Science.gov

Sample records for medical image system

  1. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  2. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  3. Medical imaging systems

    SciTech Connect

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  4. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  5. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  6. Web-based medical image archive system

    NASA Astrophysics Data System (ADS)

    Suh, Edward B.; Warach, Steven; Cheung, Huey; Wang, Shaohua A.; Tangiral, Phanidral; Luby, Marie; Martino, Robert L.

    2002-05-01

    This paper presents a Web-based medical image archive system in three-tier, client-server architecture for the storage and retrieval of medical image data, as well as patient information and clinical data. The Web-based medical image archive system was designed to meet the need of the National Institute of Neurological Disorders and Stroke for a central image repository to address questions of stroke pathophysiology and imaging biomarkers in stroke clinical trials by analyzing images obtained from a large number of clinical trials conducted by government, academic and pharmaceutical industry researchers. In the database management-tier, we designed the image storage hierarchy to accommodate large binary image data files that the database software can access in parallel. In the middle-tier, a commercial Enterprise Java Bean server and secure Web server manages user access to the image database system. User-friendly Web-interfaces and applet tools are provided in the client-tier for easy access to the image archive system over the Internet. Benchmark test results show that our three-tier image archive system yields fast system response time for uploading, downloading, and querying the image database.

  7. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  8. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  9. Anniversary paper: evaluation of medical imaging systems.

    PubMed

    Krupinski, Elizabeth A; Jiang, Yulei

    2008-02-01

    Medical imaging used to be primarily within the domain of radiology, but with the advent of virtual pathology slides and telemedicine, imaging technology is expanding in the healthcare enterprise. As new imaging technologies are developed, they must be evaluated to assess the impact and benefit on patient care. The authors review the hierarchical model of the efficacy of diagnostic imaging systems by Fryback and Thornbury [Med. Decis. Making 11, 88-94 (1991)] as a guiding principle for system evaluation. Evaluation of medical imaging systems encompasses everything from the hardware and software used to acquire, store, and transmit images to the presentation of images to the interpreting clinician. Evaluation of medical imaging systems can take many forms, from the purely technical (e.g., patient dose measurement) to the increasingly complex (e.g., determining whether a new imaging method saves lives and benefits society). Evaluation methodologies cover a broad range, from receiver operating characteristic (ROC) techniques that measure diagnostic accuracy to timing studies that measure image-interpretation workflow efficiency. The authors review briefly the history of the development of evaluation methodologies and review ROC methodology as well as other types of evaluation methods. They discuss unique challenges in system evaluation that face the imaging community today and opportunities for future advances. PMID:18383686

  10. Image integrity verification in medical information systems.

    PubMed

    Lenti, Jozsef; Lovanyi, Istvan

    2003-01-01

    In nowadays it is a major objective to protect healthcare information against unauthorized access. Comparing conventional and electronic management of medical images the later one demands much more complex security measures. We propose a new scenario for watermark data buildup and embedding which is independent from the applied watermarking technology. In our proposed method the embedded watermark data is dependant on image and patient information too. The proposed watermark buildup method provides watermark information where it is small in size and represents a unique digest of the image and image related data. The embedded data can be considered unique with high probability even if the same algorithm was used in different medical information systems. Described procedures ensure new, more secure links between image and related data, offering further perspectives in smartcard implementations. PMID:14664001

  11. Design patterns in medical imaging information systems

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Laxer, Kenneth D.; Knowlton, Robert C.; Ching, Wan

    2000-05-01

    The purpose of this paper is to introduce a new and important conceptual framework of software design for the medical imaging community using design patterns. Use cases are created to summarize operational scenarios of clinicians using the system to complete certain tasks such as image segmentation. During design the Unified Modeling Language is used to translate the use cases into modeling diagrams that describe how the system functions. Next, design patterns are applied to build models that describe how software components interoperate to deliver that functionality. The software components are implemented using the Java language, CORBA architecture, and other web technologies. The biomedical image information system is used in epilepsy neurosurgical planning and diagnosis. This article proposes the use of proven software design models for solving medical imaging informatics design problems. Design patterns provide an excellent vehicle to leverage design solutions that have worked in the past to solve the problems we face in building user-friendly, reliable, and efficient information systems. This work introduces this new technology for building increasing complex medical image information systems. The rigorous application of software design techniques is essential in building information systems that are easy to use, rich in functionality, maintainable, reliable, and updatable.

  12. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision. PMID:25991188

  13. Fingerprint verification on medical image reporting system.

    PubMed

    Chen, Yen-Cheng; Chen, Liang-Kuang; Tsai, Ming-Dar; Chiu, Hou-Chang; Chiu, Jainn-Shiun; Chong, Chee-Fah

    2008-03-01

    The healthcare industry is recently going through extensive changes, through adoption of robust, interoperable healthcare information technology by means of electronic medical records (EMR). However, a major concern of EMR is adequate confidentiality of the individual records being managed electronically. Multiple access points over an open network like the Internet increases possible patient data interception. The obligation is on healthcare providers to procure information security solutions that do not hamper patient care while still providing the confidentiality of patient information. Medical images are also part of the EMR which need to be protected from unauthorized users. This study integrates the techniques of fingerprint verification, DICOM object, digital signature and digital envelope in order to ensure that access to the hospital Picture Archiving and Communication System (PACS) or radiology information system (RIS) is only by certified parties. PMID:18178287

  14. Adjunct processors in embedded medical imaging systems

    NASA Astrophysics Data System (ADS)

    Trepanier, Marc; Goddard, Iain

    2002-05-01

    Adjunct processors have traditionally been used for certain tasks in medical imaging systems. Often based on application-specific integrated circuits (ASICs), these processors formed X-ray image-processing pipelines or constituted the backprojectors in computed tomography (CT) systems. We examine appropriate functions to perform with adjunct processing and draw some conclusions about system design trade-offs. These trade-offs have traditionally focused on the required performance and flexibility of individual system components, with increasing emphasis on time-to-market impact. Typically, front-end processing close to the sensor has the most intensive processing requirements. However, the performance capabilities of each level are dynamic and the system architect must keep abreast of the current capabilities of all options to remain competitive. Designers are searching for the most efficient implementation of their particular system requirements. We cite algorithm characteristics that point to effective solutions by adjunct processors. We have developed a field- programmable gate array (FPGA) adjunct-processor solution for a Cone-Beam Reconstruction (CBR) algorithm that offers significant performance improvements over a general-purpose processor implementation. The same hardware could efficiently perform other image processing functions such as two-dimensional (2D) convolution. The potential performance, price, operating power, and flexibility advantages of an FPGA adjunct processor over an ASIC, DSP or general-purpose processing solutions are compelling.

  15. Medical Image Analysis by Cognitive Information Systems - a Review.

    PubMed

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis. PMID:27526188

  16. An online interactive simulation system for medical imaging education.

    PubMed

    Dikshit, Aditya; Wu, Dawei; Wu, Chunyan; Zhao, Weizhao

    2005-09-01

    This report presents a recently developed web-based medical imaging simulation system for teaching students or other trainees who plan to work in the medical imaging field. The increased importance of computer and information technology widely applied to different imaging techniques in clinics and medical research necessitates a comprehensive medical imaging education program. A complete tutorial of simulations introducing popular imaging modalities, such as X-ray, MRI, CT, ultrasound and PET, forms an essential component of such an education. Internet technologies provide a vehicle to carry medical imaging education online. There exist a number of internet-based medical imaging hyper-books or online documentations. However, there are few providing interactive computational simulations. We focus on delivering knowledge of the physical principles and engineering implementation of medical imaging techniques through an interactive website environment. The online medical imaging simulation system presented in this report outlines basic principles underlying different imaging techniques and image processing algorithms and offers trainees an interactive virtual laboratory. For education purposes, this system aims to provide general understanding of each imaging modality with comprehensive explanations, ample illustrations and copious references as its thrust, rather than complex physics or detailed math. This report specifically describes the development of the tutorial for commonly used medical imaging modalities. An internet-accessible interface is used to simulate various imaging algorithms with user-adjustable parameters. The tutorial is under the MATLAB Web Server environment. Macromedia Director MX is used to develop interactive animations integrating theory with graphic-oriented simulations. HTML and JavaScript are used to enable a user to explore these modules online in a web browser. Numerous multiple choice questions, links and references for advanced study are

  17. HIPPA's compliant Auditing System for Medical Imaging System.

    PubMed

    Chen, Xiaomeng; Zhang, Jianguo; Wu, Dongjing; Han, Ruoling

    2005-01-01

    As an official rule for healthcare privacy and security, Health Insurance Portability and Accountability Act (HIPAA) requires security services supporting implementation features: Access control; Audit controls; Authorization control; Data authentication; and Entity authentication. Audit controls proposed by HIPPA Security Standards are audit trails, which audit activities, to assess compliance with a secure domain's policies, to detect instances of non-compliant behavior, and to facilitate detection of improper creation, access, modification and deletion of Protected Health Information (PHI). Although current medical imaging systems generate activity logs, there is a lack of regular description to integrate these large volumes of log data into generating HIPPA compliant auditing trails. The paper outlines the design of a HIPAA's compliant auditing system for medical imaging system such as PACS and RIS and discusses the development of this security monitoring system based on the Supplement 95 of the DICOM standard: Audit Trail Messages. PMID:17282242

  18. An information gathering system for medical image inspection

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Bajcsy, Peter

    2005-04-01

    We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.

  19. A scanned beam THz imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  20. Medical Imaging.

    ERIC Educational Resources Information Center

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  1. MIRMAID: A Content Management System for Medical Image Analysis Research.

    PubMed

    Korfiatis, Panagiotis D; Kline, Timothy L; Blezek, Daniel J; Langer, Steve G; Ryan, William J; Erickson, Bradley J

    2015-01-01

    Today, a typical clinical study can involve thousands of participants, with imaging data acquired over several time points across multiple institutions. The additional associated information (metadata) accompanying these data can cause data management to be a study-hindering bottleneck. Consistent data management is crucial for large-scale modern clinical imaging research studies. If the study is to be used for regulatory submissions, such systems must be able to meet regulatory compliance requirements for systems that manage clinical image trials, including protecting patient privacy. Our aim was to develop a system to address these needs by leveraging the capabilities of an open-source content management system (CMS) that has a highly configurable workflow; has a single interface that can store, manage, and retrieve imaging-based studies; and can handle the requirement for data auditing and project management. We developed a Web-accessible CMS for medical images called Medical Imaging Research Management and Associated Information Database (MIRMAID). From its inception, MIRMAID was developed to be highly flexible and to meet the needs of diverse studies. It fulfills the need for a complete system for medical imaging research management. PMID:26284301

  2. Review of hard copy systems for digital medical imaging

    NASA Astrophysics Data System (ADS)

    Apple, Bernard A.; Tennant, Mark H.; Thomas, Jule W., Jr.

    1996-03-01

    In this paper we review image requirements and the potential use of various printing technologies to record digital diagnostic radiographic information. An analysis of limitations and advantages of alternate imaging systems compared to current laser imager/silver halide film systems will be presented. The future move to digital radiology along with its hard copy requirements will also be discussed. The winning technologies in the market place will be determined by their ability to provide adequate image quality at low cost while meeting productivity, durability, and convenience requirements. The first technology to meet these requirements will have a tremendous advantage in the market place. Medical imaging hard copy is dominated by the use of silver halide media providing monochrome images of diagnostic image quality. As new digital medical imaging modalities have emerged they have opened the door to new hard copy technologies. These new technologies have been born and nurtured outside the medical market by small markets with high image quality requirements or by large markets with lower image quality requirements. The former have tended to provide high cost, high quality solutions and the latter low cost, low quality solutions. Silver halide media still dominates, at least in part, because it provides high image quality at a relatively low cost. Yet, the trend away from wet silver halide is evident. These new hard copy technologies are being tested to determine their applicability to the medical market and are finding niches where they provide value. A clear winner that provides the required image quality at low cost has yet to emerge.

  3. A patient positioning system for the ESRF medical imaging facility

    NASA Astrophysics Data System (ADS)

    Dabin, Y.; Draperi, A.; Elleaume, H.; Charvet, A.-M.; Brochard, T.; Perez, M.; Nemoz, C.; Blattmann, G.; Renier, M.; Fournier, F.; Dupuy, J.-L.; Lemoine, B.; Bouhaniche, P.; Thomlinson, W.; Suortti, P.

    2001-07-01

    The medical imaging facility of the ESRF is devoted to human coronary angiography, computed tomography, diffraction enhanced imaging (DEI), bronchography, and also radiation therapy programs. Most of the imaging is performed in a satellite building located at 150 m from the wiggler source (H. Elleaume et al., Nucl. Instr. and Meth. A 428 (1999) 513). A multi-purpose device known as the Patient Positioning System (PPS or medical chair) has been designed to perform in different modes of research on patients. This device operates in the angiography mode, with alternating up and down movements in 1.6 s cycles over a period of about 30 s. The tomography mode is used mainly for the imaging of the brain. It consists of turning the patient around an axis perfectly perpendicular to the beam plane. A dual-energy scan involves two rotations with one image recorded each turn at a different energy (Phys. Med. Biol. 45 (2000) L39). The first angiography imaging on patients was undertaken in January 2000 after successful pre-clinical tests on animals.

  4. Medical imaging

    SciTech Connect

    Chapman, D.

    1996-09-01

    There are a number of medically related imaging programs at synchrotron facilities around the world. The most advanced of these are the dual energy transvenous coronary angiography imaging programs, which have progressed to human imaging for some years. The NSLS facility will be discussed and patient images from recent sessions from the NSLS and HASYLAB will be presented. The effort at the Photon Factory and Accumulator Ring will also be briefly covered, as well as future plans for the new facilities. Emphasis will be on the new aspects of these imaging programs; this includes imaging with a peripheral venous injection of the iodine contrast agent, imaging at three photon energies, and the potential of a hospital-based compact source. Other medical programs to be discussed, are the multiple energy computed tomography (MECT) project at the NSLS and plans for a MECT program at the ESRF. Recently, experiments performed at the NSLS to image mammography phantoms using monochromatic beam have produced very promising results. This program will be discussed as well as some new results from imaging a phantom using a thin Laue crystal analyzer after the object to eliminate scatter onto the detector. {copyright} {ital 1996 American Institute of Physics.}

  5. Evaluation of two thermoluminescent detection systems for medical imaging environments.

    PubMed

    Kearfott, K J; Nabelssi, B K; Rucker, R H; Klingler, G W

    1990-12-01

    Thermoluminescent detectors (TLDs) can provide accurate and precise measurements for both patient and personnel dosimetry in the medical imaging environment. They have the advantages of tissue equivalency, an excellent dynamic range, and dose rate independence. In the work reported here, experiments with planar x-ray, fluoroscopy, and a 57Co source were conducted to test the repeatability and energy dependence of an LiF TL ribbon/automatic reader system and a four-element CaSO2 and Li2B4O7 badge/automatic reader system for diagnostic radiology and nuclear medicine dosimetry. The results indicate the usefulness and appropriateness of the TLD systems tested for both personnel and patient dosimetry in the medical diagnostic environment. PMID:2228610

  6. Evaluation of two thermoluminescent detection systems for medical imaging environments

    SciTech Connect

    Kearfott, K.J.; Nabelssi, B.K.; Rucker, R.H.; Klingler, G.W. )

    1990-12-01

    Thermoluminescent detectors (TLDs) can provide accurate and precise measurements for both patient and personnel dosimetry in the medical imaging environment. They have the advantages of tissue equivalency, an excellent dynamic range, and dose rate independence. In the work reported here, experiments with planar x-ray, fluoroscopy, and a 57Co source were conducted to test the repeatability and energy dependence of an LiF TL ribbon/automatic reader system and a four-element CaSO2 and Li2B4O7 badge/automatic reader system for diagnostic radiology and nuclear medicine dosimetry. The results indicate the usefulness and appropriateness of the TLD systems tested for both personnel and patient dosimetry in the medical diagnostic environment.

  7. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  8. Medical imaging.

    PubMed Central

    Kreel, L.

    1991-01-01

    There is now a wide choice of medical imaging to show both focal and diffuse pathologies in various organs. Conventional radiology with plain films, fluoroscopy and contrast medium have many advantages, being readily available with low-cost apparatus and a familiarity that almost leads to contempt. The use of plain films in chest disease and in trauma does not need emphasizing, yet there are still too many occasions when the answer obtainable from a plain radiograph has not been available. The film may have been mislaid, or the examination was not requested, or the radiograph had been misinterpreted. The converse is also quite common. Examinations are performed that add nothing to patient management, such as skull films when CT will in any case be requested or views of the internal auditory meatus and heal pad thickness in acromegaly, to quote some examples. Other issues are more complicated. Should the patient who clinically has gall-bladder disease have more than a plain film that shows gall-stones? If the answer is yes, then why request a plain film if sonography will in any case be required to 'exclude' other pathologies especially of the liver or pancreas? But then should cholecystography, CT or scintigraphy be added for confirmation? Quite clearly there will be individual circumstances to indicate further imaging after sonography but in the vast majority of patients little or no extra information will be added. Statistics on accuracy and specificity will, in the case of gall-bladder pathology, vary widely if adenomyomatosis is considered by some to be a cause of symptoms or if sonographic examinations 'after fatty meals' are performed. The arguments for or against routine contrast urography rather than sonography are similar but the possibility of contrast reactions and the need to limit ionizing radiation must be borne in mind. These diagnostic strategies are also being influenced by their cost and availability; purely pragmatic considerations are not

  9. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System

    PubMed Central

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  10. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System.

    PubMed

    Covington, Kelsie; Welch, E Brian; Jeong, Ha-Kyu; Landman, Bennett A

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  11. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bandwidth of an imaging system operating under the provisions of this section must be contained between 3100... system, it is permissible to operate an imaging system by remote control provided the imaging system... medical imaging system shall contain a manually operated switch that causes the transmitter to...

  12. Establishing national medical imaging incident reporting systems: issues and challenges.

    PubMed

    Jones, D Neil; Benveniste, Klee A; Schultz, Timothy J; Mandel, Catherine J; Runciman, William B

    2010-08-01

    Radiology incident reporting systems provide one source of invaluable patient safety data that, when combined with appropriate analysis and action, can result in significantly safer health care, which is now an urgent priority for governments worldwide. Such systems require integration into a wider safety, quality, and risk management framework because many issues have global implications, and they also require an international classification scheme, which is now being developed. These systems can be used to inform global research activities as identified by the World Health Organization, many of which intersect with the activities of and issues seen in medical imaging departments. How to ensure that radiologists (and doctors in general) report incidents, and are engaged in the process, is a challenge. However, as demonstrated with the example of the Australian Radiology Events Register, this can be achieved when the reporting system is integrated with their professional organization and its other related activities (such as training and education) and administered by a patient safety organization. PMID:20678728

  13. Optimization of a coded aperture coherent scatter spectral imaging system for medical imaging

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel A.; Lakshmanan, Manu N.; Brady, David J.; Kapadia, Anuj J.

    2015-03-01

    Coherent scatter X-ray imaging is a technique that provides spatially-resolved information about the molecular structure of the material under investigation, yielding material-specific contrast that can aid medical diagnosis and inform treatment. In this study, we demonstrate a coherent-scatter imaging approach based on the use of coded apertures (known as coded aperture coherent scatter spectral imaging1, 2) that enables fast, dose-efficient, high-resolution scatter imaging of biologically-relevant materials. Specifically, we discuss how to optimize a coded aperture coherent scatter imaging system for a particular set of objects and materials, describe and characterize our experimental system, and use the system to demonstrate automated material detection in biological tissue.

  14. [Medical image enhancement: Sharpening].

    PubMed

    Kats, L; Vered, M

    2015-04-01

    Most digital imaging systems provide opportunities for image enhancement operations. These are applied to improve the original image and to make the image more appealing visually. One possible means of enhancing digital radiographic image is sharpening. The purpose of sharpening filters is to improve image quality by removing noise or edge enhancement. Sharpening filters may make the radiographic images subjectively more appealing. But during this process, important radiographic features may disappear while artifacts that simulate pathological process might be generated. Therefore, it is of utmost importance for dentists to be familiar with and aware of the use of image enhancement operations, provided by medical digital imaging programs. PMID:26255429

  15. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  16. Research on medical image encryption in telemedicine systems.

    PubMed

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302

  17. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  18. Simulation of Medical Imaging Systems: Emission and Transmission Tomography

    NASA Astrophysics Data System (ADS)

    Harrison, Robert L.

    Simulation is an important tool in medical imaging research. In patient scans the true underlying anatomy and physiology is unknown. We have no way of knowing in a given scan how various factors are confounding the data: statistical noise; biological variability; patient motion; scattered radiation, dead time, and other data contaminants. Simulation allows us to isolate a single factor of interest, for instance when researchers perform multiple simulations of the same imaging situation to determine the effect of statistical noise or biological variability. Simulations are also increasingly used as a design optimization tool for tomographic scanners. This article gives an overview of the mechanics of emission and transmission tomography simulation, reviews some of the publicly available simulation tools, and discusses trade-offs between the accuracy and efficiency of simulations.

  19. Imaging medical imaging

    NASA Astrophysics Data System (ADS)

    Journeau, P.

    2015-03-01

    This paper presents progress on imaging the research field of Imaging Informatics, mapped as the clustering of its communities together with their main results by applying a process to produce a dynamical image of the interactions between their results and their common object(s) of research. The basic side draws from a fundamental research on the concept of dimensions and projective space spanning several streams of research about three-dimensional perceptivity and re-cognition and on their relation and reduction to spatial dimensionality. The application results in an N-dimensional mapping in Bio-Medical Imaging, with dimensions such as inflammatory activity, MRI acquisition sequencing, spatial resolution (voxel size), spatiotemporal dimension inferred, toxicity, depth penetration, sensitivity, temporal resolution, wave length, imaging duration, etc. Each field is represented through the projection of papers' and projects' `discriminating' quantitative results onto the specific N-dimensional hypercube of relevant measurement axes, such as listed above and before reduction. Past published differentiating results are represented as red stars, achieved unpublished results as purple spots and projects at diverse progress advancement levels as blue pie slices. The goal of the mapping is to show the dynamics of the trajectories of the field in its own experimental frame and their direction, speed and other characteristics. We conclude with an invitation to participate and show a sample mapping of the dynamics of the community and a tentative predictive model from community contribution.

  20. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    PubMed

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process. PMID:25570993

  1. Development of a medical image filing system based on superhigh-definition image and its functional evaluation

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroshi; Matsumura, Yasushi; Okada, Takeo; Kuwata, Shigeki; Wada, Minoru; Hashimoto, Tsutomu

    1997-05-01

    Although many images are handled in the medical filed, image monitoring deices and filing methods vary due to differences in resolution and pixel depth. If a system enabling such images to be filed synthetically without losing its quality were to exist, and if retrieval of such images were made easily, such a system could be applied in various ways. In order to determine whether a super high definition (SHD) image system running at a series of 2048 resolution X 2048 line X 60 frame/sec was capable of such purposes, we established a filing system for medical images on this system. All images of various types produced form one case of cardiovascular disease were digitized and registered into this filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study group purposes because of its operability of the retrieval system. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. efficient input methods, and creating a capacity of filing all produced images are future issue.

  2. A web-based 3D medical image collaborative processing system with videoconference

    NASA Astrophysics Data System (ADS)

    Luo, Sanbi; Han, Jun; Huang, Yonggang

    2013-07-01

    Three dimension medical images have been playing an irreplaceable role in realms of medical treatment, teaching, and research. However, collaborative processing and visualization of 3D medical images on Internet is still one of the biggest challenges to support these activities. Consequently, we present a new application approach for web-based synchronized collaborative processing and visualization of 3D medical Images. Meanwhile, a web-based videoconference function is provided to enhance the performance of the whole system. All the functions of the system can be available with common Web-browsers conveniently, without any extra requirement of client installation. In the end, this paper evaluates the prototype system using 3D medical data sets, which demonstrates the good performance of our system.

  3. NIR DLP hyperspectral imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Wehner, Eleanor; Thapa, Abhas; Livingston, Edward; Zuzak, Karel

    2011-03-01

    DLP® hyperspectral reflectance imaging in the visible range has been previously shown to quantify hemoglobin oxygenation in subsurface tissues, 1 mm to 2 mm deep. Extending the spectral range into the near infrared reflects biochemical information from deeper subsurface tissues. Unlike any other illumination method, the digital micro-mirror device, DMD, chip is programmable, allowing the user to actively illuminate with precisely predetermined spectra of illumination with a minimum bandpass of approximately 10 nm. It is possible to construct active spectral-based illumination that includes but is not limited to containing sharp cutoffs to act as filters or forming complex spectra, varying the intensity of light at discrete wavelengths. We have characterized and tested a pure NIR, 760 nm to 1600 nm, DLP hyperspectral reflectance imaging system. In its simplest application, the NIR system can be used to quantify the percentage of water in a subject, enabling edema visualization. It can also be used to map vein structure in a patient in real time. During gall bladder surgery, this system could be invaluable in imaging bile through fatty tissue, aiding surgeons in locating the common bile duct in real time without injecting any contrast agents.

  4. Medical tele-education system with superhigh-definition (SHD) image viewer

    NASA Astrophysics Data System (ADS)

    Tsumura, Hiroshi; Ashihara, Tsukasa; Urata, Yoji; Hata, Jun-ichi; Fukuhara, Yoshimi; Ono, Sadayasu

    1996-02-01

    We have been studying a medical tele-education support system by an individual tutoring system, called CALAT, and a super high definition (SHD) image processing system, called SuperFM-III. Now, we are in a trial operation to use the SuperFM-III for a super high definition image control viewer on the CALAT client side, and have created the courseware of the pathological images. In this paper, we show the concept and the implementation of this system.

  5. Automated endoscopic navigation and advisory system from medical image

    NASA Astrophysics Data System (ADS)

    Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.

    1999-05-01

    In this paper, we present a review of the research conducted by our group to design an automatic endoscope navigation and advisory system. The whole system can be viewed as a two-layer system. The first layer is at the signal level, which consists of the processing that will be performed on a series of images to extract all the identifiable features. The information is purely dependent on what can be extracted from the 'raw' images. At the signal level, the first task is performed by detecting a single dominant feature, lumen. Few methods of identifying the lumen are proposed. The first method used contour extraction. Contours are extracted by edge detection, thresholding and linking. This method required images to be divided into overlapping squares (8 by 8 or 4 by 4) where line segments are extracted by using a Hough transform. Perceptual criteria such as proximity, connectivity, similarity in orientation, contrast and edge pixel intensity, are used to group edges both strong and weak. This approach is called perceptual grouping. The second method is based on a region extraction using split and merge approach using spatial domain data. An n-level (for a 2' by 2' image) quadtree based pyramid structure is constructed to find the most homogenous large dark region, which in most cases corresponds to the lumen. The algorithm constructs the quadtree from the bottom (pixel) level upward, recursively and computes the mean and variance of image regions corresponding to quadtree nodes. On reaching the root, the largest uniform seed region, whose mean corresponds to a lumen is selected that is grown by merging with its neighboring regions. In addition to the use of two- dimensional information in the form of regions and contours, three-dimensional shape can provide additional information that will enhance the system capabilities. Shape or depth information from an image is estimated by various methods. A particular technique suitable for endoscopy is the shape from shading

  6. Texture based feature extraction methods for content based medical image retrieval systems.

    PubMed

    Ergen, Burhan; Baykara, Muhammet

    2014-01-01

    The developments of content based image retrieval (CBIR) systems used for image archiving are continued and one of the important research topics. Although some studies have been presented general image achieving, proposed CBIR systems for archiving of medical images are not very efficient. In presented study, it is examined the retrieval efficiency rate of spatial methods used for feature extraction for medical image retrieval systems. The investigated algorithms in this study depend on gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), and Gabor wavelet accepted as spatial methods. In the experiments, the database is built including hundreds of medical images such as brain, lung, sinus, and bone. The results obtained in this study shows that queries based on statistics obtained from GLCM are satisfied. However, it is observed that Gabor Wavelet has been the most effective and accurate method. PMID:25227014

  7. Teleradiology network system using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2012-02-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme and the tokenization as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of automatic backup. With automatic backup technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged due to the large area disaster like the great earthquake of Japan, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. Moreover, by using tokenization, the history information of dividing the confidential medical information into two or more tallies is prevented from lying scattered by replacing the history information with another character string (Make it to powerlessness). As a result, information is available only to those who have rightful access it and the sender of a message and the message itself are verified at the receiving point. We propose a new information transmission method and a new information storage method with a new information security solution.

  8. Automated collection of medical images for research from heterogeneous systems: trials and tribulations

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P.; Young, K.; Halling-Brown, M. D.

    2014-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. Over the past two decades both diagnostic and therapeutic imaging have undergone a rapid growth, the ability to be able to harness this large influx of medical images can provide an essential resource for research and training. Traditionally, the systematic collection of medical images for research from heterogeneous sites has not been commonplace within the NHS and is fraught with challenges including; data acquisition, storage, secure transfer and correct anonymisation. Here, we describe a semi-automated system, which comprehensively oversees the collection of both unprocessed and processed medical images from acquisition to a centralised database. The provision of unprocessed images within our repository enables a multitude of potential research possibilities that utilise the images. Furthermore, we have developed systems and software to integrate these data with their associated clinical data and annotations providing a centralised dataset for research. Currently we regularly collect digital mammography images from two sites and partially collect from a further three, with efforts to expand into other modalities and sites currently ongoing. At present we have collected 34,014 2D images from 2623 individuals. In this paper we describe our medical image collection system for research and discuss the wide spectrum of challenges faced during the design and implementation of such systems.

  9. A reference data set for the evaluation of medical image retrieval systems.

    PubMed

    Müller, Henning; Rosset, Antoine; Vallée, Jean-Paul; Terrier, François; Geissbuhler, Antoine

    2004-09-01

    Content-based image retrieval is starting to become an increasingly important factor in medical imaging research and image management systems. Several retrieval systems and methodologies exist and are used in a large variety of applications from automatic labelling of images to diagnostic aid and image classification. Still, it is very hard to compare the performance of these systems as the used databases often contain copyrighted or private images and are thus not interchangeable between research groups, also for patient privacy. Most of the currently used databases for evaluating systems are also fairly small which is partly due to the high cost in obtaining a gold standard or ground truth that is necessary for evaluation. Several large image databases, though without a gold standard, start to be available publicly, for example by the NIH (National Institutes for Health). This article describes the creation of a large medical image database that is used in a teaching file containing more than 8,700 varied medical images. The images are anonymised and can be exchanged free of charge and copyright. Ground truth (a gold standard) has been obtained for a set of 26 images being selected as query topics for content-based query by image example. To reduce the time for the generation of ground truth, pooling methods well known from the text or information retrieval field have been used. Such a database is a good starting point for comparing the current image retrieval systems and to measure the retrieval quality, especially within the context of teaching files, image case databases and the support of teaching. For a comparison of retrieval systems for diagnostic aid, specialised image databases, including the diagnosis and a case description will need to be made available, as well, including gold standards for a proper system evaluation. A first evaluation event for image retrieval is foreseen at the 2004 CLEF conference (Cross Language Evaluation Forum) to compare text

  10. An integrated medical image database and retrieval system using a web application server.

    PubMed

    Cao, Pengyu; Hashiba, Masao; Akazawa, Kouhei; Yamakawa, Tomoko; Matsuto, Takayuki

    2003-08-01

    We developed an Integrated Medical Image Database and Retrieval System (INIS) for easy access by medical staff. The INIS mainly consisted of four parts: specific servers to save medical images from multi-vendor modalities of CT, MRI, CR, ECG and endoscopy; an integrated image database (DB) server to save various kinds of images in a DICOM format; a Web application server to connect clients to the integrated image DB and the Web browser terminals connected to an HIS system. The INIS provided a common screen design to retrieve CT, MRI, CR, endoscopic and ECG images, and radiological reports, which would allow doctors to retrieve radiological images and corresponding reports, or ECG images of a patient simultaneously on a screen. Doctors working in internal medicine on average accessed information 492 times a month. Doctors working in cardiological and gastroenterological accessed information 308 times a month. Using the INIS, medical staff could browse all or parts of a patient's medical images and reports. PMID:12909158

  11. An implementation of wireless medical image transmission system on mobile devices.

    PubMed

    Lee, SangBock; Lee, Taesoo; Jin, Gyehwan; Hong, Juhyun

    2008-12-01

    The advanced technology of computing system was followed by the rapid improvement of medical instrumentation and patient record management system. The typical examples are hospital information system (HIS) and picture archiving and communication system (PACS), which computerized the management procedure of medical records and images in hospital. Because these systems were built and used in hospitals, doctors out of hospital have problems to access them immediately on emergent cases. To solve these problems, this paper addressed the realization of system that could transmit the images acquired by medical imaging systems in hospital to the remote doctors' handheld PDA's using CDMA cellular phone network. The system consists of server and PDA. The server was developed to manage the accounts of doctors and patients and allocate the patient images to each doctor. The PDA was developed to display patient images through remote server connection. To authenticate the personal user, remote data access (RDA) method was used in PDA accessing the server database and file transfer protocol (FTP) was used to download patient images from the remove server. In laboratory experiments, it was calculated to take ninety seconds to transmit thirty images with 832 x 488 resolution and 24 bit depth and 0.37 Mb size. This result showed that the developed system has no problems for remote doctors to receive and review the patient images immediately on emergent cases. PMID:19058651

  12. Do we need a national incident reporting system for medical imaging?

    PubMed

    Itri, Jason N; Krishnaraj, Arun

    2012-05-01

    The essential role of an incident reporting system as a tool to improve safety and reliability has been described in high-risk industries such as aviation and nuclear power, with anesthesia being the first medical specialty to successfully integrate incident reporting into a comprehensive quality improvement strategy. Establishing an incident reporting system for medical imaging that effectively captures system errors and drives improvement in the delivery of imaging services is a key component of developing and evaluating national quality improvement initiatives in radiology. Such a national incident reporting system would be most effective if implemented as one piece of a comprehensive quality improvement strategy designed to enhance knowledge about safety, identify and learn from errors, raise standards and expectations for improvement, and create safer systems through implementation of safe practices. The potential benefits of a national incident reporting system for medical imaging include reduced morbidity and mortality, improved patient and referring physician satisfaction, reduced health care expenses and medical liability costs, and improved radiologist satisfaction. The purposes of this article are to highlight the positive impact of external reporting systems, discuss how similar advancements in quality and safety can be achieved with an incident reporting system for medical imaging in the United States, and describe current efforts within the imaging community toward achieving this goal. PMID:22554630

  13. Integration of federated medical systems for vendor neutral image access in teleradiology applications.

    PubMed

    Yilmaz, Ayhan Ozan; Baykal, Nazife

    2014-01-01

    This paper proposes a framework designed to interconnect medical imaging facilities and teleradiology service providers on a single access interface. This framework aims to solve the interoperability issues of Picture Archiving and Communication System (PACS), Radiology Information System (RIS) and Hospital Information System (HIS) developed by different vendors and enrich the digital health record delivered to non-local radiologists or physicians with the integrated information from several systems. This is achieved by introducing a "Grid Agent" into the domain of medical software systems, which seamlessly integrates with present systems and forms a network to deliver data between other Grid Agents and the "Grid Manager". Resultant solution decreases the access time of medical images by non-local medical staff and increases the efficiency and durability of the teleradiology service architecture. PMID:25160243

  14. Medical Images Remote Consultation

    NASA Astrophysics Data System (ADS)

    Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro

    Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.

  15. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... bandwidth of an imaging system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging... radiated emissions at or below 960 MHz from a device operating under the provisions......

  16. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bandwidth of an imaging system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging... radiated emissions at or below 960 MHz from a device operating under the provisions......

  17. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... bandwidth of an imaging system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging... radiated emissions at or below 960 MHz from a device operating under the provisions......

  18. 47 CFR 15.513 - Technical requirements for medical imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... bandwidth of an imaging system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz. (b) Operation under the provisions of this section is limited to medical imaging... radiated emissions at or below 960 MHz from a device operating under the provisions......

  19. Imaging Systems for Medical Diagnosis: Fundamentals and Technical Solutions - X-Ray Diagnostics- Computed Tomography - Nuclear Medical Diagnostics - Magnetic Resonance Imaging - Ultrasound Technology

    NASA Astrophysics Data System (ADS)

    Krestel, Erich

    1990-10-01

    Erick Krestel, Editor Imaging Systems for Medical Diagnostics This book provides physicians and clinical physicists with detailed information on todya's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in x-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. Overview of Contents Physiology of vision Image quality X-ray and gamma radiation X-ray diagnostics Computed tomography Nuclear medical diagnostics Magnetic resonance imaging Sonography Biomagnetic diagnostics

  20. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  1. Towards Building High Performance Medical Image Management System for Clinical Trials.

    PubMed

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems. PMID:21603096

  2. Mobile medical image retrieval

    NASA Astrophysics Data System (ADS)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  3. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  4. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  5. A User-Centered Cooperative Information System for Medical Imaging Diagnosis.

    ERIC Educational Resources Information Center

    Gomez, Enrique J.; Quiles, Jose A.; Sanz, Marcos F.; del Pozo, Francisco

    1998-01-01

    Presents a cooperative information system for remote medical imaging diagnosis. General computer-supported cooperative work (CSCW) problems addressed are definition of a procedure for the design of user-centered cooperative systems (conceptual level); and improvement of user feedback and optimization of the communication bandwidth in highly…

  6. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  7. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats. PMID:24338090

  8. Educational Use of Toshiba TDF-500 Medical Image Filing System for Teaching File Archiving and Viewing

    NASA Astrophysics Data System (ADS)

    Kimura, Michio; Yashiro, Naobumi; Kita, Koichi; Tani, Yuichiro; IIO, Masahiro

    1989-05-01

    The authors have been using medical image filing system TOSHIBA TDIS-FILE as a teaching files archiving and viewing at University of Tokyo, Hospital, Department of Radiology. Image display on CRT was proven sufficient for the purpose of education for small groups of students, as well as residents. However, retrieval time for archived images, man-machine interface, and financial expenses are not in a satisfactory level yet. The authors also implemented flexible retrieval scheme for diagnostic codes, which has been proven sophisticated. These kinds of software utilities, as well as hardware evolution, are essential for this kind of instruments to be used as potential component of PACSystem. In our department, PACS project is being carried on. In the system, TOSHIBA AS3160 workstation (=SUN 3/160) handles all user interfaces including controls of medical image displays, examination data bases, and interface with HIS.

  9. Pushbroom hyperspectral imaging system with selectable region of interest for medical imaging

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2015-04-01

    A spatial-scanning pushbroom hyperspectral imaging (HSI) system incorporating a video camera (VC) which is not only used for direct video imaging but also for the selection of the region of interest within the VC's full field-of-view is presented. Using a VC for these two applications brings many benefits to a pushbroom HSI system, such as a minimized data acquisition time and smaller data storage requirement. A detailed description of the system followed by the methods and formulas used for calibration and electronic hardware interfacing were discussed and analyzed using United States Air Force resolution chart, chicken breast tissue, and fluorescent targets as test samples. The proposed concepts and developed system can find potential biomedical imaging applications and can be extended to endoscopic imaging applications as well.

  10. Normal and abnormal tissue identification system and method for medical images such as digital mammograms

    NASA Technical Reports Server (NTRS)

    Heine, John J. (Inventor); Clarke, Laurence P. (Inventor); Deans, Stanley R. (Inventor); Stauduhar, Richard Paul (Inventor); Cullers, David Kent (Inventor)

    2001-01-01

    A system and method for analyzing a medical image to determine whether an abnormality is present, for example, in digital mammograms, includes the application of a wavelet expansion to a raw image to obtain subspace images of varying resolution. At least one subspace image is selected that has a resolution commensurate with a desired predetermined detection resolution range. A functional form of a probability distribution function is determined for each selected subspace image, and an optimal statistical normal image region test is determined for each selected subspace image. A threshold level for the probability distribution function is established from the optimal statistical normal image region test for each selected subspace image. A region size comprising at least one sector is defined, and an output image is created that includes a combination of all regions for each selected subspace image. Each region has a first value when the region intensity level is above the threshold and a second value when the region intensity level is below the threshold. This permits the localization of a potential abnormality within the image.

  11. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  12. Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging

    NASA Astrophysics Data System (ADS)

    Moireau, Philippe; Chapelle, Dominique; LeTallec, Patrick

    2009-03-01

    We propose an effective filtering methodology designed to perform estimation in a distributed mechanical system using position measurements. As in a previously introduced method, the filter is inspired by robust control feedback, but here we take full advantage of the estimation specificity to choose a feedback law that can act on displacements instead of velocities and still retain the same kind of dissipativity property which guarantees robustness. This is very valuable in many applications for which positions are more readily available than velocities, as in medical imaging. We provide an in-depth analysis of the proposed procedure, as well as detailed numerical assessments using a test problem inspired by cardiac biomechanics, as medical diagnosis assistance is an important perspective for this approach. The method is formulated first for measurements based on Lagrangian displacements, but we then derive a nonlinear extension allowing us to instead consider segmented images, which of course is even more relevant in medical applications.

  13. A light efficiency uniformity detection system for medical rigid endoscope based on image processing

    NASA Astrophysics Data System (ADS)

    Wang, Yakun; Liu, Ming; Liu, Xiaohua; Zhao, Yuejin; Dong, Liquan; Hui, Mei; Zhai, Xiaohao; Li, Yonghui; Zhou, Peng

    2015-08-01

    Light efficiency uniformity is a very important parameter of medical rigid endoscope. This paper introduces a new system based on image processing to test the light efficiency uniformity of medical rigid endoscope. Employing an electric machinery to reduce the human intervention, so that the precision of measuring and automation degree are improved. We collect the image with a digital CCD camera and display it on the screen of a computer, which can avoid visual fatigue from the direct observation through the rigid endoscope. To perform the image processing on a computer, we adopt a self-developed image processing software, by which the test results can be obtained from PC itself. The processes of our self-developed image processing software include: gray-scale transformation, image pretreatment and image binarization; calculate the center and equivalent radius of the field of view (FOV); plot the curve, through which the ratio of edge and center in different field and the center axisymmetric of light efficiency can be both calculated. It concludes that the relative self-effect of illumination light luminosity is the foremost factor affecting the uniformity, and these endoscopes are all qualified with the max deviation of the center axisymmetric less than 20%. The results of our study prove that this system can test the light efficiency uniformity of medical rigid endoscope quickly, expediently and accurately, and it contains more information instead of only reflecting a particular field of the FOV, what's more, it applies to different types, length and angles of view of medical rigid endoscope.

  14. A mobile phone integrated health care delivery system of medical images.

    PubMed

    Tang, Fuk-hay; Law, Maria Y Y; Lee, Ares C H; Chan, Lawrence W C

    2004-09-01

    With the growing computing capability of mobile phones, a handy mobile controller is developed for accessing the picture archiving and communication system (PACS) to enhance image management for clinicians with nearly no restriction in time and location using various wireless communication modes. The PACS is an integrated system for the distribution and archival of medical images that are acquired by different imaging modalities such as CT (computed tomography) scanners, CR (computed radiography) units, DR (digital radiography) units, US (ultrasonography) scanners, and MR (magnetic resonance) scanners. The mobile controller allows image management of the PACS including display, worklisting, query and retrieval of medical images in DICOM format. In this mobile system, a server program is developed in a PACS Web server which serves as an interface for client programs in the mobile phone and the enterprise PACS for image distribution in hospitals. The application processing is performed on the server side to reduce computational loading in the mobile device. The communication method of mobile phones can be adapted to multiple wireless environments in Hong Kong. This allows greater feasibility to accommodate the rapidly changing communication technology. No complicated computer hardware or software is necessary. Using a mobile phone embedded with the mobile controller client program, this system would serve as a tool for heath care and medical professionals to improve the efficiency of the health care services by speedy delivery of image information. This is particularly important in case of urgent consultation, and it allows health care workers better use of the time for patient care. PMID:15534754

  15. In-Field-of-View Thermal Image Calibration System for Medical Thermography Applications

    NASA Astrophysics Data System (ADS)

    Simpson, R. C.; McEvoy, H. C.; Machin, G.; Howell, K.; Naeem, M.; Plassmann, P.; Ring, F.; Campbell, P.; Song, C.; Tavener, J.; Ridley, I.

    2008-06-01

    Medical thermography has become ever more accessible to hospitals, medical research, and clinical centers with the new generation of thermal cameras, which are easier to use and lower in cost. Some diagnostic techniques using thermal cameras are now regarded as standardized, such as the cold challenge test for Raynaud’s phenomenon. The future for medical thermography appears to be improved accuracy, standardization, and establishment as a mainstream medical imaging methodology. Medical thermography standardization, quantitative measurements, image comparison, and multi-center research trials all require thermal cameras to provide a demonstrably traceable, accurate, and reliable temperature output. To this end, the National Physical Laboratory (NPL) has developed a multi-fixed-point source that serves as an in-image calibration system, thereby providing a reliable means for radiometric image validation. An in-field-of-view fixed-point validation system for thermal imaging has successfully been developed, tested, and validated at NPL and has undergone field trials at three clinical centers in the UK. The sources use the phase change plateaux of gallium zinc eutectic, gallium, and ethylene carbonate. The fixed-point sources have an estimated cavity emissivity of greater than 0.998, a plateau longevity of nominally 3 h at ambient conditions, a stability of 0.1°C, or better, over that period, a repeatability of 0.1°C or better, and an estimated temperature uncertainty of ±0.4°C ( k = 2). In this article, the source specifications and design as well as testing, validation, and field trial results are described in detail.

  16. Development of a medical record and radiographic image transmission system using a high-speed communication network.

    PubMed

    Kim, N H; Yoo, S K; Kim, K M; Kang, Y T; Bae, S H; Kim, S R

    1998-01-01

    A medical record and radiographic image transmission system has been developed using a high-speed communication network. The databases are designed to store and transmit the data acquired from the scanner. To maximally utilize the communication bandwidth, the medical records and radiographic images are compressed using the G3 facsimile and JPEG coding standard method, respectively. TCP/IP, OOP and Windows-based system software enable a modular design, future expandability, open system interconnectivity, and diverse image manipulation functions. PMID:10384462

  17. Medical image retrieval system using multiple features from 3D ROIs

    NASA Astrophysics Data System (ADS)

    Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming

    2012-02-01

    Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.

  18. Evaluation of the medical diagnostic imaging support system based on 2 years of clinical experience.

    PubMed

    Smith, D V; Smith, S; Bender, G N; Carter, J R; Kim, Y; Cawthon, M A; Leckie, R G; Weiser, J C; Romlein, J; Goeringer, F

    1995-05-01

    The Medical Diagnostic Imaging Support (MDIS) system at Madigan Army Medical Center (MAMC) has been operational in a phased approach since March 1992. Since then, nearly all image acquisition has been digital with progressively increasing primary softcopy diagnosis used. More than 375,000 computed radiography (CR) images as well as other modality images have been archived. Considerable experience in installation and implementation phasing has been gained. The location and ergonomic aspects of equipment placement were refined with time. The original clinical scenario was insufficiently detailed and additions were made to facilitate smoother and more complete transition toward a filmless environment. The MDIS system effectiveness and performance have been good in terms of operational workload throughout, background operations, and reliability. The important areas regarding reliability are image acquisition, output, display, database operations, storage, and the local area network. Fail-safe strategies have been continually improved to maintain continuous clinical image availability during the times when the MDIS system or components malfunction. Many invaluable lessons have been learned for effective quality assurance in a hospital-wide picture archiving and communication system. These issues include training, operational quality control, practical aspects of CR image quality, and increased timeliness in the generation and distribution of radiographic reports. Clinical acceptability has been a continuous process as each phase has been implemented. Clinical physicians quickly used the workstations soon after the start of MDIS at MAMC. The major advantage for clinicians has been the amount of time saved when retrieving multimodality images for review. On the other hand, the radiologists have been slower in their acceptance of the workstation for routine use.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7612705

  19. Telediagnosis system for orthopedic deformity analysis based on 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Hee; Hong, Helen; Kim, Min-A.

    2000-04-01

    Due to the structural complexity of the bone, it is difficult to diagnose and make a treatment plan for injuries and diseases in bones. In this paper, we designed and implemented a telediagnosis system for orthopedic deformity analysis based on 3D medical imaging. In order to define the intersseous relationships in each bone and to evaluate a deformity without invasions, the system produces volumetric images by reconstructing the planar images spatially and provides deformity analysis by measuring distance, area, volume and angle among the bones. The reconstructed volumetric images are freely manipulated to simulate surgical operations such as translation, scaling, rotation and so on. Our system integrates three main components: server, clients and communication subsystem. It is also composed of three main functions including the information control manager for event and message process used between client and server, and surgical simulation manager for object visualization and manipulation in individual bones, and the medical database manager for patient information. The system also supports user-friendly graphical user interface and simultaneous use by multiple users.

  20. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard. PMID:22801525

  1. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  2. A Novel Medical Image Protection Scheme Using a 3-Dimensional Chaotic System

    PubMed Central

    Fu, Chong; Zhang, Gao-yuan; Bian, Ou; Lei, Wei-min; Ma, Hong-feng

    2014-01-01

    Recently, great concerns have been raised regarding the issue of medical image protection due to the increasing demand for telemedicine services, especially the teleradiology service. To meet this challenge, a novel chaos-based approach is suggested in this paper. To address the security and efficiency problems encountered by many existing permutation-diffusion type image ciphers, the new scheme utilizes a single 3D chaotic system, Chen's chaotic system, for both permutation and diffusion. In the permutation stage, we introduce a novel shuffling mechanism, which shuffles each pixel in the plain image by swapping it with another pixel chosen by two of the three state variables of Chen's chaotic system. The remaining variable is used for quantification of pseudorandom keystream for diffusion. Moreover, the selection of state variables is controlled by plain pixel, which enhances the security against known/chosen-plaintext attack. Thorough experimental tests are carried out and the results indicate that the proposed scheme provides an effective and efficient way for real-time secure medical image transmission over public networks. PMID:25541941

  3. Terahertz Imaging System for Medical Applications and Related High Efficiency Terahertz Devices

    NASA Astrophysics Data System (ADS)

    Ouchi, Toshihiko; Kajiki, Kousuke; Koizumi, Takayuki; Itsuji, Takeaki; Koyama, Yasushi; Sekiguchi, Ryota; Kubota, Oichi; Kawase, Kodo

    2013-07-01

    A terahertz (THz) imaging system and high efficient terahertz sources and detectors for medical applications were developed. A fiber laser based compact time domain terahertz tomography system was developed with a high depth resolution of less than 20 μm. Three-dimensional images of porcine skin were obtained including some physical properties such as applied skin creams. The discrimination between healthy human tissue and tumor tissue has been achieved using reflection spectra. To improve the THz imaging system, a ridge waveguide LiNbO3 based nonlinear terahertz generator was studied to achieve high output power. A ridge waveguide with 5-7 μm width was designed for high efficiency emission from the LiNbO3 crystal by the electro-optic Cherenkov effect. Terahertz electronic sources and detectors were also realized for future imaging systems. As electronic source devices, resonant tunneling diode (RTD) oscillators with a patch antenna were fabricated using an InGaAs/InAlAs/AlAs triple barrier structure. On the other side, Schottky barrier diode (SBD) detectors with a log-periodic antenna were fabricated by thin-film technology on a Si substrate. Both devices operate above 1 THz at room temperature. This electronic THz device set could provide a future high performance imaging system.

  4. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  5. CALM: cascading system with leaking detection mechanism for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Lim, Joo Hwee; Li, Huiqi

    2008-03-01

    Medical image segmentation is a challenging process due to possible image over-segmentation and under-segmentation (leaking). The CALM medical image segmentation system is constructed with an innovative scheme that cascades threshold level-set and region-growing segmentation algorithms using Union and Intersection set operators. These set operators help to balance the over-segmentation rate and under-segmentation rate of the system respectively. While adjusting the curvature scalar parameter in the threshold level-set algorithm, we observe that the abrupt change in the size of the segmented areas coincides with the occurrences of possible leaking. Instead of randomly choose a value or use the system default curvature scalar values, this observation prompts us to use the following formula in CALM to automatically decide the optimal curvature values γ to prevent the occurrence of leaking : δ2S/δγ2 >= M, where S is the size of the segmented area and M is a large positive number. Motivated for potential applications in organ transplant and analysis, the CALM system is tested on the segmentation of the kidney regions from the Magnetic Resonance images taken from the National University Hospital of Singapore. Due to the nature of MR imaging, low-contrast, weak edges and overlapping regions of adjacent organs at kidney boundaries are frequently seen in the datasets and hence kidney segmentation is prone to leaking. The kidney segmentation accuracy rate achieved by CALM is 22% better compared with those achieved by the component algorithms or the system without leaking detection mechanism. CALM is easy-to-implement and can be applied to many applications besides kidney segmentation.

  6. Three-dimensional display system for medical imaging with computer-generated integral photography

    NASA Astrophysics Data System (ADS)

    Nakajima, Susumu; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi

    2000-05-01

    A 3D display system for medical image by computer-generated integral photography (IP) has been developed. A new, fast, 3D-rendering algorithm has been devised to overcome the difficulties that have prevented practical application of computer-generated IP, namely, the cost of computation, and the pseudoscopic image problem. The display system as developed requires on ly a personal computer, a liquid crystal display (LCD), and a fly's eye lens (FEL). Each point in 3D space is reconstructed by the convergence of rays from many pixels on the LCD through the FEL. As the number of such points is limited by the low resolution of the LCD, the algorithm computes a coordinate of the best point for each pixel of the LCD. This reduces computation, performs hidden surface removal and solves the pseudoscopic image problem. In tests of the system, the locations of images projected 10-40 mm distant from the display were found to be less than 2.5 mm in error. Both stationary and moving IP images of a colored skull, generated from 3D computerized tomography, were projected and could be observed with motion parallax within 10 degrees, both horizontally and vertically, from the front of the display. It can be concluded that the simplicity of design and the geometrical accuracy of projection give this system significant advantages over other 3D display methods.

  7. Quasioptical imaging system design for THz medical imaging application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Taylor, Zachary

    2016-03-01

    In this presentation, a review and quasioptical imaging system and design considerations for an off-axis parabolic mirror based THz imaging systems are presented. It is shown that off-axis parabolic mirrors introduce off-axis intensity and polarization distortion. When a train of OAPs are used to relay THz beam, each distortions rapidly stacks to produce quite ugly beam and polarization profile. We show that the distortion of field distribution and polarization as a function of mirror curvature and focusing parameters. A brief review of design rules are shown to eliminate these distortions by a symmetric configurations of off-axis parabolic mirror train. The detrimental distortion effects were cancelled out by orienting the final two mirrors in a way to that recovers the original source profile. Comparisons of field profiles between compensated and uncompensated design are shown and imaging performance on characterization targets presented. In addition to benefits in field and polarization distribution the improved design facilitates 1D scanning with minimal change to overall optical path length.

  8. Endowing a Content-Based Medical Image Retrieval System with Perceptual Similarity Using Ensemble Strategy.

    PubMed

    Bedo, Marcos Vinicius Naves; Pereira Dos Santos, Davi; Ponciano-Silva, Marcelo; de Azevedo-Marques, Paulo Mazzoncini; Ferreira de Carvalho, André Ponce de León; Traina, Caetano

    2016-02-01

    Content-based medical image retrieval (CBMIR) is a powerful resource to improve differential computer-aided diagnosis. The major problem with CBMIR applications is the semantic gap, a situation in which the system does not follow the users' sense of similarity. This gap can be bridged by the adequate modeling of similarity queries, which ultimately depends on the combination of feature extractor methods and distance functions. In this study, such combinations are referred to as perceptual parameters, as they impact on how images are compared. In a CBMIR, the perceptual parameters must be manually set by the users, which imposes a heavy burden on the specialists; otherwise, the system will follow a predefined sense of similarity. This paper presents a novel approach to endow a CBMIR with a proper sense of similarity, in which the system defines the perceptual parameter depending on the query element. The method employs ensemble strategy, where an extreme learning machine acts as a meta-learner and identifies the most suitable perceptual parameter according to a given query image. This parameter defines the search space for the similarity query that retrieves the most similar images. An instance-based learning classifier labels the query image following the query result set. As the concept implementation, we integrated the approach into a mammogram CBMIR. For each query image, the resulting tool provided a complete second opinion, including lesion class, system certainty degree, and set of most similar images. Extensive experiments on a large mammogram dataset showed that our proposal achieved a hit ratio up to 10% higher than the traditional CBMIR approach without requiring external parameters from the users. Our database-driven solution was also up to 25% faster than content retrieval traditional approaches. PMID:26259520

  9. Assessment of medical imaging and computer-assist systems: lessons from recent experience.

    PubMed

    Wagner, Robert F; Beiden, Sergey V; Campbell, Gregory; Metz, Charles E; Sacks, William M

    2002-11-01

    In the last 2 decades major advances have been made in the field of assessment methods for medical imaging and computer-assist systems through the use of the paradigm of the receiver operating characteristic (ROC) curve. In the most recent decade this methodology was extended to embrace the complication of reader variability through advances in the multiple-reader, multiple-case (MRMC) ROC measurement and analysis paradigm. Although this approach has been widely adopted by the imaging research community, some investigators appear averse to it, possibly from concern that it could place a greater burden on the scarce resources of patient cases and readers compared to the requirements of alternative methods. The present communication argues, however, that the MRMC ROC approach to assessment in the context of reader variability may be the most resource-efficient approach available. Moreover, alternative approaches may also be statistically uninterpretable with regard to estimated summary measures of performance and their uncertainties. The authors propose that the MRMC ROC approach be considered even more widely by the larger community with responsibilities for the introduction and dissemination of medical imaging technologies to society. General principles of study design are reviewed, and important contemporary clinical trials are used as examples. PMID:12449359

  10. Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka

    2010-04-01

    First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.

  11. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed Central

    LeBozec, C.; Jaulent, M. C.; Zapletal, E.; Degoulet, P.

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. Images Figure 6 Figure 7 PMID:9929346

  12. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  13. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system. PMID:21384268

  14. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  15. System architecture for intraoperative ultrasound registration in image-based medical navigation.

    PubMed

    Dekomien, Claudia; Roeschies, Benjamin; Winter, Susanne

    2012-08-01

    Medical navigation systems for orthopedic surgery are becoming more and more important with the increasing proportion of older people in the population, and hence the increasing incidence of diseases of the musculoskeletal system. The central problem for such systems is the exact transformation of the preoperatively acquired datasets to the coordinate system of the patient's body, which is crucial for the accuracy of navigation. Our approach, based on the use of intraoperative ultrasound for image registration, is capable of robustly registering bone structures for different applications, e.g., at the spine or the knee. Nevertheless, this new procedure demands additional steps of preparation of preoperative data. To increase the clinical acceptance of this procedure, it is useful to automate most of the data processing steps. In this article, we present the architecture of our system with focus on the automation of the data processing steps. In terms of accuracy, a mean target registration error of 0.68 mm was achieved for automatically segmented and registered phantom data where the reference transformation was obtained by performing point-based registration using artificial structures. As the overall accuracy for subject data cannot be determined non-invasively, automatic segmentation and registration were judged by visual inspection and precision, which showed a promising result of 1.76 mm standard deviation for 100 registration trials based on automatic segmentation of magnetic resonance imaging data of the spine. PMID:22868778

  16. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  17. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  18. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed

    LeBozec, C; Jaulent, M C; Zapletal, E; Degoulet, P

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. PMID:9929346

  19. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  20. Medical Image Retrieval: A Multimodal Approach.

    PubMed

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  1. Medical imaging V: Image capture, formatting, and display

    SciTech Connect

    Kim, Y.

    1991-01-01

    This book is covered under the following topics: Digital image display I-V; Quality assurance I-V; Clinical image presentation I-V; Imaging systems; Image compression; Workstations; and Medical diagnostic imaging support system for military medicine and other federal agencies.

  2. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  3. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  4. Computer-aided diagnosis workstation and teleradiology network system for chest diagnosis using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2010-03-01

    Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis

  5. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ... People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ...

  6. [A solution to add digital signatures to medical images according to the DICOM standard: embedded systems].

    PubMed

    Schütze, B; Kroll, M; Filler, T J

    2005-01-01

    Radiology departments often underestimate the importance of protecting medical data during transmission, including the precautions taken to ensure data protection. In teleradiology, transmitted as well as stored patient data have to be signed digitally according to the currently valid regulation (Rontgenverordnung, RoV). The DICOM standard facilitates a digital signature. So far, medical image manufacturers only announced to support this security feature. We introduce a solution that extends the feature of digital signing to older modalities. PMID:15657831

  7. Contextual medical-image viewer

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2004-04-01

    One of the greatest difficulties of dealing with medical images is their distinct characteristics, in terms of generation process and noise that requires different forms of treatment for visualization and processing. Besides that, medical images are only a compounding part of the patient"s history, which should be accessible for the user in an understandable way. Other factors that can be used to enhance the user capability and experience are: the computational power of the client machine; available knowledge about the case; if the access is local or remote and what kind of user is accessing the system (physician, nurse, administrator, etc...). These information compose the context of an application and should define its behavior during execution time. In this article, we present the architecture of a viewer that takes into account the contextual information that is present at the moment of execution. We also present a viewer of X-Ray Angiographic images that uses contextual information about the client's hardware and the kind of user to, if necessary, reduce the image size and hide demographic information of the patient. The proposed architecture is extensible, allowing the inclusion of new tools and viewers, being adaptive along time to the evolution of the medical systems.

  8. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  9. Integrating the Radiology Information System with Computerised Provider Order Entry: The Impact on Repeat Medical Imaging Investigations.

    PubMed

    Vecellio, Elia; Georgiou, Andrew

    2016-01-01

    Repeat and redundant procedures in medical imaging are associated with increases in resource utilisation and labour costs. Unnecessary medical imaging in some modalities, such as X-Ray (XR) and Computed Tomography (CT) is an important safety issue because it exposes patients to ionising radiation which can be carcinogenic and is associated with higher rates of cancer. The aim of this study was to assess the impact of implementing an integrated Computerised Provider Order Entry (CPOE)/Radiology Information System (RIS)/Picture Archiving and Communications System (PACS) system on the number of XR and CT imaging procedures (including repeat imaging requests) for inpatients at a large metropolitan hospital. The study found that patients had an average 0.47 fewer XR procedures and 0.07 fewer CT procedures after the implementation of the integrated system. Part of this reduction was driven by a lower rate of repeat procedures: the average inpatient had 0.13 fewer repeat XR procedures within 24-hours of the previous identical XR procedure. A similar decrease was not evident for repeat CT procedures. Reduced utilisation of imaging procedures (especially those within very short intervals from the previous identical procedure, which are more likely to be redundant) has implications for the safety of patients and the cost of medical imaging services. PMID:27440300

  10. CIMIDx: Prototype for a Cloud-Based System to Support Intelligent Medical Image Diagnosis With Efficiency

    PubMed Central

    2015-01-01

    Background The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. Objective We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called “CIMIDx”, based on representative association rules that support the diagnosis of medical images (mammograms). Methods The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype’s classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user’s perspective. Results We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information

  11. Medical high-resolution image sharing and electronic whiteboard system: A pure-web-based system for accessing and discussing lossless original images in telemedicine.

    PubMed

    Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo

    2015-09-01

    There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost. PMID:26093385

  12. Multimedia medical archiving system

    NASA Astrophysics Data System (ADS)

    Sood, Arun K.; Atallah, George C.; Rao, Amar; Perez-Lopez, Kathleen G.; Freedman, Matthew T.

    1995-11-01

    The demand for digital radiological imaging and archiving applications has been increasingly rapidly. These digital applications offer significant advantages to the physician over the traditional film-based technique. They result in faster and better quality services, support remote access and conferencing capabilities, provide on demand service availability, eliminate film processing costs, and most significantly, they are suitable services for the evolving global information super highway. Several existing medical multimedia systems incorporate and utilize those advanced technical features. However, radiologists are seeking an order of magnitude improvement in the overall current system design and performance indices (such as transactions response times, system utilization and throughput). One of the main technical concern radiologists are raising is the miss-filing occurrence. This even will decrease the radiologist productivity; introduce unnecessarily workload; and will result in total customer dissatisfaction. This paper presents Multimedia Medical Archiving System, which can be used in hospitals and medical centers for storing and retrieving radiological images. Furthermore, this paper emphasizes a viable solution for the miss-filing problem. The results obtained demonstrate and quantify the improvement in the overall radiological operations. Specifically this paper demonstrates an order of 80% improvement in the response time for retrieving images. This enhancement in system performance directly translates to a tremendous improvement in the radiologist's productivity.

  13. Medical ultrasound systems

    PubMed Central

    Powers, Jeff; Kremkau, Frederick

    2011-01-01

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue. PMID:22866226

  14. [Medical imaging: its medical economics and recent situation in Japan.].

    PubMed

    Imai, Keiko

    2006-01-01

    Two fields of radiology, medical imaging and radiation therapy, are coded separately in medical fee system, and the health care statistics of 2003 shows that expenditure on the former was 5.2% of the whole medical cost and the latter 0.28%. Introduction of DPC, an abbreviation of Diagnostic Procedure Combination, was carried out in 2003, which was an essential reform of medical fee payment system that have been managed on fee-for-service base throughout, and 22% of beds for acute patients care are under the control of DPC payment in 2006. As medical imaging procedures are basically classified in inclusive payment in DPC system, their accurate statistics cannot be figured out because of the lack of description of individual procedures in DPC bills. Policy-making of medical economics will suffer a great loss from the deficiency of detailed data in published statistics. Important role in clinical diagnoses of CT and MR results an increase of fee paid for them up to more than half of total expenditure on medical imaging. So, dominant reduction of examination fee has been done for MR imaging, especially in 2002, to reduce the total cost of medical imaging. Follows could be featured as major topics of medical imaging in health insurance system, (a) fee is newly assigned for electronic handling of CT-and-MR images, and nuclear medicine, and (b) there is still a mismatch between actual payment and quality of medical facilities. As matters related to medical imaging, the followings should be stressed; (a) numbers of CT and MR units per population are dominantly high among OECD countries, but, those controlled by qualified radiologists are at the average level of those countries, (b) there is a big difference of MR examination quality among medical facilities, and (c) 76% of newly-installed high-end MR units are supplied by foreign industries. Hopefully, there will be an increase in the concern to medical fee payment system and health care cost because they possibly

  15. Development and implementation of a secure, integrated management system for medical images and electronic clinical records for small hospitals.

    PubMed

    Pereira, Javier; Castro, Antonio F; Perez, Juan L; Novoa, Francisco J; Vázquez, Jose M; Teijeiro, Jorge; Pazos, Alejandro; Ezquerra, Norberto

    2007-06-01

    The field of Medical Informatics is currently experiencing increasing demands for new models of the Picture Archiving and Communication Systems (PACS) and Digital Imaging and Communications in Medicine (DICOM) protocols. Despite of the considerable advantages of current systems, implementation in hospitals is remarkably slow, due primarily to difficulties in integration and relatively high costs. Even though the success of DICOM standards has greatly contributed to the development of PACS, many hospitals remain unable to support it or to make full use of its potential because various imaging modalities in use at these sites generate images that cannot be stored in the PACS and cannot be managed in a centralized manner without DICOM standardization modules. Furthermore, the imaging modalities being used in such smaller centers are expensive and unlikely to be replaced, making DICOM compliance untenable. With this in mind, this paper describes the design, development, and implementation of a management system for medical diagnostic imaging, based on the DICOM standard and adapted to the needs of a small hospital. The system is currently being implemented in the San Rafael Hospital at A Coruna in Spain, and integrated with the existing hospital information system (HIS). We have studied the networking infrastructure of the hospital and its available image generation devices, and have subsequently carried out a series of measurements including transmission times, image file size, compression ratios, and many others that allow us to analyze the behavior of the system. Results obtained from these investigations demonstrate both the flexibility of using such a "small-hospital" DICOM-based framework as well as the relative cost-effectiveness of the system. In this regard, the approach, described herein, might serve as a model for other small, and possibly mid-sized, medical centers. PMID:17603833

  16. Evaluating performance of biomedical image retrieval systems--an overview of the medical image retrieval task at ImageCLEF 2004-2013.

    PubMed

    Kalpathy-Cramer, Jayashree; de Herrera, Alba García Seco; Demner-Fushman, Dina; Antani, Sameer; Bedrick, Steven; Müller, Henning

    2015-01-01

    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created. PMID:24746250

  17. Evaluating performance of biomedical image retrieval systems – an overview of the medical image retrieval task at ImageCLEF 2004–2013

    PubMed Central

    Kalpathy-Cramer, Jayashree; de Herrera, Alba García Seco; Demner-Fushman, Dina; Antani, Sameer; Bedrick, Steven; Müller, Henning

    2014-01-01

    Medical image retrieval and classification have been extremely active research topics over the past 15 years. With the ImageCLEF benchmark in medical image retrieval and classification a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluations campaigns. A detailed analysis of the data also highlights the value of the resources created. PMID:24746250

  18. Optimization of medical imaging display systems: using the channelized Hotelling observer for detecting lung nodules: experimental study

    NASA Astrophysics Data System (ADS)

    Platisa, Ljiljana; Vansteenkiste, Ewout; Goossens, Bart; Marchessoux, Cédric; Kimpe, Tom; Philips, Wilfried

    2009-02-01

    Medical-imaging systems are designed to aid medical specialists in a specific task. Therefore, the physical parameters of a system need to optimize the task performance of a human observer. This requires measurements of human performance in a given task during the system optimization. Typically, psychophysical studies are conducted for this purpose. Numerical observer models have been successfully used to predict human performance in several detection tasks. Especially, the task of signal detection using a channelized Hotelling observer (CHO) in simulated images has been widely explored. However, there are few studies done for clinically acquired images that also contain anatomic noise. In this paper, we investigate the performance of a CHO in the task of detecting lung nodules in real radiographic images of the chest. To evaluate variability introduced by the limited available data, we employ a commonly used study of a multi-reader multi-case (MRMC) scenario. It accounts for both case and reader variability. Finally, we use the "oneshot" methods to estimate the MRMC variance of the area under the ROC curve (AUC). The obtained AUC compares well to those reported for human observer study on a similar data set. Furthermore, the "one-shot" analysis implies a fairly consistent performance of the CHO with the variance of AUC below 0.002. This indicates promising potential for numerical observers in optimization of medical imaging displays and encourages further investigation on the subject.

  19. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions.

    PubMed

    Müller, Henning; Michoux, Nicolas; Bandon, David; Geissbuhler, Antoine

    2004-02-01

    content-based access methods into picture archiving and communication systems (PACS) have been created. This article gives an overview of available literature in the field of content-based access to medical image data and on the technologies used in the field. Section 1 gives an introduction into generic content-based image retrieval and the technologies used. Section 2 explains the propositions for the use of image retrieval in medical practice and the various approaches. Example systems and application areas are described. Section 3 describes the techniques used in the implemented systems, their datasets and evaluations. Section 4 identifies possible clinical benefits of image retrieval systems in clinical practice as well as in research and education. New research directions are being defined that can prove to be useful. This article also identifies explanations to some of the outlined problems in the field as it looks like many propositions for systems are made from the medical domain and research prototypes are developed in computer science departments using medical datasets. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text-based retrieval methods as they exist at the moment but to complement them with visual search tools. PMID:15036075

  20. Medical Image Retrieval: Past and Present

    PubMed Central

    Hwang, Kyung Hoon; Lee, Haejun

    2012-01-01

    With the widespread dissemination of picture archiving and communication systems (PACSs) in hospitals, the amount of imaging data is rapidly increasing. Effective image retrieval systems are required to manage these complex and large image databases. The authors reviewed the past development and the present state of medical image retrieval systems including text-based and content-based systems. In order to provide a more effective image retrieval service, the intelligent content-based retrieval systems combined with semantic systems are required. PMID:22509468

  1. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  2. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing. PMID:23822402

  3. Imaging systems and applications.

    PubMed

    Bennett, Gisele; Catrysse, Peter B; Farrell, Joyce E; Fowler, Boyd; Mait, Joseph N

    2012-02-01

    Imaging systems are used in consumer, medical, and military applications. Designing, developing, and building imaging systems requires a multidisciplinary approach. This issue features current research in imaging systems that ranges from fundamental theories to novel applications. Although the papers collected are diverse, their unique compilation provides a systems perspective to imaging. PMID:22307134

  4. Contemporary issues for experimental design in assessment of medical imaging and computer-assist systems

    NASA Astrophysics Data System (ADS)

    Wagner, Robert F.; Beiden, Sergey V.; Campbell, Gregory; Metz, Charles E.; Sacks, William M.

    2003-05-01

    The dialog among investigators in academia, industry, NIH, and the FDA has grown in recent years on topics of historic interest to attendees of these SPIE sub-conferences on Image Perception, Observer Performance, and Technology Assessment. Several of the most visible issues in this regard have been the emergence of digital mammography and modalities for computer-assisted detection and diagnosis in breast and lung imaging. These issues appear to be only the "tip of the iceberg" foreshadowing a number of emerging advances in imaging technology. So it is timely to make some general remarks looking back and looking ahead at the landscape (or seascape). The advances have been facilitated and documented in several forums. The major role of the SPIE Medical Imaging Conferences i well-known to all of us. Many of us were also present at the Medical Image Perception Society and co-sponsored by CDRH and NCI in September of 2001 at Airlie House, VA. The workshops and discussions held at that conference addressed some critical contemporary issues related to how society - and in particular industry and FDA - approach the general assessment problem. A great deal of inspiration for these discussions was also drawn from several workshops in recent years sponsored by the Biomedical Imaging Program of the National Cancer Institute on these issues, in particular the problem of "The Moving Target" of imaging technology. Another critical phenomenon deserving our attention is the fact that the Fourth National Forum on Biomedical Imaging in Oncology was recently held in Bethesda, MD., February 6-7, 2003. These forums are presented by the National Cancer Institute (NCI), the Food and Drug Administration (FDA), the Centers for Medicare and Medicaid Services (CMS), and the National Electrical Manufacturers Association (NEMA). They are sponsored by the National Institutes of Health/Foundation for Advanced Education in the Sciences (NIH/FAES). These forums led to the development of the NCI

  5. Design and Implementation of a Compact Low-Dose Diffraction Enhanced Medical Imaging System

    SciTech Connect

    Parham, C.; Zhong, Z; Connor, D; Chapman, D; Pisano, E

    2009-01-01

    This paper describes the design, construction, and performance of a new DEI system using a commercially available tungsten anode x-ray tube and includes the first high-quality low-dose diffraction-enhanced images of full-thickness human tissue specimens. Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that differs from conventional radiography in its use of three physical mechanisms to generate contrast. DEI is able to generate contrast from x-ray absorption, refraction, and ultra-small-angle scatter rejection (extinction) to produce high-contrast images with a much lower radiation dose compared to conventional radiography.

  6. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  7. Medical hyperspectral imaging: a review

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

  8. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  9. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  10. Medical devices; gastroenterology-urology devices; classification of the ingestible telemetric gastrointestinal capsule imaging system. Final rule.

    PubMed

    2002-01-24

    The Food and Drug Administration (FDA) is classifying the ingestible telemetric gastrointestinal capsule imaging system device into class II (special controls). The special controls that will apply to this device are set forth below. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:11820252

  11. Content-Based Medical Image Retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Deserno, Thomas M.

    This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.

  12. A web service system supporting three-dimensional post-processing of medical images based on WADO protocol.

    PubMed

    He, Longjun; Xu, Lang; Ming, Xing; Liu, Qian

    2015-02-01

    Three-dimensional post-processing operations on the volume data generated by a series of CT or MR images had important significance on image reading and diagnosis. As a part of the DIOCM standard, WADO service defined how to access DICOM objects on the Web, but it didn't involve three-dimensional post-processing operations on the series images. This paper analyzed the technical features of three-dimensional post-processing operations on the volume data, and then designed and implemented a web service system for three-dimensional post-processing operations of medical images based on the WADO protocol. In order to improve the scalability of the proposed system, the business tasks and calculation operations were separated into two modules. As results, it was proved that the proposed system could support three-dimensional post-processing service of medical images for multiple clients at the same moment, which met the demand of accessing three-dimensional post-processing operations on the volume data on the web. PMID:25628160

  13. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings. PMID:23715317

  14. THz Medical Imaging: in vivo Hydration Sensing

    PubMed Central

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  15. Teleradiology network system and computer-aided diagnosis workstation using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2011-03-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of RAID. With RAID technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. We can safely share the screen of workstation to which the medical image of Data Center is displayed from two or more web conference terminals at the same time. Moreover, Real time biometric face authentication system is connected with Data Center. Real time biometric face authentication system analyzes the feature of the face image of which it takes a picture in 20 seconds with the camera and defends the safety of the medical information. We propose a new information transmission method and a new information storage method with a new information security solution.

  16. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses. PMID:19782632

  17. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  18. Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report.

    PubMed

    Samei, Ehsan; Badano, Aldo; Chakraborty, Dev; Compton, Ken; Cornelius, Craig; Corrigan, Kevin; Flynn, Michael J; Hemminger, Bradley; Hangiandreou, Nick; Johnson, Jeffrey; Moxley-Stevens, Donna M; Pavlicek, William; Roehrig, Hans; Rutz, Lois; Shepard, Jeffrey; Uzenoff, Robert A; Wang, Jihong; Willis, Charles E

    2005-04-01

    Digital imaging provides an effective means to electronically acquire, archive, distribute, and view medical images. Medical imaging display stations are an integral part of these operations. Therefore, it is vitally important to assure that electronic display devices do not compromise image quality and ultimately patient care. The AAPM Task Group 18 (TG18) recently published guidelines and acceptance criteria for acceptance testing and quality control of medical display devices. This paper is an executive summary of the TG18 report. TG18 guidelines include visual, quantitative, and advanced testing methodologies for primary and secondary class display devices. The characteristics, tested in conjunction with specially designed test patterns (i.e., TG18 patterns), include reflection, geometric distortion, luminance, the spatial and angular dependencies of luminance, resolution, noise, glare, chromaticity, and display artifacts. Geometric distortions are evaluated by linear measurements of the TG18-QC test pattern, which should render distortion coefficients less than 2%/5% for primary/secondary displays, respectively. Reflection measurements include specular and diffuse reflection coefficients from which the maximum allowable ambient lighting is determined such that contrast degradation due to display reflection remains below a 20% limit and the level of ambient luminance (Lamb) does not unduly compromise luminance ratio (LR) and contrast at low luminance levels. Luminance evaluation relies on visual assessment of low contrast features in the TG18-CT and TG18-MP test patterns, or quantitative measurements at 18 distinct luminance levels of the TG18-LN test patterns. The major acceptable criteria for primary/ secondary displays are maximum luminance of greater than 170/100 cd/m2, LR of greater than 250/100, and contrast conformance to that of the grayscale standard display function (GSDF) of better than 10%/20%, respectively. The angular response is tested to

  19. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  20. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  1. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  2. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  3. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eisen, Y.; Shor, A.; Mardor, I.

    1999-06-01

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used planar detectors. The following review paper is divided into three parts: The first part discusses detector contact configurations for enhancing photopeak efficiencies and the single carrier collection approach which leads to improved energy resolutions and photopeak efficiencies at high gamma ray energies. The second part demonstrates excellent spectroscopic results using thick CdZnTe segmented monolithic pad and strip detectors showing energy resolutions less than 2% FWHM at 356 keV gamma rays. The third part discusses advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems and describes new developments for medical diagnostics imaging systems.

  4. A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging.

    PubMed

    Hasegawa, B H; Stebler, B; Rutt, B K; Martinez, A; Gingold, E L; Barker, C S; Faulkner, K G; Cann, C E; Boyd, D P

    1991-01-01

    A data-acquisition system designed for x-ray medical imaging utilizes a segmented high-purity germanium (HPGe) detector array with 2-mm wide and 6-mm thick elements. The detectors are contained within a liquid-nitrogen cryostat designed to minimize heat losses. The 50-ns pulse-shaping time of the preamplifier electronics is selected as the shortest time constant compatible with the 50-ns charge collection time of the detector. This provides the detection system with the fastest count-rate capabilities and immunity from microphonics, with moderate energy resolution performance. A theoretical analysis of the preamplifier electronics shows that its noise performance is limited primarily by its input capacitance, and is independent of detector leakage current up to approximately 100 nA. The system experimentally demonstrates count rates exceeding 1 million counts per second per element with an energy resolution of 7 keV for the 60-keV gamma ray photon from 241Am. The results demonstrate the performance of a data acquisition system utilizing HPGe detector systems which would be suitable for dual-energy imaging as well as systems offering simultaneous x-ray transmission and radionuclide emission imaging. PMID:1961152

  5. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  6. DICOM: a standard for medical imaging

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Bidgood, W. Dean

    1993-01-01

    Since 1983, the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) have been engaged in developing standards related to medical imaging. This alliance of users and manufacturers was formed to meet the needs of the medical imaging community as its use of digital imaging technology increased. The development of electronic picture archiving and communications systems (PACS), which could connect a number of medical imaging devices together in a network, led to the need for a standard interface and data structure for use on imaging equipment. Since medical image files tend to be very large and include much text information along with the image, the need for a fast, flexible, and extensible standard was quickly established. The ACR-NEMA Digital Imaging and Communications Standards Committee developed a standard which met these needs. The standard (ACR-NEMA 300-1988) was first published in 1985 and revised in 1988. It is increasingly available from equipment manufacturers. The current work of the ACR- NEMA Committee has been to extend the standard to incorporate direct network connection features, and build on standards work done by the International Standards Organization in its Open Systems Interconnection series. This new standard, called Digital Imaging and Communication in Medicine (DICOM), follows an object-oriented design methodology and makes use of as many existing internationally accepted standards as possible. This paper gives a brief overview of the requirements for communications standards in medical imaging, a history of the ACR-NEMA effort and what it has produced, and a description of the DICOM standard.

  7. Medical infrared imaging - differentiating facts from fiction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence

    NASA Astrophysics Data System (ADS)

    Fauci, M. A.; Breiter, R.; Cabanski, W.; Fick, W.; Koch, R.; Ziegler, J.; Gunapala, S. D.

    2001-06-01

    Through most of the 1970s infrared medical imaging was viewed as an exciting and very promising new imaging technology, for a variety of potential diagnostic applications, by the US clinical community. Infrared technology subsequently disappeared from US medical practice. This was due to a number of reasons including inflated expectations, technical immaturity as well as substantial amount of misinformation. But new technical developments, such as high precision quantum well infrared photodetector camera systems, and the changing commercial and political environment, are ushering in a renaissance of medical infrared imaging.

  8. Novel Multiplexer to Enable Multiple-Module Imaging with Adjustable High Spatial Resolution and Predetermined Display Bandwidth for Array Medical Imaging Systems.

    PubMed

    Sharma, P; Titus, A H; Qu, B; Huang, Y; Wang, W; Kuhls-Gilcrist, A; Cartwright, A N; Bednarek, D R; Rudin, S

    2010-01-01

    We describe a custom multiple-module multiplexer integrated circuit (MMMIC) that enables the combination of discrete Electron multiplying charge coupled devices (EMCCD) based imaging modules to improve medical imaging systems. It is highly desirable to have flexible imaging systems that provide high spatial resolution over a specific region of interest (ROI) and a field of view (FOV) large enough to encompass areas of clinical interest. Also, such systems should be dynamic, i.e. should be able to maintain a specified acquisition bandwidth irrespective of the size of the imaged FOV. The MMMIC achieves these goals by 1) multiplexing the outputs of an array of imaging modules to enable a larger FOV, 2) enabling a number of binning modes for adjustable high spatial resolution, and 3) enabling selection of a subset of modules in the array to achieve ROI imaging at a predetermined display bandwidth. The MMMIC design also allows multiple MMMICs to be connected to control larger arrays. The prototype MMMIC was designed and fabricated in the ON-SEMI 0.5μm CMOS process through MOSIS (www.mosis.org). It has three 12-bit inputs, a single 12-bit output, three input enable bits, and one output enable, so that one MMMIC can control the output from three discrete imager arrays. The modular design of the MMMIC enables four identical chips, connected in a two-stage sequential arrangement, to readout a 3×3 collection of individual imaging modules. The first stage comprises three MMMICs (each connected to three of the individual imaging module), and the second stage is a single MMMIC whose 12-bit output is then sent via a CameraLink interface to the system computer. The prototype MMMIC was successfully tested using digital outputs from two EMCCD-based detectors to be used in an x-ray imaging array detector system.Finally, we show how the MMMIC can be used to extend an imaging system to include any arbitrary (M×N) array of imaging modules enabling a large FOV along with ROI imaging

  9. Medical Information Systems.

    ERIC Educational Resources Information Center

    Smith, Kent A.

    1986-01-01

    Description of information services from the National Library of Medicine (NLM) highlights a new system for retrieving information from NLM's databases (GRATEFUL MED); a formal Regional Medical Library Network; DOCLINE; the Unified Medical Language System; and Integrated Academic Information Management Systems. Research and development and the…

  10. Allergic reactions to medication (image)

    MedlinePlus

    A true allergy to a medication is different than a simple adverse reaction to the drug. The allergic reaction occurs when the immune system, having been exposed to the drug before, creates antibodies to ...

  11. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  12. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  13. Multispectral imaging for medical diagnosis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  14. An open architecture for medical image workstation

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  15. X-ray Luminescence Efficiency of GAGG:Ce Single Crystal Scintillators for use in Tomographic Medical Imaging Systems

    NASA Astrophysics Data System (ADS)

    David, S. L.; Valais, I. G.; Michail, C. M.; Kandarakis, I. S.

    2015-09-01

    The purpose of the present study was to evaluate different scintillator crystal samples, with a cross section of 3×3mm2 and various thicknesses ranging from 4mm up to 20mm, of the new mixed Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator material under X-ray irradiation, for potential applications in Tomographic Medical Imaging systems. Evaluation was performed by determining the X-ray luminescence efficiency (XLE) (emitted light energy flux over incident X-ray energy flux) in energies employed in general X-ray imaging. For the luminescence efficiency measurements, the scintillator samples were exposed to X-rays using a BMI General Medical Merate tube, with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. X-ray tube voltages between 50 to 130 kV were selected. An additional 20 mm filtration was introduced to the beam to simulate beam quality alternation equivalent to a human body. The emitted light energy flux measurements were performed using an experimental set up comprising a light integration sphere coupled to an EMI 9798B photomultiplier tube which was connected to a Cary 401 vibrating reed electrometer. The GAGG:Ce sample with dimensions 3×3×10 mm3 exhibited higher XLE values, in the whole X- ray energy range examined. XLE value equal to 0.013 was recorded for this crystal at 130 kVp - a setting frequently used in Computed Tomography applications.

  16. Medical Imaging of Hyperpolarized Gases

    NASA Astrophysics Data System (ADS)

    Miller, G. Wilson

    2009-08-01

    Since the introduction of hyperpolarized 3He and 129Xe as gaseous MRI contrast agents more than a decade ago, a rich variety of imaging techniques and medical applications have been developed. Magnetic resonance imaging of the inhaled gas depicts ventilated lung airspaces with unprecedented detail, and allows one to track airflow and pulmonary mechanics during respiration. Information about lung structure and function can also be obtained using the physical properties of the gas, including spin relaxation in the presence of oxygen, restricted diffusion inside the alveolar airspaces, and the NMR frequency shift of xenon dissolved in blood and tissue.

  17. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  18. Development of a networked four-million-pixel pathological and radiological digital image presentation system and its application to medical conferences

    NASA Astrophysics Data System (ADS)

    Sakano, Toshikazu; Furukawa, Isao; Okumura, Akira; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu; Suzuki, Junji; Matsuya, Shoji; Ishihara, Teruo

    2001-08-01

    The wide spread of digital technology in the medical field has led to a demand for the high-quality, high-speed, and user-friendly digital image presentation system in the daily medical conferences. To fulfill this demand, we developed a presentation system for radiological and pathological images. It is composed of a super-high-definition (SHD) imaging system, a radiological image database (R-DB), a pathological image database (P-DB), and the network interconnecting these three. The R-DB consists of a 270GB RAID, a database server workstation, and a film digitizer. The P-DB includes an optical microscope, a four-million-pixel digital camera, a 90GB RAID, and a database server workstation. A 100Mbps Ethernet LAN interconnects all the sub-systems. The Web-based system operation software was developed for easy operation. We installed the whole system in NTT East Kanto Hospital to evaluate it in the weekly case conferences. The SHD system could display digital full-color images of 2048 x 2048 pixels on a 28-inch CRT monitor. The doctors evaluated the image quality and size, and found them applicable to the actual medical diagnosis. They also appreciated short image switching time that contributed to smooth presentation. Thus, we confirmed that its characteristics met the requirements.

  19. Nanotechnology-supported THz medical imaging

    PubMed Central

    Stylianou, Andreas; Talias, Michael A

    2013-01-01

    Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052

  20. An integrated multimedia medical information network system.

    PubMed

    Yamamoto, K; Makino, J; Sasagawa, N; Nagira, M

    1998-01-01

    An integrated multimedia medical information network system at Shimane Medical university has been developed to organize medical information generated from each section and provide information services useful for education, research and clinical practice. The report describes the outline of our system. It is designed to serve as a distributed database for electronic medical records and images. We are developing the MML engine that is to be linked to the world wide web (WWW) network system. To the users, this system will present an integrated multimedia representation of the patient records, providing access to both the image and text-based data required for an effective clinical decision making and medical education. PMID:10384445

  1. Archimedes, an archive of medical images.

    PubMed

    Tahmoush, Dave; Samet, Hanan

    2006-01-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images. Medical images from any source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Retrieval is based on patient info, date, doctor's annotations, features in the images, or a spatial combination. This database supports the secure transmission of sensitive data for tele-medicine and follows all HIPPA regulations. PMID:17238733

  2. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  3. Despeckling of Medical Ultrasound Images

    PubMed Central

    Michailovich, Oleg V.; Tannenbaum, Allen

    2013-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters—wavelet denoising, total variation filtering, and anisotropic diffusion—and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  4. Despeckling of medical ultrasound images.

    PubMed

    Michailovich, Oleg V; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  5. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  6. Imaging system QA of a medical accelerator, Novalis Tx, for IGRT per TG 142: our 1 year experience.

    PubMed

    Chang, Zheng; Bowsher, James; Cai, Jing; Yoo, Sua; Wang, Zhiheng; Adamson, Justus; Ren, Lei; Yin, Fang-Fang

    2012-01-01

    American Association of Physicists in Medicine (AAPM) task group (TG) 142 has recently published a report to update recommendations of the AAPM TG 40 report and add new recommendations concerning medical accelerators in the era of image-guided radiation therapy (IGRT). The recommendations of AAPM TG 142 on IGRT are timely. In our institute, we established a comprehensive imaging QA program on a medical accelerator based on AAPM TG 142 and implemented it successfully. In this paper, we share our one-year experience and performance evaluation of an OBI capable linear accelerator, Novalis Tx, per TG 142 guidelines. PMID:22766946

  7. Calibrated parametric medical ultrasound imaging.

    PubMed

    Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R

    2000-01-01

    The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced

  8. ICG fluorescence imaging and its medical applications

    NASA Astrophysics Data System (ADS)

    Miwa, Mitsuharu; Shikayama, Takahiro

    2008-12-01

    This paper presents a novel optical angiography system, and introduces its medical applications. We developed the optical enhanced imaging system which can observe the blood and lymphatic vessels as the Indocyanine green (ICG) fluorescence image. The imaging system consists of 760nm light emitted diode (LED) as excite light, CCD camera as a detector, a high-pass optical filter in front of the CCD and video processing system. The advantage of ICG fluorescence method is safe (radiation free), high sensitive, real time monitoring of blood and/or lymphatic flow, small size, easy to operate and cost effective compared to conventional X-ray angiography or scintigraphy. We have applied this method to several clinical applications such as breast cancer sentinel lymph node (SLN) navigation, lymph edema diagnostic and identification of liver segmentation. In each application, ICG fluorescence method shows useful result. It's indicated that this method is promising technique as optical angiography.

  9. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  10. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  11. [Managing digital medical imaging projects in healthcare services: lessons learned].

    PubMed

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. PMID:22944485

  12. Medical image archive node simulation and architecture

    NASA Astrophysics Data System (ADS)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  13. Medical Applications of Microwave Imaging

    PubMed Central

    Wang, Zhao; Lim, Eng Gee; Tang, Yujun

    2014-01-01

    Ultrawide band (UWB) microwave imaging is a promising method for the detection of early stage breast cancer, based on the large contrast in electrical parameters between malignant tumour tissue and the surrounding normal breast-tissue. In this paper, the detection and imaging of a malignant tumour are performed through a tomographic based microwave system and signal processing. Simulations of the proposed system are performed and postimage processing is presented. Signal processing involves the extraction of tumour information from background information and then image reconstruction through the confocal method delay-and-sum algorithms. Ultimately, the revision of time-delay and the superposition of more tumour signals are applied to improve accuracy. PMID:25379515

  14. Automatic scale selection for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Bayram, Ersin; Wyatt, Christopher L.; Ge, Yaorong

    2001-07-01

    The scale of interesting structures in medical images is space variant because of partial volume effects, spatial dependence of resolution in many imaging modalities, and differences in tissue properties. Existing segmentation methods either apply a single scale to the entire image or try fine-to-coarse/coarse-to-fine tracking of structures over multiple scales. While single scale approaches fail to fully recover the perceptually important structures, multi-scale methods have problems in providing reliable means to select proper scales and integrating information over multiple scales. A recent approach proposed by Elder and Zucker addresses the scale selection problem by computing a minimal reliable scale for each image pixel. The basic premise of this approach is that, while the scale of structures within an image vary spatially, the imaging system is fixed. Hence, sensor noise statistics can be calculated. Based on a model of edges to be detected, and operators to be used for detection, one can locally compute a unique minimal reliable scale at which the likelihood of error due to sensor noise is less than or equal to a predetermined threshold. In this paper, we improve the segmentation method based on the minimal reliable scale selection and evaluate its effectiveness with both simulated and actual medical data.

  15. Medical Imaging Physics, 4th Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ritenour, E. Russell

    2002-05-01

    This comprehensive publication covers all aspects of image formation in modern medical imaging modalities, from radiography, fluoroscopy, and computed tomography, to magnetic resonance imaging and ultrasound. It addresses the techniques and instrumentation used in the rapidly changing field of medical imaging. Now in its fourth edition, this text provides the reader with the tools necessary to be comfortable with the physical principles, equipment, and procedures used in diagnostic imaging, as well as appreciate the capabilities and limitations of the technologies.

  16. Imaging-related medications: a class overview

    PubMed Central

    2007-01-01

    Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119

  17. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  18. Advantages of semiconductor CZT for medical imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  19. Computer-Based Medical System

    NASA Technical Reports Server (NTRS)

    1998-01-01

    SYMED, Inc., developed a unique electronic medical records and information management system. The S2000 Medical Interactive Care System (MICS) incorporates both a comprehensive and interactive medical care support capability and an extensive array of digital medical reference materials in either text or high resolution graphic form. The system was designed, in cooperation with NASA, to improve the effectiveness and efficiency of physician practices. The S2000 is a MS (Microsoft) Windows based software product which combines electronic forms, medical documents, records management, and features a comprehensive medical information system for medical diagnostic support and treatment. SYMED, Inc. offers access to its medical systems to all companies seeking competitive advantages.

  20. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  1. Portable Medical System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.

  2. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  3. Secured medical imaging over the Internet.

    PubMed

    Aslan, P; Lee, B; Kuo, R; Babayan, R K; Kavoussi, L R; Pavlin, K A; Preminger, G M

    1998-01-01

    The Internet has established itself as an affordable, extremely viable and ubiquitous communications network that can be easily accessed from virtually any point in the world. This makes it ideally suited for medical image communications. Issues regarding security and confidentiality of information on the Internet, however, need to be addressed for both occasional, individual users and consistent enterprise-wide users. In addition, the limited bandwidth of most Internet connections must be factored into the development of a realistic usermodel and resulting protocol. Open architecture issues must also be considered so that images can be communicated to recipients who do not have similar programs. Further, application-specific software is required to integrate image acquisition, encryption and transmission into a single, streamlined process. Using Photomailer software provided by PhysiTel Inc., the authors investigated the use of sending secured still images over the Internet. The scope of their investigation covered the use of the Internet for communicating images for consultation, referral, mentoring and education. Photomailer software was used at several local and remote sites. The program was used for both sending and receiving images. It was also used for sending images to recipients who did not have Photomailer, but instead relied on conventional email programs. The results of the investigation demonstrated that using products such as Photomailer, images could be quickly and easily communicated from one location to another via the Internet. In addition, the investigators were able to retrieve images off of their existing email accounts, thereby providing greater flexibility and convenience than other systems which require scheduled transmission of information on dedicated systems. We conclude that Photomailer and similar products may provide a significant benefit and improve communications among colleagues, providing an inexpensive means of sending secured

  4. Application of rough set for medical images data mining

    NASA Astrophysics Data System (ADS)

    Wang, Shuyan; Wang, Chunmei; Chen, Yan

    2010-08-01

    To study the application of Rough set algorithm for diagnosis breast cancer, attribute reduction strategies of rough set are applied to the data mining of the mammography classification, proposes a medical images classifier based on association rules. Attribute reduction strategies of rough set for medical image data mining are realized. The experiment results are given. The experimental results show that the system performs well in accuracy, verified the great potential of rough set in assistant medical treatment.

  5. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities. PMID:25991287

  6. Model attraction in medical image object recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo

    1995-04-01

    This paper presents as new approach to image recognition based on a general attraction principle. A cognitive recognition is governed by a 'focus on attention' process that concentrates on the visual data subset of task- relevant type only. Our model-based approach combines it with another process, focus on attraction, which concentrates on the transformations of visual data having relevance for the matching. The recognition process is characterized by an intentional evolution of the visual data. This chain of image transformations is viewed as driven by an attraction field that attempts to reduce the distance between the image-point and the model-point in the feature space. The field sources are determined during a learning phase, by supplying the system with a training set. The paper describes a medical interpretation case in the feature space, concerning human skin lesions. The samples of the training set, supplied by the dermatologists, allow the system to learn models of lesions in terms of features such as hue factor, asymmetry factor, and asperity factor. The comparison of the visual data with the model derives the trend of image transformations, allowing a better definition of the given image and its classification. The algorithms are implemented in C language on a PC equipped with Matrox Image Series IM-1280 acquisition and processing boards. The work is now in progress.

  7. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  8. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  9. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  10. The quest for standards in medical imaging.

    PubMed

    Gibaud, Bernard

    2011-05-01

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal. PMID:20605693

  11. Application of the CCD camera in medical imaging

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kom; Smith, Chuck; Bunting, Ralph; Knoll, Paul; Wobig, Randy; Thacker, Rod

    1999-04-01

    Medical fluoroscopy is a set of radiological procedures used in medical imaging for functional and dynamic studies of digestive system. Major components in the imaging chain include image intensifier that converts x-ray information into an intensity pattern on its output screen and a CCTV camera that converts the output screen intensity pattern into video information to be displayed on a TV monitor. To properly respond to such a wide dynamic range on a real-time basis, such as fluoroscopy procedure, are very challenging. Also, similar to all other medical imaging studies, detail resolution is of great importance. Without proper contrast, spatial resolution is compromised. The many inherent advantages of CCD make it a suitable choice for dynamic studies. Recently, CCD camera are introduced as the camera of choice for medical fluoroscopy imaging system. The objective of our project was to investigate a newly installed CCD fluoroscopy system in areas of contrast resolution, details, and radiation dose.

  12. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  13. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  14. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  15. Multilayer descriptors for medical image classification.

    PubMed

    Lumini, Alessandra; Nanni, Loris; Brahnam, Sheryl

    2016-05-01

    In this paper, we propose a new method for improving the performance of 2D descriptors by building an n-layer image using different preprocessing approaches from which multilayer descriptors are extracted and used as feature vectors for training a Support Vector Machine. The different preprocessing approaches are used to build different n-layer images (n=3, n=5, etc.). We test both color and gray-level images, two well-known texture descriptors (Local Phase Quantization and Local Binary Pattern), and three of their variants suited for n-layer images (Volume Local Phase Quantization, Local Phase Quantization Three-Orthogonal-Planes, and Volume Local Binary Patterns). Our results show that multilayers and texture descriptors can be combined to outperform the standard single-layer approaches. Experiments on 10 datasets demonstrate the generalizability of the proposed descriptors. Most of these datasets are medical, but in each case the images are very different. Two datasets are completely unrelated to medicine and are included to demonstrate the discriminative power of the proposed descriptors across very different image recognition tasks. A MATLAB version of the complete system developed in this paper will be made available at https://www.dei.unipd.it/node/2357. PMID:26656952

  16. Developing a medical image content repository for e-learning.

    PubMed

    Hsiao, Chia-Hung; Hsu, Tien-Cheng; Chang, Jing Ning; Yang, Stephen J H; Young, Shuenn-Tsong; Chu, Woei Chyn

    2006-09-01

    The integration of medical informatics and e-learning systems could provide many advanced applications including training, knowledge management, telemedicine, etc. Currently, both the domains of e-learning and medical image have sophisticated specifications and standards. It is a great challenge to bring about integration. In this paper, we describe the development of a Web interface for searching and viewing medical images that are stored in standard medical image servers. With the creation of a Web solution, we have reduced the overheads of integration. We have packaged Digital Imaging and Communications in Medicine (DICOM) network services as a component that can be used via a Web server. The Web server constitutes a content repository for searching, editing, and storing Web-based medical image content. This is a simple method by which the use of Picture Archiving and Communication System (PACS) can be extended. We show that the content repository can easily interact and integrate with a learning system. With the integration, the user can easily generate and assign medical image content for e-learning. A Web solution might be the simplest way for system integration. The demonstration in this paper should be useful as a method of expanding the usage of medical information. The construction of a Web-based repository and integrated with a learning system may be also applicable to other domains. PMID:16710797

  17. Wavelet compression efficiency investigation for medical images

    NASA Astrophysics Data System (ADS)

    Moryc, Marcin; Dziech, Wiera

    2006-03-01

    Medical images are acquired or stored digitally. These images can be very large in size and number, and compression can increase the speed of transmission and reduce the cost of storage. In the paper analysis of medical images' approximation using the transform method based on wavelet functions is investigated. The tested clinical images are taken from multiple anatomical regions and modalities (Computer Tomography CT, Magnetic Resonance MR, Ultrasound, Mammography and X-Ray images). To compress medical images, the threshold criterion has been applied. The mean square error (MSE) is used as a measure of approximation quality. Plots of the MSE versus compression percentage and approximated images are included for comparison of approximation efficiency.

  18. Development and operation of a prototype cone-beam computed tomography system for X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Kim, Ryun Kyung; Kim, Cho-Rong; Yang, Keedong; Huh, Young; Jeon, Sungchae; Park, Justin C.; Song, Bongyong; Song, William Y.

    2014-01-01

    This paper describes the development of a prototype cone-beam computed tomography (CBCT) system for clinical use. The overall system design in terms of physical characteristics, geometric calibration methods, and three-dimensional image reconstruction algorithms are described. Our system consists of an X-ray source and a large-area flat-panel detector with the axial dimension large enough for most clinical applications when acquired in a full gantry rotation mode. Various elaborate methods are applied to measure, analyze and calibrate the system for imaging. The electromechanical and the radiographic subsystems through the synchronized control include: gantry rotation and speed, tube rotor, the high-frequency generator (kVp, mA, exposure time and repetition rate), and the reconstruction server (imaging acquisition and reconstruction). The operator can select between analytic and iterative reconstruction methods. Our prototype system contains the latest hardware and reconstruction algorithms and, thus, represents a step forward in CBCT technology.

  19. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  20. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305

  1. A backscattered x-ray imager for medical applications

    NASA Astrophysics Data System (ADS)

    Morris, Eric Jude L.; Dibianca, Frank A.; Shukla, Hemant; Gulabani, Daya

    2005-04-01

    Conventional X-ray radiographic systems rely on transmitted photons for the production of images. Backscatter imaging makes use of the more abundant scattered photons for image formation. Specifically, incoherently (Compton) scattered X-ray photons are detected and used for image formation in this modality of medical imaging. However, additional information is obtained when the transmitted X-ray photons are also detected and used. Transmission radiography produces a two-dimensional image of a three dimensional system, therefore image information from a shallower object is often contaminated by image information from underlying objects. Backscattered x-ray imaging largely overcomes this deficiency by imaging depth selectively, which reduces corruption of shallow imaging information by information from deeper objects lying under it. Backscattered x-ray imaging may be particularly useful for examining anatomical structures at shallow depths beneath the skin. Some typical applications for such imaging might be breast imaging, middle ear imaging, imaging of skin melanomas, etc. Previous investigations, by way of theoretical calculations and computational simulations into the feasibility of this kind of imaging have uncovered high-contrast and SNR parameters. Simulations indicate that this method can be used for imaging relatively high-density objects at depths of up to approximately five centimeters below the surface. This paper presents both theoretical and experimental SNR results on this new medical imaging modality.

  2. Autoradiographic image intensification - Applications in medical radiography

    NASA Technical Reports Server (NTRS)

    Askins, B. S.

    1978-01-01

    The image of an 80 to 90 percent underexposed medical radiograph can be increased to readable density and contrast by autoradiographic image intensification. The technique consists of combining the image silver of the radiograph with a radioactive compound, thiourea labeled with sulfur-35, and then making an autoradiograph from the activated negative.

  3. DEFENSE MEDICAL SURVEILLANCE SYSTEM (DMSS)

    EPA Science Inventory

    AMSA operates the Defense Medical Surveillance System (DMSS), an executive information system whose database contains up-to-date and historical data on diseases and medical events (e.g., hospitalizations, ambulatory visits, reportable diseases, HIV tests, acute respiratory diseas...

  4. Medical Imaging In An Object Oriented Environment

    NASA Astrophysics Data System (ADS)

    Geist, Daniel; Vannier, Michael W.

    1988-06-01

    A workstation has been developed to evaluate computed tomographic (CT) image data in 2 and 3 dimensions. The workstation consists of an independent image display station (Independent Viewing and Analysis Station or WAS, International Imaging Systems, Inc., Milpitas, Calif.) and a VAX host computer. The WAS has 1024 X 1024 X 24 bits of image memory plus 4 bits of graphics overlay. An independent VLSI graphics processor and 1024 X 1024 X 4 bit graphics memory, independent of the image memory, are included in the self-contained WAS unit. A local microprocessor host (Motorola 68000 microprocessor) controls the IVAS from directives obtained through a direct memory access channel to the VAX host. This facilitated the creation of an object oriented software enviroment for the IVAS under control of a VAX host program written in the C language. The workstation created has an interactive user interface consisting of a mouse and pull-down menus. The workstation enables loading multiple images, typically 256 x 256 or 512 x 512, into the 1024 X 1024 frame buffer. Once loaded, the images can be manipulated by applying gray scale transforms, editing them and performing 3-D reconstructions from serial sections. Algorithms for three dimensional (3-D) reconstructions were implemented in the VAX/VMS host computer environment and are available on the workstation through special menu functions for handling these reconstructions. The functions interactively combine depth and gradient shading of surfaces to suit specific applications in craniofacial surgical planning or orthopedics. This workstation is user friendly and is very easy to handle. A workstation of this type may become a popular tool for physicians and surgeons in evalution of medical images.

  5. Scalar-vector quantization of medical images.

    PubMed

    Mohsenian, N; Shahri, H; Nasrabadi, N M

    1996-01-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124

  6. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  7. Medical image compression algorithm based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Minghong; Zhang, Guoping; Wan, Wei; Liu, Minmin

    2005-02-01

    With rapid development of electronic imaging and multimedia technology, the telemedicine is applied to modern medical servings in the hospital. Digital medical image is characterized by high resolution, high precision and vast data. The optimized compression algorithm can alleviate restriction in the transmission speed and data storage. This paper describes the characteristics of human vision system based on the physiology structure, and analyses the characteristics of medical image in the telemedicine, then it brings forward an optimized compression algorithm based on wavelet zerotree. After the image is smoothed, it is decomposed with the haar filters. Then the wavelet coefficients are quantified adaptively. Therefore, we can maximize efficiency of compression and achieve better subjective visual image. This algorithm can be applied to image transmission in the telemedicine. In the end, we examined the feasibility of this algorithm with an image transmission experiment in the network.

  8. Electronics Signal Processing for Medical Imaging

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato

    This paper describes the way the signal coming from a radiation detector is conditioned and processed to produce images useful for medical applications. First of all, the small signal produce by the radiation is processed by analogue electronics specifically designed to produce a good signal-over-noise ratio. The optimised analogue signal produced at this stage can then be processed and transformed into digital information that is eventually stored in a computer, where it can be further processed as required. After an introduction to the general requirements of the processing electronics, we will review the basic building blocks that process the `tiny' analogue signal coming from a radiation detector. We will in particular analyse how it is possible to optimise the signal-over-noise ratio of the electronics. Some exercises, developed in the tutorial, will help to understand this fundamental part. The blocks needed to process the analogue signal and transform it into a digital code will be described. The description of electronics systems used for medical imaging systems will conclude the lecture.

  9. An efficient medical image compression scheme.

    PubMed

    Li, Xiaofeng; Shen, Yi; Ma, Jiachen

    2005-01-01

    In this paper, a fast lossless compression scheme is presented for the medical image. This scheme consists of two stages. In the first stage, a Differential Pulse Code Modulation (DPCM) is used to decorrelate the raw image data, therefore increasing the compressibility of the medical image. In the second stage, an effective scheme based on the Huffman coding method is developed to encode the residual image. This newly proposed scheme could reduce the cost for the Huffman coding table while achieving high compression ratio. With this algorithm, a compression ratio higher than that of the lossless JPEG method for image can be obtained. At the same time, this method is quicker than the lossless JPEG2000. In other words, the newly proposed algorithm provides a good means for lossless medical image compression. PMID:17280962

  10. True-Depth: a new type of true 3D volumetric display system suitable for CAD, medical imaging, and air-traffic control

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Floating Images, Inc. is developing a new type of volumetric monitor capable of producing a high-density set of points in 3D space. Since the points of light actually exist in space, the resulting image can be viewed with continuous parallax, both vertically and horizontally, with no headache or eyestrain. These 'real' points in space are always viewed with a perfect match between accommodation and convergence. All scanned points appear to the viewer simultaneously, making this display especially suitable for CAD, medical imaging, air-traffic control, and various military applications. This system has the potential to display imagery so accurately that a ruler could be placed within the aerial image to provide precise measurement in any direction. A special virtual imaging arrangement allows the user to superimpose 3D images on a solid object, making the object look transparent. This is particularly useful for minimally invasive surgery in which the internal structure of a patient is visible to a surgeon in 3D. Surgical procedures can be carried out through the smallest possible hole while the surgeon watches the procedure from outside the body as if the patient were transparent. Unlike other attempts to produce volumetric imaging, this system uses no massive rotating screen or any screen at all, eliminating down time due to breakage and possible danger due to potential mechanical failure. Additionally, it is also capable of displaying very large images.

  11. From radio-astronomy to medical imaging.

    PubMed

    Peters, T M

    1991-12-01

    A common thread in much of the medical imaging that has developed over the past 20 years has been the Fourier transform. It was Richard Bates' interest in radio-interferometry, as well as his fascination with problems of medical imaging that prompted an initial interest in applying Fourier techniques to medical imaging in general and to Computed Tomography in particular. This resulted 20 years ago in one of the earliest technical papers advocating Fourier techniques for reconstructing cross-sections from radiographic projections (Bates and Peters, NZ J Science 14:883-896, 1971). Since those early days, medical imaging has explored into a multi-billion dollar industry. The CT scanner has become the workhorse imaging modality in the radiology department, while its more recent relative, the MR scanner, is rapidly gaining ground as a technique of even greater importance. Richard Bates, with his team of "Medical Imagers" was a very significant force in the development of the field of Medical Imaging as we know it today. This paper attempts to chronicle the genesis of this process from the personal perspective of the author. PMID:1789769

  12. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  13. A web service for enabling medical image retrieval integrated into a social medical image sharing platform.

    PubMed

    Niinimäki, Marko; Zhou, Xin; de la Vega, Enrique; Cabrer, Miguel; Müller, Henning

    2010-01-01

    Content-based visual image access is in the process from a research domain towards real applications. So far, most image retrieval applications have been in one specialized domain such as lung CTs as diagnosis aid or for classification of general images based on anatomic region, modality, and view. This article describes the use of a content-based image retrieval system in connection with the medical image sharing platform MEDTING, so a data set with a very large variety. Similarity retrieval is possible for all cases of the social image sharing platform, so cases can be linked by either visual similarity or similarity in keywords. The visual retrieval search is based on the GIFT (GNU Image Finding Tool). The technology for updating the index with new images added by users employs RSS (Really Simple Syndication) feeds. The ARC (Advanced Resource Connector) middleware is used for the implementation of a web service for similarity retrieval, simplifying the integration of this service. Novelty of this article is the application/integration and image updating strategy. Retrieval methods themselves employ existing techniques that are all open source and can easily be reproduced. PMID:20841889

  14. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  15. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  16. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  17. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  18. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  19. Current perspectives in medical image perception

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Medical images constitute a core portion of the information a physician utilizes to render diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two basic processes: visually inspecting the image (visual perception) and rendering an interpretation (cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand how physicians interact with the information in an image during the interpretation process. With improved understanding, we can develop ways to further improve decision making and, thus, to improve patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process. PMID:20601701

  20. Medical Research System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Based on Johnson Space Flight Center's development of a rotating bioreactor cell culture apparatus for Space Shuttle medical research, Johnson Space Flight Center engineers who worked on the original project formed a company called Synthecon, with the intention of commercializing the bioreactor technology. Synthecon grows three dimensional tissues in the bioreactor. These are superior to previous two-dimensional tissue samples in the study of human cell growth. A refined version of the Johnson Space Center technology, Synthecon's Rotary Cell Culture System includes a cell culture chamber that rotates around a horizontal axis. The cells establish an orbit that approximates free fall through the liquid medium in the chamber. The technology has significant applications for cancer research and treatment as well as AIDS research.

  1. The National Disaster Medical System

    NASA Technical Reports Server (NTRS)

    Reutershan, Thomas P.

    1991-01-01

    The Emergency Mobilization Preparedness Board developed plans for improved national preparedness in case of major catastrophic domestic disaster or the possibility of an overseas conventional conflict. Within the health and medical arena, the working group on health developed the concept and system design for the National Disaster Medical System (NDMS). A description of NDMS is presented including the purpose, key components, medical response, patient evacuation, definitive medical care, NDMS activation and operations, and summary and benefits.

  2. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  3. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  4. An architecture for the construction of medical image databases

    NASA Astrophysics Data System (ADS)

    Marchaukoski, Jeroniza N.; Silva, Luciano; Sunye, Marcos S.; Bellon, Olga R. P.

    2003-05-01

    Due to the large volume and density of the medical images data, it is necessary the use of suitable database systems to facilitate their storage and management, interacting with the PACS (Picture Archiving and Communication Systems). This paper presents an architecture designed for acquisition and storage of the extracted data related to medical images, emphasizing the importance of experts in acquisition of consistent data. This work also presents the division of the information contained in the medical images into levels such as: low level, segmentation level, interpretation level, semantic level and related information. The levels work as a basis to the database schema represented by ER (entity relationship). This architecture has been validated by a content-based image retrieval system for Neonatology support.

  5. Teaching about the Physics of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Zollman, Dean; McBride, Dyan; Murphy, Sytil; Aryal, Bijaya; Kalita, Spartak; Wirjawan, Johannes v. d.

    2010-07-01

    Even before the discovery of X-rays, attempts at non-invasive medical imaging required an understanding of fundamental principles of physics. Students frequently do not see these connections because they are not taught in beginning physics courses. To help students understand that physics and medical imaging are closely connected, we have developed a series of active learning units. For each unit we begin by studying how students transfer their knowledge from traditional physics classes and everyday experiences to medical applications. Then, we build instructional materials to take advantage of the students' ability to use their existing learning and knowledge resources. Each of the learning units involves a combination of hands-on activities, which present analogies, and interactive computer simulations. Our learning units introduce students to the contemporary imaging techniques of CT scans, magnetic resonance imaging (MRI), positron emission tomography (PET), and wavefront aberrometry. The project's web site is http://web.phys.ksu.edu/mmmm/.

  6. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation. PMID:19272859

  7. Monte Carlo simulations of medical imaging modalities

    SciTech Connect

    Estes, G.P.

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  8. Using a depth-sensing infrared camera system to access and manipulate medical imaging from within the sterile operating field

    PubMed Central

    Strickland, Matt; Tremaine, Jamie; Brigley, Greg; Law, Calvin

    2013-01-01

    Background As surgical procedures become increasingly dependent on equipment and imaging, the need for sterile members of the surgical team to have unimpeded access to the nonsterile technology in their operating room (OR) is of growing importance. To our knowledge, our team is the first to use an inexpensive infrared depth-sensing camera (a component of the Microsoft Kinect) and software developed in-house to give surgeons a touchless, gestural interface with which to navigate their picture archiving and communication systems intraoperatively. Methods The system was designed and developed with feedback from surgeons and OR personnel and with consideration of the principles of aseptic technique and gestural controls in mind. Simulation was used for basic validation before trialing in a pilot series of 6 hepatobiliary-pancreatic surgeries. Results The interface was used extensively in 2 laparoscopic and 4 open procedures. Surgeons primarily used the system for anatomic correlation, real-time comparison of intraoperative ultrasound with preoperative computed tomography and magnetic resonance imaging scans and for teaching residents and fellows. Conclusion The system worked well in a wide range of lighting conditions and procedures. It led to a perceived increase in the use of intraoperative image consultation. Further research should be focused on investigating the usefulness of touchless gestural interfaces in different types of surgical procedures and its effects on operative time. PMID:23706851

  9. VLSI in biomedical imaging systems.

    PubMed

    Sridhar, R; Jones, T

    1995-01-01

    This paper explores the nature of Very Large Scale Integration (VLSI) systems as applied to the area of medical imaging systems. A general discussion of imaging systems and the techniques employed therein will be presented. With this, the merits of VLSI solutions to the medical imaging problem are presented. Consideration is also given to programmable processors, such as off the shelf DSP processors, semi-custom, and full custom VLSI devices. Through the use of VLSI devices, many image processing algorithms can be integrated into a hardware solution. This has the advantage of increased computational capacity over solutions that would normally employ software techniques. PMID:7736415

  10. Use of mobile devices for medical imaging.

    PubMed

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. PMID:25467905

  11. Evolution of Medical Imaging and Computational Demands

    NASA Astrophysics Data System (ADS)

    Deans, Stanley R.

    2000-11-01

    The first medical images produced using x-rays appeared less than a year after the discovery of x-rays by Wilhelm Roentgen in 1895. For over a century x-ray projection radiography has been and continues to be the most widely used diagnostic imaging modality. For over seventy years mathematics and computational methods were used in a general way for image processing and analysis. The really challenging mathematical and computational problems did not emerge until the 1970s with the beginning of computed tomography (CT) to produce images popularly known as CAT (computer-assisted tomography) scans. This was followed rapidly by positron-emission tomography (PET) and single photon emission computed tomography (SPECT). Magnetic resonance imaging (MRI) emerged in the 1980s and is in many ways the most informative medical imaging methodology. Computer-based mathematical methods are fundamental to the success of these imaging modalities, and are increasingly important in several other novel imaging techniques. The technologies involved in each modality are competely different, have varying diagnostic value, and are described by different fundamental equations. The common underlying theme is that of the reconstruction of important characteristics of medical interest from indirect measurements. Several of these methodologies for visualizing internal body anatomy and function will be discussed and related to the evolution of computational capabilities. This brings out aspects of these biomedical imaging technologies where a deeper understanding is needed, and to frontiers where future advances are likely to come from continued research in physics jointly with the mathematical sciences.

  12. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008

  13. Stochastic inverse consistency in medical image registration.

    PubMed

    Yeung, Sai Kit; Shi, Pengcheng

    2005-01-01

    An essential goal in medical image registration is, the forward and reverse mapping matrices should be inverse to each other, i.e., inverse consistency. Conventional approaches enforce consistency in deterministic fashions, through incorporation of sub-objective cost function to impose source-destination symmetric property during the registration process. Assuming that the initial forward and reverse matching matrices have been computed and used as the inputs to our system, this paper presents a stochastic framework which yields perfect inverse consistency with the simultaneous considerations of the errors underneath the registration matrices and the imperfectness of the consistent constraint. An iterative generalized total least square (GTLS) strategy has been developed such that the inverse consistency is optimally imposed. PMID:16685959

  14. Four challenges in medical image analysis from an industrial perspective.

    PubMed

    Weese, Jürgen; Lorenz, Cristian

    2016-10-01

    Today's medical imaging systems produce a huge amount of images containing a wealth of information. However, the information is hidden in the data and image analysis algorithms are needed to extract it, to make it readily available for medical decisions and to enable an efficient work flow. Advances in medical image analysis over the past 20 years mean there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. At the same time new challenges have arisen. Firstly, there is a need for more generic image analysis technologies that can be efficiently adapted for a specific clinical task. Secondly, efficient approaches for ground truth generation are needed to match the increasing demands regarding validation and machine learning. Thirdly, algorithms for analyzing heterogeneous image data are needed. Finally, anatomical and organ models play a crucial role in many applications, and algorithms to construct patient-specific models from medical images with a minimum of user interaction are needed. These challenges are complementary to the on-going need for more accurate, more reliable and faster algorithms, and dedicated algorithmic solutions for specific applications. PMID:27344939

  15. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  16. Scale-Specific Multifractal Medical Image Analysis

    PubMed Central

    Braverman, Boris

    2013-01-01

    Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value. PMID:24023588

  17. Multiscale medical image fusion in wavelet domain.

    PubMed

    Singh, Rajiv; Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  18. Bioresponsive nanosensors in medical imaging.

    PubMed

    Schellenberger, Eyk

    2010-02-01

    Superparamagnetic iron oxide nanoparticles have been established as sensitive probes for magnetic resonance imaging (MRI). While the majority of specific nanosensors are based on sterically stabilized iron oxide particles, the focus of this review is on the use of very small iron oxide particles (VSOPs) that are electrostatically stabilized by an anionic citrate acid shell. We used VSOPs to develop target-specific as well as protease-activatable nanosensors for molecular MRI. PMID:19846442

  19. Active index for content-based medical image retrieval.

    PubMed

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described. PMID:8954230

  20. Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging

    NASA Astrophysics Data System (ADS)

    Han, Li; Rogers, W. Leslie; Huh, Sam S.; Clinthorne, Neal

    2008-12-01

    In radionuclide treatment, tumor cells are primarily destroyed by charged particles emitted by the compound while associated higher energy photons are used to image the tumor in order to determine radiation dose and monitor shrinkage. However, the higher energy photons are difficult to image with conventional collimated Anger cameras, since a tradeoff exists between resolution and sensitivity, and the collimator septal penetration and scattering is increased due to the high energy photons. This research compares imaging performance of the conventional Anger camera to a Compton imaging system that can have improved spatial resolution and sensitivity for high energy photons because this tradeoff is decoupled, and the effect of Doppler broadening at higher gamma energies is decreased. System performance is analyzed by the modified uniform Cramer-Rao bound (M-UCRB) algorithms based on the developed system modeling. The bound shows that the effect of Doppler broadening is the limiting factor for Compton camera performance for imaging 364.4 keV photons emitted from 131I. According to the bound, the Compton camera outperforms the collimated system for an equal number of detected events when the desired spatial resolution for a 26 cm diameter uniform disk object is better than 12 mm FWHM. For a 3D cylindrical phantom, the lower bound on variance for the collimated camera is greater than for the Compton imaginer over the resolution range from 0.5 to 2 cm FWHM. Furthermore, the detection sensitivity of the proposed Compton imaging system is about 15-20 times higher than that of the collimated Anger camera.

  1. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  2. Multi-scale visual words for hierarchical medical image categorisation

    NASA Astrophysics Data System (ADS)

    Markonis, Dimitrios; Seco de Herrera, Alba G.; Eggel, Ivan; Müller, Henning

    2012-02-01

    The biomedical literature published regularly has increased strongly in past years and keeping updated even in narrow domains is difficult. Images represent essential information of their articles and can help to quicker browse through large volumes of articles in connection with keyword search. Content-based image retrieval is helping the retrieval of visual content. To facilitate retrieval of visual information, image categorisation can be an important first step. To represent scientific articles visually, medical images need to be separated from general images such as flowcharts or graphs to facilitate browsing, as graphs contain little information. Medical modality classification is a second step to focus search. The techniques described in this article first classify images into broad categories. In a second step the images are further classified into the exact medical modalities. The system combines the Scale-Invariant Feature Transform (SIFT) and density-based clustering (DENCLUE). Visual words are first created globally to differentiate broad categories and then within each category a new visual vocabulary is created for modality classification. The results show the difficulties to differentiate between some modalities by visual means alone. On the other hand the improvement of the accuracy of the two-step approach shows the usefulness of the method. The system is currently being integrated into the Goldminer image search engine of the ARRS (American Roentgen Ray Society) as a web service, allowing concentrating image search onto clinically relevant images automatically.

  3. Medical image registration using fuzzy theory.

    PubMed

    Pan, Meisen; Tang, Jingtian; Xiong, Qi

    2012-01-01

    Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations. PMID:21442490

  4. Quantitative imaging features: extension of the oncology medical image database

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  5. Medical Imaging Inspired Vertex Reconstruction at LHC

    NASA Astrophysics Data System (ADS)

    Hageböck, S.; von Toerne, E.

    2012-12-01

    Three-dimensional image reconstruction in medical applications (PET or X-ray CT) utilizes sophisticated filter algorithms to linear trajectories of coincident photon pairs or x-rays. The goal is to reconstruct an image of an emitter density distribution. In a similar manner, tracks in particle physics originate from vertices that need to be distinguished from background track combinations. In this study it is investigated if vertex reconstruction in high energy proton collisions may benefit from medical imaging methods. A new method of vertex finding, the Medical Imaging Vertexer (MIV), is presented based on a three-dimensional filtered backprojection algorithm. It is compared to the open-source RAVE vertexing package. The performance of the vertex finding algorithms is evaluated as a function of instantaneous luminosity using simulated LHC collisions. Tracks in these collisions are described by a simplified detector model which is inspired by the tracking performance of the LHC experiments. At high luminosities (25 pileup vertices and more), the medical imaging approach finds vertices with a higher efficiency and purity than the RAVE “Adaptive Vertex Reconstructor” algorithm. It is also much faster if more than 25 vertices are to be reconstructed because the amount of CPU time rises linearly with the number of tracks whereas it rises quadratically for the adaptive vertex fitter AVR.

  6. Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  7. [Digital scanning converter for medical endoscopic ultrasound imaging].

    PubMed

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result. PMID:19334546

  8. Personal medical information system using laser card

    NASA Astrophysics Data System (ADS)

    Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook

    1996-04-01

    The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.

  9. Absolutely lossless compression of medical images.

    PubMed

    Ashraf, Robina; Akbar, Muhammad

    2005-01-01

    Data in medical images is very large and therefore for storage and/or transmission of these images, compression is essential. A method is proposed which provides high compression ratios for radiographic images with no loss of diagnostic quality. In the approach an image is first compressed at a high compression ratio but with loss, and the error image is then compressed losslessly. The resulting compression is not only strictly lossless, but also expected to yield a high compression ratio, especially if the lossy compression technique is good. A neural network vector quantizer (NNVQ) is used as a lossy compressor, while for lossless compression Huffman coding is used. Quality of images is evaluated by comparing with standard compression techniques available. PMID:17281110

  10. Resolution enhancement in medical ultrasound imaging

    PubMed Central

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Abstract. Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve

  11. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  12. Flexible medical image management using service-oriented architecture.

    PubMed

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations. PMID:22874344

  13. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  14. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  15. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  16. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  17. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  18. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  19. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  20. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  1. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  2. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  3. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  4. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  5. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  6. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  7. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  8. Estimating fractal dimension of medical images

    NASA Astrophysics Data System (ADS)

    Penn, Alan I.; Loew, Murray H.

    1996-04-01

    Box counting (BC) is widely used to estimate the fractal dimension (fd) of medical images on the basis of a finite set of pixel data. The fd is then used as a feature to discriminate between healthy and unhealthy conditions. We show that BC is ineffective when used on small data sets and give examples of published studies in which researchers have obtained contradictory and flawed results by using BC to estimate the fd of data-limited medical images. We present a new method for estimating fd of data-limited medical images. In the new method, fractal interpolation functions (FIFs) are used to generate self-affine models of the underlying image; each model, upon discretization, approximates the original data points. The fd of each FIF is analytically evaluated. The mean of the fds of the FIFs is the estimate of the fd of the original data. The standard deviation of the fds of the FIFs is a confidence measure of the estimate. The goodness-of-fit of the discretized models to the original data is a measure of self-affinity of the original data. In a test case, the new method generated a stable estimate of fd of a rib edge in a standard chest x-ray; box counting failed to generate a meaningful estimate of the same image.

  9. Robust retrieval from compressed medical image archives

    NASA Astrophysics Data System (ADS)

    Sidorov, Denis N.; Lerallut, Jean F.; Cocquerez, Jean-Pierre; Azpiroz, Joaquin

    2005-04-01

    Paper addresses the computational aspects of extracting important features directly from compressed images for the purpose of aiding biomedical image retrieval based on content. The proposed method for treatment of compressed medical archives follows the JPEG compression standard and exploits algorithm based on spacial analysis of the image cosine spectrum coefficients amplitude and location. The experiments on modality-specific archive of osteoarticular images show robustness of the method based on measured spectral spatial statistics. The features, which were based on the cosine spectrum coefficients' values, could satisfy different types of queries' modalities (MRI, US, etc), which emphasized texture and edge properties. In particular, it has been shown that there is wealth of information in the AC coefficients of the DCT transform, which can be utilized to support fast content-based image retrieval. The computational cost of proposed signature generation algorithm is low. Influence of conventional and the state-of-the-art compression techniques based on cosine and wavelet integral transforms on the performance of content-based medical image retrieval has been also studied. We found no significant differences in retrieval efficiencies for non-compressed and JPEG2000-compressed images even at the lowest bit rate tested.

  10. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  11. Medical image registration using sparse coding of image patches.

    PubMed

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing. PMID:27085311

  12. Unsupervised detection of abnormalities in medical images using salient features

    NASA Astrophysics Data System (ADS)

    Alpert, Sharon; Kisilev, Pavel

    2014-03-01

    In this paper we propose a new method for abnormality detection in medical images which is based on the notion of medical saliency. The proposed method is general and is suitable for a variety of tasks related to detection of: 1) lesions and microcalcifications (MCC) in mammographic images, 2) stenoses in angiographic images, 3) lesions found in magnetic resonance (MRI) images of brain. The main idea of our approach is that abnormalities manifest as rare events, that is, as salient areas compared to normal tissues. We define the notion of medical saliency by combining local patch information from the lightness channel with geometric shape local descriptors. We demonstrate the efficacy of the proposed method by applying it to various modalities, and to various abnormality detection problems. Promising results are demonstrated for detection of MCC and of masses in mammographic images, detection of stenoses in angiography images, and detection of lesions in brain MRI. We also demonstrate how the proposed automatic abnormality detection method can be combined with a system that performs supervised classification of mammogram images into benign or malignant/premalignant MCC's. We use a well known DDSM mammogram database for the experiment on MCC classification, and obtain 80% accuracy in classifying images containing premalignant MCC versus benign ones. In contrast to supervised detection methods, the proposed approach does not rely on ground truth markings, and, as such, is very attractive and applicable for big corpus image data processing.

  13. IRMA--content-based image retrieval in medical applications.

    PubMed

    Lehmann, Thomas M; Güld, Mark O; Thies, Christian; Plodowski, Bartosz; Keysers, Daniel; Ott, Bastian; Schubert, Henning

    2004-01-01

    The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular modality or context of diagnosis. Contrarily, our concept of image retrieval in medical applications (IRMA) aims at a general structure for semantic content analysis that is suitable for numerous applications in case-based reasoning or evidence-based medicine. Within IRMA, stepwise processing results in six layers of information modeling (raw data layer, registered data layer, feature layer, scheme layer, object layer, knowledge layer) incorporating medical expert knowledge. At the scheme layer, medical images are represented by a hierarchical structure of ellipses (blobs) describing image regions. Hence, image retrieval transforms to graph matching. The multilayer processing is implemented using a distributed system designed with only three core elements. The central database holds program sources, process-ing schemes, images, features, and blob trees; the scheduler balances distributed computing by addressing daemons running on all connected workstations; and the web server provides graphical user interfaces for data entry and retrieval.. PMID:15360931

  14. Seeing it through: translational validation of new medical imaging modalities

    PubMed Central

    Aldrich, Melissa B.; Marshall, Milton V.; Sevick-Muraca, Eva M.; Lanza, Greg; Kotyk, John; Culver, Joseph; Wang, Lihong V.; Uddin, Jashim; Crews, Brenda C.; Marnett, Lawrence J.; Liao, Joseph C.; Contag, Chris; Crawford, James M.; Wang, Ken; Reisdorph, Bill; Appelman, Henry; Turgeon, D. Kim; Meyer, Charles; Wang, Tom

    2012-01-01

    Medical imaging is an invaluable tool for diagnosis, surgical guidance, and assessment of treatment efficacy. The Network for Translational Research (NTR) for Optical Imaging consists of four research groups working to “bridge the gap” between lab discovery and clinical use of fluorescence- and photoacoustic-based imaging devices used with imaging biomarkers. While the groups are using different modalities, all the groups face similar challenges when attempting to validate these systems for FDA approval and, ultimately, clinical use. Validation steps taken, as well as future needs, are described here. The group hopes to provide translational validation guidance for itself, as well as other researchers. PMID:22574264

  15. Comment on ``Perspectives of medical X-ray imaging''

    NASA Astrophysics Data System (ADS)

    Taibi, A.; Baldelli, P.; Tuffanelli, A.; Gambaccini, M.

    2002-07-01

    In the paper "Perspectives of medical X-ray imaging" (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  16. The oncology medical image database (OMI-DB)

    NASA Astrophysics Data System (ADS)

    Halling-Brown, Mark D.; Looney, P. T.; Patel, M. N.; Warren, L. M.; Mackenzie, A.; Young, K. C.

    2014-03-01

    Many projects to evaluate or conduct research in medical imaging require the large-scale collection of images (both unprocessed and processed) and associated data. This demand has led us to design and implement a flexible oncology image repository, which prospectively collects images and data from multiple sites throughout the UK. This Oncology Medical Image Database (OMI-DB) has been created to support research involving medical imaging and contains unprocessed and processed medical images, associated annotations and data, and where applicable expert-determined ground truths describing features of interest. The process of collection, annotation and storage is almost fully automated and is extremely adaptable, allowing for quick and easy expansion to disparate imaging sites and situations. Initially the database was developed as part of a large research project in digital mammography (OPTIMAM). Hence the initial focus has been digital mammography; as a result, much of the work described will focus on this field. However, the OMI -DB has been designed to support multiple modalities and is extensible and expandable to store any associated data with full anonymisation. Currently, the majority of associated data is made up of radiological, clinical and pathological annotations extracted from the UK's National Breast Screening System (NBSS). In addition to the data, software and systems have been created to allow expert radiologists to annotate the images with interesting clinical features and provide descriptors of these features. The data from OMI-DB has been used in several observer studies and more are planned. To date we have collected 34,104 2D mammography images from 2,623 individuals.

  17. Extended query refinement for medical image retrieval.

    PubMed

    Deserno, Thomas M; Güld, Mark O; Plodowski, Bartosz; Spitzer, Klaus; Wein, Berthold B; Schubert, Henning; Ney, Hermann; Seidl, Thomas

    2008-09-01

    The impact of image pattern recognition on accessing large databases of medical images has recently been explored, and content-based image retrieval (CBIR) in medical applications (IRMA) is researched. At the present, however, the impact of image retrieval on diagnosis is limited, and practical applications are scarce. One reason is the lack of suitable mechanisms for query refinement, in particular, the ability to (1) restore previous session states, (2) combine individual queries by Boolean operators, and (3) provide continuous-valued query refinement. This paper presents a powerful user interface for CBIR that provides all three mechanisms for extended query refinement. The various mechanisms of man-machine interaction during a retrieval session are grouped into four classes: (1) output modules, (2) parameter modules, (3) transaction modules, and (4) process modules, all of which are controlled by a detailed query logging. The query logging is linked to a relational database. Nested loops for interaction provide a maximum of flexibility within a minimum of complexity, as the entire data flow is still controlled within a single Web page. Our approach is implemented to support various modalities, orientations, and body regions using global features that model gray scale, texture, structure, and global shape characteristics. The resulting extended query refinement has a significant impact for medical CBIR applications. PMID:17497197

  18. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  19. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    Peter Ayton; Part V. Optimization and Practical Issues: 25. Optimization of 2D and 3D radiographic systems Jeff Siewerdson; 26. Applications of AFC methodology in optimization of CT imaging systems Kent Ogden and Walter Huda; 27. Perceptual issues in reading mammograms Margarita Zuley; 28. Perceptual optimization of display processing techniques Richard Van Metter; 29. Optimization of display systems Elizabeth Krupinski and Hans Roehrig; 30. Ergonomic radiologist workplaces in the PACS environment Carl Zylack; Part VI. Epilogue: 31. Future prospects of medical image perception Ehsan Samei and Elizabeth Krupinski; Index.

  20. Medical ultrasonic tomographic system

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Lecroissette, D. H.; Nathan, R.; Wilson, R. L.

    1977-01-01

    An electro-mechanical scanning assembly was designed and fabricated for the purpose of generating an ultrasound tomogram. A low cost modality was demonstrated in which analog instrumentation methods formed a tomogram on photographic film. Successful tomogram reconstructions were obtained on in vitro test objects by using the attenuation of the fist path ultrasound signal as it passed through the test object. The nearly half century tomographic methods of X-ray analysis were verified as being useful for ultrasound imaging.

  1. The Medical System in Ghana

    PubMed Central

    Drislane, Frank W.; Akpalu, Albert; Wegdam, Harry H.J.

    2014-01-01

    Ghana is a developing country in West Africa with a population of about 25 million. Medical illnesses in Ghana overlap with those in developed countries, but infection, trauma, and women’s health problems are much more prominent. Medical practice in rural Africa faces extremely limited resources, a multiplicity of languages (hundreds in Ghana), and presentation of severe illnesses at later stages than seen elsewhere. Despite these limitations, Ghana has established a relatively successful national medical insurance system, and the quality of medical practice is high, at least where it is available. Ghana also has a well-established and sophisticated administrative structure for the supervision of medical education and accreditation, but it has proven very difficult to extend medical training to rural areas, where health care facilities are particularly short of personnel. Physicians are sorely needed in rural areas, but there are few because of the working conditions and financial limitations. Hospital wards and clinics are crowded; time per patient is limited. This article details some of the differences between medical practice in Ghana and that in wealthier countries and how it functions with very limited resources. It also introduces the medical education and training system in Ghana. The following article describes an attempt to establish and maintain a residency training program in General Medicine in a rural area of Ghana. PMID:25191147

  2. Simplified labeling process for medical image segmentation.

    PubMed

    Gao, Mingchen; Huang, Junzhou; Huang, Xiaolei; Zhang, Shaoting; Metaxas, Dimitris N

    2012-01-01

    Image segmentation plays a crucial role in many medical imaging applications by automatically locating the regions of interest. Typically supervised learning based segmentation methods require a large set of accurately labeled training data. However, thel labeling process is tedious, time consuming and sometimes not necessary. We propose a robust logistic regression algorithm to handle label outliers such that doctors do not need to waste time on precisely labeling images for training set. To validate its effectiveness and efficiency, we conduct carefully designed experiments on cervigram image segmentation while there exist label outliers. Experimental results show that the proposed robust logistic regression algorithms achieve superior performance compared to previous methods, which validates the benefits of the proposed algorithms. PMID:23286072

  3. Resource Estimation in High Performance Medical Image Computing

    PubMed Central

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D.M.

    2015-01-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of ‘jobs’ requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources. PMID:24906466

  4. Usability Practice in Medical Imaging Application Development

    NASA Astrophysics Data System (ADS)

    Chen, Chufeng; Abdelnour-Nocera, Jose; Wells, Stephen; Pan, Nora

    Historically, development of medical imaging applications has focused on solving technical issues for small numbers of expert users. However, their use is now more mainstream and users are no longer willing to tolerate poor performance and usability. In this study we illustrate the application of user centred design methods in a medical imaging applications development company by using a usability comparative study of different regions of interest (ROI) tools. A use case analysis was used to judge usability efficiency and effectiveness of different ROI tools; and a user observation was also carried out which measured the accuracy achieved by these tools. We have found that useful results can be obtained by using these methods. We also generated some concrete suggestions that could be incorporated into future product development.

  5. Medical Information Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, S.; Hipkins, K. R.; Friedman, C. A.

    1979-01-01

    On-line interactive information processing system easily and rapidly handles all aspects of data management related to patient care. General purpose system is flexible enough to be applied to other data management situations found in areas such as occupational safety data, judicial information, or personnel records.

  6. New developments in observer performance methodology in medical imaging.

    PubMed

    Chakraborty, Dev P

    2011-11-01

    A common task in medical imaging is assessing whether a new imaging system, or a variant of an existing one, is an improvement over an existing imaging technology. Imaging systems are generally quite complex, consisting of several components-for example, image acquisition hardware, image processing and display hardware and software, and image interpretation by radiologists- each of which can affect performance. Although it may appear odd to include the radiologist as a "component" of the imaging chain, because the radiologist's decision determines subsequent patient care, the effect of the human interpretation has to be included. Physical measurements such as modulation transfer function, signal-to-noise ratio, are useful for characterizing the nonhuman parts of the imaging chain under idealized and often unrealistic conditions, such as uniform background phantoms and target objects with sharp edges. Measuring the performance of the entire imaging chain, including the radiologist, and using real clinical images requires different methods that fall under the rubric of observer performance methods or "ROC" analysis, that involve collecting rating data on images. The purpose of this work is to review recent developments in this field, particularly with respect to the free-response method, where location information is also collected. PMID:21978444

  7. Medical-Information-Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Friedman, Carl A.; Frankowski, James W.

    1989-01-01

    Medical Information Management System (MIMS) computer program interactive, general-purpose software system for storage and retrieval of information. Offers immediate assistance where manipulation of large data bases required. User quickly and efficiently extracts, displays, and analyzes data. Used in management of medical data and handling all aspects of data related to care of patients. Other applications include management of data on occupational safety in public and private sectors, handling judicial information, systemizing purchasing and procurement systems, and analyses of cost structures of organizations. Written in Microsoft FORTRAN 77.

  8. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  9. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  10. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  11. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  12. Electronic Medical Business Operations System

    Energy Science and Technology Software Center (ESTSC)

    2012-04-16

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Securitymore » Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclear Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing

  13. Electronic Medical Business Operations System

    SciTech Connect

    Cannon, D. T.; Metcalf, J. R.; North, M. P.; Richardson, T. L.; Underwood, S. A.; Shelton, P. M.; Ray, W. B.; Morrell, M. L.; Caldwell, III, D. C.

    2012-04-16

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Security Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclear Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing; Allergies

  14. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    PubMed

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space. PMID:25343773

  15. An open medical imaging workstation architecture for platform-independent 3-D medical image processing and visualization.

    PubMed

    Cosić, D

    1997-12-01

    A need for an entirely new medical workstation design was identified to increase the deployment of 3-D medical imaging and multimedia communication. Recent wide acceptance of the Word Wide Web (WWW) as a general communication service within the global network has shown how big the impact of standards and open systems can be. Information is shared among heterogeneous systems and diverse applications on various hardware platforms only by agreeing on a common format for information distribution. For medical image communications, the Digital Imaging and Communication in Medicine (DICOM) standard is possibly anticipating such a role. Logically, the next step is open software: platform-independent tools, which can as easily be transferred and used on multiple platforms. Application of the platform-independent programming language Java enables creation of plug-in tools, which can easily extend the basic system. Performance problems inherent to all interpreter systems can be circumvented by using a hybrid approach. Computationally intensive functions like image processing functions can be integrated into a natively implemented optimized image processing kernel. Plug-in tools implemented in Java can utilize the kernel functions via a Java-wrapper library. This approach is comparable to the implementation of computationally intensive operations in hardware. PMID:11020831

  16. Quantification of heterogeneity observed in medical images

    PubMed Central

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. Methods In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. Results We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. Conclusions These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity. PMID:23453000

  17. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  18. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  19. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  20. Multiple sclerosis medical image analysis and information management.

    PubMed

    Liu, Lifeng; Meier, Dominik; Polgar-Turcsanyi, Mariann; Karkocha, Pawel; Bakshi, Rohit; Guttmann, Charles R G

    2005-01-01

    Magnetic resonance imaging (MRI) has become a central tool for patient management, as well as research, in multiple sclerosis (MS). Measurements of disease burden and activity derived from MRI through quantitative image analysis techniques are increasingly being used. There are many complexities and challenges in building computerized processing pipelines to ensure efficiency, reproducibility, and quality control for MRI scans from MS patients. Such paradigms require advanced image processing and analysis technologies, as well as integrated database management systems to ensure the most utility for clinical and research purposes. This article reviews pipelines available for quantitative clinical MRI research in MS, including image segmentation, registration, time-series analysis, performance validation, visualization techniques, and advanced medical imaging software packages. To address the complex demands of the sequential processes, the authors developed a workflow management system that uses a centralized database and distributed computing system for image processing and analysis. The implementation of their system includes a web-form-based Oracle database application for information management and event dispatching, and multiple modules for image processing and analysis. The seamless integration of processing pipelines with the database makes it more efficient for users to navigate complex, multistep analysis protocols, reduces the user's learning curve, reduces the time needed for combining and activating different computing modules, and allows for close monitoring for quality-control purposes. The authors' system can be extended to general applications in clinical trials and to routine processing for image-based clinical research. PMID:16385023

  1. Medical librarianship: a systems perspective.

    PubMed Central

    Cruzat, G S

    1980-01-01

    Medical or health sciences librarianship is viewed as a system whose components are the professional school, the professional group, and the professional association. As an open system it imports energy from these components, or subsystems, and transforms this energy into professionally identifiable products. The subsystems, in influencing the character of the medical and health sciences library profession, are interdependent and interrelated. However, linkages between the subsystems are becoming defective due primarily to lack of communication, information, and feedback. Stronger and more vigorous interaction among the subsystems is needed. PMID:7362921

  2. Multimodality and nanoparticles in medical imaging

    PubMed Central

    Huang, Wen-Yen; Davis, Jason J.

    2015-01-01

    A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202

  3. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software.

    PubMed

    Li, Jiantao; Zhang, Hao; Yin, Peng; Su, Xiuyun; Zhao, Zhe; Zhou, Jianfeng; Li, Chen; Li, Zhirui; Zhang, Lihai; Tang, Peifu

    2015-01-01

    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise's Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = -0.340, P < 0.01) and has significant negative correlation with foraminal index (r = -0.541, P < 0.01). PMID:26788498

  4. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software

    PubMed Central

    Li, Jiantao; Zhang, Hao; Yin, Peng; Su, Xiuyun; Zhao, Zhe; Zhou, Jianfeng; Li, Chen; Li, Zhirui; Zhang, Lihai; Tang, Peifu

    2015-01-01

    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise's Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = −0.340, P < 0.01) and has significant negative correlation with foraminal index (r = −0.541, P < 0.01). PMID:26788498

  5. Development of automatic hologram synthesizer for medical use III: image processing for original medical images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshifumi; Misaki, Toshikazu; Kato, Tsutomu

    1992-05-01

    An image processing system for providing original images for synthesizing multiplex holograms is developed. This system reconstructs 3D surface rendering images of internal organs and/or bones of a patient from a series of tomograms such as computed tomography. Image processing includes interpolation, enhancement, extraction of diseased parts, selection of axis of projection, and compensation of distortions. This paper presents the features of this system, along with problems and resolutions encountered in actual test operation at hospitals.

  6. Machine learning for medical images analysis.

    PubMed

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. PMID:27374127

  7. Integrated wavelets for medical image analysis

    NASA Astrophysics Data System (ADS)

    Heinlein, Peter; Schneider, Wilfried

    2003-11-01

    Integrated wavelets are a new method for discretizing the continuous wavelet transform (CWT). Independent of the choice of discrete scale and orientation parameters they yield tight families of convolution operators. Thus these families can easily be adapted to specific problems. After presenting the fundamental ideas, we focus primarily on the construction of directional integrated wavelets and their application to medical images. We state an exact algorithm for implementing this transform and present applications from the field of digital mammography. The first application covers the enhancement of microcalcifications in digital mammograms. Further, we exploit the directional information provided by integrated wavelets for better separation of microcalcifications from similar structures.

  8. Cerenkov luminescence imaging of medical isotopes

    PubMed Central

    Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan

    2011-01-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  9. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  10. From Roentgen to magnetic resonance imaging: the history of medical imaging.

    PubMed

    Scatliff, James H; Morris, Peter J

    2014-01-01

    Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome. PMID:24663131

  11. Visualization index for image-enabled medical records

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Zheng, Weilin; Sun, Jianyong; Zhang, Jianguo

    2011-03-01

    With the widely use of healthcare information technology in hospitals, the patients' medical records are more and more complex. To transform the text- or image-based medical information into easily understandable and acceptable form for human, we designed and developed an innovation indexing method which can be used to assign an anatomical 3D structure object to every patient visually to store indexes of the patients' basic information, historical examined image information and RIS report information. When a doctor wants to review patient historical records, he or she can first load the anatomical structure object and the view the 3D index of this object using a digital human model tool kit. This prototype system helps doctors to easily and visually obtain the complete historical healthcare status of patients, including large amounts of medical data, and quickly locate detailed information, including both reports and images, from medical information systems. In this way, doctors can save time that may be better used to understand information, obtain a more comprehensive understanding of their patients' situations, and provide better healthcare services to patients.

  12. Tongue Tumor Detection in Medical Hyperspectral Images

    PubMed Central

    Liu, Zhi; Wang, Hongjun; Li, Qingli

    2012-01-01

    A hyperspectral imaging system to measure and analyze the reflectance spectra of the human tongue with high spatial resolution is proposed for tongue tumor detection. To achieve fast and accurate performance for detecting tongue tumors, reflectance data were collected using spectral acousto-optic tunable filters and a spectral adapter, and sparse representation was used for the data analysis algorithm. Based on the tumor image database, a recognition rate of 96.5% was achieved. The experimental results show that hyperspectral imaging for tongue tumor diagnosis, together with the spectroscopic classification method provide a new approach for the noninvasive computer-aided diagnosis of tongue tumors. PMID:22368462

  13. Medical Practice Support System. A medical practitioner's multimedia workstation.

    PubMed

    Stetson, D M; Eberhart, R C; Dobbins, R W; Pugh, W

    1991-01-01

    The United States Navy has developed a computer based Medical Practice Support System (MEPSS) intended for use by medical practitioners working in isolated situations. The system, now being tested in operational settings, emphasizes inexpensive, easily obtained off-the-shelf hardware and specially developed, readily implemented software to provide users with: 1) medical record keeping, 2) an electronic medical library, 3) interactive video instruction programs suitable for continuing medical education, 4) computer based medical diagnosis and treatment assistance, and 5) electronic communications with other facilities. This demonstration emphasizes a user based developmental approach, integration of diverse systems under a single user interface, and portable hardware. The resulting system makes medical information needed by practitioners instantly available at the time of a patient encounter, whenever and wherever that encounter may occur. Making clinically valuable information immediately available, MEPSS demonstrates how practitioners can use computers to help their own efforts to improve patient care quality and efficiency. PMID:1807756

  14. Characteristic Images Emerging From Recent Spie Medical Imaging Symposia

    NASA Astrophysics Data System (ADS)

    Wagner, Robert F.

    1987-01-01

    The purpose of this short tutorial is to highlight selected papers from recent SPIE conferences with emphasis on the areas of signal detection theory, statistical decision theory and pattern recognition, image evaluation, and image processing. The selection is biased toward the author's special areas of interest and, as is usual in reviews of this kind, a common set of threads are sought. The papers are referenced in terms of the SPIE volume number and paper number (000-00). The first common thread is that the volume numbers tend to be palindromes, namely, 454, 535, 626, and the present 767, and indicate the non-linear growth of the Society between annual Medical Imaging symposia.

  15. The conversion of synchrotron radiation biomedical and medical images into DICOM images

    NASA Astrophysics Data System (ADS)

    Wang, Yunling; Sun, Jianyong; Sun, Jianqi; Zhang, Jianguo

    2014-03-01

    With Synchrotron Radiation light source, there was a lot of imaging methods being developed to perform biomedical and medical imaging researches such as X-ray absorption imaging, phase-contrast imaging and micro-CT imaging. In this presentation, we present an approach to transform a various kinds of SR images into proper DICOM images so that to use a rich of medical processing display software to process and display SR biomedical and medical images. The new generated SR DICOM images can be transferred, stored, processed and displayed by using most of commercial medical imaging software.

  16. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  17. A cryptologic based trust center for medical images.

    PubMed Central

    Wong, S T

    1996-01-01

    OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857

  18. A new database for medical images and information

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave; Samet, Hanan

    2007-03-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images, as well as tele-medicine applications. Any medical image from a source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Information and image retrieval can be done based on patient info, date, doctor's annotations, features in the images, or a spatial combination of features. Secure access and transmission is addressed for tele-medicine applications. This database application follows all HIPPA regulations.

  19. Medical applications of digital image morphing.

    PubMed

    Penska, Keith; Folio, Les; Bunger, Rolf

    2007-09-01

    The authors present a unique medical technical application for illustrating the success and/or failure of the physiological healing process as a dynamically morphed video. Two examples used in this report include the healing of a severely fractured humerus from an explosion in Iraq and the other of dramatic tissue destruction from a poisonous spider bite. For the humerus, several sequential x-rays obtained throughout orthopedic surgical procedures and the healing process were morphed together representing a time-lapsed video of the healing process. The end result is a video that demonstrates the healing process in an animation that radiologists envision and report to other clinicians. For the brown recluse spider bite, a seemingly benign skin lesion transforms into a wide gaping necrotic wound with dramatic appearance within days. This novel technique is not presented for readily apparent clinical advantage, rather, it may have more immediate application in providing treatment options to referring providers and/or patients, as well as educational value of healing or disease progression over time. Image morphing is one of those innovations that is just starting to come into its own. Morphing is an image processing technology that transforms one image into another by generating a series of intermediate synthetic images. It is the same process that Hollywood uses to turn people into animals in movies, for example. The ability to perform morphing, once restricted to high-end graphics workstations, is now widely available for desktop computers. The authors describe how a series of radiographic images were morphed into a short movie clip using readily available software and an average laptop. The resultant video showed the healing process of an open comminuted humerus fracture that helped demonstrate how amazingly the human body heals in a case presentation in a time-lapse fashion. PMID:17273920

  20. The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    PubMed Central

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations. PMID:21915232

  1. The state of the art of medical imaging technology: from creation to archive and back.

    PubMed

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations. PMID:21915232

  2. A patient-centric distribution architecture for medical image sharing.

    PubMed

    Constantinescu, Liviu; Kim, Jinman; Kumar, Ashnil; Haraguchi, Daiki; Wen, Lingfeng; Feng, Dagan

    2013-01-01

    Over the past decade, rapid development of imaging technologies has resulted in the introduction of improved imaging devices, such as multi-modality scanners that produce combined positron emission tomography-computed tomography (PET-CT) images. The adoption of picture archiving and communication systems (PACS) in hospitals have dramatically improved the ability to digitally share medical image studies via portable storage, mobile devices and the Internet. This has in turn led to increased productivity, greater flexibility, and improved communication between hospital staff, referring physicians, and outpatients. However, many of these sharing and viewing capabilities are limited to proprietary vendor-specific applications. Furthermore, there are still interoperability and deployment issues which reduce the rate of adoption of such technologies, thus leaving many stakeholders, particularly outpatients and referring physicians, with access to only traditional still images with no ability to view or interpret the data in full. In this paper, we present a distribution architecture for medical image display across numerous devices and media, which uses a preprocessor and an in-built networking framework to improve compatibility and promote greater accessibility of medical data. Our INVOLVE2 system consists of three main software modules: 1) a preprocessor, which collates and converts imaging studies into a compressed and distributable format; 2) a PACS-compatible workflow for self-managing distribution of medical data, e.g. via CD USB, network etc; 3) support for potential mobile and web-based data access. The focus of this study was on cultivating patient-centric care, by allowing outpatient users to comfortably access and interpret their own data. As such, the image viewing software included on our cross-platform CDs was designed with a simple and intuitive user-interface (UI) for use by outpatients and referring physicians. Furthermore, digital image access via

  3. Medical workstations for applied imaging and graphics research.

    PubMed

    Ehricke, H H; Grunert, T; Buck, T; Kolb, R; Skalej, M

    1994-01-01

    We present a medical workstation for the efficient implementation of research ideas related to image processing and computer graphics. Based on standard hardware platforms the software system encompasses two major components: A turnkey application system provides a functionally kernel for a broad community of clinical users working with digital imaging devices, including methods of noise suppression, interactive and automatic segmentation, 3D surface reconstruction and multi-modal registration. A development toolbox allows new algorithms and applications to be efficiently implemented and consistently integrated with the common framework of the turnkey system. The platform is based on an elaborate object class structure describing objects for image processing, computer graphics, study handling and user interface control. Thus expertise of computer scientists familiar with this application domain is brought into the hospital and can be readily used by clinical researchers. PMID:7850734

  4. Medical ultrasound imager based on time delay spectrometry.

    PubMed

    Heyser, R C; Hestenes, J D; Rooney, J A; Gammell, P M; Le Croissette, D H

    1989-01-01

    A reflection mode proof-of-concept medical ultrasound imager based on time delay spectrometry has been developed and tested. The system uses a broad band swept-frequency signal operating up to 10 MHz. Signal processing using a fast Fourier transform (FFT) permits extraction of range information. The imager has a higher signal-to-noise ratio than pulse-echo systems which allows high resolution at greater depths. The time delay spectrometry (TDS) spread spectrum operates at lower peak intensities than pulse-echo and permits more control of the spectral content and amplitude of the signal. At present, the system is non-real time which degrades in vivo imaging because of averaging over several cardiac cycles and tissue movement. PMID:2643838

  5. Medical diagnosis system and method with multispectral imaging. [depth of burns and optical density of the skin

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Reilly, T. H. (Inventor)

    1979-01-01

    A skin diagnosis system includes a scanning and optical arrangement whereby light reflected from each incremental area (pixel) of the skin is directed simultaneously to three separate light filters, e.g., IR, red, and green. As a result, the three devices simultaneously produce three signals which are directly related to the reflectance of light of different wavelengths from the corresponding pixel. These three signals for each pixel after processing are used as inputs to one or more output devices to produce a visual color display and/or a hard copy color print, for one usable as a diagnostic aid by a physician.

  6. Applications of terahertz (THz) technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.

    1999-09-01

    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  7. Overview of nuclear medical imaging instrumentation and techniques

    SciTech Connect

    Moses, W.W.

    1998-11-01

    Nuclear medical imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of two commonly used methods, namely SPECT (single photon emission computed tomography) and PET (positron emission tomography), as well as the emerging method of intraoperative probes with imaging capability. The discussion concentrates on the instrumentation requirements for these systems and on the potential for incorporating scintillating, wavelength-shifting, and fiber optic light guides into them. {copyright} {ital 1998 American Institute of Physics.}

  8. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  9. Expectation-Driven Text Extraction from Medical Ultrasound Images.

    PubMed

    Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank

    2016-01-01

    In this study an expectation-driven approach is proposed to extract data stored as pixel structures in medical ultrasound images. Prior knowledge about certain properties like the position of the text and its background and foreground grayscale values is utilized. Several open source Java libraries are used to pre-process the image and extract the textual information. The results are presented in an Excel table together with the outcome of several consistency checks. After manually correcting potential errors, the outcome is automatically stored in the main database. The proposed system yielded excellent results, reaching an accuracy of 99.94% and reducing the necessary human effort to a minimum. PMID:27577478

  10. Image quality evaluation and patient dose assessment of medical fluoroscopic X-ray systems: a national study.

    PubMed

    Economides, S; Hourdakis, C J; Kalivas, N; Kalathaki, M; Simantirakis, G; Tritakis, P; Manousaridis, G; Vogiatzi, S; Kipouros, P; Boziari, A; Kamenopoulou, V

    2008-01-01

    This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm(-1). Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min(-1). Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min(-1). PMID:17971345

  11. Digital Pathology: Data-Intensive Frontier in Medical Imaging

    PubMed Central

    Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166

  12. The IRMA code for unique classification of medical images

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Schubert, Henning; Keysers, Daniel; Kohnen, Michael; Wein, Berthold B.

    2003-05-01

    Modern communication standards such as Digital Imaging and Communication in Medicine (DICOM) include non-image data for a standardized description of study, patient, or technical parameters. However, these tags are rather roughly structured, ambiguous, and often optional. In this paper, we present a mono-hierarchical multi-axial classification code for medical images and emphasize its advantages for content-based image retrieval in medical applications (IRMA). Our so called IRMA coding system consists of four axes with three to four positions, each in {0,...9,a,...,z}, where "0" denotes "unspecified" to determine the end of a path along an axis. In particular, the technical code (T) describes the imaging modality; the directional code (D) models body orientations; the anatomical code (A) refers to the body region examined; and the biological code (B) describes the biological system examined. Hence, the entire code results in a character string of not more than 13 characters (IRMA: TTTT - DDD - AAA - BBB). The code can be easily extended by introducing characters in certain code positions, e.g., if new modalities are introduced. In contrast to other approaches, mixtures of one- and two-literal code positions are avoided which simplifies automatic code processing. Furthermore, the IRMA code obviates ambiguities resulting from overlapping code elements within the same level. Although this code was originally designed to be used in the IRMA project, other use of it is welcome.

  13. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  14. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  15. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings. PMID:23367069

  16. A System For Automated Medical Photography

    NASA Astrophysics Data System (ADS)

    Tivattanasuk, Eva S.; Kaczoroski, Anthony J.; Rhodes, Michael L.

    1988-06-01

    A system is described that electronically controls the medical photography for a computed tomography (CT) scanner system. Multiple CT exams can be photographed with each image automatically adjusted to a specific gamma table presentation and positioned to any film location within a given film format. Our approach uses a library that can store 24 CT exam photography protocols. Library entries can be added, deleted, or edited. Mixed film formats, multiple image types, and automated annotation capabilities allow all CT exams to be filmed at our clinic cost-effectively and unattended. Using this automated approach to CT exam photography, one full-time equivalent CT technologist has been saved from the operational cost of our center. We outline the film protocol database, illustrate protocol options and by example, show the flexibility of this approach. Features of this system illustrate essential components of any such approach.

  17. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  18. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process. PMID:10805018

  19. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images. PMID:26890880

  20. [Adverse events and near misses in medical imaging].

    PubMed

    Brandão, Paulo; Rodrigues, Susana; Nelas, Luís; Neves, José; Alves, Vítor

    2011-01-01

    In 2000, the Institute of Medicine's report, To Err Is Human: Building a Safer Health System, caught the public attention documenting the magnitude of the medical error problem and the inherent patient safety: medical errors cause between 44,000 and 98,000 deaths annually in the United States. Currently, there is a growing interest in risk management on the medical field, particularly in the management of adverse events. It has been mainly due to the commitment of the World Health Organization, that this field of research has gained increasing the attention it deserves. Medical imaging is one of the high risk fields for the occurrence of errors, especially due to the multiplicity of techniques, the several stakeholders and the complexity of the whole circuit that involves the conduct of studies. Many of the methods used to analyze patient safety were adapted from risk-management techniques in high-risk industries (e.g. chemical, nuclear power and aviation industry). It is recognized that we can learn more from our mistakes than from our successes and the reporting systems in these industries have provided a valuable contribution to error prevention and risk management techniques. At a minimum, adverse events reporting systems can help to identify hazards and risks, providing important information on the system aspects that should be improved. However, the accumulation of potentially relevant data contributes little to healthcare services improvement. It is crucial to apply models to identify the underlying system failures, the root causes, and enhance the sharing of knowledge and experience. In this paper, it is suggested a solution to reduce adverse events, by identifying and eliminating the root causes that are in their source. How the Eindhoven Classification Model was adapted and extended specifically for the Medical Imaging field is also presented. The proposed approach includes the root causes analysis and introduces incomplete information concepts through

  1. Medical Image Processing Using Real-Time Optical Fourier Technique

    NASA Astrophysics Data System (ADS)

    Rao, D. V. G. L. N.; Panchangam, Appaji; Sastry, K. V. L. N.; Material Science Team

    2001-03-01

    Optical Image Processing Techniques are inherently fast in view of parallel processing. A self-adaptive Optical Fourier Processing system using photo induced dichroism in a Bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with mammograms and Pap smears. Micro calcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the micro calcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140^oC and environmental friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier.

  2. Hyperspectral imaging applied to medical diagnoses and food safety

    NASA Astrophysics Data System (ADS)

    Carrasco, Oscar; Gomez, Richard B.; Chainani, Arun; Roper, William E.

    2003-08-01

    This paper analyzes the feasibility and performance of HSI systems for medical diagnosis as well as for food safety. Illness prevention and early disease detection are key elements for maintaining good health. Health care practitioners worldwide rely on innovative electronic devices to accurately identify disease. Hyperspectral imaging (HSI) is an emerging technique that may provide a less invasive procedure than conventional diagnostic imaging. By analyzing reflected and fluorescent light applied to the human body, a HSI system serves as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. The safe supply and production of food is also of paramount importance to public health illness prevention. Although this paper will focus on imaging and spectroscopy in food inspection procedures -- the detection of contaminated food sources -- to ensure food quality, HSI also shows promise in detecting pesticide levels in food production (agriculture.)

  3. Medical image security in a HIPAA mandated PACS environment.

    PubMed

    Cao, F; Huang, H K; Zhou, X Q

    2003-01-01

    Medical image security is an important issue when digital images and their pertinent patient information are transmitted across public networks. Mandates for ensuring health data security have been issued by the federal government such as Health Insurance Portability and Accountability Act (HIPAA), where healthcare institutions are obliged to take appropriate measures to ensure that patient information is only provided to people who have a professional need. Guidelines, such as digital imaging and communication in medicine (DICOM) standards that deal with security issues, continue to be published by organizing bodies in healthcare. However, there are many differences in implementation especially for an integrated system like picture archiving and communication system (PACS), and the infrastructure to deploy these security standards is often lacking. Over the past 6 years, members in the Image Processing and Informatics Laboratory, Childrens Hospital, Los Angeles/University of Southern California, have actively researched image security issues related to PACS and teleradiology. The paper summarizes our previous work and presents an approach to further research on the digital envelope (DE) concept that provides image integrity and security assurance in addition to conventional network security protection. The DE, including the digital signature (DS) of the image as well as encrypted patient information from the DICOM image header, can be embedded in the background area of the image as an invisible permanent watermark. The paper outlines the systematic development, evaluation and deployment of the DE method in a PACS environment. We have also proposed a dedicated PACS security server that will act as an image authority to check and certify the image origin and integrity upon request by a user, and meanwhile act also as a secure DICOM gateway to the outside connections and a PACS operation monitor for HIPAA supporting information. PMID:12620309

  4. Future Directions In Image Management: Medical And Practical Considerations

    NASA Astrophysics Data System (ADS)

    Erickson, J. J.; Eikman, E. A.; Shaff, M. I.; James, A. E.

    1983-05-01

    The volume of data produced by new imaging modalities has far outstripped the ability of most departments to effectively utilize the images produced. The problem is further exacerbated by the fact that the diagnostic procedures have become progressively less invasive and traumatic and are being applied to an ever larger patient population. The decrease in cost and the rise in technological capability of computer systems in recent years has provided imaging specialists with the opportunity to create network systems for the storage and recall of diagnostic images. This paper examines the philosophy of image storage from the standpoint of the medical, legal, and practical questions. A proposal is made that not all images are equal and that some deserve to be archived for longer periods than others. The practical problem of using a video display for diagnostic readout, aside from the classical questions of resolution and response time, is discussed. A proposal is also made that two data bases might be created; one which provides rapid access to the clinically relevant images (i.e., the two or three that demonstrate pathology) and one which may require much longer to access, but which contains all the archived data.

  5. Normalized methodology for medical infrared imaging

    NASA Astrophysics Data System (ADS)

    Vargas, J. V. C.; Brioschi, M. L.; Dias, F. G.; Parolin, M. B.; Mulinari-Brenner, F. A.; Ordonez, J. C.; Colman, D.

    2009-01-01

    A normalized procedure for medical infrared imaging is suggested, and illustrated by a leprosy and hepatitis C treatment follow-up, in order to investigate the effect of concurrent treatment which has not been reported before. A 50-year-old man with indeterminate leprosy and a 20-year history of hepatitis C was monitored for 587 days, starting from the day the patient received treatment for leprosy. Standard therapy for hepatitis C started 30 days later. Both visual observations and normalized infrared imaging were conducted periodically to assess the response to leprosy treatment. The primary end points were effectiveness of the method under different boundary conditions over the period, and rapid assessment of the response to leprosy treatment. The patient achieved sustained hepatitis C virological response 6 months after the end of the treatment. The normalized infrared results demonstrate the leprosy treatment success in spite of the concurrent hepatitis C treatment, since day 87, whereas repigmentation was visually assessed only after day 182, and corroborated with a skin biopsy on day 390. The method detected the effectiveness of the leprosy treatment in 87 days, whereas repigmentation started only in 182 days. Hepatitis C and leprosy treatment did not affect each other.

  6. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  7. MIMS - MEDICAL INFORMATION MANAGEMENT SYSTEM

    NASA Technical Reports Server (NTRS)

    Frankowski, J. W.

    1994-01-01

    MIMS, Medical Information Management System is an interactive, general purpose information storage and retrieval system. It was first designed to be used in medical data management, and can be used to handle all aspects of data related to patient care. Other areas of application for MIMS include: managing occupational safety data in the public and private sectors; handling judicial information where speed and accuracy are high priorities; systemizing purchasing and procurement systems; and analyzing organizational cost structures. Because of its free format design, MIMS can offer immediate assistance where manipulation of large data bases is required. File structures, data categories, field lengths and formats, including alphabetic and/or numeric, are all user defined. The user can quickly and efficiently extract, display, and analyze the data. Three means of extracting data are provided: certain short items of information, such as social security numbers, can be used to uniquely identify each record for quick access; records can be selected which match conditions defined by the user; and specific categories of data can be selected. Data may be displayed and analyzed in several ways which include: generating tabular information assembled from comparison of all the records on the system; generating statistical information on numeric data such as means, standard deviations and standard errors; and displaying formatted listings of output data. The MIMS program is written in Microsoft FORTRAN-77. It was designed to operate on IBM Personal Computers and compatibles running under PC or MS DOS 2.00 or higher. MIMS was developed in 1987.

  8. Reverse hierarchy theory and medical image perception

    NASA Astrophysics Data System (ADS)

    Donovan, T.; Manning, D. J.

    2009-02-01

    We are unsure about what information is extracted from an image to allow a decision about pathology to be made. Our knowledge of the interplay between top down processing or bottom up, local or global perception, perceptual or cognitive processes is uncertain. However recent research has emphasised the importance of the global or holistic look in medical image perception in which recognition of abnormalities precedes search. Reverse Hierarchy Theory [1] is a useful general theory that helps to explain this. It also enables us to understand what information is extracted from an image and how this relates to expertise. Essentially the theory states that perceptual learning begins at high levels areas and progresses down to lower level areas when better signal to noise is needed. So perceptual learning, defined as an improvement in sensory abilities after training, stems from a gradual top down guided increase in usability of first high then lower level task relevant information. Evaluation of the scan paths of groups of observers with different levels of expertise when undertaking a lung nodule perception task seems to be consistent with the theory. Experts' perception is generally immediate and holistic suggesting high level representations whereas those with an intermediate level of expertise tend to be more variable in their scan paths. Interestingly naÃve observers have eye tracking metrics that are more similar to experts suggesting they take a common sense approach using perceptual skills we all have as they lack experience in being able to access the low level information from the chest radiograph.

  9. Wideband Optical Detector of Ultrasound for Medical Imaging Applications

    PubMed Central

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis

    2014-01-01

    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions. PMID:24895083

  10. The comparison of different medical electronic endoscope systems

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Wang, Liqiang; Duan, Huilong

    2011-11-01

    This paper presents a miniaturized CMOS camera for high-definition (HD) medical electronic endoscope system with resolution of 1.3 MegaPixel. LVDS technology is used for image data stream transmission between the sensor and the HD image workstation to realize a long distance, high speed, high signal integrity and low noise system. Considering the real-time video image processing and the complexity of the design of HD image workstation, four solutions for medical electronic endoscope systems, namely USB based image acquisition system, PCIe acquisition data board based method, ARM embedded system based solution and DSP based electronic endoscope system have been proposed, analyzed and compared with each other. We found that the four solutions have their own advantages and disadvantages. Taking into account the strong control capacity of ARM, powerful data processing ability and high operating speed of DSP, good portability and other factors, we decided to use ARM + DSP embedded based system.

  11. Robotic 3D scanner as an alternative to standard modalities of medical imaging.

    PubMed

    Chromy, Adam; Zalud, Ludek

    2014-01-01

    There are special medical cases, where standard medical imaging modalities are able to offer sufficient results, but not in the optimal way. It means, that desired results are produced with unnecessarily high expenses, with redundant informations or with needless demands on patient. This paper deals with one special case, where information useful for examination is the body surface only, inner sight into the body is needless. New specialized medical imaging device is developed for this situation. In the Introduction section, analysis of presently used medical imaging modalities is presented, which declares, that no available imaging device is best fitting for mentioned purposes. In the next section, development of the new specialized medical imaging device is presented, and its principles and functions are described. Then, the parameters of new device are compared with present ones. It brings significant advantages comparing to present imaging systems. PMID:25694857

  12. Medical image fusion by wavelet transform modulus maxima

    NASA Astrophysics Data System (ADS)

    Guihong, Qu; Dali, Zhang; Pingfan, Yan

    2001-08-01

    Medical image fusion has been used to derive useful information from multimodality medical image data. In this research, we propose a novel method for multimodality medical image fusion. Using wavelet transform, we achieved a fusion scheme. Afusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. To evaluate the fusion result, a metric based on mutual information (MI) is presented for measuring fusion effect. The performances of other two methods of image fusion based on wavelet transform are briefly described for comparison. The experiment results demonstrate the effectiveness of the fusion scheme.

  13. Medical Images Fusion with Patch Based Structure Tensor.

    PubMed

    Luo, Fen; Sun, Jiangfeng; Hou, Shouming

    2015-01-01

    Nowadays medical imaging has played an important role in clinical use, which provide important clues for medical diagnosis. In medical image fusion, the extraction of some fine details and description is critical. To solve this problem, a modified structure tensor by considering similarity between two patches is proposed. The patch based filter can suppress noise and add the robustness of the eigen-values of the structure tensor by allowing the use of more information of far away pixels. After defining the new structure tensor, we apply it into medical image fusion with a multi-resolution wavelet theory. The features are extracted and described by the eigen-values of two multi-modality source data. To test the performance of the proposed scheme, the CT and MR images are used as input source images for medical image fusion. The experimental results show that the proposed method can produce better results compared to some related approaches. PMID:26628927

  14. Managing medical images and clinical information: InCor's experience.

    PubMed

    Furuie, Sergio S; Rebelo, Marina S; Moreno, Ramon A; Santos, Marcelo; Bertozzo, Nivaldo; Motta, Gustavo H M B; Pires, Fabio A; Gutierrez, Marco A

    2007-01-01

    Patients usually get medical assistance in several clinics and hospitals during their lifetime, archiving vital information in a dispersed way. Clearly, a proper patient care should take into account that information in order to check for incompatibilities, avoid unnecessary exams, and get relevant clinical history. The Heart Institute (InCor) of São Paulo, Brazil, has been committed to the goal of integrating all exams and clinical information within the institution and other hospitals. Since InCor is one of the six institutes of the University of São Paulo Medical School and each institute has its own information system, exchanging information among the institutes is also a very important aspect that has been considered. In the last few years, a system for transmission, archiving, retrieval, processing, and visualization of medical images integrated with a hospital information system has been successfully created and constitutes the InCor's electronic patient record (EPR). This work describes the experience in the effort to develop a functional and comprehensive EPR, which includes laboratory exams, images (static, dynamic, and three dimensional), clinical reports, documents, and even real-time vital signals. A security policy based on a contextual role-based access control model was implemented to regulate user's access to EPR. Currently, more than 10 TB of digital imaging and communications in medicine (DICOM) images have been stored using the proposed architecture and the EPR stores daily more than 11 GB of integrated data. The proposed storage subsystem allows 6 months of visibility for rapid retrieval and more than two years for automatic retrieval using a jukebox. This paper addresses also a prototype for the integration of distributed and heterogeneous EPR. PMID:17249400

  15. Design Considerations Of A Compton Camera For Low Energy Medical Imaging

    SciTech Connect

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Lazarus, I.; Simpson, J.

    2009-12-02

    Development of a Compton camera for low energy medical imaging applications is underway. The ProSPECTus project aims to utilize position sensitive detectors to generate high quality images using electronic collimation. This method has the potential to significantly increase the imaging efficiency compared with mechanically collimated SPECT systems, a highly desirable improvement on clinical systems. Design considerations encompass the geometrical optimisation and evaluation of image quality from the system which is to be built and assessed.

  16. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  17. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  18. One-class kernel subspace ensemble for medical image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Yungang; Zhang, Bailing; Coenen, Frans; Xiao, Jimin; Lu, Wenjin

    2014-12-01

    Classification of medical images is an important issue in computer-assisted diagnosis. In this paper, a classification scheme based on a one-class kernel principle component analysis (KPCA) model ensemble has been proposed for the classification of medical images. The ensemble consists of one-class KPCA models trained using different image features from each image class, and a proposed product combining rule was used for combining the KPCA models to produce classification confidence scores for assigning an image to each class. The effectiveness of the proposed classification scheme was verified using a breast cancer biopsy image dataset and a 3D optical coherence tomography (OCT) retinal image set. The combination of different image features exploits the complementary strengths of these different feature extractors. The proposed classification scheme obtained promising results on the two medical image sets. The proposed method was also evaluated on the UCI breast cancer dataset (diagnostic), and a competitive result was obtained.

  19. [Medical tele-imaging: a good chance for the future].

    PubMed

    Bonnin, A

    1999-01-01

    Tele-imaging is an important part of telemedicine: it includes the transmission of medical digital images and plays a role in all fields of telemedicine, such as expertise, consultation, teaching and research. Tele-imaging has been made possible through the digitalization of medical imaging. There are two possibilities: either digitalization of conventional radiological film or direct acquisition of digital images. The transmission of medical imaging requires a high data rate so as to obtain a good quality transmission of the initial images in a reasonable delay. In order to deal with the great amount of information to be stocked and transmitted, a compression of the data, without loss of information, is usually necessary. Interactivity is very important in all these types of transmissions. These tele-transmission techniques are already used world wide, especially in Japan and in the United States, to help in therapeutic or diagnostic decisions. In France, we have been performing real time interactive tele-imaging sessions between radiology and endocrinology departments of Hotel Dieu in Montréal and Hôpital Cochin in Paris. This experimental device includes a visual-conference link between the medical teams and a real time link between two CT scanners. The CT scanner slices appear simultaneously both CT scanner screens; it is even possible to guide a CT scanner examination using remote control from the other hospital. We have successfully repeated the experiment between Cochin and a private hospital in Paris. In the case of the "Prison de la Santé", we have been using telemedicine in order to reduce problematic transfers of prison inmates. Moreover, access to doctors in the prison is sometimes difficult. The system ensures the daily transmission of X-rays, which are immediately read by radiologists at Cochin. In the past, 50 to 70 X-rays had to be read during one weekly visit. Medical tele-imaging raises certain legal, ethical and economic issues, such as

  20. The Changing Medical Care System: Some Implications for Medical Education.

    ERIC Educational Resources Information Center

    Foreman, Spencer

    1986-01-01

    The medical care system is undergoing widespread and significant changes. Individual hospitals may be disappearing as mergers, acquisitions, and a variety of multi-institutional arrangements become the dominant form and as a host of free-standing medical enterprises spread out into the community. (MLW)

  1. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  2. Virtual probing system for medical volume data

    NASA Astrophysics Data System (ADS)

    Xiao, Yongfei; Fu, Yili; Wang, Shuguo

    2007-12-01

    Because of the huge computation in 3D medical data visualization, looking into its inner data interactively is always a problem to be resolved. In this paper, we present a novel approach to explore 3D medical dataset in real time by utilizing a 3D widget to manipulate the scanning plane. With the help of the 3D texture property in modern graphics card, a virtual scanning probe is used to explore oblique clipping plane of medical volume data in real time. A 3D model of the medical dataset is also rendered to illustrate the relationship between the scanning-plane image and the other tissues in medical data. It will be a valuable tool in anatomy education and understanding of medical images in the medical research.

  3. Navigation in medical Internet image databases.

    PubMed

    Frankewitsch, T; Prokosch, U

    2001-01-01

    The world wide web (WWW) changes common ideas of database access. Hypertext Markup Language allows the simultaneous presentation of information from different sources such as static pages, results of queries from) databases or dynamically generated pages. 'Therefore, the metaphor of the WWW itself as a database was proposed by Mendelzon and Nlilo in 1998. Against this background the techniques of navigation within WWW-databases and the semantic types of their queries has e been analysed. Forty eight image repositories of different types and content, but all concerning medical essence, have been found by search-engines. Many different techniques are offered to enable navigation ranging from simple HTML-link-lists to complex applets. The applets in particular promise an improvement for navigation. Within the meta-information for querying, only ACR- and UMLS-encoding were found, but not standardized vocabularies like ICD10 or Terminologia Anatomica. UMLS especially shows that a well defined thesaurus can improve navigation. However, of the analysed databases only the UMLS 'metathesaurus' is currently implemented without providing additional navigation support based on the UMLS 'semantic network'. Including the information about relationships between the concepts of the metathesaurus or using the UMLS semantic network could provide a much easier navigation within a network of concepts pointing to multimedia files stored somewhere in the WWW. PMID:11583404

  4. Boundary value problems and medical imaging

    NASA Astrophysics Data System (ADS)

    Fokas, Athanasios S.; Kastis, George A.

    2014-03-01

    The application of appropriate transform pairs, such as the Fourier, the Laplace, the sine, the cosine and the Mellin transforms, provides the most well known method for constructing analytical solutions to a large class of physically significant boundary value problems. However, this method has several limitations. In particular, it requires the given PDE, domain and boundary conditions to be separable, and also may not be applicable if the given boundary value problem is non-self-adjoint. Furthermore, it expresses the solution as either an integral or an infinite series, neither of which are uniformly convergent on the boundary of the domain (for nonvanishing boundary conditions), which renders such expressions unsuitable for numerical computations. Here, we review a method recently introduced by the first author which can be applied to certain nonseparable and non-self-adjoint problems. Furthermore, this method expresses the solution as an integral in the complex plane which is uniformly convergent on the boundary of the domain. This method, which also suggests new numerical techniques, is illustrated for both evolution and elliptic PDEs. Athough this method was first applied to certain nonlinear PDEs called integrable and was originally formulated in terms of the so-called Lax pairs, it can actually be applied to linear PDEs without the need to analyse the associated Lax pair. The existence of Lax pairs is used here in order to motivate a related development, namely the emergence of a novel formalism for analysing certain inverse problems arising in medical imaging. Examples include PET and SPECT.

  5. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    PubMed

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. PMID:27503077

  6. On the development of expertise in interpreting medical images

    NASA Astrophysics Data System (ADS)

    Krupinsky, Elizabeth A.

    2012-03-01

    Medical images represent a core portion of the information clinicians utilize to render diagnostic and treatment decisions. Fundamentally, viewing a medical image involves two basic processes - visually inspecting the image (visual perception) and rendering an interpretation (cognition). The interpretation is often followed by a recommendation. The likelihood of error in the interpretation of medical images is unfortunately not negligible. Errors occur and patients' lives are impacted. Thus we need to understand how clinicians interact with the information in an image during the interpretation process. We also need to understand how clinicians develop expertise throughout their careers and why some people are better at interpreting medical images than others. If we can better understand how expertise develops, perhaps we can develop better training programs, incorporate more effective ways of teaching image interpretation into the medical school and residency curriculums, and create new tools that would enhance and perhaps speed up the learning process. With improved understanding we can also develop ways to further improve decision-making in general and at every level of the medical imaging profession, thus improving patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process.

  7. Data Hiding Scheme on Medical Image using Graph Coloring

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya; Novia Wisety, Untari

    2015-06-01

    The utilization of digital medical images is now widely spread[4]. The medical images is supposed to get protection since it has probability to pass through unsecure network. Several watermarking techniques have been developed so that the digital medical images can be guaranteed in terms of its originality. In watermarking, the medical images becomes a protected object. Nevertheless, the medical images can actually be a medium of hiding secret data such as patient medical record. The data hiding is done by inserting data into image - usually called steganography in images. Because the medical images can influence the diagnose change, steganography will only be applied to non-interest region. Vector Quantization (VQ) is one of lossydata compression technique which is sufficiently prominent and frequently used. Generally, the VQ based steganography scheme still has limitation in terms of the data capacity which can be inserted. This research is aimed to make a Vector Quantization-based steganography scheme and graph coloring. The test result shows that the scheme can insert 28768 byte data which equals to 10077 characters for images area of 3696 pixels.

  8. Automatic multilevel medical image annotation and retrieval.

    PubMed

    Mueen, A; Zainuddin, R; Baba, M Sapiyan

    2008-09-01

    Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results. PMID:17846834

  9. Cross-scale coefficient selection for volumetric medical image fusion.

    PubMed

    Shen, Rui; Cheng, Irene; Basu, Anup

    2013-04-01

    Joint analysis of medical data collected from different imaging modalities has become a common clinical practice. Therefore, image fusion techniques, which provide an efficient way of combining and enhancing information, have drawn increasing attention from the medical community. In this paper, we propose a novel cross-scale fusion rule for multiscale-decomposition-based fusion of volumetric medical images taking into account both intrascale and interscale consistencies. An optimal set of coefficients from the multiscale representations of the source images is determined by effective exploitation of neighborhood information. An efficient color fusion scheme is also proposed. Experiments demonstrate that our fusion rule generates better results than existing rules. PMID:22868528

  10. Network of fully integrated multispecialty hospital imaging systems

    NASA Astrophysics Data System (ADS)

    Dayhoff, Ruth E.; Kuzmak, Peter M.

    1994-05-01

    The Department of Veterans Affairs (VA) DHCP Imaging System records clinically significant diagnostic images selected by medical specialists in a variety of departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images are displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system, allowing integrated displays of text and image data across medical specialties. Clinicians can view screens of `thumbnail' images for all studies or procedures performed on a selected patient. Two VA medical centers currently have DHCP Imaging Systems installed, and others are planned. All VA medical centers and other VA facilities are connected by a wide area packet-switched network. The VA's electronic mail software has been modified to allow inclusion of binary data such as images in addition to the traditional text data. Testing of this multimedia electronic mail system is underway for medical teleconsultation.

  11. Recent advances in radiology and medical imaging

    SciTech Connect

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  12. Towards knowledge-based retrieval of medical images. The role of semantic indexing, image content representation and knowledge-based retrieval.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A

    1998-01-01

    Medicine is increasingly image-intensive. The central importance of imaging technologies such as computerized tomography and magnetic resonance imaging in clinical decision making, combined with the trend to store many "traditional" clinical images such as conventional radiographs, microscopic pathology and dermatology images in digital format present both challenges and an opportunities for the designers of clinical information systems. The emergence of Multimedia Electronic Medical Record Systems (MEMRS), architectures that integrate medical images with text-based clinical data, will further hasten this trend. The development of these systems, storing a large and diverse set of medical images, suggests that in the future MEMRS will become important digital libraries supporting patient care, research and education. The representation and retrieval of clinical images within these systems is problematic as conventional database architectures and information retrieval models have, until recently, focused largely on text-based data. Medical imaging data differs in many ways from text-based medical data but perhaps the most important difference is that the information contained within imaging data is fundamentally knowledge-based. New representational and retrieval models for clinical images will be required to address this issue. Within the Image Engine multimedia medical record system project at the University of Pittsburgh we are evolving an approach to representation and retrieval of medical images which combines semantic indexing using the UMLS Metathesuarus, image content-based representation and knowledge-based image analysis. PMID:9929345

  13. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  14. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  15. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  16. Dicoogle Mobile: a medical imaging platform for Android.

    PubMed

    Viana-Ferreira, Carlos; Ferreira, Daniel; Valente, Frederico; Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís

    2012-01-01

    Mobile computing technologies are increasingly becoming a valuable asset in healthcare information systems. The adoption of these technologies helps to assist in improving quality of care, increasing productivity and facilitating clinical decision support. They provide practitioners with ubiquitous access to patient records, being actually an important component in telemedicine and tele-work environments. We have developed Dicoogle Mobile, an Android application that provides remote access to distributed medical imaging data through a cloud relay service. Besides, this application has the capability to store and index local imaging data, so that they can also be searched and visualized. In this paper, we will describe Dicoogle Mobile concept as well the architecture of the whole system that makes it running. PMID:22874241

  17. A real-time flat-panel X-ray pixel imaging system for low-dose medical diagnostics and craniofacial applications.

    PubMed

    Chapuy, S; Dimcovski, D; Dimcovski, Z; Grigoriev, E; Grob, E; Ligier, Y; Pachoud, M; Riondel, F; Rüfenacht, D; Sayegh, C; Terrier, F; Valley, J F; Verdun, F R

    2000-01-01

    The aim of this study was to evaluate on-line performance of a real-time digital imaging system based on amorphous silicon technology and to compare it with conventional film-screen equipment. The digital detecting imager consists of (1) a converter, which transforms the energy of the incident X rays into light; (2) a real-time digital detecting system, capable of producing as many as 10 pictures per second using a large-area pixel matrix (20 x 20 cm2) based on solid-state amorphous silicon sensor technology with a pitch of 400 microns; and (3) appropriate computer tools for control, real-time image treatment, data representation, and off-line analysis. Different phantoms were used for qualitative comparison with the conventional film-screen technique, with images obtained with both systems at the normal dose (used as a reference), as well as with dose reduction by a factor of 10 to 100. Basic image quality parameters evaluated showed that the response of the detector is linear in a wide range of entrance air kerma; the dynamic range is higher compared with the conventional film-screen combination; the spatial resolution is 1.25 lp per millimeter, as expected from the pixel size; and good image quality is ensured at doses substantially lower than for the film-screen technique. The flat-panel X-ray imager based on amorphous silicon technology implemented in standard radiographic equipment permits acquisition of real-time images in radiology (as many as 10 images per second) of diagnostic quality with a marked reduction of dose (as much as 100 times) and better contrast compared with the standard film technique. Preliminary results obtained with a 100-micron pitch imager based on the same technology show better quality but a less substantial dose reduction. Applications in craniofacial surgery look promising. PMID:11314093

  18. Integrated ultrasound and gamma imaging probe for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G.

    2016-03-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures.

  19. Medical image diagnoses by artificial neural networks with image correlation, wavelet transform, simulated annealing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1993-09-01

    Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.

  20. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  1. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  2. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  3. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  4. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  5. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    PubMed Central

    Qiu, TianShuang; Guo, DongMei

    2013-01-01

    Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI) image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration. PMID:23424604

  6. An evaluation of sharpness in different image displays used for medical imaging

    NASA Astrophysics Data System (ADS)

    Ukishima, Masayuki; Nakaguchi, Toshiya; Kato, Katsushi; Fukuchi, Yoshikazu; Tsumura, Norimichi; Matsumoto, Kazumasa; Yanagawa, Noriyuki; Ogura, Takashi; Kikawa, Takashi; Miyake, Yoichi

    2006-01-01

    X-ray film systems have been widely used for a diagnosis of various diseases since a long time ago. In recent years, many kinds of displays and recording systems for X-ray medical images have been used including inkjet printer, silver halide film, CRT and LCD, by the development of the digital X-ray image capturing systems. In this paper, image quality of X-ray images displayed onto high accurate monochrome CRT and LCD monitors are analyzed and compared. Images recorded on the exclusive film and coated paper by inkjet printer and the wet type and dry type photo printers using a silver halide material are also analyzed and compared. The modified Gan's method is introduced to calculate the MTF (Modulation Transfer Function) from the knife ESF (edge spread function). The results show that the MTFs of the inkjet image on the transparency and the wet type silver halide film image have fairly similar and good response in comparison with the inkjet image on the coated paper and the dry type silver halide film. It is also shown that the CRT has the worse response over the spatial frequency range. It was well correlated between the MTF and observer rating value. From here, we consider the proposed method is effective.

  7. [Principles of medical liability and practice in medical imaging].

    PubMed

    Thibierge, M; Fournier, L; Cabanis, E A

    1999-07-01

    Radiologists are liable for all aspects of their practice, from the indication of an examination to the radiology report and follow-up, as well as for providing information and recommendations. They are liable for their decisions and actions. They are liable for their competence and continuous medical education. They are also liable for their own equipment and staff. In cases of litigation, the liability of a radiologist may be questioned. Four types of procedures must been known: penal, civil, administrative and disciplinary. PMID:10431269

  8. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  9. Adaptive stereo medical image watermarking using non-corresponding blocks.

    PubMed

    Mohaghegh, H; Karimi, N; Soroushmehr, S M R; Samavi, S; Najarian, K

    2015-08-01

    Today with the advent of technology in different medical imaging fields, the use of stereoscopic images has increased. Furthermore, with the rapid growth in telemedicine for remote diagnosis, treatment, and surgery, there is a need for watermarking. This is for copyright protection and tracking of digital media. Also, the efficient use of bandwidth for transmission of such data is another concern. In this paper an adaptive watermarking scheme is proposed that considers human visual system in depth perception. Our proposed scheme modifies maximum singular values of wavelet coefficients of stereo pair for embedding watermark bits. Experimental results show high 3D visual quality of watermarked video frames. Moreover, comparison with a compatible state of the art method shows that the proposed method is highly robust against attacks such as AWGN, salt and pepper noise, and JPEG compression. PMID:26737224

  10. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been

  11. Creating a classification of image types in the medical literature for visual categorization

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer

    2012-02-01

    Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.

  12. Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.

    PubMed

    Gray, J E; Orton, C G

    2000-12-01

    Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff. PMID:11110920

  13. Medical image fusion based on non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Zhang, Daoming; Zhang, Xianda

    2009-10-01

    Medical image fusion is a process of obtaining a new composite image from two or more source images which are from different modalities. In this paper, we proposed a novel medical image fusion scheme based on the non-negative matrix factorization (NMF) algorithm, the only resulted basis image is just the fused image. Since the CT and MRI images have a lot of pixels which are zeros, the NMF algorithm can not be employed directly. To overcome this difficulty, we first add a positive bias to the original data matrix and remove the bias from the resulted fusion image after the NMF procedure. The experiment results show that the proposed approach outperforms the existing wavelet-based methods and Laplacian pyramid-based methods.

  14. Plot of virtual surgery based on CT medical images

    NASA Astrophysics Data System (ADS)

    Song, Limei; Zhang, Chunbo

    2009-10-01

    Although the CT device can give the doctors a series of 2D medical images, it is difficult to give vivid view for the doctors to acknowledge the decrease part. In order to help the doctors to plot the surgery, the virtual surgery system is researched based on the three-dimensional visualization technique. After the disease part of the patient is scanned by the CT device, the 3D whole view will be set up based on the 3D reconstruction module of the system. TCut a part is the usually used function for doctors in the real surgery. A curve will be created on the 3D space; and some points can be added on the curve automatically or manually. The position of the point can change the shape of the cut curves. The curve can be adjusted by controlling the points. If the result of the cut function is not satisfied, all the operation can be cancelled to restart. The flexible virtual surgery gives more convenience to the real surgery. Contrast to the existing medical image process system, the virtual surgery system is added to the system, and the virtual surgery can be plotted for a lot of times, till the doctors have enough confidence to start the real surgery. Because the virtual surgery system can give more 3D information of the disease part, some difficult surgery can be discussed by the expert doctors in different city via internet. It is a useful function to understand the character of the disease part, thus to decrease the surgery risk.

  15. Clinical demand for and access to images and interpretations of chest radiographs in a medical intensive care unit serviced by an integrated PACS-radiology information system

    NASA Astrophysics Data System (ADS)

    Shile, Peter E.; Kundel, Harold L.; Seshadri, Sridhar B.; Carey, Bruce; Kishore, Sheel; Brikman, Inna; Feingold, Eric R.; Lanken, Paul N.

    1994-05-01

    Digital communication systems have been proposed as a means of improving the flow of information between radiologists and other physicians. In the intensive care unit (ICU), physicians require more rapid access to images and interpretations than physicians in most other hospital settings. Thus these systems must be designed to ensure that rapid exchange of radiological information can be achieved. To better define system design for the electronic communication of radiological information to ICUs, this study examined bottlenecks in information flow through an integrated PACS-Radiology Information System.

  16. Mechanisms for exchange of image data to support distant medical consultation.

    PubMed Central

    Dayhoff, R. E.; Maloney, D. L.; Hirz, L.; Majurski, W. J.; Kuzmak, P. M.; Bradley, D.

    1993-01-01

    The VA has developed an integrated infrastructure to support the exchange of medical data, including images and text report data, between medical centers. This capability is expected to support teleconsulting and meet a variety of existing medical staffing and consultation needs. Consultation from distant locations requires at least the same complete integrated patient record available to onsite physicians. Several mechanisms are being explored to support distant medical consultation. Multimedia extensions to the VA's electronic mail system have been developed to allow images and other data objects to be included in electronic mail messages. Another approach that has been prototyped is to extend existing local imaging networks to produce more widely distributed imaging systems. These approaches will be described and discussed. PMID:8130590

  17. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  18. Interpretation of Medical Imaging Data with a Mobile Application: A Mobile Digital Imaging Processing Environment

    PubMed Central

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587

  19. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment.

    PubMed

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587

  20. The iterative adaptive approach in medical ultrasound imaging.

    PubMed

    Jensen, Are Charles; Austeng, Andreas

    2014-10-01

    Many medical ultrasound imaging systems are based on sweeping the image plane with a set of narrow beams. Usually, the returning echo from each of these beams is used to form one or a few azimuthal image samples. We model, for each radial distance, jointly the full azimuthal scanline. The model consists of the amplitudes of a set of densely placed potential reflectors (or scatterers), cf. sparse signal representation. To fit the model, we apply the iterative adaptive approach (IAA) on data formed by a sequenced time delay and phase shift. The performance of the IAA in combination with our time-delayed and phase-shifted data are studied on both simulated data of scenes consisting of point targets and hollow cyst-like structures, and recorded ultrasound phantom data from a specially adapted commercially available scanner. The results show that the proposed IAA is more capable of resolving point targets and gives better defined and more geometrically correct cyst-like structures in speckle images compared with the conventional delay-and-sum (DAS) approach. Compared with a Capon beamformer, the IAA showed an improved rendering of cyst-like structures and a similar point-target resolvability. Unlike the Capon beamformer, the IAA has no user parameters and seems unaffected by signal cancellation. The disadvantage of the IAA is a high computational load. PMID:25265177

  1. Medical Imaging for Understanding Sleep Regulation

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  2. Compressive optical imaging systems

    NASA Astrophysics Data System (ADS)

    Wu, Yuehao

    Compared to the classic Nyquist sampling theorem, Compressed Sensing or Compressive Sampling (CS) was proposed as a more efficient alternative for sampling sparse signals. In this dissertation, we discuss the implementation of the CS theory in building a variety of optical imaging systems. CS-based Imaging Systems (CSISs) exploit the sparsity of optical images in their transformed domains by imposing incoherent CS measurement patterns on them. The amplitudes and locations of sparse frequency components of optical images in their transformed domains can be reconstructed from the CS measurement results by solving an l1-regularized minimization problem. In this work, we review the theoretical background of the CS theory and present two hardware implementation schemes for CSISs, including a single pixel detector based scheme and an array detector based scheme. The first implementation scheme is suitable for acquiring Two-Dimensional (2D) spatial information of the imaging scene. We demonstrate the feasibility of this implementation scheme by developing a single pixel camera, a multispectral imaging system, and an optical sectioning microscope for fluorescence microscopy. The array detector based scheme is suitable for hyperspectral imaging applications, wherein both the spatial and spectral information of the imaging scene are of interest. We demonstrate the feasibility of this scheme by developing a Digital Micromirror Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement processes on the Three-Dimensional (3D) spatial/spectral information of the imaging scene. Tens of spectral images can be reconstructed from the DMD-SSI system simultaneously without any mechanical or temporal scanning processes.

  3. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  4. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  5. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  6. A survey of medical image registration - under review.

    PubMed

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects. PMID:27427472

  7. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  8. DICOM image communication in globus-based medical grids.

    PubMed

    Vossberg, Michal; Tolxdorff, Thomas; Krefting, Dagmar

    2008-03-01

    Grid computing, the collaboration of distributed resources across institutional borders, is an emerging technology to meet the rising demand on computing power and storage capacity in fields such as high-energy physics, climate modeling, or more recently, life sciences. A secure, reliable, and highly efficient data transport plays an integral role in such grid environments and even more so in medical grids. Unfortunately, many grid middleware distributions, such as the well-known Globus Toolkit, lack the integration of the world-wide medical image communication standard Digital Imaging and Communication in Medicine (DICOM). Currently, the DICOM protocol first needs to be converted to the file transfer protocol (FTP) that is offered by the grid middleware. This effectively reduces most of the advantages and security an integrated network of DICOM devices offers. In this paper, a solution is proposed that adapts the DICOM protocol to the Globus grid security infrastructure and utilizes routers to transparently route traffic to and from DICOM systems. Thus, all legacy DICOM devices can be seamlessly integrated into the grid without modifications. A prototype of the grid routers with the most important DICOM functionality has been developed and successfully tested in the MediGRID test bed, the German grid project for life sciences. PMID:18348944

  9. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. PMID:26414378

  10. Combined-transform coding scheme for medical images

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Qin; Loew, Murray H.; Pickholtz, Raymond L.

    1991-06-01

    Transform coding has been used successfully for radiological image compression in the picture archival and communication system (PACS) and other applications. However, it suffers from the artifact known as 'blocking effect' due to division of subblocks, which is very undesirable in the clinical environment. In this paper, we propose a combined-transform coding (CTC) scheme to reduce this effect and achieve better subjective performance. In the combined- transform coding scheme, we first divide the image into two sets that have different correlation properties, namely the upper image set (UIS) and lower image set (LIS). The UIS contains the most significant information and more correlation, and the LIS contains the less significant information. The UIS is compressed noiselessly without dividing into blocks and the LIS is coded by conventional block transform coding. Since the correlation in UIS is largely reduced (without distortion), the inter-block correlation, and hence the 'blocking effect,' is significantly reduced. This paper first describes the proposed CTC scheme and investigates its information-theoretic properties. Then, computer simulation results for a class of AP view chest x-ray images are presented. The comparison between the CTC scheme and conventional Discrete Cosine Transform (DCT) and Discrete Walsh-Hadmad Transform (DWHT) is made to demonstrate the performance improvement of the proposed scheme. The advantages of the proposed CTC scheme also include (1) no ringing effect due to no error propagation across the boundary, (2) no additional computation and (3) the ability to hold distortion below a certain threshold. In addition, we found that the idea of combined-coding can also be used in noiseless coding, and slight improvement in the compression performance can also be achieved if used properly. Finally, we point out that this scheme has its advantages in medical image transmission over a noisy channel or the packet-switched network in case of

  11. Medical Image Authentication Using DPT Watermarking: A Preliminary Attempt

    NASA Astrophysics Data System (ADS)

    Wong, M. L. Dennis; Goh, Antionette W.-T.; Chua, Hong Siang

    Secure authentication of digital medical image content provides great value to the e-Health community and medical insurance industries. Fragile Watermarking has been proposed to provide the mechanism to authenticate digital medical image securely. Transform Domain based Watermarking are typically slower than spatial domain watermarking owing to the overhead in calculation of coefficients. In this paper, we propose a new Discrete Pascal Transform based watermarking technique. Preliminary experiment result shows authentication capability. Possible improvements on the proposed scheme are also presented before conclusions.

  12. Compressive Deconvolution in Medical Ultrasound Imaging.

    PubMed

    Chen, Zhouye; Basarab, Adrian; Kouame, Denis

    2016-03-01

    The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to US wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this paper, we propose a novel framework, named compressive deconvolution, that reconstructs enhanced RF images from compressed measurements. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of our approach is the joint data volume reduction and image quality improvement. The proposed optimization method, based on the Alternating Direction Method of Multipliers, is evaluated on both simulated and in vivo data. PMID:26513780

  13. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images. PMID:26262231

  14. Magnetite Nanoparticles for Medical MR Imaging

    PubMed Central

    Stephen, Zachary R.; Kievit, Forrest M.; Zhang, Miqin

    2011-01-01

    Nanotechnology has given scientists new tools for the development of advanced materials for the detection and diagnosis of disease. Iron oxide nanoparticles (SPIONs) in particular have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents due to a combination of favorable superparamagnetic properties, biodegradability, and surface properties of easy modification for improved in vivo kinetics and multifunctionality. This review discusses the basics of MR imaging, the origin of SPION’s unique magnetic properties, recent developments in MRI acquisition methods for detection of SPIONs, synthesis and post-synthesis processes that improve SPION’s imaging characteristics, and an outlook on the translational potential of SPIONs. PMID:22389583

  15. Reversible intraframe compression of medical images.

    PubMed

    Roos, P; Viergever, M A; van Dijke, M A; Peters, J H

    1988-01-01

    The performance of several reversible, intraframe compression methods is compared by applying them to angiographic and magnetic resonance (MR) images. Reversible data compression involves two consecutive steps: decorrelation and coding. The result of the decorrelation step is presented in terms of entropy. Because Huffman coding generally approximates these entropy measures within a few percent, coding has not been investigated separately. It appears that a hierarchical decorrelation method based on interpolation (HINT) outperforms all other methods considered. The compression ratio is around 3 for angiographic images of 8-9 b/pixel, but is considerably less for MR images whose noise level is substantially higher. PMID:18230486

  16. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    PubMed

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface. PMID:27577479

  17. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  18. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  19. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  20. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    ERIC Educational Resources Information Center

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  1. Image-quality assessment of monochrome monitors for medical soft copy display

    NASA Astrophysics Data System (ADS)

    Weibrecht, Martin; Spekowius, Gerhard; Quadflieg, Peter; Blume, Hartwig R.

    1997-05-01

    Soft-copy presentation of medical images is becoming part of the medical routine as more and more health care facilities are converted to digital filmless hospital and radiological information management. To provide optimal image quality, display systems must be incorporated when assessing the overall system image quality. We developed a method to accomplish this. The proper working of the method is demonstrated with the analysis of four different monochrome monitors. We determined display functions and veiling glare with a high-performance photometer. Structure mottle of the CRT screens, point spread functions and images of stochastic structures were acquired by a scientific CCD camera. The images were analyzed with respect to signal transfer characteristics and noise power spectra. We determined the influence of the monitors on the detective quantum efficiency of a simulated digital x-ray imaging system. The method follows a physical approach; nevertheless, the results of the analysis are in good agreement with the subjective impression of human observers.

  2. Standardization in the field of medical image management: the contribution of the MIMOSA model.

    PubMed

    Gibaud, B; Garfagni, H; Aubry, F; Pokropek, A T; Chameroy, V; Bizais, Y; Di Paola, R

    1998-02-01

    This paper deals with the development of standards in the field of medical imaging and picture archiving and communication systems (PACS's), and notably concerning the interworking between PACS's and hospital information systems (HIS). It explains, in detail, how a conceptual model of the management of medical images, such as the medical image management in an open system architecture (MIMOSA) model, can contribute to the development of standards for medical image management and PACS's. This contribution is twofold: 1) Since the model lists and structures the concepts and resources involved to make the images available to the users when and where they are required, and describes the interactions between PACS components and HIS, the MIMOSA work helps by defining a reference architecture which includes an external description of the various components of a PACS, and a logical structure for assembling them. 2) The model and the implementation of a demonstrator based on this model allow the relevance of the Digital Imaging and Communications in Medicine (DICOM) standard with respect to image management issues to be assessed, highlighting some current limitations of this standard and proposing extensions. Such a twofold action is necessary in order both to bring solutions, even partial, in the short term, and to allow for the convergence, in the long term, of the standards developed by independent standardization groups in medical informatics (e.g., those within Technical Committee 251 of CEN: Comité Européen de Normalisation). PMID:9617908

  3. A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Tuot, Christopher; Sintek, Michael

    In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.

  4. Lossless compression of medical images using Hilbert scan

    NASA Astrophysics Data System (ADS)

    Sun, Ziguang; Li, Chungui; Liu, Hao; Zhang, Zengfang

    2007-12-01

    The effectiveness of Hilbert scan in lossless medical images compression is discussed. In our methods, after coding of intensities, the pixels in a medical images have been decorrelated with differential pulse code modulation, then the error image has been rearranged using Hilbert scan, finally we implement five coding schemes, such as Huffman coding, RLE, lZW coding, Arithmetic coding, and RLE followed by Huffman coding. The experiments show that the case, which applies DPCM followed by Hilbert scan and then compressed by the Arithmetic coding scheme, has the best compression result, also indicate that Hilbert scan can enhance pixel locality, and increase the compression ratio effectively.

  5. Utilization Of Spatial Self-Similarity In Medical Image Processing

    NASA Astrophysics Data System (ADS)

    Kuklinski, Walter S.

    1987-01-01

    Many current medical image processing algorithms utilize Fourier Transform techniques that represent images as sums of translationally invariant complex exponential basis functions. Selective removal or enhancement of these translationally invariant components can be used to effect a number of image processing operations such as edge enhancement or noise attenuation. An important characteristic of many natural phenomena, including the structures of interest in medical imaging is spatial self-similarity. In this work a filtering technique that represents images as sums of scale invariant self-similar basis functions will be presented. The decomposition of a signal or image into scale invariant components can be accomplished using the Mellin Transform, which diagonalizes changes of scale in a manner analogous to the way the Fourier Transform diagonalizes translation.

  6. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  7. Regional medical data mining system.

    PubMed

    Robu, Raul; Stoicu-Tivadar, Vasile

    2011-01-01

    This paper suggests a solution to acquire medical data from hospitals located in a region (addressing especially the DKMT Euroregion), and then perform data mining. The medical data from the hospital databases are exported in XML format, according to HL7 CDA standard. Afterwards, they are automatically centralized on a server in a database using web services calls. The data will be analyzed with the data mining tool WEKA. Data of interest are converted into ARFF format and loaded into WEKA. The next stage consists in preprocessing and analyzing the data based on the algorithms provided by WEKA, having as a goal several relevant medical conclusions. WEKA application interface has been improved to facilitate the process of performing predictions. PMID:21685596

  8. Fast volume rendering for medical image.

    PubMed

    Ying, Hu; Xin-He, Xu

    2005-01-01

    In orders to improve the rendering speed of ray casting and make this technique a practical routine in medical applications, two new and improved techniques are described in this paper. First, an integrated method using "proximity clouds" technique is applied to speed up ray casting. The second technique for speeding up the 3D rendering is done through a parallel implementation based on "single computer multi CPU" model Four groups of CT data sets have been used to validate the improvement of the rendering speed. The result shown that the interactive rendering speed is up to 6-10 fps, which is almost real-time making our algorithm practical in medical visualization routine. PMID:17281409

  9. An experimental method to determine the effective luminescence efficiency of scintillator-photodetector combinations used in X-ray medical imaging systems.

    PubMed

    Cavouras, D; Kandarakis, I; Bakas, A; Triantis, D; Nomicos, C D; Panayiotakis, G S

    1998-07-01

    The scintillator effective luminescence efficiency, which may be defined in terms of the scintillator's X-ray luminescence efficiency and the scintillator-photodetector spectral matching and geometrical configuration, was studied for various X-ray imaging applications. Four scintillator materials Gd2O2S:Tb, Y2O2S:Tb, ZnSCdS:Ag and CsI:Na were used to prepare test screens. They were evaluated in relation to various photodetectors used in X-ray imaging, such as radiographic films, photocathodes, and photodiodes. Effective luminescence efficiency was determined for a range of X-ray tube voltages (50-140 kVp) by measuring the light flux emitted per unit of incident exposure rate and the spectra of the light emitted by the four scintillators. Scintillator-photodetector combinations resulting in higher image brightness level were determined for different X-ray imaging systems. Findings indicate that CsI:Na is very efficient with orthochromatic radiographic films, Gd2O2S:Tb could be useful in conventional or digital fluoroscopy and in CT and ZnSCdS:Ag could be employed in some medium to low voltage digital radiography applications. PMID:9771388

  10. Modern Medical Engineering and Health Information Systems

    ERIC Educational Resources Information Center

    Davis, John F.

    1975-01-01

    Describes the impact of medical engineering and system design on hospital design and construction, health care in the home and hospital, equipment design, information systems, and health resources utilization. (GS)

  11. [A medical consumable material management information system].

    PubMed

    Tang, Guoping; Hu, Liang

    2014-05-01

    Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process. PMID:25241525

  12. Communication and storage of digital medical images in database.

    PubMed

    Evangelista, N; Camapum, J; Amemiya, E

    2005-01-01

    This paper presents the development of an application for communication and storage of clinical images based upon the Digital Imaging and Communications in Medicine (DICOM) protocol. The proposed solution is composed of three different databases servers, PostgreSQL, Firebird and Oracle, and a DICOM client software, that uses the protocol TCP/IP. It provides the communication services, transmission, storage and administration of medical images. PMID:17281491

  13. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    PubMed

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law. PMID:18762749

  14. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  15. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2011-12-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  16. Medical imaging as a contributor to today's healthcare crisis.

    PubMed

    McVey, Lynn

    2008-01-01

    At the end of 2007, Medicare reported the increase in medical imaging costs overtook increases in pharmaceutical costs for the first time. Imaging costs accounted for a 20% increase, while pharmaceuticals accounted for just 10%. There are two common areas where imaging costs impact overall healthcare spending: unnecessary exams and operational management. This article does not suggest alternatives to today's imaging management practices. It provides economic information, which may be valuable to imaging managers who want to gauge the costs of operating their own departments to what is going on in the industry. PMID:18572722

  17. [Study and realization of multidimensional visualization techniques for multimodality medical images].

    PubMed

    Li, Zhenwei; Zhang, Jianguo; Yang, Xiaoli

    2013-03-01

    This paper designed a multimodal medical image visualization system using open source VTK on platform VS2008. The system can visualize CT, MR, PET and SPECT using different visualization methods, such as multi-planar reconstruction (MPR), curved planar reformation (CPR), direct volume rendering (DVR), indirect volume rendering (IVR) and maximum intensity projection (MIP). Clinical practice shows that the system has stable performance and the visualization methods which make the reading of different modal medical images more convenient. The maximum number of CT slices the system can reconstruct is more than 2 000, and the reconstruction speed and quality meet the clinical requirements. PMID:23777062

  18. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  19. Medical laser system WOLF-1

    NASA Astrophysics Data System (ADS)

    Wolf, Leszek; Peszynski-Drews, Cezary; Szydlak, Jerzy; Nowakowski, Wlodzimierz

    2000-11-01

    In CDTL PL a set of lasers was installed with irradiation connected to treatment and operation rooms by energetic optical fibers. The introduction of irradiation of particular lasers into fiberguides is controlled by the computer. Fiber couplers were installed on the entrance of transmission fiberguides, and they were connected to optical fibers with different end-pieces according to medical needs.

  20. A CMOS image sensor dedicated to medical gamma camera application

    NASA Astrophysics Data System (ADS)

    Salahuddin, Nur S.; Paindavoine, Michel; Ginhac, Dominique; Parmentier, Michel; Tamda, Najia

    2005-03-01

    Generally, medical Gamma Camera are based on the Anger principle. These cameras use a scintillator block coupled to a bulky array of photomultiplier tube (PMT). To simplify this, we designed a new integrated CMOS image sensor in order to replace bulky PMT photodetetors. We studied several photodiodes sensors including current mirror amplifiers. These photodiodes have been fabricated using a CMOS 0.6 micrometers process from Austria Mikro Systeme (AMS). Each sensor pixel in the array occupies respectively, 1mm x 1mm area, 0.5mm x 0.5mm area and 0.2mm 0.2mm area with fill factor 98 % and total chip area is 2 square millimeters. The sensor pixels show a logarithmic response in illumination and are capable of detecting very low green light emitting diode (less than 0.5 lux) . These results allow to use our sensor in new Gamma Camera solid-state concept.

  1. Tangible imaging systems

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2013-03-01

    We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.

  2. Linking medical records to an expert system

    NASA Technical Reports Server (NTRS)

    Naeymi-Rad, Frank; Trace, David; Desouzaalmeida, Fabio

    1991-01-01

    This presentation will be done using the IMR-Entry (Intelligent Medical Record Entry) system. IMR-Entry is a software program developed as a front-end to our diagnostic consultant software MEDAS (Medical Emergency Decision Assistance System). MEDAS (the Medical Emergency Diagnostic Assistance System) is a diagnostic consultant system using a multimembership Bayesian design for its inference engine and relational database technology for its knowledge base maintenance. Research on MEDAS began at the University of Southern California and the Institute of Critical Care in the mid 1970's with support from NASA and NSF. The MEDAS project moved to Chicago in 1982; its current progress is due to collaboration between Illinois Institute of Technology, The Chicago Medical School, Lake Forest College and NASA at KSC. Since the purpose of an expert system is to derive a hypothesis, its communication vocabulary is limited to features used by its knowledge base. The development of a comprehensive problem based medical record entry system which could handshake with an expert system while creating an electronic medical record at the same time was studied. IMR-E is a computer based patient record that serves as a front end to the expert system MEDAS. IMR-E is a graphically oriented comprehensive medical record. The programs major components are demonstrated.

  3. Physical And Medical Attributes Of Six Contemporary Noninvasive Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.

    1981-11-01

    Digital subtraction angiography(DSA)is compared to five other noninvasive imaging methods with respect to physical attributes and medical applications. 1) Digital subtraction angiography measures flow channel (vessel) anatomy and vascular leaks in regions where signals from under and overlying vascular pools do not conflict in strength with the vessel or tissue of interest. 2) X-ray computed tomography, in principle, can separate the under and overlying signals, yet presently it is limited in speed, axial coverage, and computational burden for tasks DSA can efficiently perform. Possible exceptions are the dynamic spatial reconstructor (DSR) of Mayo Clinic and the system under construction at the University of California, San Francisco. 3) Heavy ion imaging measures electron density and is less sensitive to injected contrast than x-ray imaging which has the advantage of the photoelectric effect. A unique attribute of heavy ion imaging is its potential for treatment planning and the fact that beam hardening is not a physical problem. 4) Ultrasound detects surfaces, bulk tissue characteristics, and blood velocity. Doppler ultrasound competes with DSA in some regions of the body and generally involves less equipment and patient procedures. Ultrasound vessel imaging and range-gated Doppler have limitations due to sound absorption by atheromatous tissue and available imaging windows. 5) Emission tomography measures receptor site distribution, metabolism, permeability, and tissue perfusion. Resolution is limited to 7mm full width half maximum (FWHM) in the near future, and extraction of metabolic and perfusion information usually requires kinetic analyses with statistically poor data. The ability of positron tomography to measure metabolism (sugar, fatty acid, and oxygen utilization) and the ability to measure tissue perfusion with single photon tomography (17 mm FWHM) or PET (7 mm FWHM) using non-cyclotron produced radionuclides are the major unique features of emission

  4. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  5. A Web simulation of medical image reconstruction and processing as an educational tool.

    PubMed

    Papamichail, Dimitrios; Pantelis, Evaggelos; Papagiannis, Panagiotis; Karaiskos, Pantelis; Georgiou, Evangelos

    2015-02-01

    Web educational resources integrating interactive simulation tools provide students with an in-depth understanding of the medical imaging process. The aim of this work was the development of a purely Web-based, open access, interactive application, as an ancillary learning tool in graduate and postgraduate medical imaging education, including a systematic evaluation of learning effectiveness. The pedagogic content of the educational Web portal was designed to cover the basic concepts of medical imaging reconstruction and processing, through the use of active learning and motivation, including learning simulations that closely resemble actual tomographic imaging systems. The user can implement image reconstruction and processing algorithms under a single user interface and manipulate various factors to understand the impact on image appearance. A questionnaire for pre- and post-training self-assessment was developed and integrated in the online application. The developed Web-based educational application introduces the trainee in the basic concepts of imaging through textual and graphical information and proceeds with a learning-by-doing approach. Trainees are encouraged to participate in a pre- and post-training questionnaire to assess their knowledge gain. An initial feedback from a group of graduate medical students showed that the developed course was considered as effective and well structured. An e-learning application on medical imaging integrating interactive simulation tools was developed and assessed in our institution. PMID:25000920

  6. Multipurpose hyperspectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...

  7. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  8. Watermarking techniques used in medical images: a survey.

    PubMed

    Mousavi, Seyed Mojtaba; Naghsh, Alireza; Abu-Bakar, S A R

    2014-12-01

    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods. PMID:24871349

  9. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  10. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform. PMID:19813594

  11. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  12. RadGSP: a medical image display and user interface for UWGSP3

    NASA Astrophysics Data System (ADS)

    Yee, David K.; Lee, Woobin; Kim, Donglok; Haass, Clark D.; Rowberg, Alan H.; Kim, Yongmin

    1991-05-01

    Many issues must be addressed and resolved in order to bring a complete imaging workstation into everyday use by radiologists and medical researchers. Important design issues for developing an imaging workstation include image quality, system response time, the user interface and image storage. The Image Computing Systems Laboratory (ICSL) at the University of Washington has been developing a series of inexpensive graphics and image processing workstations with high performance by taking advantage of a sharp decrease in hardware costs, increasingly more powerful VLSI chips, and versatile personal computers and workstations. After gaining experience with two previous image processing systems, UWGSP3 (University of Washington Graphics System Processor #3), a third-generation workstation based on the NeXT Computer and UWGSP3-HI, a host-independent version, that can work with any host computer via an interface card, were developed. UWGSP3, a highly integrated, low-cost workstation, is a complete image display and computing system capable of meeting many of the requirements of a medical imaging workstation provided that a suitable user interface is developed. To demonstrate this capability, RadGSP, a prototype user interface and application software for radiologist use, has been developed. This paper will first describe the UWGSP3-HI system for background information before describing the implementation and evaluation of RadGSP, and current radiology imaging workstation research in progress at ICSL.

  13. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  14. Framework for distributed medical image collaborative processing based on the web

    NASA Astrophysics Data System (ADS)

    Zhang, Quan-Hai; Shi, Peng-Fei

    2001-09-01

    During the last few years, the development of the modern medicine has permitted the accurate diagnosis on more symptom of illness. But it is the imbalance of the medical treatment on different areas and decentralization of the medical resources that limited the widely applying on more people. However, as the important evidence on medical diagnosis, medical images need to be collaborative processed because of their large sizes, modality and processing complexity. Therefore one of the main aims on medical treatment now is to establish the distributed computer to support collaboration working environment based on web. The establishing of the environment is help to dissolve the problem about medical collaborative working on different areas, computer systems and network structures and to permit more people to receive the high quality medical care. In this paper, a distributed medical image collaborative framework was presented using the JAVA (a network computing language) and CORBA (Common Object Broker Request Architecture, a distributed computing standard). From the experimental result with the framework, it was clear that the framework made possible collaborative processing of the medical image by using many collaborative tools.

  15. Oral antioxidants for radioprotection during medical imaging examinations

    NASA Astrophysics Data System (ADS)

    Velauthapillai, Nivethan

    The oncogenic effect of ionizing radiation (IR) is clearly established and occurs in response to DNA damage. Many diagnostic imaging exams make use of IR and the oncogenic risk of IR-based imaging has been calculated. We hypothesized that the DNA damage sustained from IR exposure during medical imaging exams could be reduced by pre-medicating patients with antioxidants. First, we tested and validated a method for measuring DNA double-strand breaks (DSBs) in peripheral blood mononuclear cells (PBMCs) exposed to low doses of ionizing radiation. Afterwards, we conducted a pilot clinical study in which we administered oral antioxidants to patients undergoing bone scans, prior to radiotracer injection. We showed that oral antioxidant pre-medication reduced the number of DSBs in PBMCs induced by radiotracer injection. Our study shows proof-of-principle for this simple and inexpensive approach to radioprotection in the clinical setting.

  16. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    NASA Astrophysics Data System (ADS)

    Magnus, Marcone; Coelho Prado, Thiago; von Wangenhein, Aldo; de Macedo, Douglas D. J.; Dantas, M. A. R.

    2012-02-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  17. Contour detect in the medical image by shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Rios, Ramiro; Simonov, Konstantin; Romanenko, Alexey

    2015-07-01

    Contour detect in the urology medical image. The investigation algorithm FFST revealed that the contours of objects can be obtained as the sum of the coefficients shearlet transform a fixed value for the last scale and the of all possible values of the shift parameter. The results of this task using a modified algorithm FFST for data processing urology image is show. In the results of the corresponding calculations for some images and a comparison with filters Sobel and Prewitt. Shows the relevant calculations for some images and a comparison with Sobel and Prewitt filters respectively.

  18. Multimodality medical image database for temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  19. FEM-based simulation of tumor growth in medical image

    NASA Astrophysics Data System (ADS)

    Luo, Shuqian; Nie, Ying

    2004-05-01

    Brain model has found wide applications in areas including surgical-path planning, image-guided surgery systems, and virtual medical environments. In comparison with the modeling of normal brain anatomy, the modeling of anatomical abnormalities appears to be rather weak. Particularly, there are considerable differences between abnormal brain images and normal brain images, due to the growth of brain tumor. In order to find the correspondence between abnormal brain images and normal ones, it is necessary to make an estimation or simulation of the brain deformation. In this paper, a deformable model of brain tissue with both geometric and physical nonlinear properties based on finite element method is presented. It is assumed that the brain tissue are nonlinearly elastic solids obeying the equations of an incompressible nonlinearly elastics neo-Hookean model. we incorporate the physical inhomogeneous of brain tissue into our FEM model. The non-linearity of the model needs to solve the deformation of the model using an iteration method. The Updated Lagrange for iteration is used. To assure the convergence of iteration, we adopt the fixed arc length method. This model has advantages over those linear models in its more real tissue properties and its capability of simulating more serious brain deformation. The inclusion of second order displacement items into the balance and geometry functions allows for the estimation of more serious brain deformation. We referenced the model presented by Stelios K so as to ascertain the initial position of tumor as well as our tumor model definition. Furthermore, we expend it from 2-D to 3-D and simplify the calculation process.

  20. A protocol-based evaluation of medical image digitizers.

    PubMed

    Efstathopoulos, E P; Costaridou, L; Kocsis, O; Panayiotakis, G

    2001-09-01

    Medical film digitizers play an important transitory role as digital-to-analogue bridges in radiology. Their use requires performance evaluation to assure medical image quality. A complete quality control protocol is presented, based on a set of test objects adaptable to the specification of various digitizers. The protocol includes parameters such as uniformity, input-output response, noise, geometric distortion, spatial resolution, low contrast discrimination, film slippage and light leakage, as well as associated measurement methods. The applicability of the protocol is demonstrated with two types of medical film digitizers; a charge-coupled device (CCD) digitizer and a laser digitizer. The potential value of the protocol is also discussed. PMID:11560833

  1. Secure public cloud platform for medical images sharing.

    PubMed

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking. PMID:25991144

  2. [Image-M, a tool for use in medical image analysis].

    PubMed

    Kone, T; Konate, L; Kouame, P; Bakayoko, L

    1999-12-01

    Images processing is used today in some research area like robotic, teledetection and medicine. Images processing is not taught and applied enough. The reason of this situation depends on the cost of images processing equipment. To solve this hardware problem we had developed a running on images processing software which need only one personal computer. This software is used now by our team to do some research in medical images processing. PMID:11372125

  3. A National Medical Information System for Senegal: Architecture and Services.

    PubMed

    Camara, Gaoussou; Diallo, Al Hassim; Lo, Moussa; Tendeng, Jacques-Noël; Lo, Seynabou

    2016-01-01

    In Senegal, great amounts of data are daily generated by medical activities such as consultation, hospitalization, blood test, x-ray, birth, death, etc. These data are still recorded in register, printed images, audios and movies which are manually processed. However, some medical organizations have their own software for non-standardized patient record management, appointment, wages, etc. without any possibility of sharing these data or communicating with other medical structures. This leads to lots of limitations in reusing or sharing these data because of their possible structural and semantic heterogeneity. To overcome these problems we have proposed a National Medical Information System for Senegal (SIMENS). As an integrated platform, SIMENS provides an EHR system that supports healthcare activities, a mobile version and a web portal. The SIMENS architecture proposes also a data and application integration services for supporting interoperability and decision making. PMID:27577338

  4. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  5. Technical challenges for the construction of a medical image database

    NASA Astrophysics Data System (ADS)

    Ring, Francis J.; Ammer, Kurt; Wiecek, Boguslaw; Plassmann, Peter; Jones, Carl D.; Jung, Anna; Murawski, Piotr

    2005-10-01

    Infrared thermal imaging was first made available to medicine in the early 1960's. Despite a large number of research publications on the clinical application of the technique, the images have been largely qualitative. This is in part due to the imaging technology itself, and the problem of data exchange between different medical users, with different hardware. An Anglo Polish collaborative study was set up in 2001 to identify and resolve the sources of error and problems in medical thermal imaging. Standardisation of the patient preparation, imaging hardware, image capture and analysis has been studied and developed by the group. A network of specialist centres in Europe is planned to work to establish the first digital reference atlas of quantifiable images of the normal healthy human body. Further processing techniques can then be used to classify abnormalities found in disease states. The follow up of drug treatment has been successfully monitored in clinical trials with quantitative thermal imaging. The collection of normal reference images is in progress. This paper specifies the areas found to be the source of unwanted variables, and the protocols to overcome them.

  6. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  7. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  8. Infrared medical image visualization and anomalies analysis method

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  9. Novel medical imaging technologies for disease diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Olego, Diego

    2009-03-01

    New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.

  10. Adaptive predictive multiplicative autoregressive model for medical image compression.

    PubMed

    Chen, Z D; Chang, R F; Kuo, W J

    1999-02-01

    In this paper, an adaptive predictive multiplicative autoregressive (APMAR) method is proposed for lossless medical image coding. The adaptive predictor is used for improving the prediction accuracy of encoded image blocks in our proposed method. Each block is first adaptively predicted by one of the seven predictors of the JPEG lossless mode and a local mean predictor. It is clear that the prediction accuracy of an adaptive predictor is better than that of a fixed predictor. Then the residual values are processed by the MAR model with Huffman coding. Comparisons with other methods [MAR, SMAR, adaptive JPEG (AJPEG)] on a series of test images show that our method is suitable for reversible medical image compression. PMID:10232675

  11. Transmission and storage of medical images with patient information.

    PubMed

    Acharya U, Rajendra; Subbanna Bhat, P; Kumar, Sathish; Min, Lim Choo

    2003-07-01

    Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. The text data is encrypted before interleaving with images to ensure greater security. The graphical signals are interleaved with the image. Two types of error control-coding techniques are proposed to enhance reliability of transmission and storage of medical images interleaved with patient information. Transmission and storage scenarios are simulated with and without error control coding and a qualitative as well as quantitative interpretation of the reliability enhancement resulting from the use of various commonly used error control codes such as repetitive, and (7,4) Hamming code is provided. PMID:12791403

  12. A Terminology Server for medical language and medical information systems.

    PubMed

    Rector, A L; Solomon, W D; Nowlan, W A; Rush, T W; Zanstra, P E; Claassen, W M

    1995-03-01

    GALEN is developing a Terminology Server to support the development and integration of clinical systems through a range of key terminological services, built around a language-independent, re-usable, shared system of concepts--the CORE model. The focus is on supporting applications for medical records, clinical user interfaces and clinical information systems, but also includes systems for natural language understanding, clinical decision support, management of coding and classification schemes, and bibliographic retrieval. The Terminology Server integrates three modules: the Concept Module which implements the GRAIL formalism and manages the internal representation of concept entities, the Multilingual Module which manages the mapping of concept entities to natural language, and the Code Conversion Module which manages the mapping of concept entities to and from existing coding and classification schemes. The Terminology Server also provides external referencing to concept entities, coercion between data types, and makes its services available through a uniform applications programming interface. Taken together these services represent a new approach to the development of clinical systems and the sharing of medical knowledge. PMID:9082124

  13. [P.A.I.S., a personal medical information system. A comprehensive medical knowledge base].

    PubMed

    Münch, E

    1994-06-01

    The electronic medical knowledge data base DOPIS is a compliation of knowledge from various special fields of medicine. Using uniform nomenclature, the data are presented on demand as they would be in a book chapter. Concise updates can be performed at low cost. The primary structure of the concept is the division of medical knowledge into data banks on diagnosis, literature, medication and pharmacology, as well as so-called electronic textbooks. All data banks and electronic textbooks are connected associatively. Visual information is obtained via the image data bank connected to the diagnosis data bank and the electronic books. Moreover, DOPIS has an integrated patient findings system, as well as an image processing and archiving system with research values enabling research functions. The diagnosis and literature data banks can be modified by the user or author, or fed with their own data (a so-called Expert System Shell). For authors from special fields working on the project, an extra Medical Electronic Publishing System has been developed and made available for the electronic textbooks. The model for the knowledge data base has been developed in the field of ENT, the programme implemented and initially ENT data have been stored. PMID:8071098

  14. The medical physics specialization system in Poland.

    PubMed

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations. PMID:27378393

  15. Developing image-based electronic patient records for collaborative medical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Sun, Jianyong; Yong, Yuanyuan; Chen, Xiaomeng; Yu, Fenghai; Zhang, Xiaoyan; Lian, Ping; Sun, Kun; Huang, H. K.

    2004-04-01

    We developed a Web-based system to interactively display image-based electronic patient records (EPR) for intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). We have successfully used this system two times for the teleconsultation on Severe acute respiratory syndrome (SARS) in Shanghai Xinhua Hospital and Shanghai Infection Hospital. During the consultation, both the physicians in infection control area and the experts outside the control area could interactively study, manipulate and navigate the EPR of the SARS patients to make more precise diagnosis on images with this system assisting. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications.

  16. Managing waiting times in diagnostic medical imaging

    PubMed Central

    Nuti, Sabina; Vainieri, Milena

    2012-01-01

    Objective This paper aims to analyse the variation in the delivery of diagnostic imaging services in order to suggest possible solutions for the reduction of waiting times, increase the quality of services and reduce financial costs. Design This study provides a logic model to manage waiting times in a regional context. Waiting times measured per day were compared on the basis of the variability in the use rates of CT and MRI examinations in Tuscany for the population, as well as on the basis of the capacity offered with respect to the number of radiologists available. The analysis was performed at the local health authority level to support the decision-making process of local managers. Setting Diagnostic imaging services, in particular the CT and MRI examinations. The study involved all the 12 local health authorities that provide services for 3.7 million inhabitants of the Italian Tuscany Region. Primary and secondary outcome measures Participants: the study uses regional administrative data on outpatients and survey data on inpatient diagnostic examinations in order to measure productivity. Primary and secondary outcome measures The study uses the volumes per 1000 inhabitants, the days of waiting times and the number of examinations per radiologist. Variability was measured using the traditional SD measures. Results A significant variation in areas considered homogeneous in terms of age, gender or mortality may indicate that the use of radiological services is not optimal and underuse or overuse occurs and that there is room for improvement in the service organisation. Conclusions Considering that there is a high level of variability among district use rates and waiting times, this study provides managers with a specific tool to find the cause of the problem, identify a possible solution, assess the financial impact and initiate the eventual reduction of waste. PMID:23242480

  17. Globus MEDICUS - federation of DICOM medical imaging devices into healthcare Grids.

    PubMed

    Erberich, Stephan G; Silverstein, Jonathan C; Chervenak, Ann; Schuler, Robert; Nelson, Marvin D; Kesselman, Carl

    2007-01-01

    The Digital Imaging and Communications in Medicine (DICOM) standard defines Radiology medical device interoperability and image data exchange between modalities, image databases - Picture Archiving and Communication Systems (PACS) - and image review end-points. However the scope of DICOM and PACS technology is currently limited to the trusted and static environment of the hospital. In order to meet the demand for ad-hoc tele-radiology and image guided medical procedures within the global healthcare enterprise, a new technology must provide mobility, security, flexible scale of operations, and rapid responsiveness for DICOM medical devices and subsequently medical image data. Grid technology, an informatics approach to securely federate independently operated computing, storage, and data management resources at the global scale over public networks, meets these core requirements. Here we present an approach to federate DICOM and PACS devices for large-scale medical image workflows within a global healthcare enterprise. The Globus MEDICUS (Medical Imaging and Computing for Unified Information Sharing) project uses the standards-based Globus Toolkit Grid infrastructure to vertically integrate a new service for DICOM devices - the DICOM Grid Interface Service (DGIS). This new service translates between DICOM and Grid operations and thus transparently extends DICOM to Globus based Grid infrastructure. This Grid image workflow paradigm has been designed to provide not only solutions for global image communication, but fault-tolerance and disaster recovery using Grid data replication technology. Actual use-case of 40 MEDICUS Grid connected international hospitals of the Childerns Oncology Group and the Neuroblastoma Cancer Foundation and further clinical applications are discussed. The open-source Globus MEDICU http://dev.globus.org/wiki/Incubator/MEDICUS. PMID:17476069

  18. Incremental classification learning for anomaly detection in medical images

    NASA Astrophysics Data System (ADS)

    Giritharan, Balathasan; Yuan, Xiaohui; Liu, Jianguo

    2009-02-01

    Computer-aided diagnosis usually screens thousands of instances to find only a few positive cases that indicate probable presence of disease.The amount of patient data increases consistently all the time. In diagnosis of new instances, disagreement occurs between a CAD system and physicians, which suggests inaccurate classifiers. Intuitively, misclassified instances and the previously acquired data should be used to retrain the classifier. This, however, is very time consuming and, in some cases where dataset is too large, becomes infeasible. In addition, among the patient data, only a small percentile shows positive sign, which is known as imbalanced data.We present an incremental Support Vector Machines(SVM) as a solution for the class imbalance problem in classification of anomaly in medical images. The support vectors provide a concise representation of the distribution of the training data. Here we use bootstrapping to identify potential candidate support vectors for future iterations. Experiments were conducted using images from endoscopy videos, and the sensitivity and specificity were close to that of SVM trained using all samples available at a given incremental step with significantly improved efficiency in training the classifier.

  19. Exploration Medical System Demonstration (EMSD) Project

    NASA Technical Reports Server (NTRS)

    Chin, Duane

    2012-01-01

    The Exploration Medical System Demonstration (EMSD) is a project under the Exploration Medical Capability (ExMC) element managed by the Human Research Program (HRP). The vision for the EMSD is to utilize ISS as a test bed to show that several medical technologies needed for an exploration mission and medical informatics tools for managing evidence and decision making can be integrated into a single system and used by the on-orbit crew in an efficient and meaningful manner. Objectives: a) Reduce and even possibly eliminate the time required for on-orbit crew and ground personnel (which include Surgeon, Biomedical Engineer (BME) Flight Controller, and Medical Operations Data Specialist) to access and move medical data from one application to another. b) Demonstrate that the on-orbit crew has the ability to access medical data/information using an intuitive and crew-friendly software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management framework and architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities.

  20. Robust Medical Isotope Production System

    SciTech Connect

    Klein, Steven Karl; Kimpland, Robert Herbert

    2015-06-15

    The success of this theoretical undertaking provided confidence that the behavior of new and evolving designs of fissile solution systems may be accurately estimated. Scaled up versions of SUPO, subcritical acceleratordriven systems, and other evolutionary designs have been examined.

  1. A medical imaging and visualization toolkit in Java.

    PubMed

    Huang, Su; Baimouratov, Rafail; Xiao, Pengdong; Ananthasubramaniam, Anand; Nowinski, Wieslaw L

    2006-03-01

    Medical imaging research and clinical applications usually require combination and integration of various techniques ranging from image processing and analysis to realistic visualization to user-friendly interaction. Researchers with different backgrounds coming from diverse areas have been using numerous types of hardware, software, and environments to obtain their results. We also observe that students often build their tools from scratch resulting in redundant work. A generic and flexible medical imaging and visualization toolkit would be helpful in medical research and educational institutes to reduce redundant development work and hence increase research efficiency. This paper presents our experience in developing a Medical Imaging and Visualization Toolkit (BIL-kit) that is a set of comprehensive libraries as well as a number of interactive tools. The BIL-kit covers a wide range of fundamental functions from image conversion and transformation, image segmentation, and analysis to geometric model generation and manipulation, all the way up to 3D visualization and interactive simulation. The toolkit design and implementation emphasize the reusability and flexibility. BIL-kit is implemented in the Java language so that it works in hybrid and dynamic research and educational environments. This also allows the toolkit to extend its usage for the development of Web-based applications. Several BIL-kit-based tools and applications are presented including image converter, image processor, general anatomy model simulator, vascular modeling environment, and volume viewer. BIL-kit is a suitable platform for researchers and students to develop visualization and simulation prototypes, and it can also be used for the development of clinical applications. PMID:16323064

  2. Generic image matching system

    NASA Astrophysics Data System (ADS)

    Liang, Zhongjie T.

    1992-05-01

    The generic imaging matching system (GIMS) provides an optimal systematic solution to any problem of color image processing in printing and publishing that can be classified as or modeled to the generic image matching problem defined. Typical GIMS systems/processes include color matching from different output devices, color conversion, color correction, device calibration, colorimetric scanner, colorimetric printer, colorimetric color reproduction, and image interpolation from scattered data. GIMS makes color matching easy for the user and maximizes operational flexibility allowing the user to obtain the degree of match wanted while providing the capability to achieve the best balance with respect to the human perception of color, color fidelity, and preservation of image information and color contrast. Instead of controlling coefficients in a transformation formula, GIMS controls the mapping directly in a standard device-independent color space, so that color can be matched, conceptually, to the highest possible accuracy. An optimization algorithm called modified vector shading was developed to minimize the matching error and to perform a 'near-neighborhood' gamut compression. An automatic error correction algorithm with a multidirection searching procedure using correlated re-initialization was developed to avoid local minimum failures. Once the mapping for color matching is generated, it can be utilized by a multidimensional linear interpolator with a small look-up-table (LUT) implemented by either software, a hardware interpolator or a digital-signal-processor.

  3. Digital Topology and Geometry in Medical Imaging: A Survey.

    PubMed

    Saha, Punam K; Strand, Robin; Borgefors, Gunilla

    2015-09-01

    Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis. PMID:25879908

  4. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  5. Safe storage and multi-modal search for medical images.

    PubMed

    Kommeri, Jukka; Niinimäki, Marko; Müller, Henning

    2011-01-01

    Modern hospitals produce enormous amounts of data in all departments, from images, to lab results, medication use, and release letters. Since several years these data are most often produced in digital form, making them accessible for researchers to optimize the outcome of care process and analyze all available data across patients. The Geneva University Hospitals (HUG) are no exception with its daily radiology department's output of over 140'000 images in 2010, with a majority of them being tomographic slices. In this paper we introduce tools for uploading and accessing DICOM images and associated metadata in a secure Grid storage. These data are made available for authorized persons using a Grid security framework, as security is a main problem in secondary use of image data, where images are to be stored outside of the clinical image archive. Our tool combines the security and metadata access of a Grid middleware with the visual search that uses GIFT. PMID:21893790

  6. High definition ultrasound imaging for battlefield medical applications

    SciTech Connect

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M.; Rogers, B; Walsh, N.

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  7. Multiresolution Analysis Using Wavelet, Ridgelet, and Curvelet Transforms for Medical Image Segmentation

    PubMed Central

    AlZubi, Shadi; Islam, Naveed; Abbod, Maysam

    2011-01-01

    The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise. PMID:21960988

  8. A semantically-aided approach for online annotation and retrieval of medical images.

    PubMed

    Kyriazos, George K; Gerostathopoulos, Ilias Th; Kolias, Vassileios D; Stoitsis, John S; Nikita, Konstantina S

    2011-01-01

    The need for annotating the continuously increasing volume of medical image data is recognized from medical experts for a variety of purposes, regardless if this is medical practice, research or education. The rich information content latent in medical images can be made explicit and formal with the use of well-defined ontologies. Evolution of the Semantic Web now offers a unique opportunity of a web-based, service-oriented approach. Remote access to FMA and ICD-10 reference ontologies provides the ontological annotation framework. The proposed system utilizes this infrastructure to provide a customizable and robust annotation procedure. It also provides an intelligent search mechanism indicating the advantages of semantic over keyword search. The common representation layer discussed facilitates interoperability between institutions and systems, while semantic content enables inference and knowledge integration. PMID:22254818

  9. Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation.

    PubMed

    Alzubi, Shadi; Islam, Naveed; Abbod, Maysam

    2011-01-01

    The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise. PMID:21960988

  10. A Local IDW Transformation Algorithm for Medical Image Registration

    NASA Astrophysics Data System (ADS)

    Cavoretto, Roberto; De Rossi, Alessandra

    2008-09-01

    In this paper we propose the use of a modified version of the Inverse Distance Weighted (IDW) method for landmark—based registration of medical images. More precisely, we consider radial basis functions (RBFs) as nodal functions in the modified IDW method, circumventing the drawback due to RBF global support.

  11. A grid computing framework for high-performance medical imaging

    NASA Astrophysics Data System (ADS)

    Mañana Guichón, Gabriel; Romero Castro, Eduardo

    2013-11-01

    Current medical image processing has become a complex mixture of many scienti c disciplines including mathematics, statistics, physics, and algorithmics, to perform tasks such as registration, segmentation, and visualization, with the ultimate purpose of helping clinicians in their daily routine. This requires high performance computing capabilities that can be achieved in several ways, usually una ordable for most medical institutions. This paper presents a space-based computational grid that uses the otherwise wasted CPU cycles of a set of personal computers, to provide high-performance medical imaging services over the Internet. By using an existing hardware infrastructure and software of free distribution, the proposed approach is apt for university hospitals and other low-budget institutions. This will be illustrated by the use of three real case studies of services where an important speedup factor has been obtained and whose performance has become suitable for use in real clinical scenarios.

  12. SemVisM: semantic visualizer for medical image

    NASA Astrophysics Data System (ADS)

    Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther

    2015-01-01

    SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1

  13. Expert Systems and Medical Education.

    ERIC Educational Resources Information Center

    Educational Researcher, 1988

    1988-01-01

    Expert systems are computerized databases that can diagnose and recommend treatment for persons who are ill. The database contains information on more than 7,600 diseases generated from exhaustive questioning of experts. These systems supplement human expertise but do not replace the good teaching of physicians. (VM)

  14. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    PubMed

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  15. A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    PubMed Central

    Seenivasagam, V.; Velumani, R.

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)—Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  16. Quantitative Luminescence Imaging System

    SciTech Connect

    Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

    1992-12-31

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  17. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  18. Pake Prize Talk: The Future of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Edelheit, Lonnie

    2001-03-01

    Discussed will be a brief history and status of the major medical imaging modalities, including X-ray Radiography and Fluoroscopy, Computerized Tomography, Magnetic Resonance Imaging, Ultrasound and Nuclear Medicine (including Positron Emission Tomography). Also covered will be potential new modalities such as Optical, Magnetic and Electric Field Imaging. In addition, the presentation will include a projection of future advances of each modality along with a discussion of some of the major challenges and more speculative projections of a few game-changing possibilities.

  19. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  20. Perceptually lossless wavelet-based compression for medical images

    NASA Astrophysics Data System (ADS)

    Lin, Nai-wen; Yu, Tsaifa; Chan, Andrew K.

    1997-05-01

    In this paper, we present a wavelet-based medical image compression scheme so that images displayed on different devices are perceptually lossless. Since visual sensitivity of human varies with different subbands, we apply the perceptual lossless criteria to quantize the wavelet transform coefficients of each subband such that visual distortions are reduced to unnoticeable. Following this, we use a high compression ratio hierarchical tree to code these coefficients. Experimental results indicate that our perceptually lossless coder achieves a compression ratio 2-5 times higher than typical lossless compression schemes while producing perceptually identical image content on the target display device.