Science.gov

Sample records for medicine heart imaging

  1. Heart failure - medicines

    MedlinePlus

    CHF - medicines; Congestive heart failure - medicines; Cardiomyopathy - medicines; HF - medicines ... You will need to take most of your heart failure medicines every day. Some medicines are taken ...

  2. Heart failure - medicines

    MedlinePlus

    ACE inhibitors (angiotensin converting enzyme inhibitors) and ARBs (angiotensin II receptor blockers) work by opening blood vessels and lowering blood pressure. These medicines can: Reduce the work your heart has to do Help ...

  3. Heart imaging method

    DOEpatents

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  4. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  5. Heart transplant - series (image)

    MedlinePlus

    ... The main problem, as with other transplants, is graft rejection. If rejection can be controlled, then survival can ... major problems are the same all major organ transplants face: a shortage of donor hearts rejection of the transplanted heart cost of the surgery ...

  6. Heart, front view (image)

    MedlinePlus

    ... the heart. The vessels colored blue indicate the transport of blood with relatively low content of oxygen ... carbon dioxide. The vessels colored red indicate the transport of blood with relatively high content of oxygen ...

  7. Clinical imaging in regenerative medicine

    PubMed Central

    Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A

    2014-01-01

    In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889

  8. Molecular Imaging in Genetic Medicine

    PubMed Central

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine.  PMID:27186447

  9. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  10. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  11. Digoxin: A Medicine for Heart Problems

    MedlinePlus

    ... Heart failure results when the heart can't pump blood well enough to supply the body's needs. If ... failure, digoxin can improve your heart's ability to pump blood. This will often improve symptoms such as shortness ...

  12. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  13. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  14. Heart Sonar Images

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.

  15. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  16. Heart Palpitation From Traditional and Modern Medicine Perspectives

    PubMed Central

    Ershadifar, Tabassom; Minaiee, Bagher; Gharooni, Manouchehr; Isfahani, Mohammad Mahdi; Nikbakht Nasrabadi, Alireza; Nazem, Esmaiel; Gousheguir, Ashraf Aldin; Kazemi Saleh, Davod

    2014-01-01

    Background: Palpitation is a sign of a disease and is very common in general population. For this purpose we decided to explain it in this study. Objectives: The purpose of this study was to describe the palpitation in both modern and traditional medicine aspect. It may help us to diagnose and cure better because the traditional medicine view is holistic and different from modern medicine. Materials and Methods: We addressed some descriptions to the articles of traditional medicine subjects which have published recently. Palpitation in modern medicine was extracted from medical books such as Braunwald, Harrison and Guyton physiology and some related articles obtained from authentic journals in PubMed and Ovid and Google scholar between1990 to 2013. Results: According to modern medicine, there are many causes for palpitation and in some cases it is cured symptomatically. In traditional medicine view, palpitation has been explained completely and many causes have been described. Its aspect is holistic and it cures causatively. The traditional medicine scientists evaluated the body based on Humors and temperament. Temperament can be changed to dis-temperament in diseases. Humors are divided in 4 items: sanguine, humid or phlegm, melancholy and bile. Palpitation is a disease, it is heart vibration and is caused by an abnormal substance in the heart itself or its membrane or other adjacent organs that would result in the heart suffering. Conclusions: Our data of this article suggests that causes of palpitation in the aspect of traditional medicine are completely different from modern medicine. It can help us to approach and treat this symptom better and with lower side effects than chemical drugs. According to this article we are able to detect a new approach in palpitation. PMID:24719741

  17. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine

    PubMed Central

    Lui, Kathy O.; Tandon, Nina

    2012-01-01

    The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has becoming increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a “perfect” heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering. PMID:21568715

  18. Magnetic resonance imaging of congenital heart disease

    SciTech Connect

    Fletcher, B.D.; Jacobstein, M.D.

    1988-01-01

    Focusing primarily on MR imaging of the heart, this book covers other diagnostic imaging modalities as well. The authors review new technologies and diagnostic procedures pertinent to congenital heat disease and present each congenital heat abnormality as a separate entity.

  19. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  20. Infant open heart surgery (image)

    MedlinePlus

    During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia. ... During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia.

  1. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  2. Cardiac imaging in valvular heart disease

    PubMed Central

    Choo, W S; Steeds, R P

    2011-01-01

    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding. PMID:22723532

  3. Clinical practice of traditional Chinese medicines for chronic heart failure

    PubMed Central

    Fu, Shufei; Zhang, Junhua; Gao, Xiumei; Xia, Ye; Ferrelli, Rita; Fauci, Alice; Guerra, Ranieri; Hu, Limin

    2010-01-01

    Background Chinese medicines have been used for chronic heart failure (CHF) for thousands of years; however, the status of traditional Chinese medicines (TCMs) used for CHF has not been reported. This review was carried out in the framework of a joint Sino-Italian Laboratory. Objective To investigate the baseline of clinical practice of TCMs for CHF, and to provide valuable information for research and clinical practice. Methods The authors included articles about the use of TCMs for the treatment of CHF by searching the Chinese Journal Full-text Database (1994 to November 2007). Results In all, 1029 papers were included, with 239 herbs retrieved from these. The most commonly used herbs included Huangqi (Radix Astragali), Fuling (Poria), Danshen (Radix Salviae Miltiorrhiae), Fuzi (Radix Aconiti Lateralis Preparata) and Tinglizi (Semen Lepidii). Modern Chinese patent medicines (produced by pharmaceutical companies) and traditional prescriptions (comprising several herbs) are the application forms of these drugs. Shenmai, Shengmai and Astragalus injections were the most commonly used Chinese patent medicines. Some classic prescriptions (including Zhenwu decoction, Shengmai powder and Lingguizhugan decoction) were also frequently used. The effectiveness and safety of the TCMs were both satisfactory, and the traditional Chinese medicine and western medicine therapy could significantly improve the clinical effectiveness and reduce some of the adverse reactions from western medicines used alone. Conclusion The authors have acquired overall information about the clinical application of TCMs for CHF. Modern pharmacology has provided limited evidence for the rationality of this clinical use. Further research is needed to provide more evidence. PMID:27325938

  4. Heart valve surgery - series (image)

    MedlinePlus

    ... heart valves are either natural (biologic) or artificial (mechanical). Natural valves are from human donors (cadavers), modified ... artificial valves will require anticoagulation. The advantage of mechanical valves is that they last longer-thus, the ...

  5. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1990-01-01

    Further progress has been made on improving the uniformity and stability of PCR-I, the single ring analog coded tomograph. This camera has been employed in a wide range of animal studies described below. Data from PCR-I have been used in various image processing procedures. These include motion pictures of dog heart, comparison of PET and MRI image in dog heart and rat brain and quantitation of tumor metabolism in the nude mouse using blood data from heart images. A SUN workstation with TAAC board has been used to produce gated three-dimensional images of the dog heart. The ANALYZE program from the Mayo Clinic has also been mounted on a SUN workstation for comparison of images and image processing. 15 refs., 6 figs.

  6. Nuclear Medicine Imaging in Pediatric Neurology

    PubMed Central

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  7. Holography for imaging in structural heart disease.

    PubMed

    Bruckheimer, Elchanan; Rotschild, Carmel

    2016-05-17

    Three-dimensional imaging modalities for structural heart disease interventions have become a common feature in the procedural workflow. The images acquired are usually presented on 2D displays, thereby restricting their usefulness and the ability to interact with them. Holographic images created in real time from the volumetric data which float in the air during the procedure, in front of the operator and above the patient, could provide an intuitive and interactive display for the interventionalist and improve procedure outcomes. PMID:27174119

  8. Insomnia in Chinese Medicine: The Heart of the Matter.

    PubMed

    O'Brien, Kylie; Weber, Daniel

    2016-09-01

    Chronic insomnia affects a significant proportion of the general population worldwide, and is associated with several serious medical conditions. From the Western scientific literature, hyper-arousal (on the cognitive-emotional, behavioral, autonomic, or central nervous system level) is a final common pathway involved in its pathogenesis. However, from a Chinese medicine (CM) perspective, it is the Heart, capitalized to denote the functional system as described in CM theory, that is the key organ involved in insomnia due to its role as the "seat of consciousness." This article explores how insomnia is understood from the CM perspective, in particular the role of the Heart, and some of the neurophysiological evidence that supports these ancient theoretical understandings. The potential role of the vagus nerve and its relationship with the (biomedical) heart and CM Heart is also examined. Finally, some of the evidence in association with mechanisms of action of acupuncture in insomnia, in particular its impact on cardiovascular variables associated with insomnia, is presented, along with findings of systematic reviews. PMID:27526331

  9. [Multimodal imaging of ischemic heart diseases: A 2015 update].

    PubMed

    Di Marco, L; Rosset, M; Zhang-Yin, J; Ohana, M

    2016-05-01

    Current realities and future possibilities of imaging in the ischemic heart diseases are very broad and constantly evolving, with the improvement of existing technologies and the introduction of new features such as dual-energy CT, strain ultrasound, multimodality fusion or perfusion MRI. Regular collaboration between prescribing clinicians, cardiologists, radiologists and nuclear radiologists is therefore essential to tailor the examination to the specific clinical question. The indications for each modality will therefore depend on its diagnostic performance, cost, acquisition and post-processing times and eventual radiation exposure. This review will detail principles and applications of current cardiac imaging examinations: echocardiography, nuclear medicine, MRI, CT and coronary angiography, emphasizing their current strengths and weaknesses in the ischemic heart diseases management. PMID:26775644

  10. Physical activity - preventive medicine (image)

    MedlinePlus

    Physical activity contributes to health by reducing the heart rate, decreasing the risk for cardiovascular disease, and reducing ... loss that is associated with age and osteoporosis. Physical activity also helps the body use calories more efficiently, ...

  11. Imaging techniques in biology and medicine

    SciTech Connect

    Swenberg, C.E.

    1988-01-01

    This book serves as an introduction to some aspects of imaging techniques as utilized in biology and medicine. Techniques presented include image processing, ultrasound, radiotracers, autoradiography, computed tomography, and MRI (all major imaging techniques). The underlying mathematics and physics are kept to a minimum.

  12. Multimodality imaging in heart valve disease

    PubMed Central

    Chambers, John B; Myerson, Saul G; Rajani, Ronak; Morgan-Hughes, Gareth J; Dweck, Marc R

    2016-01-01

    In patients with heart valve disease, echocardiography is the mainstay for diagnosis, assessment and serial surveillance. However, other modalities, notably cardiac MRI and CT, are used if echocardiographic imaging is suboptimal but can also give complementary information to improve assessment of the valve lesion and cardiac compensation to aid the timing of surgery and determine risk. This statement discusses the way these imaging techniques are currently integrated to improve care beyond what is possible with echocardiography alone. PMID:26977308

  13. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  14. Applications of nuclear medicine in genitourinary imaging

    SciTech Connect

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  15. Imaging Techniques in Acute Heart Failure.

    PubMed

    Pérez del Villar, Candelas; Yotti, Raquel; Bermejo, Javier

    2015-07-01

    In recent years, imaging techniques have revolutionized the diagnosis of heart failure. In patients with a clinical picture of acute decompensation, prognosis is largely determined by early implementation of general measures and treatment of the underlying cause. Given its diagnostic yield and portability, ultrasound has become an essential tool in the setting of acute heart failure, and is currently found in all medical departments involved in the care of the critically ill patient. Cardiac magnetic resonance and computed tomography allow detailed characterization of multiple aspects of cardiac structure and function that were previously unavailable. This helps guide and monitor many of the treatment decisions in the acute heart failure population in an entirely noninvasive way. This article aims to review the usefulness of the imaging techniques that are clinically relevant in the context of an episode of acute heart failure. We discuss the indications and limitations of these techniques in detail and describe the general principles for the appropriate interpretation of results. PMID:26002273

  16. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  17. Lossy compression in nuclear medicine images.

    PubMed Central

    Rebelo, M. S.; Furuie, S. S.; Munhoz, A. C.; Moura, L.; Melo, C. P.

    1993-01-01

    The goal of image compression is to reduce the amount of data needed to represent images. In medical applications, it is not desirable to lose any information and thus lossless compression methods are often used. However, medical imaging systems have intrinsic noise associated to it. The application of a lossy technique, which acts as a low pass filter, reduces the amount of data at a higher rate without any noticeable loss in the information contained in the images. We have compressed images of nuclear medicine using the discrete cosine transform algorithm. The decompressed images were considered reliable for visual inspection. Furthermore, a parameter was computed from these images and no discernible change was found from the results obtained using the original uncompressed images. PMID:8130593

  18. HEAVY-ION IMAGING APPLIED TO MEDICINE

    SciTech Connect

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Benton, E.V.; Holley, W.R.

    1980-02-01

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  19. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  20. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  1. Digital Imaging and Communications in Medicine

    NASA Astrophysics Data System (ADS)

    Onken, Michael; Eichelberg, Marco; Riesmeier, Jörg; Jensch, Peter

    Over the past 15 years Digital Imaging and Communications in Medicine (DICOM) has established itself as the international standard for medical image communication. Most medical imaging equipment uses DICOM network and media services to export image data, thus making this standard highly relevant for medical image processing. The first section of this chapter provides a basic introduction into DICOM with its more than 3,600 pages of technical documentation, followed by a section covering selected advanced topics of special interest for medical image processing. The introductory text familiarizes the reader with the standard's main concepts such as information objects and DICOM media and network services. The rendering pipeline for image display and the concept of DICOM conformance are also discussed. Specialized DICOM services such as advanced image display services that provide means for storing how an image was viewed ("Softcopy Presentation States") and how multiple images should be aligned on an output device ("Structured Display" and "Hanging Protocols") are described. We further describe DICOM's sophisticated approach ("Structured Reporting") for storing structured documents such as CAD information, which is then covered in more detail. Finally, the last section provides an insight into a newly developed DICOM service called "Application Hosting", which introduces a standardized plug-in architecture for image processing, thus permitting users to utilize cross-vendor image processing plug-ins in DICOM applications.

  2. Stereoscopic full aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Strocovsky, Sergio G.; Otero, Dino

    2011-06-01

    Images of planar scintigraphy and single photon emission computerized tomography (SPECT) used in nuclear medicine are often low quality. They usually appear to be blurred and noisy. This problem is due to the low spatial resolution and poor sensitivity of the acquisition technique with the gamma camera (GC). Other techniques, such as coded aperture imaging (CAI) reach higher spatial resolutions than GC. However, CAI is not frequently used for imaging in nuclear medicine, due to the decoding complexity of some images and the difficulty in controlling the noise magnitude. Summing up, the images obtained through GC are low quality and it is still difficult to implement CAI technique. A novel technique, full aperture Imaging (FAI), also uses gamma ray-encoding to obtain images, but the coding system and the method of images reconstruction are simpler than those used in CAI. In addition, FAI also reaches higher spatial resolution than GC. In this work, the principles of FAI technique and the method of images reconstruction are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. Spatial resolution tests of GC versus FAI were performed using two different source-detector distances. First, simulations were made without interposing any material between the sources and the detector. Then, other more realistic simulations were made. In these, the sources were placed in the centre of a rectangular prismatic region, filled with water. A rigorous comparison was made between GC and FAI images of the linear filiform sources, by means of two methods: mean fluence profile graphs and correlation tests. Finally, three-dimensional capacity of FAI was tested with two spherical sources. The results show that FAI technique has greater sensitivity (>100 times) and greater spatial resolution (>2.6 times) than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and short

  3. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  4. Generation to Generation: The Heart of Family Medicine

    ERIC Educational Resources Information Center

    Winter, Robin O.

    2012-01-01

    According to the American Board of Family Medicine, "The scope of family medicine encompasses all ages, both sexes, each organ system and every disease entity." What makes the seemingly daunting task of practicing family medicine possible is that family physicians learn to utilize similar clinical reasoning for all of their patients regardless of…

  5. Image Reconstruction for Prostate Specific Nuclear Medicine imagers

    SciTech Connect

    Mark Smith

    2007-01-11

    There is increasing interest in the design and construction of nuclear medicine detectors for dedicated prostate imaging. These include detectors designed for imaging the biodistribution of radiopharmaceuticals labeled with single gamma as well as positron-emitting radionuclides. New detectors and acquisition geometries present challenges and opportunities for image reconstruction. In this contribution various strategies for image reconstruction for these special purpose imagers are reviewed. Iterative statistical algorithms provide a framework for reconstructing prostate images from a wide variety of detectors and acquisition geometries for PET and SPECT. The key to their success is modeling the physics of photon transport and data acquisition and the Poisson statistics of nuclear decay. Analytic image reconstruction methods can be fast and are useful for favorable acquisition geometries. Future perspectives on algorithm development and data analysis for prostate imaging are presented.

  6. Imaging the Heart of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the

  7. Regenerative medicine for the treatment of heart disease.

    PubMed

    Hansson, E M; Lendahl, U

    2013-03-01

    Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure. PMID:23331408

  8. Multimodality Imaging Assessment of Prosthetic Heart Valves.

    PubMed

    Suchá, Dominika; Symersky, Petr; Tanis, W; Mali, Willem P Th M; Leiner, Tim; van Herwerden, Lex A; Budde, Ricardo P J

    2015-09-01

    Echocardiography and fluoroscopy are the main techniques for prosthetic heart valve (PHV) evaluation, but because of specific limitations they may not identify the morphological substrate or the extent of PHV pathology. Cardiac computed tomography (CT) and magnetic resonance imaging (MRI) have emerged as new potential imaging modalities for valve prostheses. We present an overview of the possibilities and pitfalls of CT and MRI for PHV assessment based on a systematic literature review of all experimental and patient studies. For this, a comprehensive systematic search was performed in PubMed and Embase on March 24, 2015, containing CT/MRI and PHV synonyms. Our final selection yielded 82 articles on surgical valves. CT allowed adequate assessment of most modern PHVs and complemented echocardiography in detecting the obstruction cause (pannus or thrombus), bioprosthesis calcifications, and endocarditis extent (valve dehiscence and pseudoaneurysms). No clear advantage over echocardiography was found for the detection of vegetations or periprosthetic regurgitation. Whereas MRI metal artifacts may preclude direct prosthesis analysis, MRI provided information on PHV-related flow patterns and velocities. MRI demonstrated abnormal asymmetrical flow patterns in PHV obstruction and allowed prosthetic regurgitation assessment. Hence, CT shows great clinical relevance as a complementary imaging tool for the diagnostic work-up of patients with suspected PHV obstruction and endocarditis. MRI shows potential for functional PHV assessment although more studies are required to provide diagnostic reference values to allow discrimination of normal from pathological conditions. PMID:26353926

  9. An image-dependent Metz filter for nuclear medicine images.

    PubMed

    King, M A; Penney, B C; Glick, S J

    1988-12-01

    To provide optimal image quality, digital filters should account for both the count level and the object imaged. That is, they should be image-dependent. By using the constraint equation of constrained least-squares (CLS) restoration to determine one parameter of the Metz filter, a filter which adapts to the image has been developed. This filter has been named the Constrained Least-Squares Metz filter. The filter makes use of a regression relation to convert the Metz filter parameter determined using the CLS criterion to the value which would minimize the normalized mean square error (NMSE). The regression relation and the parameters which specify the general form of the Metz filter were determined using images of the Alderson liver and spleen phantoms. The designed filter was tested for its ability to adapt to other objects with images from each of three different test objects. When the values of the Metz filter parameters for these images determined by the CLS-Metz filter were compared by a regression analysis to those which minimized the NMSE for each image, a correlation coefficient of 0.98, a slope of 0.95, and a zero intercept of 0.1 were obtained. With clinical images, the CLS-Metz filter has been shown to provide consistently good image quality with images as diverse as heart perfusion images and bone studies. PMID:3264021

  10. Longitudinal Imaging of Heart Development With Optical Coherence Tomography

    PubMed Central

    Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2015-01-01

    Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1–2mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects. PMID:26236147

  11. Heart-lung transplant - series (image)

    MedlinePlus

    A combined heart-lung transplant may be recommended for patients who have both cardiac and lung disease. The most common reasons for a combined heart-lung transplant are pulmonary hypertension, cystic fibrosis, ...

  12. Being active after a heart attack (image)

    MedlinePlus

    ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ... best activity when you start exercising after a heart attack. Start slowly, and increase the amount of time ...

  13. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    PubMed Central

    Gribble, Megan; Pertsov, Arkady M.; Shi, Pengcheng

    2013-01-01

    Embryonic heart morphogenesis (EHM) is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling. PMID:24454530

  14. High-speed confocal imaging of zebrafish heart development.

    PubMed

    Hove, Jay R; Craig, Michael P

    2012-01-01

    Due to its optical clarity and rudimentary heart structure (i.e., single atrium and ventricle), the zebrafish provides an excellent model for studying the genetic, morphological, and functional basis of normal and pathophysiological heart development in vivo. Recent advances in high-speed confocal imaging have made it possible to capture 2D zebrafish heart wall motions with temporal and spatial resolutions sufficient to characterize the highly dynamic intravital flow-structure environment. We have optimized protocols for introducing fluorescent tracer particles into the zebrafish cardiovasculature, imaging intravital heart wall motion, and performing high-resolution blood flow mapping that will be broadly useful in elucidating flow-structure relationships. PMID:22222541

  15. Biomarkers for Heart Failure: An Update for Practitioners of Internal Medicine.

    PubMed

    Wettersten, Nicholas; Maisel, Alan S

    2016-06-01

    Biomarkers have become an integral part of practicing medicine, especially in heart failure. The natriuretic peptides are commonly used in the evaluation of heart failure, but their role extends beyond diagnosis and includes risk stratification and management of heart failure patients. Newer biomarkers have arrived and are becoming part of routine care of heart failure patients. Both ST2 and high-sensitivity troponin have significant prognostic value for mortality, but also may assist in the titration of medical therapy. Procalcitonin can help guide appropriate antibiotic use in patients with heart failure. The ability to appropriately use and interpret these biomarkers is imperative to the care of heart failure patients, especially as these newer biomarkers become widely used. PMID:26844635

  16. Robotics and imaging in congenital heart surgery

    PubMed Central

    Vasilyev, Nikolay V; Dupont, Pierre E; del Nido, Pedro J

    2012-01-01

    The initial success seen in adult cardiac surgery with the application of available robotic systems has not been realized as broadly in pediatric cardiac surgery. The main obstacles include extended set-up time and complexity of the procedures, as well as the large size of the instruments with respect to the size of the child. Moreover, while the main advantage of robotic systems is the ability to minimize incision size, for intracardiac repairs, cardiopulmonary bypass is still required. Catheter-based interventions, on the other hand, have expanded rapidly in both application as well as the complexity of procedures and lesions being treated. However, despite the development of sophisticated devices, robotic systems to aid catheter procedures have not been commonly applied in children. In this article, we describe new catheter-like robotic delivery platforms, which facilitate safe navigation and enable complex repairs, such as tissue approximation and fixation, and tissue removal, inside the beating heart. Additional features including the tracking of rapidly moving tissue targets and novel imaging approaches are described, along with a discussion of future prospects for steerable robotic systems. PMID:22413986

  17. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    SciTech Connect

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-06-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases.

  18. Electrocardiographic textbooks based on template hearts warped using ultrasonic images.

    PubMed

    Arthur, R Martin; Trobaugh, Jason W

    2012-09-01

    Advances in technology make the application of sophisticated approaches to assessing electrical condition of the heart practical. Estimates of cardiac electrical features inferred from body-surface electrocardiographic (ECG) maps are now routinely found in a clinical setting, but errors in those inverse solutions are especially sensitive to the accuracy of heart model geometry and placement within the torso. The use of a template heart model allows for accurate generation of individualized heart models and also permits effective comparison of inferred electrical features among multiple subjects. A collection of features mapped onto a common template forms a textbook of anatomically specific ECG variability. Our template warping process to individualize heart models based on a template heart uses ultrasonic images of the heart from a conventional, phased-array system. We chose ultrasound because it is nonionizing, less expensive, and more convenient than MR or CT imaging. To find the orientation and position in the torso model of each image, we calibrated the ultrasound probe by imaging a custom phantom consisting of multiple N-fiducials and computing a transformation between ultrasound coordinates and measurements of the torso surface. The template heart was warped using a mapping of corresponding landmarks identified on both the template and the ultrasonic images. Accuracy of the method is limited by patient movement, tracking error, and image analysis. We tested our approach on one normal control and one obese diabetic patient using the mixed-boundary-value inverse method and compared results from both on the template heart. We believe that our novel textbook approach using anatomically specific heart and torso models will facilitate the identification of electrophysiological biomarkers of cardiac dysfunction. Because the necessary data can be acquired and analyzed within about 30 min, this framework has the potential for becoming a routine clinical procedure

  19. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  20. Basic imaging in congenital heart disease. 3rd Ed

    SciTech Connect

    Swischuk, L.E.; Sapire, D.W.

    1986-01-01

    The book retains its previous format with chapters on embryology, plain film interpretation, classification of pulmonary vascular patterns, cardiac malpositions and vascular anomalies, and illustrative cases. The book is organized with an abundance of illustrative figures, diagrams, and image reproductions. These include plain chest radiographs, angiograms, echocardiograms, and MR images. The authors present the pathophysiology and imaging of congenital heart lesions.

  1. Seismic imaging of the Medicine Lake Caldera

    SciTech Connect

    Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

    1987-04-01

    Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

  2. PET/MR Imaging in Heart Disease.

    PubMed

    Rischpler, Christoph; Nekolla, Stephan G

    2016-10-01

    Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation). PMID:27593250

  3. Nuclear medicine imaging of bone infections.

    PubMed

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  4. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  5. Hearts and Flowers: Learning To Enlarge Images.

    ERIC Educational Resources Information Center

    Kalil, Judy

    2003-01-01

    Describes a lesson that teaches kindergarten students how to enlarge a smaller drawing onto a bigger piece of paper. Explains that the students create their heart-shape designs using tempera paint and pastels in the larger picture. Includes a list of materials. (CMK)

  6. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  7. [Western and traditional Chinese medicine disease management programs of chronic heart failure].

    PubMed

    Liang, Zhaoming; Sheng, Xiaogang; Pan, Guangming

    2012-06-01

    Chronic heart failure (CHF) is one of the greatest disease in modem medicine as chronic disease . It cost lots of financial resources to deal with. Western and traditional Chinese medicine Disease management programs (DMP) can notability improve the qualities of life and reduce the expenses for CHF. The disease management programs of CHF have achieved kind of success, but the management programs method witch is of traditional Chinese medicine (TCM) characteristic idea carry into testing execution in few TCM hospitals only. This article review the necessary of DMP research, advances in research of DMP research, and relationship between management programs method of Western and traditional Chinese medicine and illness state improvement of CHF patients. PMID:22997809

  8. Confocal Imaging of the Embryonic Heart: How Deep?

    NASA Astrophysics Data System (ADS)

    Miller, Christine E.; Thompson, Robert P.; Bigelow, Michael R.; Gittinger, George; Trusk, Thomas C.; Sedmera, David

    2005-06-01

    Confocal microscopy allows for optical sectioning of tissues, thus obviating the need for physical sectioning and subsequent registration to obtain a three-dimensional representation of tissue architecture. However, practicalities such as tissue opacity, light penetration, and detector sensitivity have usually limited the available depth of imaging to 200 [mu]m. With the emergence of newer, more powerful systems, we attempted to push these limits to those dictated by the working distance of the objective. We used whole-mount immunohistochemical staining followed by clearing with benzyl alcohol-benzyl benzoate (BABB) to visualize three-dimensional myocardial architecture. Confocal imaging of entire chick embryonic hearts up to a depth of 1.5 mm with voxel dimensions of 3 [mu]m was achieved with a 10× dry objective. For the purpose of screening for congenital heart defects, we used endocardial painting with fluorescently labeled poly-L-lysine and imaged BABB-cleared hearts with a 5× objective up to a depth of 2 mm. Two-photon imaging of whole-mount specimens stained with Hoechst nuclear dye produced clear images all the way through stage 29 hearts without significant signal attenuation. Thus, currently available systems allow confocal imaging of fixed samples to previously unattainable depths, the current limiting factors being objective working distance, antibody penetration, specimen autofluorescence, and incomplete clearing.

  9. Certain progress in the treatment of coronary heart disease with traditional medicinal plants in China.

    PubMed

    Chen, K J

    1981-01-01

    A case of coronary heart disease in China was confirmed by the necropsy of a female body unearthed from the tomb at Changsha. It proved that such a case existed about 2,100 years ago. Research in reducing the frequency of myocardial infarction by traditional medicinal plants showed the effect of several herbs. The traditional aromatic and warm herbal medicines may have the possibility of relieving coronary arterial spasm. The clinical and experimental observations proved that the Huoxue-huayu plants' action against blood platelet aggregation and against attack was effective. PMID:6307037

  10. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    PubMed

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  11. Cardiac image modelling: Breadth and depth in heart disease.

    PubMed

    Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A

    2016-10-01

    With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction. PMID:27349830

  12. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  13. Uptake of myocardial imaging agents by rejected hearts

    SciTech Connect

    Bergsland, J.; Carr, E.A.; Carroll, M.; Wright, J.W.; Feldman, M.J.; Massucci, J.; Bhayana, J.N.; Gona, J.M.

    1985-09-01

    Technetium 99 m pyrophosphate, Gallium 67 and Thallium 201 uptakes were measured in heterotopically transplanted rat hearts. Five days after transplantation, Technetium 99 m pyrophosphate, and Gallium 67 uptakes were significantly higher in allogeneic grafts than in syngeneic grafts. At an early stage of rejection (three days after transplantation), only Technetium 99 m pyrophosphate uptake in the left ventricle of allogeneic grafts showed a significant difference (p less than 0.04). At five days, Thallium 201 uptake was significantly lower in allo- than syngeneic grafts. There was a positive correlation between radionuclide uptake and histologic degree of rejection for Technetium 99 m pyrophosphate and Gallium 67 while Thallium 201 uptake correlated negatively. Analysis of variance revealed that hearts with no or minimal rejection had statistically different uptakes than hearts with mild to moderate rejection. These results suggest that uptake of imaging agents might be useful in the diagnosis of rejection of the transplanted heart.

  14. Plasma metabonomics study on Chinese medicine syndrome evolution of heart failure rats caused by LAD ligation

    PubMed Central

    2014-01-01

    Background Chinese medicine syndromes (Zheng) in many disease models are not clearly characterized or validated, and the concepts of Chinese medicine syndromes are confounding and controversial. Metabonomics has been applied to the evaluation and classification of the Chinese medicine syndromes both in clinical and nonclinical studies. In this study, we aim to investigate the evolution of the Chinese medicine syndrome in myocardial infarction induced heart failure and to confirm the feasibility of the Zheng classification by plasma metabonomics in a syndrome and disease combination animal model. Methods The heart failure (HF) model was induced by ligation of the left anterior descending coronary artery (LAD) in Sprague–Dawley rats. The rats were divided into the following two groups: the HF model group (LAD ligation) and the sham operated group. GC-MS was used with pattern recognition technology and principal component analysis (PCA) to analyze the plasma samples at 4, 21 and 45 day after operation. Results It was determined that the period from 7 to 28 days was the stable time window of ischemic heart failure with qi deficiency and blood stasis syndrome (QDBS), and the qi deficiency syndrome occurred at 1 to 4 days and 45 to 60 days after operation. The results exhibited 5 plasma metabolite changes in the same trend at 4 and 21 day after the LAD operation, 7 at 21 and 45 day, and 2 at 4 and 45 day. No metabolite showed the same change at all of the 3 time points. At day 21 (the QDBS syndrome time point) after operation, 4 plasma metabolites showed the same trends with the results of our previous study on patients with the blood stasis syndrome. Conclusions The syndrome diagnosis is reliable in the HF rat model in this study. Plasma metabolites can provide a basis for the evaluation of Chinese medicine syndrome animal models. PMID:25012233

  15. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  16. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  17. Imaging Systemic Inflammatory Networks in Ischemic Heart Disease

    PubMed Central

    Nahrendorf, Matthias; Frantz, Stefan; Swirski, Filip K.; Mulder, Willem J.M.; Randolph, Gwendalyn; Ertl, Georg; Ntziachristos, Vasilis; Piek, Jan; Stroes, Erik; Schwaiger, Markus; Mann, Douglas L.; Fayad, Zahi A.

    2015-01-01

    While acute myocardial infarction mortality declines, patients continue to face reinfarction and/or heart failure. The immune system, which intimately interacts with healthy and diseased tissues through resident and recruited leukocytes, is a central interface for a global host response to ischemia. Pathways that enhance the systemic leukocyte supply may be potential therapeutic targets. Pre-clinically, imaging helps identify immunity’s decision nodes, which may serve as such targets. In translating the rapidly expanding preclinical data on immune activity, the difficulty of obtaining multiple clinical tissue samples from involved organs is an obstacle that whole-body imaging can help overcome. In patients, molecular and cellular imaging can be integrated with blood-based diagnostics to assess the translatability of discoveries, including the activation of hematopoietic tissues after myocardial infarction, and serve as an endpoint in clinical trials. In this review, we discuss these concepts while focusing on imaging immune activity in organs involved in ischemic heart disease. PMID:25881940

  18. Polarized spatial frequency domain imaging of heart valve fiber structure

    NASA Astrophysics Data System (ADS)

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2016-03-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues' elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants.

  19. Roles of Chinese herbal medicines in ischemic heart diseases (IHD) by regulating oxidative stress.

    PubMed

    Wang, Dawei; Wang, Jin; Liu, Yuntao; Zhao, Zhen; Liu, Qing

    2016-10-01

    Ischemic heart disease (IHD) basing on atherosclerosis (AS) is known as a top killer for decades. Oxidative stress, representing excessive oxidation and insufficient elimination, has been proved to be a critical molecular mechanism of IHD and accompanying myocardium dysfunction. Therefore, anti-oxidation therapy may be efficient. Chinese herbal medicine, including extractive compounds, decoctions, patent drugs, and injections, has shown its enormous potential in prevention and treatment of IHD as an effective antioxidant in experimental studies. The aim of this review is to highlight recent studies of Chinese herbal medicine in regulating oxidative stress in IHD. These studies represent recent progress of IHD treatment and indicate the possible pathways and target spots of Chinese herbal medicine. PMID:27390948

  20. [Current value of magnetic resonance imaging for diagnosis of coronary heart disease].

    PubMed

    Wiesmann, F; Taylor, A M; Neubauer, S; Pennell, D J

    1997-09-01

    Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique with increasing importance in clinical medicine. It has become a valuable and reliable imaging tool in the diagnosis and management of many medical and surgical conditions. Important advantages of MRI are its flexibility in orientation of imaging plane and the possibility of both anatomical and functional imaging. MRI is based on the application and detection of radio signals and works without any exposure to ionizing radiation, and therefore it is regarded as a safe imaging technique. In the heart there are well established imaging indications such as in acquired and congenital heart disease, pericardial and aortic disease and visualisation of cardiac masses and hypertrophy. Its applications in coronary artery disease (CAD) have been relatively limited, but recent developments in ultrafast imaging sequences and computer hardware have led to a considerable improvement in spatial and temporal image resolution. This has made applications in CAD a possibility, particularly coronary imaging and myocardial perfusion imaging. Recent clinical studies report good correlation between Magnetic Resonance Coronary Angiography (MRCA) and conventional x-ray contrast angiography in the detection of coronary lesions. In the assessment of coronary artery bypass graft (CABG) patency and the definition of anomalous coronary arteries, MRI showed good sensitivity and specificity. The first results of coronary artery flow measurements have now been reported. Myocardial perfusion imaging and stress-ventriculography for detection of wall motion abnormalities are reported as indirect imaging methods with high reliability and clinical value in the diagnosis of CAD. This overview describes recent developments in cardiac MRI and assesses the current and future value of MRI for clinical cardiology. PMID:9441526

  1. Heart transplant

    MedlinePlus

    ... 10 years. Alternative Names Cardiac transplant; Transplant - heart; Transplantation - heart Images Heart, section through the middle Heart, ... 28. Bernstein D. Pediatric heart and heart-lung transplantation. In: Kliegman RM, Behrman RE, Jenson HB, Stanton ...

  2. Electrocardiographic imaging of heart rhythm disorders: from bench to bedside.

    PubMed

    Rudy, Yoram; Lindsay, Bruce D

    2015-03-01

    Noninvasive electrocardiographic imaging (ECGI; also called ECG mapping) can reconstruct potentials, electrograms, activation sequences, and repolarization patterns on the epicardial surface of the heart with high resolution. ECGI can possibly be used to quantify synchrony, identify potential responders/nonresponders to cardiac resynchronization therapy, and guide electrode placement for effective resynchronization therapy. This article provides a brief description of the ECGI procedure and selected previously published examples of its application in important clinical conditions, including heart failure, cardiac resynchronization therapy, atrial arrhythmias, and ventricular tachycardia. PMID:25722753

  3. Imaging sarcomas of the great vessels and heart.

    PubMed

    Bendel, Emily C; Maleszewski, Joseph J; Araoz, Philip A

    2011-10-01

    Primary sarcomas of the aorta, pulmonary artery, superior vena cava, inferior vena cava, and the heart are rare neoplasms. Aortic sarcomas are broadly categorized as either primarily luminal or primarily mural, with luminal sarcomas more likely to be misdiagnosed as thrombus. Pulmonary artery sarcomas are often mistaken for pulmonary embolism both clinically and at imaging. Vena caval sarcomas appear as intraluminal or extraluminal masses connecting to or filling the veins. The most common are leiomyosarcomas of the inferior vena cava. Primary sarcomas of the heart are rare and usually appear as heterogeneous aggressive masses. PMID:21963161

  4. Nuclear medicine annual, 1984

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1984-01-01

    The following topics are reviewed in this work: nuclear physicians role in planning for and handling radiation accidents; the role of nuclear medicine in evaluating the hypertensive patient; studies of the heart with radionuclides; role of radionuclide imaging in the patient undergoing chemotherapy; hematologic nuclear medicine; the role of nuclear medicine in sports related injuries; radionuclide evaluation of hepatic function with emphasis on cholestatis.

  5. Postmortem magnetic resonance imaging of the heart ex situ: development of technical protocols.

    PubMed

    Bruguier, C; Egger, C; Vallée, J P; Grimm, J; Boulanger, X; Jackowski, C; Mangin, P; Grabherr, S

    2015-05-01

    Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries. PMID:25108450

  6. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure.

    PubMed

    Harinstein, Matthew E; Soman, Prem

    2016-03-01

    Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF. PMID:26841785

  7. Ultrasound imaging in research and clinical medicine.

    PubMed

    Schellpfeffer, Michael A

    2013-06-01

    The use of ultrasound imaging in clinical obstetrics continues to grow at an almost exponential rate. Ultrasound imaging in developmental biology has only begun to be used to enhance the traditional methodologies to study the developing embryo/fetus. The various modalities of ultrasound imaging are reviewed as they apply to current uses in clinical obstetrics and developmental biologic research. New modalities are also discussed in both clinical obstetrics and developmental biologic research as well as the current limitations of ultrasound imaging faced in both of these fields. PMID:23897593

  8. [The application of X-ray imaging in forensic medicine].

    PubMed

    Kučerová, Stěpánka; Safr, Miroslav; Ublová, Michaela; Urbanová, Petra; Hejna, Petr

    2014-07-01

    X-ray is the most common, basic and essential imaging method used in forensic medicine. It serves to display and localize the foreign objects in the body and helps to detect various traumatic and pathological changes. X-ray imaging is valuable in anthropological assessment of an individual. X-ray allows non-invasive evaluation of important findings before the autopsy and thus selection of the optimal strategy for dissection. Basic indications for postmortem X-ray imaging in forensic medicine include gunshot and explosive fatalities (identification and localization of projectiles or other components of ammunition, visualization of secondary missiles), sharp force injuries (air embolism, identification of the weapon) and motor vehicle related deaths. The method is also helpful for complex injury evaluation in abused victims or in persons where abuse is suspected. Finally, X-ray imaging still remains the gold standard method for identification of unknown deceased. With time modern imaging methods, especially computed tomography and magnetic resonance imaging, are more and more applied in forensic medicine. Their application extends possibilities of the visualization the bony structures toward a more detailed imaging of soft tissues and internal organs. The application of modern imaging methods in postmortem body investigation is known as digital or virtual autopsy. At present digital postmortem imaging is considered as a bloodless alternative to the conventional autopsy. PMID:25186776

  9. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  10. Image-Based Predictive Modeling of Heart Mechanics.

    PubMed

    Wang, V Y; Nielsen, P M F; Nash, M P

    2015-01-01

    Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation. PMID:26643023

  11. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  12. Imaging heart development using high-resolution episcopic microscopy.

    PubMed

    Mohun, Timothy J; Weninger, Wolfgang J

    2011-10-01

    Development of the heart in vertebrate embryos is a complex process in which the organ is continually remodelled as chambers are formed, valves sculpted and connections established to the developing vascular system. Investigating the genetic programmes driving these changes and the environmental factors that may influence them is critical for our understanding of congenital heart disease. A recurrent challenge in this work is how to integrate studies as diverse as those of cardiac gene function and regulation with an appreciation of the localised interactions between cardiac tissues not to mention the manner in which both may be affected by cardiac function itself. Meeting this challenge requires an accurate way to analyse the changes in 3D morphology of the developing heart, which can be swift or protracted and both dramatic or subtle in consequence. Here we review the use of high-resolution episcopic microscopy as a simple and effective means to examine organ structure and one that allows modern computing methods pioneered by clinical imaging to be applied to the embryonic heart. PMID:21893408

  13. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  14. Imaging of primary bone tumors in veterinary medicine: which differences?

    PubMed

    Vanel, Maïa; Blond, Laurent; Vanel, Daniel

    2013-12-01

    Veterinary medicine is most often a mysterious world for the human doctors. However, animals are important for human medicine thanks to the numerous biological similarities. Primary bone tumors are not uncommon in veterinary medicine and especially in small domestic animals as dogs and cats. As in human medicine, osteosarcoma is the most common one and especially in the long bones extremities. In the malignant bone tumor family, chondrosarcoma, fibrosarcoma and hemangiosarcoma are following. Benign bone tumors as osteoma, osteochondroma and bone cysts do exist but are rare and of little clinical significance. Diagnostic modalities used depend widely on the owner willing to treat his animal. Radiographs and bone biopsy are the standard to make a diagnosis but CT, nuclear medicine and MRI are more an more used. As amputation is treatment number one in appendicular bone tumor in veterinary medicine, this explains on the one hand why more recent imaging modalities are not always necessary and on the other hand, that prognostic on large animals is so poor that it is not much studied. Chemotherapy is sometimes associated with the surgery procedure, depending on the aggressivity of the tumor. Although, the strakes differs a lot between veterinary and human medicine, biological behavior are almost the same and should led to a beneficial team work between all. PMID:22197093

  15. Heart attack

    MedlinePlus

    ... a heart attack take part in a cardiac rehabilitation program. ... al. eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier Saunders; 2014: ...

  16. Molecular imaging and personalized medicine: an uncertain future.

    PubMed

    Nunn, Adrian D

    2007-12-01

    The Food and Drug Administration has described their view of the role that imaging will play in the approval, and perhaps postapproval, use of new therapeutic drugs. The therapeutic drug industry and regulatory authorities have turned to imaging to help them achieve better efficiency and efficacy. We must extend this initiative by demonstrating that molecular imaging can also improve the efficiency and efficacy of routine treatment with these same drugs. The role of molecular imaging in personalized medicine, using targeted drugs in oncology, is very attractive because of the regional information that it provides (in many cases, with a functional or dynamic component), which cannot be provided by in vitro methods ("regional proteomics"). There is great potential for molecular imaging to play a major role in selecting appropriate patients and providing early proof of response, which is critical to addressing the conflict between the high price of treatment and limited reimbursement budgets. This is a new venture in both molecular imaging and targeted drugs. However, there are various regulatory, financial, and practical barriers that must be overcome to achieve this aim, in addition to the normal scientific challenges of drug discovery. There is an urgent need to reduce the cost (i.e., time and money) of developing imaging agents for routine clinical use. The mismatch between the current regulations and personalized medicine includes molecular imaging and requires the engagement of the regulatory authorities to correct. Therapeutic companies must be engaged early in the development of new targeted drugs and molecular imaging agents to improve the fit between the two drug types. Clinical trials must be performed to generate data that not only shows the efficacy of imaging plus therapy in a medical sense, but also in a financial sense. Molecular imaging must be accepted as not just good science but also as central to routine patient management in the personalized

  17. [Impact of sleep deprivation on coronary heart disease and progress in prevention and treatment with traditional Chinese medicines].

    PubMed

    Yuan, Rong; Wang, Jie; Guo, Li-li

    2015-05-01

    Sleep deprivation (SD) has been taken as an independent predictor for cardiovascular risks, which was closely related to the increased morbidity and mortality in coronary heart disease (CHD). In this article, after reviewing the impact of modern medical method sleep deprivation on CHD and studies on principle method recipe medicines for preventing and treating CHD, the authors observed the autonomic nerve dysfunction, hormonal metabolism dysfunction, endothelial dysfunction and inflammatory responses after sleep deprivation, which can cause or aggravate CHD. On the basis of the traditional Chinese medicine theories of "heart dominating the blood and vessels and the mind", the authors considered that traditional Chinese medicines can tonify heart and soothe the nerves, reducing all of the risk factors through multi-target and multi-pathway, and improve sleep and decrease the risk factors caused by sleep deprivation, which provides a new idea for the prevention and treatment of CHD. PMID:26323126

  18. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  19. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  20. Content-Based Image Retrieval in Medicine

    PubMed Central

    Long, L. Rodney; Antani, Sameer; Deserno, Thomas M.; Thoma, George R.

    2009-01-01

    Content-based image retrieval (CBIR) technology has been proposed to benefit not only the management of increasingly large image collections, but also to aid clinical care, biomedical research, and education. Based on a literature review, we conclude that there is widespread enthusiasm for CBIR in the engineering research community, but the application of this technology to solve practical medical problems is a goal yet to be realized. Furthermore, we highlight “gaps” between desired CBIR system functionality and what has been achieved to date, present for illustration a comparative analysis of four state-of-the-art CBIR implementations using the gap approach, and suggest that high-priority gaps to be overcome lie in CBIR interfaces and functionality that better serve the clinical and biomedical research communities. PMID:20523757

  1. Tissue Doppler Imaging in Coronary Artery Diseases and Heart Failure

    PubMed Central

    Correale, Michele; Totaro, Antonio; Ieva, Riccardo; Ferraretti, Armando; Musaico, Francesco; Biase, Matteo Di

    2012-01-01

    Recent studies have explored the prognostic role of TDI-derived parameters in major cardiac diseases, such as coronary artery disease (CAD) and heart failure (HF). In these conditions, myocardial mitral annular systolic (S’) and early diastolic (E’) velocities have been shown to predict mortality or cardiovascular events. In heart failure non invasive assessment of LV diastolic pressure by transmitral to mitral annular early diastolic velocity ratio (E/E’) is a strong prognosticator, especially when E/E’ is > or =15. Moreover, other parameters derived by TDI, as cardiac time intervals and Myocardial Performance Index, might play a role in the prognostic stratification in CAD and HF. Recently, a three-dimensional (3-D) TDI imaging modality, triplane TDI, has become available, and this allows calculation of 3-Dvolumes and LV ejection fraction. We present a brief update of TDI. PMID:22845815

  2. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  3. Pediatric systems medicine: evaluating needs and opportunities using congenital heart block as a case study.

    PubMed

    Tegnér, Jesper; Abugessaisa, Imad

    2013-04-01

    Medicine and pediatrics are changing and health care is moving from being reactive to becoming preventive. Despite rapid developments of new technologies for molecular profiling and systems analysis of diseases, significant hurdles remain. Here, we use the clinical setting of congenital heart block (CHB) to uncover and illustrate key informatics challenges impeding the development of a systems medicine approach emphasizing the prevention and prediction of disease. We find that there is a paucity of useful bioinformatics tools enabling the integrative analysis of different databases of molecular information and clinical sources in a disease context such as CHB, contrasting with the current emphasis on developing bioinformatics tools for the analysis of individual data types. Moreover, informatics solutions for managing data, such as the Integrating Biology and the Bedside (i2b2) or Stanford Translational Research Integrated Database Environment, require serious software engineering support for the maintenance and import of data beyond the capabilities of clinicians working with CHB. Hence, there is an urgent unmet need for user-friendly tools facilitating the integrative analysis and management of omics data and clinical information. Pediatrics represents an untapped potential to execute such a systems medicine program in close collaboration with clinicians and families who are keen to do what is needed for their children to prevent and predict diseases and nurture wellness. PMID:23370412

  4. Image-Capture Devices Extend Medicine's Reach

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Johnson Space Center, Henry Ford Hospital in Detroit, and Houston-based Wyle Laboratories collaborated on NASA's Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment, which developed revolutionary medical ultrasound diagnostic techniques for long-distance use. Mediphan, a Canadian company with U.S. operations in Springfield, New Jersey drew on NASA expertise to create frame-grabber and data archiving technology that enables ultrasound users with minimal training to send diagnostic-quality ultrasound images and video to medical professionals via the Internet in near real time allowing patients as varied as professional athletes, Olympians, and mountain climbers to receive medical attention as soon as it is needed.

  5. Automatic segmentation of heart cavities in multidimensional ultrasound images

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Glombitza, Gerald; De Simone, Rosalyn; Meinzer, Hans-Peter

    2000-06-01

    We propose a segmentation method different from active contours, which can cope with incomplete edges. The algorithm has been developed to segment heart cavities, but may be extended to more complex object shapes. Due to the almost convex geometry of heart cavities we are using a polar coordinate system with its origin near the cavity's center. The image is scanned from the origin for potential edge points. In order to assess the likelihood of an edge point to belong to the myocardial wall, region based information, such as visibility and local wall thickness, is included. The local information (edge points) progressively is expanded by first grouping the edge points to line segments and then selecting a subgroup of segments to obtain the final closed contour. This is done by means of minimizing a cost function. The plausibility of the result is checked and, if needed, the contour is corrected and/or refined by searching for additional potential edge points. For multidimensional images the algorithm is applied slice-by-slice without the need of further user interaction. The new segmentation method has been applied to clinical ultrasound images, the result being that the myocardial wall correctly was detected in the vast majority of cases.

  6. Imaging the heart in pulmonary hypertension: an update.

    PubMed

    Grünig, Ekkehard; Peacock, Andrew J

    2015-12-01

    Noninvasive imaging of the heart plays an important role in the diagnosis and management of pulmonary hypertension (PH), and several well-established techniques are available for assessing performance of the right ventricle, the key determinant of patient survival. While right heart catheterisation is mandatory for establishing a diagnosis of PH, echocardiography is the most important screening tool for early detection of PH. Cardiac magnetic resonance imaging (CMRI) is also a reliable and practical tool that can be used as part of the diagnostic work-up. Echocardiography can measure a range of haemodynamic and anatomical variables (e.g. pericardial effusion and pulmonary artery pressure), whereas CMRI provides complementary information to echocardiography via high-resolution, three-dimensional imaging. Together with echocardiography and CMRI, techniques such as high-resolution computed tomography and positron emission tomography may also be valuable for screening, monitoring and follow-up assessments of patients with PH, but their clinical relevance has yet to be established. Technological advances have produced new variants of echocardiography, CMRI and positron emission tomography, and these permit closer examination of myocardial architecture, motion and deformation. Integrating these new tools into clinical practice in the future may lead to more precise noninvasive determination of diagnosis, risk and prognosis for PH. PMID:26621979

  7. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1991-01-01

    We continue to use and maintain PCR-I, the single-slice high- resolution high-sensitivity positron emission tomograph, while development proceeds on PCR-II, a three-dimensional PET system. A two-dimensional BGO scintillation detector has been designed and we are nearing completion of the detector, including the light guide, crystals and phototube assembly, and the gantry electronics. We are currently exploring techniques for a very high resolution (sub-mm) PET imaging system. We are using the current PCR-I system to assess changes in presynaptic dopamine receptors and glucose utilization in current biological models of Huntington's disease. Our preliminary studies support the use of the primate (Cynomolgus monkey) model of Huntington's disease to monitor in vivo functional changes. We are planning to extend this study to examine the MPTP model of Parkinson disease, and to assess the therapeutic value of D{sub 1} dopamine receptor agonists for treatment of MPTP-induced neurological defects. 13 refs., 5 figs. (MHB)

  8. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  9. Innovative Interventional and Imaging Registries: Precision Medicine in Cerebrovascular Disorders

    PubMed Central

    Liebeskind, David S.

    2015-01-01

    Background Precision medicine in cerebrovascular disorders may be greatly advanced by the use of innovative interventional and imaging-intensive registries. Registries have remained subsidiary to randomized controlled trials, yet vast opportunities exist to leverage big data in stroke. Summary This overview builds upon the rationale for innovative, imaging-intensive interventional registries as a pivotal step in realizing precision medicine for several cerebrovascular disorders. Such enhanced registries may serve as a model for expansion of our translational research pipeline to fully leverage the role of phase IV investigations. The scope and role of registries in precision medicine are considered, followed by a review on the history of stroke and interventional registries, data considerations, critiques or barriers to such initiatives, and the potential modernization of registry methods into efficient, searchable, imaging-intensive resources that simultaneously offer clinical, research and educational added value. Key Messages Recent advances in technology, informatics and endovascular stroke therapies converge to provide an exceptional opportunity for registries to catapult further progress. There is now a tremendous opportunity to deploy registries in acute stroke, intracranial atherosclerotic disease and carotid disease where other clinical trials leave questions unanswered. Unlike prior registries, imaging-intensive and modernized methods may leverage current technological capabilities around the world to efficiently address key objectives and provide added clinical, research and educational value. PMID:26600792

  10. Real-time optical gating for three-dimensional beating heart imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan M.; Saunter, Christopher D.; Love, Gordon D.; Girkin, John M.; Henderson, Deborah J.; Chaudhry, Bill

    2011-11-01

    We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.

  11. Rheumatoid arthritis: Nuclear Medicine state-of-the-art imaging

    PubMed Central

    Rosado-de-Castro, Paulo Henrique; Lopes de Souza, Sergio Augusto; Alexandre, Dângelo; Barbosa da Fonseca, Lea Mirian; Gutfilen, Bianca

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease, which is associated with systemic and chronic inflammation of the joints, resulting in synovitis and pannus formation. For several decades, the assessment of RA has been limited to conventional radiography, assisting in the diagnosis and monitoring of disease. Nevertheless, conventional radiography has poor sensitivity in the detection of the inflammatory process that happens in the initial stages of RA. In the past years, new drugs that significantly decrease the progression of RA have allowed a more efficient treatment. Nuclear Medicine provides functional assessment of physiological processes and therefore has significant potential for timely diagnosis and adequate follow-up of RA. Several single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals have been developed and applied in this field. The use of hybrid imaging, which permits computed tomography (CT) and nuclear medicine data to be acquired and fused, has increased even more the diagnostic accuracy of Nuclear Medicine by providing anatomical localization in SPECT/CT and PET/CT studies. More recently, fusion of PET with magnetic resonance imaging (PET/MRI) was introduced in some centers and demonstrated great potential. In this article, we will review studies that have been published using Nuclear Medicine for RA and examine key topics in the area. PMID:25035834

  12. The sociological image of medicine and the patient.

    PubMed

    Gerhardt, U

    1989-01-01

    Jack Elinson raises somewhat rhetorical questions about the value of medical care and medical sociology. Behind them is a serious concern with the type and scope of medicalisation in modern society as well as its sociological criticism. This raises the issue of whether the various theoretical images of medicine and the patient which sociology provides are able to account for the effect of the social environment upon morbidity and mortality as shown, for instance, by the Alameda County Study. Three theoretically distinct approaches are discussed in detail, structural functionalism, symbolic interactionism and conflict theory. These characterise medical sociology over the last 30 years. They elucidate more clearly Elinson's own image of medicine and the patient. But none seems to match his standpoint vis-a-vis the medicalisation of care which refrains from citing psychological forces but emphasises the availability of good medical services. PMID:2672352

  13. Nuclear medicine for imaging of epithelial ovarian cancer.

    PubMed

    Abedi, Seyed Mohammad; Mardanshahi, Alireza; Shahhosseini, Roza; Hosseinimehr, Seyed Jalal

    2016-05-01

    Cancer is one of the leading causes of mortality worldwide. Usually, the diagnosis of cancer at an early stage is important to facilitate proper treatment and survival. Nuclear medicine has been successfully used in the diagnosis, staging, therapy and monitoring of cancers. Single-photon emission computed tomography and PET-based companion imaging agents are in development for use as a companion diagnostic tool for patients with ovarian cancer. The present review discusses the basic and clinical studies related to the use of radiopharmaceuticals in the diagnosis and management of ovarian cancer, focusing on their utility and comparing them with other imaging techniques such as computed tomography and MRI. PMID:26984362

  14. [Molecular hyperspectral imaging (MHSI) system and application in biochemical medicine].

    PubMed

    Liu, Hong-Ying; Li, Qing-Li; Wang, Yi-Ting; Liu, Jin-Gao; Xue, Yong-Qi

    2011-10-01

    A novel molecular hyperspectral imaging (MHSI) system based on AOTF (acousto-optic tunable filters) was presented. The system consists of microscope, AOTF-based spectrometer, matrix CCD, image collection card and computer. The spectral range of the MHSI is from 550 to 1 000 nm. The spectral resolution is less than 2 nm, and the spatial resolution is about 0.3 microm. This paper has also presented that spectral curves extracted from the corrected hyperspectral data of the sample, which have been preprocessed by the gray correction coefficient, can more truly represent biochemical characteristic of the sample. The system can supply not only single band images in the visible range, but also spectrum curve of random pixel of sample image. This system can be widely used in various fields of biomedicine, clinical medicine, material science and microelectronics. PMID:22250515

  15. EACVI appropriateness criteria for the use of cardiovascular imaging in heart failure derived from European National Imaging Societies voting.

    PubMed

    Garbi, Madalina; Edvardsen, Thor; Bax, Jeroen; Petersen, Steffen E; McDonagh, Theresa; Filippatos, Gerasimos; Lancellotti, Patrizio

    2016-07-01

    This paper presents the first European appropriateness criteria for the use of cardiovascular imaging in heart failure, derived from voting of the European National Imaging Societies representatives. The paper describes the development process and discusses the results. PMID:27129538

  16. High-resolution positron emission tomography/computed tomography imaging of the mouse heart.

    PubMed

    Greco, Adelaide; Fiumara, Giovanni; Gargiulo, Sara; Gramanzini, Matteo; Brunetti, Arturo; Cuocolo, Alberto

    2013-03-01

    Different animal models have been used to reproduce coronary heart disease, but in recent years mice have become the animals of choice, because of their short life cycle and the possibility of genetic manipulation. Various techniques are currently used for cardiovascular imaging in mice, including high-resolution ultrasound, X-ray computed tomography (CT), magnetic resonance imaging and nuclear medicine procedures. In particular, molecular imaging with cardiac positron emission tomography (PET) allows non-invasive evaluation of changes in myocardial perfusion, metabolism, apoptosis, inflammation and gene expression or measurement of changes in left ventricular functional parameters. With technological advances, dedicated small laboratory PET/CT imaging has emerged in cardiovascular research, providing in vivo a non-invasive, serial and quantitative assessment of left ventricular function, myocardial perfusion and metabolism at a molecular level. This non-invasive methodology might be useful in longitudinal studies to monitor cardiac biochemical parameters and might facilitate studies to assess the effect of different interventions after acute myocardial ischaemia. PMID:23118016

  17. Nuclear medicine imaging in dementia: a practical overview for hospitalists.

    PubMed

    Toney, Lauren Kay; McCue, Tim J; Minoshima, Satoshi; Lewis, David H

    2011-08-01

    Dementia is a clinical syndrome with diverse presentation, a challenging differential diagnosis, and time-sensitive therapy. The most common cause of dementia in patients aged > 65 years is Alzheimer's disease, which now affects 4 million people in the United States, but is often underrecognized, especially in the inpatient population. The hospitalist may have the opportunity to evaluate a patient's initial presentation of dementia. Addressing the inpatient's dementia symptoms can improve overall care and outcomes, so it is imperative that the hospitalist is abreast of recent developments in the dementia workup. The focus of this article is to overview how nuclear medicine imaging of the brain can aid in this process, with perfusion single-photon emission computed tomography (SPECT) and fludeoxyglucose F 18 ((18)F-FDG) positron emission tomography (PET) as the 2 most common modalities. Our discussion focuses on Alzheimer's disease, as this the most common etiology of dementia in patients aged > 65 years; however, we also touch on the other common neurodegenerative dementias (eg, dementia with Lewy bodies, vascular dementia, and frontotemporal dementia) for completeness. We begin with a summary of the most recent published guidelines for each of these neurodegenerative diseases, and then expand on the role that nuclear imaging plays in each. We provide a basic overview of the principles of these nuclear medicine techniques, and then illustrate findings in perfusion SPECT and (18)F-FDG PET for typical patterns of dementia, with emphasis on evidence regarding diagnostic accuracy of each modality, in comparison with accepted gold standards. Finally, we outline some future research topics within the field of nuclear medicine in dementia, including amyloid plaque imaging and dopamine transporter imaging. PMID:21881402

  18. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  19. New imaging systems in nuclear medicine. Technical progress report, January 1, 1985-November 1, 1985

    SciTech Connect

    Brownell, G.L.

    1985-01-01

    Developments of improved imaging systems in nuclear medicine are reported with emphasis on development of positron emission tomographs that combine high resolution, with high sensitivity and high count rate capability. A second generation cylindrical analog positron camera design has provided excellent light collection with limited light spread, characteristics needed for high spatial and temporal resolution. Other aspects of the camera development include the design of associated electronics, and provision for data storage and processing. Utilizing the above camera basic studies have been performed to evaluate blood flow in the cat brain stem during auditory stimulation, ventilation in the dog using /sup 13/N and blood flow in the canine heart. 2 refs., 2 figs.

  20. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures.

    PubMed

    Koizumi, Kiyoshi; Masaki, Hidekazu; Matsuda, Hiroshi; Uchiyama, Mayuki; Okuno, Mitsuo; Oguma, Eiji; Onuma, Hiroshi; Kanegawa, Kimio; Kanaya, Shinichi; Kamiyama, Hiroshi; Karasawa, Kensuke; Kitamura, Masayuki; Kida, Tetsuo; Kono, Tatsuo; Kondo, Chisato; Sasaki, Masayuki; Terada, Hitoshi; Nakanishi, Atsushi; Hashimoto, Teisuke; Hataya, Hiroshi; Hamano, Shin-ichiro; Hirono, Keishi; Fujita, Yukihiko; Hoshino, Ken; Yano, Masayuki; Watanabe, Seiichi

    2014-06-01

    The Japanese Society of Nuclear Medicine has recently published the consensus guidelines for pediatric nuclear medicine. This article is the English version of the guidelines. Part 1 proposes the dose optimization in pediatric nuclear medicine studies. Part 2 comprehensively discusses imaging techniques for the appropriate conduct of pediatric nuclear medicine procedures, considering the characteristics of imaging in children. PMID:24647992

  1. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure. PMID:27076222

  2. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  3. [Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram].

    PubMed

    Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat

    2015-06-01

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine. PMID:26485983

  4. Imaging in the context of replacement heart valve development: use of the Visible Heart(®) methodologies.

    PubMed

    Bateman, Michael G; Iaizzo, Paul A

    2012-09-01

    In recent years huge strides have been made in the fields of interventional cardiology and cardiac surgery which now allow physicians and surgeons to repair or replace cardiac valves with greater success in a larger demographic of patients. Pivotal to these advances has been significant improvements in cardiac imaging and improved fundamental understanding of valvular anatomies and morphologies. We describe here a novel series of techniques utilized within the Visible Heart(®) laboratory by engineers, scientists, and/or anatomists to visualize and analyze the form and function of the four cardiac valves and to assess potential repair or replacement therapies. The study of reanimated large mammalian hearts (including human hearts) using various imaging modalities, as well as specially prepared anatomical specimens, has enhanced the design, development, and testing of novel cardiac therapies. PMID:24282719

  5. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Fry, Charles G.

    2004-07-01

    A review is given of the crucial work performed by Paul C. Lauterbur and Peter Mansfield that lead to their being awarded the Nobel Prize in Medicine in 2003. Lauterbur first expounded the idea of mapping spatial information from spectral data in nuclear magnetic resonance (NMR) through the application of magnetic field gradients (P. C. Lauterbur, Nature 1973 , 242, 190-191). One year later Mansfield and co-workers introduced the idea of selective excitation to NMR imaging (A. N. Garroway, P. K. Grannell, and P. Mansfield. J. Phys. C: Solid State Physics 1974 , 7, L457-L462). A major step in making the technique useful for clinical imaging came with Mansfield's publication of the method known as echo planar imaging (P. Mansfield, J. Phys. C: Solid State Physics 1977, 10 (3) , L55-L58). Lauterbur's and Mansfield's work captured the essence of scientific discovery, collaboration, and concerted effort to overcome significant technical issues, and were key to the development of the technique of magnetic resonance imaging (MRI). Examples of how MRI technology can be extended to chemical research are given, and limitations of the technique in this regard are discussed. Discussion of how to use commonly available NMR spectrometers for chemical imaging is also provided.

  6. Entropy analysis for determining systolic and diastolic cycles in heart MR imaging

    NASA Astrophysics Data System (ADS)

    Vazquez, Fabian; Solis-Najera, Sergio; Marrufo, Oscar; Ley-Koo, Marcos; Martin, Rodrigo

    2014-11-01

    Magnetic resonance imaging is a non-invasive technique that allows the medical diagnostic via clinical images. MRI has been employed to study the cardiac function during the last 20 years. There are different techniques in clinical cardiac MR that allow studying the heart [1]. These techniques acquire several images in a short acquisition time and are repeated sequentially to display the heart functionally. The main objective of this research is to analyze the acquired images, which have been obtained with a standard heart acquisition sequence, with the computation of the entropy of the image to detect cardiac cycles. Images of the heart were segmented and processed to find the systolic and diastolic cycles.

  7. Huangqi Injection (a Traditional Chinese Patent Medicine) for Chronic Heart Failure: A Systematic Review

    PubMed Central

    Fu, Shufei; Zhang, Junhua; Menniti-Ippolito, Francesca; Gao, Xiumei; Galeotti, Francesca; Massari, Marco; Hu, Limin; Zhang, Boli; Ferrelli, Rita; Fauci, Alice; Firenzuoli, Fabio; Shang, Hongcai; Guerra, Ranieri; Raschetti, Roberto

    2011-01-01

    Background Chronic heart failure (CHF) is a global public health problem. Therefore, novel and effective drugs that show few side-effects are needed. Early literature studies indicated that Huangqi injection is one of the most commonly used traditional Chinese patent medicines for CHF in China. As a large number of clinical studies has been carried out and published, it is essential to evaluate the effectiveness and safety of Huangqi injection. Therefore, we carried out this systematic review under the support of the framework of the Joint Sino-Italian Laboratory (JoSIL). Objectives To evaluate the efficacy and safety of Huangqi injection for CHF according to the available scientific knowledge. Methods An extensive search including PubMed, EMBASE, CBM, the Cochrane Library and Chinese literature databases was performed up to July 2008. Clinical trials regarding Huangqi injection for the treatment of CHF were searched for, irrespective of languages. The quality of each trial was assessed according to the Cochrane Reviewers' Handbook 5.0, and RevMan 5.0 provided by the Cochrane Collaboration and STATA 9.2 were used for data analysis. Results After selection of 1,205 articles, 62 RCTs and quasi-RCTs conducted in China and published in Chinese journals were included in the review. The methodological quality of the trials was low. In most trials inclusion and exclusion criteria were not specified. Furthermore, only one study evaluated the outcomes for drug efficacy after an adequate period of time. For these reasons and because of the different baseline characteristics we did not conduct a meta-analysis. Conclusions Although available studies are not adequate to draw a conclusion on the efficacy and safety of Huangqi injection (a traditional Chinese patent medicine), we hope that our work could provide useful experience on further studies on Huangqi injections. The overall level of TCM clinical research needs to be improved so that the efficacy of TCM can be evaluated

  8. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  9. High transparency coded apertures in planar nuclear medicine imaging.

    PubMed

    Starfield, David M; Rubin, David M; Marwala, Tshilidzi

    2007-01-01

    Coded apertures provide an alternative to the collimators of nuclear medicine imaging, and advances in the field have lessened the artifacts that are associated with the near-field geometry. Thickness of the aperture material, however, results in a decoded image with thickness artifacts, and constrains both image resolution and the available manufacturing techniques. Thus in theory, thin apertures are clearly desirable, but high transparency leads to a loss of contrast in the recorded data. Coupled with the quantization effects of detectors, this leads to significant noise in the decoded image. This noise must be dependent on the bit-depth of the gamma camera. If there are a sufficient number of measurable values, high transparency need not adversely affect the signal-to-noise ratio. This novel hypothesis is tested by means of a ray-tracing computer simulator. The simulation results presented in the paper show that replacing a highly opaque coded aperture with a highly transparent aperture, simulated with an 8-bit gamma camera, worsens the root-mean-square error measurement. However, when simulated with a 16-bit gamma camera, a highly transparent coded aperture significantly reduces both thickness artifacts and the root-mean-square error measurement. PMID:18002997

  10. Imaging atrial arrhythmic intracellular calcium in intact heart

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R.

    2014-01-01

    Abnormalities in intracellular Ca2+ signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca2+ in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca2+ imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca2+ activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca2+ waves and Ca2+ alternans. Moreover, we applied this strategy to analyze Ca2+ signals in the hearts of WT and knock-in mice harboring a ‘leaky’ type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca2+ leak increases the susceptibility to Ca2+ alternans and Ca2+ waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca2+ leak via RyR2 by acute treatment with S107 reduced both Ca2+ alternans and Ca2+ waves, and prevented atrial arrhythmias. PMID:24041536

  11. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    PubMed

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields. PMID:25219260

  12. Cardiovascular magnetic resonance imaging of isolated perfused pig hearts in a 3T clinical MR scanner

    PubMed Central

    Chiribiri, Amedeo; Ishida, Masaki; Morton, Geraint; Paul, Matthias; Hussain, Shazia T.; Bigalke, Boris; Perera, Divaka; Schaeffter, Tobias; Nagel, Eike

    2012-01-01

    Purpose An isolated perfused pig heart model has recently been proposed for the development of novel methods in standard clinical magnetic resonance (MR) scanners. The original set-up required the electrical system to be within the safe part of the MR-room, which introduced significant background noise. The purpose of the current work was to refine the system to overcome this limitation so that all electrical parts are completely outside the scanner room. Methods Four pig hearts were explanted under terminal anaesthesia from large white cross landrace pigs. All hearts underwent cardiovascular magnetic resonance (CMR) scanning in the MR part of a novel combined 3T MR and x-ray fluoroscopy (XMR) suite. CMR scanning included real-time k-t SENSE functional imaging, k-t SENSE accelerated perfusion imaging and late gadolinium enhancement imaging. Interference with image quality was assessed by spurious echo imaging and compared to noise levels acquired while operating the electrical parts within the scanner room. Results Imaging was performed successfully in all hearts. The system proved suitable for isolated heart perfusion in a novel 3T XMR suite. No significant additional noise was introduced into the scanner room by our set-up. Conclusions We have substantially improved a previous version of an isolated perfused pig heart model and made it applicable for MR imaging in a state of the art clinical 3T XMR imaging suite. The use of this system should aid novel CMR sequence development and translation into clinical practice. PMID:24265875

  13. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart. PMID:25350945

  14. [The image of Byzantine medicine in the satire "Timarion"].

    PubMed

    Leven, K H

    1990-01-01

    Byzantine medicine is usually regarded as a static and non-creative descendant of classical Greek medicine, a point of view confirmed by the Byzantine medical texts. In this essay, the anonymous satire "Timarion" is analyzed in respect to its image of contemporary medical theory. Timarion, the fictive narrator, falls ill with a fever and is brought to Hades by two conductors of souls. They assert that he cannot survive, because he has secreted all his elementary bile. According to a decree by Asclepios and Hippocrates posted in Hades, any person that has lost one of his four elements may not live longer. In Hades Timarion sues to the court of judges of the dead. His lawyer, the sophist Theodore of Smyrna, persuades the judges that the bile excreted by Timarion has not been elementary in the sense of humoral pathology. So Timarion is allowed to return to life. The author of the satire ridicules the fundamental axiom of the four humours. Asclepios, Hippocrates and Erasistratos, who are attached to the infernal court as experts, cannot defend their theory against the convincing arguments of a sophist. The "divine" Galen, who probably would have been able to, is absent in order to complete a book of his. The "Timarion" with its harsh critique of medical theory is very amusing and a rare example of "actuality" in Byzantine literature. PMID:2289689

  15. Searching for Linear Dependencies between Heart Magnetic Resonance Images and Lipid Profiles

    NASA Astrophysics Data System (ADS)

    Sysi-Aho, Marko; Koikkalainen, Juha; Lötjönen, Jyrki; Seppänen-Laakso, Tuulikki; Söderlund, Hans; Heliö, Tiina; Orešič, Matej

    Information derived from "omics" data in life science research are frequently limited by specific spatial or temporal scales these data describe. As a case study of integrating physiological and molecular data in human, here we study associations between the heart magnetic resonance images and serum lipidomic profiles. In the best case, such associations could help infer the physiologic state of the heart from a blood serum sample without need to use expensive imaging techniques. Strong marginal and partial correlations are found between the lipid profiles and parameters derived from the heart images. Regression analyses are applied to study these dependencies in more detail. This study demonstrates the feasibility of mapping lipid profiles to heart images, and thus combining information from two very different scales, small molecules and macroscopic physiologic features. Such mappings could be generalized to other "omics" data as well to complete our picture of the holistic function of a living organism.

  16. Personalized medicine in the care of the child with congenital heart disease: discovery to application.

    PubMed

    Binesh Marvasti, Tina; D'Alessandro, Lisa C A; Manase, Dorin; Papaz, Tanya; Mital, Seema

    2013-01-01

    On October 27-28, 2012, the SickKids Labatt Family Heart Centre and the Heart Centre Biobank Registry hosted the second international GenomeHeart symposium in Toronto, Ontario. The symposium featured experts in cardiology, developmental biology, pharmacology, genomics, bioinformatics, stem cell biology, biobanking, and ethics. The theme of this year's symposium was the application of emerging technologies in genomics, proteomics, transcriptomics, and bioinformatics to diagnostics and therapeutics of the child with heart disease. Social, ethical, and economic issues were also discussed in the context of clinical translation. We highlight some of the themes that emerged from this exciting 2-day event. PMID:23601919

  17. Anatomical delineation of congenital heart disease using 3D magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Adams Bornemeier, Renee; Fellows, Kenneth E.; Fogel, Mark A.; Weinberg, Paul M.

    1994-05-01

    Anatomic delineation of the heart and great vessels is a necessity when managing children with congenital heart disease. Spatial orientation of the vessels and chambers in the heart and the heart itself may be quite abnormal. Though magnetic resonance imaging provides a noninvasive means for determining the anatomy, the intricate interrelationships between many structures are difficult to conceptualize from a 2-D format. Taking the 2-D images and using a volumetric analysis package allows for a 3-D replica of the heart to be created. This model can then be used to view the anatomy and spatial arrangement of the cardiac structures. This information may be utilized by the physicians to assist in the clinical management of these children.

  18. Use of complementary and alternative medicine and self-tests by coronary heart disease patients

    PubMed Central

    Greenfield, Sheila; Pattison, Helen; Jolly, Kate

    2008-01-01

    Background Coronary heart disease patients have to learn to manage their condition to maximise quality of life and prevent recurrence or deterioration. They may develop their own informal methods of self-management in addition to the advice they receive as part of formal cardiac rehabilitation programmes. This study aimed to explore the use of complementary and alternative medicines and therapies (CAM), self-test kits and attitudes towards health of UK patients one year after referral to cardiac rehabilitation. Method Questionnaire given to 463 patients attending an assessment clinic for 12 month follow up in four West Midlands hospitals. Results 91.1% completed a questionnaire. 29.1% of patients used CAM and/or self-test kits for self-management but few (8.9%) used both methods. CAM was more often used for treating other illnesses than for CHD management. Self-test kit use (77.2%,) was more common than CAM (31.7%,) with BP monitors being the most prevalent (80.0%). Patients obtained self-test kits from a wide range of sources, for the most part (89.5%) purchased entirely on their own initiative. Predictors of self-management were post revascularisation status and higher scores on 'holism', 'rejection of authority' and 'individual responsibility'. Predictors of self-test kit use were higher 'holism' and 'individual responsibility' scores. Conclusion Patients are independently using new technologies to monitor their cardiovascular health, a role formerly carried out only by healthcare practitioners. Post-rehabilitation patients reported using CAM for self-management less frequently than they reported using self-test kits. Reports of CAM use were less frequent than in previous surveys of similar patient groups. Automatic assumptions cannot be made by clinicians about which CHD patients are most likely to self-manage. In order to increase trust and compliance it is important for doctors to encourage all CHD patients to disclose their self-management practices and to

  19. Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography.

    PubMed

    Wang, Shang; Lakomy, David S; Garcia, Monica D; Lopez, Andrew L; Larin, Kirill V; Larina, Irina V

    2016-08-01

    Hemodynamic analysis of the mouse embryonic heart is essential for understanding the functional aspects of early cardiogenesis and advancing the research in congenital heart defects. However, high-resolution imaging of cardiac hemodynamics in mammalian models remains challenging, primarily due to the dynamic nature and deep location of the embryonic heart. Here we report four-dimensional micro-scale imaging of blood flow in the early mouse embryonic heart, enabling time-resolved measurement and analysis of flow velocity throughout the heart tube. Our method uses Doppler optical coherence tomography in live mouse embryo culture, and employs a post-processing synchronization approach to reconstruct three-dimensional data over time at a 100 Hz volume rate. Experiments were performed on live mouse embryos at embryonic day 9.0. Our results show blood flow dynamics inside the beating heart, with the capability for quantitative flow velocity assessment in the primitive atrium, atrioventricular and bulboventricular regions, and bulbus cordis. Combined cardiodynamic and hemodynamic analysis indicates this functional imaging method can be utilized to further investigate the mechanical relationship between blood flow dynamics and cardiac wall movement, bringing new possibilities to study biomechanics in early mammalian cardiogenesis. Four-dimensional live hemodynamic imaging of the mouse embryonic heart at embryonic day 9.0 using Doppler optical coherence tomography, showing directional blood flows in the sinus venosus, primitive atrium, atrioventricular region and vitelline vein. PMID:26996292

  20. Sequential en-face optical coherence tomography imaging and monitoring of Drosophila Melanogaster larval heart

    NASA Astrophysics Data System (ADS)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A. GH.

    2009-02-01

    This article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the scanning of the light beam across the sample, after selecting the point of interest in the imaging regime. Here we have used targeted gene expression to knockdown the myospheroid (mys) gene in the larval heart using a specific RNAi construct. By knocking down a β integrin subunit encoded by mys we have recorded an enlarged heart chamber in both diastolic and systolic states. Also, the fraction of reduction of the chamber diameter was smaller in the knockdown heart. These phenotypic differences indicate that impaired cardiac contractility occurs in the heart where the integrin gene express level is reduced. As far as we are aware, this is for the first time when it is shown in Drosophila that integrins have a direct relationship to a dilated heart defect, and conseqThis article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the

  1. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 t with 3d spectral‐spatial EPI

    PubMed Central

    Miller, Jack J.; Lau, Angus Z.; Teh, Irvin; Schneider, Jürgen E.; Kinchesh, Paul; Smart, Sean; Ball, Vicky; Sibson, Nicola R.

    2015-01-01

    Purpose Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. Methods We present here a fly‐back spectral‐spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo‐planar imaging readout followed, with centric ordered z‐phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. Results We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm3 and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. Conclusion The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi‐organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magn Reson Med 000:000–000, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1515–1524, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991606

  2. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart

    PubMed Central

    von Deuster, Constantin; Stoeck, Christian T.; Genet, Martin; Atkinson, David

    2015-01-01

    Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26445426

  3. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  4. Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction.

    PubMed

    Omar, Alaa Mabrouk Salem; Bansal, Manish; Sengupta, Partho P

    2016-07-01

    Echocardiography, given its safety, easy availability, and the ability to permit a comprehensive assessment of cardiac structure and function, is an indispensable tool in the evaluation and management of patients with heart failure (HF). From initial phenotyping and risk stratification to providing vital data for guiding therapeutic decision-making and monitoring, echocardiography plays a pivotal role in the care of HF patients. The recent advent of multiparametric approaches for myocardial deformation imaging has provided valuable insights in the pathogenesis of HF, elucidating distinct patterns of myocardial dysfunction and events that are associated with progression from subclinical stage to overt HF. At the same time, miniaturization of echocardiography has further expanded clinical application of echocardiography, with the use of pocket cardiac ultrasound as an adjunct to physical examination demonstrated to improve diagnostic accuracy and risk stratification. Furthermore, ongoing advances in the field of big data analytics promise to create an exciting opportunity to operationalize precision medicine as the new approach to healthcare delivery that aims to individualize patient care by integrating data extracted from clinical, laboratory, echocardiographic, and genetic assessments. The present review summarizes the recent advances in the field of echocardiography, with emphasis on their role in HF phenotyping, risk stratification, and optimizing clinical outcomes. PMID:27390337

  5. Knowledge-based factor analysis of multidimensional nuclear medicine image sequences

    NASA Astrophysics Data System (ADS)

    Yap, Jeffrey T.; Chen, Chin-Tu; Cooper, Malcolm; Treffert, Jon D.

    1994-05-01

    We have developed a knowledge-based approach to analyzing dynamic nuclear medicine data sets using factor analysis. Prior knowledge is used as constraints to produce factor images and their associated time functions which are physically and physiologically realistic. These methods have been applied to both planar and tomographic image sequences acquired using various single-photon emitting and positron emitting radiotracers. Computer-simulated data, non-human primate studies, and human clinical studies have been used to develop and evaluate the methodology. The organ systems studied include the kidneys, heart, brain, liver, and bone. The factors generated represent various isolated aspects of physiologic function, such as tissue perfusion and clearance. In some clinical studies, the factors have indicated the potential to isolate diseased tissue from normally functioning tissue. In addition, the factor analysis of data acquired using newly developed radioligands has shown the ability to differentiate the specific binding of the radioligand to the targeted receptors from the non-specific binding. This suggests the potential use of factor analysis in the development and evaluation of radiolabeled compounds as well as in the investigation of specific receptor systems and their role in diagnosing disease.

  6. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network

    PubMed Central

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404

  7. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network.

    PubMed

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404

  8. 4D optical coherence tomography of the embryonic heart using gated imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rothenberg, Florence; Roy, Debashish; Nikolski, Vladimir P.; Wilson, David L.; Efimov, Igor R.; Rollins, Andrew M.

    2005-04-01

    Computed tomography (CT), ultrasound, and magnetic resonance imaging have been used to image and diagnose diseases of the human heart. By gating the acquisition of the images to the heart cycle (gated imaging), these modalities enable one to produce 3D images of the heart without significant motion artifact and to more accurately calculate various parameters such as ejection fractions [1-3]. Unfortunately, these imaging modalities give inadequate resolution when investigating embryonic development in animal models. Defects in developmental mechanisms during embryogenesis have long been thought to result in congenital cardiac anomalies. Our understanding of normal mechanisms of heart development and how abnormalities can lead to defects has been hampered by our inability to detect anatomic and physiologic changes in these small (<2mm) organs. Optical coherence tomography (OCT) has made it possible to visualize internal structures of the living embryonic heart with high-resolution in two- and threedimensions. OCT offers higher resolution than ultrasound (30 um axial, 90 um lateral) and magnetic resonance microscopy (25 um axial, 31 um lateral) [4, 5], with greater depth penetration over confocal microscopy (200 um). Optical coherence tomography (OCT) uses back reflected light from a sample to create an image with axial resolutions ranging from 2-15 um, while penetrating 1-2 mm in depth [6]. In the past, OCT groups estimated ejection fractions using 2D images in a Xenopus laevis [7], created 3D renderings of chick embryo hearts [8], and used a gated reconstruction technique to produce 2D Doppler OCT image of an in vivo Xenopus laevis heart [9]. In this paper we present a gated imaging system that allowed us to produce a 16-frame 3D movie of a beating chick embryo heart. The heart was excised from a day two (stage 13) chicken embryo and electrically paced at 1 Hz. We acquired 2D images (B-scans) in 62.5 ms, which provides enough temporal resolution to distinguish end

  9. Managing Your Medicines

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Managing Your Medicines Updated:Sep 2,2016 If you have heart ... Weight • Tools & Resources Heart Insight Supplement: Know Your Medicines Keeping track of your medicines can be overwhelming. ...

  10. The heart and brain imaging in lone atrial fibrillation - are we surprised?

    PubMed

    Shantsila, Eduard; Haeusler, Karl Georg; Fiebach, Jochen B; Breithardt, Gunter; Kirchhof, Paulus

    2015-01-01

    "Lone" atrial fibrillation (AF) is generally used to refer to patients with AF in the absence of structural heart disease. When the decision for oral anticoagulation is discussed, "lone" AF refers to patients who do not have established stroke risk factors. Imaging is often used to rule out structural heart disease, e.g. coronary artery disease, peripheral vascular disease, mitral stenosis or left ventricular (LV) dysfunction. Imaging of the heart has a central role in establishing the "lone" aspect in patients with "lone"AF, similar to the measurement of blood glucose and blood pressure: Patients with structural heart disease, defined as e.g. reduced LV ejection fraction, clinical evidence for heart failure, or evidence for coronary artery disease, will not be considered as patients with "lone" AF. The search for these conditions requires some cardiac imaging, often done by echocardiography and non-invasive tests for coronary artery disease or ischemia. Increasingly, brain imaging is used to define the clinical diagnosis of a stroke, thus also contributing to the detection of stroke risk factors. Cerebral imaging in AF patients without competing causes for silent strokes or microbleeds ("lone" AF, rather used in the context of anticoagulation, i.e. clinical absence of structural heart disease) would allow to better understand the contribution of AF to these brain lesions. The assumption that silent strokes are likely drivers of cognitive dysfunction, and the fact that microbleeds put patients at risk for intracerebral hemorrhage, illustrates the need to collect information on brain imaging. In this review article, we summarize current data on heart and brain imaging in patients with "lone" AF and discuss their clinical implications for risk assessment and management of patients with "lone" AF. PMID:25175092

  11. Multimodality imaging of foreign bodies in and around the heart.

    PubMed

    Illman, Jeffery E; Maleszewski, Joseph J; Byrne, Suzanne C; Gotway, Michael B; Kligerman, Seth J; Foley, Thomas A; Young, Phillip M; Bois, John P; Malik, Neera; Morris, Jonathan M; Araoz, Philip A

    2016-05-01

    Foreign objects are occasionally seen on computed tomography and could pose a diagnostic challenge to the radiologist and clinicians. It is important to recognize, characterize and localize these objects and determine their clinical significance. Most foreign objects in and around the heart are the result of direct penetrating injury or represent venous embolization to the heart. Foreign objects may cause symptoms and require prompt medical attention or maybe asymptomatic. Clinicians should be familiar with foreign objects that are encountered and understand treatment options. This paper looks at some of foreign objects that can be found and correlates with pathology where possible. PMID:27139781

  12. CdZnTe arrays for nuclear medicine imaging

    SciTech Connect

    Barber, H.B.

    1996-12-31

    In nuclear medicine, a gamma-ray-emitting radiotracer is injected into the body, and the resulting biodistribution is imaged using a gamma camera. Current gamma cameras use a design developed by Anger. An Anger camera makes use of a slab of scintillation detector that is viewed by an array of photomultiplier tubes and uses an analog position estimation technique to determine the position of the gamma ray`s interaction. The image-forming optics is usually a multi-bore collimator made of lead. Such cameras are characterized by poor, system spatial resolution ({approximately}1 cm) due to poor detector resolution ({approximately}0.4 cm) and poor collimator performance. Arrays of semiconductor detectors are an attractive alternative to scintillators for use in gamma cameras. Semiconductor detectors have excellent energy resolution. High spatial resolution is also possible because large semiconductor detector arrays with small pixel sizes can be produced using photolithography techniques. A new crystal growth technique (high-pressure vertical Bridgman) allows production of detector grade CdTe and CdZnTe in multikilogram ingots. Although the cost of CdZnTe detectors has come down substantially in the last few years, in part because of economies of scale, costs are still more than an order of magnitude higher than those required for a commercial camera ($20--$50/gram). High detector costs are perhaps the major stumbling block to developing a semiconductor gamma camera. The photolithography techniques required to make large CdZnTe arrays have already been demonstrated. This paper discusses the recent developments made in CdZnTe detectors.

  13. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders

    PubMed Central

    Jamieson, Brian G.; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient’s health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient’s health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine. PMID:27602308

  14. Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders.

    PubMed

    Bigelow, Mary Emma Gorham; Jamieson, Brian G; Chui, Chi On; Mao, Yufei; Shin, Kyeong-Sik; Huang, Tony Jun; Huang, Po-Hsun; Ren, Liqiang; Adhikari, Bishow; Chen, Jue; Iturriaga, Erin

    2016-01-01

    The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient's health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient's health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine. PMID:27602308

  15. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy

    PubMed Central

    Rennie, Monique Y.; Gahan, Curran G.; López, Claudia S.; Thornburg, Kent L.; Rugonyi, Sandra

    2015-01-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three dimensional (3D), high-resolution imaging. Focused ion beam-scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a focused ion beam, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy (TEM). Up to 1100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800–1500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall. PMID:24742339

  16. Proton electron double resonance imaging (PEDRI) of the isolated beating rat heart.

    PubMed

    Liebgott, Thibaut; Li, Haihong; Deng, Yuanmu; Zweier, Jay L

    2003-08-01

    Proton electron double resonance imaging (PEDRI) is a double resonance technique where proton MRI is performed with irradiation of a paramagnetic solute. A low-field PEDRI system was developed at 20.1 mT suitable for imaging free radicals in biological samples. With a new small dual resonator, PEDRI was applied to image nitroxide free radicals in isolated beating rat hearts. Experiments with phantoms showed maximum image enhancement factors (IEF) of 42 or 28 with TEMPONE radical concentrations of 2-3 mM at EPR irradiation powers of 12W or 6W, respectively. In the latter case, image resolution better than 0.5 mm and radical sensitivity of 5 microM was obtained. For isolated heart studies, EPR irradiation power of 6W provided optimal compromise of modest sample heating with good SNR. Only a small increase in temperature of about 1 degrees C was observed, while cardiac function remained within 10% of control values. With infusion of 3 mM TEMPONE an IEF of 15 was observed enabling 2D or 3D images to be obtained in 27 sec or 4.5 min, respectively. These images visualized the change in radical distribution within the heart during infusion and clearance. Thus, PEDRI enables rapid and high-quality imaging of free radical uptake and clearance in perfused hearts and provides a useful technique for studying cardiac radical metabolism. PMID:12876716

  17. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.

    PubMed

    DeVore, G R; Falkensammer, P; Sklansky, M S; Platt, L D

    2003-10-01

    Spatio-temporal image correlation (STIC) is a new approach for clinical assessment of the fetal heart. It offers an easy to use technique to acquire data from the fetal heart and to aid in visualization with both two-dimensional and three-dimensional (3D) cine sequences. The acquisition is performed in two steps: first, images are acquired by a single, automatic volume sweep. Second, the system analyzes the image data according to their spatial and temporal domain and processes an online dynamic 3D image sequence that is displayed in a multiplanar reformatted cross-sectional display and/or a surface rendered display. The examiner can navigate within the heart, re-slice, and produce all of the standard image planes necessary for a comprehensive diagnosis. The advantages of STIC for use in evaluation of the fetal heart are as follows: the technique delivers a temporal resolution which corresponds to a B-mode frame rate of approximately 80 frames/s; it provides the examiner with an unlimited number of images for review; it allows for correlation between image planes that are perpendicular to the main image acquisition plane; it may shorten the evaluation time when complex heart defects are suspected; it enables the reconstruction of a 3D rendered image that contains depth and volume which may provide additional information that is not available from the thin multiplanar image slices (e.g. for pulmonary veins, septal thickness); it lends itself to storage and review of volume data by the examiner or by experts at a remote site; it provides the examiner with the ability to review all images in a looped cine sequence. PMID:14528474

  18. TIMMI2 Images the Heart of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2001-03-01

    with ESO's new Thermal Infrared MultiMode Instrument (TIMMI2) , now mounted at the Cassegrain focus of the 3.6-m telescope on La Silla. The area is located close to the Trapezium cluster and is identified on a near-infrared image ( PR Photo 12a/01 ) obtained with the ISAAC instrument at the 8.2-m VLT ANTU telescope (cf. ESO PR Photos 03a-d/01 ). The complex itself is so heavily obscured by the dust cloud that it is not visible at this wavelength. However, the dust is more transparent at longer wavelengths and the complex is clearly seen on images obtained with TIMMI2 at wavelengths of 10.3 µm ( PR Photo 12b/01 ; with isophotes at the brightest object) and 20.0µm, ( PR Photo 12c/01 ). They show in some detail the structures around the compact sources and the extended thermal emission from the dust. The ratio of these two photos ( PR Photo 12d/01 ) illustrates how the temperature of the dust in this area varies. The brighter areas are the hotter ones. Technical information about these photos is available below. A group of astronomers [1] has recently imaged a star-forming region in the Orion Nebula with a new and powerful astronomical instrument, the Thermal Infrared MultiMode Instrument (TIMMI2) , now available at the La Silla Observatory. In addition to being scientifically very interesting, these observations also provide a demonstration of the impressive capabilities of this new facility. It has been known for some time that the "BN/KL Complex" is a site of recent, massive star formation. It is located deep inside the Orion Nebula ( PR Photo 12a/01 ) and is observed as a cluster of infrared-emitting objects and compact regions of ionized Hydrogen ("H II regions"), associated with intricate interstellar dust filaments and circumstellar dust clouds. There are also several hot and large stars in this heavily obscured area - together they shine as bright as 100,000 suns. It is a difficult task to identify the main sources of heating in this region - the "heart" of the

  19. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part III: Cyanotic Heart Diseases and Complex Congenital Anomalies

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    From the stand point of radiographic analysis most of the complex cyanotic congenital heart diseases (CHD), can be divided into those associated with decreased or increased pulmonary vascularity. Combination of a specific cardiac configuration and status of lung vasculature in a clinical context allows plain film diagnosis to be predicted in some CHD. Correlation of the position of the cardiac apex in relation to the visceral situs is an important information that can be obtained from the plain film. This information helps in gathering information about the atrio-ventricular, ventricular arterial concordance or discordance. Categorization of the cyanotic heart disease based on vascularity is presented below. Thorough understanding of cardiac anatomy by different imaging methods is essential in understanding and interpreting complex cardiac disease. Basic anatomical details and background for interpretation are provided in the previous parts of this presentation.

  20. State-of-the-Art CT Imaging Techniques for Congenital Heart Disease

    PubMed Central

    2010-01-01

    CT is increasingly being used for evaluating the cardiovascular structures and airways in the patients with congenital heart disease. Multi-slice CT has traditionally been used for the evaluation of the extracardiac vascular and airway abnormalities because of its inherent high spatial resolution and excellent air-tissue contrast. Recent developments in CT technology primarily by reducing the cardiac motion and the radiation dose usage in congenital heart disease evaluation have helped expand the indications for CT usage. Tracheobronchomalacia associated with congenital heart disease can be evaluated with cine CT. Intravenous contrast injection should be tailored to unequivocally demonstrate cardiovascular abnormalities. Knowledge of the state-of-the-art CT imaging techniques that are used for evaluating congenital heart disease is helpful not only for planning and performing CT examinations, but also for interpreting and presenting the CT image findings that consequently guide the proper medical and surgical management. PMID:20046490

  1. A novel technique for image-guided local heart irradiation in the rat.

    PubMed

    Sharma, Sunil; Moros, Eduardo G; Boerma, Marjan; Sridharan, Vijayalakshmi; Han, Eun Young; Clarkson, Richard; Hauer-Jensen, Martin; Corry, Peter M

    2014-12-01

    In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing. PMID:24000983

  2. A Novel Technique for Image-Guided Local Heart Irradiation in the Rat

    PubMed Central

    Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan; Sridharan, Vijayalakshmi; Han, Eun Young; Clarkson, Richard; Hauer-Jensen, Martin; Corry, Peter M.

    2014-01-01

    In radiotherapy treatment of thoracic, breast and chest wall tumors, the heart may be included (partially or fully) in the radiation field. As a result, patients may develop radiation-induced heart disease (RIHD) several years after exposure to radiation. There are few methods available to prevent or reverse RIHD and the biological mechanisms remain poorly understood. In order to further study the effects of radiation on the heart, we developed a model of local heart irradiation in rats using an image-guided small animal conformal radiation therapy device (SACRTD) developed at our institution. First, Monte Carlo based simulations were used to design an appropriate collimator. EBT-2 films were used to measure relative dosimetry, and the absolute dose rate at the isocenter was measured using the AAPM protocol TG-61. The hearts of adult male Sprague-Dawley rats were irradiated with a total dose of 21 Gy. For this purpose, rats were anesthetized with isoflurane and placed in a custom-made vertical rat holder. Each heart was irradiated with a 3-beam technique (one AP field and 2 lateral fields), with each beam delivering 7 Gy. For each field, the heart was visualized with a digital flat panel X-ray imager and placed at the isocenter of the 1.8 cm diameter beam. In biological analysis of radiation exposure, immunohistochemistry showed γH2Ax foci and nitrotyrosine throughout the irradiated hearts but not in the lungs. Long-term follow-up of animals revealed histopathological manifestations of RIHD, including myocardial degeneration and fibrosis. The results demonstrate that the rat heart irradiation technique using the SACRTD was successful and that surrounding untargeted tissues were spared, making this approach a powerful tool for in vivo radiobiological studies of RIHD. Functional and structural changes in the rat heart after local irradiation are ongoing. PMID:24000983

  3. High-Resolution Tissue Doppler Imaging of the Zebrafish Heart During Its Regeneration

    PubMed Central

    Su, Ta-Han; Shih, Cho-Chiang

    2015-01-01

    Abstract The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration. PMID:25517185

  4. Three-dimensional segmentation of the heart muscle using image statistics

    NASA Astrophysics Data System (ADS)

    Nillesen, Maartje M.; Lopata, Richard G. P.; Gerrits, Inge H.; Kapusta, Livia; Huisman, Henkjan H.; Thijssen, Johan M.; de Korte, Chris L.

    2006-03-01

    Segmentation of the heart muscle in 3D echocardiographic images provides a tool for visualization of cardiac anatomy and assessment of heart function, and serves as an important pre-processing step for cardiac strain imaging. By incorporating spatial and temporal information of 3D ultrasound image sequences (4D), a fully automated method using image statistics was developed to perform 3D segmentation of the heart muscle. 3D rf-data were acquired with a Philips SONOS 7500 live 3D ultrasound system, and an X4 matrix array transducer (2-4 MHz). Left ventricular images of five healthy children were taken in transthoracial short/long axis view. As a first step, image statistics of blood and heart muscle were investigated. Next, based on these statistics, an adaptive mean squares filter was selected and applied to the images. Window size was related to speckle size (5x2 speckles). The degree of adaptive filtering was automatically steered by the local homogeneity of tissue. As a result, discrimination of heart muscle and blood was optimized, while sharpness of edges was preserved. After this pre-processing stage, homomorphic filtering and automatic thresholding were performed to obtain the inner borders of the heart muscle. Finally, a deformable contour algorithm was used to yield a closed contour of the left ventricular cavity in each elevational plane. Each contour was optimized using contours of the surrounding planes (spatial and temporal) as limiting condition to ensure spatial and temporal continuity. Better segmentation of the ventricle was obtained using 4D information than using information of each plane separately.

  5. 2015 proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine symposium.

    PubMed

    Spitalnik, Steven L; Triulzi, Darrell; Devine, Dana V; Dzik, Walter H; Eder, Anne F; Gernsheimer, Terry; Josephson, Cassandra D; Kor, Daryl J; Luban, Naomi L C; Roubinian, Nareg H; Mondoro, Traci; Welniak, Lisbeth A; Zou, Shimian; Glynn, Simone

    2015-09-01

    On March 25 and 26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the National Institutes of Health (NIH) campus in Bethesda, Maryland, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5 to 10 years and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three "classical" transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Before the meeting, four working groups, one for each area, prepared five major questions for discussion along with a list of five to 10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in keynote lectures, small-group breakout sessions, and large-group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  6. 2015 Proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine Symposium

    PubMed Central

    Spitalnik, Steven L.; Triulzi, Darrell; Devine, Dana V.; Dzik, Walter H.; Eder, Anne F.; Gernsheimer, Terry; Josephson, Cassandra D.; Kor, Daryl J.; Luban, Naomi L. C.; Roubinian, Nareg H.; Mondoro, Traci; Welniak, Lisbeth A.; Zou, Shimian; Glynn, Simone

    2015-01-01

    On March 25-26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the NIH campus in Bethesda, MD, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5-10 years, and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three “classical” transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Prior to the meeting, four Working Groups, one for each area, prepared five major questions for discussion along with a list of 5-10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in Keynote lectures, small group breakout sessions, and large group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  7. Nuclear medicine imaging and therapy: gender biases in disease.

    PubMed

    Moncayo, Valeria M; Aarsvold, John N; Alazraki, Naomi P

    2014-01-01

    Gender-based medicine is medical research and care conducted with conscious consideration of the sex and gender differences of subjects and patients. This issue of Seminars is focused on diseases for which nuclear medicine is part of routine management and for which the diseases have sex- or gender-based differences that affect incidence or pathophysiology and that thus have differences that can potentially affect the results of the relevant nuclear medicine studies. In this first article, we discuss neurologic diseases, certain gastrointestinal conditions, and thyroid conditions. The discussion is in the context of those sex- or gender-based aspects of these diseases that should be considered in the performance, interpretation, and reporting of the relevant nuclear medicine studies. Cardiovascular diseases, gynecologic diseases, bone conditions such as osteoporosis, pediatric occurrences of some diseases, human immunodeficiency virus-related conditions, and the radiation dose considerations of nuclear medicine studies are discussed in the other articles in this issue. PMID:25362232

  8. Choosing Between MRI and CT Imaging in the Adult with Congenital Heart Disease.

    PubMed

    Bonnichsen, Crystal; Ammash, Naser

    2016-05-01

    Improvements in the outcomes of surgical and catheter-based interventions and medical therapy have led to a growing population of adult patients with congenital heart disease. Adult patients with previously undiagnosed congenital heart disease or those previously palliated or repaired may have challenging echocardiographic examinations. Understanding the distinct anatomic and hemodynamic features of the congenital anomaly and quantifying ventricular function and valvular dysfunction plays an important role in the management of these patients. Rapid advances in imaging technology with magnetic resonance imaging (MRI) and computed tomography angiography (CTA) allow for improved visualization of complex cardiac anatomy in the evaluation of this unique patient population. Although echocardiography remains the most widely used imaging tool to evaluate congenital heart disease, alternative and, at times, complimentary imaging modalities should be considered. When caring for adults with congenital heart disease, it is important to choose the proper imaging study that can answer the clinical question with the highest quality images, lowest risk to the patient, and in a cost-efficient manner. PMID:27002621

  9. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine.

    PubMed

    Chen, Ian Y; Matsa, Elena; Wu, Joseph C

    2016-06-01

    The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed. PMID:27009425

  10. Gated magnetic resonance imaging of the normal and diseased heart

    SciTech Connect

    Lieberman, J.M.; Alfidi, R.J.; Nelson, A.D.; Botti, R.E.; Moir, T.W.; Haaga, J.R.; Kopiwoda, S.; Miraldi, F.D.; Cohen, A.M.; Butler, H.E.

    1984-08-01

    Gated cardiac magnetic resonance (MR) images were obtained in two normal volunteers and 21 adults with a variety of cardiovascular abnormalities. The images were correlated with data from clinical examination, electrocardiograms, and cardiac catheterization. Gated cardiac images were superior to nongated images. Combined cardiac and respiratory gated images were superior to images obtained with cardiac gating only, but acquisition time was longer. Portions of the coronary arteries were visualized in seven of 23 examinations (30%), and subacute and old myocardial infarcts were seen in five of nine patients (55%) as areas of thinned myocardium. Normal cardiac anatomy (chambers, valves, and papillary muscles) was well visualized. Examples of aortic stenosis and atherosclerosis of the abdominal aorta are shown.

  11. Arrangements of multiple images of human myocardium for information for the surgeon during open heart surgery

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    The feasibility to obtain visualized information of myocardium by imaging is a new dimension. However, during heart surgery the surgeon does not need all data of images continuously. Therefore, development of strategies able to reduce flux of information transiently in between images might become important. Arrangements of images in 3-dimensional structures can produce better outlines. Images often contain information of several parameters. Therefore, a selection of important parts of the pictures might be helpful. Optical sensors will have the ability to detect dangerous situations in tissues which can release optical or acoustic signals.

  12. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem

    2006-10-01

    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  13. A Multiscale Computational Model of the Heart: Exploring Space Medicine and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Gladding, Patrick; Orr, Martin; Kazuaki, Negishi; Borowski, Alan; Hussan, Jagir R.; Hunter, Peter; Kassemi, Mohammed; Martin, David; Levine, Benjamin; Schlegel, Todd T.; Thomas, James D.

    2016-01-01

    The impact of long-term spaceflight on cardiac electromechanical function is unknown. Integrating heterogeneous biophysical data from sources such as echocardiography (Echo), electrocardiography (ECG), and genomics into a mathematical model could be used to predict cardiac dysfunction in space. We have developed a multiscale heart model, onto which astronaut-specific ultrasound data can be imposed, with the aim of integrating advanced ECG (A-ECG) and genomic data.

  14. [Analysis Methods of Short-term Non-linear Heart Rate Variability and Their Application in Clinical Medicine].

    PubMed

    Chi, Xianglin; Zhou, Jianhua; Shi, Ping; Liu, Chengyu

    2016-02-01

    The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and time-frequency analysis, has reached a lot of consensus. The non-linear analysis has also been widely applied in biomedical and clinical researches. However, for non-linear HRV analysis, especially for short-term non-linear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three short-term non-linear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine. PMID:27382764

  15. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  16. Dual-source computed tomographic coronary angiography: image quality and stenosis diagnosis in patients with high heart rates.

    PubMed

    Zheng, Minwen; Li, Jiayi; Xu, Jian; Chen, Kang; Zhao, Hongliang; Huan, Yi

    2009-01-01

    We sought to evaluate prospectively the effects of heart rate and heart-rate variability on dual-source computed tomographic coronary image quality in patients whose heart rates were high, and to determine retrospectively the accuracy of dual-source computed tomographic diagnosis of coronary artery stenosis in the same patients.We compared image quality and diagnostic accuracy in 40 patients whose heart rates exceeded 70 beats/min with the same data in 40 patients whose heart rates were 70 beats/min or slower. In both groups, we analyzed 1,133 coronary arterial segments. Five hundred forty-five segments (97.7%) in low-heart-rate patients and 539 segments (93.7%) in high-heart-rate patients were of diagnostic image quality. We considered P < 0.05 to be statistically significant. No statistically significant differences between the groups were found in diagnostic-image quality scores of total segments or of any coronary artery, nor were any significant differences found between the groups in the accurate diagnosis of angiographically significant stenosis.Calcification was the chief factor that affected diagnostic accuracy. In high-heart-rate patients, heart-rate variability was significantly related to the diagnostic image quality of all segments (P = 0.001) and of the left circumflex coronary artery (P = 0.016). Heart-rate variability of more than 5 beats/min most strongly contributed to an inability to evaluate segments in both groups. When heart rates rose, the optimal reconstruction window shifted from diastole to systole.The image quality of dual-source computed tomographic coronary angiography at high heart rates enables sufficient diagnosis of stenosis, although variability of heart rates significantly deteriorates image quality. PMID:19436804

  17. Ratiometric imaging of calcium during ischemia-reperfusion injury in isolated mouse hearts using Fura-2

    PubMed Central

    2012-01-01

    Background We present an easily implementable method for measuring Fura-2 fluorescence from isolated mouse hearts using a commercially available switching light source and CCD camera. After calibration, it provides a good estimate of intracellular [Ca2+] with both high spatial and temporal resolutions, permitting study of changes in dispersion of diastolic [Ca2+], Ca2+ transient dynamics, and conduction velocities in mouse hearts. In a proof-of-principle study, we imaged isolated Langendorff-perfused mouse hearts with reversible regional myocardial infarctions. Methods Isolated mouse hearts were perfused in the Landendorff-mode and loaded with Fura-2. Hearts were then paced rapidly and subjected to 15 minutes of regional ischemia by ligation of the left anterior descending coronary artery, following which the ligation was removed to allow reperfusion for 15 minutes. Fura-2 fluorescence was recorded at regular intervals using a high-speed CCD camera. The two wavelengths of excitation light were interleaved at a rate of 1 KHz with a computer controlled switching light source to illuminate the heart. Results Fura-2 produced consistent Ca2+ transients from different hearts. Ligating the coronary artery rapidly generated a well defined region with a dramatic rise in diastolic Ca2+ without a significant change in transient amplitude; Ca2+ handling normalized during reperfusion. Conduction velocity was reduced by around 50% during ischemia, and did not recover significantly when monitored for 15 minutes following reperfusion. Conclusions Our method of imaging Fura-2 from isolated whole hearts is capable of detecting pathological changes in intracellular Ca2+ levels in cardiac tissue. The persistent change in the conduction velocities indicates that changes to tissue connectivity rather than altered intracellular Ca2+ handling may be underlying the electrical instabilities commonly seen in patients following a myocardial infarction. PMID:22812644

  18. Free-Breathing 3D Whole Heart Black Blood Imaging with Motion Sensitized Driven Equilibrium

    PubMed Central

    Srinivasan, Subashini; Hu, Peng; Kissinger, Kraig V.; Goddu, Beth; Goepfert, Lois; Schmidt, Ehud J.; Kozerke, Sebastian; Nezafat, Reza

    2012-01-01

    Purpose To assess the efficacy and robustness of motion sensitized driven equilibrium (MSDE) for blood suppression in volumetric 3D whole heart cardiac MR. Materials and Methods To investigate the efficacy of MSDE on blood suppression and myocardial SNR loss on different imaging sequences. 7 healthy adult subjects were imaged using 3D ECG-triggered MSDE-prep T1-weighted turbo spin echo (TSE), and spoiled gradient echo (GRE), after optimization of MSDE parameters in a pilot study of 5 subjects. Imaging artifacts, myocardial and blood SNR were assessed. Subsequently, the feasibility of isotropic spatial resolution MSDE-prep black-blood was assessed in 6 subjects. Finally, 15 patients with known or suspected cardiovascular disease were recruited to be imaged using conventional multi-slice 2D DIR TSE imaging sequence and 3D MSDE-prep spoiled GRE. Results The MSDE-prep yields significant blood suppression (75-92%), enabling a volumetric 3D black-blood assessment of the whole heart with significantly improved visualization of the chamber walls. The MSDE-prep also allowed successful acquisition of black-blood images with isotropic spatial resolution. In the patient study, 3D black-blood MSDE-prep and DIR resulted in similar blood suppression in LV and RV walls but the MSDE prep had superior myocardial signal and wall sharpness. Conclusion MSDE-prep allows volumetric black-blood imaging of the heart. PMID:22517477

  19. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    PubMed

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011. PMID:21532541

  20. Medicines

    MedlinePlus

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  1. Medicines

    MedlinePlus

    ... you get better. In the United States, the Food and Drug Administration is in charge of assuring ... can cause unwanted side effects or interactions with food or other medicines you may be taking. They ...

  2. Uncovering brain–heart information through advanced signal and image processing

    PubMed Central

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  3. Uncovering brain-heart information through advanced signal and image processing.

    PubMed

    Valenza, Gaetano; Toschi, Nicola; Barbieri, Riccardo

    2016-05-13

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain-heart physiology and physiopathology. PMID:27044995

  4. Infectious Diseases of the Heart: Pathophysiology, Clinical and Imaging Overview.

    PubMed

    Murillo, Horacio; Restrepo, Carlos Santiago; Marmol-Velez, Juan Alejandro; Vargas, Daniel; Ocazionez, Daniel; Martinez-Jimenez, Santiago; Reddick, Robert Lee; Baxi, Ameya Jagdish

    2016-01-01

    Myriad infectious organisms can infect the endocardium, myocardium, and pericardium, including bacteria, fungi, parasites, and viruses. Significant cardiac infections are rare in the general population but are associated with high morbidity and mortality as well as increased risk in certain populations, such as the elderly, those undergoing cardiac instrumentation, and intravenous drug abusers. Diagnostic imaging of cardiac infections plays an important role despite its variable sensitivity and specificity, which are due in part to the nonspecific manifestations of the central inflammatory process of infection and the time of onset with respect to the time of imaging. The primary imaging modality remains echocardiography. However, cardiac computed tomography and magnetic resonance (MR) imaging have emerged as the modalities of choice wherever available, especially for diagnosis of complex infectious complications including abscesses, infected prosthetic material, central lines and instruments, and the cryptic manifestations of viral and parasitic diseases. MR imaging can provide functional, morphologic, and prognostic value in a single examination by allowing characterization of inflammatory changes from the acute to chronic stages, including edema and the patterns and extent of delayed gadolinium enhancement. We review the heterogeneous and diverse group of cardiac infections based on their site of primary cardiac involvement with emphasis on their cross-sectional imaging manifestations. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27399236

  5. Bodies, hearts, and minds: Why emotions matter to historians of science and medicine.

    PubMed

    Alberti, Fay Bound

    2009-12-01

    The histories of emotion address many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured, the rise of the mind sciences, and the anthropological analyses by which "ways of knowing" are culturally situated. Yet such histories bring their own challenges, not least in how historians of science and medicine view the relationship between bodies, minds, and emotions. This essay explores some of the methodological challenges of emotion history, using the sudden death of the surgeon John Hunter from cardiac disease as a case study. It argues that we need to let go of many of our modem assumptions about the origin of emotions, and "brainhood", that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind. PMID:20380348

  6. Bodies, Hearts and Minds: Why Emotions Matter to Historians of Science and Medicine

    PubMed Central

    Bound Alberti, Fay

    2015-01-01

    The history of emotion addresses many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured; the rise of the mind sciences; and the anthropological analyses by which “ways of knowing” are culturally situated. Yet studying emotions brings its own challenges, not least in how historians of science and medicine view the relationship between bodies, minds and emotions. This paper explores some of the methodological challenges of emotion history, using the surgeon John Hunter’s sudden death from cardiac disease as a case study. It argues that we need to let go of many of our modern assumptions about the origin of emotions, and “brainhood” that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind. PMID:20380348

  7. Nuclear medicine in the management of patients with heart failure: guidance from an expert panel of the International Atomic Energy Agency (IAEA)

    PubMed Central

    Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma. Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark

    2014-01-01

    Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, 123I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease. PMID:24781009

  8. Nuclear medicine in the management of patients with heart failure: guidance from an expert panel of the International Atomic Energy Agency (IAEA).

    PubMed

    Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark; Garcia, Ernest V

    2014-08-01

    Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease. PMID:24781009

  9. Medicine Wheel Imag(in)ings: Exploring Holistic Curriculum Perspectives

    ERIC Educational Resources Information Center

    Kind, Sylvia; Irwin, Rita L.; Grauer, Kit; de Cosson, Alex

    2005-01-01

    Education is longing for a deeper more connected, more inclusive, and more aware way of knowing. One that connects heart and hand and head and does not split knowledge into dualities of thought and being, mind and body, emotion and intellect, but resonates with a wholeness and fullness that engages every part of one's being. Engagement with the…

  10. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques

    PubMed Central

    Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-01-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  11. Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach Part I: Clinical Perspective, Anatomy and Imaging Techniques.

    PubMed

    Bhat, Venkatraman; Belaval, Vinay; Gadabanahalli, Karthik; Raj, Vimal; Shah, Sejal

    2016-05-01

    Rapid evolution in technology in the recent years has lead to availability of multiple options for cardiac imaging. Availability of multiple options of varying capability, poses a challenge for optimal imaging choice. While new imaging choices are added, some of the established methods find their role re-defined. State of the art imaging practices are limited to few specialist cardiac centres, depriving many radiologists and radiologist in-training of optimal exposure to the field. This presentation is aimed at providing a broad idea about complexity of clinical problem, imaging options and a large library of images of congenital heart disease. Some emphasis is made as to the need of proper balance between performing examination with technical excellence in an ideal situation against the need of the majority of patients who are investigated with less optimal resources. Cases of congenital cardiac disease are presented in an illustrative way, showing imaging appearances in multiple modalities, highlighting specific observations in given instance. PMID:27376034

  12. Quantum crossing symmetry as heart of ghost imaging

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ion, M. L.; Rusu, L.

    2010-03-01

    In this paper it is proved that the keys to understanding the ghost imaging are the crossing symmetric (CS) photon reactions in the nonlinear media. So CS introduced a real optical path between the object and his "ghost" image, making possible to apply the geometric optics for a rigorous proof of the essential laws of the "ghost" imaging phenomena. Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum mirror, observed in the ghost-imaging experiments, are shown that can be obtained as natural consequences of the energy-momentum conservation laws. So, it is proved that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement. Using DFG-typical features we obtained explicit predictions of the intensities of the idler photons in terms of the intensities of the interacting photon-(p and s)-beams in the nonlinear crystal. Two fundamental experiments for a decisive test of the [SPDC-DFG]-quantum mirrors are suggested.

  13. Horizons in nuclear medicine and molecular imaging: highlights of the Third Gulf Nuclear Medicine Conference.

    PubMed

    Elgazzar, A H

    2009-07-01

    The Third Gulf Nuclear Medicine Conference took place in the state of Kuwait at Salwa Al Sabah hall, Safir marina hotel in Salmiya. The event extended from March 29th to April 1st 2009. The assembly was a great chance for all nuclear medicine, i.e. physicians, technologists and researchers in the field to meet and exchange experience and knowledge. The number of participators registered for this conference was beyond expectations; total registrants of 611 attended the event and actively end it. The conference was attended by international, regional and local participants. There were 23 speakers, including 13 invited guest speakers who came from USA, Canada, Europe and the Gulf region. In addition to the lectures and oral presentations, there were 30 poster presentations. The latest updates in the field together with most recent findings in the participants' own research were presented. The lectures and posters covered different basic and clinical categories of nuclear medicine. This article summarizes the highlights of the major topics discussed with some recommendations when applicable. Proceedings of the conference can be found in the World Journal of Nuclear Medicine of April, 2009. PMID:20194093

  14. Assessment of three techniques for delivering stem cells to the heart using PET and MR imaging

    PubMed Central

    2013-01-01

    Background Stem cell therapy has a promising potential for the curing of various degenerative diseases, including congestive heart failure (CHF). In this study, we determined the efficacy of different delivery methods for stem cell administration to the heart for the treatment of CHF. Both positron emission tomography (PET) and magnetic resonance imaging (MRI) were utilized to assess the distribution of delivered stem cells. Methods Adipose-derived stem cells of male rats were labeled with super-paramagnetic iron oxide (SPIO) and 18 F-fluorodeoxyglucose (FDG). The left anterior descending coronary artery (LAD) of the female rats was occluded to induce acute ischemic myocardial injury. Immediately after the LAD occlusion, the double-labeled stem cells were injected into the ischemic myocardium (n = 5), left ventricle (n = 5), or tail vein (n = 4). In another group of animals (n = 3), the stem cells were injected directly into the infarct rim 1 week after the LAD occlusion. Whole-body PET images and MR images were acquired to determine biodistribution of the stem cells. After the imaging, the animals were euthanized and retention of the stem cells in the vital organs was determined by measuring the cDNA specific to the Y chromosome. Results PET images showed that retention of the stem cells in the ischemic myocardium was dependent on the cell delivery method. The tail vein injection resulted in the least cell retention in the heart (1.2% ± 0.6% of total injected cells). Left ventricle injection led to 3.5% ± 0.9% cell retention and direct myocardial injection resulted in the highest rate of cell retention (14% ± 4%) in the heart. In the animals treated 1 week after the LAD occlusion, rate of cell retention in the heart was only 4.5% ±1.1%, suggesting that tissue injury has a negative impact on cell homing. In addition, there was a good agreement between the results obtained through PET-MR imaging and histochemical measurements. Conclusion PET

  15. Heart Research

    NASA Technical Reports Server (NTRS)

    1991-01-01

    James Antaki and a group of researchers from the University of Pittsburgh School of Medicine used many elements of the Technology Utilization Program while looking for a way to visualize and track material points within the heart muscle. What they needed were tiny artificial "eggs" containing copper sulfate solution, small enough (about 2 mm in diameter) that they would not injure the heart, and large enough to be seen in Magnetic Resonance Imaging (MRI) images; they also had to be biocompatible and tough enough to withstand the beating of the muscle. The group could not make nor buy sufficient containers. After reading an article on microspheres in NASA Tech Briefs, and a complete set of reports on microencapsulation from the Jet Propulsion Laboratory (JPL), JPL put Antaki in touch with Dr.Taylor Wang of Vanderbilt University who helped construct the myocardial markers. The research is expected to lead to improved understanding of how the heart works and what takes place when it fails.

  16. Summary Of Chrono-Coherent Imaging In Medicine

    NASA Astrophysics Data System (ADS)

    Spears, Kenneth G.; Serafin, Jenifer E.; Zhu, Xinming; Bjelkhagen, Hans I.

    1989-05-01

    We describe demonstration experiments for a new method of medical diagnostic imaging. The method is called Chrono-Coherent Imaging (CCI) and it can be used in a transmission geometry to form images in the presence of overwhelming scattered light, which blocks conventional image formation. Future applications are for imaging inside the human body where tissue light scattering normally obscures image formation. In a transmission geometry the scattered light will take different time delays to reach a recording medium than will the very weak unscattered light which contains image information. The recording of the image for a series of times is not done as a real image with ultrashort gating devices such as streak cameras or Kerr shutters, but the recording is done coherently like a hologram with the sub-picosecond coherence properties of the laser pulse. By using a time sweep of a reference laser beam on the recording medium, similar to Light-In-Flight Holography, we can make a series of coherent images with a single laser exposure, even in the presence of very large incoherent exposure by the scattered light. These images are much like an X-ray in that cumulati've transmission effects are recorded throughout the object, but in CCI the time series of images has both refractive index and absorption information. Many other features such as tissue selectivity by wavelength tuning, depth enhancement and three dimensional image reconstruction are possible with the new imaging method of CCI.

  17. Stability of membrane potential in heart mitochondria: Single mitochondrion imaging

    SciTech Connect

    Uechi, Yukiko; Yoshioka, Hisashi; Morikawa, Daisuke; Ohta, Yoshihiro . E-mail: ohta@cc.tuat.ac.jp

    2006-06-16

    Mitochondrial membrane potential ({delta}{psi} {sub m}) plays an important role in cellular activity. Although {delta}{psi} {sub m} of intracellular mitochondria are relatively stable, the recent experiments with isolated mitochondria demonstrate that individual mitochondria show frequent fluctuations of {delta}{psi} {sub m}. The current study is performed to investigate the factors that stabilize {delta}{psi} {sub m} in cells by observing {delta}{psi} {sub m} of individual isolated mitochondria with fluorescence microscopy. Here, we report that (1) the transient depolarizations are also induced for mitochondria in plasma membrane permeabilized cells, (2) almost all mitochondria isolated from porcine hearts show the transient depolarizations that is enhanced with the net efflux of protons from the matrix to the intermembrane space, and (3) ATP and ADP significantly inhibit the transient depolarizations by plural mechanisms. These results suggest that the suppression of acute alkalinization of the matrix together with the presence of ATP and ADP contributes to the stabilization of {delta}{psi} {sub m} in cells.

  18. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  19. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  20. Semi-automated measurements of heart-to-mediastinum ratio on 123I-MIBG myocardial scintigrams by using image fusion method with chest X-ray images

    NASA Astrophysics Data System (ADS)

    Kawai, Ryosuke; Hara, Takeshi; Katafuchi, Tetsuro; Ishihara, Tadahiko; Zhou, Xiangrong; Muramatsu, Chisako; Abe, Yoshiteru; Fujita, Hiroshi

    2015-03-01

    MIBG (iodine-123-meta-iodobenzylguanidine) is a radioactive medicine that is used to help diagnose not only myocardial diseases but also Parkinson's diseases (PD) and dementia with Lewy Bodies (DLB). The difficulty of the segmentation around the myocardium often reduces the consistency of measurement results. One of the most common measurement methods is the ratio of the uptake values of the heart to mediastinum (H/M). This ratio will be a stable independent of the operators when the uptake value in the myocardium region is clearly higher than that in background, however, it will be unreliable indices when the myocardium region is unclear because of the low uptake values. This study aims to develop a new measurement method by using the image fusion of three modalities of MIBG scintigrams, 201-Tl scintigrams, and chest radiograms, to increase the reliability of the H/M measurement results. Our automated method consists of the following steps: (1) construct left ventricular (LV) map from 201-Tl myocardium image database, (2) determine heart region in chest radiograms, (3) determine mediastinum region in chest radiograms, (4) perform image fusion of chest radiograms and MIBG scintigrams, and 5) perform H/M measurements on MIBG scintigrams by using the locations of heart and mediastinum determined on the chest radiograms. We collected 165 cases with 201-Tl scintigrams and chest radiograms to construct the LV map. Another 65 cases with MIBG scintigrams and chest radiograms were also collected for the measurements. Four radiological technologists (RTs) manually measured the H/M in the MIBG images. We compared the four RTs' results with our computer outputs by using Pearson's correlation, the Bland-Altman method, and the equivalency test method. As a result, the correlations of the H/M between four the RTs and the computer were 0.85 to 0.88. We confirmed systematic errors between the four RTs and the computer as well as among the four RTs. The variation range of the H

  1. Exploratory multivariate analysis of the effect of fatty fish consumption and medicinal use on heart rate and heart rate variability data

    PubMed Central

    Grung, Bjørn; Hansen, Anita L.; Berg, Mari; Møen-Knudseth, Maria P.; Olson, Gina; Thornton, David; Dahl, Lisbeth; Thayer, Julian F.

    2015-01-01

    The overall aim of the present study was to explore the relationship between medicinal use and fatty fish consumption on heart rate variability (HRV) and heart rate (HR) in a group of forensic inpatients on a variety of medications. A total of 49 forensic inpatients, randomly assigned to a fish group (n = 27) or a control group (n = 22) were included in the present study. Before and by the end of the food intervention period HR and HRV were measured during an experimental test procedure. An additional aim of this paper is to show how multivariate data analysis can highlight differences and similarities between the groups, thus being a valuable addition to traditional statistical hypothesis testing. The results indicate that fish consumption may have a positive effect on both HR and HRV regardless of medication, but that the influence of medication is strong enough to mask the true effect of fish consumption. Without correcting for medication, the fish group and control group become indistinguishable (p = 0.0794, Cohen’s d = 0.60). The effect of medication is demonstrated by establishing a multivariate regression model that estimates HR and HRV in a recovery phase based on HR and HRV data recorded during psychological tests. The model performance is excellent for HR data, but yields poor results for HRV when employed on participants undergoing the more severe medical treatments. This indicates that the HRV behavior of this group is very different from that of the participants on no or lower level of medication. When focusing on the participants on a constant medication regime, a substantial improvement in HRV and HR for the fish group compared to the control group is indicated by a principal component analysis and t-tests (p = 0.00029, Cohen’s d = 2.72). In a group of psychiatric inpatients characterized by severe mental health problems consuming different kinds of medication, the fish diet improved HR and HRV, indices of both emotional regulation and physical

  2. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  3. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine.

    PubMed

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  4. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    SciTech Connect

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.; Palac, R.T.; Lagunas-Solar, M.C.; Woodward, W.R.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiac transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.

  5. Imaging of the heart: historical perspective and recent advances.

    PubMed

    Lam, W C; Pennell, D J

    2016-02-01

    Correct diagnosis must be made before appropriate treatment can be given. The aim of cardiac imaging is to establish cardiac diagnosis as accurate as possible and to avert unnecessary invasive procedures. There are many different modalities of cardiac imaging and each of them has advanced tremendously throughout the past decades. Echocardiography, as the first-line modality in most clinical circumstances, has progressed from two-dimensional, single-planed M-mode in the 1960s to three-dimensional speckle tracking echocardiography nowadays. Cardiac computed tomography angiogram (CCTA) has revolutionised the management of coronary artery disease as it allows clinicians to visualise the coronary arteries without performing an invasive angiogram. Because of the high negative predictive value, CCTA plays an important reassuring role in acute chest pain management. The greatest strength of cardiovascular magnetic resonance (CMR) is that it provides information in tissue characterization. It is the modality of choice in assessing myocardial viability and myocardial infiltration such as haemochromatosis or amyloidosis. Each of these modalities has its own strengths and limitations. In fact, they are complementing each other in different clinical settings. Cardiac imaging will continue to advance and, not long from now, we will not need invasive procedures to make an accurate cardiac diagnosis. PMID:26647305

  6. Multispot two-photon imaging of mice heart tissue detecting calcium waves

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Mongillo, M.; Pavone, F. S.

    2012-06-01

    High rate, full field image acquisition in multiphoton imaging is achievable by parallelization of the excitation and of the detection paths. Via a Diffractive Optical Elements (DOEs) which splits a pulsed laser, and a spatial resolved descanned detection path, a new approach to microscopy has been developed. By exploiting the three operating mode, single beam, 16 beamlets or 64 beamlets, the best experimental conditions can be found by adapting the power per beamlet. This Multiphoton Multispot system (MCube) has been characterized in thick tissue samples, and subsequently used for the first time for Ca2+ imaging of acute heart slices. A test sample with fixed mice heart slices with embedded sub-resolution fluorescent beads has been used to test the capability of optical axial resolution up to ~200 microns in depth. Radial and axial resolutions of 0.6 microns and 3 microns have been respectively obtained with a 40X water immersion objective, getting close to the theoretical limit. Then images of heart slices cardiomyocites, loaded with Fluo4-AM have been acquired. The formation of Ca2+ waves during electrostimulated beating has been observed, and the possibility of easily acquire full frame images at 15 Hz (16 beamlets) has been demonstrated, towards the in vivo study of time resolved cellular dynamics and arrhythmia trigger mechanisms in particular. A very high speed two-photon Random Access system for in vivo electrophysiological studies, towards the correlation of voltage and calcium signals in arrhythmia phenomena, is now under developing at Light4tech.

  7. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  8. Role of Imaging Techniques for Diagnosis, Prognosis and Management of Heart Failure Patients: Cardiac Magnetic Resonance

    PubMed Central

    Gonzalez, Jorge A.; Kramer, Christopher M.

    2015-01-01

    Cardiac Magnetic Resonance (CMR) has evolved into a major tool for the diagnosis and assessment of prognosis of patients suffering from heart failure. Anatomical and structural imaging, functional assessment, T1 and T2 mapping tissue characterization and late gadolinium enhancement (LGE) have provided clinicians with tools to distinguish between non-ischemic and ischemic cardiomyopathies and to identify the etiology of non-ischemic cardiomyopathies. LGE is a useful tool to predict the likelihood of functional recovery after revascularization in patients with CAD and to guide the LV lead placement in those who qualify for cardiac resynchronization (CRT) therapy. In addition, the presence of LGE and its extent in myocardial tissue relates to overall cardiovascular outcomes. Emerging roles for cardiac imaging in Heart Failure with Preserved Ejection Fraction (HFpEF) are being studied and CMR continues to be among the most promising noninvasive imaging alternatives in the diagnosis of this disease. PMID:26041670

  9. A Poisson resampling method for simulating reduced counts in nuclear medicine images

    NASA Astrophysics Data System (ADS)

    White, Duncan; Lawson, Richard S.

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  10. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine

    PubMed Central

    Sevick-Muraca, Eva M.; Rasmussen, John C.

    2010-01-01

    We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine. PMID:19021311

  11. Neuronal dysfunction and medical therapy in heart failure: can an imaging biomarker help to "personalize" therapy?

    PubMed

    Wessler, Benjamin S; Udelson, James E

    2015-06-01

    (123)I-metaiodobenzylguanidine ((123)I-MIBG) imaging is a tool for evaluating one of the fundamental pathophysiologic abnormalities seen in heart failure (HF), that of an upregulated sympathetic nervous system and its effect on the myocardium. Although this imaging technique offers information about prognosis for patients treated with contemporary guideline-based HF therapies and improves risk stratification, there are neither rigorous nor sufficient outcome data to suggest that this imaging tool can guide therapeutic decision making or better target subsets of patients with HF for particular therapies. PMID:26033899

  12. Colour atlas of first pass functional imaging of the heart

    SciTech Connect

    Schad, N.; Andrews, E.J.; Fleming, J.W.

    1985-01-01

    This book contains 21 chapters. Some of the titles are: Functional imaging; Fist pass radionuclide studies in evaluation of mitral valve replacement in chronic insufficiency using Bjork-Shiley tilting disc valves; First pass radionuclide studies in evaluation of left and right ventricular function in patients with bioprosthetic mitral valve replacement after 9-11 years; and First pass radionuclide studies in the evaluation of long term (up to about 15 years) follow up of aortic valve replacement using Starr-Edwards ball prosthesis.

  13. Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images

    PubMed Central

    Garikapati, Kiran; Williams, Celeste T.

    2016-01-01

    Immunosuppression is the typical measure to prevent rejection after heart transplantation. Although rejection is the usual cause of cardiac hypertrophy, numerous other factors warrant consideration. Calcineurin inhibitors rarely cause hypertrophic cardiomyopathy; the few relevant reports have described children after orthotopic kidney or liver transplantation. We present the case of a 73-year-old woman, an asymptomatic orthotopic heart transplantation patient, in whom chronic immunosuppression with prednisone and cyclosporine apparently caused a phenotype of hypertrophic cardiomyopathy. The natural course of her midapical hypertrophy was revealed by single-photon-emission computed tomography, positron-emission tomography, and 2-dimensional echocardiography. Clinicians and radiographers should be alert to progressive left ventricular hypertrophy and various perfusion patterns in heart transplantation patients even in the absence of underlying coronary artery disease. Toward this end, we recommend that advanced imaging methods be used to their fullest extent. PMID:27047289

  14. Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images.

    PubMed

    Ananthasubramaniam, Karthik; Garikapati, Kiran; Williams, Celeste T

    2016-02-01

    Immunosuppression is the typical measure to prevent rejection after heart transplantation. Although rejection is the usual cause of cardiac hypertrophy, numerous other factors warrant consideration. Calcineurin inhibitors rarely cause hypertrophic cardiomyopathy; the few relevant reports have described children after orthotopic kidney or liver transplantation. We present the case of a 73-year-old woman, an asymptomatic orthotopic heart transplantation patient, in whom chronic immunosuppression with prednisone and cyclosporine apparently caused a phenotype of hypertrophic cardiomyopathy. The natural course of her midapical hypertrophy was revealed by single-photon-emission computed tomography, positron-emission tomography, and 2-dimensional echocardiography. Clinicians and radiographers should be alert to progressive left ventricular hypertrophy and various perfusion patterns in heart transplantation patients even in the absence of underlying coronary artery disease. Toward this end, we recommend that advanced imaging methods be used to their fullest extent. PMID:27047289

  15. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.

    PubMed

    Ball, Daniel R; Cruickshank, Rachel; Carr, Carolyn A; Stuckey, Daniel J; Lee, Philip; Clarke, Kieran; Tyler, Damian J

    2013-11-01

    Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess

  16. Molecular imaging in the framework of personalized cancer medicine.

    PubMed

    Belkić, Dzevad; Belkić, Karen

    2013-11-01

    With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers. PMID:24511645

  17. Transmembrane Current Imaging in the Heart during Pacing and Fibrillation

    PubMed Central

    Gray, Richard A.; Mashburn, David N.; Sidorov, Veniamin Y.; Roth, Bradley J.; Pathmanathan, Pras; Wikswo, John P.

    2013-01-01

    Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging. In contrast to commonly used linear Laplacians of extracellular potential (Ve) to compute Im, we utilized nonlinear image processing to compute the required second spatial derivatives of Vm. We quantified the dynamic spatial patterns of current density of Im and Iion for both depolarization and repolarization during pacing (including nonplanar patterns) by calibrating data with the microelectrode signals. Compared to planar propagation, we found that the magnitude of Iion was significantly reduced at sites of wave collision during depolarization but not repolarization. Finally, we present uncalibrated dynamic patterns of Im during ventricular fibrillation and show that Im at singularity sites was monophasic and positive with a significant nonzero charge (Im integrated over 10 ms) in contrast with nonsingularity sites. Our approach should greatly enhance the understanding of the relative roles of functional (e.g., rate-dependent membrane dynamics and propagation patterns) and static spatial heterogeneities (e.g., spatial differences in tissue resistance) via recordings during normal and compromised propagation, including arrhythmias. PMID:24094412

  18. Transmembrane current imaging in the heart during pacing and fibrillation.

    PubMed

    Gray, Richard A; Mashburn, David N; Sidorov, Veniamin Y; Roth, Bradley J; Pathmanathan, Pras; Wikswo, John P

    2013-10-01

    Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging. In contrast to commonly used linear Laplacians of extracellular potential (Ve) to compute Im, we utilized nonlinear image processing to compute the required second spatial derivatives of Vm. We quantified the dynamic spatial patterns of current density of Im and Iion for both depolarization and repolarization during pacing (including nonplanar patterns) by calibrating data with the microelectrode signals. Compared to planar propagation, we found that the magnitude of Iion was significantly reduced at sites of wave collision during depolarization but not repolarization. Finally, we present uncalibrated dynamic patterns of Im during ventricular fibrillation and show that Im at singularity sites was monophasic and positive with a significant nonzero charge (Im integrated over 10 ms) in contrast with nonsingularity sites. Our approach should greatly enhance the understanding of the relative roles of functional (e.g., rate-dependent membrane dynamics and propagation patterns) and static spatial heterogeneities (e.g., spatial differences in tissue resistance) via recordings during normal and compromised propagation, including arrhythmias. PMID:24094412

  19. Shaping the future through innovations: From medical imaging to precision medicine.

    PubMed

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. PMID:27349829

  20. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  1. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  2. Digital image correlation of coated and uncoated Religa Heart_Ext ventricular assist device.

    PubMed

    Kopernik, Magdalena; Gawlikowski, Maciej; Milenin, Andrij; Altyntsev, Ievgenii; Kustosz, Roman; Kąc, Sławomir

    2015-01-01

    The digital image correlation is used to estimate influence of deposited heamocompatible coatings (gold and titanium nitride) on mechanical response of ventricular assist device Religa Heart_Ext made of Bionate II (thermoplastic polycarbonate urethane) under working conditions by comparison of the coated Religa Heart_Ext with uncoated Religa Heart_Ext. The DIC is applied for experimental investigation of the strains and displacements distribution on external surface of the blood chamber of ventricular assist device during loading. The experiment was conducted in a hydraulic system with water at operating temperatures of 25 and 37 °C, as well as under static pressures: 80, 120, 180, 220 and 280 mmHg, and static underpressures: -25, -45, -75 mmHg. The subsequent images were taken after stabilization of pressure on a set level. The applied research method shows that the nano-coating of 30 nm in thickness significantly affects deformation of the blood chamber of Religa Heart_Ext in macro scale. The proposed composition of coatings increases strain on external surface of the ventricular assist device. PMID:26899910

  3. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  4. Nuclear magnetic resonance zeugmatographic imaging of the heart: application to the study of ventricular septal defect. [Lambs

    SciTech Connect

    Heneghan, M.A.; Biancaniello, T.M.; Heidel, E.; Peterson, S.B.; Marsh, M.J.; Lauterbur, P.C.

    1982-04-01

    The present work was undertaken to determine the applicability of nuclear magnetic resonance (NMR) imaging to the study of congenital heart disease. Three-dimensional proton density images of preserved lamb hearts with and without an artificially created ventricular septal defect were reconstructed and displayed in multiple planes. Sections obtained in the sagittal plane through the ventricular septum clearly showed the size, shape, and location of the defect. Results of these experiments suggest that NMR zeugmatography will become a valuable addition to existing imaging techniques for the study of congenital heart disease.

  5. Chronic Chagas' heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine.

    PubMed

    Muñoz-Saravia, Silvia Gilka; Haberland, Annekathrin; Wallukat, Gerd; Schimke, Ingolf

    2012-01-01

    Chagas' disease, caused by Trypanosoma cruzi infection, is ranked as the most serious parasitic disease in Latin America. Nearly 30% of infected patients develop life-threatening complications, and with a latency of 10-30 years, mostly Chagas' heart disease which is currently the major cause of morbidity and mortality in Latin America, enormously burdening economic resources and dramatically affecting patients' social and labor situations. Because of increasing migration, international tourism and parasite transfer by blood contact, intrauterine transfer and organ transplantation, Chagas' heart disease could potentially become a worldwide problem. To raise awareness of this problem, we reflect on the epidemiology and etiopathology of Chagas' disease, particularly Chagas' heart disease. To counteract Chagas' heart disease, in addition to the general interruption of the infection cycle and chemotherapeutic elimination of the infection agent, early and effective causal or symptomatic therapies would be indispensable. Prerequisites for this are improved knowledge of the pathogenesis and optimized patient management. From economic and logistics viewpoints, this last prerequisite should be performed using laboratory medicine tools. Consequently, we first summarize the mechanisms that have been suggested as driving Chagas' heart disease, mainly those associated with the presence of autoantibodies against G-protein-coupled receptors; secondly, we indicate new treatment strategies involving autoantibody apheresis and in vivo autoantibody neutralization; thirdly, we present laboratory medicine tools such as autoantibody estimation and heart marker measurement, proposed for diagnosis, risk assessment and patient guidance and lastly, we critically reflect upon the increase in inflammation and oxidative stress markers in Chagas' heart disease. PMID:21165698

  6. Laser-induced fluorescence imaging of coronary arteries for open-heart surgery applications

    NASA Astrophysics Data System (ADS)

    Taylor, Roderick S.; Gladysz, D.; Brown, Derek W.; Higginson, Lyall A. J.

    1991-07-01

    A technique utilizing laser induced fluorescence has been developed to obtain direct real-time imaging of the coronary artery network for open heart surgery applications. Both excimer pumped dye and cw argon-ion laser radiation transmitted through a fused silica fiber were used as laser sources to irradiate swine, bovine, and human cadaver hearts whose coronary arteries had been injected with strongly fluorescent dyes. The laser induces fluorescence originating from within the coronary arteries and detected by the surgeon's eye, allows the entire coronary network to be directly viewed. A comparison between laser induced fluorescence and the use of direct visual inspection of arteries following injection of the dye Cardio-Green(R) as well as conventional thermal imaging is presented. The limitations imposed on each technique by layers of fat on top of the coronary arteries are also described. The possibility of using these techniques to detect mechanical or laser beam perforations during laser endarterectomy procedures is discussed.

  7. Depth-resolved optical imaging of transmural electrical propagation in perfused heart

    PubMed Central

    Hillman, Elizabeth M. C.; Bernus, Olivier; Pease, Emily; Bouchard, Matthew B.; Pertsov, Arkady

    2008-01-01

    We present a study of the 3-dimensional (3D) propagation of electrical waves in the heart wall using Laminar Optical Tomography (LOT). Optical imaging contrast is provided by a voltage sensitive dye whose fluorescence reports changes in membrane potential. We examined the transmural propagation dynamics of electrical waves in the right ventricle of Langendorf perfused rat hearts, initiated either by endo-cardial or epi-cardial pacing. 3D images were acquired at an effective frame rate of 667Hz. We compare our experimental results to a mathematical model of electrical transmural propagation. We demonstrate that LOT can clearly resolve the direction of propagation of electrical waves within the cardiac wall, and that the dynamics observed agree well with the model of electrical propagation in rat ventricular tissue. PMID:18592044

  8. Discriminative boundary detection for model-based heart segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Peters, Jochen; Ecabert, Olivier; Schramm, Hauke; Weese, Jürgen

    2007-03-01

    Segmentation of organs in medical images can be successfully performed with deformable models. Most approaches combine a boundary detection step with some smoothness or shape constraint. An objective function for the model deformation is thus established from two terms: the first one attracts the surface model to the detected boundaries while the second one keeps the surface smooth or close to expected shapes. In this work, we assign locally varying boundary detection functions to all parts of the surface model. These functions combine an edge detector with local image analysis in order to accept or reject possible edge candidates. The goal is to optimize the discrimination between the wanted and misleading boundaries. We present a method to automatically learn from a representative set of 3D training images which features are optimal at each position of the surface model. The basic idea is to simulate the boundary detection for the given 3D images and to select those features that minimize the distance between the detected position and the desired object boundary. The approach is experimentally evaluated for the complex task of full-heart segmentation in CT images. A cyclic cross-evaluation on 25 cardiac CT images shows that the optimized feature training and selection enables robust, fully automatic heart segmentation with a mean error well below 1 mm. Comparing this approach to simpler training schemes that use the same basic formalism to accept or reject edges shows the importance of the discriminative optimization.

  9. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. PMID:26386547

  10. Chinese Herbal Medicine in the Treatment of Chronic Heart Failure: Three-Stage Study Protocol for a Randomized Controlled Trial

    PubMed Central

    Luo, Liangtao; Chen, Jianxin; Guo, Shuzhen; Wang, Juan; Gao, Kuo; Zhang, Peng; Chen, Chan; Zhao, Huihui; Wang, Wei

    2015-01-01

    Background. Chinese herbal medicine (CHM) has been used in the treatment of chronic heart failure (CHF) for a long time. Treatment based on syndrome differentiation and the main characteristic of TCM is the fundamental principle of TCM practice. In this study protocol, we have designed a trial to assess the efficacy and safety of CHM on CHF based on syndrome differentiation. Methods/Design. This is a three-stage trial of CHM in the treatment of CHF. The first stage is a literature review aiming to explore the common syndromes of CHF. The second is a multicentral, randomized, placebo-controlled trial to evaluate the efficacy and safety of CHM for the treatment of CHF. The third is a multicentral, randomized controlled clinical trial aiming to make cost-effectiveness analysis and evaluate the feasibility, compliance, and universality of CHM on CHF. Discussion. This trial will evaluate the efficacy, safety, feasibility, compliance, and universality of CHM on CHF. The expected outcome is to provide evidence-based recommendations for CHM on CHF and develop a prescription of CHM in the treatment of CHF. This trial is registered with NCT01939236 (Stage Two of the whole trial). PMID:26089951

  11. Cardiac MR Imaging in the Evaluation of Rheumatic Valvular Heart Diseases

    PubMed Central

    Singh, SN; D’Souza, John; Perubhotla, Lakshmi Manasa

    2016-01-01

    Introduction Rheumatic heart disease is the most common cause of valvular heart disease throughout the world. Echocardiography is the dominant imaging investigation in the assessment of cardiac valvular disease and the role of Magnetic Resonance Imaging (MRI) is so far limited. However, due to rapid improvements in the cardiac MRI technology in past few years, this non invasive technique is gaining interest in the examination of cardiac valves. Aim Our study was undertaken to define the role of MRI in the evaluation of Rheumatic valvular heart disease and to compare the role of MRI with transthoracic echocardiography with regard to quantity of stenosis and volume regurgitation. Materials and Methods ECG gated Cardiac MRI was performed with a 1.5-Tesla system (MAGNETOM SYMPHONY- Model 2005) using basic cardiac software (Argus viewer) by a phased-array multicoil on 50 subjects who were known cases of Rheumatic valvular heart disease. A chest radiograph and echocardiography were done in all patients before MR examination. Informed consent was taken from all patients. Results Mitral stenosis either as an isolated valvular abnormality or in combination with other valvular abnormalities constituted the major bulk of Rheumatic valvular heart disease in our study population. The average ejection fraction by ECHO is 64.94±7.11 and by MRI 67.52±7.84. The average mitral valve area by ECHO is 1.79±0.43 cm2 and by MRI 1.82±0.47 cm2. The average aortic valve area by ECHO is 1.10±0.21 cm2 and by MRI 1.12±0.25 cm2. The Coefficient of Correlation (r) is 0.82 for ejection fraction, 0.98 for mitral valve area and 0.92 for aortic valve area which means a strong positive association between the results by ECHO and MRI. In all instances, the p-value is <0.00001, suggesting that the test is highly significant. Conclusion In our study echocardiography was found to be the gold standard for the diagnosis of Rheumatic valvular heart disease and the role of MRI remained only

  12. Evaluation of Hydatid Disease of the Heart with Magnetic Resonance Imaging

    SciTech Connect

    Kotoulas, Grigoris K.; Magoufis, George L.; Gouliamos, Athanasios D.; Athanassopoulou, Alexandra K.; Roussakis, Arcadios C.; Koulocheri, Dimitra P.; Kalovidouris, Angelos; Vlahos, Labros

    1996-05-15

    Two patients with cardiac involvement of hydatid disease are presented: one with hydatid cyst of the interventricular septum and pulmonary arteries and the other with multiple pulmonary cysts associated with intracardiac and pericardial cysts. The ability of magnetic resonance imaging (MRI) to provide a global view of cardiac anatomy in any plane with high contrast between flowing blood and soft tissue ensures it an important role in the diagnosis and preoperative assessment of hydatid disease of the heart.

  13. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  14. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  15. Understanding the transition from alternative medicine to mainstream science: the homocysteine theory of heart disease and the crucial role of effective mentoring.

    PubMed

    Podell, Richard N

    2003-09-01

    A deficiency of effective 'mentoring' may contribute to the relatively low quality of alternative medicine research and to the medical/scientific community's reluctance to consider even its most promising theories. This hypothesis derives from a case-study of the homocysteine theory of heart disease (HTSD), one of only a few recent theories to have made the transition from 'alternative' to 'mainstream'. PMID:12944102

  16. Congenital heart surgery in Houston. The early years.

    PubMed Central

    Takach, T J; Ott, D A

    1997-01-01

    During the 1950s and 1960s, major advances in medicine significantly influenced the development and application of surgery as treatment for congenital heart disease. The Texas Medical Center in Houston was at the forefront of these pioneering efforts and thus played an important role in the development of the art and science of congenital heart surgery. Images PMID:9339518

  17. 256-slice CT coronary angiography in atrial fibrillation: The impact of mean heart rate and heart rate variability on image quality

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Kuang; Hsu, Shih-Ming; Mok, Greta S. P.; Law, Wei-Yip; Lu, Kun-Mu; Yang, Ching-Ching; Wu, Tung-Hsin

    2011-08-01

    The aim of this study was to evaluate the image quality of 256-MDCT in atrial fibrillation and to compare the findings with those among patients in sinus rhythm.MaterialsAll reconstructed images were evaluated by two independent experienced readers blinded to patient information, heart rate, and ECG results to assess the diagnostic quality of images of the coronary artery segments using axial images, multi-planar reformations, maximum intensity projections, and volume rendering technique.ResultsNo statistical significance was detected in terms of the overall image quality between patients in sinus rhythm and with atrial fibrillation. Pearson's correlation analysis showed no significant association between image quality and mean heart rate no matter for patients in sinus rhythm or with atrial fibrillation. Similarly, there was no correlation between image quality and heart rate variability for either patients in sinus rhythm or with atrial fibrillation. Our results showed that the optimal reconstruction window depends on patient's HR, and the pattern for patients in atrial fibrillation is similar to that obtained from non-atrial fibrillation patients.ConclusionThis study shows the potential of using 256-MDCT coronary angiography in patients with atrial fibrillation. Our results suggest that when appropriate reconstruction timing window is applied, patients with atrial fibrillation do not have to be excluded from MDCT coronary angiographic examinations.

  18. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease.

    PubMed

    Partington, Sara L; Valente, Anne Marie; Landzberg, Michael; Grant, Frederick; Di Carli, Marcelo F; Dorbala, Sharmila

    2016-02-01

    Non-invasive testing of children with congenital heart disease (CHD) began in the 1950s with the introduction of radionuclide studies to assess shunt fractions, pulmonary blood flow, and ventricular contractile function. Echocardiography and cardiac magnetic resonance imaging have since replaced radionuclide imaging in many of these roles. Concurrently, percutaneous and surgical repairs of complex CHD evolved, creating new roles for radionuclide imaging. In this paper on applications of radionuclide imaging in CHD, we review the multiple mechanisms for myocardial ischemia in CHD. We critically compare optimal radionuclide imaging techniques to other imaging modalities for assessing ischemia in CHD. We present the current role of nuclear imaging for assessing viability and pulmonary blood flow. We highlight the value added by advances in dedicated cardiac SPECT scanners, novel reconstruction software, and cardiac PET in performing low-dose radionuclide imaging in CHD. Finally, we discuss the emerging clinical indications for radionuclide imaging in CHD including coronary flow reserve assessment and evaluation of cardiovascular prosthesis and device infections. PMID:26129940

  19. Role of Heart and its Diseases in the Etiology of Depression According to Avicenna's Point of View and its Comparison with Views of Classic Medicine

    PubMed Central

    Yousofpour, Mohammad; Kamalinejad, Mohammad; Esfahani, Mohammad Mahdi; Shams, Jamal; Tehrani, Hassan Hoshdar; Bahrami, Mohsen

    2015-01-01

    Background: Depression is one of the most important medical problems in today's world; despite its high prevalence, its causes unfortunately remain not fully known. Among important issues regarding this is its relation with heart diseases. Based on studies this comorbidity increase morbidity and mortality and leads to worst prognosis. However the cause of such high rate of comorbidity is unclear and instead of efforts to understand this correlation has prompted the medical world to consult other medicinal disciplines, not only to find the answer but also to increase the effectiveness of treatment and decrease its cost. Methods: We first reviewed the most important ancient causes for depression mentioned by Avicenna and considered those as the key words for our next step. Then, we made a literature search (PubMed and Scopus) with those key words to find out new scientific findings in modern medicine about the Avicenna's suggestions. Results: Avicenna does not regard depression as only a mental ailment, but as a disorder resulted by the involvement of brain, heart and blood. He believed that the main causes of depressive events are rooted in heart diseases; in most cases brain is only affected secondary to the heart. Thus he declared that for the treatment of depressive disorders, the underlying cardiovascular diseases should be considered. Conclusions: It is worthwhile to consider the Avicenna's recommended causes of depression and to design future scientific studies based on his suggestions. PMID:26124946

  20. Blood Pressure Medicines

    MedlinePlus

    ... reducing sodium in your diet, you may need medicines. Blood pressure medicines work in different ways to lower blood pressure. ... and widen blood vessels. Often, two or more medicines work better than one. NIH: National Heart, Lung, ...

  1. Structural imaging for addiction medicine: From neurostructure to neuroplasticity.

    PubMed

    Brown, Gregory G; Jacobus, Joanna; McKenna, Benjamin

    2016-01-01

    Quantitative morphometry and diffusion tensor imaging have provided new insights into structural brain changes associated with drugs of abuse. In this chapter, we review recent studies using these methods to investigate structural brain abnormalities associated with excessive use of marijuana, stimulants, and opiates. Although many brain regions have been associated with structural abnormalities following abuse of these drugs, brain systems underlying inhibition, mood regulation, and reward are particularly involved. Candidate pathological mechanisms underlying these structural abnormalities include the direct toxic effects of the drugs, neuroinflammation, ischemia, hemorrhage, and abnormal brain development. Returning damaged brain areas to neural health would involve enhancing neuroplasticity. Behavioral, environmental, pharmacological, and cell-based therapies have been correlated with enhanced neuroplasticity following brain injury, providing a basis for new treatments of brain changes associated with excessive drug use. When testing new treatments, structural imaging may prove useful in selecting patients, monitoring recovery, and perhaps, tailoring interventions. PMID:26822356

  2. Three-phase radionuclide bone imaging in sports medicine

    SciTech Connect

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.; Engin, S.I.

    1985-07-01

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features. TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.

  3. Genetic imaging consortium for addiction medicine: From neuroimaging to genes.

    PubMed

    Mackey, Scott; Kan, Kees-Jan; Chaarani, Bader; Alia-Klein, Nelly; Batalla, Albert; Brooks, Samantha; Cousijn, Janna; Dagher, Alain; de Ruiter, Michiel; Desrivieres, Sylvane; Feldstein Ewing, Sarah W; Goldstein, Rita Z; Goudriaan, Anna E; Heitzeg, Mary M; Hutchison, Kent; Li, Chiang-Shan R; London, Edythe D; Lorenzetti, Valentina; Luijten, Maartje; Martin-Santos, Rocio; Morales, Angelica M; Paulus, Martin P; Paus, Tomas; Pearlson, Godfrey; Schluter, Renée; Momenan, Reza; Schmaal, Lianne; Schumann, Gunter; Sinha, Rajita; Sjoerds, Zsuzsika; Stein, Dan J; Stein, Elliot A; Solowij, Nadia; Tapert, Susan; Uhlmann, Anne; Veltman, Dick; van Holst, Ruth; Walter, Henrik; Wright, Margaret J; Yucel, Murat; Yurgelun-Todd, Deborah; Hibar, Derrek P; Jahanshad, Neda; Thompson, Paul M; Glahn, David C; Garavan, Hugh; Conrod, Patricia

    2016-01-01

    Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction. PMID:26822360

  4. Comparative imaging of cardiac structures and function for the optimization of transcatheter approaches for valvular and structural heart disease.

    PubMed

    Bateman, Michael G; Iaizzo, Paul A

    2011-12-01

    The detailed assessment of cardiac anatomy using multiple imaging modalities is essential to understand the high degree of variations that exist in human hearts (i.e., with and without pathologies). Additionally, such information should provide one with important insights regarding which imaging modality will best provide the required visualization of device placement via a given transcatheter approach. We describe here an unique set of such studies performed on either preserved heart specimens or within reanimated large mammalian hearts, including human (using Visible Heart(®) methodologies). Such anatomical and device-tissue interface knowledge is critical for both design engineers and clinicians that seek to develop and/or employ less invasive cardiac repair approaches for patients with acquired or congenital structural heart defects. PMID:21541775

  5. X-ray fluorescence microprobe imaging in biology and medicine.

    PubMed

    Paunesku, Tatjana; Vogt, Stefan; Maser, Jörg; Lai, Barry; Woloschak, Gayle

    2006-12-15

    Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues. PMID:17006954

  6. Three-Dimensional Spectral-Spatial EPR Imaging of Free Radicals in the Heart: A Technique for Imaging Tissue Metabolism and Oxygenation

    NASA Astrophysics Data System (ADS)

    Kuppusamy, Periannan; Chzhan, Michael; Vij, Kamal; Shteynbuk, Michael; Lefer, David J.; Giannella, Eliana; Zweier, Jay L.

    1994-04-01

    It has been hypothesized that free radical metabolism and oxygenation in living organs and tissues such as the heart may vary over the spatially defined tissue structure. In an effort to study these spatially defined differences, we have developed electron paramagnetic resonance imaging instrumentation enabling the performance of three-dimensional spectral-spatial images of free radicals infused into the heart and large vessels. Using this instrumentation, high-quality three-dimensional spectral-spatial images of isolated perfused rat hearts and rabbit aortas are obtained. In the isolated aorta, it is shown that spatially and spectrally accurate images of the vessel lumen and wall could be obtained in this living vascular tissue. In the isolated rat heart, imaging experiments were performed to determine the kinetics of radical clearance at different spatial locations within the heart during myocardial ischemia. The kinetic data show the existence of regional and transmural differences in myocardial free radical clearance. It is further demonstrated that EPR imaging can be used to noninvasively measure spatially localized oxygen concentrations in the heart. Thus, the technique of spectral-spatial EPR imaging is shown to be a powerful tool in providing spatial information regarding the free radical distribution, metabolism, and tissue oxygenation in living biological organs and tissues.

  7. Gallium-67 imaging in human heart transplantation: correlation with endomyocardial biopsy

    SciTech Connect

    Meneguetti, J.C.; Camargo, E.E.; Soares, J. Jr.; Bellotti, G.; Bocchi, E.; Higuchi, M.L.; Stolff, N.; Hironaka, F.H.; Buchpiguel, C.A.; Pileggi, F.

    1987-05-01

    Endomyocardial biopsy seems to be the most accurate method to use for diagnosis and follow-up of acute rejection of the transplanted heart. This investigation compared a noninvasive procedure, gallium-67 imaging, with endomyocardial biopsy in the detection of acute rejection in heart transplantation. Seven male patients (aged 41 to 54 years) sequentially had 46 gallium-67 scintigrams and 46 endomyocardial biopsies between 1 week and 8 months after transplantation. Both studies were obtained in the same day, 48 hours after the administration of an intravenous injection of gallium-67 citrate. Cardiac uptake was graded as negative, mild, moderate, and marked according to an increasing count ratio with rib and sternal uptakes. Histologic findings were graded as negative, mild acute rejection, moderate acute rejection, severe acute rejection, resolving rejection, and nonspecific reaction. Negative biopsies were not found with moderate uptake, and neither moderate nor severe acute rejection were found with negative scintigrams. Imaging sensitivity was 83% with 17% false negatives and 9% false positives. Of seven studies with moderate uptake, five showed moderate acute rejection, and the patients had specific therapy with a decline in uptake, which correlated with resolving rejection. It is conceivable that in the future this technique may be used as a screening procedure for sequential endomyocardial biopsies in the follow-up of heart transplant patients.

  8. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography.

    PubMed

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N; Braun, Natalie N; Saba, Osama; Williamson, Eric E; Harmsen, W Scott; Mandrekar, Jayawant N; McCollough, Cynthia H

    2009-12-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (< or =70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  9. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography

    PubMed Central

    Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2009-01-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  10. Uptake of perfusion imaging agents by transplanted hearts: an experimental study in rats

    SciTech Connect

    Bergsland, J.; Carr, E.A. Jr.; Carroll, M.; Feldman, M.J.; Kung, H.; Wright, J.R.

    1989-02-01

    There is a need for a reliable noninvasive marker of rejection in transplanted hearts. Endomyocardial biopsy is now the universally accepted diagnostic method of choice, but the invasiveness of the procedure and the limited size of the sample obtained makes this method far from ideal. As coronary blood flow may be expected to decrease during acute rejection, there has been interest in thallium-201 chloride (T1), a perfusion marker, as an imaging agent for diagnosing cardiac rejection. Hexakis(t-butylisonitrile)-technetium (Tc-TBI) is a representative of a new class of radiopharmaceuticals proposed as perfusion markers. We have compared the uptake of these imaging agents in a rat model of cardiac transplantation. Uptake of Tc-TBI as well as of T1 was significantly lower in rejecting than in nonrejecting hearts. This change was found in both left (LV) and right (RV) ventricles. Allografts in animals treated with cyclosporine (CyA) showed less severe rejection and higher uptakes of both imaging agents as compared to unmodified rejection. Our results suggest that perfusion imaging with these radionuclides is a potentially useful approach to the problem of detecting allograft rejection.