Science.gov

Sample records for mediated c-h activation

  1. Gold(I)-mediated C-H activation of arenes.

    PubMed

    Lu, Pengfei; Boorman, Tanya C; Slawin, Alexandra M Z; Larrosa, Igor

    2010-04-28

    We demonstrate the first Au(I)-mediated C-H activation of arenes. Au(I) salts undergo C-H activation with electron-poor arenes, in stark contrast to Au(III) salts, which activate electron-rich arenes. This operationally simple and highly regioselective process occurs under very mild conditions and gives access to a variety of Au(I)-arene complexes in excellent yields. PMID:20364835

  2. Aromatic Cyanoalkylation through Double C-H Activation Mediated by Ni(III).

    PubMed

    Zhou, Wen; Zheng, Shuai; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2016-05-11

    Herein we report an atom- and step-economic aromatic cyanoalkylation reaction that employs nitriles as building blocks and proceeds through Csp(2)-H and Csp(3)-H bond activation steps mediated by Ni(III). In addition to cyanomethylation with MeCN, regioselective α-cyanoalkylation was observed with various nitrile substrates to generate secondary and tertiary nitriles. Importantly, to the best of our knowledge these are the first examples of C-H bond activation reactions occurring at a Ni(III) center, which may exhibit different reactivity and selectivity profiles than those corresponding to analogous Ni(II) centers. These studies provide guiding principles to design catalytic C-H activation and functionalization reactions involving high-valent Ni species. PMID:27120207

  3. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.

    PubMed

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-04-01

    To contribute solutions to current energy concerns, improvements in the efficiency of dioxygen mediated C-H bond cleavage chemistry, for example, selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, potentially affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. PMID:25756327

  4. Cupric-Superoxo Mediated Inter-Molecular C-H Activation Chemistry

    PubMed Central

    Peterson, Ryan L.; Himes, Richard A.; Kotani, Hiroaki; Suenobu, Tomoyoshi; Tian, Li; Siegler, Maxime A.; Solomon, Edward I.; Fukuzumi, Shunichi; Karlin, Kenneth D.

    2011-01-01

    A new cupric-superoxo complex [LCuII(O2•−)]+, which possesses particularly strong O–O and Cu–O bonding, is capable of intermolecular C-H activation of the NADH analogue 1-benzyl-1,4-dihydronicotinamide (BNAH). Kinetic studies indicate a first-order dependence on both the Cu-complex and BNAH with a deuterium kinetic isotope effect (KIE) of 12.1, similar to that observed for certain copper monooxygenases. PMID:21265534

  5. A theoretical view on CrO2+-mediated C-H bond activation in ethane

    NASA Astrophysics Data System (ADS)

    Tong, YongChun; Zhang, XiaoYong; Wang, QingYun; Xu, XinJian; Wang, YongCheng

    2015-06-01

    The gas-phase reaction of C-H bond activation in ethane by CrO2+ has been investigated using density functional theory (DFT) at the UB3LYP/6-311G(2d,p) level. Our results reveal that the activation process is actually a spin-forbidden reaction. The involved crossing point between the doublet and quartet potential energy surfaces (PES) has been discussed by two well-known methods, i.e., intrinsic reaction coordinate (IRC) approach for crossing point (CP) and Harvey's algorithm for minimum energy crossing point (MECP). The obtained single ( P1ISC = 2.48 × 10-3) and double ( P1ISC = 4.95 × 10-3) passes estimated at MECP show that the intersystem crossing (ISC) occurs with a little probability. The C-H bond activation processes should proceed to be endothermic by 73.16 kJ/mol on the doublet surface without any spin change.

  6. Non-directed, carbonate-mediated C-H activation and aerobic C-H oxygenation with Cp*Ir catalysts.

    PubMed

    Kerr, M E; Ahmed, I; Gunay, A; Venditto, N J; Zhu, F; Ison, E A; Emmert, M H

    2016-06-14

    The effect of oxidatively stable L- and X-type additives on the activity of Cp*Ir catalyst precursors in the C-H activation of arenes has been studied. Turnover numbers for C-H activation of up to 65 can thus be achieved, as determined by H/D exchange in MeOH-D4. In particular, carbonate additives are found to enhance the C-H activation reactivity of Cp*Ir(H2O)3(OTf)2 () more significantly than L-type ligands investigated in this study. Based on these studies, Cp*Ir/carbonate systems are developed that catalyze the aerobic Csp(3)-H oxygenation of alkyl arenes, employing air as oxidant. PMID:26979568

  7. Iron(0) mediated C-H activation of 1-hexyne: a mechanistic study using time-resolved infrared spectroscopy.

    PubMed

    Blank, Jan H; Raju, Rajesh K; Yan, Tao; Brothers, Edward N; Darensbourg, Marcetta Y; Bengali, Ashfaq A

    2016-08-01

    Photolysis of an iron tricarbonyl complex in the presence of 1-hexyne results in the activation of the terminal C-H bond to yield an iron-alkynyl species. The reaction proceeds through a single transition state with an activation enthalpy of 13.5 kcal mol(-1). The resulting molecule may have potential as a C-C bond formation reagent. PMID:27436484

  8. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions. PMID:26907535

  9. Cu(II)-mediated C-S/N-S bond formation via C-H activation: access to benzoisothiazolones using elemental sulfur.

    PubMed

    Chen, Fa-Jie; Liao, Gang; Li, Xin; Wu, Jun; Shi, Bing-Feng

    2014-11-01

    A copper-mediated C-S/N-S bond-forming reaction via C-H activation that uses elemental sulfur has been developed. The addition of TBAI was found to be crucial for the success of this transformation. The method is scalable, shows excellent functional group tolerance, and is compatible with heterocycle substrates, providing efficient and practical access to benzoisothiazolones. The direct diversification of the benzoisothiazolone products into a variety of sulfur-containing compounds is also demonstrated. PMID:25325568

  10. Low-valent niobium-mediated double activation of C-F/C-H bonds: fluorene synthesis from o-arylated alpha,alpha,alpha-trifluorotoluene derivatives.

    PubMed

    Fuchibe, Kohei; Akiyama, Takahiko

    2006-02-01

    By the treatment of 0.3 molar amount of NbCl5 and LiAlH4, o-arylated alpha,alpha,alpha-trifluorotoluenes afforded fluorene derivatives in good yields. C-F bonds of the CF3 group and the neighboring ortho C-H bond were doubly activated to give the coupling products. PMID:16448098

  11. Catalytic asymmetric benzylic C-H activation by means of carbenoid-induced C-H insertions.

    PubMed

    Davies, Huw M L; Jin, Qihui; Ren, Pingda; Kovalevsky, Andrey Yu

    2002-06-14

    Tetrakis[N-[4-dodecylphenyl)sulfonyl]-(S)-prolinate]dirhodium [Rh(2)(S-DOSP)(4)]-catalyzed decomposition of methyl aryldiazoacetates in the presence of substituted ethylbenzenes results in benzylic C-H activation by means of a rhodium-carbenoid-induced C-H insertion. A Hammet study showed that positive charge buildup occurred on the benzylic carbon in the transition state of the C-H activation step. C-H activation of toluene and isopropylbenzene is possible, but a competing double cyclopropanation occurs with these substrates. The C-H activation is highly regioselective and enantioselective, and in certain cases, moderate diastereoselectivity is also possible. PMID:12054951

  12. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  13. Transition metal-catalyzed ketone-directed or mediated C-H functionalization.

    PubMed

    Huang, Zhongxing; Lim, Hee Nam; Mo, Fanyang; Young, Michael C; Dong, Guangbin

    2015-11-01

    Transition metal-catalyzed C-H functionalization has evolved into a prominent and indispensable tool in organic synthesis. While nitrogen, phosphorus and sulfur-based functional groups (FGs) are widely employed as effective directing groups (DGs) to control the site-selectivity of C-H activation, the use of common FGs (e.g. ketone, alcohol and amine) as DGs has been continuously pursued. Ketones are an especially attractive choice of DGs and substrates due to their prevalence in various molecules and versatile reactivity as synthetic intermediates. Over the last two decades, transition metal-catalyzed C-H functionalization that is directed or mediated by ketones has experienced vigorous growth. This review summarizes these advancements into three major categories: use of ketone carbonyls as DGs, direct β-functionalization, and α-alkylation/alkenylation with unactivated olefins and alkynes. Each of these subsections is discussed from the perspective of strategic design and reaction discovery. PMID:26185960

  14. Quantification of primary versus secondary C-H bond cleavage in alkane activation: Propane on Pt

    SciTech Connect

    Weinberg, W.H.; Sun, Yongkui )

    1991-08-02

    The trapping-mediated dissociative chemisorption of three isotopes of propane (C{sub 3}H{sub 8}, CH{sub 3}, CD{sub 2}CH{sub 3}, and C{sub 3}D{sub 8}) has been investigated on the Pt(110)-(1 {times} 2) surface, and both the apparent activation energies and the preexponential factors of the surface reaction rate coefficients have been measured. In addition, the probabilities of primary and secondary C-H bond cleavage for alkane activation on a surface were evaluated. The activation energy for primary C-H bond cleavage was 425 calories per mole greater than that of secondary C-H bond cleavage, and the two true activation energies that embody the single measured activation energy were determined for each of the three isotopes. Secondary C-H bond cleavage is also preferred on entropic grounds, and the magnitude of the effect was quantified.

  15. Activation of the C-H bond by metal complexes

    NASA Astrophysics Data System (ADS)

    Shilov, Aleksandr E.; Shul'pin, Georgiy B.

    1990-09-01

    Reactions involving the cleavage of C-H bonds by metal complexes in saturated and aromatic hydrocarbons and also in other compounds are examined. Some of these processes occur with formation of a carbon-metal bond, whilst in others the interaction of the complexes with the hydrocarbon takes place without direct contact between the metal atom and the C-H bonds. Metal compounds are widely used as initiators of the liquid-phase oxidation of hydrocarbons at relatively low temperatures. There is a prospect of creating new technologies for the chemical processing of petroleum and gas hydrocarbons, whereby they can be converted into valuable products, for example, into alcohols, ketones, and carboxylic acids, on the basis of processes involving metal complexes. The study of the metal complex activation of the C-H bond also makes it possible to understand and model the metalloenzyme-catalysed hydrocarbon oxidation reactions in the living cell. The bibliography includes 340 references.

  16. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-01

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry. PMID:25384554

  17. Dehydrogenation processes via C-H activation within alkylphosphines.

    PubMed

    Grellier, Mary; Sabo-Etienne, Sylviane

    2012-01-01

    Phosphines are commonly used in organometallic chemistry and are present in a wide variety of catalytic systems. This feature article highlights the advances made in dehydrogenation processes occurring within alkylphosphines, with the aim of further developing catalytic processes involving C-H activation together with potential applications in the field of hydrogen storage. PMID:21956347

  18. Copper-mediated C-H(sp²)/C-H(sp³) coupling of benzoic acid derivatives with ethyl cyanoacetate: an expedient route to an isoquinolinone scaffold.

    PubMed

    Zhu, Wei; Zhang, Dengyou; Yang, Nan; Liu, Hong

    2014-09-21

    A facile, copper-mediated, direct C-H(sp(2))/C-H(sp(3)) bond coupling of benzoic acid derivatives with ethyl cyanoacetate by the deployment of an 8-aminoquinoline moiety as a bidentate directing group is disclosed. Such a unique transformation provides a new strategy for the construction of an isoquinolinone scaffold as one of the privileged cores. PMID:25074033

  19. Iron-mediated oxidative C-H coupling of arenes and alkenes directed by sulfur: an expedient route to dihydrobenzofurans.

    PubMed

    Cavanagh, Craig W; Aukland, Miles H; Laurent, Quentin; Hennessy, Alan; Procter, David J

    2016-06-21

    A novel route to medicinally-relevant dihydrobenzofurans utilises a sulfur-directed C-H ortho-coupling of arenes and unactivated terminal alkenes mediated by iron, and a palladium-catalysed deallylation/heterocyclisation sequence. The iron-mediated coupling affords linear products of alkene chloroarylation in good yield and with complete regioselectivity. The coupling likely proceeds by redox-activation of the arene partner by iron(iii) and alkene addition to the resultant radical cation. PMID:27198174

  20. Copper-mediated ortho C-H sulfonylation of benzoic acid derivatives with sodium sulfinates.

    PubMed

    Liu, Jidan; Yu, Lin; Zhuang, Shaobo; Gui, Qingwen; Chen, Xiang; Wang, Wenduo; Tan, Ze

    2015-04-14

    Copper-mediated direct ortho C-H bond sulfonylation of benzoic acid derivatives with sodium sulfinates was achieved by employing an 8-aminoquinoline moiety as the bidentate directing group. Various aryl sulfones were synthesized in good yields with excellent regioselectivity. PMID:25766975

  1. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy.

    PubMed

    Jašíková, Lucie; Hanikýřová, Eva; Schröder, Detlef; Roithová, Jana

    2012-04-01

    Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism. PMID:22689621

  2. C-H bond halogenation catalyzed or mediated by copper: an overview.

    PubMed

    Hao, Wenyan; Liu, Yunyun

    2015-01-01

    Carbon-halogen (C-X) bonds are amongst the most fundamental groups in organic synthesis, they are frequently and widely employed in the synthesis of numerous organic products. The generation of a C-X bond, therefore, constitutes an issue of universal interest. Herein, the research advances on the copper-catalyzed and mediated C-X (X = F, Cl, Br, I) bond formation via direct C-H bond transformation is reviewed. PMID:26664634

  3. Enzyme catalysis: C-H activation is a Reiske business

    NASA Astrophysics Data System (ADS)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  4. Palladium-catalysed norbornene-mediated C-H functionalization of arenes

    NASA Astrophysics Data System (ADS)

    Ye, Juntao; Lautens, Mark

    2015-11-01

    The Catellani reaction -- a palladium-catalysed C-H functionalization reaction mediated by norbornene -- was first reported in 1997. The capacity to functionalize both the ortho and ipso positions of aryl halides in a single transformation held great appeal. We reported an annulative Catellani reaction in 2000. Since then, our two groups have explored the synthetic utility of this reaction and dramatic progress has been made by a number of groups in the past five years. Whereas the original Catellani reaction uses Pd(0) catalysts, recent studies have shown that Pd(II) catalysts can be used in combination with norbornene to effect (1) direct 2-alkylation of indoles and pyrroles and (2) selective meta-C-H functionalization of arenes bearing commonly used ortho-directing groups, thereby opening new avenues for future research. We describe the most recent developments concerning the Pd-catalysed norbornene-mediated C-H functionalization of arenes, including applications in natural products synthesis. We outline challenges and future opportunities.

  5. Palladium-catalysed norbornene-mediated C-H functionalization of arenes.

    PubMed

    Ye, Juntao; Lautens, Mark

    2015-11-01

    The Catellani reaction--a palladium-catalysed C-H functionalization reaction mediated by norbornene--was first reported in 1997. The capacity to functionalize both the ortho and ipso positions of aryl halides in a single transformation held great appeal. We reported an annulative Catellani reaction in 2000. Since then, our two groups have explored the synthetic utility of this reaction and dramatic progress has been made by a number of groups in the past five years. Whereas the original Catellani reaction uses Pd(0) catalysts, recent studies have shown that Pd(II) catalysts can be used in combination with norbornene to effect (1) direct 2-alkylation of indoles and pyrroles and (2) selective meta-C-H functionalization of arenes bearing commonly used ortho-directing groups, thereby opening new avenues for future research. We describe the most recent developments concerning the Pd-catalysed norbornene-mediated C-H functionalization of arenes, including applications in natural products synthesis. We outline challenges and future opportunities. PMID:26492005

  6. Triiodide-Mediated δ-Amination of Secondary C-H Bonds.

    PubMed

    Wappes, Ethan A; Fosu, Stacy C; Chopko, Trevor C; Nagib, David A

    2016-08-16

    The Cδ -H amination of unactivated, secondary C-H bonds to form a broad range of functionalized pyrrolidines has been developed by a triiodide (I3 (-) )-mediated strategy. By in situ 1) oxidation of sodium iodide and 2) sequestration of the transiently generated iodine (I2 ) as I3 (-) , this approach precludes undesired I2 -mediated decomposition which can otherwise limit synthetic utility to only weak C(sp(3) )-H bonds. The mechanism of this triiodide-mediated cyclization of unbiased, secondary C(sp(3) )-H bonds, by either thermal or photolytic initiation, is supported by NMR and UV/Vis data, as well as intercepted intermediates. PMID:27384522

  7. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds.

    PubMed

    Motiwala, Hashim F; Gülgeze, Belgin; Aubé, Jeffrey

    2012-08-17

    The highly regio- and chemoselective oxidation of activated C-H bonds has been observed via copper-catalyzed reactions of oxaziridines. The oxidation proceeded with a variety of substrates, primarily comprising allylic and benzylic examples, as well as one example of an otherwise unactivated tertiary C-H bond. The mechanism of the reaction is proposed to involve single-electron transfer to the oxaziridines to generate a copper-bound radical anion, followed by hydrogen atom abstraction and collapse to products, with regeneration of the catalyst by a final single-electron transfer event. The involvement of allylic radical intermediates was supported by a radical-trapping experiment with TEMPO. PMID:22830300

  8. Synthesis of aza-fused polycyclic quinolines via double C-H bond activation.

    PubMed

    Huang, Ji-Rong; Dong, Lin; Han, Bo; Peng, Cheng; Chen, Ying-Chun

    2012-07-16

    Simple but efficient: Aza-fused polycyclic quinolines were efficiently assembled through rhodium(III)-based direct double C-H activation of N-aryl azoles followed by cyclization with alkynes without heteroatom-assisted chelation. Copper(II) acetate, aside from acting as an oxidant, could also play an important role in the C-H activation process. PMID:22715023

  9. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    PubMed

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-01

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation. PMID:26853936

  10. RhCl(PPh3)3-mediated C-H oxyfunctionalization of pyrrolido-functionalized bisazoaromatic pincers: a combined experimental and theoretical scrutiny of redox-active and spectroscopic properties.

    PubMed

    Ghorui, Tapas; Roy, Sima; Pramanik, Shuvam; Pramanik, Kausikisankar

    2016-04-01

    A potentially symmetrical NNN pyrrolido-functionalized pincer ligand, HL = 2,5-bis(phenylazo)-1H-pyrrole, reacts with [Rh(I)Cl(PPh3)3] in toluene in the presence of air, affording an emerald crystalline solid of the composition [Rh(III)(L(O))Cl(PPh3)2]. A spontaneous C-H oxyfunctionalization of the aromatic ring with atmospheric oxygen leads to phenoxido functionalized organic transformation at room temperature. X-ray diffraction and MASS spectral analyses authenticate the unsymmetrical NNO coordination of the title ligand with a dangling phenylazo moiety. Cyclic voltammetry of redox innocent Rh(iii) complexes exhibits a reversible oxidative response at E1/2≈ 0.9 V vs. Ag/AgCl along with a quasi-reversible reductive response near -1.0 V. The electronic structures of the electro-active species are scrutinized by DFT calculations at the B3LYP-level of theory and both the responses are found to be ligand-centered (LC) in nature. Furthermore, an EPR study of the one-electron oxidized radical cation [Rh(III)(L(O))Cl(PPh3)2]˙(+) validates that the oxidation process is confined exclusively on the ligand framework (spin density: ρPhenoxido≈-0.50 and ρPyrrolido≈-0.40). Moreover, an appreciable involvement of the pyrrolido function apart from the phenoxido group of the redox-active ligand (L(O)) is apparent in the oxidation process from the nature of HOMO and thus, this type of ligand system provides two oxidizable domains within the single ligand backbone. A comparison of the relative oxidizability power between the two potential oxidizable centers viz. pyrrolido and phenoxido rings reveals that the former is somewhat less efficient for oxidation. In contrast, reductive response is mainly associated with both the coordinated and free azo chromophores. Time-dependent DFT and natural transition orbital (NTO) analyses on the complexes elucidate the origin of UV-vis absorptions. PMID:26931368

  11. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.

    PubMed

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H; Menon, Binuraj R K; Shepherd, Sarah A; Greaney, Michael F; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C-H activation, discrimination between two similar, unactivated C-H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant 'chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C-H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C-H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C-H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  12. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  13. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C-H Bond Activation.

    PubMed

    Ebe, Yusuke; Nishimura, Takahiro

    2015-05-13

    Iridium-catalyzed hydroarylation of vinyl ethers via a directed C-H bond activation of aromatic compounds gave high yields of the corresponding addition products with high branch selectivity. PMID:25928127

  14. Computational study on the mechanism and selectivity of C-H bond activation and dehydrogenative functionalization in the synthesis of rhazinilam.

    PubMed

    Ellis, Corey S; Ess, Daniel H

    2011-09-01

    The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex. PMID:21812492

  15. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    PubMed

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step. PMID:27002210

  16. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    SciTech Connect

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  17. Ligand Lone-Pair Influence on Hydrocarbon C-H Activation. A Computational Perspective

    SciTech Connect

    Ess, Daniel H.; Gunnoe, T. Brent; Cundari, Thomas R.; Goddard, William A.; Periana, Roy A.

    2010-12-03

    Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac)2MX and TpM(L)X (M = Ir, Ru, Os, and Rh; acac = acetylacetonate, Tp = tris(pyrazolyl)borate; X = CH3, OH, OMe, NH2, and NMe2) systems for methane C-H bond activation reaction kinetics and thermodynamics. We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic dπ-pπ repulsions for M-OR and M-NR2 systems versus M-CH3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps. We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps.

  18. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles

    NASA Astrophysics Data System (ADS)

    McNally, Andrew; Haffemayer, Benjamin; Collins, Beatrice S. L.; Gaunt, Matthew J.

    2014-06-01

    The development of new chemical transformations based on catalytic functionalization of unactivated C-H bonds has the potential to simplify the synthesis of complex molecules dramatically. Transition metal catalysis has emerged as a powerful tool with which to convert these unreactive bonds into carbon-carbon and carbon-heteroatom bonds, but the selective transformation of aliphatic C-H bonds is still a challenge. The most successful approaches involve a `directing group', which positions the metal catalyst near a particular C-H bond, so that the C-H functionalization step occurs via cyclometallation. Most directed aliphatic C-H activation processes proceed through a five-membered-ring cyclometallated intermediate. Considering the number of new reactions that have arisen from such intermediates, it seems likely that identification of distinct cyclometallation pathways would lead to the development of other useful chemical transformations. Here we report a palladium-catalysed C-H bond activation mode that proceeds through a four-membered-ring cyclopalladation pathway. The chemistry described here leads to the selective transformation of a methyl group that is adjacent to an unprotected secondary amine into a synthetically versatile nitrogen heterocycle. The scope of this previously unknown bond disconnection is highlighted through the development of C-H amination and carbonylation processes, leading to the synthesis of aziridines and β-lactams (respectively), and is suggestive of a generic C-H functionalization platform that could simplify the synthesis of aliphatic secondary amines, a class of small molecules that are particularly important features of many pharmaceutical agents.

  19. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method. PMID:26024214

  20. Activation of C-H bonds and functionalization of hydrocarbons of the adamantane series. Review

    SciTech Connect

    Bagrii, Ye.I.; Karaulova, Ye.N.

    1993-12-31

    The highly symmetrical compact structure of an adamantane molecule gives its derivatives unusual properties. This governs the use of compounds with an adamantane fragment both for scientific research and in industry, and in particular in medicine. Importants ways of producing functional derivatives of adamantane without changing its carbon skeleton are processes occurring via the activation of the C-H bond. Detailed information concerning these reactions was given in an earlier monograph, which dealt with research published mainly before 1986. In the present review an examination is made of later investigations of C-H bond activation in adamantane, including research using biological and biomimetic methods of activation.

  1. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  2. Synthetic Transformations through Alkynoxy-Palladium Interactions and C-H Activation.

    PubMed

    Minami, Yasunori; Hiyama, Tamejiro

    2016-01-19

    Organic synthesis based on straightforward transformations is essential for environmentally benign manufacturing for the invention of novel pharmaceuticals, agrochemicals, and organoelectronic materials in order to ultimately realize a sustainable society. Metal-catalyzed C-H bond-cleaving functionalization has become a promising method for achieving the above goal. For site-selective C-H bond cleavage, so-called directing groups, i.e., ligands attached to substrates, are employed. Commonly utilized directing groups are carbonyls, imines, carboxyls, amides, and pyridyls, which σ-donate electron pairs to metals. On the other hand, unsaturated substrates such as alkenes and alkynes, which participate largely as reactants in organic synthesis, are prepared readily by a wide variety of synthetic transformations and are also employed as reactants in organometallic chemistry. Moreover, such unsaturated groups form complexes with some metals by ligation of their p orbitals via donation and back-donation. However, the use of unsaturated bonds as directing groups has not been studied extensively. We have been involved in the development of methods for the cleavage of C-H bonds by means of transition-metal catalysts to achieve new carbon-carbon bond-forming reactions and incidentally came to focus on the alkynoxy group (-OC≡C-), which shows a ketene-like resonance structure. We expected the alkynoxy group to interact electrophilically with a low-valent transition-metal complex in order to cleave adjacent C-H bonds. In this Account, we summarize our recent achievements on C-H activation based on interactions of palladium with the alkynoxy group in alkynyl aryl ethers. The alkynoxy group plays two roles in the transformation: as a directing group for adjacent C-H bond activation and as an acceptor for the carbon and hydrogen fragments. A typical example is palladium-catalyzed ortho-C-H bond activation in alkynoxyarenes followed by sequential insertion/annulation with

  3. Mild metal-catalyzed C-H activation: examples and concepts.

    PubMed

    Gensch, T; Hopkinson, M N; Glorius, F; Wencel-Delord, J

    2016-05-21

    Organic reactions that involve the direct functionalization of non-activated C-H bonds represent an attractive class of transformations which maximize atom- and step-economy, and simplify chemical synthesis. Due to the high stability of C-H bonds, these processes, however, have most often required harsh reaction conditions, which has drastically limited their use as tools for the synthesis of complex organic molecules. Following the increased understanding of mechanistic aspects of C-H activation gained over recent years, great strides have been taken to design and develop new protocols that proceed efficiently under mild conditions and duly benefit from improved functional group tolerance and selectivity. In this review, we present the current state of the art in this field and detail C-H activation transformations reported since 2011 that proceed either at or below ambient temperature, in the absence of strongly acidic or basic additives or without strong oxidants. Furthermore, by identifying and discussing the major strategies that have led to these improvements, we hope that this review will serve as a useful conceptual overview and inspire the next generation of mild C-H transformations. PMID:27072661

  4. Binuclear Aromatic C-H Bond Activation at a Dirhenium Site.

    PubMed

    Adams, Richard D; Rassolov, Vitaly; Wong, Yuen Onn

    2016-01-22

    The electronically unsaturated dirhenium complex [Re2(CO)8(μ-H)(μ-Ph)] (1) has been found to exhibit aromatic C-H activation upon reaction with N,N-diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ-H)(μ-η(1)-NEt2C6H4)] (2), [Re2(CO)8(μ-H)(μ-η(2)-1,2-C10H7)] (3), and [D6]-1, respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C-H bond-activation process. PMID:26643854

  5. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    SciTech Connect

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  6. A Versatile, Traceless C-H Activation-Based Approach for the Synthesis of Heterocycles.

    PubMed

    Zhou, Shuguang; Wang, Jinhu; Zhang, Feifei; Song, Chao; Zhu, Jin

    2016-05-20

    A versatile, traceless C-H activation-based approach for the synthesis of diversified heterocycles is reported. Rh(III)-catalyzed, N-amino-directed C-H alkenylation generates either olefination products or indoles (in situ annulation) in an atom- and step-economic manner at room temperature. The remarkable reactivity endowed by this directing group enables scale-up of the reaction to a 10 g scale at a very low catalyst loading (0.01 mol %/0.1 mol %). Ex situ annulation of olefination product provides entry into an array of heterocycles. PMID:27135982

  7. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    PubMed

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie

    2013-08-01

    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines. PMID:23793162

  8. Synthesis of Mesoionic Isoquinolines by Rhodium(III)-Catalyzed C-H Activation.

    PubMed

    Zhang, Wei; Wang, Cheng-Qi; Lin, Hui; Dong, Lin; Xu, Yan-Jun

    2016-01-18

    Hydroxyl-substituted benzaldimines underwent a Rh(III) -catalyzed C-H activation and annulation with alkynes to provide novel mesoionic isoquinoline derivatives in moderate to excellent yields using oxygen as an internal anion source. This simple and efficient approach has a broad substrate scope. PMID:26671527

  9. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  10. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  11. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation.

    PubMed

    Della Ca', Nicola; Fontana, Marco; Motti, Elena; Catellani, Marta

    2016-07-19

    Direct C-H bond activation is an important reaction in synthetic organic chemistry. This methodology has the potential to simplify reactions by avoiding the use of prefunctionalized reagents. However, selectivity, especially site selectivity, remains challenging. Sequential reactions, in which different molecules or groups are combined in an ordered sequence, represent a powerful tool for the construction of complex molecules in a single operation. We have discovered and developed a synthetic methodology that combines selective C-H bond activation with sequential reactions. This procedure, which is now known as the "Catellani reaction", enables the selective functionalization of both the ortho and ipso positions of aryl halides. The desired molecules are obtained with high selectivity from a pool of simple precursors. These molecules are assembled under the control of a palladacycle, which is formed through the joint action of a metal (Pd) and an olefin such as norbornene. These two species act cooperatively with an aryl halide to construct the palladacycle, which is formed through ortho-C-H activation of the original aryl halide. The resulting complex acts as a scaffold to direct the reaction (via Pd(IV)) of other species, such as alkyl or aryl halides and amination or acylation agents, toward the sp(2) C-Pd bond. At the end of this process, because of steric hindrance, the scaffold is dismantled by norbornene extrusion. Pd(0) is cleaved from the organic product through C-C, C-H, C-N, C-O, or C-B coupling, in agreement with the well-known reactivity of aryl-Pd complexes. The cycle involves Pd(0), Pd(II), and Pd(IV) species. In particular, our discovery relates to alkylation and arylation reactions. Recently, remarkable progress has been made in the following areas: (a) the installation of an amino or an acyl group at the ortho position of aryl halides, (b) the formation of a C-B bond at the ipso position, (c) the achievement of meta-C-H bond activation of aryl

  12. C-H activation of cycloalkenes by dimetallynes (M = Ge, Sn) under ambient conditions.

    PubMed

    Summerscales, Owen T; Fettinger, James C; Power, Philip P

    2011-08-10

    Treatment of the dimetallynes Ar'EEAr' [E = Ge, Sn; Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-iPr(2))(2)] with a cyclic olefin-cyclopentadiene (CpH), cyclopentene, 1,4-cyclohexadiene (CHD), or cyclohexene-showed that, with the exception of cyclohexene, they react readily, affording C-H activation at room temperature. Reaction of the digermyne and distannyne with CpH gave the cyclopentadienyl anion, which is bound in a π-fashion to a mononuclear group 14 element center, along with evolution of hydrogen gas. Unusually, the digermyne also reacted with cyclopentene to give the same dehydroaromatization product, formed from triple C-H activation/dehydrogenation. It also was found to react with CHD to give a mixture of (Ar'GeH)(2), benzene, and a new 7-germanorbornadiene species bound to a cyclohex-2-enyl fragment. PMID:21749107

  13. A Palladium(II)-Catalyzed C-H Activation Cascade Sequence for Polyheterocycle Formation.

    PubMed

    Cooper, Stephen P; Booker-Milburn, Kevin I

    2015-05-26

    Polyheterocycles are found in many natural products and are useful moieties in functional materials and drug design. As part of a program towards the synthesis of Stemona alkaloids, a novel palladium(II)-catalyzed C-H activation strategy for the construction of such systems has been developed. Starting from simple 1,3-dienyl-substituted heterocycles, a large range of polycyclic systems containing pyrrole, indole, furan and thiophene moieties can be synthesized in a single step. PMID:25872492

  14. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  15. Manganese-Mediated C-H Alkylation of Unbiased Arenes Using Alkylboronic Acids.

    PubMed

    Castro, Susana; Fernández, Juan J; Fañanás, Francisco J; Vicente, Rubén; Rodríguez, Félix

    2016-06-27

    The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel-Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C-H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3 ⋅2H2 O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free-radical mechanism. PMID:27124250

  16. BORON CATALYSIS. Metal-free catalytic C-H bond activation and borylation of heteroarenes.

    PubMed

    Légaré, Marc-André; Courtemanche, Marc-André; Rochette, Étienne; Fontaine, Frédéric-Georges

    2015-07-31

    Transition metal complexes are efficient catalysts for the C-H bond functionalization of heteroarenes to generate useful products for the pharmaceutical and agricultural industries. However, the costly need to remove potentially toxic trace metals from the end products has prompted great interest in developing metal-free catalysts that can mimic metallic systems. We demonstrated that the borane (1-TMP-2-BH2-C6H4)2 (TMP, 2,2,6,6-tetramethylpiperidine) can activate the C-H bonds of heteroarenes and catalyze the borylation of furans, pyrroles, and electron-rich thiophenes. The selectivities complement those observed with most transition metal catalysts reported for this transformation. PMID:26228143

  17. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-01

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation. PMID:24942255

  18. Non-coordinating-Anion-Directed Reversal of Activation Site: Selective C-H Bond Activation of N-Aryl Rings.

    PubMed

    Wang, Dawei; Yu, Xiaoli; Xu, Xiang; Ge, Bingyang; Wang, Xiaoli; Zhang, Yaxuan

    2016-06-13

    An Rh-catalyzed selective C-H bond activation of diaryl-substituted anilides is described. In an attempt to achieve C-H activation of C-aryl rings, we unexpectedly obtained an N-aryl ring product under non-coordinating anion conditions, whereas the C-aryl ring product was obtained in the absence of a non-coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C-H bond activation of C-aryl and N-aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non-coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so-called "silver effect" in this transformation involving silver. PMID:27159169

  19. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  20. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  1. Annulation of aromatic imines via directed C-H bond activation.

    PubMed

    Thalji, Reema K; Ahrendt, Kateri A; Bergman, Robert G; Ellman, Jonathan A

    2005-08-19

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh3)3RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality. PMID:16095296

  2. Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C-H Bond Activation.

    PubMed

    Yedage, Subhash L; Bhanage, Bhalchandra M

    2016-05-20

    This work reports palladium-catalyzed phenanthridinone synthesis using the coupling of aniline and amide by formation of C-C and C-N bonds in a one-pot fashion via dual C-H bond activation. It involves simultaneous cleavage of four bonds and the formation of two new bonds. The present protocol is ligand-free, takes place under mild reaction conditions, and is environmentally benign as nitrogen gas and water are the only side products. This transformation demonstrates a broad range of aniline and amide substrates with different functional groups and has been scaled up to gram level. PMID:27088815

  3. Titanium-Thiolate-Aluminum-Carbide Complexes by Multiple C-H Bond Activation.

    PubMed

    Guérin; Stephan

    1999-12-16

    All three C-H bonds of a methyl group are activated in the reaction of [Cp(iPr(3)PN)Ti(SR)(2)] with AlMe(3) [Eq. (1)]. The Ti-Al-carbide clusters formed contain a severely distorted tetrahedral carbide carbon atom with a relatively short bond to Ti, which is attributed to a relative increase in the Lewis acidity of the Ti center as a result of the interaction of the S and N donors with Al. PMID:10649329

  4. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  5. 2008 C. H. McCloy lecture. Social psychology and physical activity: back to the future.

    PubMed

    Gill, Diane L

    2009-12-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity. "Since then, sport and exercise psychology research has shifted away from the social to a narrower biopsycho-(no social) approach, and professional practice has focused on the elite rather than the larger public. Psychology can contribute to an integrative and relevant professional discipline by going back to the future as social psychology and physical activity and by incorporating three of C. H. McCloy's themes (a) evidence-based practice, (b) beyond dualisms, and (c) commitment to public service. Our scholarship must move beyond dualisms to recognize complexities and connections and be truly scholarship for practice. Social psychology and physical activity can serve the public by advocating for inclusive, empowering physical activity programs that promote health and well being for all. PMID:20025109

  6. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  7. Selective Heterogeneous C-H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites.

    PubMed

    Pascanu, Vlad; Carson, Fabian; Solano, Marta Vico; Su, Jie; Zou, Xiaodong; Johansson, Magnus J; Martín-Matute, Belén

    2016-03-01

    A directed heterogeneous C-H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal-organic framework (MOF) (Pd@MIL-88B-NH2 (Fe)) and the previously developed Pd@MIL-101-NH2 (Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented. PMID:26481867

  8. Mechanistic Insights into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C-H Activation.

    PubMed

    Smalley, Adam P; Gaunt, Matthew J

    2015-08-26

    Detailed kinetic studies and computational investigations have been performed to elucidate the mechanism of a palladium-catalyzed C-H activation aziridination. A theoretical rate law has been derived that matches with experimental observations and has led to an improvement in the reaction conditions. Acetic acid was found to be beneficial in controlling the formation of an off-cycle intermediate, allowing a decrease in catalyst loading and improved yields. Density functional theory (DFT) studies were performed to examine the selectivities observed in the reaction. Evidence for electronic-controlled regioselectivity for the cyclopalladation step was obtained by a distortion-interaction analysis, whereas the aziridination product was justified through dissociation of acetic acid from the palladium(IV) intermediate preceding the product-forming reductive elimination step. The understanding of this reaction mechanism under the synthesis conditions should provide valuable assistance in the comprehension and design of palladium-catalyzed reactions on similar systems. PMID:26247373

  9. C-H activation of ethers by pyridine tethered PCsp3P-type iridium complexes.

    PubMed

    Cui, Peng; Babbini, Dominic C; Iluc, Vlad M

    2016-06-14

    Iridium PCsp3P complexes featuring a novel bis(2-diphenylphosphinophenyl)-2-pyridylmethane ligand (PC(Py)HP) are reported. C-H activation reactions between the dihydride complex [(PC(Py)P)Ir(H)2] and tetrahydrofuran or methyl tert-butyl ether in the presence of a hydrogen acceptor, norbornene (NBE), at ambient temperature led exclusively to the hydrido oxyalkyl complexes, [(PC(Py)P)IrH(C4H7O)] and [(PC(Py)P)IrH(CH2O(t)Bu)], respectively. The internal pyridine donor is important and stabilizes these species by coordination to the iridium center. The coordination of pyridine to the iridium center is labile, however, and its dissociation occurs in the presence of a suitable substrate, as demonstrated by the intramolecular nucleophilic attack of pyridine on a vinylidene intermediate generated from PhC[triple bond, length as m-dash]CH. PMID:27052422

  10. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  11. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    PubMed Central

    Lewis, Jared C.; Bergman, Robert G.; Ellman, Jonathan A.

    2008-01-01

    Conspectus Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh–NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including

  12. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  13. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes. PMID:27363588

  14. Palladium-catalysed directed C-H activation by anilides and ureas; water participation in a general base mechanism.

    PubMed

    Rauf, Waqar; Brown, John M

    2016-06-21

    C-H activation plays a central role in organometallic catalysis. Concerted metallation-deprotonation (CMD) has been dominant as the pathway for C-H bond cleavage. In the course of studying the mechanism of C-H activation of arylamides and arylureas with Pd complexes as part of catalytic oxidative Heck reactions, DFT calculations were carried out. The turnover-limiting C-H activation is acid-catalysed and can occur readily in the absence of acetate or other coordinating bases. The calculations simulated experiment, so that ligated sulfonate and water, both previously observed by X-ray characterization, were incorporated in the model. A Wheland-type complex between acetanilide and Pd was readily located, but the reactive C-H and the coordinated sulfonate were poorly placed for intramolecular proton transfer. Involvement of a water molecule coordinated to sulfonate provides a low-energy pathway to the palladacycle. The relative reactivity of substituted acetanilides and arylureas according to this model fits well with existing literature. General-base catalysis as described here has broader potential. PMID:27184358

  15. Ruthenium(II)-Catalyzed Decarboxylative C-H Activation: Versatile Routes to meta-Alkenylated Arenes.

    PubMed

    Kumar, N Y Phani; Bechtoldt, Alexander; Raghuvanshi, Keshav; Ackermann, Lutz

    2016-06-01

    Ruthenium(II) bis(carboxylate)s proved highly effective for two decarboxylative C-H alkenylation strategies. The decarboxylation proceeded efficiently at rather low temperatures. The unique versatility of the decarboxylative ruthenium(II) catalysis is reflected in the oxidative olefinations with alkenes as well as the redox-neutral hydroarylations of alkynes. PMID:26996920

  16. Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C-H Bond Activation.

    PubMed

    Gupta, Puneet K; Yadav, Nisha; Jaiswal, Subodh; Asad, Mohd; Kant, Ruchir; Hajela, Kanchan

    2015-09-14

    A highly efficient synthesis of phenanthridine/benzoxazine-fused quinazolinones by ligand-free palladium-catalyzed intramolecular C-H bond activation under mild conditions has been developed. The C-C coupling provides the corresponding N-fused polycyclic heterocycles in good to excellent yields and with wide functional group tolerance. PMID:26230355

  17. Transition-metal-free C-H oxidative activation: persulfate-promoted selective benzylic mono- and difluorination.

    PubMed

    Ma, Jing-jing; Yi, Wen-bin; Lu, Guo-ping; Cai, Chun

    2015-03-14

    An operationally simple and selective method for the direct conversion of benzylic C-H to C-F to obtain mono- and difluoromethylated arenes using Selectfluor™ as a fluorine source is developed. Persulfate can be used to selectively activate benzylic hydrogen atoms toward C-F bond formation without the aid of transition metal catalysts. PMID:25645405

  18. Rh(iii)-catalyzed C-H activation/cyclization of oximes with alkenes for regioselective synthesis of isoquinolines.

    PubMed

    Chen, Renjie; Qi, Jifeng; Mao, Zhenjun; Cui, Sunliang

    2016-07-14

    A Rh(iii)-catalyzed C-H activation/cyclization of oximes and alkenes for facile and regioselective access to isoquinolines has been developed. This protocol features mild reaction conditions and easily accessible starting materials, and has been applied to the concise synthesis of moxaverine. A kinetic isotope effect study was conducted and a plausible mechanism was proposed. PMID:27273816

  19. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed. PMID:25165993

  20. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules

    NASA Astrophysics Data System (ADS)

    Wencel-Delord, Joanna; Glorius, Frank

    2013-05-01

    The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

  1. Rationale of the effects from dopants on C-H bond activation for sp2 hybridized nanostructured carbon catalysts

    NASA Astrophysics Data System (ADS)

    Mao, Shanjun; Sun, Xiaoying; Li, Bo; Su, Dang Sheng

    2015-10-01

    Doping has become an effective way to tune the catalytic properties of nanostructured carbon catalysts. Taking C-H activation as an example, first-principles calculations propose that the relative energy level and the BEP rule might be applicable to explain the observed doping effects. Moreover, boron doping is proposed as an effective way to enhance the catalytic performance.Doping has become an effective way to tune the catalytic properties of nanostructured carbon catalysts. Taking C-H activation as an example, first-principles calculations propose that the relative energy level and the BEP rule might be applicable to explain the observed doping effects. Moreover, boron doping is proposed as an effective way to enhance the catalytic performance. Electronic supplementary information (ESI) available: The computational setup, the doping positions for B, N and S doping, the definition of the binding energy and dissociation energy for C2H5 and C2H6 respectively, the transition state and dissociation state structures for the C-H bond activation of C2H6 in the undoped case, and the lengths of the C-H bond of C2H6 at the transition states for both the undoped and doped cases. See DOI: 10.1039/c5nr05759k

  2. Double C-H amination by consecutive SET oxidations.

    PubMed

    Evoniuk, Christopher J; Hill, Sean P; Hanson, Kenneth; Alabugin, Igor V

    2016-06-01

    A new method for intramolecular C-H oxidative amination is based on a FeCl3-mediated oxidative reaction of anilines with activated sp(3) C-H bonds. The amino group plays multiple roles in the reaction cascade: (1) as the activating group in single-electron-transfer (SET) oxidation process, (2) as a directing group in benzylic/allylic C-H activation at a remote position, and (3) internal nucleophile trapping reactive intermediates formed from the C-H activation steps. These multielectron oxidation reactions proceed with catalytic amounts of Fe(iii) and inexpensive reagents. PMID:27170275

  3. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  4. Radical Beckmann Rearrangement and Its Application in the Formal Total Synthesis of Antimalarial Natural Product Isocryptolepine via C-H Activation.

    PubMed

    Mahajan, Pankaj S; Humne, Vivek T; Tanpure, Subhash D; Mhaske, Santosh B

    2016-07-15

    The Beckmann rearrangement of ketoximes, mediated by ammonium persulfate-dimethyl sulfoxide as a reagent, has been achieved under neutral conditions. Based on the radical trapping and (18)O-labeling experiments, the transformation follows a mechanism involving a radical pathway. The scope and generality of the developed protocol has been demonstrated by 19 examples. The developed protocol and Pd-catalyzed intramolecular double C-H activation were used as key steps in the formal total synthesis of antimalarial natural product isocryptolepine. PMID:27377995

  5. Oxygen activation and intramolecular C-H bond activation by an amidate-bridged diiron(II) complex.

    PubMed

    Jones, Matthew B; Hardcastle, Kenneth I; Hagen, Karl S; MacBeth, Cora E

    2011-07-18

    A diiron(II) complex containing two μ-1,3-(κN:κO)-amidate linkages has been synthesized using the 2,2',2''-tris(isobutyrylamido)triphenylamine (H(3)L(iPr)) ligand. The resulting diiron complex, 1, reacts with dioxygen (or iodosylbenzene) to effect intramolecular C-H bond activation at the methine position of the ligand isopropyl group. The ligand-activated product, 2, has been isolated and characterized by a variety of methods including X-ray crystallography. Electrospray ionization mass spectroscopy of 2 prepared from(18)O(2) was used to confirm that the oxygen atom incorporated into the ligand framework is derived from molecular oxygen. PMID:21667986

  6. C-H bond activation with actinides: The first example of intramolecular ring bite of a pentamethylcyclopentadienyl methyl group

    SciTech Connect

    Peters, R.G.; Warner, B.P.; Scott, B.L.; Burns, C.J.

    1999-07-05

    Thermolysis of (C{sub 5}Me{sub 5}){sub 2}U({double_bond}NAd){sub 2}, 1 (Ad = 1-adamantyl), in benzene or hexane results in the intramolecular C-H bond activation of a methyl group on a pentamethylcyclopentadienyl ligand across the two imido functional groups. The product of this reaction has been spectroscopically and structurally characterized. The activation product is a reduced U(IV) metallocene bis(amide) complex with an N-bound methylene unit derived from the methyl group attached to one amide group. The activation parameters for this process have been determined; the results are consistent with a simple unimolecular process. This is the first example of intramolecular activation of a (C{sub 5}Me{sub 5}) methyl C-H bond in an actinide complex.

  7. Aspects of C-H Activation in Metal Complexes Containing Sulfur Ligands

    SciTech Connect

    Rakowski-DuBois, Mary C.

    2004-10-08

    those of related Cp-molybdenum complexes with sulfide ligands, which also activate hydrogen, but generally form hydrosulfido products without H2S elimination. C-H and C-S Cleavage Reactions. New mononuclear Cp{prime}Re(dithiolate) complexes such as Cp{prime}ReCl2(SC2H4S), 1, have been prepared and characterized and have been found to display a very interesting range of reactions. The thermal reaction of 1 involves the dehydrogenation of the alkanedithiolate ligand to form Cp{prime}ReCl2(SCH=CHS), 2 as well as a competing elimination of olefin from the dithiolate ligand in 1. On the basic of kinetic and related studies, the mechanism is proposed to involve a sequential series of reactions. In the first reaction, the olefin extrusion is proposed to produce a reactive Re-disulfide or Re-bis(sulfido) intermediate, CpReCl2S2 which serves as an oxidant for the dithiolate complex 1. The ability of the bis sulfido complex to dehydrogenate hydrocarbons is a unique feature and several additional dehydrogenation reactions with this system have been characterized, including the oxidation of other dithiolate complexes, of tetrahydro-naphthalene and of cyclohexadiene. Precedents for the role of metal sulfides in dehydrogenation reactions have been reported for heterogeneous metal sulfide surfaces. This work has begun to provide information about the electronic and structural features necessary for such reactivity. Carbon Sulfur Bond Formation. When the thermal reaction of 1 was carried out in the presence of excess dry ethene a new reaction was observed in which the dithiolate ligand is displaced by incoming olefin to form the cyclic organic product, 1,4-dithiane. The Re product is identified as Cp{prime}Re(alkene)Cl2 on the basis of NMR and mass spectroscopic data. Similar reactions with alkynes have been found to form unsaturated 6-membered rings and reactions with 1,3 dithiolate complexes form the organic 7-membered rings. To our knowledge the formation of cyclic bis-thioethers by

  8. Chelation-Assisted Copper-Mediated Direct Acetylamination of 2-Arylpyridine C-H Bonds with Cyanate Salts.

    PubMed

    Kianmehr, Ebrahim; Amiri Lomedasht, Yousef; Faghih, Nasser; Khan, Khalid Mohammed

    2016-07-15

    In this study, the coupling of 2-phenylpyridine derivatives and potassium cyanate through C-H bond functionalization in the presence of a copper salt is developed for the first time. By this protocol, various heteroarylated acetanilide derivatives are synthesized in good yields. 2-Phenylpyridines containing electron-donating and -withdrawing groups appear to be well-tolerated by this transformation. PMID:27295365

  9. Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1.

    PubMed

    Hu, Shenshen; Cattin-Ortolá, Jérôme; Munos, Jeffrey W; Klinman, Judith P

    2016-08-01

    The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the primary kinetic isotope effects (KIEs) for C-H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope-dependent donor-acceptor distance-sampling modes, and a more global, isotope-independent search for productive protein conformational sub-states. PMID:27348724

  10. Copper-Dioxygen Complex Mediated C-H Bond Oxygenation: Relevance for Particulate Methane Monooxygenase (pMMO)

    PubMed Central

    Himes, Richard A.; Karlin, Kenneth D.

    2009-01-01

    Summary Particulate methane monooxygenase (pMMO), an integral membrane protein found in methanotrophic bacteria, catalyzes the oxidation of methane to methanol. Expression and greater activity of the enzyme in the presence of copper ion suggest that pMMO is a cuprous metalloenzyme. Recent advances – especially the first crystal structures of pMMO – have energized the field, but the nature of the active site(s) and the mechanism of methane oxidation remain poorly understood – yet hotly contested. Herein the authors briefly review the current understanding of the pMMO metal sites, and discuss advances in small molecule Cu-O2 chemistry that may contribute to an understanding of copper-ion mediated hydrocarbon oxidation chemistry. PMID:19286415

  11. Silver-mediated oxidative C-H/P-H functionalization: an efficient route for the synthesis of benzo[b]phosphole oxides.

    PubMed

    Chen, Yun-Rong; Duan, Wei-Liang

    2013-11-13

    A Ag-mediated C-H/P-H functionalization reaction of arylphosphine oxides with internal alkynes was described for the direct preparation of benzo[b]phosphole oxides with a high yield. An unusual aryl migration on the P-atom derived from a C-P bond cleavage and a new C-P bond formation was also observed and demonstrated to proceed via the radical process. PMID:24160363

  12. Palladium-Catalyzed Carbonylative Cyclization of Arenes by C-H Bond Activation with DMF as the Carbonyl Source.

    PubMed

    Chen, Jianbin; Feng, Jian-Bo; Natte, Kishore; Wu, Xiao-Feng

    2015-11-01

    A novel palladium-catalyzed CO-gas- and autoclave-free protocol for the synthesis of 11H-pyrido[2,1-b]quinazolin-11-ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C-H bond activation and annulation using DMF as the CO surrogate. A (13) CO-labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C-H activation step may not be involved in the rate-determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields. PMID:26406903

  13. Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C-H Activation and Ring Opening.

    PubMed

    Zhou, Xukai; Yu, Songjie; Qi, Zisong; Kong, Lingheng; Li, Xingwei

    2016-06-01

    The rhodium(III)-catalyzed regioselective alkylation of (hetero)arenes using cyclopropanols as a reactive and efficient coupling partner under oxidative conditions has been developed. This coupling occurred at room temperature via C-H activation of arenes and C-C cleavage of cyclopropanols. Various types of (hetero)arenes (indolines, carbazole, tetrahydrocarbazole, pyrrole, thiophene, etc.) were all successfully reacted under the present conditions. This protocol provides the facile and efficient construction of C7-alkylated indoline scaffolds. PMID:27166521

  14. Two-step C-H, C-P bond activation at an α-diimine iron dinitrogen complex.

    PubMed

    Ghosh, Chandrani; Groy, Thomas L; Bowman, Amanda C; Trovitch, Ryan J

    2016-03-15

    Reduction of 6-coordinate under N2 results in formation of the terminal dinitrogen complex, ((Ph2PPr)DI)FeN2. Heating this product to 75 °C allows for C-H and C-P activation of the chelate to generate the cisoid and transoid isomers of [(μ-PrPPh-κ(5)-P,N,N,Cγ,P-(Ph2PPr)DI(PrPPh))Fe]2. Mechanistic possibilities for this transformation are discussed. PMID:26939725

  15. Transition metal activation and functionalization of C-H bonds: Progress report, December 1, 1987-November 30, 1988

    SciTech Connect

    Jones, W.D.

    1988-08-01

    This project is directed towards the continued investigation of the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers. The project is also directed towards the conversion of hydrocarbons into functionalized products of potential use to chemical industry. Goals will be 1) to identify new transition metal complexes capable of activating arene and alkane C-H bonds, 2) to quantitatively evaluate the kinetic and thermodynamic stability of these complexes, and 3) to examine routes for functionalization of the activated hydrocarbons. Specific complexes involved are derivatives of the formulation (C/sub 5/Me/sub 5/)Rh(PR/sub 3/)(R)H, Fe(PMe/sub 3/)/sub 2/(CNR)/sub 3/, Ru(PR/sub 3/)/sub 4/(R)H, and Rh(CNR)/sub 3/H. Functionalization will focus upon isocyanide and acetylene insertion reactions. New compounds that activate hydrocarbon C-H bonds include HRe(PR/sub 3/)/sub 5/, HRe(PR/sub 3/)/sub 2/(CNR)/sub 3/, CpRe(PR/sub 3/)H/sub 4/, CpRe(PR/sub 3/)/sub 2/H/sub 2/, (/eta//sup 6/-C/sub 6/H/sub 6/)Re(PPh/sub 3/)/sub 2/H, and MnH/sub 3/(dmpe)/sub 2/. The latter complex is found to be an /eta//sup 2/-dihydrogen complex. The new complexes RhCl(P(i-Pr)/sub 3/)/sub 2/(CNCH/sub 2/CMe/sub 3/) and (trispyrazolylborate)Rh(CNR)/sub 2/ are shown to be active for the activation and functionalization of aromatic C-H bonds. 10 figs., 1 tab.

  16. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock.

    PubMed

    Oshima, Tsuyoshi; Yamanaka, Iori; Kumar, Anupriya; Yamaguchi, Junichiro; Nishiwaki-Ohkawa, Taeko; Muto, Kei; Kawamura, Rika; Hirota, Tsuyoshi; Yagita, Kazuhiro; Irle, Stephan; Kay, Steve A; Yoshimura, Takashi; Itami, Kenichiro

    2015-06-01

    The synthesis and functional analysis of KL001 derivatives, which are modulators of the mammalian circadian clock, are described. By using cutting-edge C-H activation chemistry, a focused library of KL001 derivatives was rapidly constructed, which enabled the identification of the critical sites on KL001 derivatives that induce a rhythm-changing activity along with the components that trigger opposite modes of action. The first period-shortening molecules that target the cryptochrome (CRY) were thus discovered. Detailed studies on the effects of these compounds on CRY stability implicate the existence of an as yet undiscovered regulatory mechanism. PMID:25960183

  17. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. PMID:26689172

  18. Palladium-Catalyzed Zinc-Amide-Mediated C-H Arylation of Fluoroarenes and Heteroarenes with Aryl Sulfides.

    PubMed

    Otsuka, Shinya; Yorimitsu, Hideki; Osuka, Atsuhiro

    2015-10-12

    C-H arylation of polyfluoroarenes and heteroarenes with aryl sulfides proceeds smoothly with the aid of a palladium-N-heterocyclic carbene catalyst. A bulky zinc amide, TMPZnCl⋅LiCl, plays a key role as an effective base to generate the corresponding arylzinc species in situ. This arylation protocol is practically much easier to perform than our previous method, which necessitates preparation of the arylzinc reagents in advance from the corresponding aryl halides. Aryl sulfides that are prepared through sulfur-specific reactions, such as SN Ar sulfanylation and extended Pummerer reactions, undergo this direct arylation, offering interesting transformations that are otherwise difficult to achieve with conventional halogen-based organic synthesis. PMID:26235212

  19. Direct Arylation of Pyrroles via Indirect Electroreductive C-H Functionalization Using Perylene Bisimide as an Electron-Transfer Mediator.

    PubMed

    Sun, Guoquan; Ren, Shuya; Zhu, Xinhai; Huang, Manna; Wan, Yiqian

    2016-02-01

    The indirect electroreductive coupling of aryl halides and pyrroles was successfully conducted using a catalytic amount of perylene bisimide as a mediator in 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM]NTf2)/DMSO. PMID:26800089

  20. Cobalt(II)-Catalyzed Decarboxylative C-H Activation/Annulation Cascades: Regioselective Access to Isoquinolones and Isoindolinones.

    PubMed

    Hao, Xin-Qi; Du, Cong; Zhu, Xinju; Li, Peng-Xiang; Zhang, Jia-Heng; Niu, Jun-Long; Song, Mao-Ping

    2016-08-01

    A new cobalt(II)-catalyzed decarboxylative C-H activation/annulation of benzamides and alkynyl carboxylic acids has been described. Alkynyl carboxylic acids were first employed as the coupling partners using inexpensive Co(OAc)2·4H2O as the catalyst. This method enables a switchable cyclization to isoquinolones and isoindolinones with excellent selectivity. Moreover, a catalytic amount of Ag2O was adopted as co-catalyst and O2 (from air) as a terminal oxidant for the preparation of isoquinolones. PMID:27435354

  1. Collective Synthesis of Phenanthridinone through C-H Activation Involving a Pd-Catalyzed Aryne Multicomponent Reaction.

    PubMed

    Feng, Minghao; Tang, Bingqing; Xu, Hong-Xi; Jiang, Xuefeng

    2016-09-01

    A palladium-catalyzed multicomponent reaction (MCR) involving aryne, CO, and aniline is established for straightforward assembly of a phenanthridinone scaffold through C-H bond activation. Free combination with multiple kinds of readily available anilines and arynes is facilely achieved for phenanthridinone construction without prefunctionalization. Representative natural products were subsequently synthesized through this MCR strategy highly efficiently. Control experiments and interval NMR tracking revealed the mechanism, particularly the key role of CuF2 in determining the aryne-releasing rate from the precursor in this transformation. PMID:27529796

  2. Physical Activity, Physical Fitness, and Health. C.H. McCloy Research Lecture: 1993.

    ERIC Educational Resources Information Center

    Blair, Steven N.

    1993-01-01

    Examines recent evidence on the relations between physical activity, physical fitness, and health, noting the possible causal nature of the associations. The article evaluates the public health burden of sedentary lifestyles in the United States and provides suggestions for increasing participation in physical activity. (SM)

  3. Contrasting electronic requirements for C-H binding and C-H activation in d(6) half-sandwich complexes of rhenium and tungsten.

    PubMed

    Thenraj, Murugesan; Samuelson, Ashoka G

    2015-09-15

    A computational study of the interaction half-sandwich metal fragments (metal = Re/W, electron count = d(6)), containing linear nitrosyl (NO(+) ), carbon monoxide (CO), trifluorophosphine (PF3 ), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO(+). Electron-withdrawing ligands like NO(+) lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. PMID:26174521

  4. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. PMID:26490554

  5. C. H. McCloy Lecture: Fifty Years of Advancements in Fitness and Activity Research

    ERIC Educational Resources Information Center

    Corbin, Charles B.

    2012-01-01

    Over the past 50 years progress in fitness and activity research has been influenced by social events, technical innovations, and changes in the field of physical education and kinesiology. The conventional wisdom of the 1950s yielded to a new wisdom based on research evidence. The author's research, as well as the research of others, from 1960 to…

  6. Biomass Oxidation: Formyl C-H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves.

    PubMed

    Amaniampong, Prince N; Trinh, Quang Thang; Wang, Bo; Borgna, Armando; Yang, Yanhui; Mushrif, Samir H

    2015-07-27

    An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates. PMID:26119659

  7. Rhodium-catalysed C(sp(2))-C(sp(2)) bond formation via C-H/C-F activation.

    PubMed

    Tian, Panpan; Feng, Chao; Loh, Teck-Peng

    2015-01-01

    Fluoroalkenes represent a class of privileged structural motifs, which found widespread use in medicinal chemistry. However, the synthetic access to fluoroalkenes was much underdeveloped with previous reported methods suffering from either low step economy or harsh reaction conditions. Here we present a Rh(III)-catalysed tandem C-H/C-F activation for the synthesis of (hetero)arylated monofluoroalkenes. The use of readily available gem-difluoroalkenes as electrophiles provides a highly efficient and operationally simple method for the introduction of α-fluoroalkenyl motifs onto (hetero)arenes under oxidant-free conditions. Furthermore, the employment of alcoholic solvent and the in-situ generated hydrogen fluoride are found to be beneficial in this transformation, indicating the possibility of the involvement of hydrogen bond activation mode with regards to the C-F bond cleavage step. PMID:26081837

  8. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-01

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  9. A Highly Reactive Mononuclear Non-Heme Manganese(IV)-Oxo Complex That Can Activate the Strong C-H Bonds of Alkanes

    SciTech Connect

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N; Nam, Wonwoo

    2012-03-15

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of ~4.4 in the oxidation of para-substituted thioanisoles.

  10. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water.

    PubMed

    Gong, Hang; Zeng, Huiying; Zhou, Feng; Li, Chao-Jun

    2015-05-01

    2,2'-Diaryl acids are key building blocks for some of the most important and high-performance polymers such as polyesters and polyamides (imides), as well as structural motifs of MOFs (metal-organic frameworks) and biological compounds. In this study, a direct, regiospecific and practical dimerization of simple aromatic acids to generate 2,2'-diaryl acids has been discovered, which proceeds through two rhodium-catalyzed C-H activations in water. This reaction can be easily scaled up to gram level by using only 0.4-0.6 mol % of the rhodium catalyst. As a proof-of-concept, the natural product ellagic acid was synthesized in two steps by this method. PMID:25765625

  11. Donor-Acceptor-Donor Thienopyrazines via Pd-Catalyzed C-H Activation as NIR Fluorescent Materials.

    PubMed

    McNamara, Louis E; Liyanage, Nalaka; Peddapuram, Adithya; Murphy, J Scott; Delcamp, Jared H; Hammer, Nathan I

    2016-01-01

    A series of thienopyrazine-based donor-acceptor-donor (D-A-D) near-infrared (NIR) fluorescent compounds were synthesized through a rapid, palladium-catalyzed C-H activation route. The dyes were studied through computational analysis, electrochemical properties analysis, and characterization of their photophysical properties. Large Stokes shifts of approximately 175 nm were observed, which led to near-infrared emission. Computational evaluation shows that the origin of this large Stokes shift is a significant molecular reorganization particularly about the D-A bond. The series exhibits quantum yields of up to φ = >4%, with emission maxima ranging from 725 to 820 nm. The emission is strong in solution, in thin films, and also in isolation at the single-molecule level. Their stable emission at the single-molecule level makes these compounds good candidates for single-molecule photon sources in the near-infrared. PMID:26599501

  12. Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.

    PubMed

    Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl

    2015-04-14

    Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes. PMID:25760795

  13. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright.

    PubMed

    Li, Hua; Huang, Wen; Wen, Yanqing; Gong, Guohua; Zhao, Qingbing; Yu, Gang

    2010-12-01

    Steroidal saponins have long attracted scientific attention, due to their structural diversity and significant biological activities. Total steroidal saponins (TSS) extracted from the rhizomes of Dioscorea zingiberensis C.H. Wright (DZW) constitute an effective treatment for cardiovascular disease. However, the active constituents contained in DZW rhizomes and their pharmacological properties are not fully understood. The aim of this work is to determine and quantify the active constituents in DZW rhizomes using fingerprint technique, and evaluate its anti-thrombotic activity using inferior vena cava ligation thrombosis rat model and pulmonary thrombosis mice model after being gavaged with TSS for 1 or 2weeks. In the study, a chemical fingerprint method was firstly established and validated to quantify and standardize TSS from DZW rhizomes including parvifloside, protodeltonin, protodioscin, protogracillin, zingiberensis saponin, deltonin, dioscin and trillin. TSS extracted from DZW rhizomes were showed to have the inhibitions on platelet aggregation (PAG) and thrombosis, and prolong activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) in a dose-dependent manner in rats. TSS also prolonged the bleeding time and clotting time in a dose-dependent manner in mice. The results indicate that TSS could inhibit thrombosis by both improving the anticoagulation activity and inhibiting PAG action, suggesting that TSS from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action. PMID:20659537

  14. Synthesis of isoquinolines via Rh-catalyzed C-H activation/C-N cyclization with diazodiesters or diazoketoesters as a C2 source.

    PubMed

    Wang, Jie; Zha, Shanke; Chen, Kehao; Zhang, Feifei; Zhu, Jin

    2016-06-01

    Synthesis of isoquinolines based on efficient C-C and C-N bond formation through Rh(iii)-catalyzed C-H activation and subsequent intramolecular cyclization is reported. Diazodiesters serving as a C2 source in the newly formed heterocycles are first demonstrated. Additionally, the Rh(iii)-catalyzed direct C-H activation/cyclization of benzimidates with diazoketoesters is also described. PMID:27146107

  15. Theoretical studies on CuCl-catalyzed C-H activation/C-O coupling reactions: oxidant and catalyst effects.

    PubMed

    Zhang, Lu-Lu; Li, Shi-Jun; Zhang, Lei; Fang, De-Cai

    2016-05-11

    Copper-complex catalyzed coupling reactions have been widely applied in the production of many important organic moieties from a synthetic perspective. In this work, a series of density functional theory (DFT) calculations, employing the B3LYP + IDSCRF/DZVP method, have been performed for a typical CuCl-catalyzed C-O cross-coupling reaction. The novel reaction mechanism was reported as four successive processes: oxidative radical generation (ORG) or oxidative addition (OA), hydrogen abstraction (HA), C-H activation/reductive elimination, and separation of product and recycling of catalyst (SP & RC). Our calculations provided a deep understanding on the dissimilar chemical activities associated with varying the oxidants used; detailed energy profile analyses suggested that the first oxidation process could proceed via either of the two competing channels (ORG and OA mechanisms) which is the basis to explain the different experimental yields. In addition, our molecular modelling gave theoretical evidence that Cu(ii) → Cu(i) reduction by solvent DMF (and a water molecule) might serve as a preliminary step to produce some more active Cu(i) species that could subsequently be oxidized into Cu(iii) favorably. In contrast, the Cu(ii) → Cu(iii) direct pathway was estimated to be prohibited from thermodynamics. All the calculation results in this work are parallel with the experimental observations. PMID:27088885

  16. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  17. C-H arylation of benzoquinone in water through aniline activation: synergistic effect of graphite-supported copper oxide nanoparticles.

    PubMed

    Honraedt, Aurélien; Le Callonnec, François; Le Grognec, Erwan; Fernandez, Vincent; Felpin, François-Xavier

    2013-05-01

    A homemade CuONPs/Gr catalyst was found to be efficient for the C-H arylation of benzoquinone. This methodology represents the first example of a Meerwein arylation catalyzed by a heterogeneous catalyst. PMID:23551327

  18. C-H Bond Activation by Pd-substituted CeO2: Substituted Ions versus Reduced Species

    SciTech Connect

    Misch, Lauren M; Kurzman, Joshua A; Derk, Alan R; Kim, Young-Il; Seshadri, Ram; Metiu, Horia; McFarland, Eric W; Stucky, Galen D

    2012-02-07

    Substituted metal oxides containing ionic species have been attracting a great deal of attention because of their potential ability to reduce the usage of precious metals in heterogeneous catalysts. We investigate Pd-substituted CeO2 for C-H bond activation reactions including the partial oxidation and dry reforming of CH4. This catalyst has been previously studied for CO oxidation, NOx reduction, and the water-gas shift reaction. Pd-substituted CeO2, Ce1-xPdxO2-δ, was prepared as a powder with high surface area and a hollow sphere morphology using ultrasonic spray pyrolysis. The catalysts were extensively characterized using synchrotron X-ray diffraction and other techniques, confirming phase pure samples up to 10 mol % Pd substitution. Ce0.95Pd0.05O2-δ was found to be active for partial oxidation of CH4 around 500 °C and higher. Our studies, including postcatalytic synchrotron diffraction, suggest that the single-phase Ce1-xPdxO2-δ material is not the active species and that catalysis occurs instead over the reduced two-phase Pd0/CeO2. This observation has been further confirmed by verifying the activity of the reduced Pd0/CeO2 catalysts for ethylene hydrogenation, a reaction that is known to require Pd0.

  19. C-H activation and C=C double bond formation reactions in iridium ortho-methyl arylphosphane complexes.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Zangrando, Ennio; Rigo, Pierluigi

    2007-01-01

    The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species. PMID:17535000

  20. Aromatic C-H Activation in the Triplet Excited State of Cyclometalated Platinum(II) Complexes Using Visible Light.

    PubMed

    Juliá, Fabio; González-Herrero, Pablo

    2016-04-27

    The visible-light driven cyclometalation of arene substrates containing an N-donor heteroaromatic moiety as directing group by monocyclometalated Pt(II) complexes is reported. Precursors of the type [PtMe(C^N)(N^CH)], where N^CH is 2-phenylpyridine (ppyH) or related compunds with diverse electronic properties and C^N is the corresponding cyclometalated ligand, afford homoleptic cis-[Pt(C^N)2] complexes upon irradiation with blue LEDs at room temperature with evolution of methane. Heteroleptic derivatives cis-[Pt(ppy)(C'^N')] are obtained analogously from [PtMe(ppy)(N'^C'H)], where N'^C'H represents an extended set of heteroaromatic compounds. Experimental and computational studies demonstrate an unprecedented C-H oxidative addition, which is initiated by a triplet excited state of metal-to-ligand charge-transfer (MLCT) character and leads to a detectable Pt(IV) methyl hydride intermediate. PMID:27058394

  1. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  2. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  3. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    SciTech Connect

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  4. Iridium- and rhodium-catalyzed C-H activation and formyl arylation of benzaldehydes under chelation-assistance.

    PubMed

    Yang, Xifa; Wang, He; Zhou, Xukai; Li, Xingwei

    2016-06-21

    Mild and efficient synthesis of benzophenones via Ir(iii)- and Rh(iii)-catalyzed, directing group-assisted formyl C-H arylation of benzaldehydes has been achieved using diaryliodonium salts, in which Rh(iii) and Ir(iii) catalysts exhibited a complementary substrate scope. PMID:27222168

  5. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization: a DFT study.

    PubMed

    Liu, Liu; Wu, Yile; Wang, Tao; Gao, Xiang; Zhu, Jun; Zhao, Yufen

    2014-06-01

    Density functional theory calculations (DFT) have been performed on Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization to investigate the detailed mechanism, including four basic steps: C-H activation, alkyne insertion, reductive elimination, and catalyst recycling, each of which consists of different steps. Interestingly, the Rh(III)-AgOAc catalyst system was found to be more favorable in the C-H activation step in comparison with the Rh(III)-Ag2CO3 system, whereas the Rh(I)-Ag2CO3 catalyst system was more efficient for catalyst recycling. Importantly, our calculations suggest that the alkyne insertion process is a reversible step. Reductive elimination is the rate-determining step with an activation energy of 25.0 kcal/mol. In addition, the origin of the reactivity and selectivity difference between diarylacetylenes and dialkylacetylenes or electron-rich and electron-deficient diarylacetylenes was probed by means of comparative DFT calculations. The calculation results show that the electronic effects of alkynes play a key role in the reactivity and selectivity, in line with the experimental observations that diarylacetylenes and electron-rich diarylacetylenes are more reactive than dialkylacetylenes and electron-deficient diarylacetylenes, respectively. Our findings should be useful for further developments of transition-metal-catalyzed C-H activation reactions. PMID:24815788

  6. Interplay of Tunneling, Two-State Reactivity, and Bell-Evans-Polanyi Effects in C-H Activation by Nonheme Fe(IV)O Oxidants.

    PubMed

    Mandal, Debasish; Shaik, Sason

    2016-02-24

    The study of C-H bond activation reactions by nonheme Fe(IV)O species with nine hydrocarbons shows that the kinetic isotope effect (KIE) involves strong tunneling and is a signature of the reactive spin states. Theory reproduces the observed spike-like appearance of plots of KIE(exp) against the C-H bond dissociation energy, and its origins are discussed. The experimentally observed Bell-Evans-Polanyi correlations, in the presence of strong tunneling, are reproduced, and the pattern is rationalized. PMID:26824716

  7. Iridium-catalysed ortho-H/D and -H/T exchange under basic conditions: C-H activation of unprotected tetrazoles.

    PubMed

    Kerr, William J; Lindsay, David M; Reid, Marc; Atzrodt, Jens; Derdau, Volker; Rojahn, Patrick; Weck, Remo

    2016-05-10

    The first examples of selective ortho-directed C-H activation with unprotected 2-aryltetrazoles are described. A new base-assisted protocol for iridium(i) hydrogen isotope exchange catalysis allows access to ortho-deuterated and tritiated tetrazoles, including the tetrazole-containing pharmaceutical, Valsartan. Preliminary mechanistic studies are also presented. PMID:27115235

  8. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.

    PubMed

    Wu, Weirong; Liu, Yuxia; Bi, Siwei

    2015-08-14

    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage. PMID:26138233

  9. Cooperative Co(III)/Cu(II)-Catalyzed C-N/N-N Coupling of Imidates with Anthranils: Access to 1H-Indazoles via C-H Activation.

    PubMed

    Li, Lei; Wang, He; Yu, Songjie; Yang, Xifa; Li, Xingwei

    2016-08-01

    Cooperative cobalt- and copper-catalyzed C-H activation of imidate esters and oxidative coupling with anthranils allowed efficient synthesis of 1H-indazoles in the absence of metal oxidants. The anthranil acts as a convenient aminating reagent as well as an organic oxidant in this transformation. The copper catalyst likely functions at the stage of N-N formation. PMID:27415586

  10. Merging rhodium-catalysed C-H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation.

    PubMed

    Manan, Rajith S; Zhao, Pinjing

    2016-01-01

    Catalytic C-H activation and hydroamination represent two important strategies for eco-friendly chemical synthesis with high atom efficiency and reduced waste production. Combining both C-H activation and hydroamination in a cascade process, preferably with a single catalyst, would allow rapid access to valuable nitrogen-containing molecules from readily available building blocks. Here we report a single metal catalyst-based approach for N-heterocycle construction by tandem C-H functionalization and alkene hydroamination. A simple catalyst system of cationic rhodium(I) precursor and phosphine ligand promotes redox-neutral [4+2] annulation between N-H aromatic ketimines and internal alkynes to form multi-substituted 3,4-dihydroisoquinolines (DHIQs) in high chemoselectivity over competing annulation processes, exclusive cis-diastereoselectivity, and distinct regioselectivity for alkyne addition. This study demonstrates the potential of tandem C-H activation and alkene hydrofunctionalization as a general strategy for modular and atom-efficient assembly of six-membered heterocycles with multiple chirality centres. PMID:27321650

  11. Pd(II)-promoted direct cross-coupling reaction of arenes via highly regioselective aromatic C-H activation: a theoretical study.

    PubMed

    Ishikawa, Atsushi; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-04-01

    The direct cross-coupling reaction of arenes promoted by Pd(OAc)(2) is synthetically very useful because the preparation of a haloarene as a substrate is not necessary. This reaction interestingly only occurs in the presence of benzoquinone (BQ). DFT, MP2 to MP4(SDQ), and CCSD(T) computations elucidated the whole mechanism of this cross-coupling reaction and the key roles of BQ. The first step is the heterolytic C-H activation of benzo[h]quinoline (HBzq) by Pd(OAc)(2) to afford Pd(Bzq)(OAc). The Pd center is more electron-rich in Pd(Bzq)(OAc) than in Pd(OAc)(2). Hence, BQ easily coordinates to Pd(Bzq)(OAc) with a low activation barrier to afford a distorted square planar complex Pd(Bzq)(OAc)(BQ) which is as stable as Pd(Bzq)(OAc). Then, the second C-H activation of benzene occurs with a moderate activation barrier and small endothermicity. The final step is the reductive elimination which occurs with little barrier. The rate-determining step of the overall reaction is the second C-H activation whose activation barrier is considerably higher than that of the first C-H activation. BQ plays a key role in accelerating this reaction; (i) the phenyl group must change its position a lot to reach the transition state in the reductive elimination from the square planar intermediate Pd(Ph)(Bzq)(OAc) but only moderately in the reaction from the trigonal bipyramidal intermediate Pd(Ph)(Bzq)(OAc)(BQ). This is because BQ suppresses the phenyl group to take a position at a distance from the Bzq. (ii) BQ stabilizes the transition state and the product complex by the back-donation interaction. In the absence of BQ, the reductive elimination step has a much higher activation barrier. Though it was expected that the BQ coordination accelerates the second C-H activation of benzene by decreasing the electron density of Pd in Pd(Bzq)(OAc), the activation barrier of this second C-H activation is little influenced by BQ. PMID:20449458

  12. Propane σ-Complexes on PdO(101): Spectroscopic Evidence of the Selective Coordination and Activation of Primary C-H Bonds.

    PubMed

    Zhang, Feng; Pan, Li; Choi, Juhee; Mehar, Vikram; Diulus, John T; Asthagiri, Aravind; Weaver, Jason F

    2015-11-16

    Achieving selective C-H bond cleavage is critical for developing catalytic processes that transform small alkanes to value-added products. The present study clarifies the molecular-level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C-H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ-complexes preferentially adopt geometries on PdO(101) in which only primary C-H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a H-Pd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane C-H bonds. PMID:26420576

  13. Catalytic borylation of SCF₃-functionalized arenes by rhodium(I) boryl complexes: regioselective C-H activation at the ortho-position.

    PubMed

    Kalläne, Sabrina I; Braun, Thomas

    2014-08-25

    An unprecedented reaction pathway for the borylation of SCF3-containing arenes using [Rh(Bpin)(PEt3)3] (pin=pinacolato) is reported. Catalytic processes were developed and the functionalizations proceed under mild reaction conditions. The C-H activations occur with a unique regioselectivity for the position ortho to the SCF3 group, which apparently serves as directing group. Borylated SCF3 compounds can serve as versatile building blocks. PMID:25088814

  14. Metal cocatalyzed tandem alkynylative cyclization reaction of in situ formed N-iminoisoquinolinium ylides with bromoalkynes via C-H bond activation.

    PubMed

    Huang, Ping; Yang, Qin; Chen, Zhiyuan; Ding, Qiuping; Xu, Jingshi; Peng, Yiyuan

    2012-09-21

    Silver triflate and copper(I) iodide cocatalyzed direct alkynylation and cyclization reaction of in situ formed N-iminoisoquinolinium ylides with bromoalkynes is described. The reaction proceeds efficiently through a combination of C-H activation and subsequent tandem reaction in one pot, leading to diverse H-pyrazolo[5,1-a]isoquinolines in good yields under mild reaction conditions. PMID:22946742

  15. Rhodium(III)-Catalyzed C-H Activation/Alkyne Annulation by Weak Coordination of Peresters with O-O Bond as an Internal Oxidant.

    PubMed

    Mo, Jiayu; Wang, Lianhui; Cui, Xiuling

    2015-10-16

    A redox-economic strategy has been developed, involved in an efficient Rh(III)-catalyzed oxidative C-H activation and alkyne annulation with perester as the oxidizing directing group. In this process, the cleavage of an oxidizing O-O bond as an internal oxidant is described for the first time. This reaction could be carried out under mild conditions and exhibits excellent regioselectivity and wide functional groups tolerance. PMID:26414431

  16. Synthesis of Conjugated Polycyclic Quinoliniums by Rhodium(III)-Catalyzed Multiple C-H Activation and Annulation of Arylpyridiniums with Alkynes.

    PubMed

    Ge, Qingmei; Hu, Yang; Li, Bin; Wang, Baiquan

    2016-05-20

    A simple method for the efficient synthesis of highly substituted pyrido[1,2-a]quinolinium- and quinolizino[3,4,5,6-ija]quinolinium-based polyheteroaromatic compounds via rhodium(III)-catalyzed multiple C-H activation annulation reactions has been developed. Moreover, some of the quinolizino[3,4,5,6-ija]quinolinium salts exhibit intense fluorescence and have potential application in optoelectronic materials. PMID:27137134

  17. Total Synthesis of cis-Clavicipitic Acid from Asparagine via Ir-Catalyzed C-H bond Activation as a Key Step.

    PubMed

    Tahara, Yu-ki; Ito, Mamoru; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2015-08-01

    4-Substituted tryptophan derivatives and the total synthesis of cis-clavicipitic acid were achieved in reactions in which Ir-catalyzed C-H bond activation was a key step. The starting material for these reactions is asparagine, which is a cheap natural amino acid. The reductive amination step from the 4-substituted tryptophan derivative gave cis-clavicipitic acid with perfect diastereoselectivity. PMID:26178075

  18. Density functional theory study of Rh(III)-catalyzed C-H activations and intermolecular annulations between benzamide derivatives and allenes.

    PubMed

    Xing, Zhong; Huang, Fang; Sun, Chuanzhi; Zhao, Xue; Liu, Jianbiao; Chen, Dezhan

    2015-04-20

    Density functional theory has been applied to gain insight into the Cp*Rh(OAc)2-catalyzed C-H activation and intermolecular annulation of benzamide derivatives with allenes. The study shows that the reactions proceed in three steps: (1) C-H activation induced by Rh catalyst reacting with benzamide derivatives, (2) carborhodation of allene, and (3) regeneration of Rh catalyst. The results indicate that the N-H deprotonation makes the following C-H activation much easier. The regio- and stereoselectivities of 1a (N-pivaloyloxy benzamide)/2a (cyclohexylallene) and 1b (N-pivaloyloxy-4-methyl-benzamide)/2b (1,1-dimethyl allene) depend on the allene carborhodation step. The steric hindrance effect is the dominant factor. We also discuss the reaction mechanism of 1c (N-methoxy benzamide)/2a. The chemoselectivity between 1c/2a is determined by the N-O cleavage step. Replacement of OPiv by OMe leads to loss of the stabilization effect provided by C=O in OPiv. Additionally, Cp*Rh(OAc)(OPiv) is produced in the Cp*Rh(OAc)2 regeneration step, which can work as catalyst as well. PMID:25856513

  19. Activation of C-H Bonds in Pt(+) + x CH4 Reactions, where x = 1-4: Identification of the Platinum Dimethyl Cation.

    PubMed

    Wheeler, Oscar W; Salem, Michelle; Gao, Amanda; Bakker, Joost M; Armentrout, P B

    2016-08-11

    Activation of C-H bonds in the sequential reactions of Pt(+) + x(CH4/CD4), where x = 1-4, have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. Pt(+) cations are formed by laser ablation and exposed to controlled amounts of CH4/CD4 leading to [Pt,xC,(4x-2)H/D](+) dehydrogenation products. Irradiation of these products in the 400-2100 cm(-1) range leads to CH4/CD4 loss from the x = 3 and 4 products, whereas PtCH2(+)/PtCD2(+) products do not decompose at all, and x = 2 products dissociate only when formed from a higher order product. The structures of these complexes were explored theoretically at several levels of theory with three different basis sets. Comparison of the experimental and theoretical results indicate that the species formed have a Pt(CH3)2(+)(CH4)x-2/Pt(CD3)2(+)(CD4)x-2 binding motif for x = 2-4. Thus, reaction of Pt(+) with methane occurs by C-H bond activation to form PtCH2(+), which reacts with an additional methane molecule by C-H bond activation to form the platinum dimethyl cation. This proposed reaction mechanism is consistent with theoretical explorations of the potential energy surface for reactions of Pt(+) with one and two methane molecules. PMID:27438025

  20. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Hibbitts, David; Neurock, Matthew

    2016-08-01

    Electronegative coadsorbates such as atomic oxygen (O*) and hydroxide (OH*) can act as Brønsted bases when bound to Group 11 as well as particular Group 8-10 metal surfaces and aid in the activation of X-H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C-H bonds of methane and surface methyl intermediates as well as the O-H bond of methanol directly and with the assistance of coadsorbed O* and OH* intermediates over Group 11 (Cu, Ag, and Au) and Group 8-10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C-H as well as O-H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C-H or O-H bond. O* and OH* assist C-H and O-H activation over particular Group 11 and Group 8-10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C-H or O-H bond to the metal along with a reductive deprotonation of the acidic C-H and O-H bond over the M-O* or M-OH* site pair. The O*- and OH*-assisted C-H activation paths are energetically preferred over the direct metal catalyzed C-H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4-1.5 eV lower than those for the unassisted routes. The barriers for O*- and OH*-assisted C-H activation of CH4 on the Group 8-10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C-H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O-H bond of methanol is significantly promoted by O* as well as OH* intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8-10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O*- and OH*-assisted CH3O-H barriers are 0.6 to 2

  1. Transition metal activation and functionalization of C-H (carbon-hydrogen) bonds: Progress report for period June 1, 1986-November 30, 1987

    SciTech Connect

    Jones, W.D.

    1987-08-01

    The fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers were investigated. The project was also directed towards the conversion of hydrocarbons into functionalized products of potential use to chemical industry. Goals during the grant period were (1) to identify new transition metal complexes capable of activating arene and alkane C-H bonds, (2) to quantitatively evaluate the kinetic and thermodynamic stability of these complexes, and (3) to examine routes for functionalization of the activated hydrocarbons. The specific complexes involved in these studies were derivatives of the formulation (C/sub 2/Me/sub 5/)Rh(PR/sub 3/)(R)H, Fe(PMe/sub 3/)/sub 2/(CNR)/sub 3/, Ru(PR/sub 3/)/sub 4/(R)H, and Rh(CNR)/sub 3/H. Functionalization focused upon isocyanide and acetylene insertion reactions. New compounds that activated hydrocarbon C-H bonds include HRe(PR/sub 3/)/sub 5/, HRe(PR/sub 3/)/sub 2/(CNR)/sub 3/, CpRe(Pr/sub 3/)H/sub 4/, CpRe(PR/sub 3/)/sub 2/H/sub 2/, and (eta/sup 6/-C/sub 6/H/sub 6/)Re(PPh/sub 3/)/sub 2/H. 7 figs., 1 tab.

  2. 9,10-Dihydrophenanthrene derivatives and one 1,4-anthraquinone firstly isolated from Dioscorea zingiberensis C. H. Wright and their biological activities.

    PubMed

    Du, Dan; Zhang, Rui; Xing, Zhihua; Liang, Yuyan; Li, Shengfu; Jin, Tao; Xia, Qing; Long, Dan; Xin, Guang; Wang, Guangzhi; Huang, Wen

    2016-03-01

    Two new phenanthrene derivatives, 2,5,7-trimethoxy-9,10-dihydrophenanthrene-1,4-dione (1) and 2,5,6-trihydroxy-3,4-dimethoxy-9,10-dihydrophenanthrene (3), one new anthracenedione, 2,5,7-trimethoxyanthracene-1,4-dione (2), together with two known 9,10-dihydrophenanthrenes (4-5) were isolated from the rhizomes of Dioscorea zingiberensis C. H. Wright. The structures of these new compounds were established based on extensive NMR spectroscopy. Several isolated compounds were evaluated for the inhibition against nitric oxide (NO) production in the lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cell line, DPPH radical scavenging, and inhibitory activity on Free Fatty Acids (FFAs) induced triglyceride accumulation in HepG2 cells. Compound 2 exhibited moderate anti-inflammatory activity, compound 3 possessed comparable DPPH radical scavenging activity as Vitamin C, compounds 2 and 4 showed potent inhibitory activities on triglyceride accumulation. PMID:26656408

  3. Tuning reactivity and site selectivity of simple arenes in C-H activation: ortho-arylation of anisoles via arene-metal π-complexation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Larrosa, Igor

    2014-12-31

    Current approaches to achieve site selectivity in the C-H activation of arenes involve the use of directing groups or highly electron-poor arenes. In contrast, simple arenes, such as anisole, are characterized by poor reactivity and selectivity. We report that π-complexation to a Cr(CO)3 unit enhances the reactivity of anisoles providing an unprecedented ortho-selective arylation. This mild methodology can be used for the late stage functionalization of bioactive compounds containing the anisole motif, allowing the construction of novel organic scaffolds with few synthetic steps. PMID:25510851

  4. Solvent-Controlled, Tunable β-OAc and β-H Elimination in Rh(III)-Catalyzed Allyl Acetate and Aryl Amide Coupling via C-H Activation.

    PubMed

    Dai, Huimin; Yu, Chao; Wang, Zihao; Yan, Hong; Lu, Changsheng

    2016-07-15

    The Heck reaction between arenes and allyl acetate has led to cinnamyl derivatives and allyl products depending on the regioselectivity of β-elimination. The regioselectivity can be controlled by the solvent in the Rh(III)-catalyzed arene-allyl acetate coupling via C-H activation: (1) in THF, cinnamyl derivatives via β-H elimination were generated; (2) in MeOH, allyl products via β-OAc elimination were produced. Both routes have advantages such as excellent γ-selectivity toward allyl acetate, good to excellent yields, and broad substrate scope. PMID:27351917

  5. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed. PMID:26824751

  6. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    SciTech Connect

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  7. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    PubMed

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-01

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading. PMID:25283156

  8. C-H Bond activation and C-C bond formation in the reaction of 2,5-dimethylthiophene with TpMe2Ir compounds.

    PubMed

    Paneque, Margarita; Poveda, Manuel L; Carmona, Ernesto; Salazar, Verónica

    2005-04-21

    The bulky 2,5-dimethylthiophene (2,5-Me2T) reacts at 60 degrees C with TpMe2Ir(C2H4)2 to give a mixture of two TpMe2Ir(III) hydride products, 3 and 4, that contain in addition a thienyl (3) or a thienyl-derived ligand (4). For the generation of 3 only sp2 C-H activation is needed, but the formation of 4 requires also the activation of an sp3 C-H bond and the formation of a new C-C bond (between vinyl and thienyl fragments). In the presence of 2,5-Me2T, compound 4 reacts further to produce a complex thiophenic structure (5, characterized by X-ray methods) that derives formally from two molecules of 2,5-Me2T and a vinyl fragment. Compounds 3-5 can be readily protonated by [H(OEt2)2][BAr'4](Ar'= 3,5-C6H3(CF3)2), with initial generation of carbene ligands (in the case of 3 and 5) as a consequence of H+ attack at the beta-carbon of the Ir-thienyl unit. Free, substituted thiophenes, derived from the original 2,5-Me2T, may be isolated in this way. PMID:15824780

  9. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.

    PubMed

    Manna, Kuntal; Zhang, Teng; Greene, Francis X; Lin, Wenbin

    2015-02-25

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal-organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C-H borylation of arenes using B2pin2. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17,000 for C-H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations. PMID:25640998

  10. 1994 C. H. McCloy Research Lecture: Does Physical Activity Play a Role in Preventing Osteoporosis?

    ERIC Educational Resources Information Center

    Drinkwater, Barbara L.

    1994-01-01

    Review considers problems encountered in relating women's physical activity to increases in bone mass, noting the implications of recommending exercise to help prevent osteoporosis based on that information. Research indicates that for the full benefit of exercise on skeletal health, there must be adequate gonadal hormone levels. (SM)

  11. 2008 C. H. McCloy Lecture: Social Psychology and Physical Activity--Back to the Future

    ERIC Educational Resources Information Center

    Gill, Diane L.

    2009-01-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity." Since then, sport and exercise psychology research has shifted away from the social to a narrower bio-psycho-(no social) approach, and professional practice has focused on the elite rather than the…

  12. Access to Silylated Pyrazole Derivatives by Palladium-Catalyzed C-H Activation of a TMS group.

    PubMed

    Mistico, Laetitia; Querolle, Olivier; Meerpoel, Lieven; Angibaud, Patrick; Durandetti, Muriel; Maddaluno, Jacques

    2016-07-01

    A simple and efficient approach to new silylated heterocycles of potential interest in medicinal chemistry is presented. A set of bromophenyl trimethylsilyl pyrazole intermediates can be transformed by direct organometallic routes into two families of regioisomeric iodoaryl substrates; using either arylzinc or aryllithium chemistry, the TMS group remains on the pyrazole ring or translocates to the aryl moiety. These two families can then be efficiently transformed into benzo silino pyrazoles thanks to a single-step cyclization relying on the Pd-catalyzed activation of a non-activated C(sp(3) )-H bond alpha to a silicon atom. The experimental conditions used, which are fully compatible with the pyrazole ring, suggest that this reaction evolves through a concerted metalation-deprotonation (CMD) mechanism. PMID:27271020

  13. Construction of Hexahydrophenanthrenes By Rhodium(I)-Catalyzed Cycloisomerization of Benzylallene-Substituted Internal Alkynes through C-H Activation.

    PubMed

    Kawaguchi, Yasuaki; Yasuda, Shigeo; Mukai, Chisato

    2016-08-22

    The treatment of benzylallene-substituted internal alkynes with [RhCl(CO)2 ]2 effects a novel cycloisomerization by C(sp(2) )-H bond activation to produce hexahydrophenanthrene derivatives. The reaction likely proceeds through consecutive formation of a rhodabicyclo[4.3.0] intermediate, σ-bond metathesis between the C(sp(2) )-H bond on the benzene ring and the C(sp(2) )-Rh(III) bond, and isomerization between three σ-, π-, and σ-allylrhodium(III) species, which was proposed based on experiments with deuterated substrates. PMID:27467443

  14. Ethylene C-H Bond Activation by Neutral Mn2O5 Clusters under Visible Light Irradiation.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2016-05-01

    A photo excitation fast flow reactor coupled with a single-photon ionization (118 nm, 10.5 eV) time-of-flight mass spectrometry (TOFMS) instrument is used to investigate reactions of neutral MnmOn clusters with C2H4 under visible (532 nm) light irradiation. Association products Mn2O5(C2H4) and Mn3O6,7(C2H4) are observed without irradiation. Under light irradiation, the Mn2O5(C2H4) TOFMS feature decreases, and a new species, Mn2O5H2, is observed. This light-activated reaction suggests that the visible radiation can induce the chemistry, Mn2O5 + C2H4 + hv(532 nm) → Mn2O5*(C2H4) → Mn2O5H2 + C2H2. High barriers (0.67 and 0.59 eV) are obtained on the ground-state potential energy surface (PES); the reaction is barrierless and thermodynamically favorable on the first excited-state PES, as performed by time-dependent density functional theory calculations. The calculational and experimental results suggest that Mn2O5-like structures on manganese oxide surfaces are the appropriate active catalytic sites for visible light photocatalysis of ethylene dehydrogenation. PMID:27099985

  15. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation.

    PubMed

    Yi, Jing; Miller, Jeffrey T; Zemlyanov, Dmitry Y; Zhang, Ruihong; Dietrich, Paul J; Ribeiro, Fabio H; Suslov, Sergey; Abu-Omar, Mahdi M

    2014-01-13

    Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant- and acceptor-free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom-economical process for making carbonyl compounds. Secondary aliphatic alcohols give quantitative conversion and yield. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Re K-edge X-ray absorption near-edge structure (XANES), and X-ray absorption fine structure (EXAFS) data confirmed the characterization of the Re NPs as metallic rhenium with surface oxidation to rhenium(IV) oxide (ReO2). Isotope labeling experiments revealed a novel γ-CH activation mechanism for AD of alcohols. PMID:24282107

  16. Aliphatic Halogenase Enables Late-Stage C-H Functionalization: Selective Synthesis of a Brominated Fischerindole Alkaloid with Enhanced Antibacterial Activity.

    PubMed

    Zhu, Qin; Hillwig, Matthew L; Doi, Yohei; Liu, Xinyu

    2016-03-15

    The anion promiscuity of a newly discovered standalone aliphatic halogenase WelO5 was probed and enabled the selective synthesis of 13R-bromo-12-epi-fischerindole U via late-stage enzymatic functionalization of an unactivated sp(3) C-H bond. Pre-saturating the WelO5 active site with a non-native bromide anion was found to be critical to the highly selective in vitro transfer of bromine, instead of chlorine, to the target carbon center and also allowed the relative binding affinity of bromide and chloride towards the WelO5 enzyme to be assessed. This study further revealed the critical importance of halogen substitution on modulating the antibiotic activity of fischerindole alkaloids and highlights the promise of WelO5-type aliphatic halogenases as enzymatic tools to fine-tune the bioactivity of complex natural products. PMID:26749394

  17. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    SciTech Connect

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  18. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  19. Palladium-catalyzed double C-H activation: one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones from 5-pyrazolones and aryl iodides.

    PubMed

    Fan, Zhoulong; Wu, Kui; Xing, Li; Yao, Qizheng; Zhang, Ao

    2014-02-18

    A palladium-catalyzed dual C-H activation to construct C-C/C-N bonds for one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-ones is successfully developed. This approach involves using a pyrazolone moiety as an internal directing group for C-H activation, and provides a flexible strategy to access this polycyclic skeleton. PMID:24394189

  20. Development of a supramolecular ensemble of an AIEE active hexaphenylbenzene derivative and Ag@Cu2O core-shell NPs: an efficient photocatalytic system for C-H activation.

    PubMed

    Chopra, Radhika; Kumar, Manoj; Bhalla, Vandana

    2016-08-01

    A supramolecular ensemble having Ag@Cu2O core-shell nanoparticles stabilized by aggregates of a hexaphenylbenzene derivative has been developed which exhibits excellent photocatalytic efficiency in reactions involving preparation of imidazole and benzimidazole derivatives via C-H activation. PMID:27464360

  1. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  2. The C-H bond activation in 1-ethyl-3-methylimidazolium acetate-copper(II) acetate-water-air (dioxygen) systems.

    PubMed

    Shtyrlin, Valery G; Serov, Nikita Yu; Islamov, Daut R; Konkin, Alexander L; Bukharov, Mikhail S; Gnezdilov, Oleg I; Krivolapov, Dmitry B; Kataeva, Ol'ga N; Nazmutdinova, Gulnara A; Wendler, Frank

    2014-01-14

    Ionic liquid (1-ethyl-3-methylimidazolium acetate, [C2C1im][AcO])-copper(ii) diacetate monohydrate-water-air (O2) systems have been investigated by (13)C NMR, EPR, spectrophotometry, HPLC, and synthetic chemistry methods at different temperatures. The C-H bond activation of [C2C1im](+) with the formation of the unusual dication 1,1'-diethyl-3,3'-dimethyl-2,2'-biimidazolium ([(C2C1im)2](2+)) at 50 °C and 1-ethyl-3-methyl-1H-imidazol-2(3H)-one (C2C1imO) at 50-85 °C was revealed. Two new complexes with the above compounds, [(C2C1im)2][Cu(AcO)4] and Cu2(AcO)4(C2C1imO)2, were isolated from the systems and characterized by X-ray structural analysis. Catalytic cycles with the participation of copper(ii) acetate and dioxygen and the production of [(C2C1im)2](2+) and C2C1imO have been proposed. The catalysis presumably includes the formation of the Cu(II)(O2)Cu(II) active centre with μ-η(2):η(2)-peroxide bridging in analogy with tyrosinase and catechol oxidase activity. PMID:24154681

  3. Carbonylation of hydrocarbons via C-H activation catalyzed by RhCl(CO)(PMe sub 3 ) sub 2 under irradiation

    SciTech Connect

    Sakakura, Toshiyasu; Sodeyama, Touru; Tanaka, Masato ); Sasaki, Koushi; Wada, Keisuke )

    1990-09-26

    C-H bonds in hydrocarbons are carbonylated into aldehydes by reaction with carbon monoxide in the presence of RhCl(CO)(PR{sub 3}){sub 2} under irradiation. The reaction proceeds at an ambient temperature under an atmospheric pressure of CO. The catalytic activity of RhCl(CO)(PR{sub 3}){sub 2} decreases in the order PMe{sub 3} {approx} 1,3,4-trimethylphospholane {approx} 1,3,4-trimethylphospholene > P(CH{sub 2}O){sub 3}CMe > PEt{sub 3} {approx} PBu{sub 3} > P(i-Pr){sub 3} {approx} P(OMe){sub 3} > dppe. The thiocyanato complex exhibits a similar catalytic activity to the chloro complex. The use of other complexes of Co, Ir, and Ru resulted in much lower catalytic activities. In the carbonylation of benzene, benzophenone and benzyl alcohol are formed as byproducts. The yield of benzaldehyde reached 3.3% on the basis of benzene. Monosubstituted benzenes are converted mainly to meta-substituted benzaldehydes. In the reaction of n-alkanes, a terminal methyl group is selectively carbonylated to give a linear aldehyde.

  4. Mechanochemically Activated Oxidative Coupling of Indoles with Acrylates through C-H Activation: Synthesis of 3-Vinylindoles and β,β-Diindolyl Propionates and Study of the Mechanism.

    PubMed

    Jia, Kan-Yan; Yu, Jing-Bo; Jiang, Zhi-Jiang; Su, Wei-Ke

    2016-07-15

    Construction of 3-vinylindoles (3) and β,β-diindolyl propionates (4) through solvent-free C-H functionalization has been explored under high-speed ball-milling conditions. The reaction selectivity is influenced by the catalyst dramatically: Pd(OAc)2 provides 3 in moderate to good yields, whereas PdX2 (X = Cl, I) affords 4 as the major products. The reaction mechanism has been further studied by using electrospray ionization mass spectrometry, implicating the dimeric palladium complex A as the key intermediate in an explanation of the selectivity. PMID:27328874

  5. Iron-Catalyzed C-H Functionalization Processes.

    PubMed

    Cera, Gianpiero; Ackermann, Lutz

    2016-10-01

    Iron-catalyzed C-H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C-H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C-H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C-H activation catalysis. An overview of the use of iron catalysis in C-H activation processes is summarized herein up to May 2016. PMID:27573499

  6. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry.

    PubMed

    Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang

    2015-05-20

    Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems. PMID:25915086

  7. The 2015 C. H. McCloy Lecture: Road Trip Toward More Inclusive Physical Activity: Maps, Mechanics, Detours, and Traveling Companions.

    PubMed

    Cardinal, Bradley J

    2015-01-01

    This essay stems from the 35th annual C. H. McCloy Research Lecture at the 2015 SHAPE America National Convention & Expo in Seattle, WA. The lecture series has 2 main aims. First, it provides an annual forum for a contemporary scholar to delve deeply into her/his work and to share that work with her/his peers. Second, it is an enduring tribute to the pioneering work and influential career of Charles Henry McCloy (March 30, 1886-September 18, 1959), research professor emeritus at the University of Iowa. This essay is composed of 6 sections: a prologue, a biography of McCloy, my autobiography, the fundamental premises and overarching aims of my work, a summary of my research contributions aimed at promoting inclusive physical activity, and an epilogue. The entire article is built around the construct of maps, mechanics, detours, and traveling companions. Paradigm shifts and insights are unraveled as the work unfolds and becomes increasingly integrated. Rarely does a scholar have the chance to provide a narrative of this nature, and it is hoped that this essay will inspire others to discover their own scholarly pathways and to contextualize and reflect on their contributions for the greater good of the field of kinesiology and society. PMID:26558637

  8. Driving Forces for Covalent Assembly of Porphyrins by Selective C-H Bond Activation and Intermolecular Coupling on a Copper Surface.

    PubMed

    Floris, Andrea; Haq, Sam; In't Veld, Mendel; Amabilino, David B; Raval, Rasmita; Kantorovich, Lev

    2016-05-11

    Recent synthesis of covalent organic assemblies at surfaces has opened the promise of producing robust nanostructures for functional interfaces. To uncover how this new chemistry works at surfaces and understand the underlying mechanisms that control bond-breaking and bond-making processes at specific positions of the participating molecules, we study here the coupling reaction of tetra(mesityl)porphyrin molecules, which creates covalently connected networks on the Cu(110) surface by utilizing the 4-methyl groups as unique connection points. Using scanning tunneling microscopy (STM), state-of-the-art density functional theory (DFT), and Nudged Elastic Band (NEB) calculations, we show that the unique directionality of the covalent bonding is found to stem from a chain of highly selective C-H activation and dehydrogenation processes, followed by specific intermolecular C-C coupling reactions that are facilitated by the surface, by steric constraints, and by anisotropic molecular diffusion. These insights provide the first steps toward developing synthetic rules for complex two-dimensional covalent organic chemistry that can be enacted directly at a surface to deliver specific macromolecular structures designed for specific functions. PMID:27097295

  9. Activation of the c-H-ras proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia virus-induced T-cell leukemia.

    PubMed Central

    Ihle, J N; Smith-White, B; Sisson, B; Parker, D; Blair, D G; Schultz, A; Kozak, C; Lunsford, R D; Askew, D; Weinstein, Y

    1989-01-01

    A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed. Images PMID:2542606

  10. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  11. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant. PMID:24024912

  12. Rhodium-Catalyzed C-S and C-N Functionalization of Arenes: Combination of C-H Activation and Hypervalent Iodine Chemistry.

    PubMed

    Wang, Fen; Yu, Xinzhang; Qi, Zisong; Li, Xingwei

    2016-01-11

    Rhodium-catalyzed sulfonylation, thioetherification, thiocyanation, and other heterofunctionalizations of arenes bearing a heterocyclic directing group have been realized. The reaction proceeds by initial Rh(III) -catalyzed C-H hyperiodination of arene at room temperature followed by uncatalyzed nucleophilic functionalization. A diaryliodonium salt is isolated as an intermediate, which represents umpolung of the arene substrate, in contrast to previous studies that suggested umpolung of the coupling partner. PMID:26538162

  13. Rhodium(III) Catalyzed Carboamination of Alkenes Triggered by C-H Activation of N-Phenoxyacetamides under Redox-Neutral Conditions.

    PubMed

    Hu, Zhiyong; Tong, Xiaofeng; Liu, Guixia

    2016-04-01

    N-Alkoxyacrylamides are coupled with N-phenoxyacetamides by Rh(III) catalysis through C-H functionalization and amido group transfer under external oxidant-free conditions, which affords acyclic alkene carboamination products in an atom-economical way. Mechanistic insight into this transformation indicates the amide group in N-alkoxyacrylamide plays a critical role in this C-C/C-N bond formation reaction. This methodology provides a highly efficient way to construct o-tyrosine derivatives under mild conditions. PMID:27002932

  14. Native functionality in triple catalytic cross-coupling: sp³ C-H bonds as latent nucleophiles.

    PubMed

    Shaw, Megan H; Shurtleff, Valerie W; Terrett, Jack A; Cuthbertson, James D; MacMillan, David W C

    2016-06-10

    The use of sp(3) C-H bonds--which are ubiquitous in organic molecules--as latent nucleophile equivalents for transition metal-catalyzed cross-coupling reactions has the potential to substantially streamline synthetic efforts in organic chemistry while bypassing substrate activation steps. Through the combination of photoredox-mediated hydrogen atom transfer (HAT) and nickel catalysis, we have developed a highly selective and general C-H arylation protocol that activates a wide array of C-H bonds as native functional handles for cross-coupling. This mild approach takes advantage of a tunable HAT catalyst that exhibits predictable reactivity patterns based on enthalpic and bond polarity considerations to selectively functionalize α-amino and α-oxy sp(3) C-H bonds in both cyclic and acyclic systems. PMID:27127237

  15. A Tale of Copper Coordination Frameworks: Controlled Single-Crystal-to-Single-Crystal Transformations and Their Catalytic C-H Bond Activation Properties.

    PubMed

    Chen, Yifa; Feng, Xiao; Huang, Xianqiang; Lin, Zhengguo; Pei, Xiaokun; Li, Siqing; Li, Jikun; Wang, Shan; Li, Rui; Wang, Bo

    2015-09-28

    Metal-organic frameworks (MOFs), as a class of microporous materials with well-defined channels and rich functionalities, hold great promise for various applications. Yet the formation and crystallization processes of various MOFs with distinct topology, connectivity, and properties remain largely unclear, and the control of such processes is rather challenging. Starting from a 0D Cu coordination polyhedron, MOP-1, we successfully unfolded it to give a new 1D-MOF by a single-crystal-to-single-crystal (SCSC) transformation process at room temperature as confirmed by SXRD. We also monitored the continuous transformation states by FTIR and PXRD. Cu MOFs with 2D and 3D networks were also obtained from this 1D-MOF by SCSC transformations. Furthermore, Cu MOFs with 0D, 1D, and 3D networks, MOP-1, 1D-MOF, and HKUST-1, show unique performances in the kinetics of the C-H bond catalytic oxidation reaction. PMID:26296038

  16. Oxidative Prins and Prins/Friedel-Crafts cyclizations for the stereoselective synthesis of dioxabicycles and hexahydro-1H-benzo[f]isochromenes via the benzylic C-H activation.

    PubMed

    Reddy, B V Subba; Borkar, Prashant; Yadav, J S; Reddy, P Purushotham; Kunwar, A C; Sridhar, B; Grée, René

    2012-02-21

    1-Benzyl ethers of (E)- and (Z)-hex-3-en-1,6-diols and hept-3-en-1,7-diols undergo a smooth oxidative cyclization with DDQ in the presence of In(OTf)(3) through a sequential C-H bond activation and an intramolecular Prins cyclization to afford the corresponding trans- and cis-fused hexahydro-2H-furo[3,2-c]pyrans and octahydropyrano[4,3-b]pyrans respectively in good yields with an excellent stereoselectivity. Aryl tethered homoallylbenzyl ethers such as benzyl ethers of (E)- and (Z)-6-arylhex-3-enyl alcohols undergo a tandem Prins/Friedel-Crafts cyclization in the presence of stoichiometric amounts of DDQ and SnCl(4)via the benzylic C-H bond activation to furnish the corresponding trans- and cis-fused hexahydro-1H-benzo[f]isochromenes in good yields with complete stereoselectivity. PMID:22187046

  17. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    PubMed

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes. PMID:27417438

  18. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    PubMed

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo. PMID:27460406

  19. Rhodium-Catalyzed Intramolecular C-H Silylation by Silacyclobutanes.

    PubMed

    Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Guo, Shuangxi; Jiang, Chenran; Guo, Huifang; He, Wei

    2016-05-17

    Silacyclobutane was discovered to be an efficient C-H bond silylation reagent. Under the catalysis of Rh(I) /TMS-segphos, silacyclobutane undergoes sequential C-Si/C-H bond activations, affording a series of π-conjugated siloles in high yields and regioselectivities. The catalytic cycle was proposed to involve a rarely documented endocyclic β-hydride elimination of five-membered metallacycles, which after reductive elimination gave rise to a Si-Rh(I) species that is capable of C-H activation. PMID:27073004

  20. Moving to Sustainable Metals. Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation

    SciTech Connect

    Crabtree, Robert

    2015-03-03

    Much of our work during this grant period has emphasized green chemistry and sustainability. For example, we were able to convert glycerine, a waste byproduct of biodiesel production, into lactic acid, a compound with numerous applications, notably in the food and cosmetics industry, as well as being a source material for a biodegradable plastic. This work required a catalyst, that ceases to work after a certain lapse of time. We were able to identify the way in which this deactivation occurs by identifying some of the metal catalyst deactivation products. These proved to be multimetallic clusters containing up to six metals and up to 14 hydrogen atoms. Both the catalytic reaction itself and the deactivation structures are novel and unexpected. We have previously proposed that nitrogen heterocycles could be good energy carriers in a low CO2 future world. In another part of our study, we found catalysts for introduction of hydrogen, an energy carrier that is hard to store, into nitrogen heterocycles. The mechanism of this process proved to be unusual in that the catalyst transfers the H2 to the heterocycle in the form of H+ and H-, first transferring the H+ and only then the H-. In a third area of study, some of our compounds, originally prepared for DOE catalysis purposes, also proved useful in hydrocarbon oxidation and in water oxidation. The latter is important in solar-to-fuel work, because, by analogy with natural photosynthesis, the goal of the Yale Solar Group of four PIs is to convert sunlight to hydrogen and oxygen, which requires water splitting catalysts. The catalysts that proved useful mediate the latter reaction: water oxidation to oxygen. In a more technical study, we developed methods for distinguishing the case where catalysis is mediated by a soluble catalyst from cases where catalysis arises from a deposit of finely divided solid. One particular application involved electrocatalysis

  1. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    SciTech Connect

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.; Lin, Wenbin

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  2. Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Siddiqi, Georges; Lapadula, Giuseppe; Norsic, Sébastien; Monteil, Vincent; Safonova, Olga V; Copéret, Christophe

    2014-02-10

    The insertion of an olefin into a preformed metal-carbon bond is a common mechanism for transition-metal-catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal-carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first CrC bond is formed remain unknown. We synthesized well-defined dinuclear Cr(II) and Cr(III) sites on silica. Whereas the Cr(II) material was a poor polymerization catalyst, the Cr(III) material was active. Poisoning studies showed that about 65 % of the Cr(III) sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si-(μ-OH)-Cr(III) species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at Cr(III) O bonds. PMID:24505006

  3. Intermolecular C-H activation with an Ir-METAMORPhos piano-stool complex--multiple reaction steps at a reactive ligand.

    PubMed

    Oldenhof, S; Lutz, M; van der Vlugt, J I; Reek, J N H

    2015-10-21

    Substrate activation by means of a reactive ligand is a topic of much interest. Herein we describe a stoichiometric anti-Markovnikov C-N bond formation involving ligand reactivity in multiple steps along the reaction coordinate, including ligand assisted substrate (de)protonation and C-N bond formation, as illustrated by a combined experimental, spectroscopic and computational study. This affords a highly unusual four-membered iridacycle bearing an exo-cyclic C=C double bond. PMID:26329519

  4. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking.

    PubMed

    Liu, Zongyuan; Grinter, David C; Lustemberg, Pablo G; Nguyen-Phan, Thuy-Duong; Zhou, Yinghui; Luo, Si; Waluyo, Iradwikanari; Crumlin, Ethan J; Stacchiola, Dario J; Zhou, Jing; Carrasco, Javier; Busnengo, H Fabio; Ganduglia-Pirovano, M Verónica; Senanayake, Sanjaya D; Rodriguez, José A

    2016-06-20

    Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way. PMID:27144344

  5. Formation of a Cationic Vinylimido Group upon C-H Activation of Nitriles by Trialkylamines in the Presence of TaCl5.

    PubMed

    Rahman, Md Mamdudur; Smith, Mark D; Peryshkov, Dmitry V

    2016-06-01

    We report a new CH3CN activation mode where an imido group is directly formed by deprotonation of the nitrile coordinated to the highly Lewis acidic Ta(V) center. The unexpected deprotonation of TaCl5(CH3CN) by NEt3 resulted in isolation of the triethylammonium vinylimido complex [HNEt3][Ta(NC(CH2)NEt3)Cl5]. The reaction is proposed to proceed through rearrangement of the initial nucleophilic carbanion to the electrophilic azaallene/carbocation intermediate. The use of more sterically hindered (i-Pr)CN and weakly nucleophilic N(i-Pr)2Et resulted in the isolation of a vinylimido group formed upon dimerization of deprotonated nitriles, suggesting deprotonation as the first step of the transformation. PMID:27172115

  6. 1,1'-Bis(di-tert-butylphosphino)ferrocene copper(I) complex catalyzed C-H activation and carboxylation of terminal alkynes.

    PubMed

    Trivedi, Manoj; Singh, Gurmeet; Kumar, Abhinav; Rath, Nigam P

    2015-12-28

    Four copper(i) complexes, [CuBr(dtbpf)] (1), [CuI(dtbpf)] (2), [Cu4(μ2-I)2(μ3-I)2(μ-dtbpf)2] (3) and [Cu6(μ3-I)6(μ-dtbpf)2]·2CH3CN (4), were prepared using CuX (X = Br, I) and 1,1'-bis(di-tert-butylphosphino)ferrocene (dtbpf). These complexes have been characterized by elemental analyses, IR, (1)H and (31)P NMR, ESI-MS and electronic absorption spectroscopy. Molecular structures of the complexes 2 and 4 were determined crystallographically. Complex 2 is the first monomeric isolated Cu(i) complex of dtbpf with the largest P-Cu-P bite angle (120.070(19)°) to date. Complex 4 shows a centrosymmetrical dimeric unit with two [Cu3(μ3-I)3] motifs bridged by two bidentate dtbpf ligands in the κ(1)-manner. Each [Cu3(μ3-I)3] motif unites to form a pyramid with one copper atom at the apex and one of the triangular faces capped by an iodine atom. All the complexes were found to be efficient catalysts for the conversion of terminal alkynes into propiolic acids with CO2. Owing to the excellent catalytic activity, the reactions proceeded at atmospheric pressure and ambient temperature (25 °C). The catalytic products were obtained in moderate to good yields (80-96%) by using complex loading to 2 mol%. To the best of our knowledge, this is the first example of an active ferrocenyl diphosphine Cu(i) catalyst for the carboxylation of terminal alkynes with CO2. PMID:26568456

  7. Host-Guest Chemistry: Oxoanion Recognition Based on Combined Charge-Assisted C-H or Halogen-Bonding Interactions and Anion⋅⋅⋅Anion Interactions Mediated by Hydrogen Bonds.

    PubMed

    González, Lidia; Zapata, Fabiola; Caballero, Antonio; Molina, Pedro; Ramírez de Arellano, Carmen; Alkorta, Ibon; Elguero, José

    2016-05-23

    Several bis-triazolium-based receptors have been synthesized and their anion-recognition capabilities have been studied. The central chiral 1,1'-bi-2-naphthol (BINOL) core features either two aryl or ferrocenyl end-capped side arms with central halogen- or hydrogen-bonding triazolium receptors. NMR spectroscopic data indicate the simultaneous occurrence of several charge-assisted aliphatic and heteroaromatic C-H noncovalent interactions and combinations of C-H hydrogen and halogen bonding. The receptors are able to selectively interact with HP2 O7 (3-) , H2 PO4 (-) , and SO4 (2-) anions, and the value of the association constant follows the sequence: HP2 O7 (3-) >SO4 (2-) >H2 PO4 (-) . The ferrocenyl end-capped 7(2+) ⋅2 BF4 (-) receptor allows recognition and differentiation of H2 PO4 (-) and HP2 O7 (3-) anions by using different channels: H2 PO4 (-) is selectively detected through absorption and emission methods and HP2 O7 (3-) by using electrochemical techniques. Significant structural results are the observation of an anion⋅⋅⋅anion interaction in the solid state (2:2 complex, 6(2+) ⋅[H2 P2 O7 ](2-) ), and a short C-I⋅⋅⋅O contact is observed in the structure of the complex [8(2+) ][SO4 ]0.5 [BF4 ]. PMID:27061729

  8. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  9. I. Developing methods for the analysis of chemistry students' inscriptions, II. Exploring the regioselectivity of 1,3-dipolar cycloadditions of munchnones, III. Stereochemical investigations of C-H activation reactions involving germylene and stannylene/aryl iodide reagents

    NASA Astrophysics Data System (ADS)

    Kiste, Alan L.

    I. Analyzing and comparing student-generated inscriptions in chemistry is crucial to gaining insight into students' understanding about chemistry concepts. Thus, we developed two methods of analyzing student-generated inscriptions: features analysis and thematic analysis. We have also demonstrated how these methods are able to discern differences between both how students inscribe their understandings and the content of those inscriptions, regardless of (1) how those inscriptions were created (i.e. computer vs. pencil-and-paper), (2) the nature of the inscriptions (verbal vs. pictorial), and (3) the expertise of the students. The ability to analyze inscriptions regardless of the medium allows the examination of multiple inscriptions in educational research applications as well as in the design and development of educational materials. Also, inscriptions can be compared across contexts, allowing the comparison of student-generated inscriptions derived from various educational interventions. Finally, the ability to compare inscriptions regardless of the level of expertise allows novice/expert comparisons as well as longitudinal comparison over time. II. Predicting the regiochemistry of 1,3-dipolar cycloadditions of munchnones and acetylenic dipolarophiles is difficult based on frontier molecular orbital theory (FMO) alone. We have proposed that, in addition to FMO considerations, steric factors influencing the non-covalent interactions between reactive centers in the transition state also influence the regioselectivity of these reactions. We have developed a scheme to use a tether-based regiocontrol strategy to synthesize 2,4-disubstituted pyrroles using N-(2-thiazolinyl) secondary amino acid derivatives. Attempts to synthesize these amino acid derivatives have been, so far, unsuccessful. III. To provide additional information about the mechanism of C-H activation reactions of stannylenes and germylenes, and to demonstrate the utility of these reactions, we explored

  10. Dehydrofluorination of Hydrofluorocarbons by Titanium Alkylidynes via Sequential C-H/C-F Bond Activation Reactions. A Synthetic, Structural, and Mechanistic Study of 1,2-CH Bond Addition and [beta]-Fluoride Elimination

    SciTech Connect

    Fout, A.R.; Scott, J.; Miller, D.L.; Bailey, B.C.; Pink, M.; Mindiola, D.J.

    2009-01-07

    The neopentylidene-neopentyl complex (PNP)Ti=CH{sup t}Bu(CH{sub 2}{sup t}Bu) (1); (PNP{sup -} = N[2-P(CHMe{sub 2}){sub 2}-4-methylphenyl]{sub 2}) extrudes neopentane in neat fluorobenzene under mild conditions (25 C) to generate the transient titanium alkylidyne (PNP)Ti-C{sup t}Bu (A), which subsequently undergoes regioselective 1,2-CH bond addition of a fluorobenzene across the Ti-C linkage to generate (PNP)Ti=CH{sup t}Bu(o-FC{sub 6}H{sub 4}) (2). Kinetic and mechanistic studies suggest that the C-H activation process is pseudo-first-order in titanium, with the {alpha}-hydrogen abstraction being the rate-determining step and the post-rate-determining step being the C-H bond activation of fluorobenzene. At 100 C complex 2 does not equilibrate back to A and the preference for C-H activation in benzene versus fluorobenzene is 2:3, respectively. Compound 1 also reacts readily, and in most cases cleanly, with a series of hydrofluoroarenes (HAr{sub F}), to form a family of alkylidene-arylfluoride derivatives of the type (PNP)Ti=CH{sup t}Bu(Ar{sub F}). Thermolysis of the latter compounds generates the titanium alkylidene-fluoride (PNP)Ti=CH{sup t}Bu(F) (14) by a {beta}-fluoride elimination, concurrent with formation of o-benzyne. {beta}-Fluoride elimination to yield 14 occurs from 2 under elevated temperatures with k{sub average} = 4.96(16) x 10{sup -5} s{sup -1} and with activation parameters {Delta}H{sub {-+}} = 29(1) kcal/mol and {Delta}S{sub {-+}} = -3(4) cal/mol {center_dot}K. It was found that {beta}-fluoride elimination is accelerated when electron-rich groups are adjacent to the fluoride group, thus implying that a positive charge buildup at the arylfluoride ring occurs in the activated complex of 2. The alkylidene derivative (PNP)Ti=CHSiMe{sub 3}(CH{sub 2}SiMe{sub 3}) (15) also undergoes {alpha}-hydrogen abstraction to form the putative (PNP)Ti'-CSiMe{sub 3} (B) at higher temperatures (>70 C) and dehydrofluorinates the same series of HArF when the reaction

  11. C-H activation versus yttrium-methyl cation formation from [Y(AlMe4)3] induced by cyclic polynitrogen bases: solvent and substituent-size effects.

    PubMed

    Bojer, Daniel; Venugopal, Ajay; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2011-05-23

    The reaction of 1,3,5-triisopropyl-1,3,5-triazacyclohexane (TiPTAC) with [Y(AlMe(4))(3)] resulted in the formation of [(TiPTAC)Y(Me(3)AlCH(2)AlMe(3))(μ-MeAlMe(3))] by C-H activation and methane extrusion. In contrast, the presence of bulkier cyclohexyl groups on the nitrogen atoms in 1,3,5-tricyclohexyl-1,3,5-triazacyclohexane (TCyTAC) led to the formation of the cationic dimethyl complex [(TCyTAC)(2)YMe(2)][AlMe(4)]. The investigations reveal a dependency of the reaction mechanism on the steric bulk of the N-alkyl entity and the solvent employed. In toluene C-H activation was observed in reactions of [Y(AlMe(4))(3)] with 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) and TiPTAC. In THF molecular dimethyl cations, such as [(TCyTAC)(2)YMe(2)][AlMe(4)], [(TMTAC)(2)YMe(2)][AlMe(4)] and [(TiPTAC)(2)YMe(2)][AlMe(4)], could be synthesised by addition of the triazacyclohexane at a later stage. The THF-solvated complex [YMe(2)(thf)(5)][AlMe(4)] could be isolated and represents an intermediate in these reactions. It shows that cationic methyl complexes of the rare-earth metals can be formed by donor-induced cleavage of the rare-earth-metal tetramethylaluminates. The compounds were characterised by single-crystal X-ray diffraction or multinuclear and variable-temperature NMR spectroscopy, as well as elemental analyses. Variable-temperature NMR spectroscopy illustrates the methyl group exchange processes between the cations and anions in solution. PMID:21503986

  12. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds.

    PubMed

    Kodera, Masahito; Ishiga, Shin; Tsuji, Tomokazu; Sakurai, Katsutoshi; Hitomi, Yutaka; Shiota, Yoshihito; Sajith, P K; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi

    2016-04-18

    Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is tolueneC-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 . PMID:26970337

  13. Sequential Regioselective C-H Functionalization of Thiophenes.

    PubMed

    Daniels, Matthew H; Armand, Jeremy R; Tan, Kian L

    2016-07-15

    Herein, the sequential functionalization of 5-membered ring heterocycles is disclosed. By employing a pH sensitive directing group both directed and nondirected C-H activation pathways are available, providing access to 2,3,4- and 2,4,5-substituted thiophenes. The C-H arylation was performed in water, and using a surfactant greatly improved the yield and mass recovery. The use of a directing group with an on/off switch offers a potentially powerful means of generating diversity around medicinally relevant cores. PMID:27388746

  14. FT-IR spectroscopy, intra-molecular C-H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Anoop Kumar; Jain, Sudha; Misra, Neeraj

    2015-02-01

    The present study deals with two natural products, triclisine and rufescine which are extracted from the Amazonian wines but ubiquitous in nature. The quantum chemical density functional method at B3PW91/6-311+G(d,p) level is used to obtain the equilibrium geometries of these molecules. The quantum theory of atoms-in-molecule approach is employed to study various intra-molecular C-H⋯O interactions within these molecules. We have also performed vibrational analyses of triclisine and rufescine at their equilibrium geometries and presented the complete assignments of the significant vibrational modes. The calculated vibrational frequencies are shown to be in perfect agreement with the experimentally observed FTIR spectra of molecules under study. In addition, the electronic properties of these molecules are also discussed with the help of HOMO-LUMO and MESP surfaces and a number of electronic as well as thermodynamic parameters are calculated which are closely related to their chemical reactivity and reaction paths. The biological activities of both molecules have also been predicted which highlight their pharmacological importance.

  15. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: a novel and magnetically retrievable catalyst for the synthesis of carbamates via C-H activation of formamides.

    PubMed

    Sharma, R K; Dutta, Sriparna; Sharma, Shivani

    2015-01-21

    In the present study, we report the synthesis of a highly efficient and magnetically retrievable catalytic system (Cu-2QC@Am-SiO2@Fe3O4) through the covalent immobilization of quinoline-2-carboxaldehyde (2QC) on an amine functionalized silica coated ferrite nanosupport followed by metallation with copper acetate. The structure of the organic-inorganic hybrid nanomaterial has been confirmed using various physicochemical techniques such as Powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDS), Energy Dispersive X-Ray Fluorescence Spectroscopy (ED-XRF), Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Spectroscopy (ICP) and Vibrating Sample Magnetometry (VSM). The resulting nanocatalyst exhibits a remarkable catalytic efficacy in the synthesis of industrially and pharmaceutically significant carbamates via the C-H activation of formamides under solvent free conditions. The most important attribute of the present methodology is that the catalyst can be recovered simply through an external magnetic force and reused several times without any significant deterioration in its activity. Furthermore, the heterogeneity test has been carried out in order to ensure the intrinsic stability of the nanostructured catalyst. The activity of the Cu-2QC@Am-SiO2@Fe3O4 nanocatalyst has been found to be far more superior in comparison with the literature precedents in terms of the product yield, cost and reusability of the catalyst. Besides, ambient reaction conditions, simple workup procedure, wide substrate scope and cost effectiveness are some of the other outstanding features of this protocol that make it economical and sustainable. PMID:25417959

  16. Stereoselective intermolecular C-H amination reactions.

    PubMed

    Lebel, Hélène; Trudel, Carl; Spitz, Cédric

    2012-08-14

    A novel chiral N-mesyloxycarbamate to perform rhodium-catalyzed stereoselective C-H amination reactions is reported. Chiral benzylic and propargylic amines are produced in good yields and selectivities using ethyl acetate as solvent. The corresponding free amines are easily obtained by cleavage of the chiral reagent, which could also be recovered. PMID:22751570

  17. Direct C-H Trifluoromethylation of Glycals by Photoredox Catalysis.

    PubMed

    Wang, Bang; Xiong, De-Cai; Ye, Xin-Shan

    2015-11-20

    A mild, efficient, and practical transformation for the direct C-H trifluoromethylation of glycals under visible light has been reported for the first time. This reaction employed fac-Ir(3+)(ppy)3 as the photocatalyst, Umemoto's reagent as the CF3 source, and a household blue LED or sunlight as the light source. Glycals bearing both electron-withdrawing and -donating protective groups performed this reaction smoothly. This visible light-mediated trifluoromethylation reaction was highlighted by the trifluoromethylation of the biologically important Neu2en moiety. PMID:26562610

  18. Evaluating Active U: an internet-mediated physical activity program

    PubMed Central

    Buis, Lorraine R; Poulton, Timothy A; Holleman, Robert G; Sen, Ananda; Resnick, Paul J; Goodrich, David E; Palma-Davis, LaVaughn; Richardson, Caroline R

    2009-01-01

    Background Engaging in regular physical activity can be challenging, particularly during the winter months. To promote physical activity at the University of Michigan during the winter months, an eight-week Internet-mediated program (Active U) was developed providing participants with an online physical activity log, goal setting, motivational emails, and optional team participation and competition. Methods This study is a program evaluation of Active U. Approximately 47,000 faculty, staff, and graduate students were invited to participate in the online Active U intervention in the winter of 2007. Participants were assigned a physical activity goal and were asked to record each physical activity episode into the activity log for eight weeks. Statistics for program reach, effectiveness, adoption, and implementation were calculated using the Re-Aim framework. Multilevel regression analyses were used to assess the decline in rates of data entry and goal attainment during the program, to assess the likelihood of joining a team by demographic characteristics, to test the association between various predictors and the number of weeks an individual met his or her goal, and to analyze server load. Results Overall, 7,483 individuals registered with the Active U website (≈16% of eligible), and 79% participated in the program by logging valid data at least once. Staff members, older participants, and those with a BMI < 25 were more likely to meet their weekly physical activity goals, and average rate of meeting goals was higher among participants who joined a competitive team compared to those who participated individually (IRR = 1.28, P < .001). Conclusion Internet-mediated physical activity interventions that focus on physical activity logging and goal setting while incorporating team competition may help a significant percentage of the target population maintain their physical activity during the winter months. PMID:19744311

  19. Pneumolysin Mediates Platelet Activation In Vitro.

    PubMed

    Nel, Jan Gert; Durandt, Chrisna; Mitchell, Timothy J; Feldman, Charles; Anderson, Ronald; Tintinger, Gregory R

    2016-08-01

    This study has explored the role of the pneumococcal toxin, pneumolysin (Ply), in activating human platelets. Following exposure to Ply (10-80 ng/ml), platelet activation and cytosolic Ca(2+) concentrations were measured flow cytometrically according to the level of expression of CD62P (P-selectin) and spectrofluorimetrically, respectively. Exposure to Ply resulted in marked upregulation of expression of platelet CD62P, achieving statistical significance at concentrations of 40 ng/ml and higher (P < 0.05), in the setting of increased influx of Ca(2+). These potentially pro-thrombotic actions of Ply were attenuated by depletion of Ca(2+) from the extracellular medium or by exposure of the cells to a pneumolysoid devoid of pore-forming activity. These findings are consistent with a mechanism of Ply-mediated platelet activation involving sub-lytic pore formation, Ca(2+) influx, and mobilization of CD62P-expressing α-granules, which, if operative in vivo, may contribute to the pathogenesis of associated acute lung and myocardial injury during invasive pneumococcal disease. PMID:27192991

  20. Comparative study of properties between a-GeC:H and a-SiC:H films prepared by radio-frequency reactive sputtering in methane

    NASA Astrophysics Data System (ADS)

    Saito, N.; Yamaguchi, T.; Nakaaki, I.

    1995-09-01

    Hydrogenated amorphous germanium-carbon (a-GeC:H) and silicon-carbon (a-SiC:H) films were deposited by reactive magnetron sputtering of Ge and Si targets in a methane argon gas mixture. The effect of rf power on the structural, optical, and electrical properties of the films was investigated. The carbon content in a-SiC:H films is larger than in a-GeC:H for the same deposition condition, and it decreases with increasing rf power. The intensity of the carbon-related bonds, the optical band gap, and the activation energy of dc conductivity of both films decreases with decreasing carbon content. The temperature dependence of dc conductivity of a-SiC:H exhibits activated-type conduction, whereas hopping conduction is predominant in a-GeC:H. Hydrogen concentration and H bonding ratio are examined, indicating that the termination of the dangling bond by hydrogen is more effective in a a-SiC:H films than a-GeC:H films.

  1. Palladium/copper-catalyzed oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines.

    PubMed

    Shi, Renyi; Lu, Lijun; Zhang, Hua; Chen, Borui; Sha, Yuchen; Liu, Chao; Lei, Aiwen

    2013-09-27

    C-H/C-N activation: The first palladium/copper-catalyzed aerobic oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines has been developed. Various functional groups were tolerated and acrylic ester could also be suitable substrates. This transformation provided efficient and straightforward synthesis of biologically active 3-methyleneindolin-2-one derivatives from cheap and simple substrates. PMID:23946242

  2. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-01

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts. PMID:27518766

  3. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-01

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant. PMID:27391543

  4. Copper catalyzed N-arylation of amidines with aryl boronic acids and one-pot synthesis of benzimidazoles by a Chan-Lam-Evans N-arylation and C-H activation/C-N bond forming process.

    PubMed

    Li, Jihui; Bénard, Sébastien; Neuville, Luc; Zhu, Jieping

    2012-12-01

    Mono-N-arylation of benzamidines 1 with aryl boronic acids 2 was effectively achieved in the presence of a catalytic amount of Cu(OAc)(2) and NaOPiv under mild aerobic conditions. Combining this step with an intramolecular direct C-H bond functionalization, catalyzed by the same catalytic system but under oxygen at 120 °C, afforded benzimidazoles 3 in good to excellent yields. PMID:23151245

  5. Reversible conversion of valence-tautomeric copper metal-organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: a redox-switchable catalyst for C-H bonds activation reaction.

    PubMed

    Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting

    2015-06-28

    Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds. PMID:25994106

  6. Trifluoromethylallylation of Heterocyclic C-H Bonds with Allylic Carbonates under Rhodium Catalysis.

    PubMed

    Choi, Miji; Park, Jihye; Sharma, Satyasheel; Jo, Hyeim; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Han, Sang Hoon; Lee, Jong Suk; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed γ-trifluoromethylallylation of various heterocyclic C-H bonds with CF3-substituted allylic carbonates is described. These reactions provide direct access to linear CF3-containing allyl frameworks with complete trans-selectivity via C-H bond activation followed by a formal SN-type reaction pathway. PMID:27187625

  7. Ruthenium-Catalyzed C-H Alkynylation of Aromatic Amides with Hypervalent Iodine-Alkyne Reagents.

    PubMed

    Boobalan, Ramadoss; Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2016-07-15

    An efficient C-H activation method for the ortho alkynylation of aromatic N-methoxyamides with hypervalent iodine-alkyne reagent using a ruthenium catalyst is described. The reaction proceeds under mild reaction conditions with broad substrate scope. A possible catalytic cycle involving a ruthenium carboxylate assisted C-H bond cleavage is proposed from the preliminary mechanistic evidence. PMID:27357724

  8. LRE Project Exchange. Ideas from Project P.A.T.C.H.

    ERIC Educational Resources Information Center

    Nessel, Paula A.

    1997-01-01

    Profiles "Civil Law Mini-Trials," an instructional activity developed by P.A.T.C.H. (Participatory Awareness Through Community Help). The Mini-Trials allow students to participate in mock civil cases including preparation, presentation of arguments, debriefing afterwards, and a discussion of the real case verdict. Discusses other P.A.T.C.H.…

  9. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis

    PubMed Central

    Cha, Mee-Kyung; Bae, Yoo-Jeen; Kim, Kyu-Jeong; Park, Byung-Joon; Kim, Il-Han

    2015-01-01

    AIM: To identify alkyl hydroperoxide reductase subunit C (AhpC) homologs in Bacillus subtilis (B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria. METHODS: Two AhpC homologs (AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues (C37S, C47S, C166S, C37/47S, C37/166S, C47/166S, and C37/47/166S for AhpC_H1; C52S, C169S, and C52/169S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahpC genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined. RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis

  10. Approximate thermochemical tables for some C-H and C-H-O species

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1973-01-01

    Approximate thermochemical tables are presented for some C-H and C-H-O species and for some ionized species, supplementing the JANAF Thermochemical Tables for application to finite-chemical-kinetics calculations. The approximate tables were prepared by interpolation and extrapolation of limited available data, especially by interpolations over chemical families of species. Original estimations have been smoothed by use of a modification for the CDC-6600 computer of the Lewis Research Center PACl Program which was originally prepared for the IBM-7094 computer Summary graphs for various families show reasonably consistent curvefit values, anchored by properties of existing species in the JANAF tables.

  11. Mediators of change following a senior school physical activity intervention.

    PubMed

    Lubans, David R; Sylva, Kathy

    2009-01-01

    It has been suggested that the low level of effectiveness of youth interventions is due to a lack of knowledge regarding the mechanisms responsible for behaviour change. The identification of behaviour mediators is necessary for the progression of physical activity research, as it allows researchers to determine which components of an intervention are responsible for mediating behaviour change. The purpose of this study was to identify mediators of behaviour change in a physical activity intervention for senior school students. Participants (n=78) were randomly allocated to control or intervention conditions for a period of 10 weeks. Moderate-to-vigorous physical activity (MVPA) and potential mediators were assessed at baseline and post-intervention (10 weeks). Hypothesized mediators were derived from Bandura's Social Cognitive Theory and included: peer support, exercise self-efficacy and outcome expectancy. Mediation was assessed using the product-of-coefficients test described by MacKinnon and colleagues, based on the criteria for mediation identified by Baron and Kenny. While none of the variables satisfied all four criteria for mediation among males or females, self-efficacy was able to satisfy the first three criteria among females in the study. Exercise self-efficacy may be a mediator of physical activity behaviour in adolescent girls. PMID:18069061

  12. Mediator protein mutations that selectively abolish activated transcription.

    PubMed

    Myers, L C; Gustafsson, C M; Hayashibara, K C; Brown, P O; Kornberg, R D

    1999-01-01

    Deletion of any one of three subunits of the yeast Mediator of transcriptional regulation, Med2, Pgd1 (Hrs1), and Sin4, abolished activation by Gal4-VP16 in vitro. By contrast, other Mediator functions, stimulation of basal transcription and of TFIIH kinase activity, were unaffected. A different but overlapping Mediator subunit dependence was found for activation by Gcn4. The genetic requirements for activation in vivo were closely coincident with those in vitro. A whole genome expression profile of a Deltamed2 strain showed diminished transcription of a subset of inducible genes but only minor effects on "basal" transcription. These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator. PMID:9874773

  13. Arene-metal π-complexation as a traceless reactivity enhancer for C-H arylation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Cambeiro, Xacobe C; Larrosa, Igor

    2013-09-11

    Current approaches to facilitate C-H arylation of arenes involve the use of either strongly electron-withdrawing substituents or directing groups. Both approaches require structural modification of the arene, limiting their generality. We present a new approach where C-H arylation is made possible without altering the connectivity of the arene via π-complexation of a Cr(CO)3 unit, greatly enhancing the reactivity of the aromatic C-H bonds. We apply this approach to monofluorobenzenes, highly unreactive arenes, which upon complexation become nearly as reactive as pentafluorobenzene itself in their couplings with iodoarenes. DFT calculations indicate that C-H activation via a concerted metalation-deprotonation transition state is facilitated by the predisposition of C-H bonds in (Ar-H)Cr(CO)3 to bend out of the aromatic plane. PMID:23962336

  14. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    PubMed

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle. PMID:27177448

  15. A General Strategy for the Nickel-Catalyzed C-H Alkylation of Anilines.

    PubMed

    Ruan, Zhixiong; Lackner, Sebastian; Ackermann, Lutz

    2016-02-24

    The C-H alkylation of aniline derivatives with both primary and secondary alkyl halides was achieved with a versatile nickel catalyst of a vicinal diamine ligand. Step-economic access to functionalized 2-pyrimidyl anilines, key structural motifs in anticancer drugs, is thus provided. The C-H functionalization proceeded through facile C-H activation and SET-type C-X bond cleavage with the assistance of a monodentate directing group, which could be removed in a traceless fashion. PMID:26822673

  16. Neuroprotective Activity of (-)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity.

    PubMed

    Liu, Jin-Biao; Zhou, Li; Wang, Yi-Zhong; Wang, Xu; Zhou, Yu; Ho, Wen-Zhe; Li, Jie-Liang

    2016-01-01

    Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders. PMID:27191001

  17. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  18. A cooperative Pd-Cu system for direct C-H bond arylation.

    PubMed

    Lesieur, Mathieu; Lazreg, Faïma; Cazin, Catherine S J

    2014-08-18

    A novel and efficient method for C-H arylation using well-defined Pd- and Cu-NHC systems has been developed. This process promotes the challenging construction of C-C bonds from arenes or heteroarenes using aryl bromides and chlorides. Mechanistic studies show that [Cu(OH)(NHC)] plays a key role in the C-H activation and is involved in the transmetallation with the Pd-NHC co-catalyst. PMID:24976025

  19. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  20. Ligand-Promoted Meta-C-H Arylation of Anilines, Phenols, and Heterocycles.

    PubMed

    Wang, Peng; Farmer, Marcus E; Huo, Xing; Jain, Pankaj; Shen, Peng-Xiang; Ishoey, Mette; Bradner, James E; Wisniewski, Steven R; Eastgate, Martin D; Yu, Jin-Quan

    2016-07-27

    Here we report the development of a versatile 3-acetylamino-2-hydroxypyridine class of ligands that promote meta-C-H arylation of anilines, heterocyclic aromatic amines, phenols, and 2-benzyl heterocycles using norbornene as a transient mediator. More than 120 examples are presented, demonstrating this ligand scaffold enables a wide substrate and coupling partner scope. Meta-C-H arylation with heterocyclic aryl iodides as coupling partners is also realized for the first time using this ligand. The utility for this transformation for drug discovery is showcased by allowing the meta-C-H arylation of a lenalidomide derivative. The first steps toward a silver-free protocol for this reaction are also demonstrated. PMID:27384126

  1. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. PMID:27033597

  2. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power. PMID:21614341

  3. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  4. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  5. Aerobic Linear Allylic C-H Amination: Overcoming Benzoquinone Inhibition.

    PubMed

    Pattillo, Christopher C; Strambeanu, Iulia I; Calleja, Pilar; Vermeulen, Nicolaas A; Mizuno, Tomokazu; White, M Christina

    2016-02-01

    An efficient aerobic linear allylic C-H amination reaction is reported under palladium(II)/bis-sulfoxide/Brønsted base catalysis. The reaction operates under preparative, operationally simple conditions (1 equiv of olefin, 1 atm O2 or air) with reduced Pd(II)/bis-sulfoxide catalyst loadings while providing higher turnovers and product yields than systems employing stoichiometric benzoquinone (BQ) as the terminal oxidant. Pd(II)/BQ π-acidic interactions have been invoked in various catalytic processes and are often considered beneficial in promoting reductive functionalizations. When such electrophilic activation for functionalization is not needed, however, BQ at high concentrations may compete with crucial ligand (bis-sulfoxide) binding and inhibit catalysis. Kinetic studies reveal an inverse relationship between the reaction rate and the concentration of BQ, suggesting that BQ is acting as a ligand for Pd(II) which results in an inhibitory effect on catalysis. PMID:26730458

  6. C-H Coupling Reactions Directed by Sulfoxides: Teaching an Old Functional Group New Tricks.

    PubMed

    Pulis, Alexander P; Procter, David J

    2016-08-16

    Sulfoxides are classical functional groups for directing the stoichiometric metalation and functionalization of C-H bonds. In recent times, sulfoxides have been given a new lease on life owing to the development of modern synthetic methods that have arisen because of their unique reactivity. They have recently been used in catalytic C-H activation proceeding via coordination of an internal sulfoxide to a metal or through the action of an external sulfoxide ligand. Furthermore, sulfoxides are able to capture nucleophiles and electrophiles to give sulfonium salts, which subsequently enable the formation of C-C bonds at the expense of C-H bonds. This Review summarizes a renaissance period in the application of sulfoxides arising from their versatility in directing C-H functionalization. PMID:27409984

  7. Trends in applying C-H oxidation to the total synthesis of natural products.

    PubMed

    Qiu, Yuanyou; Gao, Shuanhu

    2016-04-30

    Covering: 2006 to 2015C-H functionalization remains one of the frontier challenges in organic chemistry and drives quite an active area of research. It has recently been applied in various novel strategies for the synthesis of natural products. It can dramatically increase synthetic efficiency when incorporated into retrosynthetic analyses of complex natural products, making it an essential part of current trends in organic synthesis. In this Review, we focus on selected case studies of recent applications of C-H oxidation methodologies in which the C-H bond has been exploited effectively to construct C-O and C-N bonds in natural product syntheses. Examples of syntheses representing different types of C-H oxidation are discussed to illustrate the potential of this approach and inspire future applications. PMID:26847167

  8. Pushing the limits of catalytic C-H amination in polyoxygenated cyclobutanes.

    PubMed

    Nocquet, Pierre-Antoine; Hensienne, Raphaël; Wencel-Delord, Joanna; Laigre, Eugénie; Sidelarbi, Khadidja; Becq, Frédéric; Norez, Caroline; Hazelard, Damien; Compain, Philippe

    2016-03-01

    A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis. PMID:26860404

  9. Weak O-Assistance Outcompeting Strong N,N-Bidentate Directing Groups in Copper-Catalyzed C-H Chalcogenation.

    PubMed

    Cera, Gianpiero; Ackermann, Lutz

    2016-06-13

    A copper-mediated C-H chalcogenation of triazoles has been achieved by weak coordination. The user-friendly protocol showed high functional-group tolerance and ample substrate scope, yielding fully substituted 1,2,3-triazoles with complete positional site-selectivity. The C-H selenylation could likewise be achieved by means of copper catalysis. Our findings highlight for the first time that weak O-coordination can outcompete the strong N,N-bidentate coordination mode in C-H functionalization technology. PMID:27124082

  10. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect

    Liu, Wei; Groves, John T.

    2010-08-31

    We report a manganese porphyrin mediated aliphatic C-H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C-H bonds, such as neopentane (BDE =~100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5α-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the MnIII porphyrin is expected to afford a reactive MnV=O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a MnIV—OH complex. We suggest that this carbon radical then reacts with a MnIV—OCl species, providing the alkyl chloride and regenerating the reactive MnV=O complex. The regioselectivity and the preference for CH2 groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mnv=O---H---C] geometry due to the C—H approach to the Mn

  11. Metal-Free sp(2)-C-H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes.

    PubMed

    Chernichenko, Konstantin; Lindqvist, Markus; Kótai, Bianka; Nieger, Martin; Sorochkina, Kristina; Pápai, Imre; Repo, Timo

    2016-04-13

    C-H borylation is a powerful and atom-efficient method for converting affordable and abundant chemicals into versatile organic reagents used in the production of fine chemicals and functional materials. Herein we report a facile C-H borylation of aromatic and olefinic C-H bonds with 2-aminophenylboranes. Computational and experimental studies reveal that the metal-free C-H insertion proceeds via a frustrated Lewis pair mechanism involving heterolytic splitting of the C-H bond by cooperative action of the amine and boryl groups. The adapted geometry of the reactive B and N centers results in an unprecedentently low kinetic barrier for both insertion into the sp(2)-C-H bond and intramolecular protonation of the sp(2)-C-B bond in 2-ammoniophenyl(aryl)- or -(alkenyl)borates. This common reactivity pattern serves as a platform for various catalytic reactions such as C-H borylation and hydrogenation of alkynes. In particular, we demonstrate that simple 2-aminopyridinium salts efficiently catalyze the C-H borylation of hetarenes with catecholborane. This reaction is presumably mediated by a borenium species isoelectronic to 2-aminophenylboranes. PMID:27003334

  12. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand.

    PubMed

    Zheng, Dehua; Wang, Mei; Wang, Ning; Cheng, Minglun; Sun, Licheng

    2016-01-19

    A series of pendant amine-containing [FeFe]-hydrogenase models, [X(CH2S-μ)2{Fe(CO)3}{Fe(CO)(P2(Ph)N2(Bn))}] (1H, X = CH2; 2Me, C(CH3)2; 3Et, C(CH2CH3)2; and P2(Ph)N2(Bn) = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) with different groups at the bridgehead carbon of the S-to-S linker were synthesized. The oxidations of these complexes as well as the reverse reduction reaction were studied by cyclic voltammetry and in situ IR spectroscopy. Regardless of the bridgehead steric bulk, all three complexes demonstrate intramolecular iron-mediated C(sp(3))-H bond heterolytic cleavage with the assistance of the pendant amine base within the chelating diphosphine ligand in the two-electron oxidation process. X-ray crystallographic analysis shows that the doubly oxidized products, [1'H](+), [2'Me](+), and [3'Et](+), all have a rigid FeSC three-membered ring at the open apical site of the rotated iron center. The most noticeable difference in structures of the oxidized complexes is that the single CO ligand of the rotated Fe(P2(Ph)N2(Bn))(CO) unit in [1'H](+) and [2'Me](+) is found below the Fe···Fe vector, while in [3'Et](+) an unusually rotated Fe(P2(Ph)N2(Bn))(CO) moiety positions one of the P donors within the bidentate ligand under the Fe···Fe vector. The starting Fe(I)Fe(I) complexes can be recovered from their corresponding doubly oxidized complexes by reduction in the presence of Brönsted acid. PMID:26230977

  13. C-H Bond Activation of Methane by PtII-N-Heterocyclic Carbene Complexes. The Importance of Having the Ligands in the Right Place at the Right Time

    SciTech Connect

    Prince, Bruce M.; Cundari, Thomas R

    2012-02-13

    A DFT study of methane C–H activation barriers for neutral NHC–PtII–methoxy complexes yielded 22.8 and 26.1 kcal/mol for oxidative addition (OA) and oxidative hydrogen migration (OHM), respectively. Interestingly, this is unlike the case for cationic NHC–PtII–methoxy complexes, whereby OHM entails a calculated barrier of 26.9 kcal/mol but the OA barrier is only 14.4 kcal/mol. Comparing transition state (TS) and ground state (GS) geometries implies an ~10 kcal/mol “penalty” to the barriers arising from positioning the NHC and OMe ligands into a relative orientation that is preferred in the GS to the orientation that is favored in the TS. The results thus imply an intrinsic barrier arising from C–H scission of ~15 ± 2 kcal/mol for NHC–PtII–methoxy complexes. Calculations show the importance of designing C–H activation catalysts where the GS active species is already structurally “prepared” and which either does not need to undergo any geometric perturbations to access the methane C–H activation TS or is not energetically prohibited from such perturbations.

  14. The role of structural C--H compared with phenolic OH sites on the antioxidant activity of oleuropein and its derivatives as a great non-flavonoid family of the olive components: a DFT study.

    PubMed

    Hassanzadeh, Keyumars; Akhtari, Keivan; Hassanzadeh, Halaleh; Zarei, Seyed Amir; Fakhraei, Nahid; Hassanzadeh, Katayoun

    2014-12-01

    Oleuropein and its derivatives are the main phenolic compounds of Olea europaea L. leaf and fruit. The structure-antioxidant activity relationship was considered for studying the radical scavenging activity of this non-flavonoid family of the olive components using density functional theory (DFT). The structure of these compounds were optimized employing the B3LYP/6-31G (d,p) and the role of some structural CH positions was compared with phenolic OH sites on radical scavenging. As a result, a radical unique position (C3) in the oleuropein, characterized by low BDE (Bond Dissociation Enthalpy), reasonable spin density and electron distribution, was identified. The experimental results of the previous publications of oleuropein for NO and OH scavenging confirmed the presence of this unique active site in its molecular structure. According to the results, 2,2-diphenylpicrylhydrazyl (DPPH) cannot find this non-marginal active site. Therefore, DPPH may not be a determinant assay for all antioxidant comparisons. Solvent effects were considered in all calculations using a Polarized Continuum Model (PCM) at the B3LYP/6-31G (d,p) level. Solvation calculations were carried out for benzene (ε=2.3) to simulate the oil environment compared to gas phase. PMID:24996331

  15. Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C-H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces.

    PubMed

    Mai, Binh Khanh; Kim, Yongho

    2016-04-18

    Taurine:α-ketoglutarate dioxygenase (TauD) is one of the most important enzymes in the α-ketoglutarate dioxygenase family, which are involved in many important biochemical processes. TauD converts taurine into amino acetaldehyde and sulfite at its nonheme iron center, and a large H/D kinetic isotope effect (KIE) has been found in the hydrogen atom transfer (HAT) of taurine suggesting a large tunneling effect. Recently, highly electrophilic Fe(III)-oxyl radicals have been proposed as a key species for HAT in the catalytic mechanism of C–H activation, which might be prepared prior to the actual HAT. In order to investigate this hypothesis and large tunneling effect, DFT potential energy surfaces along the intrinsic reaction path were generated. The predicted rate constants and H/D KIEs using variational transition-state theory including multidimensional tunneling, based on these potential surfaces, have excellent agreement with experimental data. This study revealed that the reactive processes of C–H activation consisted of two distinguishable parts: (1) the substrate approaching the Fe(IV)-oxo center without C–H bond cleavage, which triggers the catalytic process by inducing metal-to-ligand charge transfer to form the Fe(III)-oxyl species, and (2) the actual HAT from the substrate to the Fe(III)-oxyl species. Most of the activation energy was used in the first part, and the actual HAT required only a small amount of energy to overcome the TS with a very large tunneling effect. The donor–acceptor interaction between σC–H and σ*Fe–O orbitals reduced the activation energy significantly to make C–H activation feasible. PMID:27031914

  16. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-01

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms. PMID:24437566

  17. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity. PMID:24990186

  18. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  19. TRPV3 channels mediate strontium-induced mouse egg activation

    PubMed Central

    Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A.; Clapham, David E.

    2014-01-01

    SUMMARY In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a Transient Receptor Potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, as TrpV3−/− eggs failed to permeate Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is the major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078

  20. A Simple and Versatile Amide Directing Group for C-H Functionalizations.

    PubMed

    Zhu, Ru-Yi; Farmer, Marcus E; Chen, Yan-Qiao; Yu, Jin-Quan

    2016-08-26

    Achieving selective C-H activation at a single and strategic site in the presence of multiple C-H bonds can provide a powerful and generally useful retrosynthetic disconnection. In this context, a directing group serves as a compass to guide the transition metal to C-H bonds by using distance and geometry as powerful recognition parameters to distinguish between proximal and distal C-H bonds. However, the installation and removal of directing groups is a practical drawback. To improve the utility of this approach, one can seek solutions in three directions: 1) Simplifying the directing group, 2) using common functional groups or protecting groups as directing groups, and 3) attaching the directing group to substrates via a transient covalent bond to render the directing group catalytic. This Review describes the rational development of an extremely simple and yet broadly applicable directing group for Pd(II) , Rh(III) , and Ru(II) catalysts, namely the N-methoxy amide (CONHOMe) moiety. Through collective efforts in the community, a wide range of C-H activation transformations using this type of simple directing group have been developed. PMID:27479708

  1. Copper-catalyzed etherification of arene C-H bonds.

    PubMed

    Roane, James; Daugulis, Olafs

    2013-11-15

    A method for direct, auxiliary-assisted alkoxylation and phenoxylation of β-sp(2) C-H bonds of benzoic acid derivatives and γ-sp(2) C-H bonds of amine derivatives is reported. The reaction employs (CuOH)2CO3 catalyst, air as an oxidant, phenol or alcohol coupling partner, DMF, pyridine, or DMPU solvent, and K2CO3, tetramethylguanidine, or K3PO4 base at 70-130 °C. PMID:24180517

  2. Heterocycle Synthesis via Direct C-H/N-H Coupling

    PubMed Central

    Nadres, Enrico T.; Daugulis, Olafs

    2012-01-01

    A method for five- and six-membered heterocycle formation by palladium-catalyzed C-H/N-H coupling is presented. The method employs a picolinamide directing group, PhI(OAc)2 oxidant, and toluene solvent at 80–120 °C. Cyclization is effective for sp2 as well as aliphatic and benzylic sp3 C-H bonds. PMID:22206416

  3. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  4. Inhibition of telomerase activity enhances hyperthermia-mediated radiosensitization.

    PubMed

    Agarwal, Manjula; Pandita, Shruti; Hunt, Clayton R; Gupta, Arun; Yue, Xuan; Khan, Saira; Pandita, Raj K; Pratt, David; Shay, Jerry W; Taylor, John-Stephen A; Pandita, Tej K

    2008-05-01

    Hyperthermia is a potent sensitizer of cell killing by ionizing radiation (IR); however, hyperthermia also induces heat shock protein 70 (HSP70) synthesis and HSP70 expression is associated with radioresistance. Because HSP70 interacts with the telomerase complex and expression of the telomerase catalytic unit (hTERT) extends the life span of the human cells, we determined if heat shock influences telomerase activity and whether telomerase inhibition enhances heat-mediated IR-induced cell killing. In the present study, we show that moderate hyperthermia (43 degrees C) enhances telomerase activity. Inhibition of telomerase activity with human telomerase RNA-targeted antisense agents, and in particular GRN163L, results in enhanced hyperthermia-mediated IR-induced cell killing, and ectopic expression of catalytic unit of telomerase (TERT) decreased hyperthermia-mediated IR-induced cell killing. The increased cell killing by heat and IR exposure in telomerase-inhibited cells correlates with delayed appearance and disappearance of gamma-H2AX foci as well as decreased chromosome repair. These results suggest that inactivation of telomerase before combined hyperthermia and radiotherapy could improve tumor killing. PMID:18451164

  5. Odorant receptor-mediated sperm activation in disease vector mosquitoes

    PubMed Central

    Pitts, R. Jason; Liu, Chao; Zhou, Xiaofan; Malpartida, Juan C.; Zwiebel, Laurence J.

    2014-01-01

    Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution. PMID:24550284

  6. PKG-1α mediates GATA4 transcriptional activity.

    PubMed

    Ma, Yanlin; Wang, Jun; Yu, Yanhong; Schwartz, Robert J

    2016-06-01

    GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease. PMID:26946174

  7. Activation of Notch-Mediated Protective Signaling in the Myocardium

    PubMed Central

    Gude, Natalie A.; Emmanuel, Gregory; Wu, Weitao; Cottage, Christopher T.; Fischer, Kimberlee; Quijada, Pearl; Muraski, John A.; Alvarez, Roberto; Rubio, Marta; Schaefer, Eric; Sussman, Mark A.

    2013-01-01

    The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury. PMID:18369158

  8. Emerging activity in bilayered dispersions with wake-mediated interactions

    NASA Astrophysics Data System (ADS)

    Bartnick, Jörg; Kaiser, Andreas; Löwen, Hartmut; Ivlev, Alexei V.

    2016-06-01

    In a bilayered system of particles with wake-mediated interactions, the action-reaction symmetry for the effective forces between particles of different layers is broken. Under quite general conditions we show that, if the interaction nonreciprocity exceeds a certain threshold, this creates an active dispersion of self-propelled clusters of Brownian particles. The emerging activity promotes unusual melting scenarios and an enormous diffusivity in the dense fluid. Our results are obtained by computer simulation and analytical theory and can be verified in experiments with colloidal dispersions and complex plasmas.

  9. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds.

    PubMed

    Tian, Hua; Yang, Haijun; Zhu, Changjin; Fu, Hua

    2016-01-01

    Cross-dehydrogenative couplings of two different C-H bonds have emerged as an attractive goal in organic synthesis. However, achieving regioselective C-H activation is a great challenge because C-H bonds are ubiquitous in organic compounds. Actually, the regioselective couplings promoted by enzymes are a common occurrence in nature. Herein, we have developed simple, efficient and general transition metal-free intramolecular couplings of alphatic and aromatic C-H bonds. The protocol uses readily available aryl triazene as the radical initiator, cheap K2S2O8 as the oxidant, and the couplings were performed well with excellent tolerance of functional groups. Interestingly, α-carbon configuration of some amino acid residues in the substrates was kept after the reactions, and the couplings for substrates with substituted phenylalanine residues exhibited complete β-carbon diastereoselectivity for induction of the chiral α-carbon. Therefore, the present study should provide a novel strategy for regioselective cross-dehydrogenative couplings of two different C-H bonds. PMID:26822836

  10. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds

    PubMed Central

    Tian, Hua; Yang, Haijun; Zhu, Changjin; Fu, Hua

    2016-01-01

    Cross-dehydrogenative couplings of two different C-H bonds have emerged as an attractive goal in organic synthesis. However, achieving regioselective C-H activation is a great challenge because C-H bonds are ubiquitous in organic compounds. Actually, the regioselective couplings promoted by enzymes are a common occurrence in nature. Herein, we have developed simple, efficient and general transition metal-free intramolecular couplings of alphatic and aromatic C-H bonds. The protocol uses readily available aryl triazene as the radical initiator, cheap K2S2O8 as the oxidant, and the couplings were performed well with excellent tolerance of functional groups. Interestingly, α-carbon configuration of some amino acid residues in the substrates was kept after the reactions, and the couplings for substrates with substituted phenylalanine residues exhibited complete β-carbon diastereoselectivity for induction of the chiral α-carbon. Therefore, the present study should provide a novel strategy for regioselective cross-dehydrogenative couplings of two different C-H bonds. PMID:26822836

  11. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-01

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules. PMID:27529646

  12. Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights.

    PubMed

    Wendlandt, Alison E; Suess, Alison M; Stahl, Shannon S

    2011-11-18

    The selective oxidation of C-H bonds and the use of O(2) as a stoichiometric oxidant represent two prominent challenges in organic chemistry. Copper(II) is a versatile oxidant, capable of promoting a wide range of oxidative coupling reactions initiated by single-electron transfer (SET) from electron-rich organic molecules. Many of these reactions can be rendered catalytic in Cu by employing molecular oxygen as a stoichiometric oxidant to regenerate the active copper(II) catalyst. Meanwhile, numerous other recently reported Cu-catalyzed C-H oxidation reactions feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II). In some of these cases, evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism. Organometallic C-H oxidation reactions of this type represent important new opportunities for the field of Cu-catalyzed aerobic oxidations. PMID:22034061

  13. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  14. High-Turnover Aromatic C-H Borylation Catalyzed by POCOP-Type Pincer Complexes of Iridium.

    PubMed

    Press, Loren P; Kosanovich, Alex J; McCulloch, Billy J; Ozerov, Oleg V

    2016-08-01

    The catalytic C-H borylation of arenes with HBpin (pin = pinacolate) using POCOP-type pincer complexes of Ir has been demonstrated, with turnover numbers exceeding 10 000 in some cases. The selectivity of C-H activation was based on steric preferences and largely mirrored that found in other Ir borylation catalysts. Catalysis in the (POCOP)Ir system depends on the presence of stoichiometric quantities of sacrificial olefin, which is hydrogenated to consume the H2 equivalents generated in the borylation of C-H bonds with HBpin. Smaller olefins such as ethylene or 1-hexene were more advantageous to catalysis than sterically encumbered tert-butylethylene (TBE). Olefin hydroboration is a competing side reaction. The synthesis and isolation of multiple complexes potentially relevant to catalysis permitted examination of several key elementary reactions. These experiments indicate that the C-H activation step in catalysis ostensibly involves oxidative addition of an aromatic C-H bond to the three-coordinate (POCOP)Ir species. The olefin is mechanistically critical to gain access to this 14-electron, monovalent Ir intermediate. C-H activation at Ir(I) here is in contrast to the olefin-free catalysis with state-of-the-art Ir complexes supported by neutral bidentate ligands, where the C-H activating step is understood to involve trivalent Ir-boryl intermediates. PMID:27327895

  15. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect

    Ho, Hung-An

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  16. Allylic and benzylic sp3 C-H oxidation in water.

    PubMed

    Ang, Wei Jie; Lam, Yulin

    2015-01-28

    A copper-catalyzed method for the oxidation of allylic and benzylic sp(3) C-H by aqueous tert-butyl hydroperoxide (T-Hydro) in water using a recyclable fluorous ligand has been developed. The reaction procedure is tolerant to additional functional groups and the fluorous ligand could be reused with little loss of catalytic activity. PMID:25412371

  17. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact. PMID:27096371

  18. Catalytic C-H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis.

    PubMed

    Reay, Alan J; Fairlamb, Ian J S

    2015-11-25

    This feature article examines the potential of heterogeneous Pd species to mediate catalytic C-H bond functionalisation processes employing suitable substrates (e.g. aromatic/heteroaromatic compounds). A focus is placed on the reactivity of supported and non-supported Pd nanoparticle (PdNPs) catalysts, in addition to the re-appropriation of well-established heterogeneous Pd catalysts such as Pd/C. Where possible, reasonable comparisons are made between PdNPs and traditional 'homogeneous' Pd precatalyst sources (which form PdNPs). The involvement of higher order Pd species in traditional cross-coupling processes, such as Mizoroki-Heck, Sonogashira and Suzuki-Miyaura reactions, allows the exemplification of potential future topics for study in the area of catalytic C-H bond functionalisation processes. PMID:26439875

  19. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  20. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G....

  1. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart...

  2. Elaboration of Copper-Oxygen Mediated C–H Activation Chemistry in Consideration of Future Fuel and Feedstock Generation

    PubMed Central

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-01-01

    To contribute solutions for current energy concerns, improvements in the efficiency of C-H bond cleavage chemistry, e.g., selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. PMID:25756327

  3. Physical activity as a mediator of the relationship between active commuting to school and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active commuting to school (ACS) has been associated with more moderate-to vigorous physical activity (MVPA) and decreased adiposity among youth. However, no studies have examined if MVPA mediates the relationship between ACS and adiposity. We hypothesized that ACS would be inversely associated with...

  4. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    PubMed

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  5. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.

    PubMed

    Hartwig, John F

    2012-06-19

    Methods that functionalize C-H bonds can lead to new approaches for the synthesis of organic molecules, but to achieve this goal, researchers must develop site-selective reactions that override the inherent reactivity of the substrates. Moreover, reactions are needed that occur with high turnover numbers and with high tolerance for functional groups if the C-H bond functionalization is to be applied to the synthesis of medicines or materials. This Account describes the discovery and development of the C-H bond functionalization of aliphatic and aromatic C-H bonds with borane and silane reagents. The fundamental principles that govern the reactivity of intermediates containing metal-boron bonds are emphasized and how an understanding of the effects of the ligands on this reactivity led us to broaden the scope of main group reagents that react under mild conditions to generate synthetically useful organosilanes is described. Complexes containing a covalent bond between a transition metal and a three-coordinate boron atom (boryl complexes) are unusually reactive toward the cleavage of typically unreactive C-H bonds. Moreover, this C-H bond cleavage leads to the formation of free, functionalized product by rapid coupling of the hydrocarbyl and boryl ligands. The initial observation of the borylation of arenes and alkanes in stoichiometric processes led to catalytic systems for the borylation of arenes and alkanes with diboron compounds (diborane(4) reagents) and boranes. In particular, complexes based on the Cp*Rh (in which Cp is the cyclopentadienyl anion) fragment catalyze the borylation of alkanes, arenes, amines, ethers, ketals, and haloalkanes. Although less reactive toward alkyl C-H bonds than the Cp*Rh systems, catalysts generated from the combination of bipyridines and iridium(I)-olefin complexes have proven to be the most reactive catalysts for the borylation of arenes. The reactions catalyzed by these complexes form arylboronates from arenes with site

  6. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions

    PubMed Central

    Colby, Denise A.; Tsai, Andy S.; Bergman, Robert G.; Ellman, Jonathan A.

    2011-01-01

    Conspectus Over the last several decades, researchers have achieved remarkable progress in the field of organometallic chemistry. The development of metal-catalyzed cross-coupling reactions represents a paradigm shift in chemical synthesis, and today synthetic chemists can readily access carbon-carbon and carbon-heteroatom bonds from a vast array of starting compounds. Although we cannot understate the importance of these methods, the required pre-functionalization to carry out these reactions adds cost and reduces the availability of the starting reagents. The use of C-H bond activation in lieu of pre-functionalization has presented a tantalizing alternative to classical cross-coupling reactions. Researchers have met the challenges of selectivity and reactivity associated with the development of C-H bond functionalization reactions with an explosion of creative advances in substrate and catalyst design. Literature reports on selectivity based on steric effects, acidity, and electronic and directing group effects are now numerous. Our group has developed an array of C-H bond functionalization reactions that take advantage of a chelating directing group, and this Account surveys our progress in this area. The use of chelation control in C-H bond functionalization offers several advantages with respect to substrate scope and application to total synthesis. The predictability and decreased dependence on the inherent stereoelectronics of the substrate generally result in selective and high yielding transformations with broad applicability. The nature of the chelating moiety can be chosen to serve as a functional handle in subsequent elaborations. Our work began with the use of Rh(I) catalysts in intramolecular aromatic C-H annulations, which we further developed to include enantioselective transformations. The application of this chemistry to the simple olefinic C-H bonds found in α,β-unsaturated imines allowed access to highly substituted olefins, pyridines, and

  7. Copper-catalyzed direct C-H fluoroalkenylation of heteroarenes.

    PubMed

    Rousée, Kevin; Schneider, Cédric; Bouillon, Jean-Philippe; Levacher, Vincent; Hoarau, Christophe; Couve-Bonnaire, Samuel; Pannecoucke, Xavier

    2016-01-01

    Copper-catalyzed direct C-H fluoroalkenylation of heterocycles using various gem-bromofluoroalkenes as electrophiles is reported. This efficient method offers step-economical, low-cost and stereocontrolled access to relevant heteroarylated monofluoroalkenes. The synthesis of fluorinated analogues of biomolecules and therapeutic agents for the treatment of Duchenne muscular dystrophy as application is reported. PMID:26603641

  8. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis.

    PubMed

    McEachron, Troy A; Pawlinski, Rafal; Richards, Kristy L; Church, Frank C; Mackman, Nigel

    2010-12-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  9. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis

    PubMed Central

    McEachron, Troy A.; Pawlinski, Rafal; Richards, Kristy L.; Church, Frank C.

    2010-01-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  10. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  11. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Sharma, Ankit; Hartwig, John F.

    2015-01-01

    Many enzymes oxidize unactivated aliphatic C-H bonds selectively to form alcohols; however, biological systems do not possess enzymes that catalyse the analogous aminations of C-H bonds. The absence of such enzymes limits the discovery of potential medicinal candidates because nitrogen-containing groups are crucial to the biological activity of therapeutic agents and clinically useful natural products. In one prominent example illustrating the importance of incorporating nitrogen-based functionality, the conversion of the ketone of erythromycin to the -N(Me)CH2- group in azithromycin leads to a compound that can be dosed once daily with a shorter treatment time. For such reasons, synthetic chemists have sought catalysts that directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited to the intermolecular functionalization of complex molecules because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom. Among C-H bond amination reactions, those forming a C-N bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to form from ketones or alcohols that might be created in a biosynthetic pathway by oxidation. Here we report a mild, selective, iron-catalysed azidation of tertiary C-H bonds that occurs without excess of the valuable substrate. The reaction tolerates aqueous environments and is suitable for the functionalization of complex structures in the late stages of a multistep synthesis. Moreover, this azidation makes it possible to install a range of nitrogen-based functional groups, including those from Huisgen `click' cycloadditions and the Staudinger ligation. We anticipate that these reactions will create opportunities to modify natural products, their precursors and their derivatives to produce analogues that contain different polarity and charge as a

  12. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  13. Dihydrobenzofuran Neolignanamides: Laccase-Mediated Biomimetic Synthesis and Antiproliferative Activity.

    PubMed

    Cardullo, Nunzio; Pulvirenti, Luana; Spatafora, Carmela; Musso, Nicolò; Barresi, Vincenza; Condorelli, Daniele Filippo; Tringali, Corrado

    2016-08-26

    The biomimetic synthesis of a small library of dihydrobenzofuran neolignanamides (the natural trans-grossamide (4) and the related compounds 21-28) has been carried out through an eco-friendly oxidative coupling reaction mediated by Trametes versicolor laccase. These products, after complete spectroscopic characterization, were evaluated for their antiproliferative activity against Caco-2 (colon carcinoma), MCF-7 (mammary adenocarcinoma), and PC-3 (prostate cancer) human cells, using an MTT bioassay. The racemic neolignamides (±)-21 and (±)-27, in being the most lipophilic in the series, were potently active, with GI50 values comparable to or even lower than that of the positive control 5-FU. The racemates were resolved through chiral HPLC, and the pure enantiomers were subjected to ECD measurements to establish their absolute configurations at C-2 and C-3. All enantiomers showed potent antiproliferative activity, with, in particular, a GI50 value of 1.1 μM obtained for (2R,3R)-21. The effect of (±)-21 on the Caco-2 cell cycle was evaluated by flow cytometry, and it was demonstrated that (±)-21 exerts its antiproliferative activity by inducing cell cycle arrest and apoptosis. PMID:27504537

  14. Bactericidal activity of metal-mediated peroxide-ascorbate systems.

    PubMed

    Drath, D B; Karnovsky, M L

    1974-11-01

    Model systems containing ascorbate, hydrogen peroxide, and divalent copper or cobalt have been shown to possess marked bactericidal activity. At equivalent concentrations, copper-containing systems were more bactericidal than the corresponding mixtures containing cobalt. Cobalt at concentrations below 10(-4) M did not appreciably augment microbicidal activity, whereas systems containing copper at concentrations as low as 5 x 10(-6) M were still capable of causing some bacterial death. Manganese was inactive. None of these systems was as potent as the well known myeloperoxidase-peroxide-halide system. The mechanisms of action of these systems are not as yet clear. The possibility that they function through the generation of superoxide (O(2) (-)), hydroxyl radical (OH.), or other free radicals was explored through the use of superoxide dismutase and several free radical scavengers. It seems likely at present that the two active metal-mediated systems function via separate mechanisms. The copper system acts with dehydroascorbate, whereas the cobalt system does not. Activity in the cobalt system appears to depend upon the generation of free radicals. PMID:16558093

  15. Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)

    PubMed Central

    Gulzar, Naeem; Klussmann, Martin

    2014-01-01

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown. PMID:24998636

  16. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  17. Carbon stars with alpha-C:H emission

    NASA Technical Reports Server (NTRS)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  18. FOXO1 Mediates RANKL Induced Osteoclast Formation and Activity

    PubMed Central

    Wang, Yu; Dong, Guangyu; Jeon, Hyeran Helen; Elazizi, Mohamad; La, Lan B.; Hameedaldeen, Alhassan; Xiao, E; Tian, Chen; Alsadun, Sarah; Choi, Yongwon; Graves, Dana T.

    2015-01-01

    We have previously shown that the transcription factor FOXO1 is elevated in conditions with high levels of bone resorption. To investigate the role of FOXO1 in the formation of osteoclasts we examined mice with lineage specific deletion of FOXO1 in osteoclast precursors and by knockdown of FOXO1 with siRNA. The receptor activator of NF-kappa B ligand (RANKL), a principal bone resorbing factor, induced FOXO1 expression and nuclear localization two days after stimulation in bone marrow macrophages (BMMs) and RAW264.7 osteoclast precursors. RANKL- induced osteoclast formation and osteoclast activity was reduced in half in vivo and in vitro with lineage specific FOXO1 deletion (LyzM.Cre+FOXO1L/L) compared to matched controls (LyzM.Cre−FOXO1L/L). Similar results were obtained by knockdown of FOXO1 in RAW264.7 cells. Moreover, FOXO1-mediated osteoclast formation was linked to regulation of NFATc1 nuclear localization and expression as well as a number of downstream factors including dendritic cell-specific transmembrane protein (DC-STAMP), ATP6vod2, cathepsin K and integrin αν Lastly, FOXO1 deletion reduced M-CSF induced RANK expression and migration of osteoclast precursors. Studies presented here provide the evidence that FOXO1 plays a direct role in osteoclast formation by mediating the effect of RANKL on NFATc1 and several downstream effectors. This is likely to be significant since FOXO1 and RANKL are elevated in osteolytic conditions. PMID:25694609

  19. Copper-catalyzed olefinic C-H difluoroacetylation of enamides.

    PubMed

    Caillot, Gilles; Dufour, Jérémy; Belhomme, Marie-Charlotte; Poisson, Thomas; Grimaud, Laurence; Pannecoucke, Xavier; Gillaizeau, Isabelle

    2014-06-01

    Copper-catalyzed olefinic difluoroacetylation of enamides via direct C-H bond functionalization using BrCF2CO2Et is reported for the first time. It constitutes an efficient radical-free method for the regioselective synthesis of β-difluoroester substituted enamides which exhibits broad substrate scope, and thus demonstrates its potent application in a late stage fluorination strategy. PMID:24760345

  20. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  1. Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning.

    PubMed

    Srivastava, Sarvesh Kumar; Guix, Maria; Schmidt, Oliver G

    2016-01-13

    We present wastewater-mediated activation of catalytic micromotors for the degradation of nitroaromatic pollutants in water. These next-generation hybrid micromotors are fabricated by growing catalytically active Pd particles over thin-metal films (Ti/Fe/Cr), which are then rolled-up into self-propelled tubular microjets. Coupling of catalytically active Pd particles inside the micromotor surface in the presence of a 4-nitrophenol pollutant (with NaBH4 as reductant) results in autonomous motion via the bubble-recoil propulsion mechanism such that the target pollutant mixture (wastewater) is consumed as a fuel, thereby generating nontoxic byproducts. This study also offers several distinct advantages over its predecessors including no pH/temperature manipulation, limited stringent process control and complete destruction of the target pollutant mixture. The improved intermixing ability of the micromotors caused faster degradation ca. 10 times higher as compared to its nonmotile counterpart. The high catalytic efficiency obtained via a wet-lab approach has promising potential in creating hybrid micromotors comprising of multicatalytic systems assembled into one entity for sustainable environmental remediation and theranostics. PMID:26674098

  2. Distinct TFIID complexes mediate the effect of different transcriptional activators.

    PubMed Central

    Brou, C; Chaudhary, S; Davidson, I; Lutz, Y; Wu, J; Egly, J M; Tora, L; Chambon, P

    1993-01-01

    Multiple chromatographically separable complexes containing the TATA binding protein (TBP), which exhibit different functional properties, exist in HeLa cells. At least three distinct subpopulations of such complexes can be functionally defined as TFIID since they function with RNA polymerase II. Using a partially reconstituted HeLa cell in vitro transcription system and immunoprecipitation with a monoclonal antibody directed against TBP, we show that stimulation of transcription by the chimeric activators GAL-VP16, GAL-TEF-1 and GAL-ER(EF) requires the presence of factors which are tightly associated with these TFIID complexes. Moreover, the activity of GAL-TEF-1 appears to be mediated by at least two chromatographically distinct populations of TFIID. The factor(s) associated with one of these populations is also required for the activity of GAL-ER (EF) and GAL-VP16, while the factor(s) associated with the other population functions selectively with GAL-TEF-1. These two TFIID populations are composed of both common and unique TBP associated factors (TAFs). Images PMID:8440239

  3. C-H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone.

    PubMed

    Tian, Xu; Yang, Fanzhi; Rasina, Dace; Bauer, Michaela; Warratz, Svenja; Ferlin, Francesco; Vaccaro, Luigi; Ackermann, Lutz

    2016-07-28

    C-H arylations were accomplished with a user-friendly heterogeneous palladium catalyst in the biomass-derived γ-valerolactone (GVL) as an environmentally-benign reaction medium. The user-friendly protocol was characterized by ample substrate scope and high functional group tolerance in the C-H arylation of 1,2,3-triazoles, and the palladium catalyst could be recycled and reused in the C-H activation process. PMID:27419251

  4. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping.

    PubMed

    Bandler, R; Keay, K A; Floyd, N; Price, J

    2000-09-01

    Animals, including humans, react with distinct emotional coping strategies to different sets of environmental demands. These strategies include the capacity to affect appropriate responses to "escapable" or "inescapable" stressors. Active emotional coping strategies--fight or flight--are particularly adaptive if the stress is escapable. On the other hand, passive emotional coping strategies-quiescence, immobility, decreased responsiveness to the environment-are useful when the stress is inescapable. Passive strategies contribute also to facilitating recovery and healing once the stressful event is over. Active vs. passive emotional coping strategies are characterised further by distinct patterns of autonomic change. Active strategies are associated with sympathoexcitation (hypertension, tachycardia), whereas passive strategies are associated with sympathoinhibitory patterns (hypotension, bradycardia). Distinct neural substrates mediating active vs. passive emotional coping have been identified within the longitudinal neuronal columns of the midbrain periaqueductal gray region (PAG). The PAG offers then a potentially useful point of entry for delineating neural circuits mediating the different forms of emotional coping and their associated patterns of autonomic activity. As one example, recent studies of the connections of orbital and medial prefrontal cortical (PFC) fields with specific PAG longitudinal neuronal columns are reviewed. Findings of discrete orbital and medial PFC projections to different PAG columns, and related PFC and PAG columnar connections with specific subregions of the hypothalamus, suggest that distinct but parallel circuits mediate the behavioural strategies and patterns of autonomic activity characteristic of emotional "engagement with" or "disengagement from" the external environment. PMID:11033213

  5. Weak C-H acids as protonophores can carry hydrogen ions through lipid membranes and mitochondria: a case of o-carborane.

    PubMed

    Rokitskaya, Tatyana I; Khailova, Ljudmila S; Makarenkov, Anton V; Ol'shevskaya, Valentina A; Kalinin, Valery N; Antonenko, Yuri N

    2016-06-28

    ortho-Carborane (1,2-C2B10H12) was found to be a carrier of protons in both mitochondrial and artificial lipid membranes, suggesting that this dicarborane can reversibly release hydrogen ions and diffuse through the membranes in neutral and anionic forms. Similar to conventional uncouplers (e.g. 2,4-dinitrophenol), o-carborane stimulated mitochondrial respiration and decreased the membrane potential at concentrations of tens of micromoles. Protonophoric activity of o-carborane was observed both by a fluorometric assay using pyranine-loaded liposomes and electrical current measurements across planar lipid bilayers. Substantial contribution of the proton flux to the o-carborane-mediated current was proved by a shift of the zero current voltage upon imposing a pH gradient across the membrane. Meta-carborane (1,7-C2B10H12) lacked the protonophoric activity in line with its reduced C-H acidity. The results suggest that weak C-H acids can exhibit protonophoric activity in the biological environment. The finding of a new class of protonophoric compounds is of substantial interest due to promising anti-obesity and anti-diabetic properties of uncouplers. PMID:27265316

  6. Seeing the B-A-C-H motif

    NASA Astrophysics Data System (ADS)

    Catravas, Palmyra

    2005-09-01

    Musical compositions can be thought of as complex, multidimensional data sets. Compositions based on the B-A-C-H motif (a four-note motif of the pitches of the last name of Johann Sebastian Bach) span several centuries of evolving compositional styles and provide an intriguing set for analysis since they contain a common feature, the motif, buried in dissimilar contexts. We will present analyses which highlight the content of this unusual set of pieces, with emphasis on visual display of information.

  7. Ru-Catalyzed C-H Arylation of Fluoroarenes with Aryl Halides.

    PubMed

    Simonetti, Marco; Perry, Gregory J P; Cambeiro, Xacobe C; Juliá-Hernández, Francisco; Arokianathar, Jude N; Larrosa, Igor

    2016-03-16

    Although the ruthenium-catalyzed C-H arylation of arenes bearing directing groups with haloarenes is well-known, this process has never been achieved in the absence of directing groups. We report the first example of such a process and show that unexpectedly the reaction only takes place in the presence of catalytic amounts of a benzoic acid. Furthermore, contrary to other transition metals, the arylation site selectivity is governed by both electronic and steric factors. Stoichiometric and NMR mechanistic studies support a catalytic cycle that involves a well-defined η(6)-arene-ligand-free Ru(II) catalyst. Indeed, upon initial pivalate-assisted C-H activation, the aryl-Ru(II) intermediate generated is able to react with an aryl bromide coupling partner only in the presence of a benzoate additive. In contrast, directing-group-containing substrates (such as 2-phenylpyridine) do not require a benzoate additive. Deuterium labeling and kinetic isotope effect experiments indicate that C-H activation is both reversible and kinetically significant. Computational studies support a concerted metalation-deprotonation (CMD)-type ruthenation mode and shed light on the unusual arylation regioselectivity. PMID:26942551

  8. Direct synthesis of high-valent aryl-Cu(II) and aryl-Cu(III) compounds: mechanistic insight into arene C-H bond metalation.

    PubMed

    Zhang, Hu; Yao, Bo; Zhao, Liang; Wang, De-Xian; Xu, Bo-Qing; Wang, Mei-Xiang

    2014-04-30

    Copper and its salts are abundant, inexpensive, and eco-friendly and have been used as the surrogates of noble metals to effect arene C-H bond activation and transformations. Despite of the recent significant progress of the study, syntheses of high-valent arylcopper(II-III) compounds are still very rare and mechanisms of copper(II)-catalyzed reactions remain elusive. With the use of azacalix[1]arene[3]pyridines as a platform, a number of arylcopper(II) compounds were synthesized efficiently from the reaction of Cu(ClO4)2 under ambient conditions. The resulting aryl-Cu(II) compounds, which contain an unprecedented (substituted) phenyl-Cu(II) σ-bond, were stable under atmospheric conditions and can undergo facile oxidation reaction by free copper(II) ions or oxone to afford arylcopper(III) compounds in good yields. Both arylcopper(II) and arylcopper(III) compounds were characterized unambiguously by means of XRD, XPS, and NMR methods. Experimental evidence including reaction kinetics, LFER and KIE, and theoretical calculations indicated that the Cu(ClO4)2-mediated arene C-H bond activation proceeds plausibly through an electrophilic aromatic metalation pathway. The synthesis of high-valent arylcopper compounds and the reaction mechanism reported here highlight the diversity and richness of organocopper chemistry. PMID:24730979

  9. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  10. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  11. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  12. Involvement of Antibiotic Efflux Machinery in Glutathione-Mediated Decreased Ciprofloxacin Activity in Escherichia coli.

    PubMed

    Goswami, Manish; Subramanian, Mahesh; Kumar, Ranjeet; Jass, Jana; Jawali, Narendra

    2016-07-01

    We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump. PMID:27139480

  13. Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

    PubMed Central

    Sharma, Ankit; Hartwig, John F.

    2013-01-01

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S or C-C bond at the allylic position in good yield with high branched-to-linear selectivity and excellent enantioselectivity (ee ≤ 97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated. PMID:24156776

  14. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  15. Physical activity and cognitive functioning in the oldest old: Within- and between-person cognitive activity and psychosocial mediators

    PubMed Central

    Robitaille, Annie; Muniz, Graciela; Lindwall, Magnus; Piccinin, Andrea M.; Hoffman, Lesa; Johansson, Boo; Hofer, Scott M.

    2014-01-01

    Objective The current study examines the role of social contact intensity, cognitive activity, and depressive symptoms as within- and between-person mediators for the relationships between physical activity and cognitive functioning. Method All three types of mediators were considered simultaneously using multilevel structural equations modeling with longitudinal data. The sample consisted of 470 adults ranging from 79.37 to 97.92 years of age (M = 83.4; SD = 3.2) at the first occasion. Results Between-person differences in cognitive activity mediated the relationship between physical activity and cognitive functioning, such that individuals who participated in more physical activities, on average, engaged in more cognitive activities and, in turn, showed better cognitive functioning. Mediation of between-person associations between physical activity and memory through social contact intensity was also significant. At the within-person level, only cognitive activity mediated the relationship between physical activity and change in cognition; however, the indirect effect was small. Depressive symptomatology was not found to significantly mediate within- or between-person effects on cognitive change. Discussion Our findings highlight the implications of physical activity participation for the prevention of cognitive decline and the importance of meditational processes at the between-person level. Physical activity can provide older adults with an avenue to make new friendships and engage in more cognitive activities which, in turn, attenuates cognitive decline. PMID:25598770

  16. TERATOGEN METABOLISM: THALIDOMIDE ACTIVATION IS MEDIATED BY CYTOCHROME P-450

    EPA Science Inventory

    A metabolite of thalidomide generated by hepatic microsomes inhibited the attachment of tumor cells to concanavalin A-coated polyethylene. Evidence that metabolite formation is mediated by microsomal cytochrome P-450 is presented. Microsomes incubated with thalidomide underwent a...

  17. C-O/C-H Coupling of Polyfluoroarenes with Aryl Carbamates by Cooperative Ni/Cu Catalysis.

    PubMed

    Wang, Yang; Wu, Song-Bai; Shi, Wen-Juan; Shi, Zhang-Jie

    2016-06-01

    Cross-coupling of polyfluoroarenes with aryl carbamates through the cleavage of both sp(2) C-O and C-H bonds is reported. The reaction conditions are simple, and only transition-metal catalysts and ligands are essential. Mechanistic studies indicated that Ni catalyst played an important role in activating C-O bond, while the Cu one in activating C-H Bond. The developed system proved to be effective for cross-coupling of terminal alkynes with aryl carbamates. PMID:27205866

  18. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-08-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

  19. Molecular Dynamics of Dimethyldioxirane C-H Oxidation.

    PubMed

    Yang, Zhongyue; Yu, Peiyuan; Houk, K N

    2016-03-30

    We report molecular dynamics simulations of the reaction of dimethyldioxirane (DMDO) with isobutane. The reaction involves hydrogen atom abstraction in the transition state, and trajectories branch to the oxygen rebound pathway, which gives tert-butanol and acetone, or a separated radical pair. In the gas phase, only 10% of the reactive trajectories undergo the oxygen rebound pathway, but this increases to 90% in simulations in an implicit acetone solvent (SMD) because the oxygen rebound becomes barrierless in solution. Short-lived diradical species were observed in the oxygen rebound trajectories. The time gap between C-H bond-breaking and C-O bond formation ranges from 30 to 150 fs, close to the <200 fs lifetime of radical pairs from DMDO hydroxylation of trans-1-phenyl-2-ethylcyclopropane measured by Newcomb. PMID:26964643

  20. Dirhodium-catalyzed C-H arene amination using hydroxylamines.

    PubMed

    Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R; Ess, Daniel H; Ma, Zhiwei; Kürti, László; Falck, John R

    2016-09-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals, and functional materials, as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with NH2/NH(alkyl) moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using NH2/NH(alkyl)-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  1. Tim-1-Mediated T Cell Activation Requires Recruitment and Activation of PI 3-Kinase

    PubMed Central

    de Souza, Anjali J.; Oak, Jean S.; Jordanhazy, Ryan; DeKruyff, Rosemarie H.; Fruman, David A.; Kane, Lawrence P.

    2009-01-01

    Ligation of the transmembrane protein Tim-1 can co-stimulate T cell activation. Agonistic antibodies to Tim-1 are also capable of inducing T cell activation without additional stimuli. However, little is known about the biochemical mechanisms underlying T cell stimulation or co-stimulation through Tim-1. We show that a tyrosine in Tim-1 becomes phosphorylated in an lck-dependent manner, whereupon it can directly recruit p85 adaptor subunits of PI 3-kinase. This results in PI3K activation, which is required for Tim-1 function. We also provide genetic evidence that p85 expression is required for optimal Tim-1 function. Thus, we describe a pathway from Tim-1 tyrosine phosphorylation to the PI3K signaling pathway, which appears to be a major effector of Tim-1-mediated T cell activation. PMID:18453570

  2. Leishmania major: differential resistance to infection in C57BL/6 (high interferon-alpha/beta) and congenic B6.C-H-28c (low interferon-alpha/beta) mice.

    PubMed

    Shankar, A H; Morin, P; Titus, R G

    1996-11-01

    In murine cutaneous leishmaniasis caused by Leishmania major (Lm), resistance often associates with the outgrowth of Lm-specific Th1 cells. Parasites are eliminated by Th1-mediated activation of infected macrophages (M phi) which destroy Lm by producing toxic nitrogen and oxygen radicals. The cytokine IFN-alpha activates microbicidal functions of M phis and facilitates outgrowth of Th1 cells. Therefore, we compared the course of infection with Lm in resistant C57BL/6 mice, bearing the If-1h high expression allele for IFN-alpha/beta, with the congenic B6.C-H-28c mouse, bearing the If-1I low expression allele from the Lm-susceptible BALB/c strain. We observed that B6.C-H-28c animals developed up to 70% larger footpad lesions and harbored up to 1000-fold more parasites than C57BL/6 mice. Furthermore, peak Lm-specific IFN-gamma production in the B6.C-H-28c animals was lower and delayed by approximately 2 weeks, whereas IL-4 production was higher and persisted approximately 2 weeks longer. Since these results suggested that IFN-alpha/beta plays a protective role in mice infected with Lm, we determined whether infusing B6.C-H-28c mice with IFN-alpha would influence the course of infection with Lm. Unfortunately, the mice developed severe peritoneal hemorrhaging in response to injection with IFN-alpha. Therefore, we examined the ability of IFN-alpha to activate M phis to destroy Lm in vitro. We observed that rIFN-alpha could synergize with subactivating doses of LPS to activate both C57BL/6 and BALB/c peritoneal M phis to produce NO and to kill intracellular Lm. Taken as a whole, these results suggest that type I interferons may play a protective role in cutaneous leishmaniasis. PMID:8932763

  3. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways

    PubMed Central

    2011-01-01

    Background Origanum vulgare Linn has traditionally been used in the treatment of urolithiasis. Therefore, we investigated the crude extract of Origanum vulgare for possible antiurolithic effect, to rationalize its medicinal use. Methods The crude aqueous-methanolic extract of Origanum vulgare (Ov.Cr) was studied using the in vitro and in vivo methods. In the in vitro experiments, supersaturated solution of calcium and oxalate, kidney epithelial cell lines (MDCK) and urinary bladder of rabbits were used, whereas, in the in vivo studies, rat model of urolithiasis was used for the study of preventive and curative effect. Results In the in vitro experiments, Ov.Cr exhibited a concentration-dependent (0.25-4 mg/ml) inhibitory effect on the slope of nucleation and aggregation and also decreased the number of calcium oxalate monohydrate crystals (COM) produced in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against DPPH free radical and lipid peroxidation induced in rat kidney tissue homogenate. Ov.Cr reduced the cell toxicity using MTT assay and LDH release in renal epithelial cells (MDCK) exposed to oxalate (0.5 mM) and COM (66 μg/cm2) crystals. Ov.Cr relaxed high K+ (80 mM) induced contraction in rabbit urinary bladder strips, and shifted the calcium concentration-response curves (CRCs) towards right with suppression of the maximum response similar to that of verapamil, a standard calcium channel blocker. In male Wistar rats receiving lithogenic treatment comprising of 0.75% ethylene glycol in drinking water given for 3 weeks along with ammonium chloride (NH4Cl) for the first 5 days, Ov.Cr treatment (10-30 mg/kg) prevented as well as reversed toxic changes including loss of body weight, polyurea, crystalluria, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion These data indicating the antiurolithic activity in Ov.Cr, possibly mediated

  4. Titanium containing amorphous hydrogenated carbon films (a-C: H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro.

    PubMed

    Schroeder, A; Francz, G; Bruinink, A; Hauert, R; Mayer, J; Wintermantel, E

    2000-03-01

    Amorphous hydrogenated carbon (a-C : H) coatings, also called diamond-like carbon (DLC), have many properties required for a protective coating material in biomedical applications. The purpose of this study is to evaluate a new surface coating for bone-related implants by combining the hardness and inertness of a-C : H films with the biological acceptance of titanium. For this purpose, different amounts of titanium were incorporated into a-C : H films by a combined radio frequency (rf) and magnetron sputtering set-up. The X-ray photoelectron spectroscopy (XPS) of air-exposed a-C : H/titanium (a-C : H/Ti) films revealed that the films were composed of TiO2 and TiC embedded in and connected to an a-C : H matrix. Cell culture tests using primary adult rat bone marrow cell cultures (BMC) were performed to determine effects on cell number and on osteoblast and osteoclast differentiation. By adding titanium to the carbon matrix, cellular reactions such as increased proliferation and reduced osteoclast-like cell activity could be obtained, while these reactions were not seen on pure a-C : H films and on glass control samples. In summary, a-C : H/Ti could be a valuable coating for bone implants, by supporting bone cell proliferation while reducing osteoclast-like cell activation. PMID:10674809

  5. alpha-Diimine Ligand Coordination and C H Bond Activation in the Reaction of Os3(CO)10(MeCN)2 with 6-R-2,2'-Bipyridine (where R = Et, Ph): X-ray Diffraction Structures of the Ortho-Metalated

    SciTech Connect

    Carrano, Carl J.; Wang, Xiaoping; Poola, Bhaskar; Powell, Cynthia B.; Richmond, Michael G.

    2009-01-01

    The reactivity of the labile cluster Os3(CO)10(MeCN)2 (1) with the monofunctionalized heterocyclic ligands 6-R-2,2 -bipyridine (where R = Et, Ph) has been investigated. The alkyl-substituted heterocycle 6-Et-2,2 -bipyridine reacts with 1 in refluxing CH2Cl2 to give an isomeric mixture of HOs3(CO)9(N2C12H11) due to cyclometalation of the side-chain ethyl group (2) and ortho metalation of the unsubstituted bipyridine ring (3). The solid-state structure of the latter cluster, HOs3(CO)9(N2C10H6-6-Et) (3), has unequivocally established the site of the C-H bond activation in the product. Treatment of 1 with the aryl-substituted ligand 6-Ph-2,2 -bipyridine proceeds similarly with ortho metalation at the ancillary phenyl group and the C-6 ortho site of the unsubstituted bipyridine ring, as verified by 1H NMR spectroscopy. The X-ray diffraction structure of the thermodynamically more stable bipyridine-metalated cluster HOs3(CO)9(N2C10H6-6-Ph) (5) has been determined. The course of these reactions is discussed with respect to our recent study involving the reaction of cluster 1 with the ligand 6-Me-2,2 -bipyridine. Graphical Abstract The reaction between the labile cluster Os3(CO)10(MeCN)2 (1) and the monofunctionalized heterocyclic ligand 6-Et-2,2 -bipyridine proceeds readily at room temperature to furnish an isomeric mixture of the cyclometalated and ortho-metalated hydride-bridged clusters HOs3(CO)9(N2C12H11) (2 and 3). Treatment of 1 with 6-Ph-2,2 -bipyridine also yields two distinct hydride-containing clusters that result from independent ortho-metalation paths involving the 6-phenyl substituent and unsubstituted bipyridine group. The bipyridine-derived ortho metalation attendant in the new clusters HOs3(CO)9(N2C10H6-6-Et) (3) and HOs3(CO)9(N2C10H6-6-Ph) (5) has been established by X-ray crystallography.

  6. Enantioselective Intermolecular C-H Functionalization of Allylic and Benzylic sp(3) C-H Bonds Using N-Sulfonyl-1,2,3-triazoles.

    PubMed

    Kubiak, Robert W; Mighion, Jeffrey D; Wilkerson-Hill, Sidney M; Alford, Joshua S; Yoshidomi, Tetsushi; Davies, Huw M L

    2016-07-01

    The enantioselective intermolecular sp(3) C-H functionalization at the allylic and benzylic positions was achieved using rhodium-catalyzed reactions with 4-phenyl-N-(methanesulfonyl)-1,2,3-triazole. The optimum dirhodium tetracarboxylate catalyst for these reactions was Rh2(S-NTTL)4. The rhodium-bound α-imino carbene intermediates preferentially reacted with tertiary over primary C-H bonds in good yields and moderate levels of enantioselectivity (66-82% ee). This work demonstrates that N-sulfonyltriazoles can be applied to the effective C-H functionalization at sp(3) C-H bonds of substrates containing additional functionality. PMID:27333162

  7. Hippocampal activity mediates the relationship between circadian activity rhythms and memory in older adults.

    PubMed

    Sherman, Stephanie M; Mumford, Jeanette A; Schnyer, David M

    2015-08-01

    Older adults experience parallel changes in sleep, circadian rhythms, and episodic memory. These processes appear to be linked such that disruptions in sleep contribute to deficits in memory. Although more variability in circadian patterns is a common feature of aging and predicts pathology, little is known about how alterations in circadian activity rhythms within older adults influence new episodic learning. Following 10 days of recording sleep-wake patterns using actigraphy, healthy older adults underwent fMRI while performing an associative memory task. The results revealed better associative memory was related to more consistent circadian activity rhythms, independent of total sleep time, sleep efficiency, and level of physical activity. Moreover, hippocampal activity during successful memory retrieval events was positively correlated with associative memory accuracy and circadian activity rhythm (CAR) consistency. We demonstrated that the link between consistent rhythms and associative memory performance was mediated by hippocampal activity. These findings provide novel insight into how the circadian rhythm of sleep-wake cycles are associated with memory in older adults and encourage further examination of circadian activity rhythms as a biomarker of cognitive functioning. PMID:26205911

  8. Characteristics of Students Related to Computer-Mediated Communications Activity.

    ERIC Educational Resources Information Center

    Fishman, Barry J.

    1999-01-01

    Describes a study of individual differences among high school students that relate to and predict their use of computer-mediated communication (CMC) tools--e-mail, Usenet news, and a multimedia notebook--to support project-based science learning. Findings indicate that skill and experience with computers, parental education, access to computers,…

  9. "Community", Semiotic Flows, and Mediated Contribution to Activity

    ERIC Educational Resources Information Center

    Thorne, Steven L.

    2009-01-01

    This article begins with an overview and problematization of the term "community" through a brief assessment of its history, diverse uses, core attributes, heterogeneous elements, and collocational companions. Following this, I describe demographics and processes associated with collective engagement in digitally mediated environments. Utilizing…

  10. Implementation Planning and Progress on Physical Activity Goals: The Mediating Role of Life-Management Strategies

    ERIC Educational Resources Information Center

    Dugas, Michelle; Gaudreau, Patrick; Carraro, Natasha

    2012-01-01

    This 4-week prospective study examined whether the use of life-management strategies mediates the relationship between implementation planning and short-term progress on physical activity goals. In particular, the strategies of elective selection, compensation, and loss-based selection were disentangled to assess their specific mediating effects.…

  11. Participation in Organized Activities and Conduct Problems in Elementary School: The Mediating Effect of Social Skills

    ERIC Educational Resources Information Center

    Denault, Anne-Sophie; Déry, Michèle

    2015-01-01

    The goal of this study was to test a mediation model in which social skills mediate the relationship between participation in organized activities and conduct problems among elementary school children. Two moderators of these associations were also examined, namely, gender and reception of special education services. A total of 563 children (45%…

  12. Gold-catalysed facile access to indene scaffolds via sequential C-H functionalization and 5-endo-dig carbocyclization.

    PubMed

    Ma, Ben; Wu, Ziang; Huang, Ben; Liu, Lu; Zhang, Junliang

    2016-08-01

    A concise synthesis of functionalized indene derivatives via the gold(i)-catalysed cascade C-H functionalization/conia-ene type reaction of electron-rich aromatics with o-alkynylaryl α-diazoesters has been developed. In this transformation, the gold catalyst not only catalysed the formation of the zwitterionic intermediate via intermolecular C-H functionalization but promoted the subsequent intramolecular 5-endo-dig cyclization via activation of alkynes. The reaction is characterized by high chemo- and site-selectivity, readily available starting materials, nice functional-group tolerance and mild reaction conditions. PMID:27373228

  13. Ruthenium-Catalyzed Direct and Selective C-H Cyanation of N-(Hetero)aryl-7-azaindoles.

    PubMed

    Mishra, Aniket; Vats, Tripta Kumari; Deb, Indubhusan

    2016-08-01

    An efficient, highly regioselective, and scalable ruthenium-catalyzed o-aryl C-H mono-cyanation of N-aryl-7-azaindoles to form N-(2-cyanoaryl)-7-azaindoles has been developed through N-directed ortho C-H activation using N-cyano-N-phenyl-p-toluenesulfonamide as cyanating reagent in the presence of AgOTf and NaOAc in DCE. A range of substrates has furnished cyanated azaindoles in good to excellent yields under the simple reaction conditions. Involvement of C-H metalation has been supported by a kinetic study. This methodology provides easy access to a class of pharmaceutically significant molecules and their precursors. PMID:27408980

  14. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    SciTech Connect

    Chen, Xinchun Kato, Takahisa

    2014-01-28

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ∼ 0.51 and β ∼ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ∼ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface “polishing” process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ∼9–10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp{sup 2}-bonded a–C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ∼0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N{sub 2} atmosphere. An extremely low friction coefficient of ∼0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  15. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa

    2014-01-01

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ˜ 0.51 and β ˜ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ˜ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface "polishing" process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ˜9-10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp2-bonded a-C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ˜0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N2 atmosphere. An extremely low friction coefficient of ˜0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  16. C-H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight.

    PubMed

    Olivo, Giorgio; Nardi, Martina; Vìdal, Diego; Barbieri, Alessia; Lapi, Andrea; Gómez, Laura; Lanzalunga, Osvaldo; Costas, Miquel; Di Stefano, Stefano

    2015-11-01

    A family of imine-based nonheme iron(II) complexes (LX)2Fe(OTf)2 has been prepared, characterized, and employed as C-H oxidation catalysts. Ligands LX (X = 1, 2, 3, and 4) stand for tridentate imine ligands resulting from spontaneous condensation of 2-pycolyl-amine and 4-substituted-2-picolyl aldehydes. Fast and quantitative formation of the complex occurs just upon mixing aldehyde, amine, and Fe(OTf)2 in a 2:2:1 ratio in acetonitrile solution. The solid-state structures of (L1)2Fe(OTf)(ClO4) and (L3)2Fe(OTf)2 are reported, showing a low-spin octahedral iron center, with the ligands arranged in a meridional fashion. (1)H NMR analyses indicate that the solid-state structure and spin state is retained in solution. These analyses also show the presence of an amine-imine tautomeric equilibrium. (LX)2Fe(OTf)2 efficiently catalyze the oxidation of alkyl C-H bonds employing H2O2 as a terminal oxidant. Manipulation of the electronic properties of the imine ligand has only a minor impact on efficiency and selectivity of the oxidative process. A mechanistic study is presented, providing evidence that C-H oxidations are metal-based. Reactions occur with stereoretention at the hydroxylated carbon and selectively at tertiary over secondary C-H bonds. Isotopic labeling analyses show that H2O2 is the dominant origin of the oxygen atoms inserted in the oxygenated product. Experimental evidence is provided that reactions involve initial oxidation of the complexes to the ferric state, and it is proposed that a ligand arm dissociates to enable hydrogen peroxide binding and activation. Selectivity patterns and isotopic labeling studies strongly suggest that activation of hydrogen peroxide occurs by heterolytic O-O cleavage, without the assistance of a cis-binding water or alkyl carboxylic acid. The sum of these observations provides sound evidence that controlled activation of H2O2 at (LX)2Fe(OTf)2 differs from that occurring in biomimetic iron catalysts described to date. PMID

  17. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  18. Regioselective C-H bond amination by aminoiodanes.

    PubMed

    Kantak, Abhishek A; Marchetti, Louis; DeBoef, Brenton

    2015-02-28

    A new approach for the direct amination of 2-phenylpyridine derivatives using a diphthalimide-iodane and copper triflate has been developed. A series of different 2-phenylpyridine derivatives were aminated with yields up to 88%. Mechanistic investigations indicate that the reaction proceeds via a copper-mediated single electron transfer. PMID:25632832

  19. Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases

    PubMed Central

    Van den Broeke, Céline; Radu, Maria; Deruelle, Matthias; Nauwynck, Hans; Hofmann, Clemens; Jaffer, Zahara M.; Chernoff, Jonathan; Favoreel, Herman W.

    2009-01-01

    The US3 protein is a viral serine/threonine kinase that is conserved among all members of the Alphaherpesvirinae. The US3 protein of different alphaherpesviruses causes dramatic alterations in the actin cytoskeleton, such as the disassembly of actin stress fibers and formation of cell projections, which have been associated with increased intercellular virus spread. Here, we find that inhibiting group A p21-activated kinases (PAKs), which are key regulators in Cdc42/Rac1 Rho GTPase signaling pathways, impairs US3-mediated actin alterations. By using PAK1−/− and PAK2−/− mouse embryo fibroblasts (MEFs), we show that US3-mediated stress fiber disassembly requires PAK2, whereas US3-mediated cell projection formation mainly is mediated by PAK1, also indicating that PAK1 and PAK2 can have different biological effects on the organization of the actin cytoskeleton. In addition, US3 was found to bind and phosphorylate group A PAKs. Lack of group A PAKs in MEFs was correlated with inefficient virus spread. Thus, US3 induces its effect on the actin cytoskeleton via group A PAKs. PMID:19435845

  20. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  1. Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides

    EPA Science Inventory

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eight...

  2. Synthesis and activity of a novel inhibitor of nonsense-mediated mRNA decay.

    PubMed

    Gotham, Victoria J B; Hobbs, Melanie C; Burgin, Ryan; Turton, David; Smythe, Carl; Coldham, Iain

    2016-01-27

    During efforts to prepare the known compound , a new tetracyclic compound, called , was prepared in six steps. This compound was found to have good activity as an inhibitor of nonsense-mediated mRNA decay. PMID:26740124

  3. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy.

    PubMed

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-08-01

    Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  4. Streetscape greenery and health: stress, social cohesion and physical activity as mediators.

    PubMed

    de Vries, Sjerp; van Dillen, Sonja M E; Groenewegen, Peter P; Spreeuwenberg, Peter

    2013-10-01

    Several studies have shown a positive relationship between local greenspace availability and residents' health, which may offer opportunities for health improvement. This study focuses on three mechanisms through which greenery might exert its positive effect on health: stress reduction, stimulating physical activity and facilitating social cohesion. Knowledge on mechanisms helps to identify which type of greenspace is most effective in generating health benefits. In eighty neighbourhoods in four Dutch cities data on quantity and quality of streetscape greenery were collected by observations. Data on self-reported health and proposed mediators were obtained for adults by mail questionnaires (N = 1641). Multilevel regression analyses, controlling for socio-demographic characteristics, revealed that both quantity and quality of streetscape greenery were related to perceived general health, acute health-related complaints, and mental health. Relationships were generally stronger for quality than for quantity. Stress and social cohesion were the strongest mediators. Total physical activity was not a mediator. Physical activity that could be undertaken in the public space (green activity) was, but less so than stress and social cohesion. With all three mediators included in the analysis, complete mediation could statistically be proven in five out of six cases. In these analyses the contribution of green activity was often not significant. The possibility that the effect of green activity is mediated by stress and social cohesion, rather than that it has a direct health effect, is discussed. PMID:23931942

  5. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    PubMed

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. PMID:27185874

  6. Irritant activation of epithelial cells is mediated via protease-dependent EGFR activation.

    PubMed

    White, Kellie J; Maffei, Vincent J; Newton-West, Marvin; Swerlick, Robert A

    2011-02-01

    Although numerous studies have examined in vivo and in vitro effects of irritants, most focused on events developing hours to days after exposure. Molecular events occurring immediately after skin contact remain incompletely defined. Characterization of early events could lead to the identification of key molecular signals necessary for the production of inflammatory mediators responsible for the signs and symptoms of irritant contact dermatitis (ICD). HaCaT cells treated with sodium lauryl sulfate (SLS), a model irritant, were used to examine early molecular events of ICD. Western analysis showed SLS-mediated induction of early growth response-1 (egr-1), a transcription factor capable of regulating hallmarks of ICD such as angiogenesis, hyperproliferation, and inflammation. Additionally, de novo egr-1 expression was commensurate with transcriptional activation of egr-1 mRNA and heteronuclear RNA. Use of pharmacological inhibitors demonstrated that SLS-induced egr-1 was dependent on MEK1/p44/42 ERK, but not on p38 or JNK signaling. The EGFR inhibitor PD168393 and the metalloprotease inhibitor TAPI-2 both inhibited SLS-induced egr-1. Finally, small interfering RNA silencing of the EGFR diminished SLS-induced egr-1 mRNA. These studies suggest a role of the EGFR in SLS signaling as well as a, to our knowledge, previously unreported association between ICD and EGFR induction of egr-1. PMID:20981109

  7. Understanding Synchronous Computer-Mediated Classroom Discussion through Cultural-Historical Activity Theory

    ERIC Educational Resources Information Center

    Park, Yangjoo

    2015-01-01

    This study is about graduate students' discourse practices in classroom text-based synchronous computer mediated discussions (SCMD). Cultural historical activity theory (in short, Activity Theory) is the primary theoretical lens through which the data are analyzed. Engeström's (1987) Activity System model among the various theoretical positions or…

  8. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1.

    PubMed

    Sharma, Mehul; Merkulova, Yulia; Raithatha, Sheetal; Parkinson, Leigh G; Shen, Yue; Cooper, Dawn; Granville, David J

    2016-05-01

    Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells. PMID:26936634

  9. Myeloperoxidase-mediated activation of xenobiotics by human leukocytes.

    PubMed

    Hofstra, A H; Uetrecht, J P

    1993-10-01

    Peripheral blood leukocytes contain a variety of enzymes that are capable of metabolising xenobiotics. The enzyme myeloperoxidase (MPO) appears to be the most important for drug metabolism. MPO is a peroxidase/oxidase and generates the powerful oxidant hypochlorous acid. MPO- or MPO-generated oxidants are capable of oxidizing a wide variety of compounds and a broad range of functional groups, especially those that contain nitrogen and sulfur. Leukocytes have a role in immune response; therefore, reactive intermediates generated by leukocyte metabolism of xenobiotics may have a role in idiosyncratic drug reactions, particularly those that are immune-mediated such as drug-induced lupus or agranulocytosis. PMID:8236277

  10. A sociocultural perspective on mediated activity in third grade science

    NASA Astrophysics Data System (ADS)

    Reveles, John M.; Kelly, Gregory J.; Durán, Richard P.

    2007-02-01

    This ethnographic study of a third grade classroom examined elementary school science learning as a sociocultural accomplishment. The research focused on how a teacher helped his students acquire psychological tools for learning to think and engage in scientific practices as locally defined. Analyses of classroom discourse examined both how the teacher used mediational strategies to frame disciplinary knowledge in science as well as how students internalized and appropriated ways of knowing in science. The study documented and analyzed how students came to appropriate scientific knowledge as their own in an ongoing manner tied to their identities as student scientists. Implications for sociocultural theory in science education research are discussed.

  11. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.

    PubMed

    Wang, Hongli; Huang, Hanmin

    2016-08-01

    Transition-metal-catalyzed C-H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C-H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox-neutral C-H bond functionalization strategy for direct addition of inert C-H bonds to unsaturated double bonds and a redox-green C-H bond functionalization strategy for realization of oxidative C-H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox-neutral and redox-green strategies pave the way for establishing new environmentally benign transition-metal-catalyzed C-H bond functionalization strategies. PMID:27258190

  12. Soluble Immune Mediators and Vaginal Bacteria Impact Innate Genital Mucosal Antimicrobial Activity in Young Women

    PubMed Central

    Madan, Rebecca Pellett; Dezzutti, Charlene S.; Rabe, Lorna; Hillier, Sharon L.; Marrazzo, Jeanne; McGowan, Ian; Richardson, Barbra A.; Herold, Betsy C.

    2015-01-01

    Introduction Innate activity against Escherichia coli in female genital secretions may represent contributions from vaginal bacteria and host soluble immune mediators. We analyzed the relationship between E. coli inhibitory activity, soluble immune mediators, and vaginal bacteria in participants in MTN-004, a placebo-controlled trial of VivaGel®, a candidate product for topical HIV pre-exposure prophylaxis. Methods Escherichia coli inhibitory activity was quantified by colony reduction assay. Endocervical concentrations of interleukin (IL)-1β, IL-6, IL-12p40, macrophage inflammatory protein (MIP)-1α, granulocyte– macrophage colony-stimulating factor (GM-CSF), lactoferrin, and secretory leukocyte protease inhibitor (SLPI) were quantified to generate a cumulative mediator score. Vaginal bacteria were characterized by quantitative cultures. Results In the two placebo arms, higher soluble immune mediator score was associated with greater E. coli inhibitory activity (β = 17.49, 95% CI [12.77, 22.21] and β = 13.28, 95% CI [4.76, 21.80]). However, in the VivaGel arm, higher concentrations of E. coli (β = −3.80, 95% CI [−6.36, −1.25]) and group B Streptococcus (β = −3.91, 95% CI [−6.21, −1.60]) were associated with reduced E. coli inhibitory activity. Conclusions Both host mediators and vaginal bacteria impact E. coli inhibition in genital secretions. The relative contributions of host mediators and bacteria varied between women who used VivaGel vs placebos. PMID:26118476

  13. Mechanism and Site Selectivity in Visible-Light Photocatalyzed C-H Functionalization: Insights from DFT Calculations.

    PubMed

    Demissie, Taye B; Hansen, Jørn H

    2016-08-19

    Visible-light photocatalyzed (VLPC) late-stage C-H functionalization is a powerful addition to the chemical synthesis toolkit. VLPC has a demonstrated potential for discovery of elusive and valuable transformations, particularly in functionalization of bioactive heterocycles. In order to fully harvest the potential of VLPC in the context of complex molecule synthesis, a thorough understanding of the elementary processes involved is crucial. This would enable more rational design of suitable reagents and catalysts, as well as prediction of activated C-H sites for functionalization. Such knowledge is essential when VLPC is to be employed in retrosynthetic analysis of complex molecules. Herein, we present a density functional theory (DFT) study of mechanistic details in the C-H functionalization of bioactive heterocycles exemplified by the methylation of the antifungal agent voriconazole. Moreover, we show that readily computed atomic charges can predict major site-selectivity in good agreement with experimental studies and thus be informative tools for the identification of active C-H functionalization sites in synthetic planning. PMID:27347684

  14. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  15. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  16. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  17. Silver-Free Palladium-Catalyzed sp(3) and sp(2) C-H Alkynylation Promoted by a 1,2,3-Triazole Amine Directing Group.

    PubMed

    Ye, Xiaohan; Xu, Chang; Wojtas, Lukasz; Akhmedov, Novruz G; Chen, Hao; Shi, Xiaodong

    2016-06-17

    Triazole amine was identified as an effective directing group in promoting C-H alkynylation under silver-free conditions. No other external oxidant was required, and the alkynylation products were received in good to excellent yields. X-ray crystallographic analysis confirmed a direct C-H activation intermediate. Other typical directing groups, including pyridine amine (PIP) and 8-aminoquinoline (QA), gave almost no reaction under identical conditions, which highlighted the unique reactivity of the triazole directing group in direct C-H functionalization. PMID:27267908

  18. Synthesis in the Key of Catellani: Norbornene-Mediated ortho C-H Functionalization

    NASA Astrophysics Data System (ADS)

    Martins, Andrew; Mariampillai, Brian; Lautens, Mark

    In the late 1990s Catellani reported a remarkable palladium-catalyzed domino reaction [1] in the presence of norbornene, in which aryl iodides were alkylated at the ortho positions by alkyl halides followed by a Mizoroki-Heck reaction to afford products of type 1 (Scheme 1) [2-4]. The process allowed for the construction of up to three carbon-carbon bonds in a single reaction using simple, commercially available starting materials. We called this process the Catellani reaction, and in the past decade considerable attention has been focused upon unlocking its synthetic potential. This review will primarily focus upon the mechanistic aspects of the Catellani reaction, followed by an overview of the synthetic scope of molecules currently accessible with this technology.

  19. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein.

    PubMed

    Laughlin, John D; Ha, Tal Soo; Jones, David N M; Smith, Dean P

    2008-06-27

    Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants. PMID:18585358

  20. Structure and VP16 binding of the Mediator Med25 activator interaction domain.

    PubMed

    Vojnic, Erika; Mourão, André; Seizl, Martin; Simon, Bernd; Wenzeck, Larissa; Larivière, Laurent; Baumli, Sonja; Baumgart, Karen; Meisterernst, Michael; Sattler, Michael; Cramer, Patrick

    2011-04-01

    Eukaryotic transcription is regulated by interactions between gene-specific activators and the coactivator complex Mediator. Here we report the NMR structure of the Mediator subunit Med25 (also called Arc92) activator interaction domain (ACID) and analyze the structural and functional interaction of ACID with the archetypical acidic transcription activator VP16. Unlike other known activator targets, ACID forms a seven-stranded β-barrel framed by three helices. The VP16 subdomains H1 and H2 bind to opposite faces of ACID and cooperate during promoter-dependent activated transcription in a in vitro system. The activator-binding ACID faces are functionally required and conserved among higher eukaryotes. Comparison with published activator structures reveals that the VP16 activation domain uses distinct interaction modes to adapt to unrelated target surfaces and folds that evolved for activator binding. PMID:21378965

  1. Friction mediated by redox-active supramolecular connector molecules.

    PubMed

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-01

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments. PMID:26367352

  2. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  3. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets.

    PubMed

    Carestia, Agostina; Kaufman, Tomás; Rivadeneyra, Leonardo; Landoni, Verónica Inés; Pozner, Roberto Gabriel; Negrotto, Soledad; D'Atri, Lina Paola; Gómez, Ricardo Martín; Schattner, Mirta

    2016-01-01

    In addition to being key elements in hemostasis and thrombosis, platelets amplify neutrophil function. We aimed to gain further insight into the stimuli, mediators, molecular pathways, and regulation of neutrophil extracellular trap formation mediated by human platelets. Platelets stimulated by lipopolysaccharide, a wall component of gram-negative bacteria, Pam3-cysteine-serine-lysine 4, a mimetic of lipopeptide from gram-positive bacteria, Escherichia coli, Staphylococcus aureus, or physiologic platelet agonists promoting neutrophil extracellular trap formation and myeloperoxidase-associated DNA activity under static and flow conditions. Although P-selectin or glycoprotein IIb/IIIa were not involved, platelet glycoprotein Ib, neutrophil cluster of differentiation 18, and the release of von Willebrand factor and platelet factor 4 seemed to be critical for the formation of neutrophil extracellular traps. The secretion of these molecules depended on thromboxane A(2) production triggered by lipopolysaccharide or Pam3-cysteine-serine-lysine 4 but not on high concentrations of thrombin. Accordingly, aspirin selectively inhibited platelet-mediated neutrophil extracellular trap generation. Signaling through extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, and Src kinases, but not p38 or reduced nicotinamide adenine dinucleotide phosphate oxidase, was involved in platelet-triggered neutrophil extracellular trap release. Platelet-mediated neutrophil extracellular trap formation was inhibited by prostacyclin. Our results support a role for stimulated platelets in promoting neutrophil extracellular trap formation, reveal that an endothelium-derived molecule contributes to limiting neutrophil extracellular trap formation, and highlight platelet inhibition as a potential target for controlling neutrophil extracellular trap cell death. PMID:26320263

  4. Neuroprotective Activity of (−)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity

    PubMed Central

    Liu, Jin-Biao; Zhou, Li; Wang, Yi-Zhong; Wang, Xu; Zhou, Yu; Ho, Wen-Zhe; Li, Jie-Liang

    2016-01-01

    Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders. PMID:27191001

  5. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101).

    PubMed

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F

    2013-09-14

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η(2) complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ∕mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η(2) and an η(1) ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption. PMID:24050357

  6. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101)

    NASA Astrophysics Data System (ADS)

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F.

    2013-09-01

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η2 complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ/mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η2 and an η1 ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  7. The mediational role of adolescents' friends in relations between activity breadth and adjustment.

    PubMed

    Simpkins, Sandra D; Eccles, Jacquelynne S; Becnel, Jennifer N

    2008-07-01

    This investigation addresses the mediational role of friends' characteristics between adolescents' activity breadth (i.e., variety in activity participation) and their later adjustment. Data were drawn from 2 longitudinal studies: the Childhood and Beyond (CAB; N = 925) study and the Maryland Adolescent Development in Context Study (MADICS; N = 1,338). Adolescents at Time 2 in each study (8th, 9th, and 11th graders in CAB and 8th graders in MADICS) reported on the breadth of their participation across 5 activity settings: sports, religious, volunteering, community, and school. Friends' characteristics and adolescent adjustment were reported by adolescents at Times 1 and 3. Friends' positive characteristics significantly mediated relations between activity breadth and adolescent depressive affect, self-worth, alcohol use, and problem behavior in both studies. Friends' negative characteristics significantly mediated these relations in CAB, but not in MADICS. PMID:18605836

  8. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.

    PubMed

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li2CO3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li2CO3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity. PMID:24950409

  9. The Mediational Role of Adolescents' Friends in Relations between Activity Breadth and Adjustment

    ERIC Educational Resources Information Center

    Simpkins, Sandra D.; Eccles, Jacquelynne S.; Becnel, Jennifer N.

    2008-01-01

    This investigation addresses the mediational role of friends' characteristics between adolescents' activity breadth (i.e., variety in activity participation) and their later adjustment. Data were drawn from 2 longitudinal studies: the Childhood and Beyond (CAB; N = 925) study and the Maryland Adolescent Development in Context Study (MADICS; N =…

  10. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling.

    PubMed

    Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-Ichi

    2016-07-13

    Electrochemical oxidation of toluene derivatives in the presence of a sulfilimine gave benzylaminosulfonium ions as stabilized benzyl cation pools, which reacted with subsequently added aromatic nucleophiles to give the corresponding cross-coupling products. The transformation serves as a powerful metal- and chemical-oxidant-free method for benzylic C-H/aromatic C-H cross-coupling. The method has been successfully applied to synthesis of TP27, an inhibitor of PTPase. PMID:27341676

  11. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase.

    PubMed Central

    Rodrigues, G A; Park, M

    1993-01-01

    Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed. Images PMID:8413267

  12. Parenting practices as mediators of child physical activity and weight status.

    PubMed

    Loprinzi, Paul D; Cardinal, Bradley J; Loprinzi, Kristina L; Lee, Hyo

    2012-01-01

    Understanding the environmental factors that influence children's physical activity is an important prerequisite before effective physical activity interventions can be developed and implemented. Parenting is one environmental factor that has been empirically shown to positively influence children's physical activity. However, in order to promote physical activity in children, a better understanding of how parents influence children's physical activity behavior is required. Previously, Birch and Davison developed a model depicting parental factors hypothesized to influence child dietary behaviors. We extended this model by identifying parental factors hypothesized to promote physical activity in children. This review focuses on the mediational role that parenting practices and behaviors play in influencing child mediators of physical activity behavior, and, ultimately, weight status. Priorities for future research are discussed. PMID:22797369

  13. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations. PMID:25915112

  14. Mediators Affecting Girls’ Levels of Physical Activity Outside of School: Findings from the Trial of Activity in Adolescent Girls

    PubMed Central

    Lytle, Leslie A.; Murray, David M.; Evenson, Kelly R.; Moody, Jamie; Pratt, Charlotte A.; Metcalfe, Lauve; Parra-Medina, Deborah

    2010-01-01

    Background Providing after school activities is a community level approach for reducing the decline in physical activity of girls as they reach early adolescence. Purpose The purpose of this study was to examine psychosocial, environmental, and behavioral factors as potential mediators of after school physical activity in adolescent girls. Methods We assessed objectively measured levels of physical activity occurring outside of school and potential predictors and mediators of activity in girls participating in the Trial of Activity in Adolescent Girls (TAAG). Results We found that the TAAG intervention had a statistically significant and positive effect on out of school activity in the 2006 cohort. Self-efficacy, friends’ social support, total social support, and difficulty getting to and from community activities mediated the level of moderate to vigorous physical activity in girls. Conclusions Parents, communities, and schools should provide and enhance opportunities outside of the school day for adolescents to be active. Reducing transportation barriers and enlisting social support appear to be key. PMID:20012810

  15. Disorder-mediated crowd control in an active matter system

    PubMed Central

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-01-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium. PMID:26956085

  16. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  17. Disorder-mediated crowd control in an active matter system

    NASA Astrophysics Data System (ADS)

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  18. Psychosocial mediators of group cohesion on physical activity intention of older adults.

    PubMed

    Caperchione, Cristina; Mummery, Kerry

    2007-01-01

    Considerable evidence has indicated that group-based physical activity may be a promising approach to reducing and preventing age-related illness. However, this research has not examined the mechanisms by which cohesion may impact on behaviour. The purpose of the present research was to utilise the theory of planned behaviour to investigate the mechanism by which group cohesion may affect physical activity intention. Participants were recruited from an existing physical activity intervention studying the effects of group cohesion on physical activity behaviour. The outcomes of this intervention are reported elsewhere. This paper presents data from a sub-sample of the intervention population (N=74) that examined the mediating relationships between the theory of planned behaviour and group cohesion on physical activity intention. Analyses showed that attitude and perceived behavioural control mediated the relationship between specific group cohesion concepts and physical activity intention. The direct measure of subjective norm failed to display a mediating relationship. The mediating relationships displayed between attitude and perceived behavioural control and physical activity intention provide insight into potential mechanisms by which group cohesion may affect behaviour. PMID:17129936

  19. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  20. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  1. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  2. Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic.

    PubMed

    Chen, Xinchun; Kato, Takahisa; Nosaka, Masataka

    2014-08-27

    Superlubricity of Si-containing hydrogenated amorphous carbon (a-C:H:Si) films has been systematically investigated in relation to the film bonding structure and the environmental atmosphere. Structural diversity induced by hydrogen incorporation (i.e., 17.3-36.7 at. % H), namely sp(2)-bonded a-C, diamond-like or polymer-like, and tribointeractions activated by the participation of environmental gaseous molecules mainly determine the frictional behaviors of a-C:H:Si films. A suitable control of hydrogen content in the film (i.e., the inherent hydrogen coverage) is obligate to obtain durable superlubricity in a distinct gaseous atmosphere such as dry N2, reactive H2 or humid air. Rapid buildup of running-in-induced antifriction tribolayers at the contact interface, which is more feasible in self-mated sliding, is crucial for achieving a superlubric state. Superior tribological performances have been observed for the polymer-like a-C:H:Si (31.9 at. % H) film, as this hydrogen-rich sample can exhibit superlow friction in various atmospheres including dry inert N2 (μ ∼ 0.001), Ar (μ ∼ 0.012), reactive H2 (μ ∼ 0.003) and humid air (μ ∼ 0.004), and can maintain ultralow friction in corrosive O2 (μ ∼ 0.084). Hydrogen is highlighted for its decisive role in obtaining superlow friction. The occurrence of superlubricity in a-C:H:Si films is generally attributed to a synergistic effect of phase transformation, surface passivation and shear localization, for instance, the near-frictionless state occurred in dry N2. The contribution of each mechanism to the friction reduction depends on the specific intrafilm and interfilm interactions along with the atmospheric effects. These antifriction a-C:H:Si films are promising for industrial applications as lubricants. PMID:25100259

  3. Self-Efficacy and Social Support as Mediators Between Culturally Specific Dance and Lifestyle Physical Activity

    PubMed Central

    Murrock, Carolyn J.; Madigan, Elizabeth

    2013-01-01

    Culturally specific dance has the potential to generate health benefits but is seldom used even among studies advocating culturally specific interventions. This study examined the components of self-efficacy and social support as mediators between culturally specific dance and lifestyle physical activity in African American women (N = 126). An experimental design compared intervention and control groups for mediating effects of self-efficacy and social support on lifestyle physical activity. Findings indicated that only outcome expectations and social support from friends mediated effects. Culturally specific dance is a first step in encouraging African American women to become more physically active and improve health outcomes. The implications are that culturally specific dance programs can improve health outcomes by including members of underserved populations. PMID:18763475

  4. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  5. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  6. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  7. MICROBIOLOGICALLY-MEDIATED MUTAGENIC ACTIVITY OF CRUDE OIL

    EPA Science Inventory

    Crude oil was incubated with raw and sterile river water samples and assayed for mutagenic activity by the Ames test to determine the ability of naturally-occurring freshwater microorganisms to form mutagenic biodegradation products from crude oil. River water samples supplemente...

  8. Metal-ligand multiple bonds as frustrated Lewis pairs for C-H functionalization.

    PubMed

    Whited, Matthew T

    2012-01-01

    The concept of frustrated Lewis pairs (FLPs) has received considerable attention of late, and numerous reports have demonstrated the power of non- or weakly interacting Lewis acid-base pairs for the cooperative activation of small molecules. Although most studies have focused on the use of organic or main-group FLPs that utilize steric encumbrance to prevent adduct formation, a related strategy can be envisioned for both organic and inorganic complexes, in which "electronic frustration" engenders reactivity consistent with both nucleophilic (basic) and electrophilic (acidic) character. Here we propose that such a description is consistent with the behavior of many coordinatively unsaturated transition-metal species featuring metal-ligand multiple bonds, and we further demonstrate that the resultant reactivity may be a powerful tool for the functionalization of C-H and E-H bonds. PMID:23209486

  9. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    SciTech Connect

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  10. Monoamine mediation of the morphine-induced activation of mice

    PubMed Central

    Carroll, Bernard J.; Sharp, Peter T.

    1972-01-01

    1. The dose-response relationship for hyperactivity in grouped mice following the injection of morphine sulphate has been established. 2. The activation response can be modified by drugs which affect either catecholamines or indoleamines. 3. The monoamine precursors L-DOPA and 5-hydroxytryptophan potentiate the response. 4. The monoamine synthesis inhibitors α-methyl-p-tyrosine and p-chlorophenylalanine reduce the response. 5. Inhibition of monoamine oxidase activity by pargyline caused a great increase in the response. The simultaneous administration of reserpine resulted in a further potentiation. 6. Reserpine blocked the response whenever it was given alone, either before, with or after the injection of morphine. 7. Blockade of α-adrenoceptors with phentolamine or phenoxybenzamine reduced the response. 8. Blockade of tryptaminergic receptors with methysergide or cinanserin also antagonized the response. 9. The major tranquillizers haloperidol and chlorpromazine reduced the response. Haloperidol was especially effective in this regard. 10. The tricyclic antidepressant drug imipramine potentiated the response. 11. The morphine antagonist nalorphine completely prevented the response. 12. The anticholinergic agent atropine and the antihistaminic drug mepyramine did not affect the response. 13. We conclude that dopamine, noradrenaline and 5-hydroxytryptamine are all involved in the normal activation response of grouped mice to morphine, with dopaminergic mechanisms being of primary importance. PMID:4263794

  11. Liposome-Mediated Cellular Delivery of Active gp91phox

    PubMed Central

    Marques, Bruno; Liguori, Lavinia; Paclet, Marie-Hélène; Villegas-Mendéz, Ana; Rothe, Romy; Morel, Françoise; Lenormand, Jean-Luc

    2007-01-01

    Background Gp91phox is a transmembrane protein and the catalytic core of the NADPH oxidase complex of neutrophils. Lack of this protein causes chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe and recurrent infections due to the incapacity of phagocytes to kill microorganisms. Methodology Here we optimize a prokaryotic cell-free expression system to produce integral mammalian membrane proteins. Conclusions Using this system, we over-express truncated forms of the gp91phox protein under soluble form in the presence of detergents or lipids resulting in active proteins with a “native-like” conformation. All the proteins exhibit diaphorase activity in the presence of cytosolic factors (p67phox, p47phox, p40phox and Rac) and arachidonic acid. We also produce proteoliposomes containing gp91phox protein and demonstrate that these proteins exhibit activities similar to their cellular counterpart. The proteoliposomes induce rapid cellular delivery and relocation of recombinant gp91phox proteins to the plasma membrane. Our data support the concept of cell-free expression technology for producing recombinant proteoliposomes and their use for functional and structural studies or protein therapy by complementing deficient cells in gp91phox protein. PMID:17848987

  12. IRE1α mediates PKR activation in response to Chlamydia trachomatis infection.

    PubMed

    Webster, Steve J; Ellis, Lou; O'Brien, Louise M; Tyrrell, Beatrice; Fitzmaurice, Timothy J; Elder, Matthew J; Clare, Simon; Chee, Ronnie; Gaston, J S Hill; Goodall, Jane C

    2016-01-01

    Protein kinase RNA activated (PKR) is a crucial mediator of anti-viral responses but is reported to be activated by multiple non-viral stimuli. However, mechanisms underlying PKR activation, particularly in response to bacterial infection, remain poorly understood. We have investigated mechanisms of PKR activation in human primary monocyte-derived dendritic cells in response to infection by Chlamydia trachomatis. Infection resulted in potent activation of PKR that was dependent on TLR4 and MyD88 signalling. NADPH oxidase was dispensable for activation of PKR as cells from chronic granulomatous disease (CGD) patients, or mice that lack NADPH oxidase activity, had equivalent or elevated PKR activation. Significantly, stimulation of cells with endoplasmic reticulum (ER) stress-inducing agents resulted in potent activation of PKR that was blocked by an inhibitor of IRE1α RNAse activity. Crucially, infection resulted in robust IRE1α RNAse activity that was dependent on TLR4 signalling and inhibition of IRE1α RNAse activity prevented PKR activation. Finally, we demonstrate that TLR4/IRE1α mediated PKR activation is required for the enhancement of interferon-β production following C. trachomatis infection. Thus, we provide evidence of a novel mechanism of PKR activation requiring ER stress signalling that occurs as a consequence of TLR4 stimulation during bacterial infection and contributes to inflammatory responses. PMID:27021640

  13. Genome-wide siRNA screen for mediators of NF-κB activation

    PubMed Central

    Gewurz, Benjamin E.; Towfic, Fadi; Mar, Jessica C.; Shinners, Nicholas P.; Takasaki, Kaoru; Zhao, Bo; Cahir-McFarland, Ellen D.; Quackenbush, John; Xavier, Ramnik J.; Kieff, Elliott

    2012-01-01

    Although canonical NFκB is frequently critical for cell proliferation, survival, or differentiation, NFκB hyperactivation can cause malignant, inflammatory, or autoimmune disorders. Despite intensive study, mammalian NFκB pathway loss-of-function RNAi analyses have been limited to specific protein classes. We therefore undertook a human genome-wide siRNA screen for novel NFκB activation pathway components. Using an Epstein Barr virus latent membrane protein (LMP1) mutant, the transcriptional effects of which are canonical NFκB-dependent, we identified 155 proteins significantly and substantially important for NFκB activation in HEK293 cells. These proteins included many kinases, phosphatases, ubiquitin ligases, and deubiquinating enzymes not previously known to be important for NFκB activation. Relevance to other canonical NFκB pathways was extended by finding that 118 of the 155 LMP1 NF-κB activation pathway components were similarly important for IL-1β–, and 79 for TNFα–mediated NFκB activation in the same cells. MAP3K8, PIM3, and six other enzymes were uniquely relevant to LMP1-mediated NFκB activation. Most novel pathway components functioned upstream of IκB kinase complex (IKK) activation. Robust siRNA knockdown effects were confirmed for all mRNAs or proteins tested. Although multiple ZC3H-family proteins negatively regulate NFκB, ZC3H13 and ZC3H18 were activation pathway components. ZC3H13 was critical for LMP1, TNFα, and IL-1β NFκB-dependent transcription, but not for IKK activation, whereas ZC3H18 was critical for IKK activation. Down-modulators of LMP1 mediated NFκB activation were also identified. These experiments identify multiple targets to inhibit or stimulate LMP1-, IL-1β–, or TNFα–mediated canonical NFκB activation. PMID:22308454

  14. Rh- and Cu-Cocatalyzed Aerobic Oxidative Approach to Quinazolines via [4 + 2] C-H Annulation with Alkyl Azides.

    PubMed

    Wang, Xiaoyang; Jiao, Ning

    2016-05-01

    A novel and efficient rhodium- and copper-co-catalyzed C-H bond activation and annulation for the construction of bioactively important quinazolines has been developed. This [4 + 2] annulation strategy utilizing alkyl azides as the carbon-heteroatom synthons shows high efficiency in the synthesis of six-membered benzoheterocycles containing two heteroatoms. This aerobic oxidative protocol provides a useful application of simple alkyl azides in N-heterocycle synthesis with N2 and H2O as byproducts. PMID:27081916

  15. Tandem Rh(III)-Catalyzed C-H Amination/Annulation Reactions: Synthesis of Indoloquinoline Derivatives in Water.

    PubMed

    Shi, Liangliang; Wang, Baiquan

    2016-06-17

    An efficient Rh(III)-catalyzed synthetic method for indoloquinoline derivatives from readily available indoles and isoxazoles was developed. This annulation procedure undergoes tandem C-H activation, cyclization, and condensation steps. In this domino cyclization reaction, water is an efficient solvent. A catalytically competent five-membered rhodacycle has been isolated and characterized, thus revealing a key intermediate in the catalytic cycle. PMID:27266834

  16. Pd-catalyzed benzylic C-H amidation with benzyl alcohols in water: a strategy to construct quinazolinones.

    PubMed

    Hikawa, Hidemasa; Ino, Yukari; Suzuki, Hideharu; Yokoyama, Yuusaku

    2012-08-17

    A novel method for the synthesis of 4-phenylquinazolinones via a palladium-catalyzed domino reaction of o-aminobenzamides with benzyl alcohols is developed. This protocol involves N-benzylation, benzylic C-H amidation, and dehydrogenation in water, which may play an important role in the smooth generation of the (η(3)-benzyl)palladium species by activation of the hydroxyl group of the benzyl alcohol. PMID:22852777

  17. Activity and specificity of TRV-mediated gene editing in plants

    PubMed Central

    Ali, Zahir; Abul-faraj, Aala; Piatek, Marek; Mahfouz, Magdy M

    2015-01-01

    Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes. PMID:26039254

  18. Activity and specificity of TRV-mediated gene editing in plants.

    PubMed

    Ali, Zahir; Abul-Faraj, Aala; Piatek, Marek; Mahfouz, Magdy M

    2015-01-01

    Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes. PMID:26039254

  19. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy. PMID:24336030

  20. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    PubMed

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  1. Effects of CYP7B1-mediated catalysis on estrogen receptor activation.

    PubMed

    Pettersson, Hanna; Lundqvist, Johan; Norlin, Maria

    2010-09-01

    Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action. PMID:20553962

  2. Platelet activating factor as a mediator of equine cell locomotion.

    PubMed

    Dawson, J; Lees, P; Sedgwick, A D

    1988-01-01

    Equine polymorphonuclear (PMN) and mononuclear (MN) leucocytes were separated on Percoll gradients and used to study the chemoattractant properties of the polar ether-linked phospholipid, platelet activating factor (PAF). Six concentrations of PAF ranging from 1 ng/ml to 100 micrograms/ml were studied in each of two in vitro assay systems, the agarose microdroplet and a microfilter technique. Very significant (p less than 0.01) increases in the movement of both PMN and MN cells were obtained with most concentrations of PAF. In two instances there was no apparent concentration-response relationship, although the action of PAF was approximately bell-shaped in two others. The possible significance of these findings for equine inflammatory conditions is discussed. PMID:3188378

  3. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    PubMed

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds

  4. A Highly Selective Vanadium Catalyst for Benzylic C-H Oxidation.

    PubMed

    Xia, Ji-Bao; Cormier, Kevin W; Chen, Chuo

    2012-01-01

    Vanadium complexes have been used extensively to catalyze olefin and alcohol oxidation. However, their application in C-H oxidation has not been well-studied. We report herein that commercially available Cp(2)VCl(2) catalyzes benzylic C-H oxidation selectively and effectively, giving no aromatic oxidation products. PMID:22712051

  5. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  6. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst

    NASA Astrophysics Data System (ADS)

    Toutov, Anton A.; Liu, Wen-Bo; Betz, Kerry N.; Fedorov, Alexey; Stoltz, Brian M.; Grubbs, Robert H.

    2015-02-01

    Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.

  7. Catalytic activity of allamanda mediated phytosynthesized anisotropic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gangwar, Rajesh K.; Dhumale, Vinayak A.; Gosavi, S. W.; Sharma, Rishi B.; Datar, Suwarna S.

    2013-12-01

    A simple and eco-friendly method has been developed for the synthesis of gold nanoparticles using allamanda flower extract. In this green synthesis method, chloroauric acid (HAuCl4) solution was reduced with the help of allamanda flower extract. The synthesized gold nanoparticles were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and x-ray diffraction technique for their morphological and structural analysis. The size of the spherical and triangular gold nanoparticles was found to be in the range of 5-40 and 20-70 nm, respectively. The x-ray diffraction analysis revealed that the crystallite size of face-centered cubic (FCC) gold nanoparticles was ˜ 11 nm. These synthesized gold nanoparticles exhibit good catalytic activity towards the reduction of H2O2. The fabricated sensor exhibits good sensitivity of 21.33 μA mM-1 cm-2 with linear relationship (R2 = 0.996) in the range from 2 to 10 mM of H2O2 concentration. This work can be extended further for potential applications such as antimicrobial studies, bio-imaging and drug-delivery owing to the known properties of the allamanda flower extract.

  8. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity.

    PubMed

    Lee, Jeong-Ho; Lim, Jeong-Muk; Velmurugan, Palanivel; Park, Yool-Jin; Park, Youn-Jong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    We present the simple, eco-friendly synthesis of silver nanoparticles (AgNPs) using sunlight or green, red, blue, or white LED light together with Dryopteris crassirhizoma rhizome extract (DCRE) as the reducing and capping agent. The preliminary indication of AgNP production was a color change from yellowish green to brown after light exposure in the presence of DCRE. Optimization of parameters such as pH, inoculum dose, and metal ion concentration played an important role in achieving nanoparticle production in 30min. The spectroscopic and morphological properties of AgNPs were characterized using UV-Vis spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs, Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The FT-IR results indicated that the phytochemical present in DCRE was the probable reducing/capping agent involved in the synthesis of AgNPs, and light radiation enhanced nanoparticle production. HR-TEM revealed that the AgNPs were almost spherical with an average size of 5-60nm under all light sources. XRD studies confirmed the face cubic center (fcc) unit cell structure of AgNPs. The synthesized AgNPs showed good antimicrobial activity against Bacillus cereus and Pseudomonas aeruginosa. This study will bring a new insight in ecofriendly production of metal nanoparticles. PMID:27348063

  9. Double C-H functionalization in sequential order: direct synthesis of polycyclic compounds by a palladium-catalyzed C-H alkenylation-arylation cascade.

    PubMed

    Ohno, Hiroaki; Iuchi, Mutsumi; Kojima, Naoto; Yoshimitsu, Takehiko; Fujii, Nobutaka; Tanaka, Tetsuaki

    2012-04-23

    Palladium-catalyzed cascade C-H alkenylation and arylation provides convenient access to polycyclic aromatic compounds. Treatment of 3-bromoaniline derivatives bearing a bromocinnamyl group on the nitrogen atom with a catalytic amount of [Pd(OAc)(2)] and PCy(3)·HBF(4) in the presence of Cs(2)CO(3) in dioxane affords naphthalene-fused indole derivatives in good yields. This double cyclization reaction is also applicable to heterocyclic substrates, giving fused indoles containing a heteroaromatic ring such as dibenzofuran, dibenzothiophene, carbazole, indole, or benzofuran through heterocyclic C-H arylation. When using a 2,6-unsubstituted aniline derivative, the first C-H arylation preferentially proceeds at the more hindered position of the aniline ring. PMID:22422703

  10. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein

    PubMed Central

    Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.

    2015-01-01

    Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356

  11. Protease Activated Receptor-1 (PAR-1) Mediated Platelet Aggregation is Dependant on Clopidogrel Response

    PubMed Central

    Kreutz, Rolf P.; Breall, Jeffrey A.; Kreutz, Yvonne; Owens, Janelle; Lu, Deshun; Bolad, Islam; von der Lohe, Elisabeth; Sinha, Anjan; Flockhart, David A.

    2012-01-01

    Introduction Clopidogrel inhibits ADP mediated platelet aggregation through inhibition of the P2Y12 receptor by its active metabolite. Thrombin induces platelet aggregation by binding to protease activated receptor-1 (PAR-1), and inhibition of PAR-1 has been evaluated in patients treated with clopidogrel to reduce ischemic events after acute coronary syndromes. Residual PAR-1 mediated platelet aggregation may be dependent on extent of clopidogrel response. Material and Methods Platelet aggregation was measured in 55 patients undergoing elective PCI at 16-24 hours after 600mg clopidogrel loading dose by light transmittance aggregometry using ADP 20μM and thrombin receptor agonist peptide (TRAP) at 15 μM and 25 μM as agonists. Genomic DNA was genotyped for common CYP2C19 variants. Results Increasing quartiles of 20 μM ADP induced platelet aggregation after clopidogrel loading were associated with increasing levels of TRAP mediated platelet aggregation. Patients in the highest quartile (clopidogrel non-responders) of post treatment ADP aggregation had significantly higher TRAP mediated aggregation than the patients in the lowest quartile (clopidogrel responders) [TRAP 15 μM: 79.6±5% vs. 69.5±8%, p<0.001]. Conclusions Non-responders to clopidogrel show increased residual platelet aggregation induced by TRAP, whereas clopidogrel responders exhibit attenuated response to TRAP. Addition of PAR-1 antiplatelet drugs may be most effective in patients with reduced clopidogrel response and high residual TRAP mediated platelet aggregation. PMID:22459907

  12. Physical activity and metabolic risk among US youth: Mediation by obesity [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity has been inversely associated with metabolic risk, although pediatric studies are limited. It has been hypothesized that obesity mediates this relationship. Some studies reported that waist circumference (WC) is more highly related to metabolic risk than BMI, and may be a better me...

  13. T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex.

    PubMed

    Hertweck, Arnulf; Evans, Catherine M; Eskandarpour, Malihe; Lau, Jonathan C H; Oleinika, Kristine; Jackson, Ian; Kelly, Audrey; Ambrose, John; Adamson, Peter; Cousins, David J; Lavender, Paul; Calder, Virginia L; Lord, Graham M; Jenner, Richard G

    2016-06-21

    The transcription factor T-bet directs Th1 cell differentiation, but the molecular mechanisms that underlie this lineage-specific gene regulation are not completely understood. Here, we show that T-bet acts through enhancers to allow the recruitment of Mediator and P-TEFb in the form of the super elongation complex (SEC). Th1 genes are occupied by H3K4me3 and RNA polymerase II in Th2 cells, while T-bet-mediated recruitment of P-TEFb in Th1 cells activates transcriptional elongation. P-TEFb is recruited to both genes and enhancers, where it activates enhancer RNA transcription. P-TEFb inhibition and Mediator and SEC knockdown selectively block activation of T-bet target genes, and P-TEFb inhibition abrogates Th1-associated experimental autoimmune uveitis. T-bet activity is independent of changes in NF-κB RelA and Brd4 binding, with T-bet- and NF-κB-mediated pathways instead converging to allow P-TEFb recruitment. These data provide insight into the mechanism through which lineage-specifying factors promote differentiation of alternative T cell fates. PMID:27292648

  14. Mediated Effects of Perceived Competence on Youth Physical Activity and Sedentary Behavior

    ERIC Educational Resources Information Center

    Bai, Yang; Chen, Senlin; Vazou, Spyridoula; Welk, Gregory J.; Schaben, Jodee

    2015-01-01

    Purpose: This study evaluates whether physical activity (PA) and sedentary behavior (SB) are influenced by a common mediating relationship. Method: A total of 1,552 participants in 3rd to 12th grade completed an online survey that included assessments of PA at school (PAS), PA at home (PAH), and SB as well as a battery of psychosocial variables…

  15. Situated Uses of ICT and Mediation of Joint Activity in a Primary Education Instructional Sequence

    ERIC Educational Resources Information Center

    Coll, Cesar; Rochera, Maria J.; Colomina, Rosa

    2010-01-01

    Introduction: From a socioconstructivist and situated perspective of teaching and learning processes, the authors analyze how one teacher and her group of 19 sixth-grade pupils use ICT. The study focuses on the way these tools mediate their activity, and evaluates the tools' potential for teaching and learning innovation. Method: A case study…

  16. Activity Theory and Technology Mediated Interaction: Cognitive Scaffolding Using Question-Based Consultation on "Facebook"

    ERIC Educational Resources Information Center

    Rambe, Patient

    2012-01-01

    Studies that employed activity theory as a theoretical lens for exploring computer-mediated interaction have not adopted social media as their object of study. However, social media provides lecturers with personalised learning environments for diagnostic and prognostic assessments of student mastery of content and deep learning. The integration…

  17. Lysozyme-mediated biomineralization of titanium-tungsten oxide hybrid nanoparticles with high photocatalytic activity.

    PubMed

    Kim, Jung Kyu; Jang, Ji-ryang; Choi, Noori; Hong, Dahyun; Nam, Chang-Hoon; Yoo, Pil J; Park, Jong Hyeok; Choe, Woo-Seok

    2014-10-21

    Titanium-tungsten oxide composites with greatly enhanced photocatalytic activity were synthesized by lysozyme-mediated biomineralization. It was shown for the first time that simple control of the onset of biomineralization could enable fine tuning of the composition and crystallinity of the composites to determine their photocatalytic performance. PMID:25188309

  18. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  19. Erosion of a-C:H films deposited on W, Mo, and stainless steel under interaction with air glow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2011-08-01

    An air direct current glow discharge with a hollow cathode was used as source of chemically active oxygen for selective removal of amorphous hydrogenated (a-C:H) films deposited on W, Mo, and stainless steel. The films were removed both directly in the discharge and afterglow region. The film erosion rates depend on the sample position relatively to plasma and decrease in the order: hollow cathode, positive column, afterglow region. It was shown that primary (1-3 nm) continuous amorphous and secondary (1-30 nm) island-like oxide films were formed on the metal surfaces after removal of the a-C:H films. Polycrystalline island-like oxide films were generated due to recrystallization of the primary films. Material oxidation suppression was caused by reactions of oxygen ion neutralization and atomic oxygen recombination on metals.

  20. Ortho-Functionalized Aryltetrazines by Direct Palladium-Catalyzed C-H Halogenation: Application to Fast Electrophilic Fluorination Reactions.

    PubMed

    Testa, Christelle; Gigot, Élodie; Genc, Semra; Decréau, Richard; Roger, Julien; Hierso, Jean-Cyrille

    2016-04-25

    A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho-functionalized aryltetrazines which are difficult to obtain by classical Pinner-like syntheses. PMID:27010438

  1. Thermal Dehydrogenation of Base-Stabilized B2H5(+) Complexes and Its Role in C-H Borylation.

    PubMed

    Prokofjevs, Aleksandrs

    2015-11-01

    Thermally induced dehydrogenation of the H-bridged cation L2B2H5(+) (L=Lewis base) is proposed to be the key step in the intramolecular C-H borylation of tertiary amine boranes activated with catalytic amounts of strong "hydridophiles". Loss of H2 from L2B2H5(+) generates the highly reactive cation L2B2H3(+), which in its sp(2)-sp(3) diborane(4) form then undergoes either an intramolecular C-H insertion with B-B bond cleavage, or captures BH3 to produce L2B3H6(+). The effect of the counterion stability on the outcome of the reaction is illustrated by formation of LBH2C6F5 complexes through disproportionation of L2B2H5(+) HB(C6F5)3(-) . PMID:26377358

  2. Organized Activities During High School and Adjustment One Year Post High School: Identifying Social Mediators.

    PubMed

    Viau, Annie; Denault, Anne-Sophie; Poulin, François

    2015-08-01

    This longitudinal study investigated social capital as a way through which youths' organized activities promote their future adjustment. Specifically, we examined social mediators of the associations between intensity, duration, and breadth of participation from age 14 to 17 and adjustment at age 18. Two social mediators were tested: support from the activity leader and social integration into the activity peer group. In addition, we examined how these mediation effects vary across gender. The sample consisted of 228 French Canadian adolescents (65 % girls). Youths were surveyed yearly from age 12 to 18. Controlling for prior adjustment at age 12, greater duration of participation from age 14 to 17 was associated with lower problematic alcohol use and higher civic engagement at age 18 through support from the activity leader. In addition, for boys only, greater duration of participation was associated with fewer subsequent depressive symptoms through social integration into the activity peer group. Overall, our results suggest that sustained participation allows youths to develop positive social experiences within organized activities, which, in turn, promote their future adjustment. Moreover, boys might benefit more from social experiences in organized activities than girls, at least with respect to depressive symptoms. PMID:25404238

  3. Fibrinogen blocks the autoactivation and thrombin-mediated activation of factor XI on dextran sulfate.

    PubMed Central

    Scott, C F; Colman, R W

    1992-01-01

    The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation. PMID:1454798

  4. Mechanisms of some hydrogen-transfer reactions: temperature dependence of the kinetic isotope effect and intramolecular C-H insertion: synthesis of (+/-)-pentalenolactone E methyl ester

    SciTech Connect

    Schuchardt, J.L.

    1985-01-01

    The mechanisms of three familiar organic hydrogen transfer reactions have been investigated by a study of the temperature dependence of the kinetic isotope effect. The Oppenauer oxidation of benzhydrol to benzophenone resulted in relatively small isotope effects (k/sub H//k/sub D/ = 2.3 10/sup 0/C), which are consistent with either a linear, unsymmetrical or a nonlinear H-transfer. The temperature dependence of k/sub H//k/sub D/ is in doubt due to an unanticipated isotopic scrambling effect. The Grignard reduction of benzophenone by isobutylmagnesium bromide shows significant temperature dependence of the kinetic isotope effect. The less-than-maximum isotope effects and activation energy difference suggest an unsymmetrical linear H-transfer mechanism. There is no evidence of tunneling in either the Oppenauer oxidation of the Grignard reduction with the system investigated. The reduction of benzyl bromide by tri-n-butyltin hydride gives temperature-dependent isotope effects and activation parameters consistent with an unsymmetrical linear H-transfer. The results for cyclohexyl bromide were less illuminating. (+/-)-Pentalenolactone E methyl ester was synthesized in 12 steps from 4,4-dimethylcyclohexanone. Disconnection of the target molecule at a unveils substantial molecular symmetry. The key to the analysis is the synthetic step which allows bond formation to an unfunctionalized carbon atom. The key step, rhodium-mediated intramolecular C-H insertion successfully generated the tricyclic skeleton of pentalenolactone via a sterically congested transition state.

  5. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  6. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators

    PubMed Central

    Wei, Shu; Zou, Qingjian; Lai, Sisi; Zhang, Quanjun; Li, Li; Yan, Quanmei; Zhou, Xiaoqing; Zhong, Huilin; Lai, Liangxue

    2016-01-01

    The recently emerged CRISPR/Cas9 technique has opened a new perspective on readily editing specific genes. When combined with transcription activators, it can precisely manipulate endogenous gene expression. Here, we enhanced the expression of endogenous Cdx2 and Gata6 genes by CRISPR-mediated activators, thus mouse embryonic stem cells (ESCs) were directly converted into two extraembryonic lineages, i.e., typical trophoblast stem cells (TSCs) and extraembryonic endoderm cells (XENCs), which exhibited characters of TSC or XENC derived from the blastocyst extraembryonic lineages such as cell morphology, specific gene expression, and differentiation ability in vitro and in vivo. This study demonstrates that the cell fate can be effectively manipulated by directly activating of specific endogenous gene expression with CRISPR-mediated activator. PMID:26782778

  7. Up-scaling the production of modified a-C:H coatings in the framework of plasma polymerization processes

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2009-10-01

    Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m 3) and a large-scale (1 m 3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF - small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2-5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/ F vs. ( W/ F) -1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/ F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.

  8. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery

    PubMed Central

    Hung, Michelle E.; Leonard, Joshua N.

    2016-01-01

    Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) – gesicles – we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of

  9. Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension.

    PubMed

    Kovacs, Laszlo; Han, Weihong; Rafikov, Ruslan; Bagi, Zsolt; Offermanns, Stefan; Saido, Takaomi C; Black, Stephen M; Su, Yunchao

    2016-03-01

    Calpain mediates collagen synthesis and cell proliferation and plays an important role in pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). In the present study, we investigated whether and how calpain is activated by PAH mediators in pulmonary artery smooth muscle cells (PASMCs). These data show that smooth muscle-specific knockout of calpain attenuated and knockout of calpastatin potentiated pulmonary vascular remodeling and pulmonary hypertension. Treatment of PASMCs with the PAH mediators platelet-derived growth factor (PDGF), serotonin, H2O2, endothelin-1, and IL-6 caused significant increases in calpain activity, cell proliferation, and collagen-I protein level without changes in protein levels of calpain-1 and -2. The calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA/AM) did not affect calpain activation, but the extracellular signal-regulated kinase (ERK) 1/2 inhibitor PD98059 and knocking down of calpain-2 prevented calpain activation in PAH mediator-treated PASMCs. Mass spectrometry data showed that the phosphorylation of calpain-2 at serine (Ser) 50 was increased and the phosphorylation of calpain-2 at Ser369 was decreased in PDGF-treated PASMCs. The PDGF-induced increase in Ser50 phosphorylation of calpain-2 was prevented by PD98059, whereas dephosphorylation of calpain-2 at Ser369 was blocked by the protein phosphatase 2A inhibitor fostriecin. Furthermore, smooth muscle of pulmonary arteries in PAH animal models and patients with PAH showed higher levels of phospho-Ser50-calpain-2 (P-Ser50) and lower levels of phospho-Ser369-calpain-2 (P-Ser369). These data support that calpain modulates pulmonary vascular remodeling in PAH. PAH mediator-induced activation of calpain is caused by ERK1/2-dependent phosphorylation of calpain-2 at Ser50 and protein phosphatase 2A-dependent dephosphorylation of calpain-2 at Ser369 in pulmonary vascular remodeling of PAH. PMID:26248159

  10. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. PMID:26546608

  11. Iridium-bipyridine periodic mesoporous organosilica catalyzed direct C-H borylation using a pinacolborane.

    PubMed

    Maegawa, Yoshifumi; Inagaki, Shinji

    2015-08-01

    Heterogeneous catalysis for direct C-H borylation of arenes and heteroarenes in the combination of iridium (Ir) complex fixed on periodic mesoporous organosilica containing bipyridine ligands within the framework (Ir-BPy-PMO) and pinacolborane (HBpin) is reported. Ir-BPy-PMO showed higher catalytic activity toward the borylation of benzene with inexpensive HBpin compared to expensive bis(pinacolato)diboron (B2pin2). The precatalyst could be handled without the use of a glove box. The catalyst was easily recovered from reaction mixtures by simple filtration under air. The recovered catalyst still showed good catalytic activity for at least three more times for the borylation of benzene. A variety of arenes and heteroarenes were successfully borylated with high boron efficiency by Ir-BPy-PMO using HBpin, whereas almost no activity was observed for borylation of some heteroarenes with B2pin2. The system using Ir-BPy-PMO and HBpin was also utilized in syntheses of multi-boronated thiophene-based building blocks containing ladder-, acenefused-, and fused-thiophene skeletons. The combination of a stable and reusable solid catalyst and inexpensive HBpin is expected to be superior to conventional approaches for the development of industrial applications. PMID:25748945

  12. Unexpected cyclization of tritylamines promoted by copper salt through C-H and C-N bond cleavages to produce acridine derivatives.

    PubMed

    Morioka, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-09-26

    Herein, we demonstrate that tritylamines undergo an unprecedented copper-mediated cyclization involving the cleavages of two C-H bonds and one C-N bond to give 9-arylacridine derivatives. This kind of acridines is of interest due to their biological properties and their unique optical and electro- and photochemical properties. Some of obtained acridine derivatives exhibit intense fluorescence in the solid state. PMID:25196267

  13. Methamphetamine inhibits Toll-like receptor 9-mediated anti-HIV activity in macrophages.

    PubMed

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin; Liang, Hao; Ho, Wen-Zhe

    2013-08-01

    Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  14. Resistance of LPS-activated bone marrow derived macrophages to apoptosis mediated by dexamethasone

    PubMed Central

    Haim, Yasmin Ohana; Unger, Naamit Deshet; Souroujon, Miriam C.; Mittelman, Moshe; Neumann, Drorit

    2014-01-01

    Glucocorticoids (GC) display pleiotropic effects on the immune system. Macrophages are a major target for GC action. Here we show that dexamethasone (DEX), a synthetic GC, decreased viability of naïve bone marrow-derived macrophages (BMDM), involving an apoptotic mechanism. Administration of DEX together with lipopolysaccharide (LPS) protected BMDM against DEX-mediated cell death, suggesting that activated BMDM respond to DEX differently than naïve BMDM. An insight to the molecular basis of LPS actions was provided by a 7 fold increase in mRNA levels of glucocorticoid receptor beta (GRβ), a GR dominant-negative splice variant which inhibits GRα's transcriptional activity. LPS did not inhibit all DEX-mediated effects on BMDM; DEX significantly reduced the percentage of BMDM expressing high levels of the cell surface markers F4/80 and CD11b and led to a decrease in macrophage inflammatory protein 1 alpha (MIP1-α) mRNA and protein levels. These two DEX-mediated effects were not prevented by LPS. Our finding that LPS did not reduce the DEX-induced elevation of glucocorticoid-induced leucine zipper (GILZ), a mediator of GCs anti-inflammatory actions, may provide an underlying mechanism. These findings enable a better understanding of clinical states, such as sepsis, in which macrophages are activated by endotoxins and treatment by GCs is considered. PMID:24608810

  15. Protease activated receptor-1 regulates macrophage-mediated cellular senescence: a risk for idiopathic pulmonary fibrosis

    PubMed Central

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR-1-mediated idiopathic pulmonary fibrosis. The number of macrophages were significantly reduced in lungs of PAR-1 antagonist (P1pal-12) treated animals upon bleomycin instillation. In line with these data, PAR-1 stimulation increased monocyte/macrophage recruitment in response to epithelium injury in in vitro trans-well assays. Moreover, macrophages induced fibroblasts migration, differentiation and secretion of collagen, which were inhibited in the presence of TGF-β receptor inhibitors. Interestingly, these profibrotic effects were partially inhibited by treatment with the PAR-1 inhibitor P1pal-12. Using shRNA mediated PAR-1 knock down in fibroblasts, we demonstrate that fibroblast PAR-1 contributes to TGF-β activation and production. Finally, we show that the macrophage-dependent induction of PAR-1 driven TGF-β activation was mediated by FXa. Our data identify novel mechanisms by which PAR-1 stimulation on different cell types can contribute to IPF and identify macrophages as key players in PAR-1 dependent development of this devastating disease. IPF may result from cellular senescence mediated by macrophages in the lung. PMID:26474459

  16. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  17. Estrogen Attenuates Ischemic Oxidative Damage via an ERα-Mediated Inhibition of NADPH Oxidase Activation

    PubMed Central

    Zhang, Quan-Guang; Raz, Limor; Wang, Ruimin; Han, Dong; De Sevilla, Liesl; Yang, Fang; Vadlamudi, Ratna K.; Brann, Darrell W.

    2009-01-01

    The goal of this study was to elucidate the mechanisms of 17β-estradiol (E2) antioxidant and neuroprotective actions in stroke. The results reveal a novel extranuclear receptor-mediated antioxidant mechanism for E2 during stroke, as well as a hypersensitivity of the CA3/CA4 region to ischemic injury after prolonged hypoestrogenicity. E2 neuroprotection was shown to involve a profound attenuation of NADPH oxidase activation and superoxide production in hippocampal CA1 pyramidal neurons after stroke, an effect mediated by extranuclear ERα-mediated nongenomic signaling, involving Akt activation and subsequent phosphorylation/inactivation of Rac1, a factor critical for activation of NOX2 NADPH oxidase. Intriguingly, E2 nongenomic signaling, antioxidant action and neuroprotection in the CA1 region were lost after long-term E2 deprivation; and this loss was tissue-specific, as the uterus remained responsive to E2. Correspondingly, a remarkable loss of ERα, but not ERβ, was observed in the CA1 following long-term E2 deprivation, with no change observed in the uterus. As a whole, the study reveals a novel, membrane-mediated antioxidant mechanism in neurons by E2, provides support and mechanistic insights for a “critical period” of E2 replacement in the hippocampus, and demonstrates a heretofore unknown hypersensitivity of the CA3/CA4 to ischemic injury after prolonged hypoestrogenicity. PMID:19889994

  18. Self-Management Strategies Mediate Self-Efficacy and Physical Activity

    PubMed Central

    Dishman, Rod K.; Motl, Robert W.; Sallis, James F.; Dunn, Andrea L.; Birnbaum, Amanda S.; Welk, Greg J.; Bedimo-Rung, Ariane L.; Voorhees, Carolyn C.; Jobe, Jared B.

    2008-01-01

    Background Self-efficacy theory proposes that girls who have confidence in their capability to be physically active will perceive fewer barriers to physical activity or be less influenced by them, be more likely to pursue perceived benefits of being physically active, and be more likely to enjoy physical activity. Self-efficacy is theorized also to influence physical activity through self-management strategies (e.g., thoughts, goals, plans, and acts) that support physical activity, but this idea has not been empirically tested. Methods Confirmatory factor analysis was used to test the factorial validity of a measure of self-management strategies for physical activity. Next, the construct validity of the measure was tested by examining whether self-management strategies mediated the relationship between self-efficacy and self-reported physical activity, independently of several social-cognitive variables (i.e., perceived barriers, outcome expectancy value, and enjoyment), among cross-sectional samples of 6th grade (n =309) and 8th grade (n =296) girls tested between February 14 and March 17, 2002. Data were analyzed in 2004. Results Consistent with theory, self-efficacy had direct effects on the social-cognitive variables. The primary novel finding is that self-management strategies mediated the association of self-efficacy with physical activity in both samples. Conclusions The measure of self-management strategies for physical activity yields valid scores among adolescent girls and warrants experimental study as a mediator of the influence of efficacy beliefs on physical activity. PMID:15958246

  19. Resistance to anticancer drugs in NIH3T3 cells transfected with c-myc and/or c-H-ras genes.

    PubMed Central

    Niimi, S.; Nakagawa, K.; Yokota, J.; Tsunokawa, Y.; Nishio, K.; Terashima, Y.; Shibuya, M.; Terada, M.; Saijo, N.

    1991-01-01

    NIH3T3 cells transfected with c-H-ras and/or c-myc genes were examined for differences in drug sensitivity. The five transfectants used were N8, NIH3T3-nm-1, pT22-3-nm-2, pP1-4 and pT22-3. They were transfected with pKOneo alone, pKOneo and c-myc, pKOneo and c-myc plus activated c-H-ras, normal c-H-ras and activated c-H-ras genes, respectively. The IC50s of cisplatin, 4-hydroperoxycyclophosphamide, adriamycin, melphalan, and CPT-11 were significantly higher for NIH3T3-nm-1 abd pT22-3-nm-2 than for the parental NIH3T3 and N8 cells. Transfection with normal and activated C-H-ras oncogenes only led to increases in the IC50s of alkylating agents. There was no significant difference between the IC50s of N8 and those of NIH3T3 parental cells to any of these anticancer agents. These results strongly suggest that the expression of the c-myc gene plays a role in the acquisition of drug resistance. The c-myc gene may therefore provide us with an important clue in determining the mechanism of drug resistance. Images Figure 1 Figure 2 Figure 3 PMID:1997100

  20. INTERLEUKIN-4- AND INTERLEUKIN-13-MEDIATED ALTERNATIVELY ACTIVATED MACROPHAGES: ROLES IN HOMEOSTASIS AND DISEASE

    PubMed Central

    Van Dyken, Steven J.; Locksley, Richard M.

    2013-01-01

    The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair. PMID:23298208

  1. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction

    PubMed Central

    Krauss, Stefan; Zhang, Chen-Yu; Scorrano, Luca; Dalgaard, Louise T.; St-Pierre, Julie; Grey, Shane T.; Lowell, Bradford B.

    2003-01-01

    Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic β cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced β cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on β cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of β cell dysfunction and type 2 diabetes. PMID:14679178

  2. UTX demethylase activity is required for satellite cell–mediated muscle regeneration

    PubMed Central

    Wang, Chaochen; Nakka, Kiran; Benyoucef, Aissa; Sebastian, Soji; Zhuang, Lenan; Chu, Alphonse; Palii, Carmen G.; Camellato, Brendan; Brand, Marjorie

    2016-01-01

    The X chromosome–encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell–mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo. PMID:26999603

  3. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  4. Dexamethasone-induced apoptosis of osteocytic and osteoblastic cells is mediated by TAK1 activation.

    PubMed

    Ding, Heyuan; Wang, Tao; Xu, Dongli; Cha, Bingbing; Liu, Jun; Li, Yiming

    2015-05-01

    Increased apoptosis of osteoblasts and osteocytes is the main mechanism of glucocorticoid (GC)-induced osteonecrosis. In the current study, we investigated whether dexamethasone (Dex)-induced osteoblastic and osteocytic cell apoptosis is mediated through activation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), and whether TAK1 inhibition could promote survival opposing the deleterious effects of Dex. We found that TAK1 was activated by Dex in both osteocytic MLO-Y4 and osteoblastic OB-6 cells, which was prevented by two known anti-oxidants N-acetylcysteine (NAC) and ebselen. TAK1 inhibitors, including LYTAK1 and 5Z-7-oxozeaenol (57-OZ), inhibited Dex-induced apoptosis of MLO-Y4 and OB-6 cells. Meanwhile shRNA-mediated knockdown of TAK1 also suppressed Dex-induced damages to MLO-Y4 and OB-6 cells. On the other hand, exogenously over-expressing TAK1 enhanced Dex-induced MLO-Y4 and OB-6 cell apoptosis. At the molecular level, we found that TAK1 mediated Dex-induced pro-apoptotic Pyk2-JNK activation. Inhibition or silencing of TAK1 almost abolished Pyk2-JNK phosphorylations by Dex in MLO-Y4 and OB-6 cells. TAK1 over-expression, on the other hand, increased Dex's activity on Pyk2-JNK phosphorylations in above cells. We conclude that part of the pro-apoptotic actions of Dex on osteoblastic and osteocytic cells are mediated through TAK1 activation, and that inhibition of TAK1 might protect from GC-induced damages to osteoblasts and osteocytes. PMID:25753204

  5. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  6. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    PubMed Central

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well as murine platelets but not PKD1 or PKD3. PKD2 activation induced by AYPGKF was abolished with a Gq inhibitor YM-254890, but was not affected by Y-27632, a RhoA/p160ROCK inhibitor, indicating that PKD2 activation is Gq-, but not G12/13-mediated Rho-kinase dependent. Calcium-mediated signals are also required for activation of PKD2 as dimethyl BAPTA inhibited its phosphorylation. GF109203X, a pan PKC inhibitor abolished PKD2 phosphorylation but Go6976, a classical PKC inhibitor had no effect suggesting that novel PKC isoforms are involved in PKD2 activation. Importantly, Rottlerin, a non-selective PKCδ inhibitor, inhibited AYPGKF-induced PKD2 activation in human platelets. Similarly, AYPGKF- and Convulxin-induced PKD2 phosphorylation was dramatically inhibited in PKCδ-deficient platelets, but not in PKCθ– or PKCε–deficient murine platelets compared to that of wild type platelets. Hence, we conclude that PKD2 is a common signaling target downstream of various agonist receptors in platelets and Gq-mediated signals along with calcium and novel PKC isoforms, in particular, PKCδ activate PKD2 in platelets. PMID:21736870

  7. Exchange Protein Directly Activated by cAMP Modulates Regulatory T-Cell-Mediated Immunosuppression

    PubMed Central

    Almahariq, Muayad; Mei, Fang C.; Wang, Hui; Cao, Anthony T.; Yao, Suxia; Soong, Lynn; Sun, Jiaren; Cong, Yingzi; Chen, Ju; Cheng, Xiaodong

    2016-01-01

    The cyclic adenosine monophosphate (cAMP) signaling pathway plays an essential role in immune functions. In this study we examined the role of the cAMP/EPAC1 (exchange protein directly activated by cAMP) axis in regulatory T-cell (Treg)-mediated immune suppression using genetic and pharmacologic approaches. Genetic deletion of EPAC1 in Treg and effector T-cells (Teff) synergistically attenuated Treg-mediated suppression of Teff. Mechanistically, EPAC1 inhibition enhanced activation of the transcription factor STAT3 and up-regulated SMAD7 expression while down-regulating expression of SMAD4. Consequently, CD4+T-cells were desensitized to TGF-β1, a cytokine employed by Treg cells to exert a broad inhibitory function within the immune system. Furthermore, deletion of EPAC1 led to production of significant levels of OVA-IgG antibodies in a low dose oral tolerance mouse mode. These in vivo observations are consistent with the finding that EPAC1 plays an important role in Treg-mediated suppression. More importantly, pharmacological inhibition of EPAC1 using an EPAC specific inhibitor recapitulates the EPAC1 deletion phenotype both in vivo and in vitro. Our results show that EPAC1 boosts Treg-mediated suppression, and identify EPAC1 as a target with broad therapeutic potential since Treg cells are involved in numerous pathologies including autoimmunity, infections, and a wide range of cancers. PMID:25339598

  8. Drosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation

    PubMed Central

    Wang, Shiuan; Srivastava, Mayank; Broemer, Meike; Meier, Pascal; Bergmann, Andreas

    2011-01-01

    Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. PMID:21909282

  9. Mediator Kinase Inhibition Further Activates Super-Enhancer Associated Genes in AML

    PubMed Central

    Nitulescu, Ioana I.; Tangpeerachaikul, Anupong; Poss, Zachary C.; Da Silva, Diogo H.; Caruso, Brittany T.; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L.; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V.; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C.; Bronson, Roderick T.; Krivtsov, Andrei V.; Myers, Andrew G.; Kohl, Nancy E.; Kung, Andrew L.; Armstrong, Scott A.; Lemieux, Madeleine E.; Taatjes, Dylan J.; Shair, Matthew D.

    2015-01-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors (TFs), and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling TFs and oncogenes 1, 2. BRD4 and CDK7 are positive regulators of SE-mediated transcription3,4,5. In contrast, negative regulators of SE-associated genes have not been well described. Here we report that Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We determined that the natural product cortistatin A (CA) selectively inhibited Mediator kinases, had antileukaemic activity in vitro and in vivo, and disproportionately induced upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the TFs CEBPA, IRF8, IRF1 and ETV6 6, 7, 8. The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has antileukaemic activity. Individually increasing or decreasing expression of these TFs suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  10. Mediator kinase inhibition further activates super-enhancer-associated genes in AML.

    PubMed

    Pelish, Henry E; Liau, Brian B; Nitulescu, Ioana I; Tangpeerachaikul, Anupong; Poss, Zachary C; Da Silva, Diogo H; Caruso, Brittany T; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C; Bronson, Roderick T; Krivtsov, Andrei V; Myers, Andrew G; Kohl, Nancy E; Kung, Andrew L; Armstrong, Scott A; Lemieux, Madeleine E; Taatjes, Dylan J; Shair, Matthew D

    2015-10-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  11. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  12. Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation.

    PubMed Central

    Westlin, W. F.; Gimbrone, M. A.

    1993-01-01

    Cytokine activation of cultured human vascular endothelial cells renders them hyperadhesive for blood leukocytes. Co-incubation of freshly isolated, unstimulated human blood neutrophils with confluent cytokine-activated human endothelial monolayers for 90 minutes results in extensive endothelial detachment and destruction of monolayer integrity. In contrast, unactivated endothelial monolayers remain intact. Using this in vitro model, we have explored the neutrophil-effector mechanisms involved in this injury. Coincubation in the presence of a serine protease inhibitor (phenylmethylsulfonyl fluoride) or specific elastase inhibitors (Ala-Ala-Pro-Val-chloromethyl ketone or alpha-1-protease inhibitor) markedly diminished injury. In contrast, scavengers or inhibitors of oxygen-derived free radicals (superoxide dismutase, catalase, mannitol, or sodium azide) were not protective. Purified human neutrophil elastase mimicked the effect of the neutrophils suggesting a key role for elastase in the neutrophil-mediated injury in this model. Interfering with direct neutrophil-endothelial cell contact by interposing a microporous barrier insert prevented endothelial cell detachment. Furthermore, this neutrophil-mediated detachment could be inhibited with interleukin-8, an action correlated with a decrease in neutrophil adhesion to activated endothelial monolayers. By defining the role of endothelial activation in neutrophil-mediated injury, this in vitro model may provide useful insights into potential therapeutic interventions designed to prevent disruption of the endothelial barrier function. Images Figure 1 Figure 6 PMID:8424450

  13. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1.

    PubMed

    Sang, Yi; Li, Qing-Hua; Rubio, Vicente; Zhang, Yan-Chun; Mao, Jian; Deng, Xing-Wang; Yang, Hong-Quan

    2005-05-01

    Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway. PMID:15805487

  14. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin.

    PubMed

    Foley, Jonathan H; Walton, Bethany L; Aleman, Maria M; O'Byrne, Alice M; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A; Wolberg, Alisa S; Conway, Edward M

    2016-03-01

    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin-antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125

  15. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin

    PubMed Central

    Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.

    2016-01-01

    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125

  16. A potential role of a substrate as a base for the deprotonation pathway in Rh-catalysed C-H amination of heteroarenes: DFT insights.

    PubMed

    Ajitha, Manjaly J; Huang, Kuo-Wei; Kwak, Jaesung; Kim, Hyun Jin; Chang, Sukbok; Jung, Yousung

    2016-05-10

    The possibility of direct introduction of a new functionality through C-H bond activation is an attractive strategy in covalent synthesis. Here, we investigated the mechanism of Rh-catalysed C-H amination of the heteroaryl substrate (2-phenylpyridine) using phenyl azide as a nitrogen source by density functional theory (DFT). For the deprotocyclometallation and protodecyclometallation processes of the title reaction, we propose a stepwise base-assisted mechanism (pathway I) instead of the previously reported concerted mechanism (pathway II). In the new mechanism proposed here, 2-phenylpyridine acts as a base in the initial deprotonation step (C-H bond cleavage) and transports the proton towards the final protonation step. In fact, the N-H bond of the strong conjugate acid (formed during the initial C-H bond cleavage) considered in pathway I (via) is more acidic than the C-H bond of the neutral substrate considered in pathway II (via). The higher activation barrier of mainly originates from the ring strain of the four-membered cyclic transition state. The vital role of the base, as disclosed here, can potentially have broader mechanistic implications for the development of reaction conditions of transition metal-catalysed reactions. PMID:27071025

  17. Manganese-catalyzed late-stage aliphatic C-H azidation.

    PubMed

    Huang, Xiongyi; Bergsten, Tova M; Groves, John T

    2015-04-29

    We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by successful azidation of various bioactive molecules with yields up to 74%, including the important drugs pregabalin, memantine, and the antimalarial artemisinin. Azidation of celestolide with a chiral manganese salen catalyst afforded the azide product in 70% ee, representing a Mn-catalyzed enantioselective aliphatic C-H azidation reaction. Considering the versatile roles of organic azides in modern chemistry and the ubiquity of aliphatic C-H bonds in organic molecules, we envision that this Mn-azidation method will find wide application in organic synthesis, drug discovery, and chemical biology. PMID:25871027

  18. Charge-transfer-directed radical substitution enables para-selective C-H functionalization.

    PubMed

    Boursalian, Gregory B; Ham, Won Seok; Mazzotti, Anthony R; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions. PMID:27442288

  19. Cp*Co(III)-Catalyzed C-H Alkenylation/Annulation to Afford Spiro Indenyl Benzosultam.

    PubMed

    Liu, Hui; Li, Jie; Xiong, Miao; Jiang, Jijun; Wang, Jun

    2016-07-15

    Cp*Co(III)-catalyzed tandem inert C-H alkenylation/annulation of N-sulfonyl ketimines with alkynes is revealed. A series of spiro indenyl benzosultams were facilely prepared in good yields under mild reaction conditions. PMID:27341208

  20. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus

    NASA Astrophysics Data System (ADS)

    Beck, Elizabeth M.; Gaunt, Matthew J.

    This review details recent developments in the Pd-catalyzed C-H bond arylation and alkenylation of indoles and pyrroles, aromatic heterocycles that are frequently displayed in natural products and medicinal agents.

  1. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  2. Synthesis of indoles and tryptophan derivatives via photoinduced nitrene C-H insertion.

    PubMed

    Junk, Lukas; Kazmaier, Uli

    2016-03-14

    Functionalized indoles and tryptophans can be obtained from stannylated alkenes and o-iodoanilines via Stille coupling. Subsequent azidation and photochemical nitrene generation results in the formation of the heterocyclic ring systems via C-H insertion. PMID:26869211

  3. Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase.

    PubMed

    Park, J; Gores, G J; Patel, T

    1999-04-01

    The biliary epithelium is exposed to mediators of inflammation such as bacterial endotoxin or lipopolysaccharide (LPS) in a variety of inflammatory conditions. These conditions are also characterized by cholangiocyte proliferation and a predisposition to malignancy. Furthermore, LPS can enhance the expression of interleukin-6 (IL-6), a known biliary mitogen. However, the effects of LPS on cholangiocyte proliferation or IL-6 secretion are unknown. Thus, our aims were to determine if LPS stimulates cholangiocyte proliferation by IL-6-dependent signaling pathways. H69 cells derived from normal human intrahepatic cholangiocytes proliferated in response to LPS. Cholangiocytes responded to LPS (and other inflammatory cytokines such as tumor necrosis factor alpha [TNF-alpha] and IL-1beta) by increased secretion of IL-6, which had a mitogenic effect on H69 cells. Preincubation with anti-IL-6 neutralizing antibodies inhibited LPS-induced proliferation. Furthermore, cholangiocytes possessed the IL-6 receptor complex subunits and intact signaling mechanisms leading to activation of signal transducers and activators of transcription (STAT) factors. Although both p38 and p44/p42 mitogen-activated protein kinases (MAPKs) were constitutively present and active in cholangiocytes, IL-6 increased p44/p42, but not p38 MAPK activity. PD098059 inhibited activation of p44/p42 MAPK in cholangiocytes and completely blocked DNA synthesis in response to IL-6 or LPS. These studies identify a critical role for the p44/p42 MAPK in cholangiocyte proliferation and demonstrate that the proliferative response of cholangiocytes to inflammatory mediators such as LPS involves IL-6-mediated activation of the p44/p42 MAPK pathway. PMID:10094943

  4. Rhodium(II)-Catalyzed C-H Functionalization of Electron-Deficient Methyl Groups.

    PubMed

    Fu, Liangbing; Guptill, David M; Davies, Huw M L

    2016-05-11

    Enantioselective C-H functionalization of relatively electron-deficient methyl sites was achieved with the combination of 2,2,2-trichloroethyl aryldiazoacetates and tetrakis(triarylcyclopropanecarboxylate) dirhodium catalysts. The substrate scope of the transformation was relatively broad, and C-H functionalization products were furnished with excellent levels of enantioselectivity. As a strategic reaction, crotonate derivatives give 1,6-dicarbonyl compounds, which are useful for further diversification. PMID:27064173

  5. Copper-Catalyzed Oxidative C-H Amination of Tetrahydrofuran with Indole/Carbazole Derivatives.

    PubMed

    Yang, Qingjing; Choy, Pui Ying; Fu, Wai Chung; Fan, Baomin; Kwong, Fuk Yee

    2015-11-01

    A simple α-C-H amination of cyclic ether with indole/carbazole derivatives has been accomplished by employing copper(II) chloride/bipy as the catalyst system. In the presence of the di-tert-butyl peroxide oxidant, cyclic ethers such as tetrahydrofuran, 1,4-dioxane, and tetrahydropyran successfully undergo C-H/N-H cross dehydrogenative coupling (CDC) with various carbazole or indole derivatives in good-to-excellent yields. PMID:26485515

  6. Women, Physical Activity, and Quality of Life: Self-concept as a Mediator.

    PubMed

    Gonzalo Silvestre, Tamara; Ubillos Landa, Silvia

    2016-01-01

    The objectives of this research are: (a) analyze the incremental validity of physical activity's (PA) influence on perceived quality of life (PQL); (b) determine if PA's predictive power is mediated by self-concept; and (c) study if results vary according to a unidimensional or multidimensional approach to self-concept measurement. The sample comprised 160 women from Burgos, Spain aged 18 to 45 years old. Non-probability sampling was used. Two three-step hierarchical regression analyses were applied to forecast PQL. The hedonic quality-of-life indicators, self-concept, self-esteem, and PA were included as independent variables. The first regression analysis included global self-concept as predictor variable, while the second included its five dimensions. Two mediation analyses were conducted to see if PA's ability to predict PQL was mediated by global and physical self-concept. Results from the first regression shows that self-concept, satisfaction with life, and PA were significant predictors. PA slightly but significantly increased explained variance in PQL (2.1%). In the second regression, substituting global self-concept with its five constituent factors, only the physical dimension and satisfaction with life predicted PQL, while PA ceased to be a significant predictor. Mediation analysis revealed that only physical self-concept mediates the relationship between PA and PQL (z = 1.97, p < .050), and not global self-concept. Physical self-concept was the strongest predictor and approximately 32.45 % of PA's effect on PQL was mediated by it. This study's findings support a multidimensional view of self-concept, and represent a more accurate image of the relationship between PQL, PA, and self-concept. PMID:26898406

  7. Macelignan inhibits histamine release and inflammatory mediator production in activated rat basophilic leukemia mast cells.

    PubMed

    Han, Young Sun; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-10-01

    Type I allergy is characterized by the release of granule-associated mediators, lipid-derived substances, cytokines, and chemokines by activated mast cells. To evaluate the anti-allergic effects of macelignan isolated from Myristica fragrans Houtt., we determined its ability to inhibit calcium (Ca(2+)) influx, degranulation, and inflammatory mediator production in RBL-2 H3 cells stimulated with A23187 and phorbol 12-myristate 13-acetate. Macelignan inhibited Ca(2+) influx and the secretion of β-hexosaminidase, histamine, prostaglandin E(2), and leukotriene C(4); decreased mRNA levels of cyclooxygenase-2, 5-lipoxygenase, interleukin-4 (IL-4), IL-13, and tumor necrosis factor-α; and attenuated phosphorylation of Akt and the mitogen-activated protein kinases extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. These results indicate the potential of macelignan as a type I allergy treatment. PMID:22729280

  8. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity

    PubMed Central

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-01-01

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin®) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed. PMID:27019795

  9. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    PubMed

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed. PMID:27019795

  10. GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo

    PubMed Central

    Ohtsuki, Sumio; Levine, Michael

    1998-01-01

    Insulator DNAs and promoter competition regulate enhancer–promoter interactions within complex genetic loci. A transgenic embryo assay was used to obtain evidence that the Drosophila eve promoter possesses an insulator activity that can be uncoupled from the core elements that mediate competition. The eve promoter contains an optimal TATA element and a GAGA sequence. The analysis of various chimeric promoters provides evidence that TATA is essential for promoter competition, whereas GAGA mediates enhancer blocking. The Trithorax-like (Trl) protein interacts with GAGA, and mutations in trl attenuate eve promoter insulator activity. We suggest that Trl–GAGA increases the stability of enhancer–promoter interactions by creating an open chromatin configuration at the core promoter. PMID:9808619

  11. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine.

    PubMed

    McCarty, M F

    2001-03-01

    Pantethine is a versatile and well-tolerated hypolipidemic agent whose efficacy in this regard appears to be mediated by its catabolic product cystamine, a nucleophile which avidly attacks disulfide groups. An overview of pantethine research suggests that the hypotriglyceridemic activity of pantethine reflects cystamine-mediated inhibition of the hepatic acetyl-CoA carboxylase, which can be expected to activate hepatic fatty acid oxidation. Inhibition of HMG-CoA reductase as well as a more distal enzyme in the cholesterol synthetic pathway may account for pantethine's hypocholesterolemic effects. If pantethine does indeed effectively inhibit hepatic acetyl-CoA carboxylase, it may have adjuvant utility in the hepatothermic therapy of obesity. As a safe and effective compound of natural origin, pantethine merits broader use in the management of hyperlipidemias. PMID:11359352

  12. Activation domains of transcription factors mediate replication dependent transcription from a minimal HIV-1 promoter.

    PubMed Central

    Williams, R D; Lee, B A; Jackson, S P; Proudfoot, N J

    1996-01-01

    Transcription from a minimal HIV-1 promoter containing the three Sp1 binding sites and TATA box can be activated without Tat by template DNA replication. Here we show that this activation can also be mediated by recombinant GAL4 fusion proteins containing the activation domains of Sp1, VP16 or CTF (or by full-length GAL4) targeted to the HIV-1 promoter by replacing the Sp1 sites with five GAL4 binding sites. Thus Sp1 is not unique in its ability to mediate replication activated transcription, although the degree of processivity elicited by the different activators varied significantly from strongly processive (GAL4-VP16) to relatively non-processive (GAL4-Sp1 or -CTF). Processive GAL4-VP16-activated transcription, but not efficient initiation, required multiple GAL4 binding sites. In the presence of Tat, transcription with GAL4-SP1 and GAL4-CTF was further activated (principally at the level of processivity) but GAL4-VP16-potentiated transcription was only slightly stimulated. The Tat-dependent switch from non-processive to fully processive transcription was particularly marked for GAL4-Sp1, an effect which may be relevant to the selection of Sp1 binding sites by the HIV-1 promoter. PMID:8604293

  13. Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Remijan, A. J.; Jewell, P. R.; Lovas, F. J.

    2005-12-01

    The 3-carbon keto-ring cyclopropenone (c-H2C3O) has been detected largely in absorption with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of a number of rotational transitions between energy levels that have energies less than 10 K. Previous negative results from searches for interstellar c-H2C3O by other investigators attempting to detect rotational transitions that have energy levels ˜10 K or greater indicate no significant hot core component. Thus, we conclude that only the low energy levels of c-H2C3O are populated because the molecule state temperature is low, suggesting that c-H2C3O resides in a star-forming core halo region that has a widespread arcminute spatial scale. Toward Sagittarius B2(N), the GBT was also used to observe the previously-reported, spatially-ubiquitous, 3-carbon ring cyclopropenylidene (c-C3H2) which has a divalent carbon that makes it highly reactive in the laboratory. The presence of both c-C3H2 and c-H2C3O toward Sagittarius B2(N) suggests that gas-phase oxygen addition may account for the synthesis of c-H2C3O from c-C3H2. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO) .

  14. Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Remijan, Anthony J.; Jewell, P. R.; Lovas, F. J.

    2006-05-01

    The three-carbon keto ring cyclopropenone (c-H2C 3O) has been detected largely in absorption with the 100 m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of a number of rotational transitions between energy levels that have energies less than 10 K. Previous negative results from searches for interstellar c-H2C3O by other investigators attempting to detect rotational transitions that have energy levels ~10 K or greater indicate no significant hot core component. Thus, we conclude that only the low-energy levels of c-H2C3O are populated because the molecule state temperature is low, suggesting that c-H2C3O resides in a star-forming core halo region that has a widespread arcminute spatial scale. Toward Sagittarius B2(N), the GBT was also used to observe the previously reported, spatially ubiquitous, three-carbon ring cyclopropenylidene (c-C3H2 ), which has a divalent carbon that makes it highly reactive in the laboratory. The presence of both c-C3H2 and c-H2C3O toward Sagittarius B2(N) suggests that gas-phase oxygen addition may account for the synthesis of c-H 2C3O from c-C3H2. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  15. Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.

    PubMed

    Kim, Hye Young; Lee, Sung Bae; Kang, Hyen Sam; Oh, Goo Taeg; Kim, TaeSoo

    2014-06-27

    Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets. PMID:24813990

  16. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  17. Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p.

    PubMed Central

    Pi, H; Chien, C T; Fields, S

    1997-01-01

    In the yeast Saccharomyces cerevisiae, Ste12p induces transcription of pheromone-responsive genes by binding to a DNA sequence designated the pheromone response element. We generated a series of hybrid proteins of Ste12p with the DNA-binding and activation domains of the transcriptional activator Gal4p to define a pheromone induction domain of Ste12p sufficient to mediate pheromone-induced transcription by these hybrid proteins. A minimal pheromone induction domain, delineated as residues 301 to 335 of Ste12p, is dependent on the pheromone mitogen-activated protein (MAP) kinase pathway for induction activity. Mutation of the three serine and threonine residues within the minimal pheromone induction domain did not affect transcriptional induction, indicating that the activity of this domain is not directly regulated by MAP kinase phosphorylation. By contrast, mutation of the two tyrosines or their preceding acidic residues led to a high level of transcriptional activity in the absence of pheromone and consequently to the loss of pheromone induction. This constitutively high activity was not affected by mutations in the MAP kinase cascade, suggesting that the function of the pheromone induction domain is normally repressed in the absence of pheromone. By two-hybrid analysis, this minimal domain interacts with two negative regulators, Dig1p and Dig2p (also designated Rst1p and Rst2p), and the interaction is abolished by mutation of the tyrosines. The pheromone induction domain itself has weak and inducible transcriptional activity, and its ability to potentiate transcription depends on the activity of an adjacent activation domain. These results suggest that the pheromone induction domain of Ste12p mediates transcriptional induction via a two-step process: the relief of repression and synergistic transcriptional activation with another activation domain. PMID:9343403

  18. Redox-mediated activation of latent transforming growth factor-beta 1.

    PubMed

    Barcellos-Hoff, M H; Dix, T A

    1996-09-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  19. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance.

    PubMed

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-11-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  20. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance12

    PubMed Central

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-01-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  1. n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation.

    PubMed

    Wang, Xiaofeng; Ma, David W L; Kang, Jing X; Kulka, Marianna

    2015-12-01

    In vivo models show that n-3 polyunsaturated fatty acids (PUFA) inhibit some of the processes associated with allergic inflammation but the direct effect of n-3 PUFA on mast cells, the major effector cells in allergy, is poorly understood. We sought to determine the effect and mechanism of n-3 PUFA on Fc ε receptor I (FcεRI)-mediated signal transduction and mast cell activation. Bone marrow-derived mast cells (BMMC) were differentiated from bone marrow obtained from C57BL/6 wild-type (WT) and fat-1 transgenic mice. The fat-1 mice express fatty acid n-3 desaturase and produce endogenous n-3 PUFA. For comparison, exogenous n-3 PUFA were supplemented to WT BMMC and human mast cell (LAD2) cultures. Fat-1 BMMC released less β-hexosaminidase (β-hex) and cysteinyl leukotrienes and produced less tumor necrosis factor and chemokine (C-C motif) ligand 2. n-3 PUFA supplementation reduced LAD2 and BMMC degranulation (β-hex release) following FcεRI activation. Fat-1 BMMC expressed less constitutive Lyn and linker of activated T cells (LAT), and FcεRI-mediated phosphorylation of Lyn, spleen tyrosine kinase and LAT were reduced in fat-1 BMMC. Although the expression of surface and whole cell FcεRI was similar in WT and fat-1 BMMC, unstimulated fat-1 BMMC showed reduced FcεRI localization to lipid rafts, and stimulation with antigen resulted in aberrant FcεRI shuttling to the rafts. Our results show that n-3 PUFA suppress FcεRI-mediated activation of mast cells, which results in reduced mediator release. This effect is associated with a decrease in LAT and Lyn expression as well as abnormal shuttling of FcεRI to lipid rafts. PMID:26363927

  2. Oxidative DNA adducts after Cu(2+)-mediated activation of dihydroxy PCBs: role of reactive oxygen species.

    PubMed

    Spencer, Wendy A; Lehmler, Hans-Joachim; Robertson, Larry W; Gupta, Ramesh C

    2009-05-15

    Polychlorinated biphenyls (PCBs) are toxic industrial chemicals, complete carcinogens, and efficacious tumor promoters. However, the mechanism(s) of PCB-mediated carcinogenicity remains largely undefined. One likely pathway by which these agents may play a role in carcinogenesis is the generation of oxidative DNA damage by redox cycling of dihydroxylated PCB metabolites. We have now employed a new (32)P-postlabeling system to examine novel oxidative DNA lesions induced by Cu(2+)-mediated activation of PCB metabolites. (32)P postlabeling of DNA incubated with various PCB metabolites resulted in over a dozen novel polar oxidative DNA adducts that were chromatographically similar for all active agents. The most potent metabolites tested were the hydroquinones (hydroxyl groups arranged para to each other), yielding polar oxidative adduct levels ranging from 55 to 142 adducts/10(6) nucleotides. PCB catechols, or ortho-dihydroxy metabolites, were up to 40% less active than their corresponding hydroquinone congeners, whereas monohydroxylated and quinone metabolites did not produce detectable oxidative damage over that of vehicle. With the exception of 2,4,5-Cl-2',5'-dihydroxybiphenyl, this oxidative DNA damage seemed to be inversely related to chlorine content: no chlorine approximately mono->di->trichlorinated metabolites. Importantly, copper, but not iron, was essential for activation of the PCB metabolites to these polar oxidative DNA adducts, because in its absence or in the presence of the Cu(+)-specific scavenger bathocuproine, no adducts were detected. Intervention studies with known reactive oxygen species (ROS) modifiers suggested that H(2)O(2), singlet oxygen, hydroxyl radical, and superoxide may also be involved in this PCB-mediated oxidative DNA damage. These data indicate a mechanistic role for several ROS, in addition to copper, in PCB-induced DNA damage and provide further support for oxidative DNA damage in PCB-mediated carcinogenesis. PMID:19233261

  3. Synthesis of multisubstituted pyrroles from doubly activated cyclopropanes using an iron-mediated oxidation domino reaction.

    PubMed

    Zhang, Zhiguo; Zhang, Wei; Li, Junlong; Liu, Qingfeng; Liu, Tongxin; Zhang, Guisheng

    2014-11-21

    An alternative route has been developed for the construction of multisubstituted pyrrole derivatives from readily available, doubly activated cyclopropanes and anilines using an iron-mediated oxidation domino reaction (i.e., sequential ring-opening, cyclization, and dehydrogenation reactions). This reaction uses readily available reactants and is tolerant of a broad range of substrates, with the desired products being formed in good to excellent yields. PMID:25330125

  4. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation

    PubMed Central

    Abdala-Valencia, Hiam; Bryce, Paul J.; Schleimer, Robert P.; Wechsler, Joshua B.; Loffredo, Lucas F.; Cook-Mills, Joan M.; Hsu, Chia-Lin; Berdnikovs, Sergejs

    2016-01-01

    Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow–derived mast cells from CD151−/− mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI -induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells. PMID:26136426

  5. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation.

    PubMed

    Abdala-Valencia, Hiam; Bryce, Paul J; Schleimer, Robert P; Wechsler, Joshua B; Loffredo, Lucas F; Cook-Mills, Joan M; Hsu, Chia-Lin; Berdnikovs, Sergejs

    2015-08-15

    Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells. PMID:26136426

  6. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning.

    PubMed

    Heitzeg, Mary M; Cope, Lora M; Martz, Meghan E; Hardee, Jillian E; Zucker, Robert A

    2015-12-01

    This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes. PMID:26403581

  7. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.

    PubMed

    Pekker, Irena; Alvarez, John Paul; Eshed, Yuval

    2005-11-01

    Members of the KANADI gene family in Arabidopsis thaliana regulate abaxial identity and laminar growth of lateral organs. Promoter APETALA3-mediated ectopic expression of KANADI restricts petal expansion and was used in a genetic screen for factors involved in KANADI-mediated signaling. Through this screen, mutations in ETTIN (ETT; also known as Auxin Response Factor3 [ARF3]) were isolated as second site suppressors and found to ameliorate ectopic KANADI activity throughout the plant as well. Mutant phenotypes of ett are restricted to flowers; however, double mutants with a closely related gene ARF4 exhibit transformation of abaxial tissues into adaxial ones in all aerial parts, resembling mutations in KANADI. Accordingly, the common RNA expression domain of both ARFs was found to be on the abaxial side of all lateral organs. Truncated, negatively acting gene products of strong ett alleles map to an ARF-specific, N-terminal domain of ETT. Such gene products strongly enhance abaxial tissue loss only when ARF activities are compromised. As KANADI is not required for either ETT or ARF4 transcription, and their overexpression cannot rescue kanadi mutants, cooperative activity is implied. ARF proteins are pivotal in mediating auxin responses; thus, we present a model linking transient local auxin gradients and gradual partitioning of lateral organs along the abaxial/adaxial axis. PMID:16199616

  8. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

    PubMed Central

    Gan, Xiaoliang; Xing, Dandan; Su, Guangjie; Li, Shun; Luo, Chenfang; Irwin, Michael G.; Xia, Zhengyuan; Li, Haobo; Hei, Ziqing

    2015-01-01

    Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation. PMID:26246867

  9. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation.

    PubMed

    Kim, Sung-Wook; Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin M D; Lee, You-Jin; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-26

    Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL. PMID:26517672

  10. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    SciTech Connect

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del . E-mail: sen@unife.it

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha} because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.

  11. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages.

    PubMed

    Previtera, Michelle L; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  12. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  13. Regulation of retinoid mediated cholesterol efflux involves liver X receptor activation in mouse macrophages.

    PubMed

    Manna, Pulak R; Sennoune, Souad R; Martinez-Zaguilan, Raul; Slominski, Andrzej T; Pruitt, Kevin

    2015-08-14

    Removal of cholesterol from macrophage-derived foam cells is a critical step to the prevention of atherosclerotic lesions. We have recently demonstrated the functional importance of retinoids in the regulation of the steroidogenic acute regulatory (StAR) protein that predominantly mediates the intramitochondrial transport of cholesterol in target tissues. In the present study, treatment of mouse macrophages with retinoids, particularly all-trans retinoic acid (atRA) and 9-cis RA, resulted in increases in cholesterol efflux to apolipoprotein AI (Apo-A1). Activation of the PKA pathway by a cAMP analog, (Bu)2cAMP, markedly augmented retinoid mediated cholesterol efflux. Macrophages overexpressing hormone-sensitive lipase increased the hydrolysis of cholesteryl esters and concomitantly enhanced the efficacy of retinoic acid receptor and liver X receptor (LXR) ligands on StAR and ATP-binding cassette transporter A1 (ABCA1) protein levels. RAs elevated StAR promoter activity in macrophages, and an increase in StAR levels augmented cholesterol efflux to Apo-A1, suggesting retinoid-mediated efflux of cholesterol involves enhanced oxysterol production. Further studies revealed that retinoids activate the LXR regulated genes, sterol receptor-element binding protein-1c and ABCA1. These findings provide insights into the regulatory events in which retinoid signaling effectively enhances macrophage cholesterol efflux and indicate that retinoid therapy may have important implications in limiting and/or regressing atherosclerotic cardiovascular disease. PMID:26119689

  14. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation

    PubMed Central

    Kim, Sung-Wook; Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin M.D.; Lee, You-Jin; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL. PMID:26517672

  15. CD40 Activation Rescues Antiviral CD8+ T Cells from PD-1-Mediated Exhaustion

    PubMed Central

    Isogawa, Masanori; Chung, Josan; Murata, Yasuhiro; Kakimi, Kazuhiro; Chisari, Francis V.

    2013-01-01

    The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation. PMID:23853599

  16. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext. PMID:24868850

  17. Copper-catalyzed direct C-H oxidative trifluoromethylation of heteroarenes.

    PubMed

    Chu, Lingling; Qing, Feng-Ling

    2012-01-18

    This article describes the copper-catalyzed oxidative trifluoromethylation of heteroarenes and highly electron-deficient arenes with CF(3)SiMe(3) through direct C-H activation. In the presence of catalyst Cu(OAc)(2), ligand 1,10-phenanthroline and cobases tert-BuONa/NaOAc, oxidative trifluoromethylation of 1,3,4-oxadiazoles with CF(3)SiMe(3) proceeded smoothly using either air or di-tert-butyl peroxide as an oxidant to give the corresponding trifluoromethylated 1,3,4-oxadiazoles in high yields. Di-tert-butyl peroxide was chosen as the suitable oxidant for oxidative trifluoromethylation of 1,3-azoles and perfluoroarenes. Cu(OH)(2) and Ag(2)CO(3) were the best catalyst and oxidant for direct oxidative trifluoromethyaltion of indoles. The optimum reaction conditions enable oxidative trifluoromethylation of a range of heteroarenes that bear numerous functional groups. The prepared trifluoromethylated heteroarenes are of importance in the areas of pharmaceuticals and agrochemicals. The preliminary mechanistic studies of these oxidative trifluoromethylations are also reported. PMID:22145831

  18. Effect of C-H ⋯ S and C-H ⋯ Cl interactions on the conformational preference of inhibitors of TIBO family

    NASA Astrophysics Data System (ADS)

    Freitas, Renato F.; Galembeck, Sérgio E.

    2006-05-01

    he non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are an important class of drugs employed in antiviral therapy. The coordinates of three inhibitors, derived from TIBO, tetrahydroimidazo-(4,5,1-1- jk)(1,4)-benzodi-azepin-2(1 H)-one (which belongs to the NNRTIs class), were taken from PDB database and the electronic structure were investigated by using the B3LYP/6-31+G(d,p) model. Results obtained by means of the natural bond orbital (NBO) and atoms in molecules (AIM) methods indicated the presence of weak hydrogen bonds of the C-H ⋯ S and C-H ⋯ Cl type, which are partially responsible for the conformational differences observed between the inhibitors 8 Cl-TIBO and 9 Cl-TIBO.

  19. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway

    PubMed Central

    Liu, Hong-Shuai; Shi, Hai-Lian; Huang, Fei; Peterson, Karin E.; Wu, Hui; Lan, Yun-Yi; Zhang, Bei-Bei; He, Yi-Xin; Woods, Tyson; Du, Min; Wu, Xiao-Jun; Wang, Zheng-Tao

    2016-01-01

    Inhibition of microglia activation may provide therapeutic treatment for many neurodegenerative diseases. Astragaloside IV (ASI) with anti-inflammatory properties has been tested as a therapeutic drug in clinical trials of China. However, the mechanism of ASI inhibiting neuroinflammation is unknown. In this study, we showed that ASI inhibited microglia activation both in vivo and in vitro. It could enhance glucocorticoid receptor (GR)-luciferase activity and facilitate GR nuclear translocation in microglial cells. Molecular docking and TR-FRET GR competitive binding experiments demonstrated that ASI could bind to GR in spite of relative low affinity. Meanwhile, ASI modulated GR-mediated signaling pathway, including dephosphorylation of PI3K, Akt, I κB and NF κB, therefore, decreased downstream production of proinflammatory mediators. Suppression of microglial BV-2 activation by ASI was abrogated by GR inhibitor, RU486 or GR siRNA. Similarly, RU486 counteracted the alleviative effect of ASI on microgliosis and neuronal injury in vivo. Our findings demonstrated that ASI inhibited microglia activation at least partially by activating the glucocorticoid pathway, suggesting its possible therapeutic potential for neuroinflammation in neurological diseases. PMID:26750705

  20. β2-Glycoprotein I Is a Cofactor for t-PA–Mediated Plasminogen Activation

    PubMed Central

    Bu, Chunya; Gao, Lei; Xie, Weidong; Zhang, Jainwei; He, Yuhong; Cai, Guoping; McCrae, Keith R

    2010-01-01

    Regulation of the conversion of plasminogen to plasmin by tissue-type plasminogen activator (t-PA) is critical in the control of fibrin deposition. While several plasminogen activators have been described, soluble plasma cofactors that stimulate fibrinolysis have not been characterized. Here, we report that the abundant plasma glycoprotein, β2-glycoprotein I (β2GPI), stimulates t-PA–dependent plasminogen activation in the fluid phase and within a fibrin gel. The region within β2GPI responsible for stimulating t-PA activity is at least partially contained within β2GPI domain V. β2GPI bound t-PA with high affinity (Kd ~ 20 nM), stimulated t-PA amidolytic activity, and caused an overall 20-fold increase in the catalytic efficiency (kcat/Km) of t-PA–mediated conversion of Glu-plasminogen to plasmin. Moreover, depletion of β2GPI from plasma led to diminished rates of clot lysis, with restoration of normal lysis rates following β2GPI repletion. Finally, stimulation of t-PA–mediated plasminogen activity by β2GPI was inhibited by monoclonal anti-β2GPI antibodies, as well as by anti-β2GPI antibodies from patients with antiphospholipid syndrome (APS). These findings suggest that β2GPI may be an endogenous regulator of fibrinolysis. Impairment of β2GPI-stimulated fibrinolysis by anti-β2GPI antibodies may contribute to the development of thrombosis in patients with APS. PMID:19180513

  1. Damnacanthal inhibits IgE receptor-mediated activation of mast cells.

    PubMed

    Garcia-Vilas, Javier A; Medina, Miguel A; Melo, Fabio R; Pejler, Gunnar; Garcia-Faroldi, Gianni

    2015-05-01

    Damnacanthal, an anthraquinone obtained from the noni fruit (Morinda citrifolia L.), has been described to possess anti-cancer and anti-inflammatory properties. Since mast cells are key players in various inflammatory conditions as well as in cancer, we considered the possibility that the biological actions of damnacanthal, at least partly, could be due to effects on mast cells. Many of the biological activities of mast cells are mediated by IgE receptor cross-linking, which results in degranulation with release of preformed granule mediators, as well as de novo synthesis and release of additional compounds. Here we show that damnacanthal has profound inhibitory activity on mast cell activation through this pathway. The release of the granule compounds beta-hexosaminidase and tryptase release was completely abrogated by damnacanthal at doses that were non-toxic to mast cells. In addition, damnacanthal inhibited activation-dependent pro-inflammatory gene induction, as well as cytokine/chemokine release in response to mast cell stimulation. The mechanism underlying damnacanthal inhibition was linked to impaired phosphorylation of Syk and Akt. Furthermore, damnacanthal inhibited mast cell activation in response to calcium ionophore A23187. Altogether, the data presented here demonstrate that damnacanthal inhibits mast cell activation induced by different stimuli and open a new window for the use of this compound as a mast cell stabilizer. PMID:25656801

  2. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  3. Cell Penetrating Peptide-Mediated Caveolae-Dependent Activation of Lung Endothelial Nitric Oxide Synthase.

    PubMed

    Hutchinson, Tarun E; Hu, Hanbo; Patel, Jawaharlal M

    2016-01-01

    Cell penetrating peptides can be used as therapeutic agents via modulation of selective cell functions. Nitric oxide (NO) generated by vascular endothelial NO synthase (eNOS) plays a critical role in the NO/ cyclic guanosine 5'-monophosphate (cGMP)-mediated pulmonary vascular function. Here we examined whether internalization of a fifteen amino acid (KRFNSISCSSWRRKR) synthetic peptide (P3) enhances the catalytic activity of eNOS via caveolae/eNOS dissociation leading to NO release and increased cGMP production in pulmonary artery endothelial cells (EC). ECs were treated with varying concentrations of P3 and used to monitor internalization, isolation of caveolae-enriched fraction, the catalytic activity of eNOS, NO/cGMP production, and intracellular Ca(2+) release. Confocal images show timedependent internalization of P3 in EC. Treatment of EC with P3, but not scrambled P3, increased the catalytic activity of eNOS in a dose-dependent manner without change in eNOS expression or phosphorylation. Treatment of EC with P3 stimulated intracellular Ca(2+) release, increased the catalytic activity of phospatidylinsositide 3 kinase (PI3K) and resulted in eNOS/caveolae-1 (Cav-1) dissociation leading to translocation of eNOS to intracellular compartment in EC. P3- mediated activation of eNOS was abolished by intracellular Ca(2+) chelator 1,2-bis(2-aminophenooxy)ethane-N,N,N',N'- tertraacetic acid-AM (BAPTA-AM), PI3K inhibition, or by siRNA-mediated Cav-1 suppression. These results demonstrate that exogenous peptide consisting of cationic amino acids can internalize and enhance the catalytic activity of eNOS via modulation of caveolar signaling and intracellular Ca(2+) release in EC. PMID:26655728

  4. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    PubMed

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun

    2015-07-01

    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders. PMID:25690886

  5. Slik and the receptor tyrosine kinase Breathless mediate localized activation of Moesin in terminal tracheal cells.

    PubMed

    Ukken, Fiona Paul; Aprill, Imola; JayaNandanan, N; Leptin, Maria

    2014-01-01

    A key element in the regulation of subcellular branching and tube morphogenesis of the Drosophila tracheal system is the organization of the actin cytoskeleton by the ERM protein Moesin. Activation of Moesin within specific subdomains of cells, critical for its interaction with actin, is a tightly controlled process and involves regulatory inputs from membrane proteins, kinases and phosphatases. The kinases that activate Moesin in tracheal cells are not known. Here we show that the Sterile-20 like kinase Slik, enriched at the luminal membrane, is necessary for the activation of Moesin at the luminal membrane and regulates branching and subcellular tube morphogenesis of terminal cells. Our results reveal the FGF-receptor Breathless as an additional necessary cue for the activation of Moesin in terminal cells. Breathless-mediated activation of Moesin is independent of the canonical MAP kinase pathway. PMID:25061859

  6. Evidence that reactive oxygen species do not mediate NF-κB activation

    PubMed Central

    Hayakawa, Makio; Miyashita, Hiroshi; Sakamoto, Isao; Kitagawa, Masatoshi; Tanaka, Hirofumi; Yasuda, Hideyo; Karin, Michael; Kikugawa, Kiyomi

    2003-01-01

    It has been postulated that reactive oxygen species (ROS) may act as second messengers leading to nuclear factor (NF)-κB activation. This hypothesis is mainly based on the findings that N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), compounds recognized as potential antioxidants, can inhibit NF-κB activation in a wide variety of cell types. Here we reveal that both NAC and PDTC inhibit NF-κB activation independently of antioxidative function. NAC selectively blocks tumor necrosis factor (TNF)-induced signaling by lowering the affinity of receptor to TNF. PDTC inhibits the IκB–ubiquitin ligase activity in the cell-free system where extracellular stimuli-regulated ROS production does not occur. Furthermore, we present evidence that endogenous ROS produced through Rac/NADPH oxidase do not mediate NF-κB signaling, but instead lower the magnitude of its activation. PMID:12839997

  7. Spontaneous Retinal Activity Mediates Development of Ocular Dominance Columns and Binocular Receptive Fields in V1

    PubMed Central

    Huberman, Andrew D.; Speer, Colenso M.; Chapman, Barbara

    2008-01-01

    Summary The mechanisms that give rise to ocular dominance columns (ODCs) during development are controversial. Early experiments indicated a key role for retinal activity in ODC formation. However, later studies showed that in those early experiments, the retinal activity perturbation was initiated after ODCs had already formed. Moreover, recent studies concluded that early eye removals do not impact ODC segregation. Here we blocked spontaneous retinal activity during the very early stages of ODC development. This permanently disrupted the anatomical organization of ODCs and led to a dramatic increase in receptive field size for binocular cells in primary visual cortex. Our data suggest that early spontaneous retinal activity conveys crucial information about whether thalamocortical axons represent one or the other eye and that this activity mediates binocular competition important for shaping receptive fields in primary visual cortex. PMID:17046688

  8. Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C

    PubMed Central

    Plant, Tim D; Zöllner, Christian; Kepura, Frauke; Mousa, Shaaban S; Eichhorst, Jenny; Schaefer, Michael; Furkert, Jens; Stein, Christoph; Oksche, Alexander

    2007-01-01

    Background Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to noxious stimuli, an effect probably mediated by the ETA receptor (ETAR) expressed in sensory neurons. The cellular mechanisms of this ET-1-mediated effect are only poorly understood. TRPV1, the heat-, pH- and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released in response to noxious stimuli and during inflammation, is a potential target for the action of ET-1. Results We studied the effects of ET-1 on TRPV1 in sensory neurons from the dorsal root ganglion (DRG) and in HEK293 cells coexpressing TRPV1 and the ETAR. Specific 125I-ET-1 binding sites (817 ± 92 fmol/mg) were detected in membrane preparations of DRG with an ETAR/ETBR ratio of 60:40. In an immunofluorescence analysis, coexpression of TRPV1 and the ETAR was found in a subpopulation of primary sensory neurons. ET-1 strongly potentiated capsaicin-induced TRPV1 currents in some neurons, and in HEK293 cells co-expressing TRPV1 and the ETAR. Weaker potentiation was observed in HEK293 cells coexpressing TRPV1 and the ETBR. ETAR activation also increased responses to low pH and heat. In HEK293 cells, strong potentiation of TRPV1 like that induced by ET-1 via the ETAR could be induced by PKC activation, but not with activators of the adenylyl cyclase or the PKA pathway. Furthermore, inhibition of PKC with bisindolylmaleimide X (BIM X) or mutation of the PKC phosphorylation site S800 completely prevented ETAR-mediated potentiation. Conclusion We conclude that ET-1 potentiates TRPV1 by a PKC-dependent mechanism and that this could play a major role in the algogenic and hyperalgesic effects of ET-1 described in previous studies. PMID:18001466

  9. Gli1 Mediates Lung Cancer Cell Proliferation and Sonic Hedgehog-Dependent Mesenchymal Cell Activation

    PubMed Central

    Bermudez, Olga; Hennen, Elisabeth; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    Non-Small-Cell-Lung-Cancer (NSCLC) represents approximately 85% of all lung cancers and remains poorly understood. While signaling pathways operative during organ development, including Sonic Hedgehog (Shh) and associated Gli transcription factors (Gli1-3), have recently been found to be reactivated in NSCLC, their functional role remains unclear. Here, we hypothesized that Shh/Gli1-3 could mediate NSCLC autonomous proliferation and epithelial/stromal signaling in the tumoral tissue. In this context, we have investigated the activity of Shh/Gli1-3 signaling in NSCLC in both, cancer and stromal cells. We report here that inhibition of Shh signaling induces a significant decrease in the proliferation of NSCLC cells. This effect is mediated by Gli1 and Gli2, but not Gli3, through regulation of cyclin D1 and cyclin D2 expression. While exogenous Shh was unable to induce signaling in either A549 lung adenocarcinoma or H520 lung squamous carcinoma cells, both cells were found to secrete Shh ligand, which induced fibroblast proliferation, survival, migration, invasion, and collagen synthesis. Furthermore, Shh secreted by NSCLC mediates the production of proangiogenic and metastatic factors in lung fibroblasts. Our results thus provide evidence that Shh plays an important role in mediating epithelial/mesenchymal crosstalk in NSCLC. While autonomous Gli activity controls NSCLC proliferation, increased Shh expression by NSCLC is associated with fibroblast activation in tumor-associated stroma. Our study highlights the relevance of studying stromal-associated cells in the context of NSCLC regarding new prognosis and therapeutic options. PMID:23667589

  10. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation.

    PubMed

    Bermudez, Olga; Hennen, Elisabeth; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    Non-Small-Cell-Lung-Cancer (NSCLC) represents approximately 85% of all lung cancers and remains poorly understood. While signaling pathways operative during organ development, including Sonic Hedgehog (Shh) and associated Gli transcription factors (Gli1-3), have recently been found to be reactivated in NSCLC, their functional role remains unclear. Here, we hypothesized that Shh/Gli1-3 could mediate NSCLC autonomous proliferation and epithelial/stromal signaling in the tumoral tissue. In this context, we have investigated the activity of Shh/Gli1-3 signaling in NSCLC in both, cancer and stromal cells. We report here that inhibition of Shh signaling induces a significant decrease in the proliferation of NSCLC cells. This effect is mediated by Gli1 and Gli2, but not Gli3, through regulation of cyclin D1 and cyclin D2 expression. While exogenous Shh was unable to induce signaling in either A549 lung adenocarcinoma or H520 lung squamous carcinoma cells, both cells were found to secrete Shh ligand, which induced fibroblast proliferation, survival, migration, invasion, and collagen synthesis. Furthermore, Shh secreted by NSCLC mediates the production of proangiogenic and metastatic factors in lung fibroblasts. Our results thus provide evidence that Shh plays an important role in mediating epithelial/mesenchymal crosstalk in NSCLC. While autonomous Gli activity controls NSCLC proliferation, increased Shh expression by NSCLC is associated with fibroblast activation in tumor-associated stroma. Our study highlights the relevance of studying stromal-associated cells in the context of NSCLC regarding new prognosis and therapeutic options. PMID:23667589

  11. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry

    SciTech Connect

    Diederich, Sandra; Thiel, Lena; Maisner, Andrea

    2008-06-05

    The recent discovery that the Nipah virus (NiV) fusion protein (F) is activated by endosomal cathepsin L raised the question if NiV utilize pH- and protease-dependent mechanisms of entry. We show here that the NiV receptor ephrin B2, virus-like particles and infectious NiV are internalized from the cell surface. However, endocytosis, acidic pH and cathepsin-mediated cleavage are not necessary for the initiation of infection of new host cells. Our data clearly demonstrate that proteolytic activation of the NiV F protein is required before incorporation into budding virions but not after virus entry.

  12. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion.

    PubMed

    Vlahov, Nikola; Scrace, Simon; Soto, Manuel Sarmiento; Grawenda, Anna M; Bradley, Leanne; Pankova, Daniela; Papaspyropoulos, Angelos; Yee, Karen S; Buffa, Francesca; Goding, Colin R; Timpson, Paul; Sibson, Nicola; O'Neill, Eric

    2015-12-01

    Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control. PMID:26549256

  13. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion

    PubMed Central

    Vlahov, Nikola; Scrace, Simon; Soto, Manuel Sarmiento; Grawenda, Anna M.; Bradley, Leanne; Pankova, Daniela; Papaspyropoulos, Angelos; Yee, Karen S.; Buffa, Francesca; Goding, Colin R.; Timpson, Paul; Sibson, Nicola; O’Neill, Eric

    2015-01-01

    Summary Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control. PMID:26549256

  14. Iridium(iii)-catalyzed regioselective direct arylation of sp(2) C-H bonds with diaryliodonium salts.

    PubMed

    Gao, Pan; Liu, Li; Shi, Zhuangzhi; Yuan, Yu

    2016-08-01

    A regioselective direct arylation of arenes and olefins at the ortho position is reported. The key to the high selectivity is the appropriate choice of diaryliodonium salts as the arylating reagent in the presence of a cationic iridium(iii) catalyst. The coordination of the metal with an oxygen atom or a nitrogen atom and subsequent C-H activation allows for direct arylation with coupling partners. This reaction proceeds under mild reaction conditions and with a high tolerance of various functional groups including many halide functional groups. PMID:27381238

  15. Dependence of 20-nm C/H CD windows on critical process parameters

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Su; Gu, Pei-Yi; Tsai, Ming-Jinn

    2010-04-01

    20 nm contact hole (C/H) patterning is applicable for sub-22 nm technology node applications. Dependence of C/H CD window on critical process parameters is important for process stability and repeatability. Post applied baking (PAB) condition, resist thickness, develop time, and dry etch rate are considered to be the most important process parameters for e-beam chain scission resist ZEP520A C/H patterning. In this paper, PAB temperatures (TPAB) are investigated at temperatures between lower than glass transition temperature (TG) and much higher than TF. Effects of these process parameters on 20 nm +/-10% C/H CD window for various pattern densities and e-beam doses are studied. The critical process parameters are determined by their effects on CD window size, C/H sidewall profile, proximity effect immunity, ΔCD/ΔDose slope, and etch selectivity. Experimental results are summarized below. Thinnest ZEP520A film has the largest 20nm +/-10% CD window on D-D plot for various L/S ratios and doses. The dosage window of smaller C/H CD is larger. The proximity effect is negligible for 50 nm ZEP520A baked at 200°C/300 sec. No apparent effect is found in CD window on D-D plot for develop time as short as 30 sec. PAB condition is most critical than the other process parameters in determining resist density and polymerization which affect e-beam scattering and chain scission in resist film and therefore affects CD resolution and window. PAB condition of 140°C/60 sec is most desirable in terms of CD window on D-D plot, C/H sidewall profile, dry etch rate and proximity effect.

  16. Rhenium-Catalyzed Synthesis of 1,3-Diiminoisoindolines via Insertion of Carbodiimides into a C-H Bond of Aromatic and Heteroaromatic Imidates.

    PubMed

    Wang, Zijia; Sueki, Shunsuke; Kanai, Motomu; Kuninobu, Yoichiro

    2016-05-20

    The rhenium-catalyzed synthesis of 1,3-diiminoisoindolines and their related compounds from aromatic or heteroaromatic imidates and carbodiimides are reported via C-H bond activation. This reaction is the first example of a transition-metal-catalyzed insertion of carbodiimides into an aromatic or heteroaromatic C-H bond and a novel method for synthesizing 1,3-diiminoisoindolines and their related compounds. Unsymmetrical 1,3-diiminoisoindolines were easily obtained using this method. The reaction proceeded in good to excellent yield using a variety of substrates. PMID:27153181

  17. cis-Dichloroplatinum(II) complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-ones: synthesis and cytotoxicity in human cancer cell lines in vitro.

    PubMed

    Desbois, Nicolas; Pertuit, David; Moretto, Johnny; Cachia, Claire; Chauffert, Bruno; Bouyer, Florence

    2013-11-01

    A novel family of cisplatin-type complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-one topoisomerase inhibitor via a polymethylene chain and their nonplatinated counterparts were prepared. Their potential cytotoxicity was assessed in three human colorectal cancer cell lines HCT 116, SW480 and HT-29 and compared to the reference molecules cisplatin and oxaliplatin. Platinated compounds were poorly active whilst nonplatinated dibenzo[c,h][1,6]naphthyridin-6-one moieties exhibited higher cytotoxic properties than cisplatin and oxaliplatin whatever the length of the polymethylene chain; molecules containing the tri- and hexamethylene chain length were the most cytotoxic. PMID:24095763

  18. Psychosocial Mediators of a Faith-Based Physical Activity Intervention: Implications and Lessons Learned from Null Findings

    ERIC Educational Resources Information Center

    Baruth, Meghan; Wilcox, Sara; Blair, Steve; Hooker, Steve; Hussey, Jim; Saunders, Ruth

    2010-01-01

    Mediation analyses in faith-based physical activity (PA) interventions targeting African-American adults are lacking. The purpose of this study was to examine the psychosocial mediators of a faith-based PA intervention with African-American adults. Churches were randomly assigned to receive immediate or delayed (1-year later) training in PA…

  19. Endocytosis of Ligand-Activated Sphingosine 1-Phosphate Receptor 1 Mediated by the Clathrin-Pathway.

    PubMed

    Reeves, Patrick M; Kang, Yuan-Lin; Kirchhausen, Tom

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1PR1) is one of five G protein-coupled receptors activated by the lipid sphingosine 1-phosphate (S1P). Stimulation of S1PR1 by binding S1P or the synthetic agonist FTY720P results in rapid desensitization, associated in part with depletion of receptor from the cell surface. We report here combining spinning disc confocal fluorescence microscopy and flow cytometry to show that rapid internalization of activated S1PR1 relies on a functional clathrin-mediated endocytic pathway. Uptake of activated S1PR1 was strongly inhibited in cells disrupted in their clathrin-mediated endocytosis by depleting clathrin or AP-2 or by treating cells with dynasore-OH. The uptake of activated S1P1R was strongly inhibited in cells lacking both β-arrestin 1 and β-arrestin 2, indicating that activated S1PR1 follows the canonical route of endocytosis for G-protein coupled receptor's (GPCR)'s. PMID:26481905

  20. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558