ferrari, D A

    1998-03-01

    Medial meniscal anomalies are rare. The anterior horn insertion into the anterior cruciate ligament is the most common. In the course of an arthroscopy for torn lateral meniscus, an anomalous band in continuity with the posterior horn of the medial meniscus was observed to insert into the anterior cruciate ligament. Although the tibial portion of the anterior cruciate was redundant, the anomalous band provided tension to the anterior cruciate ligament and a negative pivot shift. A previously unreported posterior medial meniscal femoral insertion is described.

  10. Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline.

    PubMed

    Yu, L P; Smith, G N; Brandt, K D; Myers, S L; O'Connor, B L; Brandt, D A

    1992-10-01

    In vitro studies have indicated that levels of neutral metalloproteinases in osteoarthritic (OA) cartilage are elevated and that doxycycline (doxy) inhibits collagenolytic and gelatinolytic activity in extracts of OA cartilage. The purpose of the present study was to test the effect of oral doxy administration on the severity of cartilage degeneration in OA. OA was induced in 12 adult mongrel dogs by transection of the anterior cruciate ligament (ACL) 2 weeks after dorsal root ganglionectomy. Six dogs received doxy orally from the day after ACL transection until they were killed 8 weeks later; the other 6 served as untreated OA controls. The unstable knee of each untreated dog exhibited extensive full-thickness cartilage ulceration of the medial femoral condyle. In sharp contrast, cartilage on the distal aspect of the femoral condyle of the unstable knee was grossly normal in 2 doxy-treated dogs, and exhibited only thinning and/or surface irregularity in the others. Degenerative cartilage lesions on the medial trochlear ridge, superficial fibrillation of the medial tibial plateau, and osteophytosis were, however, unaffected by doxy treatment. Collagenolytic activity and gelatinolytic activity in cartilage extracts from OA knees of untreated dogs were 5-fold and 4-fold greater, respectively, than in extracts from dogs given doxy. Prophylactic administration of doxy markedly reduced the severity of OA in weight-bearing regions of the medial femoral condyle. It remains to be determined whether administration of doxy after OA changes have developed is also effective.

  11. Medial tibial stress syndrome can be diagnosed reliably using history and physical examination.

    PubMed

    Winters, M; Bakker, E W P; Moen, M H; Barten, C C; Teeuwen, R; Weir, A

    2017-02-08

    The majority of sporting injuries are clinically diagnosed using history and physical examination as the cornerstone. There are no studies supporting the reliability of making a clinical diagnosis of medial tibial stress syndrome (MTSS). Our aim was to assess if MTSS can be diagnosed reliably, using history and physical examination. We also investigated if clinicians were able to reliably identify concurrent lower leg injuries. A clinical reliability study was performed at multiple sports medicine sites in The Netherlands. Athletes with non-traumatic lower leg pain were assessed for having MTSS by two clinicians, who were blinded to each others' diagnoses. We calculated the prevalence, percentage of agreement, observed percentage of positive agreement (Ppos), observed percentage of negative agreement (Pneg) and Kappa-statistic with 95%CI. Forty-nine athletes participated in this study, of whom 46 completed both assessments. The prevalence of MTSS was 74%. The percentage of agreement was 96%, with Ppos and Pneg of 97% and 92%, respectively. The inter-rater reliability was almost perfect; k=0.89 (95% CI 0.74 to 1.00), p<0.000001. Of the 34 athletes with MTSS, 11 (32%) had a concurrent lower leg injury, which was reliably noted by our clinicians, k=0.73, 95% CI 0.48 to 0.98, p<0.0001. Our findings show that MTSS can be reliably diagnosed clinically using history and physical examination, in clinical practice and research settings. We also found that concurrent lower leg injuries are common in athletes with MTSS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. [Balloon osteoplasty as reduction technique in the treatment of tibial head fractures].

    PubMed

    Freude, T; Kraus, T M; Sandmann, G H

    2015-10-01

    Tibial plateau fractures requiring surgery are severe injuries of the lower extremities. Depending on the fracture pattern, the age of the patient, the range of activity and the bone quality there is a broad variation in adequate treatment.  This article reports on an innovative treatment concept to address split depression fractures (Schatzker type II) and depression fractures (Schatzker type III) of the tibial head using the balloon osteoplasty technique for fracture reduction. Using the balloon technique achieves a precise and safe fracture reduction. This internal osteoplasty combines a minimal invasive percutaneous approach with a gently rise of the depressed area and the associated protection of the stratum regenerativum below the articular cartilage surface. This article lights up the surgical procedure using the balloon technique in tibia depression fractures. Using the balloon technique a precise and safe fracture reduction can be achieved. This internal osteoplasty combines a minimally invasive percutaneous approach with a gentle raising of the depressed area and the associated protection of the regenerative layer below the articular cartilage surface. Fracture reduction by use of a tamper results in high peak forces over small areas, whereas by using the balloon the forces are distributed over a larger area causing less secondary stress to the cartilage tissue. This less invasive approach might help to achieve a better long-term outcome with decreased secondary osteoarthritis due to the precise and chondroprotective reduction technique.

  13. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  14. A descriptive study of potential effect of anterior tibial translation, femoral tunnel and anterior cruciate ligament graft inclination on clinical outcome and degenerative changes.

    PubMed

    Snoj, Žiga; Zupanc, Oskar; Stražar, Klemen; Salapura, Vladka

    2017-04-01

    There is no evidence that anatomically correct anterior cruciate ligament reconstruction (ACLR) offers lower rate of degenerative changes development or that it would lead to a better outcome. The significance and understanding of the abnormal anterior tibial translation (ATT) in ACLR patients is yet to be established. Sixty subjects (40 patients at 5.9 years after ACLR, 20 healthy controls) underwent 3 T MRI. Quantitative cartilage T2 mapping and morphological whole organ magnetic resonance imaging score (WORMS) evaluation was performed. Self-reported questionnaires were used for subjective clinical evaluation. Correlations were calculated with the following MRI measurements; femoral tunnel inclination, ACL graft inclination, lateral and medial compartment ATT. In the ACLR group positive correlation was found between the patellar cartilage T2 values and sagittal ACL graft inclination. In the ACLR group lateral compartment ATT showed negative correlation with ACL graft inclination and subjective clinical evaluation, and positive correlation with morphological degenerative changes. Femoral tunnel showed positive correlation with ACL graft inclination in the same plane. Increased ATT offers worse clinical outcome and increased rate of degenerative changes. Furthermore, ATT is affected by the ACL inclination. Inclination of the drilling tunnel affects ACL graft inclination; thereby independent drilling techniques provide superior results of anatomical ACL graft positioning.

  15. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-01-29

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of varus-valgus (V-V) malalignment of the femoral component in kinematically aligned total knee arthroplasty (TKA) and use the results to detemine sensitivities to errors in making the distal femoral resections. Because V-V malalignment would introduce the greatest changes in the alignment of the articular surfaces at 0° flexion, the hypotheses were that the greatest increases in tibial force imbalance would occur at 0° flexion, that primarily V-V laxity would significantly change at this flexion angle, and that the tibial force imbalance would increase and laxities would change in proportion to the degree of V-V malalignment. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced V-V malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured during passive knee flexion-extension between 0° to 120° using a custom tibial force sensor. Eight laxities were measured from 0° to 120° flexion using a six degree-of-freedom load application system. With the tibial component kinematically aligned, the increase in the tibial force imbalance from that of the reference component at 0° of flexion was sensitive to the degree of V-V malalignment of the femoral component. Sensitivities were 54 N/deg (medial tibial force increasing > lateral tibial force) (p < 0.0024) and 44 N/deg (lateral tibial force increasing > medial tibial force) (p < 0.0077) for varus and valgus malalignments, respectively. Varus

  16. The associations between indices of patellofemoral geometry and knee pain and patella cartilage volume: a cross-sectional study

    PubMed Central

    2010-01-01

    Background Whilst patellofemoral pain is one of the most common musculoskeletal disorders presenting to orthopaedic clinics, sports clinics, and general practices, factors contributing to its development in the absence of a defined arthropathy, such as osteoarthritis (OA), are unclear. The aim of this cross-sectional study was to describe the relationships between parameters of patellofemoral geometry (patella inclination, sulcus angle and patella height) and knee pain and patella cartilage volume. Methods 240 community-based adults aged 25-60 years were recruited to take part in a study of obesity and musculoskeletal health. Magnetic resonance imaging (MRI) of the dominant knee was used to determine the lateral condyle-patella angle, sulcus angle, and Insall-Salvati ratio, as well as patella cartilage and bone volumes. Pain was assessed by the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) VA pain subscale. Results Increased lateral condyle-patella angle (increased medial patella inclination) was associated with a reduction in WOMAC pain score (Regression coefficient -1.57, 95% CI -3.05, -0.09) and increased medial patella cartilage volume (Regression coefficient 51.38 mm3, 95% CI 1.68, 101.08 mm3). Higher riding patella as indicated by increased Insall-Salvati ratio was associated with decreased medial patella cartilage volume (Regression coefficient -3187 mm3, 95% CI -5510, -864 mm3). There was a trend for increased lateral patella cartilage volume associated with increased (shallower) sulcus angle (Regression coefficient 43.27 mm3, 95% CI -2.43, 88.98 mm3). Conclusion These results suggest both symptomatic and structural benefits associated with a more medially inclined patella while a high-riding patella may be detrimental to patella cartilage. This provides additional theoretical support for the current use of corrective strategies for patella malalignment that are aimed at medial patella translation, although longitudinal studies will

  17. The associations between indices of patellofemoral geometry and knee pain and patella cartilage volume: a cross-sectional study.

    PubMed

    Tanamas, Stephanie K; Teichtahl, Andrew J; Wluka, Anita E; Wang, Yuanyuan; Davies-Tuck, Miranda; Urquhart, Donna M; Jones, Graeme; Cicuttini, Flavia M

    2010-05-10

    Whilst patellofemoral pain is one of the most common musculoskeletal disorders presenting to orthopaedic clinics, sports clinics, and general practices, factors contributing to its development in the absence of a defined arthropathy, such as osteoarthritis (OA), are unclear.The aim of this cross-sectional study was to describe the relationships between parameters of patellofemoral geometry (patella inclination, sulcus angle and patella height) and knee pain and patella cartilage volume. 240 community-based adults aged 25-60 years were recruited to take part in a study of obesity and musculoskeletal health. Magnetic resonance imaging (MRI) of the dominant knee was used to determine the lateral condyle-patella angle, sulcus angle, and Insall-Salvati ratio, as well as patella cartilage and bone volumes. Pain was assessed by the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) VA pain subscale. Increased lateral condyle-patella angle (increased medial patella inclination) was associated with a reduction in WOMAC pain score (Regression coefficient -1.57, 95% CI -3.05, -0.09) and increased medial patella cartilage volume (Regression coefficient 51.38 mm3, 95% CI 1.68, 101.08 mm3). Higher riding patella as indicated by increased Insall-Salvati ratio was associated with decreased medial patella cartilage volume (Regression coefficient -3187 mm3, 95% CI -5510, -864 mm3). There was a trend for increased lateral patella cartilage volume associated with increased (shallower) sulcus angle (Regression coefficient 43.27 mm3, 95% CI -2.43, 88.98 mm3). These results suggest both symptomatic and structural benefits associated with a more medially inclined patella while a high-riding patella may be detrimental to patella cartilage. This provides additional theoretical support for the current use of corrective strategies for patella malalignment that are aimed at medial patella translation, although longitudinal studies will be needed to further substantiate this.

  18. What are the bias, imprecision, and limits of agreement for finding the flexion-extension plane of the knee with five tibial reference lines?

    PubMed

    Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L

    2016-06-01

    Internal-external (I-E) malrotation of the tibial component is associated with poor function after total knee arthroplasty (TKA). Kinematically aligned (KA) TKA uses a functionally defined flexion-extension (F-E) tibial reference line, which is parallel to the F-E plane of the extended knee, to set I-E rotation of the tibial component. Sixty-two, three-dimensional bone models of normal knees were analyzed. We computed the bias (mean), imprecision (±standard deviation), and limits of agreement (mean±2 standard deviations) of the angle between five anatomically defined tibial reference lines used in mechanically aligned (MA) TKA and the F-E tibial reference line (+external). The following are the bias, imprecision, and limits of agreement of the angle between the F-E tibial reference line and 1) the tibial reference lines connecting the medial border (-2°±6°, -14° to 10°), medial 1/3 (6°±6°, -6° to 18°), and the most anterior point of the tibial tubercle (9°±4°, -1° to 17°) with the center of the posterior cruciate ligament, and 2) the tibial reference lines perpendicular to the posterior condylar axis of the tibia (-3°±4°, -11° to 5°), and a line connecting the centers of the tibial condyles (1°±4°, -7° to 9°). Based on these in vitro findings, it might be prudent to reconsider setting the I-E rotation of the tibial component to tibial reference lines that have bias, imprecision, and limits of agreement that fall outside the -7° to 10° range associated with high function after KA TKA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    PubMed

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  20. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    PubMed Central

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central

  1. Effect of antibiotics on in vitro and in vivo avian cartilage degradation.

    PubMed

    Peters, T L; Fulton, R M; Roberson, K D; Orth, M W

    2002-01-01

    Antibiotics are used in the livestock industry not only to treat disease but also to promote growth and increase feed efficiency in less than ideal sanitary conditions. However, certain antibiotic families utilized in the poultry industry have recently been found to adversely affect bone formation and cartilage metabolism in dogs, rats, and humans. Therefore, the first objective of this study was to determine if certain antibiotics used in the poultry industry would inhibit in vitro cartilage degradation. The second objective was to determine if the antibiotics found to inhibit in vitro cartilage degradation also induced tibial dyschondroplasia in growing broilers. Ten antibiotics were studied by an avian explant culture system that is designed to completely degrade tibiae over 16 days. Lincomycin, tylosin tartrate, gentamicin, erythromycin, and neomycin sulfate did not inhibit degradation at any concentration tested. Doxycycline (200 microg/ml), oxytetracycline (200 microg/ml), enrofloxacin (200 and 400 microg/ml), ceftiofur (400 microg/ml), and salinomycin (10 microg/ml) prevented complete cartilage degradation for up to 30 days in culture. Thus, some of the antibiotics did inhibit cartilage degradation in developing bone. Day-old chicks were then administered the five antibiotics at 25%, 100%, or 400% above their recommended dose levels and raised until 21 days of age. Thiram, a fungicide known to induce experimental tibial dyschondroplasia (TD), was given at 20 ppm. Birds were then killed by cervical dislocation, and each proximal tibiotarsus was visually examined for TD lesions. The results showed that none of these antibiotics significantly induced TD in growing boilers at any concentration tested, whereas birds given 20 ppm thiram had a 92% incidence rate.

  2. The Efficacy of Medial Patellofemoral Ligament Reconstruction Combined with Tibial Tuberosity Transfer in the Treatment of Patellofemoral Instability

    PubMed Central

    Downham, Christopher; Bassett, James; Thompson, Peter; Sprowson, Andrew

    2016-01-01

    A systematic review of the literature was undertaken to evaluate the efficacy of medial patellofemoral ligament (MPFL) reconstruction combined with tibial tuberosity transfer (TTT) in the treatment of patellofemoral instability. Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic search was carried out to identify and review the published literature pertinent to MFPL reconstruction combined with TTT. Relevant studies were critically appraised with narrative data synthesis. Studies that met the eligibility criteria were suitable for appraisal and consisted of case series and therapeutic series (levels IV & III). All studies had inherent variations in outcomes reporting and limited follow-up. Combined treatment offers restoration of normal anatomy, thus adding clinical value to the currently recommended anatomic approach to MPFL reconstruction. Nevertheless, the current body of evidence does not determine the threshold at which patellofemoral axis requires the need for adjunctive distal realignment as opposed to MPFL reconstruction alone. This review highlighted numerous recurring limitations in the conduct and presentation of the studies, which inadvertently mitigated the interpretation of their results. Future priority should be awarded to larger randomised controlled trials utilising validated patient reported outcome measures. PMID:27274466

  3. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  4. Biological approach to treatment of intra-articular proximal tibial fractures with double osteosynthesis.

    PubMed

    Singh, Saurabh; Patel, Pankaj R; Joshi, Anil Kumar; Naik, Rajnikant N; Nagaraj, Chethan; Kumar, Sudeep

    2009-02-01

    The treatment of intra-articular proximal tibial fractures is associated with complications, and much conflicting literature exists concerning the treatment of choice. In our study, an attempt has been made to develop an ideal and adequate treatment protocol for these intra-articular fractures. The principle of double osteosynthesis, i.e., lateral minimally invasive plate osteosynthesis (MIPO), was combined with a medial external fixator to treat 22 intra-articular proximal tibial fractures with soft tissue injury with a mean follow-up of 25 months. Superficial pin track infection was observed in one case, and no soft tissue breakdown was noted. Loss of articular reconstruction was reported in one case. Bridging callus was seen at 12 weeks (8 weeks-7 months). The principle of substitution or double osteosynthesis, i.e., lateral MIPO, was combined with a medial external fixator and proved to be a fairly good method of fixation in terms of results and complications.

  5. Multimodal nonlinear optical imaging of cartilage development in mouse model

    NASA Astrophysics Data System (ADS)

    He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.

    2017-02-01

    Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.

  6. Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage.

    PubMed

    Heinemeier, Katja M; Schjerling, Peter; Heinemeier, Jan; Møller, Mathias B; Krogsgaard, Michael R; Grum-Schwensen, Tomas; Petersen, Michael M; Kjaer, Michael

    2016-07-06

    The poor regenerative capacity of articular cartilage presents a major clinical challenge and may relate to a limited turnover of the cartilage collagen matrix. However, the collagen turnover rate during life is not clear, and it is debated whether osteoarthritis (OA) can influence it. Using the carbon-14 ((14)C) bomb-pulse method, life-long replacement rates of collagen were measured in tibial plateau cartilage from 23 persons born between 1935 and1997 (15 and 8 persons with OA and healthy cartilage, respectively). The (14)C levels observed in cartilage collagen showed that, virtually, no replacement of the collagen matrix happened after skeletal maturity and that neither OA nor tissue damage, per se, influenced collagen turnover. Regional differences in (14)C content across the joint surface showed that cartilage collagen located centrally on the joint surface is formed several years earlier than collagen located peripherally. The collagen matrix of human articular cartilage is an essentially permanent structure that has no significant turnover in adults, even with the occurrence of disease. Copyright © 2016, American Association for the Advancement of Science.

  7. Treatment of Medial Tibial Stress Syndrome according to the Fascial Distortion Model: A Prospective Case Control Study

    PubMed Central

    Finze, Susanne; Lison, Andreas

    2014-01-01

    Medial tibial stress syndrome (MTSS) is a common problem among athletes and soldiers. There is no proven theory that could explain the pathophysiology of shin splints. The therapies described so far are time-consuming and involve a high risk of relapse. The method according to the fascial distortion model (FDM) addresses local changes in the area of the lower leg fascia. It is suited to reduce pain and functional impairments associated with this symptom complex by applying targeted manual techniques. 32 patients (male: 30; female: 2) participated in this study. Visual analogue scale (VAS) was used for the quantification of pain. Scores were also given to rate the maximum painless exercise tolerance of the patients. Subsequently treatment of the crural fascia was performed. Patients retested ability of running and jumping. Therapy was continued until full exercise tolerance or painlessness was reached. A significant reduction of the VAS pain score from 5.2 to 1.1 could be achieved (P < 0.001). The impairment of exercise tolerance could be reduced from 7 to 2 points (P < 0.001). The duration of treatment was 6.3 (SD: 4.3) days on average. The FDM therapy is a potential effective method for acute treatment of MTSS. PMID:25379543

  8. Locking plate fixation in distal metaphyseal tibial fractures: series of 79 patients.

    PubMed

    Gupta, Rakesh K; Rohilla, Rajesh Kumar; Sangwan, Kapil; Singh, Vijendra; Walia, Saurav

    2010-12-01

    Open reduction and internal fixation in distal tibial fractures jeopardises fracture fragment vascularity and often results in soft tissue complications. Minimally invasive osteosynthesis, if possible, offers the best possible option as it permits adequate fixation in a biological manner. Seventy-nine consecutive adult patients with distal tibial fractures, including one patient with a bilateral fracture of the distal tibia, treated with locking plates, were retrospectively reviewed. The 4.5-mm limited-contact locking compression plate (LC-LCP) was used in 33 fractures, the metaphyseal LCP in 27 fractures and the distal medial tibial LCP in the remaining 20 fractures. Fibula fixation was performed in the majority of comminuted fractures (n = 41) to maintain the second column of the ankle so as to achieve indirect reduction and to prevent collapse of the fracture. There were two cases of delayed wound breakdown in fractures fixed with the 4.5-mm LC-LCP. Five patients required primary bone grafting and three patients required secondary bone grafting. All cases of delayed union (n = 7) and nonunion (n = 3) were observed in cases where plates were used in bridge mode. Minimally invasive plate osteosynthesis (MIPO) with LCP was observed to be a reliable method of stabilisation for these fractures. Peri-operative docking of fracture ends may be a good option in severely impacted fractures with gap. The precontoured distal medial tibial LCP was observed to be a better tolerated implant in comparison to the 4.5-mm LC-LCP or metaphyseal LCP with respect to complications of soft tissues, bone healing and functional outcome, though its contour needs to be modified.

  9. Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis--data from the Osteoarthritis Initiative (OAI).

    PubMed

    Eckstein, F; Wirth, W; Hunter, D J; Guermazi, A; Kwoh, C K; Nelson, D R; Benichou, O

    2010-06-01

    Clinically, radiographic joint space narrowing (JSN) is regarded a surrogate of cartilage loss in osteoarthritis (OA). Using magnetic resonance imaging (MRI), we explored the magnitude and regional distribution of differences in cartilage thickness and subchondral bone area associated with specific Osteoarthritis Research Society International (OARSI) JSN grades. Seventy-three participants with unilateral medial JSN were selected from the first half (2678 cases) of the OA Initiative cohort (45, 21, and 7 with OARSI JSN grades 1, 2, and 3, respectively, no medial JSN in the contra-lateral knee). Bilateral sagittal baseline DESSwe MRIs were segmented by experienced operators. Intra-person between-knee differences in cartilage thickness and subchondral bone areas were determined in medial femorotibial subregions. Knees with medial OARSI JSN grades 1, 2, and 3 displayed a 190 microm (5.2%), 630 microm (18%), and 1560 microm (44%) smaller cartilage thickness in weight-bearing medial femorotibial compartments compared to knees without JSN, respectively. The weight-bearing femoral condyle displayed relatively greater differences than the posterior femoral condyle or the medial tibia (MT). The central subregion within the weight-bearing medial femur (cMF) of the femoral condyle (30-75 degrees ), and the external and central subregions within the tibia displayed relatively greater JSN-associated differences compared to other medial femorotibial subregions. Knees with higher JSN grades also displayed larger than contra-lateral femorotibial subchondral bone areas. This study provides quantitative estimates of JSN-related cartilage loss, with the central part of the weight-bearing femoral condyle being most strongly affected. Knees with higher JSN grades displayed larger subchondral bone areas, suggesting that an increase in subchondral bone area occurs in advanced OA. Copyright 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Releasing the circumferential fixation of the medial meniscus does not affect its kinematics.

    PubMed

    Vrancken, A C T; van Tienen, T G; Hannink, G; Janssen, D; Verdonschot, N; Buma, P

    2014-12-01

    Meniscal functioning depends on the fixation between the meniscal horns and the surrounding tissues. It is unknown, however, whether the integration between the outer circumference of the medial meniscus and the knee capsule/medial collateral ligament also influences the biomechanical behavior of the meniscus. Therefore, we aimed to determine whether detaching and resuturing the circumferential fixation of the medial meniscus influence its kinematic pattern. Human cadaveric knee joints were flexed (0°-30°-60°-90°) in a knee loading rig, in neutral orientation and under internal and external tibial torques. Roentgen stereophotogrammetric analysis was used to determine the motion of the meniscus in anteroposterior (AP) and mediolateral (ML) directions. Three fixation conditions were evaluated: (I) intact, (II) detached and (III) resutured. Detaching and resuturing the circumferential fixation did not alter the meniscal motion pattern in either the AP or ML direction. Applying an additional internal tibial torque caused the medial meniscus to move slightly anteriorly, and an external torque caused a little posterior translation with respect to the neutral situation. These patterns did not change when the circumferential fixation condition was altered. This study demonstrated that the motion pattern of the medial meniscus is independent of its fixation to the knee capsule and medial collateral ligament. The outcomes of this study can be deployed to design the fixation strategy of a permanent meniscus prosthesis. As peripheral fixation is a complicated step during meniscal replacement, the surgical procedure is considerably simplified when non-resorbable implants do not require circumferential fixation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Variations in medial-lateral hamstring force and force ratio influence tibiofemoral kinematics.

    PubMed

    Shalhoub, Sami; Fitzwater, Fallon G; Cyr, Adam J; Maletsky, Lorin P

    2016-10-01

    A change in hamstring strength and activation is typically seen after injuries or invasive surgeries such as anterior cruciate reconstruction or total knee replacement. While many studies have investigated the influence of isometric increases in hamstring load on knee joint kinematics, few have quantified the change in kinematics due to a variation in medial to lateral hamstring force ratio. This study examined the changes in knee joint kinematics on eight cadaveric knees during an open-chain deep knee bend for six different loading configurations: five loaded hamstring configurations that varied the ratio of a total load of 175 N between the semimembranosus and biceps femoris and one with no loads on the hamstring. The anterior-posterior translation of the medial and lateral femoral condyles' lowest points along proximal-distal axis of the tibia, the axial rotation of the tibia, and the quadriceps load were measured at each flexion angle. Unloading the hamstring shifted the medial and lateral lowest points posteriorly and increased tibial internal rotation. The influence of unloading hamstrings on quadriceps load was small in early flexion and increased with knee flexion. The loading configuration with the highest lateral hamstrings force resulted in the most posterior translation of the medial lowest point, most anterior translation of the lateral lowest point, and the highest tibial external rotation of the five loading configurations. As the medial hamstring force ratio increased, the medial lowest point shifted anteriorly, the lateral lowest point shifted posteriorly, and the tibia rotated more internally. The results of this study, demonstrate that variation in medial-lateral hamstrings force and force ratio influence tibiofemoral transverse kinematics and quadriceps loads required to extend the knee. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1707-1715, 2016. © 2016 Orthopaedic Research Society. Published by

  12. Radiographic identification of the anterior and posterior root attachments of the medial and lateral menisci.

    PubMed

    James, Evan W; LaPrade, Christopher M; Ellman, Michael B; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-11-01

    Anatomic root placement is necessary to restore native meniscal function during meniscal root repair. Radiographic guidelines for anatomic root placement are essential to improve the accuracy and consistency of anatomic root repair and to optimize outcomes after surgery. To define quantitative radiographic guidelines for identification of the anterior and posterior root attachments of the medial and lateral menisci on anteroposterior (AP) and lateral radiographic views. Descriptive laboratory study. The anterior and posterior roots of the medial and lateral menisci were identified in 12 human cadaveric specimens (average age, 51.3 years; age range, 39-65 years) and labeled using 2-mm radiopaque spheres. True AP and lateral radiographs were obtained, and 2 raters independently measured blinded radiographs in relation to pertinent landmarks and radiographic reference lines. On AP radiographs, the anteromedial and posteromedial roots were, on average, 31.9 ± 5.0 mm and 36.3 ± 3.5 mm lateral to the edge of the medial tibial plateau, respectively. The anterolateral and posterolateral roots were, on average, 37.9 ± 5.2 mm and 39.3 ± 3.8 mm medial to the edge of the lateral tibial plateau, respectively. On lateral radiographs, the anteromedial and anterolateral roots were, on average, 4.8 ± 3.7 mm and 20.5 ± 4.3 mm posterior to the anterior margin of the tibial plateau, respectively. The posteromedial and posterolateral roots were, on average, 18.0 ± 2.8 mm and 19.8 ± 3.5 mm anterior to the posterior margin of the tibial plateau, respectively. The intrarater and interrater intraclass correlation coefficients (ICCs) were >0.958, demonstrating excellent reliability. The meniscal root attachment sites were quantitatively and reproducibly defined with respect to anatomic landmarks and superimposed radiographic reference lines. The high ICCs indicate that the measured radiographic relationships are a consistent means for evaluating meniscal root positions. This study

  13. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    PubMed

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  14. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness

    PubMed Central

    Harrison, David; Wang, Hsin-Min; Shultz, Sandra J.

    2017-01-01

    Context:  Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown. Objective:  To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals. Design:  Descriptive laboratory study. Setting:  Laboratory. Patients or Other Participants:  Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg). Main Outcome Measure(s):  Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex. Results:  Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R2Δ = 0.31, PΔ = .003). Conclusion:  Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a

  15. The Cost-Effectiveness of Surgical Treatment of Medial Unicompartmental Knee Osteoarthritis in Younger Patients

    PubMed Central

    Konopka, Joseph F.; Gomoll, Andreas H.; Thornhill, Thomas S.; Katz, Jeffrey N.; Losina, Elena

    2015-01-01

    Background: Surgical options for the management of medial compartment osteoarthritis of the varus knee include high tibial osteotomy, unicompartmental knee arthroplasty, and total knee arthroplasty. We sought to determine the cost-effectiveness of high tibial osteotomy and unicompartmental knee arthroplasty as alternatives to total knee arthroplasty for patients fifty to sixty years of age. Methods: We built a probabilistic state-transition computer model with health states defined by pain, postoperative complications, and subsequent surgical procedures. We estimated transition probabilities from published literature. Costs were determined from Medicare reimbursement schedules. Health outcomes were measured in quality-adjusted life-years (QALYs). We conducted analyses over patients’ lifetimes from the societal perspective, with health and cost outcomes discounted by 3% annually. We used probabilistic sensitivity analyses to account for uncertainty in data inputs. Results: The estimated discounted QALYs were 14.62, 14.63, and 14.64 for high tibial osteotomy, unicompartmental knee arthroplasty, and total knee arthroplasty, respectively. Discounted total direct medical costs were $20,436 for high tibial osteotomy, $24,637 for unicompartmental knee arthroplasty, and $24,761 for total knee arthroplasty (in 2012 U.S. dollars). The incremental cost-effectiveness ratio (ICER) was $231,900 per QALY for total knee arthroplasty and $420,100 per QALY for unicompartmental knee arthroplasty. Probabilistic sensitivity analyses showed that, at a willingness-to-pay (WTP) threshold of $50,000 per QALY, high tibial osteotomy was cost-effective 57% of the time; total knee arthroplasty, 24%; and unicompartmental knee arthroplasty, 19%. At a WTP threshold of $100,000 per QALY, high tibial osteotomy was cost-effective 43% of time; total knee arthroplasty, 31%; and unicompartmental knee arthroplasty, 26%. Conclusions: In fifty to sixty-year-old patients with medial unicompartmental knee

  16. Etiology and Treatment of Delayed-Onset Medial Malleolar Pain Following Total Ankle Arthroplasty.

    PubMed

    Lundeen, Gregory A; Dunaway, Linda J

    2016-08-01

    Total ankle arthroplasty (TAA) has become a successful treatment for end-stage ankle arthritis. Some patients may still have pain or may present with new pain. Suggested sources of medial pain include tibialis posterior tendonitis, impingement, or medial malleolar stress fracture. Etiology and treatment remain unclear. The objective of our study was to evaluate patients with delayed-onset medial malleolar pain following TAA who underwent treatment with percutaneous medial malleolar screw placement and propose an etiology. Patients who had undergone TAA at our institution were reviewed and those with medial malleolar pain were identified. Clinical and radiographic examinations were performed pre- and postoperatively. Radiographs were compared with those from a cohort of controls without a history of medial pain. All affected patients failed conservative therapy and were treated with percutaneous placement of medial malleolar screws positioned from the malleolar tip and extending proximally beyond the tibial component. Postoperatively, patients were placed in an ace wrap and allowed to be weightbearing to tolerance, except for 1 patient initially restricted to partial weightbearing. Visual analog scale (VAS) scores were recorded. Seventy-four (74) patients underwent TAA by the corresponding author. All (100%) were female with an average age of 66 (range, 57-73) years. Average follow-up since screw placement was 21.4 (range, 10-41) months. Six (8.1%) underwent placement of 2 percutaneous medial malleolar screws. Patients presented with pain an average of 12 (range, 4-24) months postoperatively and underwent screw placement an average of 2.8 (range, 1-6) months after presentation. At the time of TAA, none had a coronal plane deformity and none underwent a deltoid ligament release as part of balancing. All (100%) patients had pain and swelling directly over the medial malleolus prior to screw placement. Postoperatively, 1 (17%) had mild pain clinically at this site and

  17. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  18. [SECOT consensus on medial femorotibial osteoarthritis].

    PubMed

    Moreno, A; Silvestre, A; Carpintero, P

    2013-01-01

    A consensus, prepared by SECOT, is presented on the management of medial knee compartment osteoarthritis, in order to establish clinical criteria and recommendations directed at unifying the criteria in its management, dealing with the factors involved in the pathogenesis of medial femorotibial knee osteoarthritis, the usefulness of diagnostic imaging techniques, and the usefulness of arthroscopy. Conservative and surgical treatments are also analysed. The experts consulted showed a consensus (agreed or disagreed) in 65.8% of the items considered, leaving 14items where no consensus was found, which included the aetiopathogenesis of the osteoarthritis, the value of NMR in degenerative disease, the usefulness of COX-2 and the chondroprotective drugs, as well as on the ideal valgus tibial osteotomy technique. © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  19. Spatial variation of fixed charge density in knee joint cartilage from sodium MRI - Implication on knee joint mechanics under static loading.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2016-10-03

    The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required.

    PubMed

    Guenther, Daniel; Irarrázaval, Sebastian; Nishizawa, Yuichiro; Vernacchia, Cara; Thorhauer, Eric; Musahl, Volker; Irrgang, James J; Fu, Freddie H

    2017-08-01

    To propose a classification system for the shape of the tibial insertion site (TIS) of the anterior cruciate ligament (ACL) and to demonstrate the intra- and inter-rater agreement of this system. Due to variation in shape and size, different surgical approaches may be feasible to improve reconstruction of the TIS. One hundred patients with a mean age of 26 ± 11 years were included. The ACL was cut arthroscopically at the base of the tibial insertion site. Arthroscopic images were taken from the lateral and medial portal. Images were de-identified and duplicated. Two blinded observers classified the tibial insertion site according to a classification system. The tibial insertion site was classified as type I (elliptical) in 51 knees (51 %), type II (triangular) in 33 knees (33 %) and type III (C-shaped) in 16 knees (16 %). There was good agreement between raters when viewing the insertion site from the lateral portal (κ = 0.65) as well as from the medial portal (κ = 0.66). Intra-rater reliability was good to excellent. Agreement in the description of the insertion site between the medial and lateral portals was good for rater 1 and good for rater 2 (κ = 0.74 and 0.77, respectively). There is variation in the shape of the ACL TIS. The classification system is a repeatable and reliable tool to summarize the shape of the TIS using three common patterns. For clinical relevance, different shapes may require different types of reconstruction to ensure proper footprint restoration. Consideration of the individual TIS shape is required to prevent iatrogenic damage of adjacent structures like the menisci. III.

  1. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction

    PubMed Central

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL. PMID:26001045

  2. The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction.

    PubMed

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL's strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft's strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft's strength lies between 75% and 125% of an intact PCL.

  3. Shockwave treatment for medial tibial stress syndrome: A randomized double blind sham-controlled pilot trial.

    PubMed

    Newman, Phil; Waddington, Gordon; Adams, Roger

    2017-03-01

    Up to 35% of runners develop medial tibial stress syndrome (MTSS) which often results in lengthy disruption to training and sometimes affects daily activities. There is currently no high quality evidence to support any particular intervention for MTSS. This study aims to investigate the effect of shockwave therapy for MTSS. A randomized, sham-controlled, pilot trial in a university-based health clinic including 28 active adults with MTSS. Intervention included standard dose shockwave therapy for the experimental group versus sham dose for the control group, delivered during Week 1-3, 5 and 9. Main outcome measures were pain measured during bone and muscle pressure as well as during running using a numerical rating scale (0-10) and running was measured as pain-limited distance (m), at Week 1 (baseline) and Week 10 (post-intervention). Self-perception of change was measured using the Global Rating of Change Scale (-7 to +7) at Week 10 (post-intervention). Pain (palpation) was reduced in the experimental group by 1.1 out of 10.0 (95% CI -2.3 to 0.0) less than the control group. There were no other statistically significant differences between the groups. Standard dose shockwave therapy is not more effective than sham dose at improving pain or running distance in MTSS. However, the sham dose may have had a clinical effect. Further investigation including a no intervention control is warranted to evaluate the effect of shockwave therapy in the management of MTSS. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Root avulsion of the posterior horn of the medial meniscus in skeletally immature patients.

    PubMed

    Sonnery-Cottet, Bertrand; Mortati, Rafael; Archbold, Pooler; Gadea, François; Clechet, Julien; Thaunat, Mathieu

    2014-12-01

    Meniscal root avulsion has been predominantly reported in an adult population but little is known about this meniscal lesion in children and adolescents. The of this article is to describe the clinical symptoms and a new MRI sign of a medial meniscus posterior root avulsion in skeletally immature patients, and to report the arthroscopic procedure for its reinsertion in the presence of open physes. We report two skeletally immature patients who had a medial meniscus posterior root avulsion [MMPRA]. Diagnosis of a MMPRA was suspected on MRI by intense T2 hypersignal located at the postero-medial part of the tibial plateau reflecting trabecular bone oedema ("Bone bruise") at the level of the medial meniscal posterior root attachment. Arthroscopic reduction and fixation of the posterior root of the medial meniscus with transosseous sutures was performed. The patients returned to sport at the end of 6 months without residual symptoms. At one year, the radiographs showed no modification of the physis. Healing of the medial meniscal posterior root was noted on MRI. In a skeletally immature patient it is important that this rare meniscal lesion is diagnosed early and adequately treated. We emphasize the importance of the indirect MRI signs that can lead a clinician to suspect the diagnosis of MMPRA. The aim of the surgery was to restore the anatomical footprint of the meniscal root and to re-establish its function thus preventing future chondral damage without damage to the tibial physeal growth plate. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    PubMed

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  6. Arthroscopic Medial Meniscus Posterior Root Reconstruction Using Auto-Gracilis Tendon.

    PubMed

    Lee, Dhong Won; Haque, Russel; Chung, Kyu Sung; Kim, Jin Goo

    2017-08-01

    There have been several techniques to repair the medial meniscus posterior root tears (MMPRTs) with the goal of restoring the anatomic and firm fixation of the meniscal root to bone. Many anatomic studies about the menisci also have been developed, so a better understanding of the anatomy could help surgeons perform correct fixation of the MMPRTs. The meniscal roots have ligament-like structures that firmly attach the menisci to the tibial plateau, and this structural concept is important to restore normal biomechanics after anatomic root repair. We present arthroscopic transtibial medial meniscus posterior root reconstruction using auto-gracilis tendon.

  7. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    PubMed

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P < 0.05). Increasing or decreasing the slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P < 0.05), while a 5° decrease in slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  8. Treatment of posterior tibial tendon dysfunction without flexor digitorum tendon transfer: a retrospective study of 34 patients.

    PubMed

    Didomenico, Lawrence; Stein, Dawn Y; Wargo-Dorsey, Mari

    2011-01-01

    A retrospective study of patients who underwent gastrocnemius recession, double calcaneal osteotomy (Evans osteotomy and percutaneous calcaneal displacement osteotomy), and medial column fusion for the treatment of posterior tibial tendon dysfunction was conducted. The senior author performed the procedures between November 2002 and January 2009 on 34 patients who displayed at least Johnson and Strom stage II deformity and had undergone 12 months of failed conservative treatment. The coauthors evaluated the patients' radiographs before and after the operation. At a mean of 14 (range 3 to 44) months after surgery, radiographic measurements demonstrated statistically significant changes in the structural alignment of the feet. Based on our experience with these patients, we believe that a double calcaneal osteotomy combined with a gastrocnemius recession and stabilization of the medial column for the treatment of posterior tibial tendon dysfunction provides satisfactory correction, stability, and realignment of the foot. Furthermore, we feel that the use of flexor digitorum longus transfer, as well as triple arthrodesis, can be avoided without compromising the outcome when surgically treating posterior tibial tendon dysfunction. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Influence of Medial Collateral Ligament Release for Internal Rotation of Tibia in Posterior-Stabilized Total Knee Arthroplasty: A Cadaveric Study.

    PubMed

    Wada, Keizo; Hamada, Daisuke; Tamaki, Shunsuke; Higashino, Kosaku; Fukui, Yoshihiro; Sairyo, Koichi

    2017-01-01

    Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament (MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA. Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and 15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5 punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic analysis was performed. The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = -0.715, P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared with the angle after 15 punctures. Tibial internal rotation during knee flexion was reduced by extensive MCL release using multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the tibia during knee flexion which might lead to patient satisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur

    PubMed Central

    Jungmann, P.M.; Kraus, M.S.; Nardo, L.; Liebl, H.; Alizai, H.; Joseph, G.B.; Liu, F.; Lynch, J.; McCulloch, C.E.; Nevitt, M.C.; Link, T.M.

    2014-01-01

    Purpose To study the natural evolution of cartilage T2 relaxation times in knees with various extents of morphological cartilage abnormalities, assessed with 3T MRI from the Osteoarthritis Initiative. Materials and Methods Right knee MRIs of 245, 45–60 year old individuals without radiographic OA were included. Cartilage was segmented and T2 maps were generated in five compartments (patella, medial and lateral femoral condyle, medial and lateral tibia) at baseline and two-year follow-up. We examined the association of T2 values and two-year change of T2 values with various Whole-Organ MR Imaging Scores (WORMS). Statistical analysis was performed with ANOVA and Students t-tests. Results Higher baseline T2 was associated with more severe cartilage defects at baseline and subsequent cartilage loss (P<0.001). However, longitudinal T2 change was inversely associated with both baseline (P=0.038) and follow-up (P=0.002) severity of cartilage defects. Knees that developed new cartilage defects had smaller increases in T2 than subjects without defects (P=0.045). Individuals with higher baseline T2 showed smaller T2 increases over time (P<0.001). Conclusion An inverse correlation of longitudinal T2 changes versus baseline T2 values and morphological cartilage abnormalities suggests that once morphological cartilage defects occur, T2 values may be limited for evaluating further cartilage degradation. PMID:24038491

  11. Topographic variations in biomechanical and biochemical properties in the ankle joint: an in vitro bovine study evaluating native and engineered cartilage.

    PubMed

    Paschos, Nikolaos K; Makris, Eleftherios A; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-10-01

    The purposes of this study were to identify differences in the biomechanical and biochemical properties among the articulating surfaces of the ankle joint and to evaluate the functional and biological properties of engineered neocartilage generated using chondrocytes from different locations in the ankle joint. The properties of the different topographies within the ankle joint (tibial plafond, talar dome, and distal fibula) were evaluated in 28 specimens using 7 bovine ankles; the femoral condyle was used as a control. Chondrocytes from the same locations were used to form 28 neocartilage constructs by tissue engineering using an additional 7 bovine ankles. The functional properties of neocartilage were compared with native tissue values. Articular cartilage from the tibial plafond, distal fibula, talar dome, and femoral condyle exhibited Young modulus values of 4.8 ± 0.5 MPa, 3.9 ± 0.1 MPa, 1.7 ± 0.2 MPa, and 4.0 ± 0.5 MPa, respectively. The compressive properties of the corresponding tissues were 370 ± 22 kPa, 242 ± 18 kPa, 255 ± 26 kPa, and 274 ± 18 kPa, respectively. The tibial plafond exhibited 3-fold higher tensile properties and 2-fold higher compressive and shear moduli compared with its articulating talar dome; the same disparity was observed in neocartilage. Similar trends were detected in biochemical data for both native and engineered tissues. The cartilage properties of the various topographic locations within the ankle are significantly different. In particular, the opposing articulating surfaces of the ankle have significantly different biomechanical and biochemical properties. The disparity between tibial plafond and talar dome cartilage and chondrocytes warrants further evaluation in clinical studies to evaluate their exact role in the pathogenesis of ankle lesions. Therapeutic modalities for cartilage lesions need to consider the exact topographic source of the cells or cartilage grafts used. Furthermore, the capacity of

  12. Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study.

    PubMed

    Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S

    2014-12-01

    Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.

  13. Increased extrusion and ICRS grades at 2-year follow-up following transtibial medial meniscal root repair evaluated by MRI.

    PubMed

    Kaplan, Daniel J; Alaia, Erin F; Dold, Andrew P; Meislin, Robert J; Strauss, Eric J; Jazrawi, Laith M; Alaia, Michael J

    2017-11-02

    The purpose of the current study was to evaluate the short-term results of meniscal root repair surgery, assessing clinical and radiographic outcomes, utilizing MRI to assess root healing and extent of post-operative extrusion. This was a single-center, retrospective study evaluating patients who had undergone a medial meniscus posterior root repair using a transtibial pullout technique with two locking cinch sutures. Demographic data were collected from patient charts. Clinical outcomes were assessed with pre- and post-operative IKDC and Lysholm scores. Pre-op scores were taken at the patients' initial clinical visit, mean 1.55 months prior to surgery (± 1.8 months, min 0.3, max 7.3). Radiographic outcomes were assessed with MRI evaluation of root healing, meniscal extrusion, and cartilage degeneration using ICRS criteria. Tunnel placement was evaluated and compared to the anatomic footprint. Eighteen patients (47.2 years ± 11.9) were evaluated at mean follow-up of 24.9 months (± 7.2, min 18.4, max 35.6). The IKDC score significantly increased from 45.9 (± 12.6) pre-operatively to 76.8 (± 14.7) post-operatively (p < 0.001). Lysholm scores also increased from 50.9 (± 7.11) to 87.1 (± 9.8) (p < 0.001). Mean tunnel placement was 5.3 mm (± 3.5, range 0-11.8) away from the anatomic footprint. Mean extrusion increased from 4.74 mm (± 1.7) pre-operatively to 5.98 (± 2.8) post-operatively (p < 0.02). No patients with > 3 mm of extrusion on pre-operative MRI had < 3 mm of extrusion on post-operative MRI. Both medial femoral condyle and medial tibial plateau ICRS grades worsened significantly (p < 0.02 and p < 0.01, respectively). On MRI, one root appeared completely healed, 16 partially healed, and one not healed. Patients treated with the transtibial suture pull-out technique with two locking cinch sutures had improved clinical outcomes, but only partial healing in the majority of cases, increased extrusion

  14. Cartilage loss patterns within femorotibial contact regions during deep knee bend.

    PubMed

    Michael Johnson, J; Mahfouz, Mohamed R

    2016-06-14

    Osteoarthritis (OA) can alter knee kinematics and stresses. The relationship between cartilage loss in OA and kinematics is unclear, with existing work focusing on static wear and morphology. In this work, femorotibial cartilage maps were coupled with kinematics to investigate the relationship between kinematics and cartilage loss, allowing for more precise treatment and intervention. Cartilage thickness maps were created from healthy and OA subgroups (varus, valgus, and neutral) and mapped to a statistical bone atlas. Video fluoroscopy determined contact regions from 0° to 120° flexion. Varus and valgus subgroups displayed different wear patterns across the range of flexion, with varus knees showing more loss in early flexion and valgus in deeper flexion. For the femur, varus knees had more wear in the medial compartment than neutral or valgus and most wear at both 0° and 20° flexion. In the lateral femoral compartment, the valgus subgroup showed significantly more wear from 20° to 60° flexion as compared to other angles, though varus knees displayed highest magnitude of wear. For the tibia, most medial wear occurred at 0-40° flexion and most lateral occurred after 60° flexion. Knowing more about cartilage changes in OA knees provides insight as to expected wear or stresses on implanted components after arthroplasty. Combining cartilage loss patterns with kinematics allows for pre-surgical intervention and treatments tailored to the patient׳s alignment and kinematics. Reported wear patterns may also serve as a gauge for post-operative loading to be considered when placing implant components. Copyright © 2016. Published by Elsevier Ltd.

  15. A retinaculum-sparing surgical approach preserves porcine stifle joint cartilage in an experimental animal model of cartilage repair.

    PubMed

    Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning

    2017-12-01

    This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.

  16. Characterization of cartilage defects detected by MRI in Kellgren-Lawrence grade 0 or 1 knees.

    PubMed

    Taguchi, Kenji; Chiba, Ko; Okazaki, Narihiro; Kido, Yasuo; Miyamoto, Takashi; Yonekura, Akihiko; Tomita, Masato; Uetani, Masataka; Osaki, Makoto

    2017-09-01

    Osteoarthritis of the knee is generally evaluated by plain X-rays, which are incapable of detecting small cartilage damage. There are some patients who have small cartilage defects on MRI with no abnormal findings on plain X-rays. In this study, the prevalence and regional characteristics of cartilage defects detected by MRI were studied in cases with normal X-ray findings (Kellgren-Lawrence grade 0 and 1). Relationships between the cartilage defects and OA risk factors such as obesity and leg alignment were also investigated. A total of 51 knees of Kellgren-Lawrence grade 0 or 1 without knee joint pain were included. Fat-suppressed spoiled-gradient recalled (SPGR) sagittal images were scanned by 3 T MRI, and the presence of cartilage damage was confirmed. Cartilage damage was visualized three-dimensionally, and its location and morphology were analyzed. On a full length standing radiograph of the lower extremities, leg alignment and other parameters were measured, and their associations with cartilage damage were analyzed. Cartilage defects were detected in 26% of women aged >50 years. Cartilage damage was located on the medial femoral condyle near the intercondylar notch, and was mostly elliptically shaped in the anteroposterior direction. Subjects with damaged cartilage were not obese and did not have abnormal leg alignment. It should be borne in mind that some elderly women may have damaged cartilage on the intercondylar notch side of the medial joint, even though plain X-rays appear normal, and this cannot be predicted by obesity or leg alignment. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  17. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    PubMed

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (P<0.05). Tibial slope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Physical activity is associated with changes in knee cartilage microstructure.

    PubMed

    Halilaj, E; Hastie, T J; Gold, G E; Delp, S L

    2018-06-01

    The purpose of this study was to determine if there is an association between objectively measured physical activity and longitudinal changes in knee cartilage microstructure. We used accelerometry and T 2 -weighted magnetic resonance imaging (MRI) data from the Osteoarthritis Initiative, restricting the analysis to men aged 45-60 years, with a body mass index (BMI) of 25-27 kg/m 2 and no radiographic evidence of knee osteoarthritis. After computing 4-year changes in mean T 2 relaxation time for six femoral cartilage regions and mean daily times spent in the sedentary, light, moderate, and vigorous activity ranges, we performed canonical correlation analysis (CCA) to find a linear combination of times spent in different activity intensity ranges (Activity Index) that was maximally correlated with a linear combination of regional changes in cartilage microstructure (Cartilage Microstructure Index). We used leave-one-out pre-validation to test the robustness of the model on new data. Nineteen subjects satisfied the inclusion criteria. CCA identified an Activity Index and a Cartilage Microstructure Index that were significantly correlated (r = .82, P < .0001 on test data). Higher levels of sedentary time and vigorous activity were associated with greater medial-lateral differences in longitudinal T 2 changes, whereas light activity was associated with smaller differences. Physical activity is better associated with an index that contrasts microstructural changes in different cartilage regions than it is with univariate or cumulative changes, likely because this index separates the effect of activity, which is greater in the medial loadbearing region, from that of patient-specific natural aging. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    PubMed

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  20. Matrix Metalloproteases and Tissue Inhibitors of Metalloproteinases in Medial Plica and Pannus-like Tissue Contribute to Knee Osteoarthritis Progression

    PubMed Central

    Yang, Chih-Chang; Lin, Cheng-Yu; Wang, Hwai-Shi; Lyu, Shaw-Ruey

    2013-01-01

    Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee. PMID:24223987

  1. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    PubMed

    Yang, Chih-Chang; Lin, Cheng-Yu; Wang, Hwai-Shi; Lyu, Shaw-Ruey

    2013-01-01

    Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  2. Therapeutic efficacy of intra-articular hyaluronan derivative and platelet-rich plasma in mice following axial tibial loading

    PubMed Central

    Duan, Xin; Sandell, Linda J.; Chinzei, Nobuaki; Holguin, Nilsson; Silva, Matthew J.; Schiavinato, Antonella

    2017-01-01

    Objective To investigate the therapeutic potential of intra-articular hyaluronan-derivative HYADD® 4-G and/or platelet-rich plasma (PRP) in a mouse model of non-invasive joint injury. Methods Non-invasive axial tibial loading was used to induce joint injury in 10-week-old C57BL/6J mice (n = 86). Mice underwent a single loading of either 6 Newton (N) or 9N axial tibial compression. HYADD® 4-G was injected intra-articularly at 8 mg/mL or 15 mg/mL either before or after loading with or without PRP. Phosphate-buffered-saline was injected as control. Knee joints were harvested at 5 or 56 days post-loading and prepared for micro-computed tomography scanning and subsequently processed for histology. Immunostaining was performed for aggrecan to monitor its distribution, for CD44 to monitor chondrocyte reactive changes and for COMP (cartilage oligomeric matrix protein) as an index for cartilage matrix changes related to loading and cartilage injury. TUNEL assay was performed to identify chondrocyte apoptosis. Results Loading initiated cartilage proteoglycan loss and chondrocyte apoptosis within 5 days with slowly progressive post-traumatic osteoarthritis (no cartilage degeneration, but increased synovitis and ectopic calcification after 9N loading) at 56 days. Mice treated with repeated HYADD® 4-G (15 mg/mL) or HYADD® 4-G (8 mg/mL) ± PRP or PRP alone exhibited no significant improvement in the short-term (5 days) and long-term (56 days) consequences of joint loading except for a trend for improved bone changes compared to non-loaded joints. Conclusion While we failed to show an overall effect of intra-articular delivery of hyaluronan-derivative and/or PRP in reversing/protecting the pathological events in cartilage and synovium following joint injury, some bone alterations were relatively less severe with hyaluronan-derivative at higher concentration or in association with PRP. PMID:28406954

  3. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  4. Impingement of the Mobile Bearing on the Lateral Wall of the Tibial Tray in Unicompartmental Knee Arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Shirakawa, Nobuyuki; Tanaka, Sakae

    2016-07-01

    Tilting of the mobile bearing relative to the tibial tray in the flexion position may result from the implantation of femoral components more laterally relative to tibial components during unicompartmental knee arthroplasty (UKA) using the Oxford Knee. The purpose of the present study was to compare femoral component positions after UKA using the phase 3 device and a novel device. We further evaluated the placement of the femoral components with the new device in the flexion position to determine the association with short-term prognosis. The location of femoral and tibial components in the flexion position of 38 knees implanted using the phase 3 device and 49 knees using a novel device was assessed at 1 year postoperatively using radiography of the proximal tibia and distal femur in the flexion position. The femoral component was implanted more laterally using the new device than using the phase 3 device in the flexion position (P = .012), which caused the impingement of the mobile bearing against the lateral wall of the tibial tray. After UKA using the new device, 10% of patients exhibited the tilting phenomenon of the mobile bearing because of the lateral implantation of the femoral implant. To prevent implantation of the femoral component too laterally using the new device during UKA, knee surgeons should set the drill guide more medially such that the center of the drill is aligned with the middle of the medial femoral condyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Predicting dynamic knee joint load with clinical measures in people with medial knee osteoarthritis.

    PubMed

    Hunt, Michael A; Bennell, Kim L

    2011-08-01

    Knee joint loading, as measured by the knee adduction moment (KAM), has been implicated in the pathogenesis of knee osteoarthritis (OA). Given that the KAM can only currently be accurately measured in the laboratory setting with sophisticated and expensive equipment, its utility in the clinical setting is limited. This study aimed to determine the ability of a combination of four clinical measures to predict KAM values. Three-dimensional motion analysis was used to calculate the peak KAM at a self-selected walking speed in 47 consecutive individuals with medial compartment knee OA and varus malalignment. Clinical predictors included: body mass; tibial angle measured using an inclinometer; walking speed; and visually observed trunk lean toward the affected limb during the stance phase of walking. Multiple linear regression was performed to predict KAM magnitudes using the four clinical measures. A regression model including body mass (41% explained variance), tibial angle (17% explained variance), and walking speed (9% explained variance) explained a total of 67% of variance in the peak KAM. Our study demonstrates that a set of measures easily obtained in the clinical setting (body mass, tibial alignment, and walking speed) can help predict the KAM in people with medial knee OA. Identifying those patients who are more likely to experience high medial knee loads could assist clinicians in deciding whether load-modifying interventions may be appropriate for patients, whilst repeated assessment of joint load could provide a mechanism to monitor disease progression or success of treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST Study

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Wang, Ke; Marra, Monica D.; Nevitt, Michael C.; Lynch, John A.; Torner, James; Lewis, Cora E.; Guermazi, Ali

    2012-01-01

    Objective To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). Methods The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Results Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% CI 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Conclusion Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. PMID:23178289

  7. Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing.

    PubMed

    Niehoff, A; Müller, M; Brüggemann, L; Savage, T; Zaucke, F; Eckstein, F; Müller-Lung, U; Brüggemann, G-P

    2011-08-01

    To investigate (1) the effect of running and drop landing interventions on knee cartilage deformation and serum cartilage oligomeric matrix protein (COMP) concentration and (2) if the changes in cartilage volume correlate with the changes in serum COMP level. Knee joint cartilage volume and thickness were determined using magnetic resonance imaging (MRI) as well as COMP concentration from serum samples before and after in vivo loading of 14 healthy adults (seven male and seven female). Participants performed different loading interventions of 30 min duration on three different days: (1) 100 vertical drop landings from a 73 cm high platform, (2) running at a velocity of 2.2m/s (3.96 km), and (3) resting on a chair. Blood samples were taken immediately before, immediately after and 0.5h, 1h, 2h and 3h post intervention. Pre- and post-loading coronal and axial gradient echo MR images with fat suppression were used to determine the patellar, tibial and femoral cartilage deformation. Serum COMP levels increased immediately after the running (+30.7%, pre: 7.3U/l, 95% confidence interval (CI): 5.6, 8.9, post: 9.1U/l, 95% CI: 7.2, 11.0, P=0.001) and after drop landing intervention (+32.3%, pre: 6.8U/l, 95% CI: 5.3, 8.4; post: 8.9U/l, 95% CI: 6.8, 10.9, P=0.001). Cartilage deformation was more pronounced after running compared to drop landing intervention, with being significant (volume: P=0.002 and thickness: P=0.001) only in the lateral tibia. We found a significant correlation (r(2)=0.599, P=0.001) between changes in serum COMP (%) and in cartilage volume (%) after the drop landing intervention, but not after running. In vivo exercise interventions differentially regulate serum COMP concentrations and knee cartilage deformations. The relation between changes in COMP and in cartilage volume seems to depend on both mechanical and biochemical factors. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis?

    PubMed

    Eckstein, F; Putz, R; Müller-Gerbl, M; Steinlechner, M; Benedetto, K P

    1993-01-01

    According to the literature subchondral bone plays a significant role in the transmission of load through joints and in the pathogenesis of osteoarthrosis. Therefore the degeneration of the articular cartilage was investigated in the patellae from 30 dissecting-room specimens and of 20 patients, previously submitted to arthroscopy, and subchondral mineralisation of their underlying bone was at the same time assessed by means of CT osteoabsorptiometry. Lateral cartilage lesions were localised over highly mineralised subchondral bone; these appear to be due to long-term stress. They were mainly found in the older specimens and showed a high rate of progression with increasing age. Medially localised cartilage lesions, on the other hand, were situated in a transitional region between moderate and slight subchondral mineralisation; they may be caused by infrequent stress peaks and by shear stress in the articular cartilage, the very medial part of the joint being deprived of mechanical stimulation for much of the time. These lesions were to be found predominantly in the younger specimens and showed little progress with advancing age. Patients with lateral cartilage degeneration exhibited higher, patients with medial chondromalacia patellae lower mineralisation than normals. Their density patterns therefore indicate a different mechanical pathogenesis of the cartilage lesions in the lateral and medial facet. It could be shown that CT osteoabsorptiometry allows an assessment of the mechanical situation, present in individual femoro-patellar joints, and that this situation is highly relevant for the pathogenesis of patellar cartilage degeneration.

  9. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee

  10. Upregulation of lipocalin-2 (LCN2) in osteoarthritic cartilage is not necessary for cartilage destruction in mice.

    PubMed

    Choi, W-S; Chun, J-S

    2017-03-01

    Lipocalin-2 (LCN2) is a recently characterized adipokine that is upregulated in chondrocytes treated with pro-inflammatory mediators and in the synovial fluid of osteoarthritis (OA) patients. Here, we explored the in vivo functions of LCN2 in OA cartilage destruction in mice. The expression levels of LCN2 were determined at the mRNA and protein levels in primary cultured mouse chondrocytes and in human and mouse OA cartilage. Experimental OA was induced in wild-type (WT) or Lcn2-knockout (KO) mice by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing hypoxia-inducible factor (HIF)-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or LCN2 (Ad-Lcn2). The effect of LCN2 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Lcn2. LCN2 mRNA levels in chondrocytes were markedly increased by the pro-inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor-α (TNF-α), and by previously identified catabolic regulators of OA, such as HIF-2α and components of the zinc-ZIP8-MTF1 axis. LCN2 protein levels were also markedly increased in human OA cartilage and cartilage from various experimental mouse models of OA. However, overexpression of LCN2 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Furthermore, LCN2 overexpression in mouse cartilage via IA injection of Ad-Lcn2 did not cause OA pathogenesis, and Lcn2 KO mice showed no alteration in DMM-induced OA cartilage destruction. Our observations collectively suggest that upregulation of LCN2 in OA cartilage is not sufficient or necessary for OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Functional outcome of Schatzker type V and VI tibial plateau fractures treated with dual plates

    PubMed Central

    Prasad, G Thiruvengita; Kumar, T Suresh; Kumar, R Krishna; Murthy, Ganapathy K; Sundaram, Nandkumar

    2013-01-01

    Background: Dual plate fixation in comminuted bicondylar tibial plateau fractures remains controversial. Open reduction and internal fixation, specifically through compromised soft tissues, has historically been associated with major wound complications. Alternate methods of treatment have been described, each with its own merits and demerits. We performed a retrospective study to evaluate the functional outcome of lateral and medial plate fixation of Schatzker type V and VI fractures through an anterolateral approach, and a medial minimally invasive approach or a posteromedial approach. Materials and Methods: We treated 46 tibial plateau fractures Schatzker type V and VI with lateral and medial plates through an anterolateral approach and a medial minimal invasive approach over an 8 years period. Six patients were lost to followup. Radiographs in two planes were taken in all cases. Immediate postoperative radiographs were assessed for quality of reduction and fixation. The functional outcome was evaluated according to the Oxford Knee Score criteria on followup. Results: Forty patients (33 men and 7 women) who completed the followup were included in the study. There were 20 Schatzker type V fractures and 20 Schatzker type VI fractures. The mean duration of followup was 4 years (range 1-8 years). All patients had a satisfactory articular reduction defined as ≤2 mm step-off or gap as assessed on followup. All patients had a good coronal and sagittal plane alignment, and articular width as assessed on supine X-rays of the knee in the anteroposterior (AP) and lateral views. The functional outcome, as assessed by the Oxford Knee Score, was excellent in 30 patients and good in 10 patients. All patients returned to their pre-injury level of activity and employment. There were no instances of deep infection. Conclusions: Dual plate fixation of severe bicondylar tibial plateau fractures is an excellent treatment option as it provides rigid fixation and allows early knee

  12. Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist

    NASA Astrophysics Data System (ADS)

    Tummala, Sudhakar; Dam, Erik B.

    2010-03-01

    Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.

  13. Opening-wedge high tibial osteotomy with a locked low-profile plate: surgical technique.

    PubMed

    Kolb, Werner; Guhlmann, Hanno; Windisch, Christoph; Koller, Heiko; Grützner, Paul; Kolb, Klaus

    2010-09-01

    High tibial osteotomy has been recognized as a beneficial treatment for osteoarthritis of the medial compartment of the knee. The purpose of this prospective study was to assess the short-term results of opening-wedge high tibial osteotomies with locked plate fixation. From September 2002 to November 2005, fifty-one consecutive medial opening-wedge high tibial osteotomies were performed. The mean age of the patients at the time of the index operation was forty-nine years. The preoperative and postoperative factors analyzed included the grade of arthritis of the tibiofemoral compartment (the Ahlbäck radiographic grade), the anatomic tibiofemoral angle, patellar height, the Hospital for Special Surgery rating system score, and the Lysholm and Gillquist knee score. Postoperatively, one superficial wound infection occurred. Fifty of the fifty-one osteotomies healed after an average period of 12.9 weeks (range, eight to sixteen weeks) without bone grafts. A nonunion developed in a sixty-two-year-old patient who was a cigarette smoker. The average postoperative tibiofemoral angle was 9° of valgus. Forty-nine patients were followed for a mean of fifty-two months. The average score on the Hospital for Special Surgery rating system was 86 points at the time of the most recent follow-up. The rating was excellent in twenty-eight patients (57%), good in twelve (24%), fair in four (8%), and poor in five (10%). The average score on the Lysholm and Gillquist knee-scoring scale was 83 points. According to these scores, the outcome was excellent in nine patients (18%), good in thirty-one (63%), fair in three (6%), and poor in six (12%). Four knees failed after an average of thirty-six months. Our results suggest that an opening-wedge high tibial osteotomy with locked plate fixation allows a correct valgus angle to be achieved with good short-term results.

  14. Ultrasonographic measurement of the femoral cartilage thickness in patients with occupational lead exposure.

    PubMed

    Yıldızgören, Mustafa T; Baki, Ali E; Kara, Murat; Ekiz, Timur; Tiftik, Tülay; Tutkun, Engin; Yılmaz, Hınç; Özçakar, Levent

    2015-01-01

    The objective of the present study is to compare distal femoral cartilage thicknesses of patients with occupational lead exposure with those of healthy subjects by using ultrasonography. A total of 48 male workers (a mean age of 34.8±6.8 years and mean body mass index (BMI) of 25.8±3.1 kg/m(2)) with a likely history of occupational lead exposure and age- and BMI-matched healthy male subjects were enrolled. Demographic and clinical characteristics of the patients, that is, age, weight, height, occupation, estimated duration of lead exposure, and smoking habits were recorded. Femoral cartilage thickness was assessed from the midpoints of right medial condyle (RMC), right lateral condyle (RLC), right intercondylar area (RIA), left medial condyle (LMC), left lateral condyle (LLC), and left intercondylar area (LIA) by using ultrasonography. Although the workers had higher femoral cartilage thickness values at all measurement sites when compared with those of the control subjects, the difference reached statistical significance at RLC (P=0.010), LMC (P=0.001), and LIA (P=0.039). There were no correlations between clinical parameters and cartilage-thickness values of the workers. Subjects with a history of lead exposure had higher femoral cartilage thickness as compared with the healthy subjects. Further studies, including histological evaluations, are awaited to clarify the clinical relevance of this increase in cartilage thickness and to explore the long-term follow-up especially with respect to osteoarthritis development.

  15. Chronic In Vivo Load Alteration Induces Degenerative Changes in the Rat Tibiofemoral Joint

    PubMed Central

    Roemhildt, M. L.; Beynnon, B. D.; Gauthier, A. E.; Gardner-Morse, M.; Ertem, F.; Badger, G. J.

    2012-01-01

    Objective We investigated the relationship between the magnitude and duration of sustained compressive load alteration and the development of degenerative changes in the rat tibiofemoral joint. Methods A varus loading device was attached to the left hind limb of mature rats to apply increased compression to the medial compartment and decreased compression to the lateral compartment of the tibiofemoral joint of either 0% or 100% body weight for 0, 6 or 20 weeks. Compartment-specific assessment of the tibial plateaus included biomechanical measures (articular cartilage aggregate modulus, permeability and Poisson’s ratio, and subchondral bone modulus) and histological assessments (articular cartilage, calcified cartilage, and subchondral bone thicknesses, degenerative scoring parameters, and articular cartilage cellularity). Results Increased compression in the medial compartment produced significant degenerative changes consistent with the development of osteoarthritis including a progressive decrease in cartilage aggregate modulus (43% and 77% at 6 and 20 weeks), diminished cellularity (38% and 51% at 6 and 20 weeks), and increased histological degeneration. At 20 weeks, medial compartment articular cartilage thickness deceased 30% while subchondral bone thickness increased 32% and subchondral bone modulus increased 99%. Decreased compression in the lateral compartment increased calcified cartilage thickness, diminished region-specific subchondral bone thickness and revealed trends for reduced cellularity and decreased articular cartilage thickness at 20 weeks. Conclusions Altered chronic joint loading produced degenerative changes consistent with those observed clinically with the development of osteoarthritis and may replicate the slow development of non-traumatic osteoarthritis in which mechanical loads play a primary etiological role. PMID:23123358

  16. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study

    PubMed Central

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Objective Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. Methods We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Results Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1–5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6–10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. Conclusions The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by

  18. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  19. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  20. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    USDA-ARS?s Scientific Manuscript database

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  1. Bony landmark between the attachment of the medial meniscus posterior root and the posterior cruciate ligament: CT and MR imaging assessment.

    PubMed

    Fujii, Masataka; Furumatsu, Takayuki; Miyazawa, Shinichi; Kodama, Yuya; Hino, Tomohito; Kamatsuki, Yusuke; Ozaki, Toshifumi

    2017-08-01

    (1) To reveal the prevalence of the bony recess (posterior dimple) and (2) to determine the position of the posterior dimple on the tibial plateau using three-dimensional computed tomography (3DCT). In this study, a retrospective review of 112 patients was performed to identify the posterior dimple and to evaluate its position on 3DCT. Magnetic resonance images (MRIs) were also used to determine the positional relationship among the posterior cruciate ligament (PCL), medial meniscus posterior insertion (MMPI), and posterior dimple. The posterior dimple was observed in 100 of 112 knees (89.3%) on 3DCT. The center of the posterior dimple was 13.6 ± 0.8 mm from the medial tibial eminence apex. MRI showed that the posterior dimple separated the tibial attachment of the PCL and MMPI. This is the first study to discuss the prevalence and position of the bony recess in the posterior intercondylar fossa.

  2. An observational study on MR images of the effect of the discoid meniscus on articular cartilage thickness.

    PubMed

    Oni, David Babajide; Jeyapalan, K; Oni, Olusola O A

    2011-06-01

    The discoid meniscus is known to affect the morphology and mechanics of the knee compartment in which it is housed. To determine whether it also is determinative of the articular cartilage thickness, measurements were made on MR images. There was no statistically significant difference in femoral or tibial articular cartilage thickness between compartments with normal meniscus and compartments with discoid meniscus. These findings suggest that mechanical disturbances wrought by the discoid shape do not have a 'Wolff law' effect. Copyright © 2010. Published by Elsevier B.V.

  3. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    PubMed

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  4. FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE.

    PubMed

    Heiner, Anneliese D; Martin, James A; McKinley, Todd O; Goetz, Jessica E; Thedens, Daniel R; Brown, Thomas D

    2012-10-01

    The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.

  5. LOGISMOS—Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint

    PubMed Central

    Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan

    2011-01-01

    A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602

  6. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study.

    PubMed

    Crema, M D; Felson, D T; Roemer, F W; Wang, K; Marra, M D; Nevitt, M C; Lynch, J A; Torner, J; Lewis, C E; Guermazi, A

    2013-02-01

    To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0 T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% confidence interval (CI) 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.

    PubMed

    Gourineni, Prasad; Gupta, Asheesh

    2011-10-01

    Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.

  8. Association Between Infrapatellar Fat Pad Volume and Knee Structural Changes in Patients with Knee Osteoarthritis.

    PubMed

    Cai, Jingyu; Xu, Jianhua; Wang, Kang; Zheng, Shuang; He, Fan; Huan, Shuting; Xu, Shengqing; Zhang, Hui; Laslett, Laura; Ding, Changhai

    2015-10-01

    The function of the infrapatellar fat pad (IPFP) in knee osteoarthritis (OA) remains uncertain. This study aimed to examine cross-sectional associations between IPFP volume and knee structures in patients with knee OA. The study included 174 patients with clinical knee OA (mean age, 55.5 yrs). Fat-suppressed 3-D T1-weighted spoiled gradient recall magnetic resonance imaging (MRI) was used to measure the IPFP and cartilage volume. T2-weighted fast spin echo MRI was used to assess cartilage defects and bone marrow lesions (BML). Radiographic knee osteophytes and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas. After adjustment for potential confounders, greater IPFP volume was associated with greater tibial and patellar cartilage volume (all p < 0.05), and fewer cartilage defects at all sites (OR 0.88-0.91, all p < 0.05). IPFP volume was associated with presence of BML at lateral tibial and medial femoral sites (OR 0.88-0.91, all p < 0.05) and osteophytes at lateral tibiofemoral compartment (OR 0.88, p < 0.05). IPFP volume was not significantly associated with JSN. Greater IPFP volume was associated with greater knee cartilage volume and fewer structural abnormalities, suggesting a protective role of IPFP size in knee OA.

  9. Cricoid cartilage masquerading as a tumour on thyroid ultrasound.

    PubMed

    Strauss, S

    1999-07-01

    On ultrasound scanning of the thyroid gland in a sagittal plane, the cricoid cartilage can falsely create the impression of a mass in the gland if the transducer is angled slightly medially. The illusion of a mass is fortified on transverse view if the cricothyroid and inferior pharyngeal constrictor muscles, which lie between the upper pole of the thyroid gland and the cricoid cartilage, are misinterpreted as a solid lesion. The purpose of this study was to describe the ultrasound features of the cricoid cartilage and to determine the frequency in which a pseudolesion is created. In 15 of 26 volunteers the cartilage was seen as a hypoechoic structure surrounded by an anechoic halo and containing foci of calcification, closely resembling a thyroid nodule. In 11 of the subjects, with a mean age of 55 years, the cartilage was heavily calcified, poorly visualized and did not simulate a thyroid lesion. Awareness of the cause and appearance of this pseudolesion should help radiologists avoid a potential pitfall and prevent unnecessary invasive procedures.

  10. Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee.

    PubMed

    Nishino, Katsutoshi; Omori, Go; Koga, Yoshio; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji; Tanaka, Masaei; Arakawa, Masaaki

    2015-07-01

    We recently developed a new method for three-dimensional evaluation of mechanical factors affecting knee joint in order to help identify factors that contribute to the progression of knee osteoarthritis (KOA). This study aimed to verify the clinical validity of our method by evaluating knee joint dynamics during gait. Subjects were 41 individuals (14 normal knees; 8 mild KOAs; 19 severe KOAs). The positions of skin markers attached to the body were captured during gait, and bi-planar X-ray images of the lower extremities were obtained in standing position. The positional relationship between the markers and femorotibial bones was determined from the X-ray images. Combining this relationship with gait capture allowed for the estimation of relative movement between femorotibial bones. We also calculated the point of intersection of loading axis of knee on the tibial proximal surface (LAK point) to analyze knee joint dynamics. Knee flexion range in subjects with severe KOA during gait was significantly smaller than that in those with normal knees (p=0.011), and knee adduction in those with severe KOA was significantly larger than in those with mild KOA (p<0.000). LAK point was locally loaded on the medial compartment of the tibial surface as KOA progressed, with LAK point of subjects with severe KOA rapidly shifting medially during loading response. Local loading and medial shear force were applied to the tibial surface during stance phase as medial KOA progressed. Our findings suggest that our method is useful for the quantitative evaluation of mechanical factors that affect KOA progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    PubMed

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  12. Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.

    PubMed

    Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim

    2015-11-01

    This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.

  13. Quantitative evaluation of hyaline articular cartilage T2 maps of knee and determine the relationship of cartilage T2 values with age, gender, articular changes.

    PubMed

    Cağlar, E; Şahin, G; Oğur, T; Aktaş, E

    2014-11-01

    To identify changes in knee joint cartilage transverse relaxation values depending on the patient's age and gender and to investigate the relationship between knee joint pathologies and the transverse relaxation time. Knee MRI images of 107 symptomatic patients with various pathologic knee conditions were analyzed retrospectively. T2 values were measured at patellar cartilage, posteromedial and posterolateral femoral cartilage adjacent to the central horn of posterior meniscus. 963 measurements were done for 107 knees MRI. Relationship of T2 values with seven features including subarticular bone marrow edema, subarticular cysts, marginal osteophytes, anterior-posterior cruciate and collateral ligament tears, posterior medial and posterior lateral meniscal tears, synovial thickening and effusion were analyzed. T2 values in all three compartments were evaluated according to age and gender. A T2 value increase correlated with age was present in all three compartments measured in the subgroup with no knee joint pathology and in all patient groups. According to the ROC curve, an increase showing a statistically significant difference was present in the patient group aged over 40 compared to the patient group aged 40 and below in all patient groups. There is a statistically difference at T2 values with and without subarticular cysts, marginal osteophytes, synovial thickening and effusion. T2 relaxation time showed a statistically significant increase in the patients with a medial meniscus tear compared to those without a tear and no statistically significant difference was found in T2 relaxation times of patients with and without a posterior lateral meniscus tear. T2 cartilage mapping on MRI provides opportunity to exhibit biochemical and structural changes related with cartilage extracellular matrix without using invasive diagnostic methods.

  14. Influence of Ligament Properties on Knee Mechanics in Walking

    PubMed Central

    Smith, Colin R.; Lenhart, Rachel L.; Kaiser, Jarred; Vignos, Mike; Thelen, Darryl G.

    2016-01-01

    Computational knee models provide a powerful platform to investigate the effects of injury and surgery on functional knee behavior. The objective of this study was to use a multibody knee model to investigate the influence of ligament properties on tibiofemoral kinematics and cartilage contact pressures in the stance phase of walking. The knee model included 14 ligament bundles and articular cartilage contact acting across the tibiofemoral and patellofemoral joints. The knee was incorporated into a lower extremity musculoskeletal model and used to simulate knee mechanics during the stance phase of normal walking. A Monte Carlo approach was employed to assess the influence ligament stiffness and reference strains on knee mechanics. The ACL, MCL and posterior capsule properties exhibited significant influence on anterior tibial translation at heel strike, with the ACL acting as the primary restraint to anterior translation in mid-stance. The MCL and LCL exhibited the greatest influence on tibial rotation from heel strike through mid-stance. Simulated tibial plateau contact location was dependent on the ACL, MCL and LCL properties, while pressure magnitudes were most dependent on the ACL. A decrease in ACL stiffness or reference strain significantly increased average contact pressure in mid-stance, with the pressure migrating posteriorly on the medial tibial plateau. These ligament-dependent shifts in tibiofemoral cartilage contact during walking are potentially relevant to consider when investigating the causes of early onset osteoarthritis following knee ligament injury and surgical treatment. PMID:26408997

  15. Medial Meniscus Root Tear in the Middle Aged Patient: A Case Based Review

    PubMed Central

    Carreau, Joseph H.

    2017-01-01

    Abstract Biomechanical studies have shown that medial meniscal root tears result in meniscal extrusion and increased tibiofemoral joint contact pressures, which can accelerate the progression of arthritis. Repair is generally recommended for acute injuries in the young, active patient population. The far more common presentation however, is a subacute root tear with medial meniscal extrusion in a middle aged patient. Coexisting arthritis is common in this population and complicates decision making. Treatment should be based on the severity of the underlying arthritis. In cases of early or minimal arthritis, root repair is ideal to improve symptoms and restore meniscal function. In patients with moderate or severe medial compartment arthritis, medial unloader bracing or injections can be tried initially. When non-operative treatment fails, high tibial osteotomy or arthroplasty is recommended. Long term clinical studies are needed to determine the natural history of medial meniscal root tears in middle aged patients and the best surgical option. PMID:28852346

  16. A subdivision-based parametric deformable model for surface extraction and statistical shape modeling of the knee cartilages

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2006-03-01

    Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.

  17. Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing.

    PubMed

    Nishino, T; Chang, F; Ishii, T; Yanai, T; Mishima, H; Ochiai, N

    2010-07-01

    We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.

  18. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    PubMed

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  19. High accuracy in knee alignment and implant placement in unicompartmental medial knee replacement when using patient-specific instrumentation.

    PubMed

    Volpi, P; Prospero, E; Bait, C; Cervellin, M; Quaglia, A; Redaelli, A; Denti, M

    2015-05-01

    The influence of patient-specific instrumentations on the accuracy of unicompartmental medial knee replacement remains unclear. The goal of this study was to examine the ability of patient-specific instrumentation to accurately reproduce postoperatively what the surgeon had planned preoperatively. Twenty consecutive patients (20 knees) who suffered from isolated unicompartmental medial osteoarthritis of the knee and underwent medial knee replacement using newly introduced magnetic resonance imaging-based patient-specific instrumentation were assessed. This assessment recorded the following parameters: (1) the planned and the postoperative mechanical axis acquired through long-leg AP view radiographies; (2) the planned and the postoperative tibial slope acquired by means of standard AP and lateral view radiographies; and (3) the postoperative fit of the implanted components to the bone in coronal and sagittal planes. The hypothesis of the study was that there was no statistically significant difference between postoperative results and preoperatively planned values. The study showed that (1) the difference between the postoperative mechanical axis (mean 1.9° varus ± 1.2° SD) and the planned mechanical axis (mean 1.8° varus ± 1.2° SD) was not statistically significant; (2) the difference between the postoperative tibial slope (mean 5.2° ± 0.6° SD) and the planned tibial slope (mean 5.4° ± 0.6° SD) was statistically significant (p = 0.008); and (3) the postoperative component fit to bone in the coronal and sagittal planes was accurate in all cases; nevertheless, in one knee, all components were implanted one size smaller than preoperatively planned. Moreover, in two additional cases, one size thinner and one size thicker of the polyethylene insert were used. This study suggests that overall patient-specific instrumentation was highly accurate in reproducing postoperatively what the surgeon had planned preoperatively in terms of mechanical axis, tibial

  20. Motion of the Tympanic Membrane after Cartilage Tympanoplasty Determined by Stroboscopic Holography

    PubMed Central

    Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2009-01-01

    Stroboscopic holography was used to quantify dynamic deformations of the tympanic membrane (TM) of the entire surface of the TM before and after cartilage tympanoplasty of the posterior or posterior-superior part of the TM. Cartilage is widely used in tympanoplasties to provide mechanical stability for the TM. Three human cadaveric temporal bones were used. A 6 mm × 3 mm oval cartilage graft was placed through the widely opened facial recess onto the medial surface of the posterior or posterior-superior part of the TM. The graft was either in contact with the bony tympanic rim and manubrium or not. Graft thickness was either 0.5 or 1.0 mm. Stroboscopic holography produced displacement amplitude and phase maps of the TM surface in response to stimulus sound. Sound stimuli were 0.5, 1, 4 and 7 (or 8) kHz tones. Middle ear impedance was measured from the motion of the entire TM. Cartilage placement generally produced reductions in the motion of the TM apposed to the cartilage, especially at 4 kHz and 7 or 8 kHz. Some parts of the TM showed altered motion compared to the control in all three cases. In general, middle ear impedance was either unchanged or increased somewhat after cartilage reconstruction both at low (0.5 and 1 kHz) and high (4 and 7 kHz) frequencies. At 4 kHz, with the 1.0 mm thick graft that was in contact with the bony tympanic rim, the impedance slightly decreased. While our earlier work with time-averaged holography allowed us to observe differences in the pattern of TM motion caused by application of cartilage to the TM, stroboscopic holography is more sensitive to TM motions and allowed us to quantify the magnitude and phase of motion of each point on the TM surface. Nonetheless, our results are similar to those of our earlier work: The placement of cartilage on the medial surface of TM reduces the motion of the TM that apposes the cartilage. These obvious local changes occur even though the cartilage had little effect on the sound-induced motion

  1. Cartilage morphology at 2-3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology.

    PubMed

    Wang, Xinyang; Wang, Yuanyuan; Bennell, Kim L; Wrigley, Tim V; Cicuttini, Flavia M; Fortin, Karine; Saxby, David J; Van Ginckel, Ans; Dempsey, Alasdair R; Grigg, Nicole; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Lloyd, David G; Bryant, Adam L

    2017-02-01

    To examine differences in cartilage morphology between young adults 2-3 years post-anterior cruciate ligament reconstruction (ACLR), with or without meniscal pathology, and control participants. Knee MRI was performed on 130 participants aged 18-40 years (62 with isolated ACLR, 38 with combined ACLR and meniscal pathology, and 30 healthy controls). Cartilage defects, cartilage volume and bone marrow lesions (BMLs) were assessed from MRI using validated methods. Cartilage defects were more prevalent in the isolated ACLR (69 %) and combined group (84 %) than in controls (10 %, P < 0.001). Furthermore, the combined group showed higher prevalence of cartilage defects on medial femoral condyle (OR 4.7, 95 % CI 1.3-16.6) and patella (OR 7.8, 95 % CI 1.5-40.7) than the isolated ACLR group. Cartilage volume was lower in both ACLR groups compared with controls (medial tibia, lateral tibia and patella, P < 0.05), whilst prevalence of BMLs was higher on lateral tibia (P < 0.001), with no significant differences between the two ACLR groups for either measure. Cartilage morphology was worse in ACLR patients compared with healthy controls. ACLR patients with associated meniscal pathology have a higher prevalence of cartilage defects than ACLR patients without meniscal pathology. The findings suggest that concomitant meniscal pathology may lead to a greater risk of future OA than isolated ACLR. III.

  2. Canine stifle joint biomechanics associated with tibial plateau leveling osteotomy predicted by use of a computer model.

    PubMed

    Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J

    2014-07-01

    To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.

  3. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Morishita, Katsuyuki; Ichihashi, Noriaki

    2017-01-01

    A high proportion of flexor digitorum longus attachment is found at the posteromedial border of the tibia, which is the most common location of medial tibial stress syndrome (MTSS). Therefore, plantar flexion strength of the lesser toes could be related to MTSS; however, the relationship between MTSS and muscle strength of the hallux and lesser toes is not yet evaluated due to the lack of quantitative methods. This study investigated the muscle strength characteristics in runners with a history of MTSS by using a newly developed device to measure the muscle strength of the hallux, lesser toes, and ankle. This study comprised 27 collegiate male runner participants (20.0 ± 1.6 years, 172.1 ± 5.1 cm, 57.5 ± 4.0 kg). Maximal voluntary isometric contraction (MVIC) torque of the plantar flexion, dorsiflexion, inversion, and eversion of the ankle were measured by using an electric dynamometer. MVIC torque of the 1st metatarsophalangeal joint (MTPJ) and 2nd-5th MTPJ were measured by using a custom-made torque-measuring device. MVIC torques were compared between runners with and without a history of MTSS. MVIC torque of the 1st MTPJ plantar flexion was significantly higher in runners with a history of MTSS than in those without it. In contrast, there were no significant differences in the MVIC torque values of the 2nd-5th MTPJ plantar flexion and each MVIC torque of the ankle between runners with and without a history of MTSS. A history of MTSS increased the isometric FHL strength.

  4. The "safe zone" in medial percutaneous calcaneal pin placement.

    PubMed

    Gamie, Zakareya; Donnelly, Leo; Tsiridis, Eleftherios

    2009-05-01

    Percutaneous pin insertion into the medial calcaneus places a number of structures at risk. Evidence suggests that the greatest risk is to the medial calcaneal nerve (MCN). The medial calcaneal region of 24 cadavers was dissected to determine the major structures at risk. By using four palpable anatomical landmarks, the inferior tip of the medial malleolus (point A), the posterior superior portion of the calcaneal tuberosity (point B), the navicular tuberosity (point C), and the medial process of the calcaneal tuberosity (point D), we attempted to define the safe zone taking into account all possible variables in our dissections including ankle position, side, gender, and possible anatomical variations of the MCN. The commonest arrangement of the MCN was two MCNs that arose independently, one arising before the bifurcation of the tibial nerve and the other arising from the medial plantar nerve. A zone could be defined posterior to 75% of the distance along the lines AB, CD, AD, and CB which would avoid most structures. The posterior branches of the MCN, however, would still be at risk and placing the pin too far posteriorly risks an avulsion fracture. This is the first study to employ four palpable anatomical landmarks to identify a zone to minimize damage to neurovascular structures. It may not be possible, however, to avoid injury of the MCN and consequent sensory loss to the sole of the foot.

  5. Anatomy and classification of the posterior tibial fragment in ankle fractures.

    PubMed

    Bartoníček, Jan; Rammelt, Stefan; Kostlivý, Karel; Vaněček, Václav; Klika, Daniel; Trešl, Ivo

    2015-04-01

    The aim of this study was to analyze the pathoanatomy of the posterior fragment on the basis of a comprehensive CT examination, including 3D reconstructions, in a large patient cohort. One hundred and forty one consecutive individuals with an ankle fracture or fracture-dislocation of types Weber B or Weber C and evidence of a posterior tibial fragment in standard radiographs were included in the study. The mean patient age was 49 years (range 19-83 years). The exclusion criteria were patients below 18 years of age, inability to provide written consent, fractures of the tibial pilon, posttraumatic arthritis and pre-existing deformities. In all patients, post-injury radiographs were obtained in anteroposterior, mortise and lateral views. All patients underwent CT scanning in transverse, sagittal and frontal planes. 3D CT reconstruction was performed in 91 patients. We were able to classify 137 cases into one of the following four types with constant pathoanatomic features: type 1: extraincisural fragment with an intact fibular notch, type 2: posterolateral fragment extending into the fibular notch, type 3: posteromedial two-part fragment involving the medial malleolus, type 4: large posterolateral triangular fragment. In the 4 cases it was not possible to classify the type of the posterior tibial fragment. These were collectively termed type 5 (irregular, osteoporotic fragments). It is impossible to assess the shape and size of the posterior malleolar fragment, involvement of the fibular notch, or the medial malleolus, on the basis of plain radiographs. The system that we propose for classification of fractures of the posterior malleolus is based on CT examination and takes into account the size, shape and location of the fragment, stability of the tibio-talar joint and the integrity of the fibular notch. It may be a useful indication for surgery and defining the most useful approach to these injuries.

  6. Multi-echo GRE imaging of knee cartilage.

    PubMed

    Yuen, Joanna; Hung, Jachin; Wiggermann, Vanessa; Robinson, Simon D; McCormack, Robert; d'Entremont, Agnes G; Rauscher, Alexander

    2017-05-01

    To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation. After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated. Cartilage abnormalities were confirmed after arthroscopy and were graded using the Outerbridge classification scheme. Regions of interest were identified on average magnitude GRE images and compared to arthroscopy. All four patients presented with regions of Outerbridge Grade I and II cartilage damage on arthroscopy. One patient had Grade III changes. Grade I, II, and III changes were detectable on average magnitude and T2* maps, while Grade II and higher changes were also observable on MR frequency maps. For average magnitude images of healthy volunteers, the signal-to-noise ratio of the magnitude image averaged over three echoes was 4.26 ± 0.32, 12.26 ± 1.09, 14.31 ± 1.93, and 13.36 ± 1.13 in bone, femoral, tibial, and patellar cartilage, respectively. This proof-of-principle study demonstrates the feasibility of using different imaging contrasts from the 3D multi-echo GRE scan to visualize abnormalities of the articular cartilage. © 2016 International Society for Magnetic Resonance in Medicine Level of Evidence: 1 J. MAGN. RESON. IMAGING 2017;45:1502-1513. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Evaluation of the Talar Cartilage in Chronic Lateral Ankle Instability with Lateral Ligament Injury Using Biochemical T2* Mapping: Correlation with Clinical Symptoms.

    PubMed

    Hu, Yiwen; Tao, Hongyue; Qiao, Yang; Ma, Kui; Hua, Yinghui; Yan, Xu; Chen, Shuang

    2018-06-19

    This study aims to quantitatively compare T2* measurements of the talar cartilage between chronic lateral ankle instability (LAI) patients with lateral ligament injury and healthy volunteers, and to assess the association of T2* value with American Orthopedic Foot and Ankle Society (AOFAS) score. Nineteen consecutive patients with chronic LAI (LAI group) and 19 healthy individuals (control group) were enrolled. Biochemical magnetic resonance examination of the ankle was performed in all participants using three-dimensional gradient-echo T2* mapping. Total talar cartilage was divided into six subcompartments, including medial anterior (MA), central medial, medial posterior, lateral anterior, central lateral (LC), and lateral posterior regions. T2* values of respective cartilage areas were measured and compared between the two groups using Student t test. AOFAS scoring was performed for clinical evaluation. Then, the association of T2* value with AOFAS score was evaluated by Pearson correlation. The T2* values of total talar cartilage, as well as MA and LC cartilage compartments, in the chronic LAI group were significantly higher than control values (P <.001, P = .039, and P = .014, respectively). Furthermore, the T2* value of MA in the chronic LAI group was negatively correlated with AOFAS score (r =-0.8089, P <.001). Chronic LAI with lateral ligament injury may have a causal connection with early cartilage degeneration in the ankle joint, especially in MA and LC cartilage compartments, as assessed by quantitative T2* measurements. The clinical score correlates highly with T2* value of the MA cartilage compartment, indicating that MA may be the principal cartilage area conferring clinical symptoms. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Does a medial retraction blade transmit direct pressure to pharyngeal/esophageal wall during anterior cervical surgery?

    PubMed

    Han, In Ho; Lee, Su Heon; Lee, Jae Min; Kim, Hwan Soo; Nam, Kyoung Hyup; Duetzmann, Stephan; Park, Jon; Choi, Byung Kwan

    2015-01-01

    A prospective study of 25 patients who underwent anterior cervical surgery. To assess retraction pressure and the exposure of pharyngeal/esophageal (P/E) wall to the medial retractor blade to clarify whether medial retraction causes direct pressure transmission to the P/E wall. Retraction pressure on P/E walls has been used to explain the relation between the retraction pressure and dysphagia or the efficacies of new retractor blades. However, it is doubtful whether the measured pressure represent real retraction pressure on the P/E wall because exposure of the P/E in the surgical field could be reduced by the shielding effect of thyroid cartilage. Epi- and endoesophageal pressures were serially measured using online pressure transducers 15 minutes before retraction, immediately after retraction, and 30 minutes after retraction. To measure the extent of P/E wall exposure to pressure transducer, we used posterior border of thyroid cartilage as a landmark. Intraoperative radiograph was used to mark the position of the posterior border of thyroid cartilage. We checked out the marked location on retractors by measuring the distance from distal retractor tip. The mean epiesophageal pressure significantly increased after retraction (0 mmHg: 88.7 ± 19.6 mmHg: 81.9 ± 15.3 mmHg). The mean endoesophageal pressure minimally changed after retraction (9.0 ± 6.6 mmHg: 15.7 ± 13.8 mmHg: 17.0 ± 14.3 mmHg). The mean location of the posterior border of thyroid cartilage was 7.3 ± 3.5 mm on the retractor blade from the tip, which means epiesophageal pressure was measured against the posterior border of thyroid cartilage, not against the P/E wall. We suggest that a medial retraction blade does not transmit direct pressure on P/E wall due to minimal wall exposure and intervening thyroid cartilage. Our result should be considered when measuring retraction pressure during anterior cervical surgery or designing novel retractor systems.

  9. Influence of age on clinical outcomes of three-dimensional transfer of the tibial tuberosity for patellar instability with patella alta.

    PubMed

    Otsuki, Shuhei; Nakajima, Mikio; Fujiwara, Kenta; Okamoto, Yoshinori; Iida, Go; Murakami, Tomohiko; Neo, Masashi

    2017-08-01

    To evaluate the clinical outcomes of three-dimensional (3D) transfer of the tibial tuberosity for patellar instability with patella alta, with a focus on the influence of age at initial surgery. Three-dimensional surgery was performed on 28 knees with a mean follow-up of 46 months. Patients were separated into three groups based on the age at initial surgery: group A, 10 knees and an average age of 16.3 ± 1.8 (14-19) years; group B, 10 knees and an average age of 22.1 ± 2.5 (20-28) years; and group C, eight knees and an average age of 44.0 ± 2.2 (40-46) years. Patellofemoral geometry improvement focused on patella alta by determining the Insall-Salvati ratio and Caton-Deschamps index, rotational malalignment by measuring the tibial tubercle-trochlear groove (TT-TG) distance, and lateral patellar subluxation by measuring the patellar tilt. Clinical outcomes were evaluated by the Lysholm and Kujala scores, which were compared before and after surgery. Cartilage degeneration was evaluated by the International Cartilage Repair Society grading system at initial arthroscopy. The patellar height, TT-TG, and patellar tilt significantly improved in all groups postoperatively (p < 0.05). The Lysholm and Kujala scores also significantly improved postoperatively; however, both scores were lower in group C than in the other groups (p < 0.05). Particularly, pain scores were more severe in group C than in the other groups, and the severity of cartilage degeneration correlated with the pain scores (p < 0.05). Cartilage damage differed significantly between the groups at initial arthroscopy; particularly, group C included grades III and IV cartilage degeneration (p < 0.05). Age at initial surgery may be the predicting factor for poor clinical outcomes of 3D transfer surgery. The clinical outcome may depend on the age at surgery, which correlated with cartilage damage; thus, surgeons should be given this information when patients are considered undergoing patella

  10. Editorial Commentary: Chondrocytes Trump Ligaments! Partial Release of the Medial Collateral Ligament During Knee Arthroscopy Protects Chondrocytes.

    PubMed

    Leland, J Martin

    2016-10-01

    With knee arthroscopy being the most common orthopaedic procedure performed in the United States, it is crucial to be able to access the entire knee without iatrogenic injury. Frequently orthopaedic surgeons encounter tight medial compartments, creating difficulty in accessing the posterior horn of the medial meniscus without damaging the articular cartilage. Partial release of the medial collateral ligament during knee arthroscopy protects chondrocytes. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Permeability and shear modulus of articular cartilage in growing mice.

    PubMed

    Berteau, J-Ph; Oyen, M; Shefelbine, S J

    2016-02-01

    Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Understanding the changes in mechanical tissues properties during growth is a critical step in advancing strategies for orthopedics and for cell- and biomaterial- based therapies dedicated to cartilage repair. We hypothesize that at the microscale, the articular cartilage tissue properties of the mouse (i.e., shear modulus and permeability) change with the growth and are dependent on location within the joint. We tested cartilage on the medial femoral condyle and lateral femoral condyle of seven C57Bl6 mice at different ages (2, 3, 5, 7, 9, 12, and 17 weeks old) using a micro-indentation test. Results indicated that permeability decreased with age from 2 to 17 weeks. Shear modulus reached a peak at the end of the growth (9 weeks). Within an age group, shear modulus was higher in the MFC than in the LFC, but permeability did not change. We have developed a method that can measure natural alterations in cartilage material properties in a murine joint, which will be useful in identifying changes in cartilage mechanics with degeneration, pathology, or treatment.

  12. Human cartilage repair with a photoreactive adhesive-hydrogel composite.

    PubMed

    Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H

    2013-01-09

    Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects.

  13. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?

    PubMed

    Hunter, D J; Zhang, Y Q; Tu, X; Lavalley, M; Niu, J B; Amin, S; Guermazi, A; Genant, H; Gale, D; Felson, D T

    2006-08-01

    To explore the relative contribution of hyaline cartilage morphologic features and the meniscus to the radiographic joint space. The Boston Osteoarthritis of the Knee Study is a natural history study of symptomatic knee osteoarthritis (OA). Baseline and 30-month followup assessments included knee magnetic resonance imaging (MRI) and fluoroscopically positioned weight-bearing knee radiographs. Cartilage and meniscal degeneration were scored on MRI in the medial and lateral tibiofemoral joints using a semiquantitative grading system. Meniscal position was measured to the nearest millimeter. The dependent variable was joint space narrowing (JSN) on the plain radiograph (possible range 0-3). The predictor variables were MRI cartilage score, meniscal degeneration, and meniscal position measures. We first conducted a cross-sectional analysis using multivariate regression to determine the relative contribution of meniscal factors and cartilage morphologic features to JSN, adjusting for body mass index (BMI), age, and sex. The same approach was used for change in JSN and change in predictor variables. We evaluated 264 study participants with knee OA (mean age 66.7 years, 59% men, mean BMI 31.4 kg/m(2)). The results from the models demonstrated that meniscal position and meniscal degeneration each contributed to prediction of JSN, in addition to the contribution by cartilage morphologic features. For change in medial joint space, both change in meniscal position and change in articular cartilage score contributed substantially to narrowing of the joint space. The meniscus (both its position and degeneration) accounts for a substantial proportion of the variance explained in JSN, and the change in meniscal position accounts for a substantial proportion of change in JSN.

  14. Correlation between μCT imaging, histology and functional capacity of the osteoarthritic knee in the rat model of osteoarthritis.

    PubMed

    Bagi, Cedo M; Zakur, David E; Berryman, Edwin; Andresen, Catharine J; Wilkie, Dean

    2015-08-25

    To acquire the most meaningful understanding of human arthritis, it is essential to select the disease model and methodology translatable to human conditions. The primary objective of this study was to evaluate a number of analytic techniques and biomarkers for their ability to accurately gauge bone and cartilage morphology and metabolism in the medial meniscal tear (MMT) model of osteoarthritis (OA). MMT surgery was performed in rats to induce OA. A dynamic weight bearing system (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs in rats. At the end of a 10-week study cartilage pathology was evaluated by micro computed tomography (μCT), contrast enhanced μCT (EPIC μCT) imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The study results showed a negative impact of MMT surgery on the weight-bearing capacity of the operated limb. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by elevated CTX-II in serum, EPIC μCT and histology. Bone analysis by μCT showed thickening of the subchondral bone beneath the damaged cartilage, loss of cancellous bone at the metaphysis and active osteophyte formation. The study emphasizes the need for using various methodologies that complement each other to provide a comprehensive understanding of the pathophysiology of OA at the organ, tissue and cellular levels. Results from this study suggest that use of histology, μCT and EPIC μCT, and functional DWB tests provide powerful combination to fully assess the key aspects of OA and enhance data interpretation.

  15. A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation.

    PubMed

    Zahoor, Talal; Mitchell, Reed; Bhasin, Priya; Schon, Lew; Zhang, Zijun

    2016-07-01

    Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Intra-articular fracture induces PTOA pathology. Descriptive laboratory study. Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.

  16. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA.

    PubMed

    Bagi, Cedo M; Berryman, Edwin; Zakur, David E; Wilkie, Dean; Andresen, Catharine J

    2015-11-06

    Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and

  17. Semiextended approach for intramedullary nailing via a patellar eversion technique for tibial-shaft fractures: Evaluation of the patellofemoral joint.

    PubMed

    Yasuda, Tomohiro; Obara, Shu; Hayashi, Junji; Arai, Masayuki; Sato, Kaoru

    2017-06-01

    Intramedullary nail fixation is a common treatment for tibial-shaft fractures, and it offers a better functional prognosis than other conservative treatments. Currently, the primary approach employed during intramedullary nail insertion is the semiextended position is the suprapatellar approach, which involves a vertical incision of the quadriceps tendon Damage to the patellofemoral joint cartilage has been highlighted as a drawback associated with this approach. To avoid this issue, we perform surgery using the patellar eversion technique and a soft sleeve. This method allows the articular surface to be monitored during intramedullary nail insertion. We arthroscopically assessed the effect of this technique on patellofemoral joint cartilage. The patellar eversion technique allows a direct view and protection of the patellofemoral joint without affecting the patella. Thus, damage to the patellofemoral joint cartilage can be avoided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Effects of creating a tunnel through intercondylar fossa under arthroscopy for the treatment of complex tears at the medial meniscus posterior horn].

    PubMed

    Dong, Ling-Dai; Bing, Chang-Jian; Li, Jian-Lin; Cai, Yue

    2017-04-25

    To discuss the advantages of the arthroscopic treatment for complex tears of the medial meniscus posterior horn by creating a tunnel passageway through the intercondylar fossa. All 127 patients including 24 males and 103 females with complex tears at the medial meniscus posterior horn were reviewed. The age of all patients ranged from 45 to 78 years old, with an average of 67 years old. All 127 patients were treated with partial meniscectomy, in which 112 patients were treated with partial meniscectomy smoothly with three incisions (anterior medial incision, anterior lateral incision, high anterior lateral incision), and 15 patients were treated with four incisions (anterior medial incision, anterior lateral incision, high anterior lateral incision, posterior medial incision). Four aspects were estimated:whether the meniscus posterior horns could be observed totally and conveniently, whether tools could be pushed to target area conveniently, the damage of adjacent cartilages, operation time(the operation time of partial meniscectomy). Posterior horns of all patients were totally and conveniently observed, tools were conveniently pushed to the target area in all cases, and all the cases had no iatrogenic injuries at adjacent cartilages. The operation time of partial meniscectomy at posterior horns with three incisions ranged from 5 to 10 minutes, and it ranged from 10 to 30 minutes with four incisions. It is very convenient and fast of the arthroscopy to treat complex tears of the medial meniscus posterior horn by creating a tunnel through the intercondylor fossa. Iatrogenic injuries of the adjacent cartilages were prevented to the greatest extent.

  19. Shockwave treatment for medial tibial stress syndrome in military cadets: A single-blind randomized controlled trial.

    PubMed

    Gomez Garcia, Santiago; Ramon Rona, Silvia; Gomez Tinoco, Martha Claudia; Benet Rodriguez, Mikhail; Chaustre Ruiz, Diego Mauricio; Cardenas Letrado, Francia Piedad; Lopez-Illescas Ruiz, África; Alarcon Garcia, Juan Maria

    2017-10-01

    Medial tibial stress syndrome (MTSS) is a common injury in athletes and soldiers. Several studies have demonstrated the effectiveness of extracorporeal shockwave treatment (ESWT) in athletes with MTSS. To assess whether one session of focused ESWT is effective in the treatment of military cadets with MTSS. A randomized, prospective, controlled, single-blind, parallel-group clinical study. Ib. Military School of Cadets of the Colombian Army. Forty-two military cadets with unilateral chronic MTSS were randomly assigned to either one session of focused electromagnetic ESWT (1500 pulses at 0.20 mJ/mm 2 ) plus a specific exercise programme (muscle stretching and strengthening exercises) or the exercise programme alone. The primary endpoint was change in asymptomatic running test (RT) duration at four weeks from baseline. Secondary endpoints were changes in the visual analogue scale (VAS) after running and modified Roles and Maudsley (RM) score also at four weeks from baseline. ESWT patients were able to run longer. Mean RT after four weeks was 17 min 33 s (SE: 2.36) compared to 4 min 48 s (SE: 1.03) in the exercise-only group (p = 0.000). Mean VAS after running was 2.17 (SE: 0.44) in the ESWT group versus 4.26 (SE: 0.36) in the exercise-only group (p = 0.001). The ESWT group had a significantly higher RM score, with excellent or good results for 82.6% of patients vs. 36.8% in the exercise-only group (p = 0.002). No significant adverse effects of ESWT were observed. A single application of focused shockwave treatment in combination with a specific exercise programme accelerates clinical and functional recovery in military cadets with MTSS. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Extrusion of the medial meniscus in knee osteoarthritis assessed with a rotating clino-orthostatic permanent-magnet MRI scanner.

    PubMed

    Paparo, Francesco; Revelli, Matteo; Piccazzo, Riccardo; Astengo, Davide; Camellino, Dario; Puntoni, Matteo; Muda, Alessandro; Rollandi, Gian Andrea; Garlaschi, Giacomo; Cimmino, Marco Amedeo

    2015-04-01

    The objectives of this study were to assess the influence of weight-bearing on tibiofemoral osteoarthritis, including medial meniscal extrusion, by using a low-field (0.25 T) rotating clino-orthostatic permanent-magnet magnetic resonance (MR) scanner, and to analyse correlations of medial meniscal extrusion with the patient's Kellgren-Lawrence score, body mass index, and all the osteoarthritis features of the WORMS scoring system. Twenty-six patients (69.2% women and 30.8% men; mean age 67 ± 9.7 years) with medial tibiofemoral knee osteoarthritis were prospectively enrolled and MR sequences were acquired in both clino- and orthostatic position. MR images were assessed by two independent radiologists, according to the WORMS scale. Medial meniscal extrusion was measured and its clino-orthostatic difference (∆MME) was calculated. Intra- and inter-observer agreement of the WORMS Global Score readings was high by Cohen's K test (>0.81). No significant clino-orthostatic changes in the scoring parameters of the medial tibiofemoral joint were shown by Wilcoxon's test. Medial meniscal extrusion measured on orthostatic images was significantly higher than that measured in clinostatic position (p < 0.0001). At univariate analysis, the Kellgren-Lawrence score, WORMS Global Score, cartilage loss, meniscal damage, and osteophytes were significantly correlated to ∆MME (p < 0.005). Using a multiple regression model, tibiofemoral cartilage loss was found to correlate independently with ∆MME (p = 0.0499). Medial meniscal extrusion, evaluated with an open-configuration, rotating MR scanner, increased from the clinostatic to the orthostatic position. ∆MME, a new meniscal parameter, correlated with several important features of medial tibiofemoral osteoarthritis.

  1. Does Medial Meniscal Allograft Transplantation With the Bone-Plug Technique Restore the Anatomic Location of the Native Medial Meniscus?

    PubMed

    Kim, Nam-Ki; Bin, Seong-Il; Kim, Jong-Min; Lee, Chang-Rack

    2015-12-01

    Previous work has shown the importance of restoring the normal structure of the native meniscus with meniscal allograft transplantation. The purpose of this study was to compare the anatomic positions of the anterior horn and posterior horn between the preoperative medial meniscus and the postoperative meniscal allograft after medial meniscal allograft transplantation with the bone-plug technique. The hypothesis was that the bone-plug technique could restore the preoperative structure of the native medial meniscus. Case series; Level of evidence, 4. Between December 1999 and December 2013, a total of 59 patients (49 male, 10 female) underwent medial meniscal allograft transplantation by use of the bone-plug technique. The anatomic positions of both horns in the native medial meniscus and in the meniscal allograft were measured via MRI. The percentage reference method was used to measure the locations of both horns. On coronal MRI, the mean absolute distance of the posterior horn from the lateral border of the tibial plateau changed from 45.2 ± 3.3 to 48.1 ± 4.2 mm (P < .05), and the percentage distance of the posterior horn changed from 59.6% to 63.0% (P < .05). On sagittal MRI, the mean absolute distance of the posterior horn from the anterior reference point changed from 40.3 ± 3.0 to 42.0 ± 3.5 mm (P < .05), and the mean percentage distance of the posterior horn changed from 76.5% to 79.4% (P <.05). On coronal MRI, the mean absolute distance of the anterior horn from the lateral border of the tibial plateau changed from 41.3 ± 4.2 to 48.5 ± 5.6 mm (P < .05), and the mean percentage distance of the anterior horn changed from 54.5% to 63.8% (P < .05). On sagittal MRI, the mean absolute distance of the anterior horn from the anterior reference point changed from 5.5 ± 1.0 to 9.9 ± 2.9 mm (P < .05), and the mean percentage distance of the anterior horn changed from 10.6% to 19.0% (P < .05). Despite attempts to place the meniscal allograft in the same

  2. Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial

    PubMed Central

    Bennell, Kim; Bowles, Kelly-Ann; Payne, Craig; Cicuttini, Flavia; Osborne, Richard; Harris, Anthony; Hinman, Rana

    2007-01-01

    Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA), there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259. PMID:17892539

  3. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    To evaluate the effects of tibial plateau leveling osteotomy (TPLO) on femorotibial contact mechanics and 3-dimensional (3D) kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. In vitro biomechanical study. Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TPLO-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Significant disturbances to all measured contact mechanical variables were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and increased internal tibial rotation in the CrCL-deficient stifle. No significant differences in 3D femorotibial alignment were observed between normal and TPLO-treated stifles; however, femorotibial contact area remained significantly smaller and peak contact pressures in both medial and lateral stifle compartments were positioned more caudally on the tibial plateau, when compared with normal. Whereas TPLO eliminates craniocaudal stifle instability during simulated weight bearing, the procedure fails to concurrently restore femorotibial contact mechanics to normal. Progression of stifle osteoarthritis in dogs treated with TPLO may be partly the result of abnormal stifle contact mechanics induced by altering the orientation of the proximal tibial articulating surface.

  4. Delayed endochondral ossification in early medial coronoid disease (MCD): a morphological and immunohistochemical evaluation in growing Labrador retrievers.

    PubMed

    Lau, S F; Hazewinkel, H A W; Grinwis, G C M; Wolschrijn, C F; Siebelt, M; Vernooij, J C M; Voorhout, G; Tryfonidou, M A

    2013-09-01

    Medial coronoid disease (MCD) is a common joint disease of dogs. It has a multifactorial aetiology, but the relationship between known causal factors and the disease has yet to be elucidated. As most of the published literature is clinical and it reports changes associated with advanced disease, it is not known whether the changes reflect the cause or consequences of the condition. The aim of this study was to investigate early micromorphological changes occurring in articular cartilage and to describe the postnatal development of the medial coronoid process (MCP) before MCD develops. Three litters of MCD-prone young Labrador retrievers were purpose-bred from a dam and two sires with MCD. Comparisons of the micromorphological appearance of the MCP in MCD-negative and MCD-positive joints demonstrated that MCD was initially associated with a disturbance of endochondral ossification, namely a delay in the calcification of the calcifying zone, without concurrent abnormalities in the superficial layers of the joint cartilage. Cartilage canals containing patent blood vessels were only detected in dogs <12 weeks old, but the role of these channels in impaired ossification requires further investigation. Retained hyaline cartilage might ossify as the disease progresses, but weak areas can develop into cracks between the retained cartilage and the subchondral bone, leading to cleft formation and fragmentation of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Oxford Medial Partial Knee Replacement. The rationale for a femur first technique.

    PubMed

    Shakespeare, David; Waite, Jon

    2012-12-01

    The Oxford Medial Partial Knee Replacement (PKR) has been in clinical use for more than 20 years. The current surgical technique requires a number of judgements to be made, and even in the most experienced hands surgery can be challenging. We present an alternative surgical technique, which we believe addresses the unpredictability of the current method. The technique is based on precise femoral positioning prior to tibial resection. A prospective series of 125 Oxford Medial PKRs was performed using this new technique and a radiographical analysis was performed. We used meniscal thickness, meniscal position and femoral position as measures of reproducibility of the procedure. Variability in meniscal thickness has been minimised with a 3mm meniscal bearing used in 21 knees (15%), 4mm (the target thickness) in 73 knees (59%) and 5mm in 30 knees (24%). The mean meniscal position relative to the tibial tray upright was 2mm (SD 1mm). Femoral component position relative to the tibial tray, which defines the excursion of the meniscus was also assessed. Mean coronal plane alignment was 2° of valgus (SD 2.8). Mean flexion/extension was 3.8° (SD 3.1). The mean rotation was 10° internal (SD 5°). We believe this new technique makes this procedure more reproducible, and should be considered as a viable alternative to the current recommended technique. It may be a better technique for those surgeons who are relatively inexperienced with this prosthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Case report: multifocal subchondral stress fractures of the femoral heads and tibial condyles in a young military recruit.

    PubMed

    Yoon, Pil Whan; Yoo, Jeong Joon; Yoon, Kang Sup; Kim, Hee Joong

    2012-03-01

    Subchondral stress fractures of the femoral head may be either of the insufficiency-type with poor quality bone or the fatigue-type with normal quality bone but subject to high repetitive stresses. Unlike osteonecrosis, multiple site involvement rarely has been reported for subchondral stress fractures. We describe a case of multifocal subchondral stress fractures involving femoral heads and medial tibial condyles bilaterally within 2 weeks. A 27-year-old military recruit began having left knee pain after 2 weeks of basic training, without any injury. Subsequently, right knee, right hip, and left hip pain developed sequentially within 2 weeks. The diagnosis of multifocal subchondral stress fracture was confirmed by plain radiographs and MR images. Nonoperative treatment of the subchondral stress fractures of both medial tibial condyles and the left uncollapsed femoral head resulted in resolution of symptoms. The collapsed right femoral head was treated with a fibular strut allograft to restore congruity and healed without further collapse. There has been one case report in which an insufficiency-type subchondral stress fracture of the femoral head and medial femoral condyle occurred within a 2-year interval. Because the incidence of bilateral subchondral stress fractures of the femoral head is low and multifocal involvement has not been reported, multifocal subchondral stress fractures can be confused with multifocal osteonecrosis. Our case shows that subchondral stress fractures can occur in multiple sites almost simultaneously.

  7. Posterior horn medial meniscal root repair with cruciate ligament/medial collateral ligament combined injuries.

    PubMed

    Wilson, Brian F; Johnson, Darren L

    2011-12-01

    Many meniscal root tears remain unrepaired, potentially due to under-recognition and the technical challenge of repairing them. A great effort is made to preserve the native meniscus and restore the circumferential fibers for hoop stress resistance. It has been well demonstrated in the literature that failure to repair this will lead to increased contact pressures in the medial compartment and early degenerative changes in the articular cartilage. Our technique is one that allows the meniscus to resume its important role of knee stability. A thorough understanding of meniscal root anatomy, as well as repair techniques, is important for the cruciate ligament surgeon. Copyright © 2011, SLACK Incorporated.

  8. The role of the deep medial collateral ligament in controlling rotational stability of the knee.

    PubMed

    Cavaignac, Etienne; Carpentier, Karel; Pailhé, Regis; Luyckx, Thomas; Bellemans, Johan

    2015-10-01

    The tibial insertion of the deep medial collateral ligament (dMCL) is frequently sacrificed when the proximal tibial cut is performed during total knee arthroplasty. The role of the dMCL in controlling the knee's rotational stability is still controversial. The aim of this study was to quantify the rotational laxity induced by an isolated lesion of the dMCL as it occurs during tibial preparation for knee arthroplasty. An isolated resection of the deep MCL was performed in 10 fresh-frozen cadaver knees. Rotational laxity was measured during application of a standard 5.0 N.m rotational torque. Maximal tibial rotation was measured at different knee flexion angles using an image-guided navigation system (Medivision Surgetics system, Praxim, Grenoble, France) before and after dMCL resection. In all cases, internal and external tibial rotation increased after dMCL resection. Total rotational laxity increased significantly for all knee flexion angles, with an average difference of +7.8° (SD 5.7) with the knee in extension, +8.9° (SD 1.9) in 30° flexion, +7° (SD 2.9) in 60° flexion and +5.3° (SD 2.8) in 90° flexion. Sacrificing the tibial insertion of the deep MCL increases rotational laxity of the knee by 5°-9°, depending on the knee flexion angle. Based on our findings, new surgical techniques and implants that preserve the dMCL insertion such as tibial inlay components should be developed. Further clinical evaluations are necessary.

  9. Matrix metalloprotease-3 expression in the medial plica and pannus-like tissue in knees from patients with medial compartment osteoarthritis.

    PubMed

    Wang, Hwai-Shi; Kuo, Pei-Yin; Yang, Chih-Chang; Lyu, Shaw-Ruey

    2011-03-01

    The severity of cartilage degeneration is positively correlated with the severity of the pathologic change of medial plica. However, knowledge of the pathogenic mechanisms and the impact of plica on cartilage destruction is limited. The aim of the present study was therefore to investigate matrix metalloprotease-3 (MMP-3) expression in the plica isolated from patients with medial compartment osteoarthritis of the knee. Immunohistochemistry showed that MMP-3 was highly expressed in pannus-like tissue and the plica. Western blotting of culture supernatants showed that interleukin-1β (IL-1β) treatment induced MMP-3 release by cells isolated from pannus tissue or the plica. Furthermore, reverse transcriptase polymerase chain reaction and real-time polymerase chain reaction analysis showed that MMP-3 mRNA levels were increased after IL-1β treatment of the cultured cells. MMP-3 and IL-1β mRNAs were expressed in the plica and pannus-like tissue, with MMP-3 mRNA being expressed at significantly higher levels in the plica than in normal synovial membrane and highly expressed in the plica at different stages in osteoarthritis (OA) patients. Pannus-like tissue and the plica express IL-1β and MMP-3. Moreover, MMP-3 mRNA and protein expression in the plica may contribute to the pathogenesis of OA. © 2011 Blackwell Publishing Limited.

  10. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative.

    PubMed

    Eckstein, Felix; Boudreau, Robert; Wang, Zhijie; Hannon, Michael J; Duryea, Jeff; Wirth, Wolfgang; Cotofana, Sebastian; Guermazi, Ali; Roemer, Frank; Nevitt, Michael; John, Markus R; Ladel, Christoph; Sharma, Leena; Hunter, David J; Kwoh, C Kent

    2016-06-01

    To evaluate whether change in fixed-location measures of radiographic joint space width (JSW) and cartilage thickness by MRI predict knee replacement. Knees replaced between 36 and 60 months' follow-up in the Osteoarthritis Initiative were each matched with one control by age, sex and radiographic status. Radiographic JSW was determined from fixed flexion radiographs and subregional femorotibial cartilage thickness from 3 T MRI. Changes between the annual visit before replacement (T0) and 2 years before T0 (T-2) were compared using conditional logistic regression. One hundred and nineteen knees from 102 participants (55.5 % women; age 64.2 ± 8.7 [mean ± SD] years) were studied. Fixed-location JSW change at 22.5 % from medial to lateral differed more between replaced and control knees (case-control [cc] OR = 1.57; 95 % CI: 1.23-2.01) than minimum medial JSW change (ccOR = 1.38; 95 % CI: 1.11-1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed-location JSW. Location-independent thinning and thickening scores were elevated prior to knee replacement. Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. • Fixed-location JSW predicts surgical knee replacement more strongly than minimum JSW. • MRI predicts knee replacement with similar accuracy to radiographic JSW. • MRI reveals greater cartilage thinning and thickening prior to knee replacement.

  11. Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes.

    PubMed

    Lee, Dae-Hee; Lee, Chang-Rack; Jeon, Jin-Ho; Kim, Kyung-Ah; Bin, Seong-Il

    2015-01-01

    Graft extrusion after meniscus allograft transplantation (MAT) may be affected by horn fixation, which differs between medial and lateral MAT. Few studies have compared graft extrusion, especially sagittal extrusion, after medial and lateral MAT. In patients undergoing medial and lateral MAT, graft extrusion is likely similar and not correlated with postoperative Lysholm scores. Cohort study; Level of evidence, 2. Meniscus graft extrusion in the coronal and sagittal planes was compared in 51 knees undergoing medial MAT and 84 undergoing lateral MAT. Distances from the anterior and posterior articular cartilage margins to the anterior (anterior cartilage meniscus distance [ACMD]) and posterior (posterior cartilage meniscus distance [PCMD]) horns, respectively, were assessed on immediate postoperative magnetic resonance imaging and compared in patients undergoing medial and lateral MAT. Correlations between coronal and sagittal graft extrusion and between extrusion and the Lysholm score were compared in the 2 groups. In the coronal plane, mean absolute (4.3 vs 2.7 mm, respectively; P<.001) and relative (39% vs 21%, respectively; P<.001) graft extrusions were significantly greater for medial than lateral MAT. In the sagittal plane, mean absolute and relative ACMD and PCMD values were significantly greater for medial than lateral MAT (P<.001 each). For both medial and lateral MAT, mean absolute and relative ACMDs were significantly larger than PCMDs (P<.001 each). Graft extrusion>3 mm in the coronal plane was significantly more frequent in the medial (78%) than in the lateral (35%) MAT group. In the sagittal plane, the frequencies of ACMDs (72% vs 39%, respectively) and PCMDs (23% vs 4%, respectively) >3 mm were also significantly greater in the medial than in the lateral MAT group. Coronal and sagittal extrusions were not correlated with postoperative Lysholm scores for both medial and lateral MAT. The amount and incidence of graft extrusion were greater after medial

  12. Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis.

    PubMed

    Roberts, B C; Solomon, L B; Mercer, G; Reynolds, K J; Thewlis, D; Perilli, E

    2018-04-01

    To study, in end-stage knee osteoarthritis (OA) patients, relationships between indices of in vivo dynamic knee joint loads obtained pre-operatively using gait analysis, static knee alignment, and the subchondral trabecular bone (STB) microarchitecture of their excised tibial plateau quantified with 3D micro-CT. Twenty-five knee OA patients scheduled for total knee arthroplasty underwent pre-operative gait analysis. Mechanical axis deviation (MAD) was determined radiographically. Following surgery, excised tibial plateaus were micro-CT-scanned and STB microarchitecture analysed in four subregions (anteromedial, posteromedial, anterolateral, posterolateral). Regional differences in STB microarchitecture and relationships between joint loading and microarchitecture were examined. STB microarchitecture differed among subregions (P < 0.001), anteromedially exhibiting highest bone volume fraction (BV/TV) and lowest structure model index (SMI). Anteromedial BV/TV and SMI correlated strongest with the peak external rotation moment (ERM; r = -0.74, r = 0.67, P < 0.01), despite ERM being the lowest (by factor of 10) of the moments considered, with majority of ERM measures below accuracy thresholds; medial-to-lateral BV/TV ratios correlated with ERM, MAD, knee adduction moment (KAM) and internal rotation moment (|r|-range: 0.54-0.74). When controlling for walking speed, KAM and MAD, the ERM explained additional 11-30% of the variations in anteromedial BV/TV and medial-to-lateral BV/TV ratio (R 2  = 0.59, R 2  = 0.69, P < 0.01). This preliminary study suggests significant associations between tibial plateau STB microarchitecture and knee joint loading indices in end-stage knee OA patients. Particularly, anteromedial BV/TV correlates strongest with ERM, whereas medial-to-lateral BV/TV ratio correlates strongest with indicators of medial-to-lateral joint loading (MAD, KAM) and rotational moments. However, associations with ERM should be interpreted with caution

  13. A novel suture technique using the FasT-Fix combined with Ultrabraid for pullout repair of the medial meniscus posterior root tear.

    PubMed

    Fujii, Masataka; Furumatsu, Takayuki; Kodama, Yuya; Miyazawa, Shinichi; Hino, Tomohito; Kamatsuki, Yusuke; Yamada, Kazuki; Ozaki, Toshifumi

    2017-05-01

    Medial meniscus posterior root has an important role in the maintenance of knee articular cartilage. Although pullout repair of the medial meniscus posterior root tear has become a gold standard, it has several difficulties for suturing. We have developed a modified Mason-Allen suture technique using the FasT-Fix all-inside suture device combined with Ultrabraid. The present suture technique allows a strong grasping of the medial meniscus posterior horn for arthroscopic pullout repair.

  14. Balloon osteoplasty--a new technique for reduction and stabilisation of impression fractures in the tibial plateau: a cadaver study and first clinical application.

    PubMed

    Ahrens, Philipp; Sandmann, Gunther; Bauer, Jan; König, Benjamin; Martetschläger, Frank; Müller, Dirk; Siebenlist, Sebastian; Kirchhoff, Chlodwig; Neumaier, Markus; Biberthaler, Peter; Stöckle, Ulrich; Freude, Thomas

    2012-09-01

    Fractures of the tibial plateau are among the most severe injuries of the knee joint and lead to advanced gonarthrosis if the reduction does not restore perfect joint congruency. Many different reduction techniques focusing on open surgical procedures have been described in the past. In this context we would like to introduce a novel technique which was first tested in a cadaver setup and has undergone its successful first clinical application. Since kyphoplasty demonstrated effective ways of anatomical correction in spine fractures, we adapted the inflatable instruments and used the balloon technique to reduce depressed fragments of the tibial plateau. The technique enabled us to restore a congruent cartilage surface and bone reduction. In this technique we see a useful new method to reduce depressed fractures of the tibial plateau with the advantages of low collateral damage as it is known from minimally invasive procedures.

  15. EMG and tibial shock upon the first attempt at barefoot running.

    PubMed

    Olin, Evan D; Gutierrez, Gregory M

    2013-04-01

    As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (p<.01), and the minimum knee flexion angle (p<.01). Based on our data, the initial change in mechanics may have detrimental effects on the runner. While it has been argued that BTS running may ultimately be less injurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Relationship of Static Tibial Tubercle-Trochlear Groove Measurement and Dynamic Patellar Tracking.

    PubMed

    Carlson, Victor R; Sheehan, Frances T; Shen, Aricia; Yao, Lawrence; Jackson, Jennifer N; Boden, Barry P

    2017-07-01

    The tibial tubercle to trochlear groove (TT-TG) distance is used for screening patients with a variety of patellofemoral joint disorders to determine who may benefit from patellar medialization using a tibial tubercle osteotomy. Clinically, the TT-TG distance is predominately based on static imaging with the knee in full extension; however, the predictive ability of this measure for dynamic patellar tracking patterns is unknown. To determine whether the static TT-TG distance can predict dynamic lateral displacement of the patella. Cohort study (Diagnosis); Level of evidence, 2. The static TT-TG distance was measured at full extension for 70 skeletally mature subjects with (n = 32) and without (n = 38) patellofemoral pain. The dynamic patellar tracking patterns were assessed from approximately 45° to 0° of knee flexion by use of dynamic cine-phase contrast magnetic resonance imaging. For each subject, the value of dynamic lateral tracking corresponding to the exact knee angle measured in the static images for that subject was identified. Linear regression analysis determined the predictive ability of static TT-TG distance for dynamic patellar lateral displacement for each cohort. The static TT-TG distance measured with the knee in full extension cannot accurately predict dynamic lateral displacement of the patella. There was weak predictive ability among subjects with patellofemoral pain ( r 2 = 0.18, P = .02) and no predictive capability among controls. Among subjects with patellofemoral pain and static TT-TG distances 15 mm or more, 8 of 13 subjects (62%) demonstrated neutral or medial patellar tracking patterns. The static TT-TG distance cannot accurately predict dynamic lateral displacement of the patella. A large percentage of patients with patellofemoral pain and pathologically large TT-TG distances may have neutral to medial maltracking patterns.

  17. The rabbit costal cartilage reconstructive surgical model.

    PubMed

    Badran, Karam W; Waki, Curt; Hamamoto, Ashley; Manz, Ryan; Wong, Brian J F

    2014-02-01

    Rib grafts in facial plastic surgery are becoming more frequently used. Small animal models, although not ideal may be used to emulate costal cartilage-based procedures. A surgical characterization of this tissue will assist future research in the selection of appropriate costal segments, based on quantitative and qualitative properties. The objective of this study is to assess the surgical anatomy of the rabbit costal margin and evaluate costal cartilage for use in either in vivo or ex vivo studies and to examine reconstructive procedures. Detailed thoracic dissections of 21 New Zealand white rabbits were performed post-mortem. Costal cartilage of true, false, and floating ribs were harvested. The length, thickness, and width at proximal, medial, and distal locations of the cartilage, with perichondrium intact were measured. Further qualitative observation and digital images of curvature, flexibility, and segmental cross-sectional shape were recorded. The main outcome measure(s) is to characterize, describe, and assess the consistency of dimensions, location, and shape of costal cartilage. In this study, 12 to 13 ribs encase the thoracic cavity. Cartilage from true ribs has an average length, width, and depth of 23.75 ± 0.662, 3.02 ± 0.025, and 2.18 ± 0.018 mm, respectively. The cartilage from false ribs has an average length, width, and depth of 41.97 ± 1.48, 2.00 ± 0.07, 1.19 ± 0.03 mm, and that of floating ribs are 7.66 ± 0.29, 1.98 ± 0.04, and 0.96 ± 0.03 mm. Rib 8 is found to be the longest costal cartilage (49.10 ± 0.64 mm), with the widest and thickest at ribs 1 (3.91 ± 0.08 mm) and 6 (2.41 ± 0.11 mm), respectively. Cross-sectional segments reveal the distal cartilage to maintain an hourglass shape that broadens to become circular and eventually ovoid at the costochondral junction. The New Zealand white rabbit is a practical source of costal cartilage that is of sufficient size and

  18. Tibial condylar valgus osteotomy (TCVO) for osteoarthritis of the knee: 5-year clinical and radiological results.

    PubMed

    Chiba, Ko; Yonekura, Akihiko; Miyamoto, Takashi; Osaki, Makoto; Chiba, Goji

    2017-03-01

    Tibial condylar valgus osteotomy (TCVO) is a type of opening-wedge high tibial osteotomy for advanced medial knee osteoarthritis (OA) with subluxated lateral joint. We report the concept, the current surgical technique with a locking plate, and the short-term clinical and radiological results of this procedure. 11 knees with medial OA and a widened lateral joint were treated by TCVO (KL stage III: 6, IV: 5). In this procedure, by the L-shaped osteotomy from the medial side of the proximal tibia to the intercondylar eminence and the valgus correction, lateralization of the mechanical axis and reduction of the subluxated lateral joint are obtained with early postoperative weight-bearing. Before, 6 months, 1, and 5 years after the operation, a visual analog scale (VAS), the Western Ontario and McMaster Universities Arthritis Index (WOMAC), alignment of the lower extremity, and congruency and stability of the femorotibial joint were investigated. The VAS improved from an average of 73 mm to 13 mm, and the total WOMAC score from 52 to 14 before to 5 years after the operation, respectively. The mechanical axis changed from 1 to 60%, and the FTA changed from 186° to 171°. The joint line convergence angle (JLCA) changed from 6° to 1°, and the angle difference of JLCA between varus and valgus stress improved from 8° to 4° after the procedure. Improvements in pain and activities of daily living were observed by TCVO along with valgus correction of the lower extremity and stabilization of the femorotibial joint.

  19. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative.

    PubMed

    Bowes, Michael A; McLure, Stewart Wd; Wolstenholme, Christopher Bh; Vincent, Graham R; Williams, Sophie; Grainger, Andrew; Conaghan, Philip G

    2016-10-01

    The aetiology of bone marrow lesions (BMLs) in knee osteoarthritis (OA) is poorly understood. We employed three-dimensional (3D) active appearance modelling (AAM) to study the spatial distribution of BMLs in an OA cohort and compare this with the distribution of denuded cartilage. Participants were selected from the Osteoarthritis Initiative progressor cohort with Kellgren-Lawrence scores ≥2, medial joint space narrowing and osteophytes. OA and ligamentous BMLs and articular cartilage were manually segmented. Bone surfaces were automatically segmented by AAM. Cartilage thickness of <0.5 mm was defined as denuded and ≥0.5-1.5 mm as severely damaged. Non-quantitative assessment and 3D population maps were used for analysing the comparative position of BMLs and damaged cartilage. 88 participants were included, 45 men, mean age (SD) was 61.3 (9.9) years and mean body mass index was 31.1 (4.6) kg/m(2). 227 OA and 107 ligamentous BMLs were identified in 86.4% and 73.8% of participants; OA BMLs were larger. Denuded cartilage was predominantly confined to a central region on the medial femur and tibia, and the lateral facet of the trochlear femur. 67% of BMLs were colocated with denuded cartilage and a further 21% with severe cartilage damage. In the remaining 12%, 25/28 were associated with cartilage defects. 74% of all BMLs were directly opposing (kissing) another BML across the joint. There was an almost exclusive relationship between the location of OA BML and cartilage denudation, which itself had a clear spatial pattern. We propose that OA, ligamentous and traumatic BMLs represent a bone response to abnormal loading. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  1. Both Posterior Root Lateral-Medial Meniscus Tears With Anterior Cruciate Ligament Rupture: The Step-by-Step Systematic Arthroscopic Repair Technique.

    PubMed

    Chernchujit, Bancha; Prasetia, Renaldi

    2017-10-01

    The occurrence of posterior root tear of both the lateral and medial menisci, combined with anterior cruciate ligament rupture, is rare. Problems may be encountered such as the difficulty to access the medial meniscal root tear, the confusing circumstances about which structure to repair first, and the possibility of the tunnel for each repair to become taut inside the tibial bone. We present the arthroscopy technique step by step to overcome the difficulties in an efficient and time-preserving manner.

  2. Osteoarthritis of the patella, lateral femoral condyle and posterior medial femoral condyle correlate with range of motion.

    PubMed

    Suzuki, Takashi; Motojima, Sayaka; Saito, Shu; Ishii, Takao; Ryu, Keinosuke; Ryu, Junnosuke; Tokuhashi, Yasuaki

    2013-11-01

    The type of osteoarthritis and the degree of severity which causes restriction of knee range of motion (ROM) is still largely unknown. The objective of this study was to analyse the location and the degree of cartilage degeneration that affect knee range of motion and the connection, if any, between femorotibial angle (FTA) and knee ROM restriction. Four hundreds and fifty-six knees in 230 subjects with knee osteoarthritis undergoing knee arthroplasty were included. Articular surface was divided into eight sections, and cartilage degeneration was evaluated macroscopically during the operation. Cartilage degeneration was classified into four grades based on the degree of exposure of subchondral bone. A Pearson correlation was conducted between FTA and knee flexion angle to determine whether high a degree of FTA caused knee flexion restriction. A logistic regression analysis was also conducted to detect the locations and levels of cartilage degeneration causing knee flexion restriction. No correlation was found between FTA and flexion angle (r = -0.08). Flexion angle was not restricted with increasing FTA. Logistic regression analysis showed significant correlation between restricted knee ROM and levels of knee cartilage degeneration in the patella (odds ratio (OR) = 1.77; P = 0.01), the lateral femoral condyle (OR = 1.62; P = 0.03) and the posterior medial femoral condyle (OR = 1.80; P = 0.03). For clinical relevance, soft tissue release and osteophyte resection around the patella, lateral femoral condyle and posterior medial femoral condyle might be indicated to obtain a higher degree of knee flexion angle.

  3. Characterizing depth-dependent refractive index of articular cartilage subjected to mechanical wear or enzymic degeneration

    NASA Astrophysics Data System (ADS)

    Wang, Kuyu; Wu, Jianping; Day, Robert; Kirk, Thomas Brett; Hu, Xiaozhi

    2016-09-01

    Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.

  4. Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner.

    PubMed

    Savarese, Eugenio; Bisicchia, Salvatore; Romeo, Rocco; Amendola, Annunziato

    2011-03-01

    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO.

  5. Anatomy of the anterior root attachments of the medial and lateral menisci: a quantitative analysis.

    PubMed

    LaPrade, Christopher M; Ellman, Michael B; Rasmussen, Matthew T; James, Evan W; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-10-01

    While the biomechanical importance of the meniscal roots has been demonstrated, the anatomy of the anterior meniscal roots remains largely unknown. Defining the quantitative anatomy of the anterior meniscal root attachments is essential for developing improved diagnostic and surgical techniques. The anterior medial (AM) and anterior lateral (AL) meniscal roots could be quantitatively defined relative to open and arthroscopic surgical landmarks. Descriptive laboratory study. Twelve nonpaired human cadaveric knees were used (average age, 51.3 years). A coordinate measuring device quantified the anatomic relationships of the AM and AL root attachments to open and arthroscopic surgical landmarks. The tibial attachments of both anterior roots were defined and quantified by categorizing the fibers of the root as either central, dense attachments or peripheral, supplemental attachments. The center of the tibial tuberosity and the medial tibial eminence apex were 27.0 mm lateral and distal and 27.5 mm posterior to the center of the AM root, respectively. The center of the anterior cruciate ligament (ACL) and the lateral tibial eminence apex were 5.0 mm posteromedial and 14.4 mm posterolateral to the center of the AL root, respectively. The AM root attachment had a mean area of 110.4 mm(2) (95% CI, 92.2-128.5) with a central attachment of 56.3 mm(2) (95% CI, 46.9-65.8). The AL root attachment had a mean area of 140.7 mm(2) (95% CI, 121.6-159.8) and inserted deeply beneath the ACL in all specimens. The overlap of the ACL on the AL root averaged 88.9 mm(2) (95% CI, 63.3-114.6), comprising 63.2% of the AL root attachment. The anterior meniscal roots were identified in relation to pertinent open and arthroscopic landmarks. The extended overlap between the AL root and ACL attachment revealed a more intimate tibial attachment relationship than previously recognized. Quantitative descriptions of the anterior meniscal roots elucidate the relationship between the root attachments

  6. Robot-Assisted Medial Compartment Arthroplasty Following Remote Patellectomy: A Case Report

    PubMed Central

    Kouk, Shalen; Kalbian, Irene; Wolfe, Elizabeth; Strickland, Sabrina M

    2018-01-01

    Introduction: Total patellectomies are uncommon procedures that are reserved as salvage treatment for severely comminuted fractures of the patella. Due to the alteration of normal joint mechanics, these patients present later on in life with degenerative cartilage damage to the femorotibial joint and altered extensor mechanism. There are very few reports of unicondylar knee arthroplasties following previous patellectomy and none that specifically address robot-assisted unicompartmental knee arthroplasty. A recent case report by Pang et al. described the use of minimally invasive fixed-bearing unicondylar knee arthroplasty in a patellectomized patient with moderate medial compartment osteoarthritis. Our report details a case with more significant chondral loss along with patellar tendon subluxation. Case Report: This is a case report of a patient with severe medial compartment osteoarthritis after a patellectomy following a motor vehicle collision. After failing conservative treatment, the patient underwent a medial MAKOplasty with complete resolution of arthritic pain. Conclusion: Significant pain relief and improved knee function can be achieved with MAKOPlasty partial knee resurfacing system in a previously patellectomized patient with severe medial compartment osteoarthritis. PMID:29854684

  7. Quantifying Cartilage Contact Modulus, Tension Modulus, and Permeability With Hertzian Biphasic Creep

    PubMed Central

    Moore, A. C.; DeLucca, J. F.; Elliott, D. M.; Burris, D. L.

    2016-01-01

    This paper describes a new method, based on a recent analytical model (Hertzian biphasic theory (HBT)), to simultaneously quantify cartilage contact modulus, tension modulus, and permeability. Standard Hertzian creep measurements were performed on 13 osteochondral samples from three mature bovine stifles. Each creep dataset was fit for material properties using HBT. A subset of the dataset (N = 4) was also fit using Oyen's method and FEBio, an open-source finite element package designed for soft tissue mechanics. The HBT method demonstrated statistically significant sensitivity to differences between cartilage from the tibial plateau and cartilage from the femoral condyle. Based on the four samples used for comparison, no statistically significant differences were detected between properties from the HBT and FEBio methods. While the finite element method is considered the gold standard for analyzing this type of contact, the expertise and time required to setup and solve can be prohibitive, especially for large datasets. The HBT method agreed quantitatively with FEBio but also offers ease of use by nonexperts, rapid solutions, and exceptional fit quality (R2 = 0.999 ± 0.001, N = 13). PMID:27536012

  8. Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction.

    PubMed

    Nema, Sandeep Kumar; Balaji, Gopisankar; Akkilagunta, Sujiv; Menon, Jagdish; Poduval, Murali; Patro, Dilip

    2017-01-01

    Accurate tibial and femoral tunnel placement has a significant effect on outcomes after anterior cruciate ligament reconstruction (ACLR). Postoperative radiographs provide a reliable and valid way for the assessment of anatomical tunnel placement after ACLR. The aim of this study was to examine the radiographic location of tibial and femoral tunnels in patients who underwent arthroscopic ACLR using anatomic landmarks. Patients who underwent arthroscopic ACLR from January 2014 to March 2016 were included in this retrospective cohort study. 45 patients who underwent arthroscopic ACLR, postoperative radiographs were studied. Femoral and tibial tunnel positions on sagittal and coronal radiographic views, graft impingement, and femoral roof angle were measured. Radiological parameters were summarized as mean ± standard deviation and proportions as applicable. Interobserver agreement was measured using intraclass correlation coefficient. The position of the tibial tunnel was found to be at an average of 35.1% ± 7.4% posterior from the anterior edge of the tibia. The femoral tunnel was found at an average of 30% ± 1% anterior to the posterior femoral cortex along the Blumensaat's line. Radiographic impingement was found in 34% of the patients. The roof angle averaged 34.3° ± 4.3°. The position of the tibial tunnel was found at an average of 44.16% ± 3.98% from the medial edge of the tibial plateau. The coronal tibial tunnel angle averaged 67.5° ± 8.9°. The coronal angle of the femoral tunnel averaged 41.9° ± 8.5°. The femoral and tibial tunnel placements correlated well with anatomic landmarks except for radiographic impingement which was present in 34% of the patients.

  9. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    PubMed

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  10. UTE bi-component analysis of T2* relaxation in articular cartilage

    PubMed Central

    Shao, H.; Chang, E.Y.; Pauli, C.; Zanganeh, S.; Bae, W.; Chung, C.B.; Tang, G.; Du, J.

    2015-01-01

    SUMMARY Objectives To determine T2* relaxation in articular cartilage using ultrashort echo time (UTE) imaging and bi-component analysis, with an emphasis on the deep radial and calcified cartilage. Methods Ten patellar samples were imaged using two-dimensional (2D) UTE and Car-Purcell-Meiboom-Gill (CPMG) sequences. UTE images were fitted with a bi-component model to calculate T2* and relative fractions. CPMG images were fitted with a single-component model to calculate T2. The high signal line above the subchondral bone was regarded as the deep radial and calcified cartilage. Depth and orientation dependence of T2*, fraction and T2 were analyzed with histopathology and polarized light microscopy (PLM), confirming normal regions of articular cartilage. An interleaved multi-echo UTE acquisition scheme was proposed for in vivo applications (n = 5). Results The short T2* values remained relatively constant across the cartilage depth while the long T2* values and long T2* fractions tended to increase from subchondral bone to the superficial cartilage. Long T2*s and T2s showed significant magic angle effect for all layers of cartilage from the medial to lateral facets, while the short T2* values and T2* fractions are insensitive to the magic angle effect. The deep radial and calcified cartilage showed a mean short T2* of 0.80 ± 0.05 ms and short T2* fraction of 39.93 ± 3.05% in vitro, and a mean short T2* of 0.93 ± 0.58 ms and short T2* fraction of 35.03 ± 4.09% in vivo. Conclusion UTE bi-component analysis can characterize the short and long T2* values and fractions across the cartilage depth, including the deep radial and calcified cartilage. The short T2* values and T2* fractions are magic angle insensitive. PMID:26382110

  11. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.

    PubMed

    Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D

    2008-01-01

    Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.

  12. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects.

    PubMed

    Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp

    2016-03-01

    To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p < 0.001), a significantly higher distal osseal sulcus angle (p = 0.004), a significantly lower distal sulcus depth (p = 0.047), a significantly lower lateral condyle index (p = 0.045), a significantly lower Caton-Deschamps index (p = 0.020) and a significantly higher Insall-Salvati index (p = 0.010). A major trochlear dysplasia (grade B-D) was significantly more common in the defect group (54 vs. 19%; p < 0.001). Eighty-eight per cent of patients in the defect group demonstrated at least one pathologic finding, compared to 63% in the control group (p = 0.006). Two or more pathologic findings were observed in 42% of the defect group and in 19% of the control group (p

  13. Ultrasonographic Evaluation of Femoral Cartilage Thickness in Patients with Ankylosing Spondylitis

    PubMed Central

    Batmaz, İ; Kara, M; Tiftik, T; Çapkin, E; Karkucak, M; Serdar, ÖF; Kartal, F; Sarıyıldız, MA; Özçakar, L

    2014-01-01

    Objective: To evaluate femoral cartilage thickness in patients with ankylosing spondylitis (AS) by using ultrasonography. Methods: Eighty-four patients (55 M, 29 F) with a diagnosis of AS and 84 age-, gender- and body mass index-matched healthy subjects were enrolled. Demographic and clinical characteristics of the patients including disease duration, morning stiffness and medications were recorded. The femoral cartilage thicknesses of both knees were measured with a 7–12 MHz linear probe while subjects' knees were held in maximum flexion. Three mid-point measurements were taken from both knees (lateral femoral condyle (LFC), intercondylar area (ICA) and medial femoral condyle (MFC)). Results: Concerning both ICA (p < 0.001) and left MFC (p = 0.013), cartilage measurements were significantly thicker in AS patients than control subjects. In a subgroup analysis (anti-tumour necrosis factor (TNF) users vs anti-TNF naive) cartilage thickness measurements – bilateral ICA (p = 0.000) and left MFC (p = 0.017) – were found to be greater in AS patients under anti-TNF treatment (n = 65) when compared with those of healthy controls. Conclusion: We imply that AS patients seem to have thicker femoral cartilage, which could be related to anti-TNF treatment. PMID:25429476

  14. T2 -Mapping evaluation of early cartilage alteration of talus for chronic lateral ankle instability with isolated anterior talofibular ligament tear or combined with calcaneofibular ligament tear.

    PubMed

    Tao, Hongyue; Hu, Yiwen; Qiao, Yang; Ma, Kui; Yan, Xu; Hua, Yinghui; Chen, Shuang

    2018-01-01

    To quantitatively evaluate the cartilage alteration of talus for chronic lateral ankle instability (LAI) with isolated anterior talofibular ligament (ATFL) tear and combined ATFL and calcaneofibular ligament (CFL) tear using T 2 -mapping at 3.0T. In all, 27 patients including 17 with isolated ATFL tear and 10 with ATFL+CFL tear, and 21 healthy subjects were recruited. All participants underwent T 2 -mapping scan at 3T and patients completed American Orthopaedic Foot and Ankle Society (AOFAS) scoring. The total talar cartilage (TTC) was segmented into six compartments: medial anterior (MA), medial center (MC), medial posterior (MP), lateral anterior (LA), lateral center (LC), and lateral posterior (LP). The T 2 value of each compartment was measured from T 2 -mapping images. Data were analyzed with one-way analysis of variance (ANOVA), Student's t-test, and Pearson's correlation coefficient. The T 2 values of MA, MC, MP, TTC in the ATFL group and MA, MC, MP, LC, LP, TTC in the ATFL+CFL group were higher than those in the control group (P < 0.05). Moreover, the T 2 values of MC, MP, LC, and TTC in the ATFL+CFL group were higher than those in the ATFL group (P < 0.05). The T 2 values of MA in both patient groups were negatively correlated with AOFAS scores (r = -0.596, r = -0.690, P < 0.05). Chronic LAI with ATFL tear had a trend of increasing cartilage T 2 values in talar trochlea, mainly involving medial cartilage compartments. Chronic LAI with ATFL+CFL tear might result in higher T 2 values in a much larger cartilage region than with ATFL tear. MA could be the main cartilage compartment that may affect the patient's clinical symptoms. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:69-77. © 2017 International Society for Magnetic Resonance in Medicine.

  15. In Vivo Tibial Fit and Rotational Analysis of a Customized, Patient-Specific TKA versus Off-the-Shelf TKA.

    PubMed

    Schroeder, Lennart; Martin, Gregory

    2018-05-25

    In total knee arthroplasty (TKA), surgeons often face the decision of maximizing tibial component fit and achieving correct rotational alignment at the same time. Customized implants (CIMs) address this difficulty by aiming to replicate the anatomical joint structure, utilizing data from patient-specific knee geometry during the manufacturing. We intraoperatively compared component fit in four tibial zones of a CIM to that of three different off-the-shelf (OTS) TKA designs in 44 knees. Additionally, we assessed the rotational alignment of the tibia using computed tomography (CT)-based computer aided design model analysis. Overall the CIM device showed significantly better component fit than the OTS TKAs. While 18% of OTS designs presented an implant overhang of 3 mm or more, none of the CIM components did ( p  < 0.05). There was a larger percentage of CIMs seen with optimal fit (≤1 mm implant overhang to ≤1 mm tibial bone undercoverage) than in OTS TKAs. Also, OTS implants showed significantly more component underhang of ≥3 mm than the CIM design (37 vs. 18%). The rotational analysis revealed that 45% of the OTS tibial components showed a rotational deviation of more than 5 degrees and 4% of more than 10 degrees to a tibial rotational axis described by Cobb et al. No deviation was seen for the CIM, as the device is designed along this axis. Using the medial one-third of the tibial tubercle as the rotational landmark, 95% of the OTS trays demonstrated a rotational deviation of more than 5 degrees and 73% of more than 10 degrees compared with 73% of CIM tibial trays with more than 5 degrees and 27% with more than 10 degrees. Based on our findings, we believe that the CIM TKA provides both better rotational alignment and tibial fit without causing overhang of the tibial tray than the three examined OTS implants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy.

    PubMed

    Disler, D G; McCauley, T R; Kelman, C G; Fuchs, M D; Ratner, L M; Wirth, C R; Hospodar, P P

    1996-07-01

    The sensitivity of fat-suppressed three-dimensional spoiled gradient-echo (SPGR) images was compared with that of standard MR images for detecting hyaline cartilage defects of the knee, using arthroscopy as the standard of reference. We assessed 114 consecutive patients for hyaline cartilage defects of the knee with both standard MR imaging sequences and a sagittal fat-suppressed three-dimensional SPGR sequence. Of these patients, 48 with meniscal or ligament injury, or persistent symptoms, underwent subsequent arthroscopy. The standard MR images and SPGR images of these 48 patients were then retrospectively analyzed for articular defects in a blinded fashion by two independent observers. Sensitivity, specificity, and intraobserver and interobserver agreement were determined for the different imaging techniques. One fourth of the patients who went on to arthroscopy were shown to have isolated hyaline cartilage lesions that were clinically confused with meniscal tears and that were missed on the standard MR images. When looking at all surfaces combined for each reader, the SPGR imaging sequence had a significantly higher sensitivity than the standard MR imaging sequences for detecting hyaline cartilage defects (75-85% versus 29-38%, p < .001 for each comparison). When looking at individual surfaces for each reader, significant differences in sensitivity were shown for each surface except the trochlear and lateral tibial surfaces. We found no difference in specificity (97% versus 97%, p > .99). We also found that combined evaluation of standard MR and SPGR images gave no added diagnostic advantage (sensitivity, 86%; specificity, 97%; p > .42). Except for the lateral tibial surface, the study achieved excellent reproducibility among readings and between readers. Fat-suppressed three-dimensional SPGR imaging is more sensitive than standard MR imaging for the detection of hyaline cartilage defects of the knee.

  17. [Indications and Borderline Indications for Medial Mobile Bearing Unicondylar Knee Replacement].

    PubMed

    Walker, T; Streit, M R; Streit, J; Gotterbarm, T; Aldinger, P R

    2015-10-01

    Beside the possibility of bicondylar knee replacement, patients with isolated anteromedial osteoarthritis also have the possibility of unicondylar knee replacement. Therefore some requirements are essential such as functionally intact cruciate and collateral ligaments, intact cartilage in the lateral compartment and an intraoperative flexion of more than 100°. An instability or contracture of the cruciate or collateral ligaments, a varus deformity more than 15°, a flexion deformity of more than 15°, an intraoperative flexion less than 100° as well as failed upper tibial osteotomy are seen as contraindications. In addition, a rheumatoid arthritis and a full thickness cartilage defect in the central part of the lateral compartment are seen as a contraindication because of the risk of a progression of the disease. With respect to these contraindications, excellent functional outcome and survival rates could be demonstrated in the long term. An expansion of these criteria, especially in patients with an insufficiency of the cruciate ligaments or after failed upper tibial osteotomy should only be done in certain cases after careful assessment of the benefits and risks. These patients should be informed about the lack of long-term results and the higher risk of complications. Quite commonly, the criteria of Kozinn and Scott are used for patient selection. These criteria were originally established for fixed-bearing prosthesis and have no relevance on mobile-bearing prosthesis. Criteria such as age, level of activity, weight, chondrocalcinosis and anterior knee pain have no effect on the clinical outcome or the long-term survival of a mobile-bearing prosthesis. Georg Thieme Verlag KG Stuttgart · New York.

  18. Total knee arthroplasty after high tibial osteotomy. A comparison study in patients who had bilateral total knee replacement.

    PubMed

    Meding, J B; Keating, E M; Ritter, M A; Faris, P M

    2000-09-01

    The outcome of total knee replacement after high tibial osteotomy remains uncertain. We hypothesized that the results of total knee replacement with or without a previous high tibial osteotomy are similar. The results of a consecutive series of thirty-nine bilateral total knee arthroplasties performed with cement at an average of 8.7 years after unilateral high tibial osteotomy were reviewed. There were twenty-seven men and twelve women. Preoperatively, the knee scores according to the system of the Knee Society were similar for all of the knees; however, valgus alignment and patella infera were more common in the knees with a previous high tibial osteotomy. Bilateral total knee replacement was staged in seven patients and was simultaneous in thirty-two patients. The results of the total knee arthroplasties were retrospectively reviewed with respect to the knee and function scores according to the system of the Knee Society, the radiographic findings, and the complications. Intraoperatively, no notable differences were identified in the number of medial, lateral, or lateral patellar releases required. However, less lateral tibial bone was resected in the group with a previous high tibial osteotomy (average, 3.3 millimeters) than in the group without a high tibial osteotomy (average, 7.5 millimeters). The average duration of follow-up was 7.5 years (range, three to sixteen years) in the group with a previous high tibial osteotomy and 6.8 years (range, two to ten years) in the group without a high tibial osteotomy. At the time of the final follow-up, the knee and function scores were similar for the two groups (89.0 and 81.0 points, respectively, for the group with a previous high tibial osteotomy, and 89.6 and 83.9 points, respectively, for the group without a high tibial osteotomy). Although more knees were free of pain in the group without a previous high tibial osteotomy (thirty-six) than in the group with a previous osteotomy (thirty-three), this difference was

  19. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.

    PubMed

    Hanifi, Arash; Bi, Xiaohong; Yang, Xu; Kavukcuoglu, Beril; Lin, Ping Chang; DiCarlo, Edward; Spencer, Richard G; Bostrom, Mathias P G; Pleshko, Nancy

    2012-12-01

    Osteoarthritis (OA), a degenerative cartilage disease, results in alterations of the chemical and structural properties of tissue. Arthroscopic evaluation of full-depth tissue composition is limited and would require tissue harvesting, which is inappropriate in daily routine. Fourier transform infrared (FT-IR) spectroscopy is a modality based on molecular vibrations of matrix components that can be used in conjunction with fiber optics to acquire quantitative compositional data from the cartilage matrix. To develop a model based on infrared spectra of articular cartilage to predict the histological Mankin score as an indicator of tissue quality. Comparative laboratory study. Infrared fiber optic probe (IFOP) spectra were collected from nearly normal and more degraded regions of tibial plateau articular cartilage harvested during knee arthroplasty (N = 61). Each region was graded using a modified Mankin score. A multivariate partial least squares algorithm using second-derivative spectra was developed to predict the histological modified Mankin score. The partial least squares model derived from IFOP spectra predicted the modified Mankin score with a prediction error of approximately 1.4, which resulted in approximately 72% of the Mankin-scored tissues being predicted correctly and 96% being predicted within 1 grade of their true score. These data demonstrate that IFOP spectral parameters correlate with histological tissue grade and can be used to provide information on tissue composition. Infrared fiber optic probe studies have significant potential for the evaluation of cartilage tissue quality without the need for tissue harvest. Combined with arthroscopy, IFOP analysis could facilitate the definition of tissue margins in debridement procedures.

  20. Medial compartment knee osteoarthritis: age-stratified cost-effectiveness of total knee arthroplasty, unicompartmental knee arthroplasty, and high tibial osteotomy.

    PubMed

    Smith, William B; Steinberg, Joni; Scholtes, Stefan; Mcnamara, Iain R

    2017-03-01

    To compare the age-based cost-effectiveness of total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and high tibial osteotomy (HTO) for the treatment of medial compartment knee osteoarthritis (MCOA). A Markov model was used to simulate theoretical cohorts of patients 40, 50, 60, and 70 years of age undergoing primary TKA, UKA, or HTO. Costs and outcomes associated with initial and subsequent interventions were estimated by following these virtual cohorts over a 10-year period. Revision and mortality rates, costs, and functional outcome data were estimated from a systematic review of the literature. Probabilistic analysis was conducted to accommodate these parameters' inherent uncertainty, and both discrete and probabilistic sensitivity analyses were utilized to assess the robustness of the model's outputs to changes in key variables. HTO was most likely to be cost-effective in cohorts under 60, and UKA most likely in those 60 and over. Probabilistic results did not indicate one intervention to be significantly more cost-effective than another. The model was exquisitely sensitive to changes in utility (functional outcome), somewhat sensitive to changes in cost, and least sensitive to changes in 10-year revision risk. HTO may be the most cost-effective option when treating MCOA in younger patients, while UKA may be preferred in older patients. Functional utility is the primary driver of the cost-effectiveness of these interventions. For the clinician, this study supports HTO as a competitive treatment option in young patient populations. It also validates each one of the three interventions considered as potentially optimal, depending heavily on patient preferences and functional utility derived over time.

  1. Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques.

    PubMed

    Iorio, R; Pagnottelli, M; Vadalà, A; Giannetti, S; Di Sette, P; Papandrea, P; Conteduca, F; Ferretti, A

    2013-01-01

    The purpose of our study was to compare clinical and radiological results of two groups of patients treated for medial compartment osteoarthritis of the knee with either conventional or computer-assisted open-wedge high tibial osteotomy (HTO). Goals of surgical treatment were a correction of the mechanical axis between 2° and 6° of valgus and a modification of posterior tibial slope between -2° and +2°. Twenty-four patients (27 knees) affected by varus knee deformity and operated with HTO were prospectively followed-up. They were randomly divided in two groups, A (11 patients, conventional treatment) and B (13 patients, navigated treatment). The American Knee Society Score and the Modified Cincinnati Rating System Questionnaire were used for clinical assessment. All patients were radiologically evaluated with a comparative lower limb weight-bearing digital radiograph, a standard digital anteroposterior, a latero-lateral radiograph of the knee, and a Rosenberg view. Patients were followed-up at a mean of 39 months. Clinical evaluation showed no statistical difference (n.s.) between the two groups. Radiological results showed an 86% reproducibility in achieving a mechanical axis of 182°-186° in group B compared to a 23% in group A (p = 0.0392); furthermore, in group B, we achieved a modification of posterior tibial slope between -2° and +2° in 100% of patients, while in group A, this goal was achieved only in 24% of cases (p = 0.0021). High tibial osteotomy with navigator is more accurate and reproducible in the correction of the deformity compared to standard technique. Therapeutic study, Level II.

  2. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis.

    PubMed

    Wiegant, Karen; Intema, Femke; van Roermund, Peter M; Barten-van Rijbroek, Angelique D; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C

    2015-02-01

    Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, as evaluated indirectly by imaging studies and measurement of biochemical markers. The purpose of this study was to evaluate cartilage tissue repair directly by histologic and biochemical assessments after joint distraction treatment. In 27 dogs, OA was induced in the right knee joint (groove model; surgical damage to the femoral cartilage). After 10 weeks of OA development, the animals were randomized to 1 of 3 groups. Two groups were fitted with an external fixator, which they wore for a subsequent 10 weeks (one group with and one without joint distraction), and the third group had no external fixation (OA control group). Pain/function was studied by force plate analysis. Cartilage integrity and chondrocyte activity of the surgically untouched tibial plateaus were analyzed 25 weeks after removal of the fixator. Changes in force plate analysis values between the different treatment groups were not conclusive. Features of OA were present in the OA control group, in contrast to the generally less severe damage after joint distraction. Those treated with joint distraction had lower macroscopic and histologic damage scores, higher proteoglycan content, better retention of newly formed proteoglycans, and less collagen damage. In the fixator group without distraction, similarly diminished joint damage was found, although it was less pronounced. Joint distraction as a treatment of experimentally induced OA results in cartilage repair activity, which corroborates the structural observations of cartilage repair indicated by surrogate markers in humans. Copyright © 2015 by the American College of Rheumatology.

  3. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    PubMed

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  4. In Vivo Patellar Tracking and Patellofemoral Cartilage Contacts during Dynamic Stair Ascending

    PubMed Central

    Suzuki, Takashi; Hosseini, Ali; Li, Jing-Sheng; Gill, Thomas J; Li, Guoan

    2012-01-01

    The knowledge of normal patellar tracking is essential for understanding of the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with the knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9 mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13 mm of the patella was measured at the early 80% of the activity and then slightly moved posteriorly by about 2 mm at the last 20% of the activity. The path of the cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2 mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3 mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5 mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorder symptoms. PMID:22840488

  5. Unilateral cleft nasal deformity correction using conchal cartilage lily flower graft.

    PubMed

    Hwang, Kun; Kim, Han Joon; Paik, Moo Hyun

    2012-11-01

    We present a conchal cartilage lily flower graft for correcting depressed and laterally displaced alar cartilage for correction of unilateral cleft nasal deformity.After making a V incision at the base of the columellar and then marginal incisions, the alar cartilages were exposed. A fusiform-shaped cartilage larger than 2.5 cm in length and 1 cm in width was obtained. The midline long axis was scored with a No. 15 knife, and the lateral one third was split. Two-thirds length portions were folded in half, and they became straightened in the shape of a stalk of a lily flower. Two symmetrical one-third length portions were fanned out bilaterally in the shape of the leaf of a lily flower. The stalk portion was positioned in a pocket between the medial crura, and the 2 leaf portions were placed on the dome of the alar cartilages. The marked points of the cleft side and contralateral side were secured with sutures. The V incision at the base of the columellar and the marginal incisions were closed with a V-Y shape. In this technique, the 2 leaf portions were placed on the dome of the alar cartilages and sutured; therefore, the suture holds the dome of the cleft side to the contralateral side without peaking.Thirteen patients (6 male and 7 female subjects; age range, 13-30 years) were operated. Among them, 6 patients were very satisfied, and 5 patients were satisfied with the results. Two patients felt they were improved.We think the conchal cartilage lily flower graft might be a good method for correction of depressed and laterally displaced alar cartilage in unilateral cleft nasal deformity.

  6. Arthroscopic evaluation of soft tissue injuries in tibial plateau fractures: retrospective analysis of 98 cases.

    PubMed

    Abdel-Hamid, Mohamed Zaki; Chang, Chung-Hsun; Chan, Yi-Sheng; Lo, Yang-Pin; Huang, Jau-Wen; Hsu, Kuo-Yao; Wang, Ching-Jen

    2006-06-01

    This investigation arthroscopically assesses the frequency of soft tissue injury in tibial plateau fracture according to the severity of fracture patterns. We hypothesized that use of arthroscopy to evaluate soft tissue injury in tibial plateau fractures would reveal a greater number of associated injuries than have previously been reported. From March 1996 to December 2003, 98 patients with closed tibial plateau fractures were treated with arthroscopically assisted reduction and osteosynthesis, with precise diagnosis and management of associated soft tissue injuries. Arthroscopic findings for associated soft tissue injuries were recorded, and the relationship between fracture type and soft tissue injury was then analyzed. The frequency of associated soft tissue injury in this series was 71% (70 of 98). The menisci were injured in 57% of subjects (56 in 98), the anterior cruciate ligament (ACL) in 25% (24 of 98), the posterior cruciate ligament (PCL) in 5% (5 of 98), the lateral collateral ligament (LCL) in 3% (3 of 98), the medial collateral ligament (MCL) in 3% (3 of 98), and the peroneal nerve in 1% (1 of 98); none of the 98 patients exhibited injury to the arteries. No significant association was noted between fracture type and incidence of meniscus, PCL, LCL, MCL, artery, and nerve injury. However, significantly higher injury rates for the ACL were observed in type IV and VI fractures. Soft tissue injury was associated with all types of tibial plateau fracture. Menisci (peripheral tear) and ACL (bony avulsion) were the most commonly injured sites. A variety of soft tissue injuries are common with tibial plateau fracture; these can be diagnosed with the use of an arthroscope. Level III, diagnostic study.

  7. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  8. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    PubMed

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P < .01). Furthermore, the ACC group had significantly less fibrous tissue (23.8%) compared with the MST group (41.1%) ( P < .01). No significant difference in fibrocartilage content was found (54.7% for ACC vs 50.8% for MST). The ACC group had significantly higher ICRS II scores for tissue morphological characteristics, matrix staining, cell morphological characteristics, surface assessment, mid/deep assessment, and overall assessment ( P < .05). The ACC-treated defects had significantly more collagen type II staining (54.5%) compared with the MST-treated defects (28.1%) ( P < .05). ACC transplant resulted in improved quality of cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  9. Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis.

    PubMed

    Deie, Masataka; Hoso, Takayuki; Shimada, Noboru; Iwaki, Daisuke; Nakamae, Atsuo; Adachi, Nobuo; Ochi, Mitsuo

    2014-12-01

    High tibial osteotomy (HTO) for medial knee osteoarthritis (OA) is mainly performed via two procedures: closing wedge HTO (CW) and opening wedge HTO (OW). In this study, differences between these procedures were assessed by serial clinical evaluation and gait analysis before and after surgery. Twenty-one patients underwent HTO for medial knee OA in 2011 and 2012, with 12 patients undergoing CW and nine undergoing OW. The severity of OA was classified according to the Kellgren-Lawrence classification. The Japanese Orthopedic Association score for assessment of knee OA (JOA score), the Numeric Rating Scale (NRS), and the femoral tibial angle (FTA) on X-ray were evaluated. For gait analysis, gait speed, varus moment, varus angle and lateral thrust were calculated. The JOA score and NRS were improved significantly one year postoperatively in both groups. The FTA was maintained in both groups at one year. Varus angle and varus moment were significantly improved in both groups at each postoperative follow-up, when compared preoperatively. Lateral thrust was significantly improved at three months postoperatively in both groups. However, the significant improvement in lateral thrust had disappeared in the CW group six months postoperatively, whereas it was maintained for at least one year in the OW group. This study found that clinical outcomes were well maintained after HTO. OW reduced knee varus moment and lateral thrust, whereas CW had little effect on reducing lateral thrust. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Radial tears associated with cleavage tears of the medial meniscus in athletes.

    PubMed

    Kidron, Amos; Thein, Rafael

    2002-03-01

    To evaluate the significance of a small radial tear in the root of the posterior horn of the medial meniscus in an otherwise normal-looking meniscus in individuals who play vigorous sports. Retrospective review. Arthroscopy was performed in 1,270 patients; 11 patients (0.86%) had a small radial tear in the root of the medial meniscus. Trimming of the tear revealed a large horizontal cleavage tear of the posterior horn and body of the meniscus. The average age of the affected patients was 29.6 years (range, 21 to 45 years), and all were active in sports. Magnetic resonance imaging was of dubious diagnostic value. Three patients had undergone previous arthroscopy at which time the small radial root tear had been noted but was not thought to warrant treatment. All 11 patients returned to their former levels of activity after adequate surgery. When a radial root tear in the medial meniscus is found in an athletic patient, the edges of the tear should be trimmed, the root of the medial meniscus examined, and any additional torn cartilage resected.

  11. Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction

    PubMed Central

    Nema, Sandeep Kumar; Balaji, Gopisankar; Akkilagunta, Sujiv; Menon, Jagdish; Poduval, Murali; Patro, Dilip

    2017-01-01

    Background: Accurate tibial and femoral tunnel placement has a significant effect on outcomes after anterior cruciate ligament reconstruction (ACLR). Postoperative radiographs provide a reliable and valid way for the assessment of anatomical tunnel placement after ACLR. The aim of this study was to examine the radiographic location of tibial and femoral tunnels in patients who underwent arthroscopic ACLR using anatomic landmarks. Patients who underwent arthroscopic ACLR from January 2014 to March 2016 were included in this retrospective cohort study. Materials and Methods: 45 patients who underwent arthroscopic ACLR, postoperative radiographs were studied. Femoral and tibial tunnel positions on sagittal and coronal radiographic views, graft impingement, and femoral roof angle were measured. Radiological parameters were summarized as mean ± standard deviation and proportions as applicable. Interobserver agreement was measured using intraclass correlation coefficient. Results: The position of the tibial tunnel was found to be at an average of 35.1% ± 7.4% posterior from the anterior edge of the tibia. The femoral tunnel was found at an average of 30% ± 1% anterior to the posterior femoral cortex along the Blumensaat's line. Radiographic impingement was found in 34% of the patients. The roof angle averaged 34.3° ± 4.3°. The position of the tibial tunnel was found at an average of 44.16% ± 3.98% from the medial edge of the tibial plateau. The coronal tibial tunnel angle averaged 67.5° ± 8.9°. The coronal angle of the femoral tunnel averaged 41.9° ± 8.5°. Conclusions: The femoral and tibial tunnel placements correlated well with anatomic landmarks except for radiographic impingement which was present in 34% of the patients. PMID:28566780

  12. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative.

    PubMed

    Eckstein, Felix; Kunz, Manuela; Hudelmaier, Martin; Jackson, Rebecca; Yu, Joseph; Eaton, Charles B; Schneider, Erika

    2007-02-01

    Phased-array (PA) coils generally provide higher signal-to-noise ratios (SNRs) than quadrature knee coils. In this pilot study for the Osteoarthritis Initiative (OAI) we compared these two types of coils in terms of contrast-to-noise ratio (CNR), precision, and consistency of quantitative femorotibial cartilage measurements. Test-retest measurements were acquired using coronal fast low-angle shot with water excitation (FLASHwe) and coronal multiplanar reconstruction (MPR) of sagittal double-echo steady state with water excitation (DESSwe) at 3T. The precision errors for cartilage volume and thickness were medial and lateral cartilage measures was significantly higher than that for single plates, independently of coil and sequence. The PA coil measurements did not always fully agree with the quadrature coil measurements, and some differences were significant. The higher CNR of the PA coil did not translate directly into improved precision of cartilage measurement; however, summing up cartilage plates within the medial and lateral compartment reduced precision errors. Copyright (c) 2007 Wiley-Liss, Inc.

  13. Proximal tibial strain in medial unicompartmental knee replacements: A biomechanical study of implant design.

    PubMed

    Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L

    2013-10-01

    As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.

  14. A study of the anatomy and injection techniques of the ovine stifle by positive contrast arthrography, computed tomography arthrography and gross anatomical dissection.

    PubMed

    Vandeweerd, Jean-Michel; Kirschvink, Nathalie; Muylkens, Benoit; Depiereux, Eric; Clegg, Peter; Herteman, Nicolas; Lamberts, Matthieu; Bonnet, Pierre; Nisolle, Jean-Francois

    2012-08-01

    Although ovine stifle models are commonly used to study osteoarthritis, meniscal pathology and cruciate ligament injuries and repair, there is little information about the anatomy of the joint or techniques for synovial injections. The objectives of this study were to improve anatomical knowledge of the synovial cavities of the ovine knee and to compare intra-articular injection techniques. Synovial cavities of 24 cadaver hind limbs from 12 adult sheep were investigated by intra-articular resin, positive-contrast arthrography, computed tomography (CT) arthrography and gross anatomical dissection. Communication between femoro-patellar, medial femoro-tibial and lateral femoro-tibial compartments occurred in all cases. The knee joint should be considered as one synovial structure with three communicating compartments. Several unreported features were observed, including a communication between the medial femoro-tibial and lateral femoro-tibial compartments and a latero-caudal recess of the lateral femoro-tibial compartment. No intermeniscal ligament was identified. CT was able to define many anatomical features of the stifle, including the anatomy of the tendinous synovial recess on the lateral aspect of the proximal tibia under the combined tendon of the peroneus tertius, extensor longus digitorum and extensor digiti III proprius. An approach for intra-articular injection into this recess (the subtendinous technique) was assessed and compared with the retropatellar and paraligamentous techniques. All three injection procedures were equally successful, but the subtendinous technique appeared to be most appropriate for synoviocentesis and for injections in therapeutic research protocols with less risk of damaging the articular cartilage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Major complications of tibial tuberosity advancement in 1613 dogs.

    PubMed

    Costa, Mario; Craig, Diane; Cambridge, Tony; Sebestyen, Peter; Su, Yuhua; Fahie, Maria A

    2017-05-01

    To report major postoperative complications in 1613 dogs with tibial tuberosity advancement (TTA). Retrospective case series. Dogs (n = 1613) with cranial cruciate ligament deficiency treated with TTA. Medical records of TTAs performed between December 2007-2013 were reviewed for age, sex, weight, contralateral stifle surgery, surgical approach, duration of preoperative lameness, presence of meniscal damage, concurrent patellar luxation and simultaneous bilateral TTA. Major postoperative complications were defined as surgical site infection (SSI) (superficial, deep, or organ/space), implant failure, fracture, patellar luxation, and meniscal tear. Major complications were recorded in 13.4% of cases. Superficial SSI (incisional irritation) was diagnosed in 6.9% cases, requiring only antimicrobial therapy. Other complications included postliminary medial meniscal tear (2% incidence), deep SSI (incisional dehiscence, 1.1%), implant failure (1%), patellar luxation (1.2%), fracture (0.9%), and organ/space SSI (septic arthritis, 0.4%). Dogs with normal menisci were less likely to develop postliminary meniscal tears if the medial meniscus was released at the time of TTA (P < .0001). No association was detected between recorded parameters and complications, although dogs >8 years old approached significance (P = .05) in terms of predisposition to major complications. Major complications after TTA are uncommon, even in dogs with concurrent patellar luxation or bilateral simultaneous procedures. In spite of its morbidity, medial meniscal release may prevent postliminary meniscal tears. © 2017 The American College of Veterinary Surgeons.

  16. Risk factors for tibial implant malpositioning in total knee arthrosplasty-consecutive series of one thousand, four hundred and seventeen cases.

    PubMed

    Gaillard, Romain; Cerciello, Simone; Lustig, Sebastien; Servien, Elvire; Neyret, Philippe

    2017-04-01

    Total knee arthroplasty (TKA) malalignment may result in pain and limited range of motion. The present study assessed the influence of different surgeon's and patient's related factors on the post-operative tibial tray coronal alignment. The charts and the x-rays of a continuous prospective series of 1417 TKAs operated upon between 1987 and 2015 were retrospectively reviewed. The long-leg AP views were performed at two months post-op and the tibial mechanical angle of the tibial tray was measured. Three groups were defined: varus (≤87° n = 167), valgus (≥93° n = 55) and well alignment (88° to 92° n = 1195). The influence of several pre-operative and peri-operative factors was investigated: surgeon handedness and experience (junior or senior), previous tibial osteotomies, Ahlbäck stage of osteoarthritits, pre-operative alignment, height and weight, age at surgery, approach (medial, lateral or tibial tubercle osteotomy), generation of implants, tray fixation, size of the tray and stem lenght. Univariate then multivariate analysis were performed to find out any correlation. Multivariate analysis showed a strong correlation between varus alignment of the tibial tray and pre-operative varus of the lower limb (p = 0.037), increased BMI (p = 0.016) and operated side opposite to the dominant surgeon's arm (p = 0.006). In a similar way a strong correlation was found between valgus alignment and pre-operative valgus of the limb (p = 0.026). Poor alignment of the tibial tray after TKA was associated with pre-operative malalignment of the lower limb, increased BMI and an index knee which was opposite to surgeon's dominant arm.

  17. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  18. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    PubMed

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  19. Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation.

    PubMed

    Widhalm, Harald K; Apprich, Sebastian; Welsch, Goetz H; Zbyn, Stefan; Sadoghi, Patrick; Vekszler, György; Hamböck, Martina; Weber, Michael; Hajdu, Stefan; Trattnig, Siegfried

    2016-05-01

    Retropatellar cartilage lesions often occur in the course of recurrent patella dislocation. Aim of this study was to develop a more detailed method for examining cartilage tissue, in order to reduce patient discomfort and time of care. For detailed diagnosing, a 7-T MRI of the knee joint and patella was performed in nine patients, with mean age of 26.4 years, after patella dislocation to measure the cartilage content in three different regions of interest of the patella. Axial sodium ((23)Na) images were derived from an optimized 3D GRE sequence on a 7-T MR scanner. Morphological cartilage grading was performed, and sodium signal-to-noise ratio (SNR) values were calculated. Mean global sodium values and SNR were compared between patients and volunteers. Two out of nine patients showed a maximum cartilage defect of International Cartilage Repair Society (ICRS) grade 3, three of grade 2, three of  grade 1, and one patient showed no cartilage defect. The mean SNR in sodium images for cartilage was 13.4 ± 2.5 in patients and 14.6 ± 3.7 in volunteers (n.s.). A significant negative correlation between age and global sodium SNR for cartilage was found in the medial facet (R = -0.512; R (2) = 0.26; p = 0.030). Mixed-model ANOVA yielded a marked decrease of the sodium SNR, with increasing grade of cartilage lesions (p < 0.001). Utilization of the (23)Na MR imaging will make earlier detection of alterations to the patella cartilage after dislocation possible and will help prevent subsequent disease due to start adequate therapy earlier in the rehabilitation process. II.

  20. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods.

    PubMed

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu; Chen, Shuang

    2018-01-01

    To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2 ⁎ -mapping and analyze the correlation between the results of both methods. Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2 ⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2 ⁎ values between patients and controls were compared using unpaired Student's t -test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. ACL-ruptured patients showed higher T2 and T2 ⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2 ⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2 ⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2 ⁎ value was correlated with that of T2 value ( r = 0.886, P < 0.001). The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2 ⁎ -mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping.

  1. In vivo deformation of thin cartilage layers: Feasibility and applicability of T2* mapping.

    PubMed

    Van Ginckel, Ans; Witvrouw, Erik E

    2016-05-01

    The objectives of this study were as follows: (i) to assess segmentation consistency and scan precision of T2* mapping of human tibio-talar cartilage, and (ii) to monitor changes in T2* relaxation times of ankle cartilage immediately following a clinically relevant in vivo exercise and during recovery. Using multi-echo gradient recalled echo sequences, averaged T2* values were calculated for tibio-talar cartilage layers in 10 healthy volunteers. Segmentation consistency and scan precision were determined from two repeated segmentations and two repeated acquisitions with repositioning, respectively. Subsequently, acute in vivo cartilage loading responses were monitored by calculating averaged tibio-talar T2* values at rest, immediately after (i.e., deformation) and at 15 min (i.e., recovery) following a 30-repetition knee bending exercise. Precision errors attained 4-6% with excellent segmentation consistency point estimates (i.e., intra-rater ICC of 0.95) and acceptable limits of confidence. At deformation, T2* values were increased in both layers [+16.1 (10.7)%, p = 0.004 and +17.3 (15.3)%, p = 0.023, for the talus and tibia, respectively] whereas during recovery no significant changes could be established when comparing to baseline [talar cartilage: +5.2 (8.2)%, p = 0.26 and tibial cartilage: +6.6 (10.4)%, p = 0.23]. T2* mapping is a viable method to monitor deformational behavior in thin cartilage layers such as ankle cartilage. Longitudinal changes in T2* can be reliably appraised and require at least 4-6% differences to ascertain statistical significance. The ability to detect considerable change even after non-strenuous loading events, endorses T2* mapping as an innovative method to evaluate the effects of therapeutic exercise on thin cartilage layers. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:771-778, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    PubMed

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  3. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.

    PubMed

    Williams, D S Blaise; Tierney, Robin N; Butler, Robert J

    2014-01-01

    Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the

  4. Mechanisms of anterior-posterior stability of the knee joint under load-bearing.

    PubMed

    Reynolds, Ryan J; Walker, Peter S; Buza, John

    2017-05-24

    The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior. Copyright © 2017. Published by Elsevier Ltd.

  5. In situ handheld three-dimensional bioprinting for cartilage regeneration.

    PubMed

    Di Bella, Claudia; Duchi, Serena; O'Connell, Cathal D; Blanchard, Romane; Augustine, Cheryl; Yue, Zhilian; Thompson, Fletcher; Richards, Christopher; Beirne, Stephen; Onofrillo, Carmine; Bauquier, Sebastien H; Ryan, Stewart D; Pivonka, Peter; Wallace, Gordon G; Choong, Peter F

    2018-03-01

    Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ three-dimensional (3D) printing is an exciting and innovative biofabrication technology that enables the surgeon to deliver tissue-engineering techniques at the time and location of need. We have created a hand-held 3D printing device (biopen) that allows the simultaneous coaxial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single-session surgery. This pilot study assessed the ability of the biopen to repair a full-thickness chondral defect and the early outcomes in cartilage regeneration, and compared these results with other treatments in a large animal model. A standardized critical-sized full-thickness chondral defect was created in the weight-bearing surface of the lateral and medial condyles of both femurs of six sheep. Each defect was treated with one of the following treatments: (i) hand-held in situ 3D printed bioscaffold using the biopen (HH group), (ii) preconstructed bench-based printed bioscaffolds (BB group), (iii) microfractures (MF group) or (iv) untreated (control, C group). At 8 weeks after surgery, macroscopic, microscopic and biomechanical tests were performed. Surgical 3D bioprinting was performed in all animals without any intra- or postoperative complication. The HH biopen allowed early cartilage regeneration. The results of this study show that real-time, in vivo bioprinting with cells and scaffold is a feasible means of delivering a regenerative medicine strategy in a large animal model to regenerate articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.

    PubMed

    Sundaram, R O; Cohen, D; Barton-Hanson, N

    2006-06-01

    Tibial plateau fractures following anterior cruciate ligament (ACL) reconstruction are extremely rare. This is the first reported case of a tibial plateau fracture following four-strand gracilis-semitendinosus autograft ACL reconstruction. The tibial tunnel alone may behave as a stress riser which can significantly reduce bone strength.

  7. Middle Ear Mechanics of Cartilage Tympanoplasty Evaluated by Laser Holography and Vibrometry

    PubMed Central

    Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Hulli, Nesim; Harrington, Ellery J.; Hernandez-Montes, Maria S.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Goals To assess the effects of thickness and position of cartilage used to reconstruct the tympanic membrane (TM) using a novel technique, time-averaged laser holography. Background Cartilage is commonly used in TM reconstruction to prevent formation of retraction pockets. The thickness, position, and shape of the cartilage graft may adversely affect TM motion and hearing. We sought to systematically investigate these parameters in an experimental setting. Methods Computer-assisted optoelectronic laser holography was used in 4 human cadaveric temporal bones to study sound-induced TM motion for 500 Hz to 8 kHz. Stapes velocity was measured with a laser Doppler vibrometer. Baseline (control) measurements were made with the TM intact. Measurements were repeated after a 0.5- or 1.0-mm-thick oval piece of conchal cartilage was placed on the medial TM surface in the posterior-superior quadrant. The cartilage was rotated so that it was either in contact with the bony tympanic rim and manubrium or not. Results At frequencies less than 4 kHz, the cartilage graft had only minor effects on the overall TM fringe patterns. The different conditions had no effects on stapes velocity. Greater than 4 kHz, TM motion was reduced over the grafted TM, both with 0.5- and 1.0-mm-thick grafts. No significant differences in stapes velocity were seen with the 2 different thicknesses of cartilage compared with control. Conclusion Computer-assisted optoelectronic laser holography is a promising technique to investigate middle ear mechanics after tympanoplasty. Such positioning may prevent postoperative TM retraction. These findings and conclusions apply to cartilage placed in the posterior-superior TM quadrant. PMID:19779389

  8. Two simple clinical tests for predicting onset of medial tibial stress syndrome: shin palpation test and shin oedema test.

    PubMed

    Newman, Phil; Adams, Roger; Waddington, Gordon

    2012-09-01

    To examine the relationship between two clinical test results and future diagnosis of (Medial Tibial Stress Syndrome) MTSS in personnel at a military trainee establishment. Data from a preparticipation musculoskeletal screening test performed on 384 Australian Defence Force Academy Officer Cadets were compared against 693 injuries reported by 326 of the Officer Cadets in the following 16 months. Data were held in an Injury Surveillance database and analysed using χ² and Fisher's Exact tests, and Receiver Operating Characteristic Curve analysis. Diagnosis of MTSS, confirmed by an independent blinded health practitioner. Both the palpation and oedema clinical tests were each found to be significant predictors for later onset of MTSS. Specifically: Shin palpation test OR 4.63, 95% CI 2.5 to 8.5, Positive Likelihood Ratio 3.38, Negative Likelihood Ratio 0.732, Pearson χ² p<0.001; Shin oedema test OR 76.1 95% CI 9.6 to 602.7, Positive Likelihood Ratio 7.26, Negative Likelihood Ratio 0.095, Fisher's Exact p<0.001; Combined Shin Palpation Test and Shin Oedema Test Positive Likelihood Ratio 7.94, Negative Likelihood Ratio <0.001, Fisher's Exact p<0.001. Female gender was found to be an independent risk factor (OR 2.97, 95% CI 1.66 to 5.31, Positive Likelihood Ratio 2.09, Negative Likelihood Ratio 0.703, Pearson χ² p<0.001) for developing MTSS. The tests for MTSS employed here are components of a normal clinical examination used to diagnose MTSS. This paper confirms that these tests and female gender can also be confidently applied in predicting those in an asymptomatic population who are at greater risk of developing MTSS symptoms with activity at some point in the future.

  9. Effects of isotretinoin treatment on cartilage and tendon thicknesses: an ultrasonographic study.

    PubMed

    Yıldızgören, Mustafa Turgut; Karataş Toğral, Arzu; Baki, Ali Erdem; Ekiz, Timur

    2015-07-01

    Effects of retinoic acid on collagen synthesis and cartilage have previously been shown. However, its effects on cartilage and tendons in humans have not been studied yet. Therefore, in order to provide a morphologic insight, the aim of this study was to measure femoral cartilage, Achilles and supraspinatus tendon thicknesses in patients under systemic isotretinoin treatment by using ultrasound. Fifteen patients (nine F, six M) who used isotretinoin for their acnes were included. All patients were treated with isotretinoin 0.5 mg/kg/day for the first month, and the dosage was escalated up to 1 mg/kg/day thereafter. Distal femoral cartilage, supraspinatus, and Achilles tendons thicknesses have been evaluated both before the treatment and at the end of the third month. Femoral cartilage thicknesses were assessed from three midpoints bilaterally; medial condyle, lateral condyle, and intercondylar area. Short/long-axis diameters and cross-sectional area of the Achilles tendons and axial tendon thicknesses of supraspinatus tendon were evaluated from the nondominant side. The mean age of the patients was 20.1 ± 4.9 years, and body mass index was 21.7 ± 2.5 kg/m(2). Although posttreatment cartilage measurements of 30 knees were lower for the three midpoints, it reached significance only for lateral condyle (p = 0.05). In addition, posttreatment tendon measurements were not statistically significant compared with pretreatment values (all p > 0.05). Systemic isotretinoin treatment seems to make cartilage thinner. Further studies considering histological and molecular evaluations with more sample sizes are awaited.

  10. Patellofemoral Osteoarthritis Progression and Alignment Changes after Open-Wedge High Tibial Osteotomy Do Not Affect Clinical Outcomes at Mid-term Follow-up.

    PubMed

    Goshima, Kenichi; Sawaguchi, Takeshi; Shigemoto, Kenji; Iwai, Shintaro; Nakanishi, Akira; Ueoka, Ken

    2017-10-01

    To evaluate the clinical and radiological outcomes of open-wedge high tibial osteotomy (OWHTO) with respect to the patellofemoral joint and to assess whether patellofemoral osteoarthritis (OA) progression and alignment changes after OWHTO affect clinical outcomes. Inclusion criteria were consecutive patients who underwent OWHTO from March 2005 to September 2013. Exclusion criteria were loss to follow-up within 2 years and absence of second-look arthroscopy findings at the time of plate removal. The clinical parameters, including anterior knee pain while climbing stairs, Japanese Orthopedic Association score, and Oxford Knee Score, were evaluated. Radiological outcomes, including weight-bearing line ratio, modified Blackburne-Peel ratio, posterior tibial slope, tilting angle, lateral shift ratio, and patellofemoral OA (Kellgren-Lawrence grade), were evaluated preoperatively and at the final follow-up. Cartilage status (International Cartilage Repair Society grade) was evaluated at the initial HTO and at plate removal. Fifty-three patients (60 knees) were included in this study. The mean follow-up was 58.2 ± 22.4 months. Two knees (3%) presented with mild anterior knee pain after OWHTO. The mean Japanese Orthopedic Association score (66.9 ± 11.2 to 91.2 ± 9.7) significantly improved (P < .001), and the mean Oxford Knee Score at the final follow-up was 42.0 ± 5.3. The mean modified Blackburne-Peel ratio (0.9 ± 0.1 to 0.7 ± 0.1, P < .001) and tilting angle (6.8 ± 3.7 to 5.6 ± 3.4, P = .033) significantly decreased after OWHTO, whereas no significant changes in posterior tibial slope (P = .511) and lateral shift ratio (P = .522) were observed. Radiologically, patellofemoral OA had progressed in 15 knees (27%), and arthroscopically patellofemoral cartilage degeneration had progressed in 27 knees (45%). However, there was no significant correlation between changes in patellofemoral alignment and clinical outcomes. Changes in patellofemoral alignment and

  11. Computer assisted alignment of opening wedge high tibial osteotomy provides limited improvement of radiographic outcomes compared to flouroscopic alignment.

    PubMed

    Stanley, Jeremy C; Robinson, Kerian G; Devitt, Brian M; Richmond, Anneka K; Webster, Kate E; Whitehead, Timothy S; Feller, Julian A

    2016-03-01

    There are numerous methods available to assist surgeons in the accurate correction of varus alignment during medial opening wedge high tibial osteotomy (MOWHTO). Preoperative planning performed with radiographs or more recently intraoperative computer navigation software has been used. The aim of the study was to compare the accuracy of computer navigated versus non-navigated techniques to correct varus alignment of the knee. The preoperative and postoperative radiographs of 117 knees that underwent MOWHTO were investigated to assess radiographic limb alignment 12-months postoperatively. The desired correction was defined as a weight bearing line (Mikulicz point {MP}) 58% of the width of the tibial plateau from the medial tibial margin. Sixty-five knees were corrected using a conventional technique and 52 knees were corrected using computer navigation. The mean MP percentage was 59% in the navigated group, compared with 56% in the fluoroscopic group (p=0.183). 51.9% of the navigation knees were corrected to within five percent of the desired correction, in contrast to 38.5% of the fluoroscopically corrected knees (p=0.15). 71.2% of the navigated knees were corrected to within 10% of the desired correction, compared with 63.1% of the fluoroscopically corrected knees (p=0.36). Large preoperative deformities were more accurately corrected with navigation assistance (57% vs 49%, p=0.049). No statistically significant difference was found in the radiographic correction of varus alignment twelve months postoperatively between navigated and fluoroscopic techniques of MOWHTO. However, a subgroup analysis demonstrated that larger preoperative varus deformities may be more accurately corrected using computer navigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    PubMed Central

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  13. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    PubMed

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  14. Osteochondral integration of multiply incised pure cartilage allograft: repair method of focal chondral defects in a porcine model.

    PubMed

    Bardos, Tamas; Farkas, Boglarka; Mezes, Beata; Vancsodi, Jozsef; Kvell, Krisztian; Czompoly, Tamas; Nemeth, Peter; Bellyei, Arpad; Illes, Tamas

    2009-11-01

    A focal cartilage lesion has limited capacity to heal, and the repair modalities used at present are still unable to provide a universal solution. Pure cartilage graft implantation appears to be a simple option, but it has not been applied widely as cartilage will not reattach easily to the subchondral bone. We used a multiple-incision technique (processed chondrograft) to increase cartilage graft surface. We hypothesized that pure cartilage graft with augmented osteochondral fusion capacity may be used for cartilage repair and we compared this method with other repair techniques. Controlled laboratory study. Full-thickness focal cartilage defects were created on the medial femoral condyle of 9-month-old pigs; defects were repaired using various methods including bone marrow stimulation, autologous chondrocyte implantation, and processed chondrograft. After the repair, at weeks 6 and 24, macroscopic and histologic evaluation was carried out. Compared with other methods, processed chondrograft was found to be similarly effective in cartilage repair. Defects without repair and defects treated with bone marrow stimulation appeared slightly irregular with fibrocartilage filling. Autologous chondrocyte implantation produced hyalinelike cartilage, although its cellular organization was distinguishable from the surrounding articular cartilage. Processed chondrograft demonstrated good osteochondral integration, and the resulting tissue appeared to be hyaline cartilage. The applied cartilage surface processing method allows acceptable osteochondral integration, and the repair tissue appears to have good macroscopic and histologic characteristics. If further studies confirm its efficacy, this technique could be considered for human application in the future.

  15. The soleus syndrome. A cause of medial tibial stress (shin splints).

    PubMed

    Michael, R H; Holder, L E

    1985-01-01

    Radionuclide bone scans have demonstrated linear uptake along the posterior medial border of the tibia in patients with shin splints. This area was investigated by anatomical dissection (14 human cadavers), electromyographic (EMG) and muscle stimulation studies (10 patients), and open biopsy (1 patient). Histologically, the increased metabolic activity manifested on the radionuclide scan is due to a periostitis with new bone formation. The soleus muscle and its investing fascia are anatomically and biomechanically implicated in the production of these stress changes, particularly when the heel is in the pronated position. The soleus muscle and fascia form a tough "soleus bridge" over the deep compartment which is thought to be important in patients requiring surgical decompression.

  16. Second-look arthroscopic findings after open-wedge high tibia osteotomy focusing on the posterior root tears of the medial meniscus.

    PubMed

    Nha, Kyung-Wook; Lee, Yong Seuk; Hwang, Dae-Hee; Kwon, Jae Ho; Chae, Dong Ju; Park, Young Jee; Kim, Jong In

    2013-02-01

    This study examined, at second-look arthroscopy, the results of open-wedge high tibial osteotomy (HTO) focusing on root tear of the medial meniscus posterior horn (RTMMP). Among 31 consecutive patients who underwent HTO without a meniscectomy or pullout repair for RTMMP, 20 patients were available for second-look arthroscopic evaluation. All patients had medial unicompartmental arthritis. The healing status of the RTMMP was classified as complete, incomplete, and no healing. The difference in the weight bearing line from presurgery to the last follow-up was evaluated. Osteoarthritis and chondral lesions were evaluated, as were clinical results. Correlations between healing status and other variables (weight bearing line, cartilage status, and clinical scores) were assessed. The healed (10 patients) and nonhealed (incomplete 6 patients + no healing 4 patients) groups were also evaluated with respect to other variables. There were 10 (50%) cases with complete healing, 6 (30%) with incomplete healing, and 4 (20%) with no healing. Kellgren-Lawrence grade did not improve according to the standing plain radiograph (P = .09). Progression of chondral lesions was not observed at second-look arthroscopy; some improvement was even observed (P = .002). The median Lysholm score improved from 58 preoperatively to 88.5 at the last follow-up. The median Hospital for Special Surgery (HSS) score also increased significantly from 62.4 (range, 50 to 76) to 87.2 (range, 80 to 92; P = .003). The comparison between healed and nonhealed groups revealed no statistical differences in all variables. This study revealed a high rate of healing of RTMMP after HTO without attempted repair. Healing of the meniscus was not associated with an improved clinical outcome. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Bilateral same-day endoscopic transcanal cartilage tympanoplasty: initial results.

    PubMed

    Daneshi, Ahmad; Jahandideh, Hesam; Daneshvar, Ali; Safdarian, Mahdi

    Same-day closure of bilateral tympanic membrane perforations is a quick and more comfortable procedure for the patients. However, conventional bilateral same-day tympanoplasty or myringoplasty has been rarely performed because of the theoretical risk of postoperative complications. To evaluate the advantages and outcomes of bilateral simultaneous endoscopic cartilage tympanoplasty in patients with bilateral tympanic membrane perforations. From February 2012 to March 2013, patients with bilateral dry tympanic membrane perforations who had some degree of hearing loss corresponding to the size and location of the perforation entered the study. There was no suspicion to disrupted ossicular chain, mastoid involvement or other middle or inner ear pathology. Endoscopic transcanal cartilage tympanoplasty was done using the underlay (medial) technique. The graft was harvested from cymba cartilage in just one ear with preservation of perichondrium in one side. A 1.5cm×1.5cm cartilage seemed to be enough for tympanoplasty in both sides. Nine patients (4 males and 5 females) with the mean age of 37.9 years underwent bilateral transcanal cartilage tympanoplasty in a same-day surgery. The mean duration of follow up was 15.8 months. There were detected no complications including hearing loss, otorrhea and wound complication with no retraction pocket or displaced graft during follow-up period. The grafts take rate was 94.44% (only one case of unilateral incomplete closure). The mean of air-bone gap overall improved from 13.88dB preoperatively to 9.16dB postoperatively (p<0.05). Bilateral endoscopic transcanal cartilage tympanoplasty can be considered as a safe minimally invasive procedure that can be performed in a same-day surgery. It reduces the costs and operation time and is practical with a low rate of postoperative complications. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights

  18. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  19. Full-thickness knee articular cartilage defects in national football league combine athletes undergoing magnetic resonance imaging: prevalence, location, and association with previous surgery.

    PubMed

    Nepple, Jeffrey J; Wright, Rick W; Matava, Matthew J; Brophy, Robert H

    2012-06-01

    To better define the prevalence and location of full-thickness articular cartilage lesions in elite football players undergoing knee magnetic resonance imaging (MRI) at the National Football League (NFL) Invitational Combine and assess the association of these lesions with previous knee surgery. We performed a retrospective review of all participants in the NFL Combine undergoing a knee MRI scan from 2005 to 2009. Each MRI scan was reviewed for evidence of articular cartilage disease. History of previous knee surgery including anterior cruciate ligament reconstruction, meniscal procedures, and articular cartilage surgery was recorded for each athlete. Knees with a history of previous articular cartilage restoration surgery were excluded from the analysis. A total of 704 knee MRI scans were included in the analysis. Full-thickness articular cartilage lesions were associated with a history of any previous knee surgery (P < .001) and, specifically, previous meniscectomy (P < .001) but not with anterior cruciate ligament reconstruction (P = .7). Full-thickness lesions were present in 27% of knees with a previous meniscectomy compared with 12% of knees without any previous meniscal surgery. Full-thickness lesions in the lateral compartment were associated with previous lateral meniscectomy (P < .001); a similar relation was seen for medial meniscus tears in the medial compartment (P = .01). Full-thickness articular cartilage lesions of the knee were present in 17.3% of elite American football players at the NFL Combine undergoing MRI. The lateral compartment appears to be at greater risk for full-thickness cartilage loss. Previous knee surgery, particularly meniscectomy, is associated with these lesions. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. Magnetic Resonance Imaging Assessment of Intra-Articular Structures in the Canine Stifle Joint after Implantation of a Titanium Tibial Plateau Levelling Osteotomy Plate.

    PubMed

    Feichtenschlager, Christian; Gerwing, Martin; Failing, Klaus; Peppler, Christine; Kása, Andreas; Kramer, Martin; von Pückler, Kerstin H

    2018-06-02

     To determine the effectiveness of magnetic resonance imaging (MRI) in the evaluation of anatomical stifle structures with respect to implant positioning after tibial plateau levelling osteotomy (TPLO) using a titanium plate.  Selected sagittal and dorsal sequences of pre- and postoperative MRI (1.0 T scanner) of 13 paired ( n  = 26) sound cadaveric stifle joints were evaluated. The effect of susceptibility artifact on adjacent anatomical stifle structures was graded from 0 to 5. The impact of implant positioning regarding assessment score was calculated using Spearman's rank correlation coefficient.  Sagittal turbo spin echo (TSE)-acquired images enabled interpretation of most soft tissue, osseous and cartilage structures without detrimental effect of susceptibility artifact distortions. In T2-weighted TSE images, the cranial cruciate ligament and caudal horn of the medial meniscus could be evaluated, independent of implant position, without any susceptibility artifact in all specimens. T2-weighted fast field echo, water selective, balanced fast field echo and short tau inversion recovery were most markedly affected by susceptibility artifact.  In selected TSE sequences, MRI allows evaluation of critical intra-articular structures after titanium TPLO plate implantation. Further investigations with confirmed stifle pathologies in dogs are required, to evaluate the accuracy of MRI after TPLO in clinical cases in this context. Schattauer GmbH Stuttgart.

  1. ACL double-bundle reconstruction with one tibial tunnel provides equal stability compared to two tibial tunnels.

    PubMed

    Drews, Björn Holger; Seitz, Andreas Martin; Huth, Jochen; Bauer, Gerhard; Ignatius, Anita; Dürselen, Lutz

    2017-05-01

    The purpose of this study was to investigate whether an anterior cruciate ligament (ACL) double-bundle reconstruction with one tibial tunnel displays the same in vitro stability as a conventional double-bundle reconstruction with two tibial tunnels when using the same tensioning protocol. In 11 fresh-frozen cadaveric knees, ACL double-bundle reconstruction with one and two tibial tunnels was performed. The two grafts were tightened using 80 N in different flexion angles (anteromedial-bundle at 60° and posterolateral-bundle at 15°). Anterior tibial translation (134 N) and translation with combined rotatory and valgus loads (10 Nm valgus stress and 4 Nm internal tibial torque) were determined at 0°, 30°, 60° and 90° flexion. Measurements were taken in intact ACL, resected ACL, three-tunnel reconstruction and four-tunnel reconstruction. Additionally, the tension on the grafts was determined. Student's t test was performed for statistical analysis of the related samples. Significance was set at p < 0.017 according to Bonferroni correction. The two reconstructive techniques displayed no significant differences in comparison with the intact ACL in anterior tibial translation at 0°, 60° and 90° of flexion. The same results were obtained for the anterior tibial translation with a combined rotatory load at 60° and 90°. When directly comparing both reconstructive techniques, there were no significant differences for the anterior tibial translation and combined rotatory load at all flexion angles. The measured tension on grafts displayed similar load sharing between both bundles. Except at full extension, both grafts displayed a significantly different tension increase under anterior tibial translation for both techniques (p = 0.0086). Tightening both bundles in ACL double-bundle reconstruction with one or two tibial tunnels in different flexion angles achieved comparable restoration of stability, although there was different load sharing on the bundles

  2. Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study.

    PubMed

    Munier, M; Donnez, M; Ollivier, M; Flecher, X; Chabrand, P; Argenson, J-N; Parratte, S

    2017-04-01

    Treatment of medial tibiofemoral osteoarthritis with a high-tibial osteotomy (HTO) is most effective when the optimal angular correction is achieved. However, conventional instrumentation is limited when multiplanar correction is needed. Use of patient-specific cutting guides (PSCGs) for HTO provides an accurate correction (difference<2°) relative to the preoperative planning. Between February 2014 and February 2015, 10 patients (mean age: 46 years [range: 31-59]; grade 1 or 2 osteoarthritis in Ahlbäck's classification) were included prospectively in this reliability and safety study. All patients were operated using the same medial opening-wedge osteotomy technique. Preoperative planning was based on long-leg radiographs and CT scans with 3D reconstruction. The PSGCs were used to align the osteotomy cut and position the screw holes for the plate. The desired correction was achieved in the three planes when the holes on the plate were aligned with the holes drilled based on the PSCG. Preoperatively, the mean HKA angle was 171.9° (range: 166-179°), the mean proximal tibial angle was 87° (86-88°) and the mean tibial slope was 7.8° (1-22°). The postoperative correction was compared to the planned correction using 3D CT scan transformations. Intraoperative and postoperative complications were assessed at a minimum follow-up of 1 year. The procedure was successfully carried out in all patients with the PSCGs. On postoperative long-leg radiographs, the mean HKA was 182.3° (180-185°); on the CT scan, the mean tibial mechanical angle was 94° (90-98°) and the mean tibial slope was 7.1° (4-11°). In 19 out of 20 postoperative HKA and slope measurements, the difference between the planned and achieved correction was <2° based on the 3D analysis of the three planes in space; in the other case, the slope was 13° instead of the planned 10°. The intra-class correlation coefficients between the postoperative and planned parameters were 0.98 [0.92-0.99] for

  3. Outcomes of tibial endovascular intervention in patients with poor pedal runoff.

    PubMed

    Baer-Bositis, Hallie E; Hicks, Taylor D; Haidar, Georges M; Sideman, Matthew J; Pounds, Lori L; Davies, Mark G

    2018-06-01

    Tibial interventions for critical limb ischemia are now commonplace. The aim of this study was to examine the impact of pedal runoff on patient-centered outcomes after tibial endovascular intervention. A database of patients undergoing lower extremity endovascular interventions at a single urban academic medical center between 2006 and 2016 was retrospectively queried. Patients with critical ischemia (Rutherford 5 and 6) were identified. Preintervention angiograms were reviewed in all cases to assess pedal runoff. Each dorsalis pedis, lateral plantar, and medial plantar artery was assigned a score according to the reporting standards of the Society for Vascular Surgery (0, no stenosis >20%; 1, 21%-49% stenosis; 2, 50%-99% stenosis; 2.5, half or less of the vessel length occluded; 3, more than half the vessel length occluded). A foot score (dorsalis pedis + medial plantar + lateral plantar + 1) was calculated for each foot (1-10). Two runoff score groups were identified: good vs poor, <7 and ≥7, respectively. Patient-oriented outcomes of clinical efficacy (absence of recurrent symptoms, maintenance of ambulation, and absence of major amputation), amputation-free survival (survival without major amputation), and freedom from major adverse limb events (above-ankle amputation of the index limb or major reintervention [new bypass graft, jump/interposition graft revision]) were evaluated. There were 1134 patients (56% male; average age, 59 years) who underwent tibial intervention for critical ischemia, with a mean of two vessels treated per patient and a mean pedal runoff score of 6 (47% had a runoff score ≥7). Overall major adverse cardiac events were equivalent at 30 days after the procedure in both groups. At 5 years, vessels with compromised runoff (score ≥7) had significantly lower ulcer healing (25% ± 3% vs 73% ± 4%, mean ± standard error of the mean [SEM]) and a lower 5-year limb salvage rate (45% ± 6% vs 69% ± 4%, mean ± SEM) compared

  4. Tibial lengthening over humeral and tibial intramedullary nails in patients with sequelae of poliomyelitis: a comparative study.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Jiang, Yao; Liu, Fanggang

    2011-06-01

    Leg discrepancy is common after poliomyelitis. Tibial lengthening is an effective way to solve this problem. It is believed lengthening over a tibial intramedullary nail can provide a more comfortable lengthening process than by the conventional technique. However, patients with sequelae of poliomyelitis typically have narrow intramedullary canals allowing limited space for inserting a tibial intramedullary nail and Kirschner wires. To overcome this problem, we tried using humeral nails instead of tibial nails in the lengthening procedure. In this study, we used humeral nails in 20 tibial lengthening procedures and compared the results with another group of patients who were treated with tibial lengthening over tibial intramedullary nails. The mean consolidation index, percentage of increase and external fixation index did not show significant differences between the two groups. However, less blood loss and shorter operating time were noted in the humeral nail group. More patients encountered difficulty with the inserted intramedullary nail in the tibial nail group procedure. The complications did not show a statistically significant difference between the two techniques on follow-up. In conclusion, we found the humeral nail lengthening technique was more suitable in leg discrepancy patients with sequelae of poliomyelitis.

  5. A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens.

    PubMed

    Bujnowski, K; Getgood, A; Leitch, K; Farr, J; Dunning, C; Burkhart, T A

    2018-02-01

    It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole. Cite this article : K. Bujnowski, A. Getgood, K. Leitch, J. Farr, C. Dunning, T. A. Burkhart. A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens. Bone Joint Res 2018;7:166-172. DOI: 10.1302/2046-3758.72.BJR-2017-0337.R1.

  6. Tibial tuberosity to trochlear groove distance and its association with patellofemoral osteoarthritis-related structural damage worsening: data from the osteoarthritis initiative.

    PubMed

    Haj-Mirzaian, Arya; Guermazi, Ali; Hakky, Michael; Sereni, Christopher; Zikria, Bashir; Roemer, Frank W; Tanaka, Miho J; Cosgarea, Andrew J; Demehri, Shadpour

    2018-04-30

    To determine whether the tibial tuberosity-to-trochlear groove (TT-TG) distance is associated with concurrent patellofemoral joint osteoarthritis (OA)-related structural damage and its worsening on 24-month follow-up magnetic resonance imaging (MRI) in participants in the Osteoarthritis Initiative (OAI). Six hundred subjects (one index knee per participant) were assessed. To evaluate patellofemoral OA-related structural damage, baseline and 24-month semiquantitative MRI Osteoarthritis Knee Score (MOAKS) variables for cartilage defects, bone marrow lesions (BMLs), osteophytes, effusion, and synovitis were extracted from available readings. The TT-TG distance was measured in all subjects using baseline MRIs by two musculoskeletal radiologists. The associations between baseline TT-TG distance and concurrent baseline MOAKS variables and their worsening in follow-up MRI were investigated using regression analysis adjusted for variables associated with tibiofemoral and patellofemoral OA. At baseline, increased TT-TG distance was associated with concurrent lateral patellar and trochlear cartilage damages, BML, osteophytes, and knee joint effusion [cross-sectional evaluations; overall odds ratio 95% confidence interval (OR 95% CI): 1.098 (1.045-1.154), p < 0.001]. In the longitudinal analysis, increased TT-TG distance was significantly related to lateral patellar and trochlear cartilage, BML, and joint effusion worsening (overall OR 95% CI: 1.111 (1.056-1.170), p < 0.001). TT-TG distance was associated with simultaneous lateral patellofemoral OA-related structural damage and its worsening over 24 months. Abnormally lateralized tibial tuberosity may be considered as a risk factor for future patellofemoral OA worsening. • Excessive TT-TG distance on MRI is an indicator/predictor of lateral-patellofemoral-OA. • TT-TG is associated with simultaneous lateral-patellofemoral-OA (6-17% chance-increase for each millimeter increase). • TT-TG is associated with longitudinal (24

  7. Medial malleolar fractures: a biomechanical study of fixation techniques.

    PubMed

    Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G

    2011-08-08

    Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.

  8. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    PubMed

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  9. Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair.

    PubMed

    Slocum, B; Devine, T

    1984-03-01

    Cranial tibial wedge osteotomy, surgical technique for cranial cruciate ligament rupture, was performed on 19 stifles in dogs. This procedure leveled the tibial plateau, thus causing weight-bearing forces to be compressive and eliminating cranial tibial thrust. Without cranial tibial thrust, which was antagonistic to the cranial cruciate ligament and its surgical reconstruction, cruciate ligament repairs were allowed to heal without constant loads. This technique was meant to be used as an adjunct to other cranial cruciate ligament repair techniques.

  10. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods

    PubMed Central

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu

    2018-01-01

    Objectives To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2⁎-mapping and analyze the correlation between the results of both methods. Methods Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2⁎ values between patients and controls were compared using unpaired Student's t-test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. Results ACL-ruptured patients showed higher T2 and T2⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2⁎ value was correlated with that of T2 value (r = 0.886, P < 0.001). Conclusion The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2⁎-mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping. PMID:29888279

  11. Bilateral Posterior Tibial Tendon and Flexor Digitorum Longus Dislocations.

    PubMed

    Padegimas, Eric M; Beck, David M; Pedowitz, David I

    2017-04-01

    The authors present a case of a previously healthy and athletic 17-year-old female who presented with a 3.5-year history of medial left ankle pain after sustaining an inversion injury while playing basketball. Prior to presentation, she had failed prior immobilization and physical therapy for a presumed ankles sprain. Physical examination revealed a dislocated posterior tibial tendon (PTT) that was temporarily reducible, but would spontaneously dislocate immediately after reduction. She had pain and snapping of the PTT with resisted ankle plantar flexion and resisted inversion as well as 4/5 strength in ankle inversion. The diagnosis of dislocated PTT was confirmed on magnetic resonance imaging (MRI). The patient underwent suture anchor repair of the medial retinaculum of the left ankle. At the time of surgery both the PTT and flexor digitorum longus (FDL) were dislocated. Three months postoperatively, the patient represented with PTT dislocation of the right (nonoperative) ankle confirmed by MRI. After failure of immobilization, physical therapy, and oral anti-inflammatory medications, the patient underwent suture anchor repair of the medial retinaculum of the right ankle. At 6 months postoperatively, the patient has 5/5 strength inversion bilaterally, no subluxation of either PTT, and has returned to all activities without limitation. The authors present this unique case of bilateral PTT dislocation and concurrent PTT/FDL dislocation along with review of the literature for PTT dislocation. The authors highlight the common misdaiganosis of this injury and highlight the successful results of surgical intervention. Level V: Case report.

  12. Do Tibial Plateau Fractures Worsen Outcomes of Knee Ligament Injuries? A Matched Cohort Analysis

    PubMed Central

    Cinque, Mark E.; Godin, Jonathan A.; Moatshe, Gilbert; Chahla, Jorge; Kruckeberg, Bradley M.; Pogorzelski, Jonas; LaPrade, Robert F.

    2017-01-01

    Background: Tibial plateau fractures account for a small portion of all fractures; however, these fractures can pose a surgical challenge when occurring concomitantly with ligament injuries. Purpose/Hypothesis: The purpose of this study was to compare 2-year outcomes of soft tissue reconstruction with or without a concomitant tibial plateau fracture and open reduction internal fixation. We hypothesized that patients with a concomitant tibial plateau fracture at the time of soft tissue surgery would have inferior outcomes compared with patients without an associated tibial plateau fracture. Study Design: Cohort study; Level of evidence, 3. Methods: Forty patients were included in this study: 8 in the fracture group and 32 in the matched control group. Inclusion criteria for the fracture group included patients who were at least 18 years old at the time of surgery and sustained a tibial plateau fracture and a concomitant injury of the anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament, or fibular collateral ligament in isolation or any combination of cruciate or collateral ligaments and who subsequently underwent isolated or combined ligament reconstruction. Patients were excluded if they underwent prior ipsilateral knee surgery, sustained additional bony injuries, or sustained an isolated extra-articular ligament injury at the time of injury. Each patient with a fracture was matched with 4 patients from a control group who had no evidence of a tibial plateau fracture but underwent the same soft tissue reconstruction procedure. Results: Patients in the fracture group improved significantly from preoperatively to postoperatively with respect to Short Form–12 (P < .05) and Western Ontario and McMaster Universities Osteoarthritis Index total scores (P < .05). The Lysholm (P = .075) and Tegner scores (P = .086) also improved, although this was not statistically significant. Patients in the control group improved significantly from

  13. Effect of Tibial Plateau Levelling Osteotomy on Cranial Tibial Subluxation in the Feline Cranial Cruciate Deficient Stifle Joint: An Ex Vivo Experimental Study.

    PubMed

    Bilmont, A; Retournard, M; Asimus, E; Palierne, S; Autefage, A

    2018-06-11

     This study evaluated the effects of tibial plateau levelling osteotomy on cranial tibial subluxation and tibial rotation angle in a model of feline cranial cruciate ligament deficient stifle joint.  Quadriceps and gastrocnemius muscles were simulated with cables, turnbuckles and a spring in an ex vivo limb model. Cranial tibial subluxation and tibial rotation angle were measured radiographically before and after cranial cruciate ligament section, and after tibial plateau levelling osteotomy, at postoperative tibial plateau angles of +5°, 0° and -5°.  Cranial tibial subluxation and tibial rotation angle were not significantly altered after tibial plateau levelling osteotomy with a tibial plateau angle of +5°. Additional rotation of the tibial plateau to a tibial plateau angle of 0° and -5° had no significant effect on cranial tibial subluxation and tibial rotation angle, although 2 out of 10 specimens were stabilized by a postoperative tibial plateau angle of -5°. No stabilization of the cranial cruciate ligament deficient stifle was observed in this model of the feline stifle, after tibial plateau levelling osteotomy.  Given that stabilization of the cranial cruciate ligament deficient stifle was not obtained in this model, simple transposition of the tibial plateau levelling osteotomy technique from the dog to the cat may not be appropriate. Schattauer GmbH Stuttgart.

  14. Clinical significance of condylar chondromalacia after arthroscopic resection of flap-tears of the medial meniscus. A prospective study of 93 cases.

    PubMed

    Aune, A K; Madsen, J E; Moen, H

    1995-01-01

    We describe the results after arthroscopic resection of flap-tears of the medial meniscus posterior horn in 93 patients with (40) or without (53) chondromalacia of the adjacent condylar cartilage at the time of operation. These were 93 consecutive patients presenting with medial flap-tears during the period 1988-1990 in our departments. The follow-up averaged 42 (range 26-50) months. There was a significant difference in the functional results at review depending on the presence or absence of condylar chondromalacia at arthroscopy. Among the 40 patients with chondromalacia, the Lysholm score was significantly lower (P < 0.004), and only about half the patients reported a satisfactory result. There was a significant increase in the presence of chondromalacia with age (P < 0.001). In conclusion, the presence of minor degenerative changes in the articular cartilage adjacent to meniscal flap-tears correlated with a less favourable outcome.

  15. Topographical investigation of changes in depth-wise proteoglycan distribution in rabbit femoral articular cartilage at 4 weeks after transection of the anterior cruciate ligament.

    PubMed

    Arokoski, Mikko E A; Tiitu, Virpi; Jurvelin, Jukka S; Korhonen, Rami K; Fick, James M

    2015-09-01

    In this study, we explore topographical changes in proteoglycan distribution from femoral condylar cartilage in early osteoarthritis, acquired from both the lateral and medial condyles of anterior cruciate ligament transected (ACLT) and contralateral (CNTRL) rabbit knee joints, at 4 weeks post operation. Four sites across the cartilage surface in a parasagittal plane were defined across tissue sections taken from femoral condyles, and proteoglycan (PG) content was quantified using digital densitometry. The greatest depth-wise change in PG content due to an ACLT (compared to the CNTRL group) was observed anteriorly (site C) from the most weight-bearing location within the lateral compartment. In the medial compartment, the greatest change was observed in the most weight-bearing location (site B). The depth-wise changes in PG content were observed up to 48% and 28% depth from the tissue surface at these aforementioned sites, respectively (p < 0.05). The smallest depth-wise change in PG content was observed posteriorly (site A) from the most weight-bearing location within both femoral condyles (up to 20% and up to 5% depth from the tissue surface at lateral and medial compartments, respectively). This study gives further insight into how early cartilage deterioration progresses across the parasagittal plane of the femoral condyle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Q-vector measurements: physical examination versus magnetic resonance imaging measurements and their relationship with tibial tubercle-trochlear groove distance.

    PubMed

    Graf, Kristin H; Tompkins, Marc A; Agel, Julie; Arendt, Elizabeth A

    2018-03-01

    An increased lateral quadriceps vector has been associated with lateral patellar dislocation. Surgical correction of this increased vector through tibial tubercle medialization is often recommended when the quadriceps vector is "excessive". This can be evaluated by physical examination measurements of Q-angle and/or tubercle sulcus angle (TSA), as well as the magnetic resonance imaging (MRI) measurement of tibial tubercle-trochlear groove (TT-TG) distance. This study examined the relationship between three objective measurements of lateral quadriceps vector (TT-TG, Q-angle, TSA). A secondary goal was to relate lateral patellar tilt to these measurements. Consecutive patients undergoing patellofemoral stabilization surgery from 9/2010 to 6/2011 were included. The Q-angle and TSA were measured on intra-operative physical examination. The TT-TG and patellar tilt were measured on MRI. TSA, Q-angle, and patellar tilt were compared to TT-TG using Pearson correlation coefficient. The study cohort included 49 patients, ages 12-37 (mean 23.2); 62% female. The Pearson correlation coefficients showed (+) significance (p < 0.01) between the TT-TG and both TSA and Q-angle. Tilt and TT-TG were (+) non-significantly correlated. Despite positive correlations of each measurement with TT-TG, there is not uniform intra-patient correlation. In other words, if TT-TG is elevated for a patient, it does not guarantee that all other measurements, including tilt, are elevated in that individual patient. The TT-TG distance has significant positive correlation with the measurements of TSA and Q-angle in patients undergoing surgery for patellofemoral instability. The clinical relevance is that the variability within individual patients demonstrates the need for considering both TSA and TT-TG before and during surgical intervention to avoid overcorrection with a medial tibial tubercle osteotomy. Diagnostic study, Level III.

  17. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    PubMed

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the

  18. Lateralization of the Tibial Tubercle in Recurrent Patellar Dislocation: Verification Using Multiple Methods to Evaluate the Tibial Tubercle.

    PubMed

    Tensho, Keiji; Shimodaira, Hiroki; Akaoka, Yusuke; Koyama, Suguru; Hatanaka, Daisuke; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2018-05-02

    The tibial tubercle deviation associated with recurrent patellar dislocation (RPD) has not been studied sufficiently. New methods of evaluation were used to verify the extent of tubercle deviation in a group with patellar dislocation compared with that in a control group, the frequency of patients who demonstrated a cutoff value indicating that tubercle transfer was warranted on the basis of the control group distribution, and the validity of these methods of evaluation for diagnosing RPD. Sixty-six patients with a history of patellar dislocation (single in 19 [SPD group] and recurrent in 47 [RPD group]) and 66 age and sex-matched controls were analyzed with the use of computed tomography (CT). The tibial tubercle-posterior cruciate ligament (TT-PCL) distance, TT-PCL ratio, and tibial tubercle lateralization (TTL) in the SPD and RPD groups were compared with those in the control group. Cutoff values to warrant 10 mm of transfer were based on either the minimum or -2SD (2 standard deviations below the mean) value in the control group, and the prevalences of patients in the RPD group with measurements above these cutoff values were calculated. The area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the measurements as predictors of RPD. The mean TT-PCL distance, TT-PCL ratio, and TTL were all significantly greater in the RPD group than in the control group. The numbers of patients in the RPD group who satisfied the cutoff criteria when they were based on the minimum TT-PCL distance, TT-PCL ratio, and TTL in the control group were 11 (23%), 7 (15%), and 6 (13%), respectively. When the cutoff values were based on the -2SD values in the control group, the numbers of patients were 8 (17%), 6 (13%), and 0, respectively. The AUC of the ROC curve for TT-PCL distance, TT-PCL ratio, and TTL was 0.66, 0.72, and 0.72, respectively. The extent of TTL in the RPD group was not substantial, and the percentages

  19. Intra-epiphyseal stress injury of the proximal tibial epiphysis: preliminary experience of magnetic resonance imaging findings.

    PubMed

    Tony, G; Charran, A; Tins, B; Lalam, R; Tyrrell, P N M; Singh, J; Cool, P; Kiely, N; Cassar-Pullicino, V N

    2014-11-01

    Stress induced injuries affecting the physeal plate or cortical bone in children and adolescents, especially young athletes, have been well described. However, there are no reports in the current English language literature of stress injury affecting the incompletely ossified epiphyseal cartilage. We present four cases of stress related change to the proximal tibial epiphysis (PTE) along with their respective magnetic resonance imaging (MRI) appearances ranging from subtle oedema signal to a pseudo-tumour like appearance within the epiphyseal cartilage. The site and pattern of intra-epiphyseal injury is determined by the type of tissue that is affected, the maturity of the skeleton and the type of forces that are transmitted through the tissue. We demonstrate how an awareness of the morphological spectrum of MRI appearances in intra-epiphyseal stress injury and the ability to identify concomitant signs of stress in other nearby structures can help reduce misdiagnosis, avoid invasive diagnostic procedures like bone biopsy and reassure patients and their families. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Ultrasonographic assessment of the quadriceps muscle and femoral cartilage in transtibial amputees using different prostheses.

    PubMed

    Şahin Onat, Şule; Malas, Fevziye Ünsal; Öztürk, Gökhan Tuna; Akkaya, Nuray; Kara, Murat; Özçakar, Levent

    2016-08-01

    In patients with lower limb amputations, gait alteration, increased loading on the intact extremity, and use of prosthesis may lead to joint degeneration. To explore the effects of prosthesis type on quadriceps muscle and distal femoral cartilage thicknesses in transtibial amputees. A cross-sectional study. A total of 38 below-knee amputees were enrolled in the study, of which 13 patients were using vacuum system type prosthesis and 25 patients were using silicon liner pin system prosthesis. Patients' femoral cartilage and quadriceps muscle thickness measurements were performed using musculoskeletal ultrasound. When compared with the intact sides, cartilage and rectus femoris, vastus intermedius, and vastus medialis muscle thickness values were significantly decreased on the amputee sides (all p < 0.05). Clinical characteristics and ultrasound measurements were similar between the two groups except the lateral and medial femoral condyle thicknesses, thinner in the silicon liner pin system users (both p < 0.05). The distal femoral cartilage and quadriceps muscle thicknesses were found to be decreased on the amputated sides, and the negative impact on the cartilage seemed to be worse in the silicon liner pin system users. This study might provide another argument as regards the preference of vacuum system type prosthesis to prevent possible knee osteoarthritis due to cartilage thinning in adult transtibial amputees. © The International Society for Prosthetics and Orthotics 2015.

  1. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  2. Hybrid pig versus Gottingen minipig-derived cartilage and chondrocytes show pig line-dependent differences.

    PubMed

    Müller, Claudia; Marzahn, Ulrike; Kohl, Benjamin; El Sayed, Karym; Lohan, Anke; Meier, Carola; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-11-01

    Minipigs are widely used as a large animal model for cartilage repair. However, many in vitro studies are based on porcine chondrocytes derived from abundantly available premature hybrid pigs. It remains unclear whether pig line-dependent differences exist which could limit the comparability between in vitro and in vivo results using either hybrid or miniature pig articular chondrocytes. Porcine knee joint femoral cartilage was isolated from 3- to 5-month-old hybrid pigs and Göttingen minipigs. Cartilage from both pig lines was analysed for thickness, zonality, cell content, size and proteoglycan deposition. Cultured articular chondrocytes from both pig lines were investigated for gene and/or protein expression of cartilage-specific proteins such as type II collagen, aggrecan, the chondrogenic transcription factor Sox9, non-specific type I collagen and the cell-matrix receptor β1-integrin. Cartilage was significantly thinner in the miniature pig compared to the hybrid pig, but the differences between the medial and lateral femur condyles did not reach a significant level. Knee joint cartilage zone formation started only in the minipig, whereas cellularity and cell diameters were comparable in both pig lines. Blood vessels could be detected in the hybrid pig but not the minipig cartilage. Sulphated proteoglycan deposition was more pronounced in cartilage zones II-IV of both pig lines. Minipig chondrocytes expressed type II and I collagen, Sox9 and β1-integrin at a higher level than hybrid pig chondrocytes. These distinct line-dependent differences should be considered when using hybrid pig-derived chondrocytes for tissue engineering and Göttingen minipigs as a large animal model.

  3. Sequential Change in T2* Values of Cartilage, Meniscus, and Subchondral Bone Marrow in a Rat Model of Knee Osteoarthritis

    PubMed Central

    Tsai, Ping-Huei; Lee, Herng-Sheng; Siow, Tiing Yee; Chang, Yue-Cune; Chou, Ming-Chung; Lin, Ming-Huang; Lin, Chien-Yuan; Chung, Hsiao-Wen; Huang, Guo-Shu

    2013-01-01

    Background There is an emerging interest in using magnetic resonance imaging (MRI) T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA). However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX). Materials and Methods Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. Results Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001). In the ACLX group (compared to the sham and control groups), T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001), then in the anterior horn of the medial meniscus at 13 weeks (p<0.001), and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043). Conclusion Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression. PMID:24204653

  4. Different roles of the medial and lateral hamstrings in unloading the anterior cruciate ligament.

    PubMed

    Guelich, David R; Xu, Dali; Koh, Jason L; Nuber, Gordon W; Zhang, Li-Qun

    2016-01-01

    Anterior cruciate ligament injuries are closely associated with excessive loading and motion about the off axes of the knee, i.e. tibial rotation and knee varus/valgus. However, it is not clear about the 3-D mechanical actions of the lateral and medial hamstring muscles and their differences in loading the ACL. The purpose of this study was to investigate the change in anterior cruciate ligament strain induced by loading the lateral and medial hamstrings individually. Seven cadaveric knees were investigated using a custom testing apparatus allowing for six degree-of-freedom tibiofemoral motion induced by individual muscle loading. With major muscles crossing the knee loaded moderately, the medial and lateral hamstrings were loaded independently to 200N along their lines of actions at 0°, 30°, 60° and 90° of knee flexion. The induced strain of the anterior cruciate ligament was measured using a differential variable reluctance transducer. Tibiofemoral kinematics was monitored using a six degrees-of-freedom knee goniometer. Loading the lateral hamstrings induced significantly more anterior cruciate ligament strain reduction (mean 0.764 [SD 0.63] %) than loading the medial hamstrings (mean 0.007 [0.2] %), (P=0.001 and effect size=0.837) across the knee flexion angles. The lateral and medial hamstrings have significantly different effects on anterior cruciate ligament loadings. More effective rehabilitation and training strategies may be developed to strengthen the lateral and medial hamstrings selectively and differentially to reduce anterior cruciate ligament injury and improve post-injury rehabilitation. The lateral and medial hamstrings can potentially be strengthened selectively and differentially as a more focused rehabilitation approach to reduce ACL injury and improve post-injury rehabilitation. Different ACL reconstruction procedures with some of them involving the medial hamstrings can be compared to each other for their effect on ACL loading. Copyright

  5. Laser biostimulation of articular cartilage: in vitro evaluation

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Guo, Zhouyi; Yang, Xiaohong; Zeng, Chang-Chun

    2004-07-01

    In the orthopaedic field, the repair of ariticular cartilage is still a difficult problem, because of the physiological characters of cartilaginous tissues and chondrocytes. To find an effective method of stimulating their regeneration, this in vitro study focuses on the biostimulation of rabbit articular chondrocytes by low-power He-Ne laser. The articular chondrocytes isolated from the cartilage of the medial condyle of the femur of the rabbit were incubated in HamF12 medium. The second passage culture were spread on 24 petri dishes and were irradiated with laser at power density of 2 - 12 mW/cm2 for 6.5 minutes, corresponding to the energy density of 1-6 J/cm2. Laser treatment was performed three times at a 24-hour interval. After lasering, incubation was continued for 24 hours. Non-irradiated cells were kept under the same conditions as the irradiated ones. The cell proliferation activity was evaluated with a XTT colorimetric method. Irradiation of 4 - 6 J/cm2 revealed a considerably higher cell proliferation activity comparing to control cultures. Thereinto, the energy density of 4 and 5 J/cm2 remarkably increased cell growth (P<0.01). The present study showed that a particular laser irradiation stimulates articular chondrocytes proliferation. These findings might be clinically relevant, indicating that low-power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  6. Functional and Radiological Outcome of Schatzker type V and VI Tibial Plateau Fracture Treatment with Dual Plates with Minimum 3 years follow-up: A Prospective Study

    PubMed Central

    Suri, Harpreet Singh; Gangrade, Kewal

    2016-01-01

    Introduction High energy intra-articular fractures involving the tibial plateau causes various problems related to management like wound dehiscence, severe comminution leading to malalignment and delayed complications like varus collapse, implant failure and arthritis of knee joint. Aim This study was done to determine functional, radiological outcome and the complications of Schatzker V and VI tibial plateau fractures treated with bipillar plating with dual plates with a regular follow-up of atleast 3 years. Materials and Methods Total 34 cases of tibial plateau fracture type V and VI treated with dual plating were studied from January 2011 to December 2013 in KIMS Hospital were followed for minimum of 3 years. The patients were operated through an anterolateral approach for lateral plate and a medial column plate was put through a minimally invasive medial approach or an open posteromedial approach. Results Total 34 patients were evaluated postoperatively thoroughly for functional outcome using The Knee Society Score and radiological outcomes by Modified Rasmussen Assessment criteria which showed 29 patients (85.29%) had excellent and 5 patients (14.71%) had good objective knee society score. 24 patients (70.59%) had excellent, 8 patients (23.53%) had good and 1patient (2.94%) were each of poor and fair functional knee society score. Eleven patients (32.35%) had excellent, 21patients (61.76%) had good and 2 patients (5.88%) had fair radiological outcome. Conclusion We conclude that open reduction and internal fixation of high-energy tibial plateau fractures with dual plates via 2 incisions gives excellent to good functional outcome with minimal soft tissue complications. Thus, a minimally invasive approach should be used which helps in preventing soft tissue problems and helps in early wound healing. Fixation done by bipillar plating is important for early mobilization of knee joint. Early mobilization leads to better range of movements and thereby better

  7. Arthroscopic partial meniscectomy of a medial meniscus bucket-handle tear using the posteromedial portal.

    PubMed

    Ahn, Jin Hwan; Oh, Irvin

    2004-09-01

    Arthroscopic resection of irreparable bucket-handle tears of the medial meniscus is a commonly performed procedure. Adequate visualization of the posterior horn of the medial meniscus can be a challenging task with the conventional use of the anterior portal. An attempt to resect the posterior horn in a blind fashion may result in iatrogenic damage of the articular cartilage in the posterior compartment, over-resection of a remnant meniscus, or an insufficient resection of the torn fragment. We describe the use of the posteromedial portal for an accurate visualization and resection of the posterior attachment of a bucket-handle tear for arthroscopic partial meniscectomy, as well as detection of other injuries that may be involved in the posteromedial compartment, while avoiding injury to other intra-articular structures during the arthroscopic procedure. We found that the use of the posteromedial portal is a safe and efficient method in removing a bucket-handle tear of the medial meniscus in one piece.

  8. Medial Meniscus Posterior Root Repair Using a Transtibial Technique.

    PubMed

    Woodmass, Jarret M; Mohan, Rohith; Stuart, Michael J; Krych, Aaron J

    2017-06-01

    The meniscal roots are critical in maintaining the normal shock absorbing function of the meniscus. If a meniscal root tear is left untreated, meniscal extrusion can occur rendering the meniscus nonfunctional resulting in degenerative arthritis. Two main repair techniques are described: (1) suture anchors (direct fixation) and (2) sutures pulled through a tibial tunnel (indirect fixation). Meniscal root repair using a suture anchor technique is technically challenging requiring a posterior portal and a curved suture passing device that can be difficult to manipulate within the knee. We present a technique for posterior medial meniscus root repair using 3 sutures (1 leader, 2 cinch), standard arthroscopy portals, and transtibial fixation. Overall, this technique simplifies a challenging procedure and allows for familiarity and efficiency.

  9. Conventional over-the-top-aiming devices with short offset fail to hit the center of the human femoral ACL footprint in medial portal technique, whereas medial-portal-aiming devices with larger offset hit the center reliably.

    PubMed

    Domnick, Christoph; Herbort, Mirco; Raschke, Michael J; Bremer, Susanne; Schliemann, Benedikt; Petersen, Wolf; Zantop, Thore

    2016-04-01

    Aim of this study was to investigate the accuracy of a conventional over-the-top-guide (OTG) with a typically short offset to hit the center of the native femoral ACL footprint through the anteromedial portal in comparison to a specific medial-portal-aimer (MPA) with larger offset. In 20 matched human cadaveric knees, insertion sites of the ACL were marked in medial arthrotomy. An OTG with an offset of 5.5 mm, respectively, the MPA with 9 mm offset was used in a medial portal approach to locate the center of a single bundle ACL reconstruction tunnel with k-wires. Distances from the footprint center, the OTG drilling and the MPA drilling to the roof of the intercondylar notch and to the deep cartilage margin were determined. After positioning of radiological markers, radiographic analysis was performed according to the quadrant technique as described by Bernard and Hertel. The distance from ACL origin to the roof of the notch was 10.3 (±2.1) mm, in the OTG group 6.7 (±1.5) mm and in the MPA group 9.6 (±1.9) mm. The distance to the deep cartilage margin was 9.5 (±1.7) mm from ACL origin, 4.8 (±1.3) mm with OTG and 8.7 (±1.4) mm with MPA. There were statistically significant differences between the distances of the footprint center and the OTG group after measuring and also after radiographic analysis (p < 0.0001). Using the MPA, no significant different distances in comparison to the anatomical ACL center were found (p > 0.0001). There was an increased risk for femoral blow (9/10 vs. 0/10) in the OTG group after overdrilling with a 9 mm drill. Short (5.5 mm) offset femoral aiming devices fail to locate the native ACL footprint center in medial portal approach with an increased risk for femoral blowout when overdrilling. The special medial-portal-aiming device with 9 mm offset hit the center reliably.

  10. Posterior horn instability of the medial meniscus a sign of posterior meniscotibial ligament insufficiency.

    PubMed

    Mariani, P P

    2011-07-01

    In longstanding chronic anterior cruciate ligament (ACL) insufficiency, we identified an abnormal movement of the posterior medial meniscal horn, likely due to insufficiency of the posteromedial meniscotibial ligament. Passing from extension to flexion or vice versa, the medial posterior horn slides below the posterior rim of the tibia exposing the tibial plateau. Fixation with suture anchors of the meniscotibial ligament through a posteromedial portal restored normal meniscotibial tension and reduced instability of the meniscal posterior horn. The purpose of the present study was to present the arthroscopic features of posterior medial meniscus instability and to report results following arthroscopic repair. During the two-year study period, from 2007 through 2008, this arthroscopic feature was detected in 12 patients, 5 patients had failure of a previous ACL reconstruction and 7 patients had delay in ligamentous reconstruction for various reasons. All patients were affected by severe anterior-posterior translation with 11.3 ± 4.3 mm of side-to-side difference at KT-2000 and by associated rotatory laxity with grade 3 of pivot shift. At follow-up of 1 year, the combined ACL reconstruction and fixation of the posteromedial horn showed a reduction in the rotatory and anteroposterior laxity. This study suggests the importance of a proper arthroscopic evaluation of the posterior medial capsule in patients with chronic ACL insufficiency and highlights the potential presence of an unstable posterior horn of the medial meniscus as an indirect arthroscopic sign of peripheral laxity.

  11. The Anteroposterior Axis of the Proximal Tibia Can Change After Tibial Resection in Total Knee Arthroplasty: Computer Simulation Using Asian Osteoarthritis Knees.

    PubMed

    Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide

    2017-03-01

    We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Relationship between tibial spine size and the occurrence of osteochondritis dissecans: an argument in favour of the impingement theory.

    PubMed

    Cavaignac, Etienne; Perroncel, Geoffroy; Thépaut, Mathias; Vial, Julie; Accadbled, Franck; De Gauzy, Jérôme Sales

    2017-08-01

    Pathophysiology of osteochondritis dissecans (OCD) of the medial femoral condyle remains uncertain. Specifically, the relationship between the size of the anterior tibial spine (ATS) and the presence of OCD has not been explored. The purpose of this study was to evaluate the relationship between ATS size and the occurrence of OCD. Seventy-nine children between 8 and 17 years of age were included in two groups: OCD (n = 37) and control (n = 42). The groups were matched in terms of age, gender, BMI and weight. Two independent observers performed an MRI analysis of the size of the tibial spine and intercondylar notch relative to the size of the respective epiphyses. For this study, the "S ratio" was calculated by dividing the height of the tibial spine by the height of the tibial epiphysis. The "N ratio" was calculated by dividing the height of the notch by the height of the femoral epiphysis. These two ratios for both groups were compared using Student's t test. The mean value of the S ratio in the OCD group was 0.39 ± 0.06; the mean value of the S ratio in the control group was 0.32 ± 0.03 (P = 0.004). The mean value of the N ratio in the OCD group was 0.70 ± 0.08; the mean value of the N ratio in the control group was 0.70 ± 0.07 (n.s.). This study's findings confirm our hypothesis that patients with OCD have a more prominent tibial spine than in patients without OCD. IV.

  13. Multiparametric MRI Assessment of Human Articular Cartilage Degeneration: Correlation with Quantitative Histology and Mechanical Properties

    PubMed Central

    Rautiainen, Jari; Nissi, Mikko J.; Salo, Elli-Noora; Tiitu, Virpi; Finnilä, Mikko A.J.; Aho, Olli-Matti; Saarakkala, Simo; Lehenkari, Petri; Ellermann, Jutta; Nieminen, Miika T.

    2014-01-01

    Purpose To evaluate the sensitivity of quantitative MRI techniques (T1, T1,Gd, T2, continous wave (CW) T1ρ dispersion, adiabatic T1ρ, adiabatic T2ρ, RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. Methods Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4 T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. Results All MRI parameters, except T1,Gd, showed statistically significant differences in tangential and full-thickness ROIs between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ, T2ρ, CW-T1ρ, MT and RAFF correlated strongly with OARSI grade and biomechanical parameters. Conclusion MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ, adiabatic T2ρ, CW-T1ρ and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. PMID:25104181

  14. Meniscectomy and Resultant Articular Cartilage Lesions of the Knee Among Prospective National Football League Players: An Imaging and Performance Analysis.

    PubMed

    Chahla, Jorge; Cinque, Mark E; Godin, Jonathan A; Sanchez, George; Lebus, George F; Whalen, James M; Price, Mark D; Kennedy, Nicholas I; Moatshe, Gilbert; LaPrade, Robert F; Provencher, Matthew T

    2018-01-01

    The effect of prior meniscectomy and the resulting reduction in meniscal tissue on a potential National Football League (NFL) player's articular cartilage status and performance remain poorly elucidated. Purpose/Hypothesis: (1) To determine the epidemiology, imaging characteristics, and associated articular cartilage pathology of the knee among players with a previous meniscectomy who were participating in the NFL Combine and (2) to evaluate the effect of these injuries on performance as compared with matched controls. The hypothesis was that players with less meniscal tissue would have worse cartilage status and inferior performance metrics in their first 2 NFL seasons. Cohort study; Level of evidence, 3. All athletes with a history of a meniscectomy and magnetic resonance imaging scan of the knee who participated in the NFL Combine (2009-2015) were identified. Medical records and imaging were analyzed, and surgical history, games missed in college, position played, and draft position were documented. The conditions of the meniscus and cartilage were graded with modified ISAKOS scores (International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine) and ICRS scores (International Cartilage Repair Society), respectively. Players with a previous meniscectomy of at least 10% of total medial or lateral meniscal volume excised (ISAKOS meniscus grade ≤8) and matched controls without a significant pre-Combine injury were similarly evaluated and compared by position of play through analysis of draft position, number of games played and started, and how many eligible plays they participated in (snap percentage) within the first 2 NFL seasons. Of the 2285 players who participated in the NFL Combine (2009-2015), 287 players (322 knees) had a prior meniscectomy (206 lateral, 81 medial). Among these players, 247 (85%) had a total of 249 chondral lesions, most commonly on the lateral femoral condyle (111 lesions, 45%). There was a significant inverse

  15. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    PubMed

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  16. Anterior cruciate ligament reconstruction and cartilage contact forces--A 3D computational simulation.

    PubMed

    Wang, Lianxin; Lin, Lin; Feng, Yong; Fernandes, Tiago Lazzaretti; Asnis, Peter; Hosseini, Ali; Li, Guoan

    2015-12-01

    Clinical outcome studies showed a high incidence of knee osteoarthritis after anterior cruciate ligament reconstruction. Abnormal joint kinematics and loading conditions were assumed as risking factors. However, little is known on cartilage contact forces after the surgery. A validated computational model was used to simulate anatomic and transtibial single-bundle anterior cruciate ligament reconstructions. Two graft fixation angles (0° and 30°) were simulated for each reconstruction. Biomechanics of the knee was investigated in intact, anterior cruciate ligament deficient and reconstructed conditions when the knee was subjected to 134 N anterior load and 400 N quadriceps load at 0°, 30°, 60° and 90° of flexion. The tibial translation and rotation, graft forces, medial and lateral contact forces were calculated. When the graft was fixed at 0°, the anatomic reconstruction resulted in slightly larger lateral contact force at 0° compared to the intact knee while the transtibial technique led to higher contact force at both 0° and 30° under the muscle load. When graft was fixed at 30°, the anatomic reconstruction overstrained the knee at 0° with larger contact forces, while the transtibial technique resulted in slightly larger contact forces at 30°. This study suggests that neither the anatomic nor the transtibial reconstruction can consistently restore normal knee biomechanics at different flexion angles. The anatomic reconstruction may better restore anteroposterior stability and contact force with the graft fixed at 0°. The transtibial technique may better restore knee anteroposterior stability and articular contact force with the graft fixed at 30° of flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of Proud Large Osteochondral Plugs on Contact Forces and Knee Kinematics: A Robotic Study.

    PubMed

    Du, Peter Z; Markolf, Keith L; Boguszewski, Daniel V; Yamaguchi, Kent T; Lama, Christopher J; McAllister, David R; Jones, Kristofer J

    2018-05-01

    Osteochondral allograft (OCA) transplantation is used to treat large focal femoral condylar articular cartilage defects. A proud plug could affect graft survival by altering contact forces (CFs) and knee kinematics. A proud OCA plug will significantly increase CF and significantly alter knee kinematics throughout controlled knee flexion. Controlled laboratory study. Human cadaver knees had miniature load cells, each with a 20-mm-diameter cylinder of native bone/cartilage attached at its exact anatomic position, installed in both femoral condyles at standardized locations representative of clinical defects. Spacers were inserted to create proud plug conditions of +0.5, +1.0, and +1.5 mm. CFs and knee kinematics were recorded as a robot flexed the knee continuously from 0° to 50° under 1000 N of tibiofemoral compression. CFs were increased significantly (vs flush) for all proudness conditions between 0° and 45° of flexion (medial) and 0° to 50° of flexion (lateral). At 20°, the average increases in medial CF for +0.5-mm, +1-mm, and +1.5-mm proudness were +80 N (+36%), +155 N (+70%), and +193 N (+87%), respectively. Corresponding increases with proud lateral plugs were +44 N (+14%), +90 N (+29%), and +118 N (+38%). CF increases for medial plugs at 20° of flexion were significantly greater than those for lateral plugs at all proudness conditions. At 50°, a 1-mm proud lateral plug significantly decreased internal tibial rotation by 15.4° and decreased valgus rotation by 2.5°. A proud medial or lateral plug significantly increased CF between 0° and 45° of flexion. Our results suggest that a medial plug at 20° may be more sensitive to graft incongruity than a lateral plug. The changes in rotational kinematics with proud lateral plugs were attributed to earlier contact between the proud plug's surface and the lateral meniscus, leading to rim impingement with decreased tibial rotation. Increased CF and altered knee kinematics from a proud femoral plug could

  18. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    PubMed

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. BioCartilage Improves Cartilage Repair Compared With Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss.

    PubMed

    Fortier, Lisa A; Chapman, Hannah S; Pownder, Sarah L; Roller, Brandon L; Cross, Jessica A; Cook, James L; Cole, Brian J

    2016-09-01

    Microfracture (MFx) remains a dominant treatment strategy for symptomatic articular cartilage defects. Biologic scaffold adjuncts, such as particulated allograft articular cartilage (BioCartilage) combined with platelet-rich plasma (PRP), offer promise in improving clinical outcomes as an adjunct to MFx. To evaluate the safety, biocompatibility, and efficacy of BioCartilage and PRP for cartilage repair in a preclinical equine model of full-thickness articular cartilage loss. Controlled laboratory study. Two 10-mm-diameter full-thickness cartilage defects were created in 5 horses in the trochlear ridge of both knees: one proximal (high load) and another distal (low load). Complete blood counts were performed on each peripheral blood and resultant PRP sample. In each horse, one knee received MFx with BioCartilage + PRP, and the other knee received MFx alone. Horses were euthanized at 13 months. Outcomes were assessed with serial arthroscopy, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histology. Statistics were performed using a mixed-effects model with response variable contrasts. No complications occurred. PRP generated in all subjects yielded an increase in platelet fold of 3.8 ± 4.7. Leukocyte concentration decreased in PRP samples by an average fold change of 5 ± 0.1. The overall International Cartilage Repair Society repair score in both the proximal and distal defects was significantly higher (better) in the BioCartilage group compared with MFx (proximal BioCartilage: 7.4 ± 0.51, MFx 4.8 ± 0.1, P = .041; distal BioCartilage: 5.6 ± 0.98, MFx 2.6 ± 1.5, P = .022). BioCartilage-treated proximal defects demonstrated improved histologic scores for repair-host integration (BioCartilage, 96 ± 9; MFx, 68 ± 18; P = .02), base integration (BioCartilage, 100 ± 0; MFx, 70 ± 37; P = .04), and formation of collagen type II (BioCartilage, 82 ± 8; MFx, 58 ± 11; P = .05) compared with the positive control. On MRI, T2 relaxation time

  20. Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture in meniscectomized guinea pigs.

    PubMed

    Dai, M-W; Chu, J-G; Tian, F-M; Song, H-P; Wang, Y; Zhang, Y-Z; Zhang, L

    2016-06-01

    To evaluate the effects of PTH(1-34) on cartilage, subchondral bone mass and structure in medial meniscectomized guinea pigs and compare them to those of celecoxib (CLX). Forty-eight 3-month-old male Hartley albino guinea pigs received either sham or medial meniscectomy (MNX) operations. One week after the procedure, meniscectomized animals began 12 weeks of treatment by oral administration of CLX (20 mg/kg, daily), subcutaneous injection of PTH (1-34) (24 μg/kg, 5 days/week), or normal saline for MNX group. All animals were euthanized 12 weeks later, cartilage degeneration and subchondral bone micro-architecture was analyzed. OARSI scores indicated cartilage degeneration was partially inhibited by either CLX or PTH(1-34). Cartilage was significantly thicker in PTH(1-34)-treated animals than in CLX-treated animals. Both CLX and PTH(1-34) treatment were associated with lower ADAMTS-4 and periostin expression than MNX. MMP-13 expression in PTH(1-34) group was significantly lower than that in CLX group. However, AGG expression and the ratio of Col-II/MMP-13 expression in PTH(1-34) group were significantly higher than in the CLX group. Micro-CT analysis showed BMD, BV/TV, and Tb.Th levels to be significantly lower in the MNX group and CLX groups than in the sham group, but these parameters were significantly higher in the PTH(1-34) group than in either the MNX group or CLX group. Both CLX and PTH(1-34) exhibits protective effects on cartilage degeneration in meniscectomized guinea pigs. However, PTH(1-34) exhibited superior performance to CLX not only in metabolism of cartilage tissue but also in maintenance of subchondral bone micro-architecture. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.