Science.gov

Sample records for medios sin fin

  1. The dependency of different stress-level SiN capping films and the optimization of D-SMT process for the device performance booster in Ge n-FinFETs

    SciTech Connect

    Liao, M.-H. Chen, P.-G.

    2015-08-17

    The capping stressed SiN film is one of the most important process steps for the dislocation stress memorization technique (D-SMT), which has been used widely in the current industry, for the electron mobility booster in the n-type transistor beyond the 32/28 nm technology node. In this work, we found that the different stress-level SiN capping films influence the crystal re-growth velocities along different directions including [100] and [110] directions in Ge a lot. It can be further used to optimize the dislocation angle in the transistor during the D-SMT process and then results in the largest channel stress distribution to boost the device performance in the Ge n-FinFETs. Based on the theoretical calculation and experimental demonstration, it shows that the Ge three dimensional (3D) n-FinFETs device performance is improved ∼55% with the usage of +3 GPa tensile stressed SiN capping film. The channel stress and dislocation angle is ∼2.5 GPa and 30°, measured by the atomic force microscope-Raman technique and transmission electron microscopy, respectively.

  2. Cúmulos abiertos y su medio interestelar

    NASA Astrophysics Data System (ADS)

    Rizzo, J. R.; Arnal, E. M.; Morras, R.; Cappa, C.

    Se analiza la distribución del hidrógeno neutro en la vecindad de cuatro cúmulos abiertos ubicados en el cuarto cuadrante galáctico, con el fin de investigar su posible interacción con el medio interestelar circundante. El estudio se lleva a cabo en base a observaciones de la línea de 21 cm del HI obtenidos con la antena de 30 m del IAR.

  3. Mechanosensation in an adipose fin.

    PubMed

    Aiello, Brett R; Stewart, Thomas A; Hale, Melina E

    2016-03-16

    Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages. PMID:26984621

  4. Offset cooling coil fin

    SciTech Connect

    Griffin, C.K.; McCabe, M.P.

    1993-06-29

    An improved plate fin heat exchanger of the type having a plurality of longitudinally stacked plate fin members with each having a plurality of transversely spaced rows of openings formed therein, and tubes being disposed through successive aligned holes for conducting the flow of coolant therethrough for cooling air as it passes transversely between the plate fin members from a leading edge to a trailing edge thereof, wherein the improvement is described comprises: the plate fin leading edges being spaced from the nearest row of openings by one distance; the plate fin trailing edges being spaced from the nearest row of openings by another distance substantially greater than the one distance, such that when the trailing edges are oriented in a vertical disposition there is sufficient plate fin surface area near the trailing edge such that condensate residing thereon will tend to run vertically down the plate fin trailing edges rather than being blown off by the flow of air; and condensate collection means disposed below the plate fin trailing edges for receiving condensate flow from the lower ends thereof.

  5. Sin and bioethics.

    PubMed

    Imrényi, Tibor

    2005-08-01

    The essay starts out with defining the biblical concept of sin in the Old and the New Testaments. The literal knowledge of divine truth is distinguished from its truthful and spiritual interpretation. A further distinction should be made between the Creator of life (God) and the medium or "intermediary creator" (man) of life. I argue for the "single wholeness" of the human race and for the unity of human responsibility in bioethics. In delineating the teaching of the Church on abortion and family planning, I show that the healing of all human diseases, from traditional interventions to genetic ones, is a Christian duty and is in accordance with Christ's mission on earth as long as one has not been directly or indirectly involved in "reproducing" or "designing" one's descendants or destroying or damaging human life even at its very beginnings. PMID:16266966

  6. Managing asbestos: Ten costly sins

    SciTech Connect

    Denson, F.A.; Onderick, W.A.

    1993-01-01

    This article describes how to build an ongoing, continuous, and improved asbestos management program. Asbestos management is one of the toughest jobs facing a plant or environmental engineer today; even seasoned engineers can make mistakes. Much confusion exists about how best to manage this issue, especially in plant settings. Whether the company is small, medium, or large, asbestos has the power to steal from profits if not managed properly. To help POWER readers examine their current asbestos management programs, here are 10 common errors that could be stopped or avoided by practicing preventive techniques. The 10 costly sins presented are not mutually exclusive, and they certainly are not all-inclusive. They are offered as a way to stimulate ideas on how to build an ongoing, continuous, and improved asbestos management program. These include Sin 1: No written policy. Sin 2: Lack of corporate guidance. Sin 3: Not complying with regulations. Sin 4: Not worrying about other respirable fibers. Sin 5: Lawsuits--not culpable. Sin 6: No visible emissions, no problems. Sin 7: Managing asbestos manually.

  7. Sailboard Fin Design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In high performance boardsailing, demands on the vertical fin or "skeg" often produce "spinout" - when the skeg loses horizontal lift creating a force imbalance and causing the tail of the board to slide sideways. Richard Caldwell, RACE Technology, Inc. used NASA airfoil technology to solve this problem and formed a business based on his solution. After determining that the spinout resulted from air ventilating down the low pressure side of the underwater fin, he adapted the airfoil technology to the design of a short board skeg, which would overcome the problem and lower the drag, resulting in improved performance. He patented his RACE 145 foil section, formed his company and later returned to Langley for additional technical assistance. The company's newest product is a rigid sail that also incorporates NASA technology and has excellent performance. This company no longer exists - product is no longer in production.

  8. Fully-Implicit Navier-Stokes (FIN-S)

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2010-01-01

    FIN-S is a SUPG finite element code for flow problems under active development at NASA Lyndon B. Johnson Space Center and within PECOS: a) The code is built on top of the libMesh parallel, adaptive finite element library. b) The initial implementation of the code targeted supersonic/hypersonic laminar calorically perfect gas flows & conjugate heat transfer. c) Initial extension to thermochemical nonequilibrium about 9 months ago. d) The technologies in FIN-S have been enhanced through a strongly collaborative research effort with Sandia National Labs.

  9. Brush/Fin Thermal Interfaces

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.; Seaman, Christopher L.; Ellman, Brett M.

    2004-01-01

    Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems. In a typical application according to conventional practice, a replaceable heat-generating unit includes a mounting surface with black-anodized metal fins that mesh with the matching fins of a heat sink or radiator on which the unit is mounted. The fins do not contact each other, but transfer heat via radiation exchange. A brush/fin interface also includes intermeshing fins, the difference being that the gaps between the fins are filled with brushes made of carbon or other fibers. The fibers span the gap between intermeshed fins, allowing heat transfer by conduction through the fibers. The fibers are attached to the metal surfaces as velvet-like coats in the manner of the carbon fiber brush heat exchangers described in the preceding article. The fiber brushes provide both mechanical compliance and thermal contact, thereby ensuring low contact thermal resistance. A certain amount of force is required to intermesh the fins due to sliding friction of the brush s fiber tips against the fins. This force increases linearly with penetration distance, reaching 1 psi (6.9 kPa) for full 2-in. (5.1 cm) penetration for the conventional radiant fin interface. Removal forces can be greater due to fiber buckling upon reversing the sliding direction. This buckling force can be greatly reduced by biasing the fibers at an angle perpendicularly to the sliding direction. Means of containing potentially harmful carbon fiber debris, which is electrically conductive, have been developed. Small prototype brush/fin thermal interfaces have been tested and found to exhibit temperature drops about onesixth of that of conventional

  10. Blower Cooling of Finned Cylinders

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1937-01-01

    Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.

  11. Parametric Fin-Body and Fin-Plate Database for a Series of 12 Missile Fins

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.

    2001-01-01

    A cooperative experimental investigation has been performed to obtain a systematic fin-body and fin-plate database for a series of 12 missile fins. These data are intended to complement and extend the information contained in the Triservice missile project and to provide a systematic set of experimental data from which fin-body interference factors can be derived. Data were obtained with the fins mounted on both an axisymmetric body and on a flat plate that was used to simulate fin-alone measurements. The experiments were conducted at Mach numbers from 0.60 to 3.95; fin deflection angles of 0 deg, 10 deg, and -10 deg; and angles of attack up to 30 deg on the body and up to 95 deg on the flat plate. The data were obtained from three-component balances attached to the fins and a six-component balance located in the axisymmetric body. The data obtained in this project are documented in tabular form in this report. In addition, selected data are presented in graphical form to illustrate the effects of the test variables. These variables are configuration angle of attack; Mach number; and fin parameters of deflection angle, planform size, taper ratio, and aspect ratio. A very limited comparison with the Triservice missile data is made to illustrate the consistency between the data from these two projects.

  12. The ethics of sin taxes.

    PubMed

    Green, Rebecca

    2011-01-01

    ABSTRACT The current global economic crisis is forcing governments to consider a variety of methods to generate funds for infrastructure. In the United States, smoking-related illness and an obesity epidemic are forcing public health institutions to consider a variety of methods to influence health behaviors of entire target groups. In this paper, the author uses a public health nursing model, the Public Health Code of Ethics (Public Health Leadership Society, 2002), the American Nurses' Association (ANA) Code of Ethics (2001), and other relevant ethical theory to weigh and balance the arguments for and against the use of sin taxes. A position advocating the limited use of sin taxes is supported as a reasonable stance for the public health professional. PMID:21198817

  13. Fin-line horn antenna

    DOEpatents

    Reindel, John

    1990-01-01

    A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.

  14. Bulk FinFETs with body spacers for improving fin height variation

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Zhu, Huilong; Zhang, Yanbo; Zhao, Chao

    2016-08-01

    A novel FinFET structure with body spacers in sub fin (BSSF) is proposed to improve the fin height variation produced in the manufacturing processes. Device simulation results are presented to show the electrical variations improvement. The effective fin height (Heff) of FinFETs with BSSF is well controlled because it only depends on the silicon epi layer thickness (TSi). Taking advantage of the precisely controlled epitaxy process, Heff uniformity of FinFETs with BSSF is much better than conventional bulk FinFETs. Benefit from the smaller Heff variation, FinFETs with BSSF show much smaller electrical characteristics variation. For n-FinFETs, the Ion variation improves from 33.46% for conventional bulk FinFETs to 8.05% for FinFETs with BSSF. Additionally, manufacturing of FinFETs with BSSF is compatible with that of the state-of-the-art bulk FinFETs, promising for its applications in massive production.

  15. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  16. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  17. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  18. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  19. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  20. Honeycomb-Fin Heat Sink

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Improved finned heat sink for electronic components more lightweight, inexpensive, and efficient. Designed for use with forced air, easily scaled up to dissipate power up to few hundred watts. Fins are internal walls of aluminum honeycomb structure. Cell structure gives strength to thin aluminum foil. Length of channels chosen for thermodynamic efficency; columns of cells combined in any reasonable number because flowing air distributed to all. Heat sink cools nearly as effectively at ends as near its center, no matter how many columns of cells combined.

  1. The Bacillus subtilis sin Operon

    PubMed Central

    Voigt, Christopher A.; Wolf, Denise M.; Arkin, Adam P.

    2005-01-01

    The strategy of combining genes from a regulatory protein and its antagonist within the same operon, but controlling their activities differentially, can lead to diverse regulatory functions. This protein-antagonist motif is ubiquitous and present in evolutionarily unrelated regulatory pathways. Using the sin operon from the Bacillus subtilis sporulation pathway as a model system, we built a theoretical model, parameterized it using data from the literature, and used bifurcation analyses to determine the circuit functions it could encode. The model demonstrated that this motif can generate a bistable switch with tunable control over the switching threshold and the degree of population heterogeneity. Further, the model predicted that a small perturbation of a single critical parameter can bias this architecture into functioning like a graded response, a bistable switch, an oscillator, or a pulse generator. By mapping the parameters of the model to specific DNA regions and comparing the genomic sequences of Bacillus species, we showed that phylogenetic variation tends to occur in those regions that tune the switch threshold without disturbing the circuit function. The dynamical plasticity of the protein-antagonist operon motif suggests that it is an evolutionarily convergent design selected not only for particular immediate function but also for its evolvability. PMID:15466432

  2. Load characteristics of mechanical pectoral fin

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroyoshi; Kato, Naomi; Suzumori, Koichi

    2008-05-01

    This paper describes the use of a three-motor driven mechanical pectoral fin as a new device for maneuvering and stabilizing an underwater vehicle. The mechanical pectoral fin consists of three servomotors generating feathering, rowing, and flapping motions. The load properties are analyzed experimentally. The mechanical pectoral fin can generate a control load in three dimensions. The effect of flexibility of the fin on the load is also investigated experimentally.

  3. The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators

    NASA Astrophysics Data System (ADS)

    Hu, Wanling; Su, Mei; Wang, Liangcheng; Zhang, Qiang; Chang, Limin; Liu, Song; Wang, Liangbi

    2013-09-01

    In real application, once the pattern of fin is determined, fin spacing of tube bank fin heat exchanger can be adjusted in a small region, and air flow velocity in the front of the heat exchanger is not all the same. Therefore, the effects of fin spacing on heat transfer performance of such heat exchanger are needed. This paper numerically studied the optimal fin spacing regarding the different front flow velocities of a circular tube bank fin heat exchanger with vortex generators. To screen the optimal fin spacing, an appropriate evaluation criterion JF was used. The results show that when front velocity is 1.75 m/s, the optimal fin spacing is 2.25 mm, when front velocity is 2.5 m/s, the optimal fin spacing is 2 mm, and when front velocity is higher than 2.5 m/s, the optimal fin spacing is 1.75 mm.

  4. Effects of Fin Shape on Condensation Heat Transfer and Pressure Drop inside Herringbone Micro Fin Tubes

    NASA Astrophysics Data System (ADS)

    Miyara, Akio; Otsubo, Yusuke; Ohtsuka, Satoshi

    Experiments of in-tube condensation of R410A have been carried out for as mooth tube, a h elical micro fin tube and five types of herringbone micro fin tubes. In the herringbone micro fin tube, the micro fins work to remove liquid at fin-diverging parts and collect liquid at fin-converging parts. In the high mass velocity region, heat transfer coefficient of all the herringbone tubes is about 2-4 times higher than that of the helical micro fin tube. In the low mass velocity region, however, the heat transfer coefficients of the herringbone micro fin tubes are equal to or smaller than those of the helical micro fin tube. Up to the fin height of 0.18 mm, the heat transfer coefficient is higher for higher fin, whereas that of ah igher fin tube is saturated. The pressure drop increases with increasing fin height. The helix angle strongly affects the heat transfer and pressure drop. Higher helix angle causes higher heat transfer coefficient and higher pressure drop. In the case of the herringbone tube which has shorter fin and/or smaller helix angle, pressure drops are equal to or lower than that of the helical micro fin tube, whereas those of other tubes are higher.

  5. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.

    PubMed

    Phelan, Chris; Tangorra, James; Lauder, George; Hale, Melina

    2010-09-01

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities. PMID:20729572

  6. Performance of synchronized fins in biomimetic propulsion.

    PubMed

    Shoele, Kourosh; Zhu, Qiang

    2015-04-01

    By using a two-dimensional model of ray fins, we numerically investigate the thrust generation by closely-coupled fins with an immersed boundary approach. The concentration is on the performance enhancement through fin-fin interactions and the underlying vortex control mechanisms in three representative systems, a two-fin tandem configuration, a two-fin parallel configuration, and a three-fin triangular configuration. In all these systems the thrust generation can be significantly increased in comparison with single fins. Unlike previous studies of tandem fins, in which the gap and phase lag between the two fins were considered separately, our study shows that the dynamics of the system is determined by a parameter that combines these two (the global phase difference). The optimal performance occurs as this parameter is around π (destructive mode), and the worst performance occurs when it is around 0 (constructive mode). Interestingly, contrary to the vorticity cancellation scenario implied by its name, our simulations show that in the destructive mode there is in fact a wake re-organization mechanism, during which vortices with the same rotational direction shed from the two fins are attracted towards each other and merge. Subsequently, the wake downstream becomes a strong and well-organized reverse Kármán vortex street, which explains the increased thrust. In the parallel system, the best performance occurs in cases when the two fins are in opposites phases. Both the thrust and efficiency increase as the gap between the fins decreases, until a symmetry-breaking instability occurs in the wake and the efficiency starts plunging due to the increase in lateral force generation. In the triangular formation, the highest thrust generation also occurs in the destructive mode. However, no further increase in performance is observed compared with the tandem system. PMID:25821945

  7. The S. pombe “cytokinesis” NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment via Pom1/Wee1

    PubMed Central

    Grallert, Agnes; Connolly, Yvonne; Smith, Duncan L.; Simanis, Viesturs; Hagan, Iain M.

    2014-01-01

    Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The Mitotic Exit Network (MEN) of budding yeast regulates both processes, while the fission yeast equivalent, the Septum Initiation Network (SIN), only controls the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved1. It is currently assumed that the functions of the core SIN/MEN components are restricted to their characterised roles at the end of mitosis. We now show that the NDR kinase component of the fission yeast SIN, Sid2/Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2/Mob1 promotes mitotic commitment by directly activating the NIMA related kinase Fin1. Fin1’s activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards Wee1. PMID:22684255

  8. Fin-mutant female zebrafish (Danio rerio) exhibit differences in association preferences for male fin length

    PubMed Central

    Gumm, Jennifer M.; Snekser, Jennifer L.; Iovine, M. Kathryn

    2009-01-01

    Females often choose to associate with males that have exaggerated traits. In fishes, this may reflect an overall preference for larger size in a potential mate. Female zebrafish (Danio rerio) prefer males with larger bodies but not longer fins. The availability of mutant and transgenic strains of zebrafish make this a unique model system in which to study the role of phenotypic variation in social and sexual behavior. We used mutant strains of zebrafish with truncated (short fin) and exaggerated (long fin) fins to further examine female preferences for fin length in dichotomous association tests. Wild type females showed no preferences between wild type males and short fin mutant males or between wild type males and long fin mutant males. short fin females also showed no preference for short fin males or wild type males while long fin females preferred to associate with long fin males over wild type males. These results suggest that the single gene long fin mutation that results in altered fin morphological may also be involved in a related female association preference. PMID:18848866

  9. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  10. Why Sin80x Looks like Sin x on Some Graphing Calculators

    ERIC Educational Resources Information Center

    Zeng, J.; Osler, T. J.

    2005-01-01

    In rare cases, the use of advanced mathematical calculators can give incorrect results. One such error occurs with graphing calculators because the screen is not continuous, but a rectangular array of pixels. On some frequently used calculators, the graph of sin80x looks like sin x. We also study other related examples.

  11. Simulation of Grid-Fin Control Surfaces

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.

    2011-01-01

    Conference poster using previously disclosed techniques and methods (see ARC 16210 & 16212). We present simulations of grid-fin control surfaces to demonstrate geometric complexity and numerical robustness. These results have relevance to high-performance computing and performance of grid-fin-based control systems.

  12. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  13. A comparison of two formulations of the fin efficiency for straight fins

    NASA Astrophysics Data System (ADS)

    Momoniat, Ebrahim

    2012-04-01

    A formulation of the fin efficiency based on Newton's law of cooling is compared with a formulation based on a ratio of heat transferred from the fin surface to the surrounding fluid to the heat conducted through the base. The first formulation requires that the solution of the nonlinear fin equations for constant heat transfer coefficient and constant thermal conductivity is known, whilst the second formulation of the fin efficiency requires only that a first integral of the model equation is known. This paper shows the first formulation of the fin efficiency contains approximation errors as only power series and approximate solutions to the nonlinear fin equations have been determined. The second formulation of the fin efficiency is exact when the first integrals can be determined.

  14. William Blake and the Great Sin

    ERIC Educational Resources Information Center

    Wilkinson, Andrew M.

    1975-01-01

    Writing in his diary of 10th December, 1825, Crabb Robinson quoted from a recent conversation in which William Blake said, "There is no use in education. I hold it wrong. It is the great sin". Author believed that Blake's writings and conversations had considerable educational significance, and he considered them in this article. (Author/RK)

  15. Original Sin and T. E. Hulme's Aesthetics

    ERIC Educational Resources Information Center

    Kishler, Thomas C.

    1976-01-01

    T. E. Hulme, a vigorous opponent of romanticism in art, poetry, and philosophy, insisted that the underlying flaw of the romantic view was its rejection of the dogma of Original Sin and the fall of man. His views are explored for the significant bearing they have on the development of aesthetic insight and indirectly on value and outlook.…

  16. Fin geometry for minimum entropy generation in forced convection

    NASA Astrophysics Data System (ADS)

    Poulikakos, D.; Bejan, A.

    1982-11-01

    This paper establishes a theoretical framework for the minimization of entropy generation (the waste of exergy, or useful energy) in extended surfaces (fins). The entropy generation rate formula for a general fin is derived first. Based on this general result, analytical methods and graphic results are developed for selecting the optimum dimensions of pin fins, rectangular plate fins, plate fins with trapezoidal cross section, and triangular plate fins with rectangular cross section.

  17. Characterization of Sin1 Isoforms Reveals an mTOR-Dependent and Independent Function of Sin

    PubMed Central

    Yuan, Yuanyang; Pan, Bangfen; Sun, Haipeng; Chen, Guoqiang; Su, Bing; Huang, Ying

    2015-01-01

    Sin1 or MAPKAP1 is a key component of mTORC2 signaling complex which is necessary for AKT phosphorylation at the S473 and T450 sites, and also for AKT downstream signaling as well. A number of Sin1 splicing variants have been reported that can produce different Sin1 isoforms due to exon skipping or alternative transcription initiation. In this report, we characterized four Sin1 isoforms, including a novel Sin1 isoform due to alternative 3’ termination of the exon 9a, termed Sin1γ. Sin1γ expression can be detected in multiple adult mouse tissues, and it encodes a C-terminal truncated protein comparing to the full length Sin1β isoform. In contrast to Sin1β, Sin1γ overexpression in Sin1 deficient mouse embryonic fibroblasts has no significant impact on mTORC2 activity or mTORC2 subunits protein level, although it still can interact with mTORC2 components. More interestingly, Sin1γ was detected in a specific cytosolic location with a distinct feature in structure, and its localization was transiently disrupted during cell cycle. Therefore, Sin1γ is a novel Sin1 isoform and may have distinct properties in cell signaling and intracellular localization from other Sin1 isoforms. PMID:26263164

  18. Polar opposites: fine-tuning cytokinesis through SIN asymmetry

    PubMed Central

    Johnson, Alyssa E.; McCollum, Dannel; Gould, Kathleen L.

    2012-01-01

    Mitotic exit and cell division must be spatially and temporally integrated to facilitate equal division of genetic material between daughter cells. In the fission yeast, Schizosaccharomyces pombe, a spindle pole body (SPB) localized signaling cascade termed the septation initiation network (SIN) couples mitotic exit with cytokinesis. The SIN is controlled at many levels to ensure that cytokinesis is executed once per cell cycle and only after cells segregate their DNA. An interesting facet of the SIN is that its activity is asymmetric on the two SPBs during anaphase; however, how and why the SIN is asymmetric has remained elusive. Many key factors controlling SIN asymmetry have now been identified, shedding light on the significance of SIN asymmetry in regulating cytokinesis. In this review, we highlight recent advances in our understanding of SIN regulation, with an emphasis on how SIN asymmetry is achieved and how this aspect of SIN regulation fine-tunes cytokinesis. PMID:22786806

  19. Babar: Sin(2beta) With Charm

    SciTech Connect

    Grenier, P.; /Ecole Polytechnique /Clermont-Ferrand U.

    2006-04-12

    We present measurements of time-dependent CP asymmetries of neutral B decays to several charm and charmonium final states. Data have been collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. In the absence of penguin contribution, the Standard Model predicts the time-dependent CP asymmetry parameters S and C are to be {eta}{sub CP} sin(2{beta}) and 0, respectively.

  20. Pelvic girdle and fin of Tiktaalik roseae

    PubMed Central

    Shubin, Neil H.; Daeschler, Edward B.; Jenkins, Farish A.

    2014-01-01

    A major challenge in understanding the origin of terrestrial vertebrates has been knowledge of the pelvis and hind appendage of their closest fish relatives. The pelvic girdle and appendage of tetrapods is dramatically larger and more robust than that of fish and contains a number of structures that provide greater musculoskeletal support for posture and locomotion. The discovery of pelvic material of the finned elpistostegalian, Tiktaalik roseae, bridges some of these differences. Multiple isolated pelves have been recovered, each of which has been prepared in three dimensions. Likewise, a complete pelvis and partial pelvic fin have been recovered in association with the type specimen. The pelves of Tiktaalik are paired and have broad iliac processes, flat and elongate pubes, and acetabulae that form a deep socket rimmed by a robust lip of bone. The pelvis is greatly enlarged relative to other finned tetrapodomorphs. Despite the enlargement and robusticity of the pelvis of Tiktaalik, it retains primitive features such as the lack of both an attachment for the sacral rib and an ischium. The pelvic fin of Tiktaalik (NUFV 108) is represented by fin rays and three endochondral elements: other elements are not preserved. The mosaic of primitive and derived features in Tiktaalik reveals that the enhancement of the pelvic appendage of tetrapods and, indeed, a trend toward hind limb-based propulsion have antecedents in the fins of their closest relatives. PMID:24449831

  1. The art of fin regeneration in zebrafish

    PubMed Central

    Pfefferli, Catherine

    2015-01-01

    Abstract The zebrafish fin provides a valuable model to study the epimorphic type of regeneration, whereby the amputated part of the appendage is nearly perfectly replaced. To accomplish fin regeneration, two reciprocally interacting domains need to be established at the injury site, namely a wound epithelium and a blastema. The wound epithelium provides a supporting niche for the blastema, which contains mesenchyme‐derived progenitor cells for the regenerate. The fate of blastemal daughter cells depends on their relative position with respect to the fin margin. The apical compartment of the outgrowth maintains its undifferentiated character, whereas the proximal descendants of the blastema progressively switch from the proliferation program to the morphogenesis program. A delicate balance between self‐renewal and differentiation has to be continuously adjusted during the course of regeneration. This review summarizes the current knowledge about the cellular and molecular mechanisms of blastema formation, and discusses several studies related to the regulation of growth and morphogenesis during fin regeneration. A wide range of canonical signaling pathways has been implicated during the establishment and maintenance of the blastema. Epigenetic mechanisms play a crucial role in the regulation of cellular plasticity during the transition between differentiation states. Ion fluxes, gap‐junctional communication and protein phosphatase activity have been shown to coordinate proliferation and tissue patterning in the caudal fin. The identification of the downstream targets of the fin regeneration signals and the discovery of mechanisms integrating the variety of input pathways represent exciting future aims in this fascinating field of research. PMID:27499869

  2. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    PubMed

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from <0.01 to 34 ng/mL, with MMHg averaging 62 ± 7% of total Hg. The highest concentrations of MMHg and total Hg were observed in both fins and soup from large, high trophic level sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. PMID:24835340

  3. Effectiveness and Fin Efficiency of Plate-fin and Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Seshimo, Yu

    This paper presents a method for the determination of effectiveness on plate-fin and tube heat exchangers as a function of the parameters, viz. the thermal capacity ratio, the number of transfer unit and the flow arrangement. The analytical model of the heat exchanger which is adopted that of a multi-pass crossflow heat exchanger with one fluid mixed and another unmixed. For three kinds of flow arrangements of plate-fin and tube heat exchangers, equations on the effectiveness were obtained and the experimental verification of these equations was also performed. In addition, this paper is concerned with method which obtains the fin efficiency of the plate-fin and tube heat exchangers. It is usual practice to evaluate the fin efficiency by assuming that the uniform heat transfer and other suppositions. In this paper, a more realistic determination of fin efficiency is reported, which take into account the heat transfer distribution over the fin surface. It was confirmed that the results of fin efficiency by usual manner were almost equal to that of the realistic estimation in this study.

  4. Microscopic and macroscopic fin-collar effects in the prediction of finned-tube contact

    SciTech Connect

    Shah, P.R.

    1986-01-01

    This work developed a methodology that will enable the future development of a generalized correlation of thermal-contact conductance for the test samples of plate finned tubes (coils). This was accomplished by determining the local (microscopic) contact conductances and the fin-collar (macroscopic) resistances of coils. These two parameters were not taken into account while formulating the previous correlation. Experimental data for test samples of coils operating under vacuum were obtained from recent American Society of Heating, Refrigeration, and Air-Conditioning Engineers' sponsored projects. These data were utilized to correct the prediction of thermal-contact conductance of the fin by taking into account the effect of fin collars. The only available hypothetical contact pressure distribution in the literature was modified to take into account of a variable local pressure and the interference at the interface of tube and the fin. In turn, this pressure distribution was related to the microscopic contact conductance of the fin. Steady-state heat conduction through the tube to a fin collar resulted in a mixed boundary-value problem. The software Interactive Thermal Analysis System (I/TAS) available for use with a microcomputer based on the nodal method was used to solve a set of these problems. This enabled the determination of the macroscopic thermal contact conductance of fin collars.

  5. Índices de color en el infrarrojo cercano y medio de enanas blancas con y sin discos de escombros

    NASA Astrophysics Data System (ADS)

    Saker, L.; Gómez, M.; Chavero C.

    2015-08-01

    In this contribution we use different color indices in near and mid infrared (IR) to identify white dwarfs (WDs) with and without debris disks. To this aim, we employ magnitudes from WISE and 2MASS for a sample of 41 EBs with disks and other 52 objects without evidence of disks, but with similar stellar properties as the first group. For each of the analyzed color-color diagrams (W1W2 vs. W1W3, HW1 vs. JH) we define regions in which EBs with or without disks are located preferably. The usefulness of the color indices, particularly in WISE bands, to select candidates EBs with disks is discussed. Also, we investigate possible correlations between the color indices and other properties of stars, such as metal abundances.

  6. Airside performances of finned eight-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming

    2016-01-01

    For applications in the relatively low temperature refrigeration systems with large constant temperature bath, the present work performed the experimental studies on the airside performances of the staggered finned eight-tube heat exchangers with large fin pitches. The airside heat transfer coefficients and pressure drops for three fin types and two fin pitches are obtained and analyzed. The heat transfer enhancement with louver fins is 11-16 % higher than the flat fins and that with sinusoidal corrugated fins is 1.1-3.4 % higher than the flat fins. Higher Re brings larger enhancement for various fins. Fin pitches show weak influence on heat transfer for eight tube rows. However, effects of fin pitch on heat transfer for both the sinusoidal corrugation and the louvered fin are larger than the flat fins and they are different from those for N ≤ 6. Airside Colburn j factor are compared with previous and it could be concluded that the airside j factor is almost constant for finned tube heat exchangers with eight tubes and large fin pitches, when Re is from 250 to 2500. The results are different from previous studies for fewer tube rows.

  7. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  8. Enhanced boiling heat transfer using radial fins

    NASA Astrophysics Data System (ADS)

    Razelos, P.; Das, S.; Krikkis, R. N.

    2008-04-01

    A numerical bifurcation analysis is carried out in order to determine the solution structure of radial fins subjected to multi-boiling heat transfer mode. One-dimensional conduction is employed throughout the thermal analysis. The fluid heat transfer coefficient is temperature dependent on the three regimes of phase-change of the fluid. Six fin profiles, defined in the text, are considered. Multiplicity structure is obtained to determine different types of bifurcation diagrams, which describe the dependence of a state variable of the system like the temperature or the heat dissipation on the fin design parameters, conduction convection parameter (CCP) or base temperature difference (Δ T). Specifically, the effects of Δ T, CCP and Biot number are analyzed. The results are presented graphically, showing the significant behavioral features of the heat rejection mechanism.

  9. Scintillating lustre induced by radial fins.

    PubMed

    Takahashi, Kohske; Fukuda, Haruaki; Watanabe, Katsumi; Ueda, Kazuhiro

    2012-01-01

    Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect). We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0). Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks. PMID:23145270

  10. Thermoelectric generator with hinged assembly for fins

    DOEpatents

    Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.

    1976-11-02

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield.

  11. Functional morphology of the fin rays of teleost fishes.

    PubMed

    Flammang, Brooke E; Alben, Silas; Madden, Peter G A; Lauder, George V

    2013-09-01

    Ray-finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray-finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm(-1) in the proximal, unsegmented portion of the fin ray and 0.065 mm(-1) in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms(-1) (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm(-1) . Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10(-6) Nm2 . In computational fluid dynamic simulations of the fin-vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small-amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray-finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid

  12. Disease, suffering, and sin: one Anglican's perspective.

    PubMed

    Foster, Claire

    2006-08-01

    This article explores some of the implications of understanding sin as failure of perception. The theological underpinning of the argument is the choice made in the Garden of Eden to eat the fruit of the tree of knowledge rather than the fruit of the tree of life, or wisdom. This has led to distorted perception, in which all things are seen as having separate, independent existences rather than joined together by their common divine source and their deep interrelatedness in the covenant made with God. The article discusses the fascination with the principle of respect for autonomy in the light of this theology. It also looks at perceptions of the HIV/AIDS crisis in Africa. It finishes with a definition of repentance that makes right perception possible. PMID:16864133

  13. Performance Evaluation of Heat Transfer Enhancement in Plate-fin Heat Exchangers with Offset Strip Fins

    NASA Astrophysics Data System (ADS)

    Yujie, Yang; Yanzhong, Li; Biao, Si; Jieyu, Zheng

    Generally, the Offset Strip Fin (OSF) in a plate-fin heat exchanger provides a greater heat transfer coefficient than plain plate-fin, but it also leads to an increase in flow friction. A new parameter, called relative entropy generation distribution factor, Ψ*, is proposed to evaluate the thermodynamic advantages of OSFs. This parameter presents a ratio of relative changes of entropy generation. The relative effects of the geometrical parameters α, γ and δ are discussed. The results show that there exist the optimum values of α and γ at a certain flow condition, which obviously maximize the degree of the heat transfer enhancement of OSFs.

  14. [SIN census 2008: the nephrologist's workload].

    PubMed

    Quintaliani, Giuseppe; Postorino, Maurizio; Di Napoli, Anteo; Limido, Aurelio; Dal Canton, Antonio; Balducci, Alessandro; Contu, Bruno; Salomone, Mario; Nordio, Maurizio; Levialdi Ghiron, Jung Hee; Viglino, Giusto; Pizzarelli, Francesco; Coppo, Rosanna

    2011-01-01

    This paper reports on a first analysis of data of the second survey promoted by the Italian Society of Nephrology (SIN), with particular regard to data referring to the nephrologist's workload. The survey was carried out through a Web-based questionnaire that participants could fill in online between March and December 2010. The data were validated against those of the Italian Dialysis and Transplant Registry (RIDT) and therefore refer to 31 December 2008, the date of the last RIDT report. Accurate completion of the questionnaires and reminders were monitored by the presidents of the regional sections of the SIN and the regional registries' chairpersons under the coordination of four area managers and a census committee. The response to the survey represented 42% of all nephrology centers, treating about 50% of all dialysis patients in Italy. The response percentage varied widely among regions (from 5% to 100% of the centers). After exclusion of the three regions with responses below 10%, it reached 68%, which was sufficient to give an idea of the state of nephrology in Italy. However, due to this wide variability, it was not possible to make an overall comparison of the regional situations, hence data for complex and simple structures were assessed separately. Despite the limits due to the incomplete participation in the survey, this article provides a clear description of the state of nephrology in Italy. The results confirm the hypothesis presented in the work of Bocconi Cergas, namely that the nephrology market is broader than nephrologists are able to control. The work of the nephrologist, which still seems to be focused mainly on dialysis in its various forms, should be directed more towards the development of methods for early detection of kidney disease and close follow-up. The ultimate aim is the early diagnosis of kidney disease and hence prevention of its complications, so that the focus no longer needs to be on ESKD treatment systems. PMID:22167614

  15. Fin width and height dependence of bipolar amplification in bulk FinFETs submitted to heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Ting; Chen, Shu-Ming; Chen, Jian-Jun; Huang, Peng-Cheng

    2015-11-01

    FinFET technologies are becoming the mainstream process as technology scales down. Based on a 28-nm bulk p-FinFET device, we have investigated the fin width and height dependence of bipolar amplification for heavy-ion-irradiated FinFETs by 3D TCAD numerical simulation. Simulation results show that due to a well bipolar conduction mechanism rather than a channel (fin) conduction path, the transistors with narrower fins exhibit a diminished bipolar amplification effect, while the fin height presents a trivial effect on the bipolar amplification and charge collection. The results also indicate that the single event transient (SET) pulse width can be mitigated about 35% at least by optimizing the ratio of fin width and height, which can provide guidance for radiation-hardened applications in bulk FinFET technology. Project supported by the National Natural Science of China (Grant No. 61376109).

  16. Investigation of negative bias temperature instability dependence on fin width of silicon-on-insulator-fin-based field effect transistors

    SciTech Connect

    Young, Chadwin D. Wang, Zhe; Neugroschel, Arnost; Majumdar, Kausik; Matthews, Ken; Hobbs, Chris

    2015-01-21

    The fin width dependence of negative bias temperature instability (NBTI) of double-gate, fin-based p-type Field Effect Transistors (FinFETs) fabricated on silicon-on-insulator (SOI) wafers was investigated. The NBTI degradation increased as the fin width narrowed. To investigate this phenomenon, simulations of pre-stress conditions were employed to determine any differences in gate oxide field, fin band bending, and electric field profile as a function of the fin width. The simulation results were similar at a given gate stress bias, regardless of the fin width, although the threshold voltage was found to increase with decreasing fin width. Thus, the NBTI fin width dependence could not be explained from the pre-stress conditions. Different physics-based degradation models were evaluated using specific fin-based device structures with different biasing schemes to ascertain an appropriate model that best explains the measured NBTI dependence. A plausible cause is an accumulation of electrons that tunnel from the gate during stress into the floating SOI fin body. As the fin narrows, the sidewall device channel moves in closer proximity to the stored electrons, thereby inducing more band bending at the fin/dielectric interface, resulting in a higher electric field and hole concentration in this region during stress, which leads to more degradation. The data obtained in this work provide direct experimental proof of the effect of electron accumulation on the threshold voltage stability in FinFETs.

  17. Experimental investigation of vortex-fin interaction

    NASA Technical Reports Server (NTRS)

    Washburn, Anthony E.; Jenkins, Luther N.; Ferman, Marty A.

    1993-01-01

    An experimental investigation has been conducted to examine the mechanisms of vortex-fin interaction on a twin-fin configuration. The investigation included a parametric study of the effect of tail location. The vortices were generated by a 76 deg sharp-edged delta wing with vertical tails mounted behind the wing. The model included both a dynamically-scaled flexible tail and a pressure instrumented rigid tail. Surface oil-flow patterns, off-body laser light sheet visualizations, aerodynamic load measurements, mean and unsteady flexible tail response, and unsteady tail surface pressure measurements were obtained. The results show that the tail location did not affect the upstream trajectory of the delta wing vortex. The tail location did affect the location of vortex breakdown, the global structure of the flow field, the aerodynamic loads, and the fin buffeting levels. The buffeting levels were reduced as the fins were moved laterally toward the vortex core trajectory. Two distinct peaks were observed in the pressure excitation spectra in the post-breakdown flow. Finally, the presence of the flexible tail opposite the rigid pressure tail altered the pressure measurements at one angle of attack.

  18. Adaptive vibration damping of fin structures

    NASA Astrophysics Data System (ADS)

    Stuwing, Michael; Sachau, Delf; Breitbach, Elmar J.

    1999-07-01

    Modern military aircraft are characterized by employment of optimized structural components. New demands on exploitation of lightweight construction technology will arise because even greater flexibility with increased maneuverability is desired. The structural integration of multifunctional, often called 'smart' elements, properly activated to e.g. reduce structural loading, offers great potential to necessary advances in military aircraft design. One major problem of modern military aircraft is the buffet loading on the fin structures. Flying the aircraft at high angles of attack allows vortices, evolving from the leading edge of the wing, to hit the fin and excite structural vibrations. This leads to structural attrition as well as a reduced aircraft maneuverability. With the aim to reduce these fin vibrations, an adaptive structure has been developed which is presented in this paper. A concept is discussed with which the vibrational loads are reduced by introduction of counteracting forces using an 'active interface'. This interface concept is characterized by the integration of active, piezoelectric elements directly into the bending support of the fin structure. To validate the stability of the interface FE calculations and extensive measurements on piezoceramic stack actuators have been performed. The manufactured interface was integrate in an existing test structure and realistically loaded. The result will be given in this presentation.

  19. Method of assembling a plate-fin heat exchanger

    SciTech Connect

    Kopczynski, J.F.

    1986-07-22

    A method is described of assembling a plate-fin heat exchanger comprising the steps of providing like substantially straight elongate plate fins with spaced holes therein, bowing the plate-fins to increase their stability and accumulating the plate fins in a stacked contiguous relationship to provide a bundle, providing elongated substantially parallel tubes spaced from each other substantially the same distance as the spaced holes and oriented substantially perpendicularly to the stacked plate fins, and mounting the plate fins in the stacked contiguous relationship onto the elongated substantially parallel tubes by inserting the substantially parallel tubes into the spaced holes, transferring the bundle of bowed plate-fins into a carriage, and transferring the bundle of plate-fins from the carriage onto the elongated substantially parallel tubes.

  20. Modeling of nonlinear thermal resistance in FinFETs

    NASA Astrophysics Data System (ADS)

    Krishna Kompala, Bala; Kushwaha, Pragya; Agarwal, Harshit; Khandelwal, Sourabh; Duarte, Juan-Pablo; Hu, Chenming; Singh Chauhan, Yogesh

    2016-04-01

    In this paper, self-consistent three-dimensional (3D) device simulations for exact analysis of thermal transport in FinFETs are performed. We analyze the temperature rise in FinFET devices with the variation in the number of fins (N fin), shape of fins and fin pitch (F pitch). We investigate that the thermal resistance R th has nonlinear dependency on N fin and F pitch. We formulate a model for thermal resistance behavior correctly with N fin and F pitch variation. The proposed formulation is implemented in industry standard Berkeley short-channel independent gate FET model for common multi-gate transistors (BSIM-CMG) and validated with both experimental data and TCAD simulations.

  1. Thermal performance of a pin-fin assembly

    NASA Astrophysics Data System (ADS)

    Babus'hag, R. F.; Akintunde, K.; Probert, S. D.

    1995-02-01

    The steady-state forced-convective cooling of a horizontally based pin-fin assembly has been investigated experimentally. The circular pin-fins protruded vertically upward from a horizontal base plate. For each in-line or staggered combination of specified pin-fins and air-flow rate, the optimal spacing-to-diameter ratios corresponding to the maximum rate of heat dissipation from the array have been deduced. The effect of changing the thermal conductivity of the pin-fin material has been studied. Designers should aim to have a spacing-to-diameter ratio of 1.04, in the span-wise direction, for all pin-fin systems; whereas, the ratio for the pin-fins in the stream-wise direction will depend upon what fin material is used and whether or not the pin-fins are staggered or aligned.

  2. 14 CFR 23.445 - Outboard fins or winglets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination... wings by the fins or winglets. (b) If outboard fins or winglets extend above and below the...

  3. 14 CFR 23.445 - Outboard fins or winglets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination... wings by the fins or winglets. (b) If outboard fins or winglets extend above and below the...

  4. 14 CFR 23.445 - Outboard fins or winglets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination... wings by the fins or winglets. (b) If outboard fins or winglets extend above and below the...

  5. 14 CFR 23.445 - Outboard fins or winglets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination... wings by the fins or winglets. (b) If outboard fins or winglets extend above and below the...

  6. 14 CFR 23.445 - Outboard fins or winglets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... surfaces or wings, the horizontal surfaces or wings must be designed for their maximum load in combination... wings by the fins or winglets. (b) If outboard fins or winglets extend above and below the...

  7. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  8. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  9. The application of conducting polymers to a biorobotic fin propulsor

    NASA Astrophysics Data System (ADS)

    Tangorra, James; Anquetil, Patrick; Fofonoff, Timothy; Chen, Angela; DelZio, Mike; Hunter, Ian

    2007-06-01

    Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create a highly controllable, shape morphing, flexible fin surface, and that linear conducting polymer actuators will be used to actuate the bases of the fin's fin-rays, like an agonist-antagonist muscle pair, and control the fin's stiffness. For this application, trilayer bending actuators were used successfully to reproduce the cupping motion of the sunfish pectoral fin by controlling the curvature of the fin's surface and the motion of its dorsal and ventral edges. However, the speed of these large polymer films was slow, and must be increased if the fin's shape is to be modulated synchronously with the fin's flapping motion. Free standing linear conducting polymer films can generate large stresses and strains, but there are many engineering obstacles that must be resolved in order to create linear polymer actuators that generate simultaneously the forces, displacements and actuation rates required by the fin. We present two approaches that are being used to solve the engineering challenges involved in utilizing conducting polymer linear actuators: the manufacture of long, uniform ribbons of polymer and gold film, and the parallel actuation of multiple conducting polymer films.

  10. Corporate redemption and the seven deadly sins.

    PubMed

    Pearson, A E

    1992-01-01

    Competitive purgatory is the sorry state of too many formerly proud U.S. corporations. They are languishing from the devastating effects of seven familiar sins: inconsistent product quality; slow response to the marketplace; lack of innovative, competitive products; uncompetitive cost structure; inadequate employee involvement; unresponsive customer service; and inefficient resource allocation. To make matters worse, the maladies are mostly management-induced, and the remedies most managers are employing-shifting strategy, reallocating resources, focusing on operations--are proving ineffective. The cures don't address the cause of the disease: negative, risk-averse, bureaucratic work environments that flourished in decades of easy growth but today are undermining competitive performance. What's needed is a total reinvention of the soft side of the organization to produce a work environment that stresses speed, Spartanism, innovation, and marketplace focus. First, top managers must decide what their company stands for and convince their employees of this uniqueness. Second, they must set standards that drive their business to worldclass levels and be tough about enforcing and raising them. Third, they must push constantly to ensure that enough innovations take place to change the company's future significantly. Three other factors are crucial: the right talent, an effective reward system, and CEOs who can drive the desired changes personally. Creating a dynamic work environment is not easy: it takes perseverance, flexibility, and commitment. But these efforts will pay off: how people tackle problems, work together, and think about their jobs are the activities that make a company great. PMID:10118004

  11. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature.

    PubMed

    Chadwell, Brad A; Standen, Emily M; Lauder, George V; Ashley-Ross, Miriam A

    2012-08-15

    Although kinematic analysis of individual fin rays provides valuable insight into the contribution of median fins to C-start performance, it paints an incomplete picture of the complex movements and deformation of the flexible fin surface. To expand our analysis of median fin function during the escape response of bluegill sunfish (Lepomis macrochirus), patterns of spanwise and chordwise curvature of the soft dorsal and anal fin surfaces were examined from the same video sequences previously used in analysis of fin-ray movement and orientation. We found that both the span and chord undergo undulation, starting in the anterior region of either fin. Initiated early in Stage 1 of the C-start, the undulation travels in a postero-distal direction, reaching the trailing edge of the fins during early Stage 2. Maximum spanwise curvature typically occurred among the more flexible posterior fin rays, though there was no consistent correlation between maximum curvature and fin-ray position. Undulatory patterns suggest different mechanisms of action for the fin regions. In the anterior fin region, where the fin rays are oriented dorsoventrally, undulation is directed primarily chordwise, initiating a transfer of momentum into the water to overcome the inertia of the flow and direct the water posteriorly. Within the posterior region, where the fin rays are oriented caudally, undulation is predominantly directed spanwise; thus, the posterior fin region acts to ultimately accelerate this water towards the tail to increase thrust forces. Treatment of median fins as appendages with uniform properties does not do justice to their complexity and effectiveness as control surfaces. PMID:22837462

  12. Performance investigation of finned tube condensers

    SciTech Connect

    Mathur, G.D.

    1996-12-31

    A computer program has been developed to optimize the performance of finned tube condensers. The developed program is used to predict the thermal and hydrodynamic performance of finned tube condensers. The model is based on a steady-state finite difference model. The correlations for predicting the heat transfer and pressure drop are used from the literature. In this paper, the performance of a condenser of a 2-1/2 ton residential air conditioning system (split type) is optimized. The working fluid used in this investigation is R-22. ASHRAE`s condition A [Outside 95 F DBT/75 F WBT; Inside 80 F/67 F WBT] is used in this investigation. The predicted performance of the condenser is within {+-}5% of the experimental data.

  13. Dynamic bioaccumulation of organics in finned fish

    SciTech Connect

    Vohra, R.; Cohen, Y.

    1995-12-31

    A compartmental food-chain bioaccumulation model was developed to predict the degree of bioaccumulation of hydrophobic toxins in finned fish under dynamic conditions. The model was developed with the intent of minimizing the number of required user-input parameters while maintaining flexibility of describing a wide range of plausible scenarios. The model is shown to be in excellent agreement with more complex models and with available field data. The effect of various uptake mechanisms, morphometric parameters and species diet on toxin accumulation in finned fish will be illustrated via a number of test cases covering a wide set of species. The integration of the current bioaccumulation model with multimedia chemical transport and fate models such as the recent Integrated Spatial Multimedia Compartmental Model (Cohen and van de Water, in Computer Techniques in Environmental Studies, Vol. 1, Pollution Modeling, Zannetti (Ed.), 1994) will also be described and illustrated via selected test cases.

  14. Analysis of vortex-induced counter torque and fin pressure on a finned body of revolution.

    SciTech Connect

    Chang, Leyen S.

    2005-09-01

    Finned bodies of revolution firing lateral jets in flight may experience lower spin rates than predicted. This reduction in spin rate is a result of vortices generated by the interaction between the lateral jets and freestream air flowing past the body. The vortices change the pressure distribution on the fins, inducing a counter torque that opposes the desired spin. Wind tunnel data measuring roll torque and fin pressures were collected for a full-scale model at varying angle of attack, roll angle, airspeed, and jet strength. The current analysis builds upon previously written code that computes torque by integrating pressure over the fin surfaces at 0{sup o} angle of attack. The code was modified to investigate the behavior of counter torque at different angles of attack and roll angles as a function of J, the ratio of jet dynamic pressure to freestream dynamic pressure. Numerical error analysis was applied to all data to assist with interpretation of results. Results show that agreement between balance and fin pressure counter torque at 0{sup o} angle of attack was not as close as previously believed. Counter torque at 4{sup o} angle of attack was higher than at 0{sup o}, and agreement between balance and fin pressure counter torque was closer. Plots of differential fin pressure coefficient revealed a region of high pressure at the leading edge and an area of low pressure over the center and aft regions of the tapped surface. Large differences in the counter-torque coefficient were found between various freestream dynamic pressures, especially at Mach 0.95 and 1.1. Roll angle had significant effect only for cases at angle of attack, where it caused counter torque to change unpredictably.

  15. Sizing-tube-fin space radiators

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1978-01-01

    Temperature and size considerations of the tube fin space radiator were characterized by charts and equations. An approach of accurately assessing rejection capability commensurate with a phase A/B level output is reviewed. A computer program, based on Mackey's equations, is also presented which sizes the rejection area for a given thermal load. The program also handles the flow and thermal considerations of the film coefficient.

  16. Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate.

    PubMed

    Xu, Weijia; Yin, Huaxiang; Ma, Xiaolong; Hong, Peizhen; Xu, Miao; Meng, Lingkuan

    2015-12-01

    In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrodes on scalloping fins by a special Si etch process. The entire integration flow of the S-FinFETs is fully compatible with the mainstream all-last HKMG FinFET process, except for a modified fin etch process. The drain-induced barrier lowering and subthreshold swing of the fabricated p-type S-FinFETs with a 14-nm physical gate length are 62 mV/V and 75 mV/dec, respectively, which are much better than those of normal FinFETs with a similar process. With an improved short-channel-effect immunity in the channels due to structure modification, the novel structure provides one of possibilities to extend the FinFET scalability to sub-10-nm nodes with little additional process cost. PMID:26055484

  17. Macrophages modulate adult zebrafish tail fin regeneration.

    PubMed

    Petrie, Timothy A; Strand, Nicholas S; Yang, Chao-Tsung; Tsung-Yang, Chao; Rabinowitz, Jeremy S; Moon, Randall T

    2014-07-01

    Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish. PMID:24961798

  18. Hydrodynamic fin function of brief squid, Lolliguncula brevis.

    PubMed

    Stewart, William J; Bartol, Ian K; Krueger, Paul S

    2010-06-15

    Although the pulsed jet is often considered the foundation of a squid's locomotive system, the lateral fins also probably play an important role in swimming, potentially providing thrust, lift and dynamic stability as needed. Fin morphology and movement vary greatly among squid species, but the locomotive role of the fins is not well understood. To begin to elucidate the locomotive role of the fins in squids, fin hydrodynamics were studied in the brief squid Lolliguncula brevis, a species that exhibits a wide range of fin movements depending on swimming speed. Individual squid were trained to swim in both the arms-first and tail-first orientations against currents in a water tunnel seeded with light-reflective particles. Particle-laden water around the fins was illuminated with lasers and videotaped so that flow dynamics around the fins could be analyzed using digital particle image velocimetry (DPIV). Time-averaged forces generated by the fin were quantified from vorticity fields of the fin wake. During the low swimming speeds considered in this study [<2.5 dorsal mantle lengths (DML) per second], L. brevis exhibited four unique fin wake patterns, each with distinctive vortical structures: (1) fin mode I, in which one vortex is shed with each downstroke, generally occurring at low speeds; (2) fin mode II, an undulatory mode in which a continuous linked chain of vortices is produced; (3) fin mode III, in which one vortex is shed with each downstroke and upstroke, and; (4) fin mode IV, in which a discontinuous chain of linked double vortex structures is produced. All modes were detected during tail-first swimming but only fin modes II and III were observed during arms-first swimming. The fins produced horizontal and vertical forces of varying degrees depending on stroke phase, swimming speed, and swimming orientation. During tail-first swimming, the fins functioned primarily as stabilizers at low speeds before shifting to propulsors as speed increased, all while

  19. [SIN census 2008: the management model].

    PubMed

    Quintaliani, Giuseppe; Postorino, Maurizio; Di Napoli, Anteo; Limido, Aurelio; Dal Canton, Antonio; Balducci, Alessandro; Contu, Bruno; Salomone, Mario; Nordio, Maurizio; Levialdi Ghiron, Jung Hee; Viglino, Giusto; Pizzarelli, Francesco; Coppo, Rosanna

    2012-01-01

    This paper reports the analysis of the second part of the data obtained from the second SIN census and illustrates the management model of the Italian dialysis centers, highlighting its strengths but also its limits. The census was carried out between March and December 2008 with a webbased survey using fillable PDF forms. The survey was validated by comparing the data with those sent to the Italian Dialysis and Transplant Register (Registro Italiano di Dialisi e Trapianti, RIDT) and hence it refers to December 31, 2008, the date of the last RIDT report. Forty-two percent of dialysis centers, which altogether take care of 50% of Italian dialysis patients, participated in the census. The participation percentage was very variable among Italian regions (from 5% to 100% of dialysis centers). By excluding the three regions with a participation rate below 10%, the survey reached a participation rate of 68% of all Italian dialysis centers and is therefore sufficient to give an estimate of the Italian dialysis situation. However, because of this variability it was not possible to compare regional situations, and the data were evaluated only by analyzing the ''complex'' and ''simple'' dialysis centers separately. The state of affairs of dialysis in Italy on the whole proved to be complicated. It is striking, for example, that 15% of the ''complex'' dialysis centers do not have their own hospital beds and some of them lack traceability programs. Noteworthy are also the increasing use of central venous catheters and the number of patients that need an ambulance to get to the dialysis center. Despite its limits due to the reduced participation in the census, this work offers a fair description of the state of affairs of dialysis in Italy, where there is certainly space for qualitative improvement. First of all, however, every effort should be made to implement and improve the use of the existing structures and to standardize protocols and behaviors in all Italian dialysis

  20. The Fifth International Ice Nucleation Workshop Activities FIN-1 and FIN-2: Overview and Selected Results

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Cziczo, D. J.; DeMott, P. J.; Hiranuma, N.; Petters, M. D.

    2015-12-01

    The role of aerosol particles for ice formation in clouds is one of the largest uncertainties in understanding the Earth's weather and climate systems, which is related to the poor knowledge of ice nucleation microphysics or of the nature and atmospheric abundance of ice nucleating particles (INPs). During the recent years, new mobile instruments were developed for measuring the concentration, size and chemical composition of INPs, which were tested during the three-part Fifth International Ice Nucleation (FIN) workshop. The FIN activities addressed not only instrument issues, but also important science topics like the nature of atmospheric INP and cloud ice residuals, the ice nucleation activity of relevant atmospheric aerosols, or the parameterization of ice formation in atmospheric weather and climate models. The first activity FIN-1 was conducted during November 2014 at the AIDA cloud chamber. It involved co-locating nine single particle mass spectrometers to evaluate how well they resolve the INP and ice residual composition and how spectra from different instruments compare for relevant atmospheric aerosols. We conducted about 90 experiments with mineral, carbonaceous and biological aerosol types, some also coated with organic and inorganic compounds. The second activity FIN-2 was conducted during March 2015 at the AIDA facility. A total of nine mobile INP instruments directly sampled from the AIDA aerosol chambers. Wet suspension and filter samples were also taken for offline INP processing. A refereed blind intercomparison was conducted during two days of the FIN-2 activity. The third activity FIN-3 will take place at the Desert Research Institute's Storm Peak Laboratory (SPL) in order to test the instruments' performance in the field. This contribution will introduce the FIN activities, summarize first results from the formal part of FIN-2, and discuss selected results, mainly from FIN-1 for the effect of coating on the ice nucleation (IN) by mineral

  1. Studying Fin Whales with Seafloor Seismic Networks

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Soule, D. C.; Weirathmueller, M.; Thomson, R.

    2011-12-01

    Baleen whales are found throughout the world's oceans and their welfare captivates the general public. Depending on the species, baleen whales vocalize at frequencies ranging from ~10 Hz to several kilohertz. Passive acoustic studies of whale calls are used to investigate behavior and habitat usage, monitor the recovery of populations from whaling and assess the impacts of anthropogenic sounds. Since airguns are a significant source of sound in the oceans, the research goals of academic seismologists can lead to conflicts with those who advocate for whale conservation while being unwilling to consider the societal benefits of marine geophysical studies. In contrast, studies that monitor earthquakes with ocean bottom seismometers (OBSs) provide an opportunity to enhance studies of baleen whales and improve relationships with environmental advocates. The bandwidth of the typical high-frequency or intermediate-band ocean bottom seismometer overlaps the call frequency of the two largest baleen whale species; blue whales generate sequences of 10- to 20-s-long calls centered at ~16 Hz and fin whales produce long sequences of downswept 1-s-long chirps centered at ~20 Hz. Several studies have demonstrated the potential of OBS networks to monitor calling patterns and determine tracks for fin and blue whales. We will summarize the results from a study to track fin whales near the Endeavour hydrothermal vent fields on the Juan de Fuca Ridge and investigate a potential correlation between the density of whales and enhanced zooplankton found throughout the water column overlying the vent fields. From 2003-2006 an 8-station local seismic network that was designed to monitor hydrothermal earthquakes also recorded ~300,000 fin whale vocalizations, mostly in the fall and winter. Automatic picking and localization techniques that are analogous to those used to analyze earthquakes are employed to determine whale tracks. The tracks are then used to interpret calling patterns in the

  2. Uniform Fin Sizes versus Uniform Fin Root Temperatures for Unsymmetrically Obstructed Solar Probe RTGs

    SciTech Connect

    Schock, Alfred; Or, Chuen T; Noravian, Heros

    1991-08-01

    Paper presented at the 26th IECEC, August 4-9, 1991 in Boston, MA. The Solar Probe will approach the sun within four solar radii or 0.02 AU. Because of that proximity, the spacecraft must be protected by a thermal shield. The protected umbra is a cone of 4 m diameter and 7.5 m height, and all temperature-sensitive flight components must fit within that cone. Therefore, the RTGs which power the Solar probe cannot be separated from each other and from other payload components by deploying them on long booms. They must be located near and thermally isolated from the spacecraft's paylod. This paper compares the performance of such variable-fin RTGs with that of uniform-fin RTGs. It derives the fin dimensions required for circumferential isothermicity, identifies a design that maximizes the RTGs specific power, and proves the practicality of that design option. However, detailed thermal and electrical analyses led to the somewhat surprising conclusion that (for a given thermal power) the non-uniform-fin design results in the same power output, at a higher maximum hot-junction temperature, as the standard uniform-fin design, despite the latter's nonuniform cold-junction temperatures. There are three copies in the file.

  3. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  4. Emerging Roles of Epigenetic Regulator Sin3 in Cancer.

    PubMed

    Bansal, N; David, G; Farias, E; Waxman, S

    2016-01-01

    Revolutionizing treatment strategies is an urgent clinical need in the fight against cancer. Recently the scientific community has recognized chromatin-associated proteins as promising therapeutic candidates. However, there is a need to develop more targeted epigenetic inhibitors with less toxicity. Sin3 family is one such target which consists of evolutionary conserved proteins with two paralogues Sin3A and Sin3B. Sin3A/B are global transcription regulators that provide a versatile platform for diverse chromatin-modifying activities. Sin3 proteins regulate key cellular functions that include cell cycle, proliferation, and differentiation, and have recently been implicated in cancer pathogenesis. In this chapter, we summarize the key concepts of Sin3 biology and elaborate the recent advancements in the role of Sin3 proteins in cancer with specific examples in multiple endocrine neoplasia type 2, pancreatic ductal adenocarcinoma, and triple negative breast cancer. Finally, a program to create an integrative approach for screening antitumor agents that target chromatin-associated factors like Sin3 is presented. PMID:27037752

  5. The function of fin rays as proprioceptive sensors in fish.

    PubMed

    Williams, Richard; Neubarth, Nicole; Hale, Melina E

    2013-01-01

    The sensation of movement and position of the limbs is critical for normal behaviours in tetrapods. In the bony fishes it is unclear what proprioceptive feedback is provided from the paired fins, the piscine homologues of the tetrapod limbs. Here we test mechanosensory abilities of afferent nerves in the pectoral fin rays, limb structures used by many fish species in propulsion and manoeuvreing. We examine the bluegill sunfish, a fish that uses its pectoral fins extensively in locomotion. We find that the activity of fin ray nerve fibres reflects the amplitude and velocity of fin ray bending. Spike sorting analyses demonstrate the presence of both slowly and rapidly adapting afferent nerve fibres. The fin sensory abilities we describe substantially expand the diversity of known vertebrate proprioceptive capabilities, and suggest that the pectoral fins need to be considered as possible proprioceptive sensors in studies of their functional morphology, movement and evolution. PMID:23591896

  6. El medio interestelar alrededor de estrellas Of

    NASA Astrophysics Data System (ADS)

    Caballero, N.; Cappa, C.

    Se analiza la distribución del hidrógeno neutro interestelar en la vecindad de algunas estrellas Of con el fin de investigar la presencia de burbujas de H I vinculadas a las estrellas. Se determinan los parámetros físicos de las burbujas de H I encontradas y se comparan con estructuras similares vinculadas a estrellas Wolf-Rayet. El estudio se lleva a cabo en base a datos pertenecientes al relevamiento de Weaver y Willians (1973).

  7. Mudskipper pectoral fin kinematics in aquatic and terrestrial environments.

    PubMed

    Pace, C M; Gibb, A C

    2009-07-01

    Mudskippers use pectoral fins for their primary mode of locomotion on land and pectoral fins in conjunction with the axial musculature and caudal fin to move in water. We hypothesized that distinct pectoral fin movements enable effective locomotion in each environment. Additionally, we made three functional predictions about fin movements during locomotion on land versus water: the pectoral fin is depressed more on land than in water; the pectoral fin will have greater changes in fin area between propulsive and recovery phases in water versus land; anterior and posterior excursions will be greater on land than in water. Locomotion was recorded in each environment using a high-speed digital-imaging system and kinematic variables were calculated from digitized landmark points. Variables were analyzed using principal components analysis and matched pairs t-tests. Mudskippers produce distinct kinematic patterns across environments (P < 0.003), although only some of our predictions were supported. The magnitude of fin depression is the same across habitats. However, depression occurs during the propulsive phase on land (by -0.60 cm), whereas during the propulsive phase in water the fin is elevated (by +0.13 cm). We were unable to support the hypothesis that fin orientation differs between environments. Lastly, anterior extension of the fin is greater on land (1.8 cm, versus 1.3 cm in water), creating a larger stride length in this environment. We posit that the mudskipper pectoral fin may facilitate stability in water and thrust production on land, and suggest that the robust fin morphology of the goby lineage may predispose species within this group to terrestrial locomotion. PMID:19561218

  8. CFD Study of Pectoral Fins of Larval Zebrafish: Effect of Reynolds Number and Fin Bending in Fluid Structures and Transport

    NASA Astrophysics Data System (ADS)

    Islam, Toukir; Curet, Oscar M.

    2015-11-01

    Zebrafish exhibits significant changes in fin morphology as well as fin actuation during its physical development. In larval stage (Re ~ 10), they beat pectoral fins asymmetrically during slow swimming and prey tracking and a hypothesis suggests pectoral fin motion enhances fluid mixing to assist respiration. We performed a series of computational simulations to study effect of Reynolds number (Re) and pectoral fin kinematics in the fluid dynamics and mixing around a larval zebrafish. The CFD algorithm is based on a constraint formulation where the kinematics of the zebrafish are specified. We simulated experimental zebrafish kinematics at different Re (17 to 300) and considered variations on the fin kinematics to evaluate role of fin deformation in the fluid structures generated by the pectoral fins. Using Lagrangian Coherent Structures and Lagrangian fluid tracers, we identified distinctly dynamic fluid regions and found that mixing around the pectoral fin significantly increases with Re and fin bending enhance fluid mixing at low Re. However, as zebrafish matures and its Re increases, the need to beat the pectoral fins to enhance mixing is reduced.

  9. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.

    PubMed

    Tangorra, James; Phelan, Chris; Esposito, Chris; Lauder, George

    2011-07-01

    Bony fish swim with a level of agility that is unmatched in human-developed systems. This is due, in part, to the ability of the fish to carefully control hydrodynamic forces through the active modulation of the fins' kinematics and mechanical properties. To better understand how fish produce and control forces, biorobotic models of the bluegill sunfish's (Lepomis macrochirus) caudal fin and pectoral fins were developed. The designs of these systems were based on detailed analyses of the anatomy, kinematics, and hydrodynamics of the biological fins. The fin models have been used to investigate how fin kinematics and the mechanical properties of the fin-rays influence propulsive forces and to explore kinematic patterns that were inspired by biological motions but that were not explicitly performed by the fish. Results from studies conducted with the fin models indicate that subtle changes to the kinematics and mechanical properties of fin rays can significantly impact the magnitude, direction, and time course of the 3D forces used for propulsion and maneuvers. The magnitude of the force tends to scale with the fin's stiffness, but the direction of the force is not invariant, and this causes disproportional changes in the magnitude of the thrust, lift, and lateral components of force. Results from these studies shed light on the multiple strategies that are available to the fish to modulate fin forces. PMID:21653544

  10. Students Informing Now (S.I.N.) Challenge the Racial State in California without Shame..."SIN Verguenza!"

    ERIC Educational Resources Information Center

    Educational Foundations, 2007

    2007-01-01

    On a cold and wet Friday night in January of 2006, thirteen undergraduate students gathered together in a small room on campus at the University of California, Santa Cruz (UCSC) to found Students Informing Now (S.I.N.). S.I.N. was created to support the AB 504 students, labeled in this country as "illegal aliens." Inspired by Paulo Freire's…

  11. Heat Transfer of Tube-fin Heat Exchanger Having Parallel Louver Continuous Fins

    NASA Astrophysics Data System (ADS)

    Take-Uchi, Masaaki; Yamada, Jun; Tanaka, Jun-Ichirou

    Heat transfer from tubes has been numerically simulated in a fan coil unit for an airconditioning equipment. The array of tubes has parallel louver continuous fins, perpendicular to staggered round tubes. Quite a few of slits divide plates into many strips, which are offsetted, so that the heat transfer will be augmented from the plate to the air flow. On the other hand, the conduction of heat in the platemight be prevented with these slits. The conduction retardation due to slit is estimated, and the simulation shows that the retardation is not serious for present fins.

  12. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.

    PubMed

    Chadwell, Brad A; Standen, Emily M; Lauder, George V; Ashley-Ross, Miriam A

    2012-08-15

    The fast-start escape response is critically important to avoid predation, and axial movements driving it have been studied intensively. Large median dorsal and anal fins located near the tail have been hypothesized to increase acceleration away from the threat, yet the contribution of flexible median fins remains undescribed. To investigate the role of median fins, C-start escape responses of bluegill sunfish (Lepomis macrochirus) were recorded by three high-speed, high-resolution cameras at 500 frames s(-1) and the 3-D kinematics of individual dorsal and anal fin rays were analyzed. Movement and orientation of the fin rays relative to the body axis were calculated throughout the duration of the C-start. We found that: (1) timing and magnitude of angular displacement varied among fin rays based on position within the fin and (2) kinematic patterns support the prediction that fin rays are actively resisting hydrodynamic forces and transmitting momentum into the water. We suggest that regions within the fins have different roles. Anterior regions of the fins are rapidly elevated to increase the volume of water that the fish may interact with and transmit force into, thus generating greater total momentum. The movement pattern of all the fin rays creates traveling waves that move posteriorly along the length of the fin, moving water as they do so. Flexible posterior regions ultimately act to accelerate this water towards the tail, potentially interacting with vortices generated by the caudal fin during the C-start. Despite their simple appearance, median fins are highly complex and versatile control surfaces that modulate locomotor performance. PMID:22837461

  13. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  14. Molecular mechanisms underlying the exceptional adaptations of batoid fins.

    PubMed

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R; Shubin, Neil H

    2015-12-29

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  15. Undulating fins produce off-axis thrust and flow structures.

    PubMed

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin. PMID:24072799

  16. Function of dorsal fins in bamboo shark during steady swimming.

    PubMed

    Maia, Anabela; Wilga, Cheryl A

    2013-08-01

    To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures. PMID:23830781

  17. Development and Validation of the Single Item Narcissism Scale (SINS)

    PubMed Central

    Konrath, Sara; Meier, Brian P.; Bushman, Brad J.

    2014-01-01

    Main Objectives The narcissistic personality is characterized by grandiosity, entitlement, and low empathy. This paper describes the development and validation of the Single Item Narcissism Scale (SINS). Although the use of longer instruments is superior in most circumstances, we recommend the SINS in some circumstances (e.g. under serious time constraints, online studies). Methods In 11 independent studies (total N = 2,250), we demonstrate the SINS' psychometric properties. Results The SINS is significantly correlated with longer narcissism scales, but uncorrelated with self-esteem. It also has high test-retest reliability. We validate the SINS in a variety of samples (e.g., undergraduates, nationally representative adults), intrapersonal correlates (e.g., positive affect, depression), and interpersonal correlates (e.g., aggression, relationship quality, prosocial behavior). The SINS taps into the more fragile and less desirable components of narcissism. Significance The SINS can be a useful tool for researchers, especially when it is important to measure narcissism with constraints preventing the use of longer measures. PMID:25093508

  18. SinR Controls Enterotoxin Expression in Bacillus thuringiensis Biofilms

    PubMed Central

    Økstad, Ole-Andreas; Verplaetse, Emilie; Gilois, Nathalie; Bennaceur, Imène; Perchat, Stéphane; Gominet, Myriam; Aymerich, Stéphane; Kolstø, Anne-Brit; Lereclus, Didier; Gohar, Michel

    2014-01-01

    The entomopathogen Bacillus thuringiensis produces dense biofilms under various conditions. Here, we report that the transition phase regulators Spo0A, AbrB and SinR control biofilm formation and swimming motility in B. thuringiensis, just as they control biofilm formation and swarming motility in the closely related saprophyte species B. subtilis. However, microarray analysis indicated that in B. thuringiensis, in contrast to B. subtilis, SinR does not control an eps operon involved in exopolysaccharides production, but regulates genes involved in the biosynthesis of the lipopeptide kurstakin. This lipopeptide is required for biofilm formation and was previously shown to be important for survival in the host cadaver (necrotrophism). Microarray analysis also revealed that the SinR regulon contains genes coding for the Hbl enterotoxin. Transcriptional fusion assays, Western blots and hemolysis assays confirmed that SinR controls Hbl expression, together with PlcR, the main virulence regulator in B. thuringiensis. We show that Hbl is expressed in a sustained way in a small subpopulation of the biofilm, whereas almost all the planktonic population transiently expresses Hbl. The gene coding for SinI, an antagonist of SinR, is expressed in the same biofilm subpopulation as hbl, suggesting that hbl transcription heterogeneity is SinI-dependent. B. thuringiensis and B. cereus are enteric bacteria which possibly form biofilms lining the host intestinal epithelium. Toxins produced in biofilms could therefore be delivered directly to the target tissue. PMID:24498128

  19. Seven sins in publishing (but who's counting…).

    PubMed

    Benson, P J

    2016-01-01

    , some of Francis' tips have resulted in corrections and retractions. For example, a 2006 paper in the Journal of Cell Biology was retracted after Francis raised concerns years after publication about image manipulation, which were validated by the publisher. (.2) But why does it happen? Why not? Researchers are human and subject to the same frailties as in other walks of life. If a measure of a good academic is solely the number of articles they have published, then - when quantity is rewarded over quality - scientific misconduct may reveal a glimpse of the pressure researchers are under. It is worth remembering that, despite the stress of the 'publish or perish' culture, scientific misconduct is unacceptable in any guise and likely to be discovered, with embarrassing if not downright career- and reputation-destroying consequences. Good publishing etiquette is ultimately down to the integrity and moral sensibilities of researchers and authors. In this excellent article about some of the 'sins' of publishing, Philippa Benson, who has kindly written for this series before, provides a thought-provoking insight into scientific misconduct. Jyoti Shah Commissioning Editor References Lock S. Lessons from the Pearce affair: handling scientific fraud. BMJ 1995; 310: 1,547. Retraction notice. J Cell Biol 2013; 200: 359. doi:10.1083/jcb.2005070832003r. PMID:26688391

  20. Anatomy and early development of the pectoral girdle, fin, and fin spine of sturgeons (Actinopterygii: Acipenseridae).

    PubMed

    Dillman, Casey B; Hilton, Eric J

    2015-03-01

    Acipenseriformes hold an important place in the evolutionary history of bony fishes. Given their phylogenetic position as extant basal Actinopterygii, it is generally held that a thorough understanding of their morphology will greatly contribute to the knowledge of the evolutionary history and the origin of diversity for the major osteichthyan clades. To this end, we examined comparative developmental series from the pectoral girdle in Acipenser fulvescens, A. medirostris, A. transmontanus, and Scaphirhynchus albus to document, describe, and compare ontogenetic and allometric differences in the pectoral girdle. We find, not surprisingly, broad congruence between taxa in the basic pattern of development of the dermal and chondral elements of the pectoral girdle. However, we also find clear differences in the details of structure and development among the species examined in the dermal elements, including the clavicle, cleithrum, supracleithrum, posttemporal, and pectoral-fin spine. We also find differences in the internal fin elements such as the distal radials as well as in the number of fin rays and their association with the propterygium. Further, there are clear ontogenetic differences during development of the dermal and chondral elements in these species and allometric variation in the pectoral-fin spine. The characters highlighted provide a suite of elements for further examination in studies of the phylogeny of sturgeons. Determining the distribution of these characters in other sturgeons may aid in further resolution of phylogenetic relationships, and these data highlight the role that ontogenetic and comparative developmental studies provide in systematics. PMID:25303307

  1. Hydrodynamic Performance of a Flexible Fish Pectoral Fin

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Dong, Haibo; Bozkurttas, Meliha; Lauder, George; Madden, Peter

    2006-11-01

    Numerical simulations have been used to examine in detail the hydrodynamic performance of a pectoral fin of a bluegill sunfish. The pectoral fin of this fish is highly flexible and undergoes significant shape and area change during its flapping cycle. The numerical simulations employ a 3D immersed boundary solver that allows us to examine in detail the hydrodynamics of the fin. Simulations reveal that the fish uses the fin flexibility to produce a highly complex and asymmetric stroke that does not fit any of the classic notions of ``paddling'' or ``flapping.'' The numerical simulations clearly reveal the distinct vortex structured produced by the fin and the connection between the vortex structures and hydrodynamic performance is examined. Finally, comparison between a flexible fish fin and a rigid flapping foil allows us to assess the benefits of flexibility on the hydrodynamic performance.

  2. Bioelectric Signaling Regulates Size in Zebrafish Fins

    PubMed Central

    Perathoner, Simon; Daane, Jacob M.; Henrion, Ulrike; Seebohm, Guiscard; Higdon, Charles W.; Johnson, Stephen L.; Nüsslein-Volhard, Christiane; Harris, Matthew P.

    2014-01-01

    The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K+) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish. PMID:24453984

  3. Experimental investigation of thermal conductance of finned tube contacts

    NASA Astrophysics Data System (ADS)

    Sheffield, J. W.; Wood, R. A.; Sauer, H. J., Jr.

    1989-01-01

    An experimental study was conducted to investigate the contact conductance of plate finned tubes. The basic theory of thermal contact conductance supports the use of measurable parameters including interference, fin spacing, fin thickness, tube hardness, and tube diameter as prediction parameters. Thirty-one coils were tested in a vacuum chamber. A correlation was developed that predicts the thermal contact conductance. The heat transfer results of the experimental study are presented.

  4. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  5. Analysis of three-dimensional kinematics of carp tail fin

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Zhang, Shu; He, Xiaoyuan

    2010-03-01

    In this paper, a test based on the wavelet transform for instantaneous three dimensional (3D) Carp tail fin profile measurements and analysis the kinematics of Carp tail fin method was proposed to understand the function of the tail fin. This experiment method is used in cruising carp. Projecting a moiré fringes onto a tail fin, the deformed fringe pattern containing 3D information was produced and varied with the movement of tail fin. The time-sequence deformed fringe pattern images were captured by a high speed camera. By wavelet transform profilometry, the tail fin movements were really reconstructed. On this basis, the kinematics parameter of tail fin was analyses. Experimental results indicate that the 3D profile of tail fin was varied during the tail-beat cycle. Analysis of tail kinematics suggests that, at a swimming speed 0.5Ls-1, the tail beat frequency is 1.42Hz and the dorsal lobe of the tail undergoes a 15.6% greater lateral excursion than does the ventral lobe. The timing of maximal lateral excursion was different at different location of tail fin.

  6. Analysis of three-dimensional kinematics of carp tail fin

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Zhang, Shu; He, Xiaoyuan

    2009-12-01

    In this paper, a test based on the wavelet transform for instantaneous three dimensional (3D) Carp tail fin profile measurements and analysis the kinematics of Carp tail fin method was proposed to understand the function of the tail fin. This experiment method is used in cruising carp. Projecting a moiré fringes onto a tail fin, the deformed fringe pattern containing 3D information was produced and varied with the movement of tail fin. The time-sequence deformed fringe pattern images were captured by a high speed camera. By wavelet transform profilometry, the tail fin movements were really reconstructed. On this basis, the kinematics parameter of tail fin was analyses. Experimental results indicate that the 3D profile of tail fin was varied during the tail-beat cycle. Analysis of tail kinematics suggests that, at a swimming speed 0.5Ls-1, the tail beat frequency is 1.42Hz and the dorsal lobe of the tail undergoes a 15.6% greater lateral excursion than does the ventral lobe. The timing of maximal lateral excursion was different at different location of tail fin.

  7. Influence of fins on tractor-type podded propulsor performance

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Shen; Huang, Sheng

    2009-09-01

    A mathematical model of podded propulsors was established in order to investigate the influence of fins. The hydrodynamic performance of podded propulsors with and without fins was calculated, with interactions between propellers and pods and fins derived by iterative calculation. The differential equation based on velocity potential was adopted and hyperboloidal panels were used to avoid gaps between surface panels. The Newton-Raphson iterative procedure was used on the trailing edge to meet the pressure Kutta condition. The velocity distribution was calculated with the Yanagizawa method to eliminate the singularity caused by use of the numerical differential. Comparisons of the performance of podded propulsors with different fins showed that the thrust of propeller in a podded propulsor with fins is greater. The resistance of the pod is also reduced because of the thrust of the fin. The hydrodynamic performance of a podded propulsor with two fins is found to be best, the performance of a podded propulsor with one fin is not as good as two fins, and the performance of the common type is the worst.

  8. Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry, and fin patternation on air-side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single-fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows, and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross-section transverse to the direction of airflow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nusselt number) based on the arithmetic mean temperature difference, Nu/sub a/, and the Graetz number, Gz, a dimensionless measure of the level of flow development.

  9. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  10. Development of a bio-inspired transformable robotic fin.

    PubMed

    Yang, Yikun; Xia, Yu; Qin, Fenghua; Xu, Min; Li, Weihua; Zhang, Shiwu

    2016-01-01

    Fish swim by oscillating their pectoral fins forwards and backwards in a cyclic motion such that their geometric parameters and aspect ratios change according to how fast or slow a fish wants to swim; these complex motions result in a complicated hydrodynamic response. This paper focuses on the dynamic change in the shape of a fin to improve the underwater propulsion of bio-inspired mechanism. To do this, a novel transformable robotic fin has been developed to investigate how this change in shape affects the hydrodynamic forces acting on the fin. This robotic fin has a multi-link frame and a flexible surface skin where changes in shape are activated by a purpose designed multi-link mechanism driven by a transformation motor. A drag platform has been designed to study the performance of this variable robotic fin. Numerous experiments were carried out to determine how various controlling modes affect the thrust capability of this fin. The kinematic parameters associated with this robotic fin include the oscillating frequency and amplitude, and the drag velocity. The fin has four modes to control the cyclic motion; these were also investigated in combination with the variable kinematic parameters. The results will help us understand the locomotion performance of this transformable robotic fin. Note that different controlling modes influence the propulsive performance of this robotic fin, which means its propulsive performance can be optimized in a changing environment by adapting its shape. This study facilitates the development of bio-inspired unmanned underwater vehicles with a very high swimming performance. PMID:27580003

  11. Rate of Heat Transfer from Finned Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Taylor, G Fayette; Rehbock, A

    1930-01-01

    The object was to evaluate the factors which control the rate of heat transfer to a moving current of air from finned metal surfaces similar to those used on aircraft engine cylinders. The object was to establish data which will enable the finning of cooling surfaces to be designed to suit the particular needs of any specific application. Most of the work was done on flat copper specimens 6 inches square, upon which were mounted copper fins with spacings varying from 1/2 inch to 1/12 inch. All fins were 1 inch deep, 6 inches long, and .020 inch thick. The results of the investigation are given in the form of curves included here. In general, it was found that for specimens of this kind, the effectiveness of a given fin does not decrease very rapidly until its distance from adjacent fins has been reduced to 1/9 or 1/10 of an inch. A formula for the heat transfer from a flat surface without fins was developed, and an approximate formula for the finned specimens is suggested.

  12. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  13. Female mate preference for longer fins in medaka.

    PubMed

    Fujimoto, Shingo; Kawajiri, Maiko; Kitano, Jun; Yamahira, Kazunori

    2014-11-01

    Medaka, Oryzias latipes complex, display sexual dimorphisms in anal- and dorsal-fin lengths that suggest that females may prefer males with longer fins. However, female preference for longer anal and/or dorsal fins has not yet been described for the medaka. One reason that previous studies have not investigated this relationship may be because variations in male fin lengths within a single population are too small to experimentally detect female preference. In this study, we artificially crossed individuals from two wild populations (Aomori and Okinawa) that differed in male anal- and dorsal-fin lengths to increase phenotypic variation. We then tested female mate preference using these hybrid males. The results of the mating experiments and stepwise multiple regression analyses indicate that anal- and/or dorsal-fin lengths of the males contributed to female preference (i.e., males with longer anal and/or dorsal fins were less likely to be rejected by females). Variation in male standard length did not affect female preference. The evolution of female preference for longer fins in the medaka species complex may be explained by the "sexy son" hypothesis or the direct benefit hypothesis. PMID:25366151

  14. The origin of a new fin skeleton through tinkering.

    PubMed

    Stewart, Thomas A

    2015-07-01

    Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipose fin, characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliopterus. Development of these fin rays differs from canonical lepidotrich development in the following four ways: skeleton begins developing in adults, not in larvae; rays begin developing at the fin's distal tip, not proximally; the order in which rays ossify is variable, not fixed; and lepidotrichia appear to grow both proximally and distally, not exclusively proximodistally. Lepidotrichia are often wavy, of irregular thickness and exhibit no regular pattern of segmentation or branching. This skeleton is among the most variable observed in a vertebrate appendage, offering a unique opportunity to explore the basis of hypervariation, which is generally assumed to reflect an absence of function. I argue that this variation reflects a lack of canalization as compared with other, more ancient lepidotrichs and suggest developmental context can affect the morphology of serial homologues. PMID:26179803

  15. The origin of a new fin skeleton through tinkering

    PubMed Central

    Stewart, Thomas A.

    2015-01-01

    Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipose fin, characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliopterus. Development of these fin rays differs from canonical lepidotrich development in the following four ways: skeleton begins developing in adults, not in larvae; rays begin developing at the fin's distal tip, not proximally; the order in which rays ossify is variable, not fixed; and lepidotrichia appear to grow both proximally and distally, not exclusively proximodistally. Lepidotrichia are often wavy, of irregular thickness and exhibit no regular pattern of segmentation or branching. This skeleton is among the most variable observed in a vertebrate appendage, offering a unique opportunity to explore the basis of hypervariation, which is generally assumed to reflect an absence of function. I argue that this variation reflects a lack of canalization as compared with other, more ancient lepidotrichs and suggest developmental context can affect the morphology of serial homologues. PMID:26179803

  16. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  17. Numerical simulation of a pectoral fin during labriform swimming.

    PubMed

    Shoele, Kourosh; Zhu, Qiang

    2010-06-15

    We numerically examine the fluid-structure interaction and force generation of a skeleton-reinforced fin that geometrically, structurally and kinematically resembles the pectoral fin of a fish during labriform swimming. This fin contains a soft membrane with negligible bending stiffness and 12 embedded rays (modeled as beams). A potential flow-based boundary element model is applied to solve the fluid flow around the fin, in which the vorticity field is modeled as thin vorticity sheets shed from prescribed locations (the sharp trailing edge). The fin motion is actuated by dorsoventral and anteroposterior rotations of the rays (the motion of each ray is controlled individually), as well as pitching motion of the baseline. Consequently, the fin undergoes a combination of flapping (lift-based) and rowing (drag-based) motions typical in labriform swimming. The fin motion contains two strokes: a recovery stroke and a power stroke. The performance of the fin depends upon kinematic parameters such as the Strouhal number, the phase lag between rays, the pitching motion of the baseline and the passive deformations of the rays. The most interesting finding is that the strengthening of the ray at the leading edge plays a pivotal role in performance enhancement by reducing the effective angle of attack and decreasing the power expenditure during the recovery stroke. PMID:20511517

  18. Replacement fin processing for III-V on Si: From FinFets to nanowires

    NASA Astrophysics Data System (ADS)

    Waldron, Niamh; Merckling, Clement; Teugels, Lieve; Ong, Patrick; Sebaai, Farid; Barla, Kathy; Collaert, Nadine; Thean, Voon-Yew (Aaron)

    2016-01-01

    In this paper we review the details and results of the replacement fin process technique used to successfully demonstrate InGaAs based channel devices from FinFets to ultra scaled nanowires on 300 mm Si substrates. For FinFet devices a Mg p-type doping solution was developed to counteract the unintentional n-type doping of the InP buffer layer which resulted in high source-drain leakage. However, the performance of these devices is found to be limited by the Mg doping as the mobility is degraded. By switching to a GAA architecture the problem of source-leakage through the InP buffer is effectively eliminated and best devices with LG = 60 nm have a peak transconductance of 1030 μS/μm with a SSSAT of 125 mV/dec are achieved. A comparison of gate first to gate last processing highlights the importance of using a low thermal budget process to maintain the integrity of the InGaAs/high-K interface. Nanowires with a diameter of 6 nm were demonstrated to show quantization induced immunity to Dit resulting in a SSSAT as low as 66 mV/dec for 85 nm LG devices.

  19. Optimization of Motion of a Mechanical Pectoral Fin

    NASA Astrophysics Data System (ADS)

    Kato, Naomi; Liu, Hao

    This paper describes the use of a mechanical pectoral fin as a new device for maneuvering and stabilizing an underwater vehicle. The mechanical pectoral fin consists of three servo-motors, which respectively generate a rowing motion, a feathering motion, and a flapping motion. We focused on the comparison of load characteristics of the mechanical pectoral fin between the drag-based swimming mode and the lift-based swimming mode, undertaken under the conditions of uniform flow and still water, respectively. Optimization of the parameters of fin motion so as to generate maximum propulsive force in terms of flow condition and motion pattern revealed that the lift-based rather than the drag-based swimming mode is suitable for generation of propulsive force in uniform flow, whereas the drag-based rather than the lift-based swimming mode is suitable for generation of propulsive force in still water within the range of motion of the mechanical pectoral fin.

  20. Cryopreservation of goldfish fins and optimization for field scale cryobanking.

    PubMed

    Moritz, Charlotte; Labbe, Catherine

    2008-06-01

    When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125mM sucrose and 10% Me(2)SO. After 14days of culture, the frozen-thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, -70 degrees C upright or -20 degrees C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4days at 4 degrees C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain -20 degrees C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions. PMID:18346725

  1. Fin shape fluctuations in FinFET: Correlation to electrical variability and impact on 6-T SRAM noise margins

    NASA Astrophysics Data System (ADS)

    Baravelli, Emanuele; De Marchi, Luca; Speciale, Nicolò

    2009-12-01

    Threshold voltage (VT) and drive current (ION) variability of low stand-by power (LSTP)-32 nm FinFETs subject to fin line-edge roughness (LER) is investigated through Technology Computer-Aided Design (TCAD) simulations featuring quantum-corrected hydrodynamic transport. Statistical results provided by an ensemble Monte Carlo (MC) approach highlight an increase in the average VT and a decrease in the average ION with respect to sensitivity analysis based predictions. Correlations of fin shape fluctuations to electrical performance are investigated, thus assessing further limitations of sensitivity analysis and proposing better alternatives to the expensive MC approach. An equivalent fin width is calculated, which allows reducing the spread in ION scatter plots and highlights relative importance of LER in different fin regions. Simplified device instances with linearly varying fin width are simulated to better assess the impact of local thinning/thickening in the channel, source and drain extensions. Asymmetries in the device behavior are observed upon swapping the taper direction and the critical role of extensions is identified. Moreover, the impact of LER on noise margins of FinFET-based Static Random Access Memories (SRAMs) is investigated, considering the hold, read and write operating modes. Results are compared to published data on fabricated cells with similar device features. " μ-6σ" statistics extracted from 1000 mixed-mode simulations helps with assessing variability concerns for mainstream integration of aggressively scaled of FinFET-SRAMs.

  2. Two-dimensional fin efficiency of plate fin-tube heat exchangers under partially and fully wet conditions

    NASA Astrophysics Data System (ADS)

    Jang, Jiin-Yuh; Lin, Chien-Nan

    2002-08-01

    This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for different heat transfer coefficient ( h=20 W/m2K to h=80 W/m2K) and air relative humidity over the full range from ϕ=0 % to ϕ=100%. It is shown that the fin efficiencies of the staggered arrangement are higher than those for the in-lined arrangement, and the fully wet fin efficiency is 10-20% lower than that for a dry fin. The conventional 1-D sector method underestimates the fin efficiency up to 4 % as compared to the 2-D analysis.

  3. The human dark side: evolutionary psychology and original sin.

    PubMed

    Lee, Joseph; Theol, M

    2014-04-01

    Human nature has a dark side, something important to religions. Evolutionary psychology has been used to illuminate the human shadow side, although as a discipline it has attracted criticism. This article seeks to examine the evolutionary psychology's understanding of human nature and to propose an unexpected dialog with an enduring account of human evil known as original sin. Two cases are briefly considered: murder and rape. To further the exchange, numerous theoretical and methodological criticisms and replies of evolutionary psychology are explored jointly with original sin. Evolutionary psychology can partner with original sin since they share some theoretical likenesses and together they offer insights into the nature of what it means to be human. PMID:24327261

  4. [Serotonin dysfunctions in the background of the seven deadly sins].

    PubMed

    Janka, Zoltán

    2003-11-20

    The symbolic characters of the Seven Deadly Sins can be traced from time to time in the cultural history of human mankind, being directly specified in certain artistic products. Such are, among others, the painting entitled "The Seven Deadly Sins and the Four Lost Things" by Hieronymus Bosch and the poems Divina Commedia and The Foerie Queene by Dante Alighieri and Edmund Spenser, respectively. However, there are several paragraphs referring to these behaviours of the Seven Deadly Sins in the Bible and in the dramas of William Shakespeare. The objective of the present review is to propose that dysfunctions in the central serotonergic system might be involved in the neurobiology of these 'sinful' behaviour patterns. Evidences indicate that behaviour traits such as Accidia (Sloth), Luxuria (Lust, Lechery), Superbia (Pride), Ira (Wrath, Anger), Invidia (Envy), Avaritia (Greed, Avarice), and Gula (Gluttony) can relate to the functional alterations of serotonin in the brain. Results of biochemical and molecular genetic (polymorphism) studies on the human serotonergic system (receptor, transporter, enzyme), findings of functional imaging techniques, effects of depletion (or supplementation) of the serotonin precursor tryptophan, data of challenge probe investigations directed to testing central serotonergic functions, alterations in the peripheral serotonin measures (platelet), and the changes in the CSF 5-hydroxy-indoleacetic acid content indicate such serotonergic involvement. Furthermore, results of animal experiments on behaviour change (aggressive, dominant or submissive, appetite, alcohol preference) attributed to serotonin status modification and the clinically evidenced therapeutic efficacy of pharmacological interventions, based on the modulation and perturbation of the serotonergic system (e.g. selective serotonin reuptake inhibitors), in treating the 'sinful' behaviour forms and analogous pathological states reaching the severity of psychiatric disorders

  5. Optimization of convective fin systems: a holistic approach

    NASA Astrophysics Data System (ADS)

    Sasikumar, M.; Balaji, C.

    A numerical analysis of natural convection heat transfer and entropy generation from an array of vertical fins, standing on a horizontal duct, with turbulent fluid flow inside, has been carried out. The analysis takes into account the variation of base temperature along the duct, traditionally ignored by most studies on such problems. One-dimensional fin equation is solved using a second order finite difference scheme for each of the fins in the system and this, in conjunction with the use of turbulent flow correlations for duct, is used to obtain the temperature distribution along the duct. The influence of the geometric and thermal parameters, which are normally employed in the design of a thermal system, has been studied. Correlations are developed for (i) the total heat transfer rate per unit mass of the fin system (ii) total entropy generation rate and (iii) fin height, as a function of the geometric parameters of the fin system. Optimal dimensions of the fin system for (i) maximum heat transfer rate per unit mass and (ii) minimum total entropy generation rate are obtained using Genetic Algorithm. As expected, these optima do not match. An approach to a `holistic' design that takes into account both these criteria has also been presented.

  6. New frontiers in the evolution of fin development.

    PubMed

    Freitas, Renata; Gómez-Skarmeta, José Luis; Rodrigues, Pedro Nuno

    2014-11-01

    The locomotory appendages of vertebrates have undergone significant changes during evolution, which likely promoted a wide range of adaptive strategies. These appendages first evolved as unpaired finfolds in the dorsal midline of early chordates, more than 500 million years ago. Later on, during vertebrates' radiation, two sets of locomotory appendages emerged, developing from both sides of the latero-ventral body wall. The morphology of these paired fins in fishes at different phylogenetic positions suggests an evolutionary tendency for increasing elaboration of the endoskeleton and concomitant reduction of the distal dermoskeleton. This evolutionary process culminated with the origin of limbs in the lineages leading to tetrapods. The developmental programs responsible for the evolution of vertebrate appendages have been a major topic for evolutionary developmental biology recently. Gene expression comparisons performed in chordates explored how these mechanisms were transferred from a midline to latero-ventral position. On another front, gene function assays have begun to test classical hypotheses concerning the transition from fish fins to tetrapod limbs. In this review, we highlight these recent findings on the evolution of vertebrate fin development. First, we discuss new perspectives on the transition from midline to paired appendages focus on (i) origin and molecular regionalization of the lateral plate mesoderm and (ii) novel ectodermic competency zones for fin induction. Next, we review recent work exploring how tetrapod limbs evolved from fish fins, considering (i) molecular and structural changes in the distal ectoderm of fins and (ii) modulation of 5'HoxD transcription during fin endoskeleton development. PMID:24677573

  7. Active stiffness modulation of fins using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Kancharala, Ashok K.; Philen, Michael K.

    2013-04-01

    Studies on the role of body flexibility in propulsion suggest that fish have the ability to control or modulate the stiffness of the fin for optimized propulsive performance. Fins with certain stiffness might be efficient for a particular set of operating parameters but may be inefficient for other parameters. Therefore active stiffness modulation of a fin can improve the propulsive performance for a range of operating conditions. This paper discusses the preliminary experimental work on the open loop active deformation control of heaving flexible fins using Macro Fiber Composites (MFCs). The effect of important parameters such as oscillation frequency, flexibility of the fin, applied voltage and the phase difference between applied voltage and heaving on propulsive performance are studied and reported. The results indicate that propulsive performance can be improved by active control of the fins. The mean thrust improved by 30- 38% for the fins used in the experiments. The phase difference of ~90° is found to be optimal for maximized propulsive performance for the parameters considered in the study. Furthermore, there exists an optimal voltage magnitude at which the propulsive performance is a maximum for the range of operating conditions.

  8. Fish Pectoral Fin Hydrodynamics; Part II: Numerical Simulations and Analysis

    NASA Astrophysics Data System (ADS)

    Dong, H.; Madden, P. G.

    2005-11-01

    High-fidelity numerical simulations are being used to examine the key hydrodynamic features and thrust performance of the pectoral fin of a bluegill sunfish which is moving at a constant forward velocity. The numerical modeling approach employs a parallelized immersed boundary solver which can perform direct (DNS) or large-eddy simulation (LES) of flow past highly deformable bodies such as fish pectoral fins. The three-dimensional, time-dependent fin kinematics is obtained via a stereo-videographic technique and experiments also provide PIV data which is used to validate the numerical simulations. The primary objectives of the CFD effort are to quantify the thrust performance of the bluegill sunfish pectoral fin as well as to establish the mechanisms responsible for thrust production. Simulations show that the pectoral fin produces a relatively large amount of thrust at all phases in the fin motion while limiting the magnitude of the transverse forces. The motion of the fin produces a distinct system of connected vortices which are examined in detail in order to gain insight into the thrust producing mechanisms.

  9. The hydrodynamics of ribbon-fin propulsion during impulsive motion.

    PubMed

    Shirgaonkar, Anup A; Curet, Oscar M; Patankar, Neelesh A; Maciver, Malcolm A

    2008-11-01

    Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water using computational fluid dynamics and digital particle image velocimetry (DPIV) of the flow fields around a robotic ribbon fin. Computed forces are compared with drag measurements from towing a cast of the fish and with thrust estimates for measured swim-direction reversals. We idealize the movement of the fin as a traveling sinusoidal wave, and derive scaling relationships for how thrust varies with the wavelength, frequency, amplitude of the traveling wave and fin height. We compare these scaling relationships with prior theoretical work. The primary mechanism of thrust production is the generation of a streamwise central jet and the associated attached vortex rings. Under certain traveling wave regimes, the ribbon fin also generates a heave force, which pushes the body up in the body-fixed frame. In one such regime, we show that as the number of waves along the fin decreases to approximately two-thirds, the heave force surpasses the surge force. This switch from undulatory parallel thrust to oscillatory normal thrust may be important in understanding how the orientation of median fins may vary with fin length and number of waves along them. Our results will be useful for understanding the neural basis of control in the weakly electric knifefish as well as for engineering bio-inspired vehicles with undulatory thrusters. PMID:18931321

  10. Water flow and fin shape polymorphism in coral reef fishes.

    PubMed

    Binning, Sandra A; Roche, Dominique G

    2015-03-01

    Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (<100 m) along a reef profile (reef slope, crest, and back lagoon). Unlike fin shape, there were no intraspecific differences in fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for

  11. The evaluation of the rolling moments induced by wraparound fins

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Bar-Haim, B.

    1983-01-01

    A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor.

  12. Virtues of SIN: Can Intensified Public Efforts Help Disadvantaged Immigrants?

    ERIC Educational Resources Information Center

    Aslund, Olof; Johansson, Per

    2011-01-01

    The labor market integration of immigrants is a top political priority throughout the Organization for Economic Cooperation and Development (OECD) countries. Social and fiscal gains, as well as sustained future labor supply make governments search for effective policies to increase employment among the mostly disadvantaged. The author studies SIN,…

  13. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins

    NASA Astrophysics Data System (ADS)

    Lauder, George V.; Madden, Peter G. A.

    2007-11-01

    The fins of fishes are remarkable propulsive devices that appear at the origin of fishes about 500 million years ago and have been a key feature of fish evolutionary diversification. Most fish species possess both median (midline) dorsal, anal, and caudal fins as well as paired pectoral and pelvic fins. Fish fins are supported by jointed skeletal elements, fin rays, that in turn support a thin collagenous membrane. Muscles at the base of the fin attach to and actuate each fin ray, and fish fins thus generate their own hydrodynamic wake during locomotion, in addition to fluid motion induced by undulation of the body. In bony fishes, the jointed fin rays can be actively deformed and the fin surface can thus actively resist hydrodynamic loading. Fish fins are highly flexible, exhibit considerable deformation during locomotion, and can interact hydrodynamically during both propulsion and maneuvering. For example, the dorsal and anal fins shed a vortex wake that greatly modifies the flow environment experienced by the tail fin. New experimental kinematic and hydrodynamic data are presented for pectoral fin function in bluegill sunfish. The highly flexible sunfish pectoral fin moves in a complex manner with two leading edges, a spanwise wave of bending, and substantial changes in area through the fin beat cycle. Data from scanning particle image velocimetry (PIV) and time-resolved stereo PIV show that the pectoral fin generates thrust throughout the fin beat cycle, and that there is no time of net drag. Continuous thrust production is due to fin flexibility which enables some part of the fin to generate thrust at all times and to smooth out oscillations that might arise at the transition from outstroke to instroke during the movement cycle. Computational fluid dynamic analyses of sunfish pectoral fin function corroborate this conclusion. Future research on fish fin function will benefit considerably from close integration with studies of robotic model fins.

  14. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang

    2010-01-01

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  15. Flexible nanoscale high-performance FinFETs.

    PubMed

    Torres Sevilla, Galo A; Ghoneim, Mohamed T; Fahad, Hossain; Rojas, Jhonathan P; Hussain, Aftab M; Hussain, Muhammad Mustafa

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics. PMID:25185112

  16. Aerodynamics of slender finned bodies at large angles of attack

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.; Zakkay, V.; Tory, E.; Stallings, R.

    1977-01-01

    In certain missions finned missiles perform slewing maneuvers. Here, large angles of attack are attained. Experimental data needed to understand the aerodynamics of such vehicles are presented. The purpose of this investigation was to study the interaction of the body flow field with that produced by the fins and the resulting effects on the aerodynamic forces and moments. The experiments were conducted at a nominal Mach number of 2.7 and angles of attack from 0 to 50 deg, with two different models. The tests were performed in a range of Reynolds number from 1.5 x 10 to the 6th to 4 x 10 to the 7th per foot (to cover both the laminar and fully turbulent regimes.) Several fin roll angles were investigated. Static pressures on both body and fin surfaces are reported.

  17. The X-38 V-201 Fin Fold Actuation Mechanism

    NASA Technical Reports Server (NTRS)

    Lupo, Christian; Robertson, Brandan; Gafka, George

    2004-01-01

    The X-38 Vehicle 201 (V-201) is a space flight prototype lifting body vehicle that was designed to launch to orbit in the Space Shuttle orbiter payload bay. Although the project was cancelled in May 2003, many of the systems were nearly complete. This paper will describe the fin folding actuation mechanism flight subsystems and development units as well as lessons learned in the design, assembly, development testing, and qualification testing. The two vertical tail fins must be stowed (folded inboard) to allow the orbiter payload bay doors to close. The fin folding actuation mechanism is a remotely or extravehicular activity (EVA) actuated single fault tolerant system consisting of seven subsystems capable of repeatedly deploying or stowing the fins.

  18. Hydrodynamical analysis of the effect of fish fins morphology

    NASA Astrophysics Data System (ADS)

    Azwadi Che Sidik, Nor; Yen, Tey Wah

    2013-12-01

    The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.

  19. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  20. Slotting Fins of Heat Exchangers to Provide Thermal Breaks

    NASA Technical Reports Server (NTRS)

    Scull, Timothy D.

    2003-01-01

    Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.

  1. Overall contact conductance of a prototype Parallel Fin Thermal Interface

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed and tested as an orbital replaceable interface. The interface consists of two identical plates with pairs of opposing parallel straight fins. Each pair of fins is sandwiched between two insert plates pressed against the fins with enough force for good heat transfer through the interface. Two prototype parallel fin interfaces were built (Model 140 and 380) with different fin and insert plate dimensions. Samples of the interfacing surfaces were found to have roughness values ranging from 22 to 35 microinches. Overall interface conductance (Hc) values of 46.7 to 74.2 Btu/hr sq ft-F were obtained for the 140 model in vacuum with an interface pressure from 18.8 to 37.5 psi, respectively. The Model 380 exhibited Hc values from 31.2 to 46.8 Btu/hr sq ft-F in vacuum, with respective interface pressures of 14.2 and 22.0 psi. Several correlations were found to agree with test data to within 20 percent.

  2. Connexin43 regulates joint location in zebrafish fins

    PubMed Central

    Sims, Kenneth; Eble, Diane M.; Iovine, M. Kathryn

    2010-01-01

    Joints are essential for skeletal form and function, yet their development remains poorly understood. In zebrafish fins, joints form between the bony fin ray segments providing essentially unlimited opportunities to evaluate joint morphogenesis. Mutations in cx43 cause the short segment phenotype of short fin (sof b123) mutants, suggesting that direct cell-cell communication may regulate joint location. Interestingly, increased cx43 expression in the another long fin (alf dty86) mutant appears to cause joint failure typical of that mutant. Indeed, knockdown of cx43 in alf dty86mutant fins rescues joint formation. Together, these data reveal a correlation between the level of Cx43 expression in the fin ray mesenchyme and the location of joints. Cx43 was also observed laterally in cells associated with developing joints. Confocal microscopy revealed that the Cx43 protein initially surrounds the membranes of ZNS5-positive joint cells, but at later stages becomes polarized toward the underlying Cx43-positive mesenchymal cells. One possibility is that communication between the Cx43-positive mesenchyme and the overlying ZNS5-positive cells regulates joint location, and up-regulation of Cx43 in joint-forming cells contributes to joint morphogenesis. PMID:19150347

  3. Labriform swimming of a ray-strengthened pectoral fin

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh; Zhu, Qiang

    2009-11-01

    Labriform swimming is a common locomotion mode used by fish in low speed swimming, in which thrust generation is achieved through a combination of flapping and rowing motions of pectoral fins. Pectoral fins of bony fishes usually consist of a soft collagen membrane strengthened by embedded flexible rays. Morphologically, each ray is connected to a group of muscles so that the fish can control the rotational motion of each ray individually, enabling multi-degree of freedom control over the fin motion and deformation. We have developed a fluid-structure interaction model to simulate the kinematics and dynamic performance of a structurally idealized fin. This method includes a boundary-element model of the fluid motion and a fully-nonlinear Euler-Bernoulli beam model of the embedded rays. Using this model we studied thrust generation and propulsion efficiency of the fin at different combinations of parameters. Effects of kinematic as well as structural properties are examined. It has been illustrated that the fish's capacity to control the motion of each individual ray, as well as the anisotropic deformability of the fin determined by distribution of the rays, are essential to high propulsion performance. Specifically, it is found that a reinforced ray at the leading edge leads to performance enhancement.

  4. Connexin43 regulates joint location in zebrafish fins.

    PubMed

    Sims, Kenneth; Eble, Diane M; Iovine, M Kathryn

    2009-03-15

    Joints are essential for skeletal form and function, yet their development remains poorly understood. In zebrafish fins, joints form between the bony fin ray segments providing essentially unlimited opportunities to evaluate joint morphogenesis. Mutations in cx43 cause the short segment phenotype of short fin (sof(b123)) mutants, suggesting that direct cell-cell communication may regulate joint location. Interestingly, increased cx43 expression in the another long fin (alf(dty86)) mutant appears to cause joint failure typical of that mutant. Indeed, knockdown of cx43 in alf(dty86) mutant fins rescues joint formation. Together, these data reveal a correlation between the level of Cx43 expression in the fin ray mesenchyme and the location of joints. Cx43 was also observed laterally in cells associated with developing joints. Confocal microscopy revealed that the Cx43 protein initially surrounds the membranes of ZNS5-positive joint cells, but at later stages becomes polarized toward the underlying Cx43-positive mesenchymal cells. One possibility is that communication between the Cx43-positive mesenchyme and the overlying ZNS5-positive cells regulates joint location, and upregulation of Cx43 in joint-forming cells contributes to joint morphogenesis. PMID:19150347

  5. Fin propulsion on a human-powered submarine

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Pocock, Benjamin; Harbuz, Antoni; Algie, Cam; Vochezer, Daniel; Chao, Ryan; Lu, Benjamin

    2015-03-01

    Nearly all surface and underwater vessels are driven by screw propulsion; ideal for coupling to rotary engines and well understood after over a century of development. But most aquatic creatures use fins for swimming. Although there are sound evolutionary reasons why fish have fins and not propellers, they are nevertheless agile, fast and efficient. Although fish-like robots such as the MIT Robotuna are providing good insight into fin-based swimming there are advantages for using humans in the experimental device. Like an airplane test pilot they can write crash reports. We present preliminary observations for the human powered finned submarine: Taniwha. The sub participated in the 2nd European International Submarine races in Gosport UK where it received a trophy for "Best Non-Propeller Performance". Two sets of Hobie Mirage fin drives fixed to the upper and lower rear surfaces of the sub are pedaled by the pilot. The pilot also has two levers at the front, one to pitch a pair of dive planes and one for yawing a large rudder. Good speed, we estimate to be greater than 6 m/s is possible with these fins although we haven't explored their full potential. Straying too near the surface or bottom can lead to an instability, synonymous to a stall, such that control is lost. The mechanism for this will be discussed and solutions offered. Fish are 400 million years in front of us but one day we'll catch them.

  6. Heat transfer from cylinders having closely spaced fins

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E

    1937-01-01

    The heat-transfer coefficients have been determined for five steel cylinders having fins 1.22 inches wide and the spacing between the fins ranging from 0.022 to 0.131 inch. The cylinders were tested with and without baffles in a wind tunnel; they were also tested enclosed in jackets with the cooling air supplied by a blower. A maximum heat transfer was reached at a fin space of about 0.45 inch for the cylinders tested with each of the three methods of cooling investigated. The rise in temperature of the air passing between the fins and the change in flow pattern were found to be important factors limiting the heat transfer that may be obtained by decreasing the fin space. The use of baffles for directing the air around the cylinders with closely spaced fins proved very effective in increasing the over-all heat-transfer coefficient, provided that the spacing was not appreciably less than that for maximum heat transfer.

  7. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  8. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus).

    PubMed

    Williams, Richard; Hale, Melina E

    2015-11-01

    For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has been shown to be important for control of limb-based behaviors and we hypothesized that this is also the case for the fishes. In this study, we examined the impact of the loss of sensory feedback from the pectoral fins on movement kinematics during hover behavior. Research was performed with bluegill sunfish (Lepomis macrochirus), a model for understanding the biomechanics of swimming and for bio-inspired design of engineered fins. The bluegill beats its pectoral fins rhythmically, and in coordination with pelvic and median fin movement, to maintain a stationary position while hovering. Bilateral deafferentation of the fin rays results in a splay-finned posture where fins beat regularly but at a higher frequency and without adducting fully against the side of the body. For unilateral transections, more irregular changes in fin movements were recorded. These data indicate that sensory feedback from the fin rays and membrane is important for generating normal hover movements but is not necessary for generating rhythmic fin movement. PMID:26347560

  9. The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages.

    PubMed

    Stewart, Thomas A; Smith, W Leo; Coates, Michael I

    2014-04-22

    Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution. PMID:24598422

  10. Inter-isoform-dependent Regulation of the Drosophila Master Transcriptional Regulator SIN3.

    PubMed

    Chaubal, Ashlesha; Todi, Sokol V; Pile, Lori A

    2016-05-27

    SIN3 is a transcriptional corepressor that acts as a scaffold for a histone deacetylase (HDAC) complex. The SIN3 complex regulates various biological processes, including organ development, cell proliferation, and energy metabolism. Little is known, however, about the regulation of SIN3 itself. There are two major isoforms of Drosophila SIN3, 187 and 220, which are differentially expressed. Intrigued by the developmentally timed exchange of SIN3 isoforms, we examined whether SIN3 187 controls the fate of the 220 counterpart. Here, we show that in developing tissue, there is interplay between SIN3 isoforms: when SIN3 187 protein levels increase, SIN3 220 protein decreases concomitantly. SIN3 187 has a dual effect on SIN3 220. Expression of 187 leads to reduced 220 transcript, while also increasing the turnover of SIN3 220 protein by the proteasome. These data support the presence of a novel, inter-isoform-dependent mechanism that regulates the amount of SIN3 protein, and potentially the level of specific SIN3 complexes, during distinct developmental stages. PMID:27129248

  11. A New Analytic Alignment Method for a SINS

    PubMed Central

    Tan, Caiming; Zhu, Xinhua; Su, Yan; Wang, Yu; Wu, Zhiqiang; Gu, Dongbing

    2015-01-01

    Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS) that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration. PMID:26556353

  12. The UNSIN project: exploring the molecular physiology of sins.

    PubMed

    Naji, Faysal; Salci, Lauren; Hoit, Graeme; Rangachari, P K

    2012-03-01

    Although active learning works, promoting it in large undergraduate science classes is difficult. Here, three students (F. Naji, L. Salci, and G. Hoit) join their teacher (P. K. Rangachari) in describing one such attempt. Two cohorts in a first-year undergraduate biology course explored the molecular underpinnings of human misbehavior. Students were divided into 18 groups and randomly allotted to deal with one of the four deadly sins: sloth, gluttony, lust, and wrath. Students were expected to read primary sources to devise molecular ways to counter these sins. Group progress was monitored over the 12-wk period by the preceptor (P. K. Rangachari) at scheduled intervals. A single randomly selected student was questioned about the work done, and future directions were provided by the preceptor. At the end of the term, randomly selected students defended their group's approaches to the entire class. A final written report was graded. The following multiple target molecules were considered for each sin: gluttony (cholecystokinin, ghrelin, GABA, leptin, peptide YY, neuropeptide Y, and the melanocortin 4 receptor); sloth (dopamine, glutamate, GABA, and orexin); wrath (serotonin, GABA, glutamate, and corticotropin-releasing hormone receptor 2); and lust (prolactin, testosterone, oxytocin, dopamine, and estrogen). Students noted that the project provided a valuable learning experience, and the random selection approach gave students a greater sense of responsibility to their group. The project helped students hone their skills at searching, synthesizing, sharing, and presenting information, fostered group interactions, and provided a solid knowledge base for subsequent courses. PMID:22383407

  13. A New Analytic Alignment Method for a SINS.

    PubMed

    Tan, Caiming; Zhu, Xinhua; Su, Yan; Wang, Yu; Wu, Zhiqiang; Gu, Dongbing

    2015-01-01

    Analytic alignment is a type of self-alignment for a Strapdown inertial navigation system (SINS) that is based solely on two non-collinear vectors, which are the gravity and rotational velocity vectors of the Earth at a stationary base on the ground. The attitude of the SINS with respect to the Earth can be obtained directly using the TRIAD algorithm given two vector measurements. For a traditional analytic coarse alignment, all six outputs from the inertial measurement unit (IMU) are used to compute the attitude. In this study, a novel analytic alignment method called selective alignment is presented. This method uses only three outputs of the IMU and a few properties from the remaining outputs such as the sign and the approximate value to calculate the attitude. Simulations and experimental results demonstrate the validity of this method, and the precision of yaw is improved using the selective alignment method compared to the traditional analytic coarse alignment method in the vehicle experiment. The selective alignment principle provides an accurate relationship between the outputs and the attitude of the SINS relative to the Earth for a stationary base, and it is an extension of the TRIAD algorithm. The selective alignment approach has potential uses in applications such as self-alignment, fault detection, and self-calibration. PMID:26556353

  14. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  15. Optimal design of plate-fin heat exchangers by particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Darus, A. N.

    2011-12-01

    This study explores the application of Particle Swarm Optimization (PSO) for optimization of a cross-flow plate fin heat exchanger. Minimization total annual cost is the target of optimization. Seven design parameters, namely, heat exchanger length at hot and cold sides, fin height, fin frequency, fin thickness, fin-strip length and number of hot side layers are selected as optimization variables. A case study from the literature proves the effectiveness of the proposed algorithm in case of achieving more accurate results.

  16. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  17. Vortical structures in the wake of an undulating fin

    NASA Astrophysics Data System (ADS)

    Dewey, Peter A.; Carriou, Antoine; Smits, Alexander J.

    2010-11-01

    Batoid fish such as the manta ray propel themselves through the water by producing a traveling wave motion along the chord of their pectoral fin. Such a motion produces thrust through the development of an unsteady vortex street that results in a jet-like average flow. Digital particle image velocimetry (DPIV) is used to characterize the vortical patterns and structures developed in the wake of a manta ray-like fin. A DC servo motor powers a gear train to produce the traveling wave motion; whose frequency and wave length can be varied. The amplitude of the traveling wave motion linearly increases along the span of the fin. Wake morphologies for a wide spectrum of oscillation frequencies and traveling wave wavelengths are identified. A bifurcation from a 2S wake structure to a 2P wake structure is observed as the traveling wave wavelength is decreased, which corresponds to a decrease in efficiency as reported by Clark and Smits (2006). Alteration of the oscillation frequency, and thus Strouhal number, affects vortex interaction and is found to significantly modify the resulting velocity profiles in the wake of the fin. Notably, increasing the Strouhal number beyond optimal conditions, reported by Clark and Smits, corresponds to a reduction in the extent that the jet-like average flow is observed downstream of the fin.

  18. Investigation of Scaling Effects on Fish Pectoral Fin Performance

    NASA Astrophysics Data System (ADS)

    Bozkurttas, Meliha; Dong, Haibo; Mittal, Rajat; Madden, Peter; Lauder, George

    2006-11-01

    Reynolds and Strouhal numbers are two key parameters that can potentially affect the performance of rigid and deformable flapping foils. Flow past a deformable pectoral fin of a fish in steady forward motion (speed of 1 BL/s) is simulated using a Cartesian grid immersed boundary solver. Investigation of the scaling of the performance with these two parameters allows us to gain better insight into the fundamental mechanisms of the thrust production as well as address the practical question of how the performance of a fin is expected to change with changes in size, speed and frequency. It is found that the essential fluid dynamic mechanisms are unchanged with Reynolds number. We observe that although the vortex structures get more complicated with increasing Re, the key features (like the strong tip vortex, leading and trailing edge vortices) are similar in all the cases. On the other hand, the hydrodynamic performance of the fin is found to be quite sensitive to the Strouhal number. A set of numerical simulations of fin gaits synthesized from the POD modes are also carried out. This approach allows us to connect specific features in the fin gait with the observed vortex dynamics and hydrodynamic force production.

  19. Fin Buffeting Features of an Early F-22 Model

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Huttsell, Lawrence

    2000-01-01

    Fin buffeting is an aeroelastic phenomenon encountered by high performance aircraft, especially those with twin vertical tails that must operate at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. To date, the buffet (unsteady pressures) and buffeting (structural response) characteristics of the F-15 and F/A-18 fins have been studied extensively using flow visualization, flow velocity measurements, pressure transducers, and response gages. By means of windtunnel and flight tests of the F-15 and F/A-18, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can he increased by structural enhancements to these airframes. However, prior to the present research, data was not available outside the F-22 program regarding fin buffeting on the F-22 configuration. During a test in the Langley Transonic Dynamics Tunnel, flow visualization and unsteady fin surface pressures were recorded for a 13.3%-scale F-22 model at high angles of attack for the purpose of comparing with results available for similar aircraft configurations. Details of this test and fin buffeting are presented herein.

  20. Development of colburn ` j' factor and fanning friction factor ` f' correlations for compact heat exchanger plain fins by using CFD

    NASA Astrophysics Data System (ADS)

    Bala Sundar Rao, R.; Ranganath, G.; Ranganayakulu, C.

    2013-07-01

    A numerical model has been developed for plain fin of plate fin heat exchanger. Plain fin performance has been analyzed with the help of CFD by changing the various parameters of the fin, Colburn ` j' and fanning friction ` f' factors are calculated. These values compared with the standard values. The correlations have been developed between Reynolds number Re, fin height h, fin thickness t, fin spacing s, Colburn factor ` j' and friction factor ` f'.

  1. Two dimensional model for multistream plate fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2014-05-01

    A model based on finite volume analysis is presented here for multistream plate fin heat exchangers for cryogenic applications. The heat exchanger core is discretised in both the axial and transverse directions. The model accounts for effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings, and effects of variable fluid properties/metal matrix conductivity. Since the fins are discretised in the transverse direction, the use of a fin efficiency is eliminated and the effects of transverse heat conduction/stacking pattern can be taken care of. The model is validated against results obtained using commercially available software and a good agreement is observed. Results from the developed code are discussed for sample heat exchangers.

  2. Development and evolution of the muscles of the pelvic fin.

    PubMed

    Cole, Nicholas J; Hall, Thomas E; Don, Emily K; Berger, Silke; Boisvert, Catherine A; Neyt, Christine; Ericsson, Rolf; Joss, Jean; Gurevich, David B; Currie, Peter D

    2011-10-01

    Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition. PMID:21990962

  3. Development and Evolution of the Muscles of the Pelvic Fin

    PubMed Central

    Cole, Nicholas J.; Hall, Thomas E.; Don, Emily K.; Berger, Silke; Boisvert, Catherine A.; Neyt, Christine; Ericsson, Rolf; Joss, Jean; Gurevich, David B.; Currie, Peter D.

    2011-01-01

    Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition. PMID:21990962

  4. Aerodynamic characteristics of missile control fins in nonlinear flow fields

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1983-01-01

    Recent experimental results show that the control effectiveness of a missile fin in supersonic flow at moderate-to-high angles of attack is a strong nonlinear function of free-stream Mach number, body incidence angle, fin bank angle and fin deflection angle. Analysis of the experimental results using an Euler finite-difference computer code with flow separation together with the equivalent angle-of-attack concept indicates that the observed nonlinearities are due to the variation of local dynamic pressure and local Mach number around the missile body alone. The nonlinearities are shown to be a strong source of control cross-coupling for high Mach number, high angle-of-attack combinations. The analysis suggests a relatively simple yet comprehensive approach for accurately accounting for these nonlinear effects.

  5. Fluid-structure interactions of skeleton-reinforced fins: performance analysis of a paired fin in lift-based propulsion.

    PubMed

    Shoele, Kourosh; Zhu, Qiang

    2009-08-01

    We investigate the thrust generation capacity of a thin foil consisting of a membrane strengthened by embedded rays that is geometrically, structurally and kinematically similar to pectoral fins of bony fishes during lift-based labriform locomotion. Our numerical model includes a fully nonlinear Euler-Bernoulli beam model of the skeleton and a boundary-element model of the surrounding flow field. The fin undergoes a dorso-ventral flapping activated by rotations of the rays. Both the trailing edge vortices (TEV) and the leading edge vortices (LEV) are accounted for and modeled as shear layers. The thrust generation and propulsion efficiency are examined and documented. Our results show that synchronization of rays is pivotal to the performance of the system. A primary factor that determines the performance of the fin is phase lags between the rays, which create variations of the effective angle of attack at the leading edge as well as shape changes throughout the fin surface. Structural flexibility of the rays leads to passive deformations of the fin, which can increase the thrust generation and the propulsion efficiency. PMID:19648413

  6. Effect of Fin-Collar Shape at Contact Area between Tube and Fin on Heat Exchanger Performance

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshimi; Tsubaki, Koutaro; Miyara, Akio

    In this study, numerical simulation of a cross fin-tube heat exchanger was conducted to investigate the effects of fin-collar shape on the heat transfer performance and pressure drop. During the making process, two adjacent fin-collars and a tube form a triangular space and the end of fin collar protrude to air side. To investigate these effects on the heat exchanger performance, the form ratio was defined to make an indicator of the triangular space size. Furthermore, the simulation of the models with and without protruded end was conducted. The results indicated that the increase of the form ratio results in the decrease in the heat transfer rate. On the other hand, it contributed to a relatively small increase in the heat transfer coefficient on the air side. A high heat transfer coefficient on the air side was obtained by the protruded fin-collar end. However, the pressure drop was not much different between the models with and without the protruded end. The ratio of the thermal contact resistance to the air side thermal resistance was about 1:5 for the form ratio of 20% to 40%.

  7. Atom-probe for FinFET dopant characterization.

    PubMed

    Kambham, A K; Mody, J; Gilbert, M; Koelling, S; Vandervorst, W

    2011-05-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10° and 45°) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. PMID:21288644

  8. Fluid flow and scalar transport through porous fins

    NASA Astrophysics Data System (ADS)

    Coletti, F.; Muramatsu, K.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.

    2014-05-01

    Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but

  9. Integral finned heater and cooler for stirling engines

    SciTech Connect

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  10. Structure and comparative morphology of camptotrichia of lungfish fins.

    PubMed

    Geraudie, J; Meunier, F J

    1984-01-01

    The present work is devoted to the organization and ultrastructure of the fin rays or camptotrichia of two living Dipnoi (lungfishes) Protopterus and Neoceratodus. In both species, these rods have a dual structure: only the superficial region facing the stratified epidermis is mineralized while the deep one is made of a dense unmineralized network of collagen fibrils forming a permanent pre-osseous tissue. Only the camptotrichia of Neoceratodus is made of cellular bone. This study confirms the structural peculiarities of these camptotrichia when compared to the dermal skeleton of the Actinopterygii constituted by the bony lepidotrichia and the actinotrichia. These results are discussed and compared to fossil dipnoan fin rays. PMID:6740649

  11. Investigation of catalytic combustion within a fin boundary layer

    SciTech Connect

    Griffin, G.J.; Wood, D.G.

    1999-07-01

    A mathematical model of a catalytic fin, a flat plate coated with a catalyst, operating under steady-state conditions where air carrying a fuel flows parallel to the surface, is developed. The model equations are derived from the basic equations of change, and model predictions of tin and boundary layer temperature are compared with experimental data for the combustion of propane and carbon monoxide (CO) over the flat plate coated with platinum(Pt)/alumina catalyst. Good qualitative agreement is found between the results of the experiments and the model predictions, although the model generally predicts higher fin temperatures and ignition of reaction to occur at lower temperatures.

  12. Bio-inspired propulsor using internally powered flexible fins

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Erturk, Alper; Alexeev, Alexander

    2014-11-01

    Using experiments and three dimensional numerical simulations, we study the underwater locomotion of internally powered flexible plates. The flexible plate is composed of Macro-Fiber Composite (MFC) piezoelectric laminates. A sinusoidally varying voltage is applied to the MFCs, causing bending and generating thrust similar to a flapping fin in carangiform motion. In our fully coupled FSI simulations, we model the swimmer as a rectangular elastic plate actuated by a sinusoidal internal moment. The steady state swimming velocity and thrust are measured experimentally and compared to our numerical simulations. Our results can be used to design underwater self-propelling vehicles driven by internally powered flexible fins.

  13. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  14. Is n sin θ conserved along the light path?

    NASA Astrophysics Data System (ADS)

    Noorbala, Mahdiyar; Sepehrinia, Reza

    2016-03-01

    Snell’s law states that the quantity n{sin}θ is unchanged in refraction of light passing from one medium to another. We inquire whether this is true in the general case where the speed of light varies continuously within a medium. It turns out to be an instructive exercise in application of Snell’s law and Fermat’s principle. It also provides good pedagogical problems in calculus of variations to deal with the subtleties of a variable domain of integration and inclusion of constraints. The final result of these exercises is that, contrary to an initial expectation, the answer to the question in the title is negative.

  15. Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2013-10-01

    This work explores the manufacturability of pyramidal fin arrays produced using the cold spray process. Near-net shaped pyramidal fin arrays of various sizes and fin densities were manufactured using masks made of commercially available steel wire mesh. The feedstock powders used to produce the fins are characterized using scanning electron microscopy. Obstruction of the masks was investigated. The standoff distances between the substrate, mesh, and nozzle were empirically determined. Fin array characterization was performed using digital microscopy. The fin arrays' heat transfer performance was assessed experimentally for a range of Reynolds number relevant to the application sought. The fins produced using the cold spray process outperform traditional straight (rectangular) fins at the same fin density and it is hypothesized that this is due to increased fluid mixing and turbulence.

  16. The influence of wall conductivity of film condensation with integral fin tubes

    NASA Astrophysics Data System (ADS)

    Cobb, Robert L.

    1993-09-01

    Heat transfer performance of steam condensing on horizontal finned tubes made of copper, aluminum, copper nickel (90/10), and stainless steel (316) was studied using a condenser test rig at both vacuum and atmospheric conditions. Integral fin tubes included conventional rectangular shaped fins as well as rectangular fins having a radiussed root geometry (i.e., a fillet radius equal to half the fin spacing). All finned tubes had inner and outer diameters of 12.70 mm and 15.88 mm respectively, and had a fin thickness of 1.0 mm and a fin spacing of 1.5 mm. The overall heat transfer coefficient, U(sub o), was determined experimentally and the outside heat transfer coefficient, h(sub o), was obtained utilizing a modified Wilson plot procedure. Results indicate that the performance of a finned tube was strongly dependent on the tube material and weakly dependent on fin geometry. Radiussing the fin root to remove condensate between fins in the unflooded portion (i.e., top portion) of a finned tube reduced the heat transfer performance compared to a conventional rectangular shaped integral fin. Experimental data were compared to the models of Beatty and Katz as well as to a modified model of Rose.

  17. A high density FinFET one-time programmable cell with new intra-fin cell isolation for advanced system on chip applications

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zheng; Yuan, Jo En; Peng, Ping Chun; Hsiao, Woan Yun; King, Ya-Chin; Lin, Chrong Jung

    2016-04-01

    A fully CMOS compatible one-time programmable (OTP) cell with a novel intra-fin cell isolation (IFCI) structure on a FinFET CMOS process has been proposed. The IFCI OTP cell utilizes the field-enhanced dielectric breakdown at fin corners to perform a fast and low-voltage program operation. Moreover, an ultrasmall intra-fin cell-to-cell isolation is firstly introduced to markedly shrink the cell size by eliminating the area-consuming spacing of fin-to-fin isolation. The IFCI FinFET OTP with fast program speed, excellent read disturb immunity, and reliable data retention is a promising solution for logic nonvolatile memory (NVM) technology in advanced CMOS nodes.

  18. Impact of fin length on threshold voltage modulation by back bias for Independent double-gate tunnel fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizubayashi, W.; Fukuda, K.; Mori, T.; Endo, K.; Liu, Y. X.; Matsukawa, T.; O'uchi, S.; Ishikawa, Y.; Migita, S.; Morita, Y.; Tanabe, A.; Tsukada, J.; Yamauchi, H.; Masahara, M.; Ota, H.

    2015-09-01

    We investigated the impact of fin length (Tfin) on the threshold voltage (Vth) modulation by back bias (Vb) for independent double-gate (IDG) tunnel fin field-effect transistors (tFinFETs). It was found that Vth can be tuned by Vb for IDG tFinFETs regardless of Tfin, which can be explained by the back-gate-effect model of IDG FinFETs. For IDG tFinFETs, the slope (back-gate-effect factor (γ)) of Vth with respect to Vb increases with thinning Tfin. This means that Tfin thinning is effective for tuning Vth by Vb for IDG tFinFETs. Furthermore, it was demonstrated that this back-bias-effect is consistent with the results of device simulation using an advanced nonlocal band-to-band model.

  19. Structure and Organisation of SinR, the Master Regulator of Biofilm Formation in Bacillus subtilis

    PubMed Central

    Colledge, Vicki L.; Fogg, Mark J.; Levdikov, Vladimir M.; Leech, Andrew; Dodson, Eleanor J.; Wilkinson, Anthony J.

    2011-01-01

    sinR encodes a tetrameric repressor of genes required for biofilm formation in Bacillus subtilis. sinI, which is transcribed under Spo0A control, encodes a dimeric protein that binds to SinR to form a SinR–SinI heterodimer in which the DNA-binding functions of SinR are abrogated and repression of biofilm genes is relieved. The heterodimer-forming surface comprises residues conserved between SinR and SinI. Each forms a pair of α-helices that hook together to form an intermolecular four-helix bundle. Here, we are interested in the assembly of the SinR tetramer and its binding to DNA. Size-exclusion chromatography with multi-angle laser light scattering and crystallographic analysis reveal that a DNA-binding fragment of SinR (residues 1–69) is a monomer, while a SinI-binding fragment (residues 74–111) is a tetramer arranged as a dimer of dimers. The SinR(74–111) chain forms two α-helices with the organisation of the dimer similar to that observed in the SinR–SinI complex. The tetramer is formed through interactions of residues at the C-termini of the four chains. A model of the intact SinR tetramer in which the DNA binding domains surround the tetramerisation core was built. Fluorescence anisotropy and surface plasmon resonance experiments showed that SinR binds to an oligonucleotide duplex, 5′-TTTGTTCTCTAAAGAGAACTTA-3′, containing a pair of SinR consensus sequences in inverted orientation with a Kd of 300 nM. The implications of these data for promoter binding and the curious quaternary structural transitions of SinR upon binding to (i) SinI and (ii) the SinR-like protein SlrR, which “repurposes” SinR as a repressor of autolysin and motility genes, are discussed. PMID:21708175

  20. Fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin lengths

    NASA Astrophysics Data System (ADS)

    Grabski, Jakub Krzysztof; Kołodziej, Jan Adam

    2016-06-01

    In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.

  1. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  2. SInCRe-structural interactome computational resource for Mycobacterium tuberculosis.

    PubMed

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P; Sowdhamini, Ramanathan; Chandra, Nagasuma R; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein-protein and protein-small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein-protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host-pathogen protein-protein interactions. Together they provide prerequisites for identification of off-target binding. PMID:26130660

  3. Measurement of the cp violation parameter sin 2 beta

    SciTech Connect

    K.F. Kelley

    1999-01-26

    This thesis presents a measurement of the time-dependent asymmetry in the rate of {anti B}{sub d}{sup 0} versus B{sub d}{sup 0} decays to J/{psi}K{sub s}{sup 0}. In the context of the Standard Model this is interpreted as a measurement of the CP violation parameter sin(2{beta}). A total of 198{+-}17 B{sub d}{sup 0}/{anti B}{sub d}{sup 0} decays were observed in p{anti p} collisions at {radical}s=1.8 TeV by the CDF detector at the Fermilab Tevatron. The initial B flavor (whether B{sup 0} or {anti B}{sup 0}) is determined by a same-side flavor tagging technique. The analysis results in sin(2{beta})=1.8{+-}1.1(stat.){+-}0.3(syst.). This analysis demonstrates the feasibility of studying CP violation in the B{sup 0}-{anti B}{sup 0} system at a hadron collider. By applying the methods used in this analysis, future, higher-statistics experiments should be able to tightly constrain the parameters of the Standard Model.

  4. Instantaneous Observability of Tightly Coupled SINS/GPS during Maneuvers

    PubMed Central

    Jiang, Junxiang; Yu, Fei; Lan, Haiyu; Dong, Qianhui

    2016-01-01

    The tightly coupled strapdown inertial navigation system (SINS)/global position system (GPS) has been widely used. The system observability determines whether the system state can be estimated by a filter efficiently or not. In this paper, the observability analysis of a two-channel and a three-channel tightly coupled SINS/GPS are performed, respectively, during arbitrary translational maneuvers and angle maneuvers, where the translational maneuver and angle maneuver are modeled. A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model is proposed to make the theoretical analysis simpler, which starts from the observability definition directly. Based on the IOM, a series of theoretical analysis are performed. Analysis results show that almost all kinds of translational maneuver and angle maneuver can make a three-channel system instantaneously observable, but there is no one translational maneuver or angle maneuver can make a two-channel system instantaneously observable. The system’s performance is investigated when the system is not instantaneously observable. A series of simulation studies based on EKF are performed to confirm the analytic conclusions. PMID:27240369

  5. [Acedia or the depressed between sin and illness].

    PubMed

    Alliez, J; Huber, J P

    1987-05-01

    Acedia is a term of the classical greek vocabulary that a christian author of the IVth century, Evagre the Pontic, uses in a special sense, to describe a mental state characterized among other things, by disgust and dejection, and which, according to him, falls into what became the first list of deadly sins. The word was conveyed to us by another monk of the egyptian deserts, Jean Cassien, with a change of meaning which made it very difficult to distinguish from sadness: his audience being very different from his predecessor's, as he wrote for Latins, little inclined to anachoretic life but among which developed the first great coenobitic institutions of the Occident. One century later, Pope Gregory the great removes acedia from the list of deadly sins, either because he does not distinguish it from sadness (and laziness) or because he considers it a morbid state and, as such, depending on medical care. The word has nevertheless survived until Thomas Aquinas and later, and its study provides valuable data on the mental states prefiguring our modern depressions. PMID:3318616

  6. Sinning against nature: the theory of background conditions

    PubMed Central

    Blackford, R

    2006-01-01

    Debates about the moral and political acceptability of particular sexual practices and new technologies often include appeals to a supposed imperative to follow nature. If nature is understood as the totality of all phenomena or as those things that are not artificial, there is little prospect of developing a successful argument to impugn interference with it or sinning against it. At the same time, there are serious difficulties with approaches that seek to identify "proper" human functioning. An alternative approach is to understand interference with nature as acting in a manner that threatens basic background conditions to human choice. Arguably, the theory of background conditions helps explain much of the hostility to practices and technologies that allegedly sin against nature. The theory does not, however, entail that appeals to nature are relevant or rational. Such appeals should be subjected to sceptical scrutiny. Indeed, the theory suggests that arguments against practices and technologies that can be seen as contrary to nature sometimes exercise a psychological attraction that is disproportional to their actual cogency. PMID:17074819

  7. Instantaneous Observability of Tightly Coupled SINS/GPS during Maneuvers.

    PubMed

    Jiang, Junxiang; Yu, Fei; Lan, Haiyu; Dong, Qianhui

    2016-01-01

    The tightly coupled strapdown inertial navigation system (SINS)/global position system (GPS) has been widely used. The system observability determines whether the system state can be estimated by a filter efficiently or not. In this paper, the observability analysis of a two-channel and a three-channel tightly coupled SINS/GPS are performed, respectively, during arbitrary translational maneuvers and angle maneuvers, where the translational maneuver and angle maneuver are modeled. A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model is proposed to make the theoretical analysis simpler, which starts from the observability definition directly. Based on the IOM, a series of theoretical analysis are performed. Analysis results show that almost all kinds of translational maneuver and angle maneuver can make a three-channel system instantaneously observable, but there is no one translational maneuver or angle maneuver can make a two-channel system instantaneously observable. The system's performance is investigated when the system is not instantaneously observable. A series of simulation studies based on EKF are performed to confirm the analytic conclusions. PMID:27240369

  8. Fin degeneration of young-of-the-year Alosa pseudoharengus (Clupeidae) in southern Lake Michigan

    USGS Publications Warehouse

    Brown, Edward H., Jr.; Norden, Carroll R.

    1970-01-01

    Young-of-the-year alewives, Alosa pseudoharengus, with extremely shortened caudal fins were observed at four locations in southern Lake Michigan between 1964 and 1968. Some of the fins appeared stunted or underdeveloped, but microscopic examination revealed a deterioration of the fins and not an ontogenetic abnormality. Deterioration of the caudal fin was frequently accompanied by degeneration of the dorsal and anal fins. Degenerate fins were not found on other species nor on older alewives, with the exception of one known yearling alewife at Waukegan and possibly a few of the larger fish at Milwaukee.

  9. DSA patterning options for FinFET formation at 7nm node

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Chun C.; Franke, Elliott; Lie, Fee Li; Sieg, Stuart; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Guillorn, Michael; Burns, Sean; Hetzer, David; Ko, Akiteru; Arnold, John; Colburn, Matthew

    2016-03-01

    Several 27nm-pitch directed self-assembly (DSA) processes targeting fin formation for FinFET device fabrication are studied in a 300mm pilot line environment, including chemoepitaxy for a conventional Fin arrays, graphoepitaxy for a customization approach and a hybrid approach for self-aligned Fin cut. The trade-off between each DSA flow is discussed in terms of placement error, Fin CD/profile uniformity, and restricted design. Challenges in pattern transfer are observed and process optimization are discussed. Finally, silicon Fins with 100nm depth and on-target CD using different DSA options with either lithographic or self-aligned customization approach are demonstrated.

  10. Vortex interactions with flapping wings and fins can be unpredictable

    PubMed Central

    Lentink, David; Van Heijst, GertJan F.; Muijres, Florian T.; Van Leeuwen, Johan L.

    2010-01-01

    As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether the dynamics of the vortex interactions could affect the predictability of propulsive forces. We studied the dynamics of the interactions between a symmetrically and periodically pitching and heaving foil and the vortices in its wake, in a soap-film tunnel. The phase-locked movie sequences reveal that abundant chaotic vortex-wake interactions occur at high Strouhal numbers. These high numbers are representative for the fins and wings of near-hovering animals. The chaotic wake limits the forecast horizon of the corresponding force and moment integrals. By contrast, we find periodic vortex wakes with an unlimited forecast horizon for the lower Strouhal numbers (0.2–0.4) at which many animals cruise. These findings suggest that swimming and flying animals could control the predictability of vortex-wake interactions, and the corresponding propulsive forces with their fins and wings. PMID:20129947

  11. Zebrafish fin regeneration after cryoinjury-induced tissue damage

    PubMed Central

    Chassot, Bérénice; Pury, David

    2016-01-01

    ABSTRACT Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. PMID:27215324

  12. Thickness-varying flexible plunging fins swim more efficiently

    NASA Astrophysics Data System (ADS)

    Li, Yuanda; Yeh, Peter; Alexeev, Alexander

    2015-11-01

    We use three dimensional computer simulations to probe the hydrodynamics of oscillating flexible fins with varying thickness. The fin is modeled as an elastic rectangular plate with the thickest section at the leading edge, decreasing linearly until the trailing edge. The plate is modeled as infinitely thin, and we assume that the thickest part of the fin is much smaller compared to its other length scales. Therefore, we simulate the swimmer as two dimensional plate and introduce the effect of the thickness gradient by including an appropriate mass gradient and stiffness gradient along the length of the plate. The flexible fin is actuated by a plunging motion at its leading edge. We evaluate the performance of the swimmer by measuring the steady state thrust, free swimming velocity, input power, and swimming economy as a function of driving frequency and the magnitude of the thickness gradient. We find a wideband frequency range in which the swimming economy is increased as compared to a uniformly thick swimmer. These findings may shed insight into some of the physical mechanisms that allow fish to have high swimming efficiency.

  13. Zebrafish fin regeneration after cryoinjury-induced tissue damage.

    PubMed

    Chassot, Bérénice; Pury, David; Jaźwińska, Anna

    2016-01-01

    Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. PMID:27215324

  14. Estudio multifrecuencia del medio interestelar cercano a HD 192281

    NASA Astrophysics Data System (ADS)

    Arnal, E. M.; Cappa, C.; Cichowolski, S.; Pineault, S.; St-Louis, N.

    Una de las causas que modifica la estructura y dinámica del medio interestelar es la acción que los vientos de las estrellas de gran masa ejercen sobre el mismo. En este trabajo, mediante el uso de datos interferométricos obtenidos en la banda de radio en la transición de 21-cm del Hidrógeno neutro y de imágenes de la emisión de continuo en las bandas de 408 y 1420 MHz, de imágenes HIRES del satélite IRAS en 60 y 100 micrones, y de observaciones de continuo obtenidas con radiotelescopios de disco simple en 2695, 4850 y 8350 MHz se ha realizado un estudio multifrecuencia de los efectos que los vientos estelares de HD 192281, una estrella de tipo espectral O5 Vn((f))p, han tenido sobre el medio interestelar que rodea a la misma.

  15. Investigation of contact resistance for fin-tube heat exchanger by means of tube expansion

    NASA Astrophysics Data System (ADS)

    Hing, Yau Kar; Raghavan, Vijay R.; Meng, Chin Wai

    2012-06-01

    An experimental study on the heat transfer performance of a fin-tube heat exchanger due to mechanical expansion of the tube by bullets has been reported in this paper. The manufacture of a fin-tube heat exchanger commonly involves inserting copper tubes into a stack of aluminium fins and expanding the tubes mechanically. The mechanical expansion is achieved by inserting a steel bullet through the tube. The steel bullet has a larger diameter than the tube and the expansion provides a firm surface contact between fins and tubes. Five bullet expansion ratios (i.e. 1.045 to 1.059) have been used in the study to expand a 9.52mm diameter tubes in a fin-tube heat exchanger. The study is conducted on a water-to-water loop experiment rig under steady state conditions. In addition, the effects of fin hardness and fin pitch are investigated in the study. The results indicate that the optimum heat transfer occurred at a bullet expansion ratio ranging from 1.049 to 1.052. It is also observed that larger fin pitches require larger bullet expansion ratios, especially with lower fin hardness. As the fin pitch increases, both fin hardness (i.e. H22 and H24) exhibit increasing heat transfer rate per fin (W/fin). With the H22 hardness temper, the increase is as much as 11% while H24 increases by 1.2%.

  16. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration

    PubMed Central

    Nachtrab, Gregory; Kikuchi, Kazu; Tornini, Valerie A.; Poss, Kenneth D.

    2013-01-01

    Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues. PMID:23924636

  17. SiN etching characteristics of Ar/CH3F/O2 plasma and dependence on SiN film density

    NASA Astrophysics Data System (ADS)

    Ohtake, Hiroto; Wanifuchi, Tomiko; Sasaki, Masaru

    2016-08-01

    We evaluated the silicon nitride (SiN) etching characteristics of Ar/O2/hydrofluorocarbon plasma. Ar/CH3F/O2 plasma achieved a high etching selectivity of SiN to SiO2 by increasing the oxygen flow rate. We also evaluated the dependence of SiN etching characteristics on SiN film density. A low-density film deposited at a low temperature of 200 °C (by plasma-enhanced CVD, PECVD) showed an 8–20% lower etching rate of SiN than a high-density film deposited at a high temperature of 780 °C (by low-pressure CVD, LPCVD) when we had a low RF bias of 30 W. This PECVD film might move the competitive balance to oxidation from fluorination, reducing the SiN etching rate. However, when we have a high RF bias of more than 50 W, the SiN etching rate is 2–15% higher in the PECVD film than in the LPCVD film. The etching rate of SiN at various densities depends on the balance between oxidation and ion bombardment.

  18. Chromium Is Elevated in Fin Whale (Balaenoptera physalus) Skin Tissue and Is Genotoxic to Fin Whale Skin Cells

    PubMed Central

    Wise, Catherine F.; Wise, Sandra S.; Thompson, W. Douglas; Perkins, Christopher; Wise, John Pierce

    2015-01-01

    Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known carcinogen and reproductive toxicant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We measured the total Cr levels in skin biopsies obtained from healthy free-ranging fin whales from the Gulf of Maine and found elevated levels relative to marine mammals in other parts of the world. The levels in fin whale biopsies ranged from 1.71 ug/g to 19.6 ug/g with an average level of 10.07 ug/g. We also measured the cytotoxicity and genotoxicity of Cr(VI) in fin whale skin cells. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to fin whale skin cells in a concentration-dependent manner. The concentration range used in our cell culture studies used environmentally relevant concentrations based on the biopsy measurements. These data suggest that Cr(VI) may be a concern for whales in the Gulf of Maine. PMID:25805270

  19. DRY/WET PERFORMANCE OF A PLATE-FIN AIR COOLED HEAT EXCHANGER WITH CONTINUOUS CORRUGATED FINS

    EPA Science Inventory

    The report describes work to (1) determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet or 'deluge' operation and (2) continue developing the deluge heat/mass transfer model. This work supports the improvement of power ...

  20. Pressure drop and heat transfer characteristics of circular and oblong low aspect ratio pin fins

    NASA Astrophysics Data System (ADS)

    Arora, S. C.; Messeh, W. A.

    1985-09-01

    The pressure drop and heat transfer characteristics of circular and oblong pin fins of height-to-diameter ratio of unity used to augment internal cooling of gas turbine airfoils are presented. Data were obtained for an array of 10 rows of staggered pin fins in a 25:1 aspect ratio channel, with both pins and channel endwalls forming the heat transfer surface. Results show that the array average friction factor increases with increasing blockage caused by different arrangement of pin fin geometries in the channel. The local heat transfer coefficient increases up to the 3rd row of pin fins and decreases thereafter. Oblong pin fins with gamma=90 deg (major axis parallel to the direction of flow) result in higher heat transfer rates and lower friction factor than the circular pin fins. For other orientations, oblong pin fins do not offer any advantage over circular pin fins for Re or = 20,000 (typical of small gas turbine engines).

  1. Evx1 is required for joint formation in zebrafish fin dermoskeleton.

    PubMed

    Schulte, Claus J; Allen, Claire; England, Samantha J; Juárez-Morales, José L; Lewis, Katharine E

    2011-05-01

    The transcription factor Evx1 is expressed in the joints between individual lepidotrichia (bony ray) segments and at the distal tips of the lepidotrichia in developing zebrafish fins. It is also expressed in the apical growth zone in regenerating fins. However, so far there is no functional evidence that addresses whether Evx1 is required for any aspect of fin development or regeneration. In this study, we use a novel mutation in evx1 to address this. We find that Evx1 is not required for either fin outgrowth or regeneration. All of the fins form normally in evx1 mutants, and there are no significant changes in fin length. In contrast, Evx1 is required for lepidotrichia joint formation during both fin development and regeneration. This is a very specific phenotype as both lepidotrichia hemisegment separations and lepidotrichia bifurcations still form normally in evx1 mutant fins, as do joints in the more proximal endoskeletal radials. PMID:21509898

  2. Experimental study on thermal performance of micro pin fin heat sinks with various shapes

    NASA Astrophysics Data System (ADS)

    Hua, Junye; Li, Gui; Zhao, Xiaobao; Li, Qihe

    2016-07-01

    This paper presents a visualization experimental study on the heat transfer characteristics of various shapes of micro pin fins, including the circular, ellipse, diamond, square and triangle shape micro pin fin arrays with various equivalent diameters and pin fin density. The influences study of different sizes and shapes of pin fin on Nusselt number and heat transfer coefficient have been conducted. The results show that with the increase of the flow rate, the temperature of the bottom of the experimental section decreases. And the Nusselt number of different shapes of micro pin fins increases with the increase of Re. In which, the heat transfer performance of the ellipse shape pin fin appears better among the other shapes of pin fins. However, the higher pin fin of the ellipse shape density leads to a weaker flow performance. Besides, the micro-scale heat transfer correlation between the Nusselt number and the Reynolds number is fitted based on the experimental data.

  3. Actuation of a robotic fish caudal fin for low reaction torque

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  4. Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2016-01-01

    This work evaluates the thermal and hydrodynamic performance of pyramidal fin arrays produced using cold spray as an additive manufacturing process. Near-net-shaped pyramidal fin arrays of pure aluminum, pure nickel, and stainless steel 304 were manufactured. Fin array characterization such as fin porosity level and surface roughness evaluation was performed. The thermal conductivities of the three different coating materials were measured by laser flash analysis. The results obtained show a lower thermal efficiency for stainless steel 304, whereas the performances of the aluminum and nickel fin arrays are similar. This result is explained by looking closely at the fin and substrate roughness induced by the cold gas dynamic additive manufacturing process. The multi-material fin array sample has a better thermal efficiency than stainless steel 304. The work demonstrates the potential of the process to produce streamwise anisotropic fin arrays as well as the benefits of such arrays.

  5. Measurement of frost characteristics on heat exchanger fins. Part 2: Data and analysis

    SciTech Connect

    Chen, H.; Thomas, L.; Besant, R.W.

    1999-07-01

    Part 1 of this paper described the frost growth test facility and instrumentation. In Part 2, results are presented for typical operating conditions with frost growth on heat exchanger fins. Typical data are presented for frost height distributions on fins, increase in pressure loss for airflow through a finned test section, frost mass accumulation on fins, and heat rate. Special attention is given to the uncertainty in each of these measurements and calculations.

  6. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.

  7. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences.

    PubMed

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin. PMID:23556860

  8. Finned tube contact conductance: characterizing the integrity of the mechanical bond

    SciTech Connect

    Ernest, T.L.; Sheffield, J.W.; Sauer, H.J. Jr.

    1985-01-01

    Thermal contact conductance of expanded tube joints is dependent upon the interfacial pressure between the mating parts. A review of the literature indicates that very little work has been done towards relating the joint stresses to the dimensional parameters for mechanically expanded plate finned-tube heat exchangers, commonly called fin coils. This paper presents an experimental testing technique to investigate the fin-to-tube mechanical bond based upon the axial pull strength of the joint. Typical coils from two manufacturers were used in this investigation. They were fabricated from 3/8 in. copper tubes and plate aluminum fins. The coils tested had fin spacings of 6, 7, 8, 12, and 20 fins per inch, fin thicknesses of 0.008 and 0.0055 in. Tube thicknesses of 0.015 and 0.016 in. and diametrical interferences of 0.001, 0.006, and 0.010 in. The maximum force attained during a tube pullout was found to be descriptive of the bond. Plots of this force versus fin number and net interference are presented that illustrate the sensitivity of this force to the fin thickness, fin number, and net interference. These plots show that the fin thickness has the predominant effect on the pullout force and, in turn, the bond between the fin collar and the tube.

  9. Association of yeast SIN1 with the tetratrico peptide repeats of CDC23.

    PubMed

    Shpungin, S; Liberzon, A; Bangio, H; Yona, E; Katcoff, D J

    1996-08-01

    The yeast SIN1 protein is a nuclear protein that together with other proteins behaves as a transcriptional repressor of a family of genes. In addition, sin1 mutants are defective in proper mitotic chromosome segregation. In an effort to understand the basis for these phenotypes, we employed the yeast two-hybrid system to identify proteins that interact with SIN1 in vivo. Here we demonstrate that CDC23, a protein known to be involved in sister chromatid separation during mitosis, is able to directly interact with SIN1. Furthermore, using recombinant molecules in vitro, we show that the N terminal of SIN1 is sufficient to bind a portion of CDC23 consisting solely of tetratrico peptide repeats. Earlier experiments identified the C-terminal domain of SIN1 to be responsible for interaction with a protein that binds the regulatory region of HO, a gene whose transcription is repressed by SIN1. Taken together with the results presented here, we suggest that SIN1 is a chromatin protein having at least a dual function: The N terminal of SIN1 interacts with the tetratrico peptide repeat domains of CDC23, a protein involved in chromosome segregation, whereas the C terminal of SIN1 binds proteins involved in transcriptional regulation. PMID:8710860

  10. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin.

    PubMed

    Knopf, Franziska; Hammond, Christina; Chekuru, Avinash; Kurth, Thomas; Hans, Stefan; Weber, Christopher W; Mahatma, Gina; Fisher, Shannon; Brand, Michael; Schulte-Merker, Stefan; Weidinger, Gilbert

    2011-05-17

    While mammals have a limited capacity to repair bone defects, zebrafish can completely regenerate amputated bony structures of their fins. Fin regeneration is dependent on formation of a blastema, a progenitor cell pool accumulating at the amputation plane. It is unclear which cells the blastema is derived from, whether it forms by dedifferentiation of mature cells, and whether blastema cells are multipotent. We show that mature osteoblasts dedifferentiate and form part of the blastema. Osteoblasts downregulate expression of intermediate and late bone differentiation markers and induce genes expressed by bone progenitors. Dedifferentiated osteoblasts proliferate in a FGF-dependent manner and migrate to form part of the blastema. Genetic fate mapping shows that osteoblasts only give rise to osteoblasts in the regenerate, indicating that dedifferentiation is not associated with the attainment of multipotency. Thus, bone can regenerate from mature osteoblasts via dedifferentiation, a finding with potential implications for human bone repair. PMID:21571227

  11. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  12. Calculation of viscous supersonic flows over finned bodies

    NASA Technical Reports Server (NTRS)

    Rai, M. M.; Chaussee, D. S.; Rizk, Y. M.

    1983-01-01

    The parabolized Navier-Stokes (PNS) equations are used to calculate the viscous, supersonic flow fields about a six-finned projectile and a generic four-finned missile at angles of attack. Since current computer speeds and storage preclude a fully three-dimensional calculation using the unsteady, Reynolds-averaged, Navier-Stokes equations, the applicability of the PNS equations to the above flow fields is of considerable interest. Two important aspects of the calculation are grid generation and the type of smoothing used to prevent nonphysical solutions. This paper includes a description of the grid-generation process. Results in the form of density contours and velocity vector plots are presented for the two configurations. The applicability of the PNS equations to the complicated flow fields considered is successfully demonstrated.

  13. Numerical modeling of pin-fin micro heat exchangers

    NASA Astrophysics Data System (ADS)

    Galvis, E.; Jubran, B. A.; Behdinan, F. Xi. K.; Fawaz, Z.

    2008-04-01

    A micro heat exchanger (MHE) can effectively control the temperature of surfaces in high heat flux applications. In this study, several turbulence models are analyzed using a 3D finite element model of a MHE. The MHE consists of a narrow planar flow passage between flat parallel plates with small cylindrical pin fins spanning these walls. The pin fin array geometry investigated is staggered, with pin diameters of 0.5, 5.1 and 8.5 mm, height to diameter ratio of 1.0 and streamwise (longitudinal) and spanwise (transverse) to diameter ratios of 1.5 and 2.5, respectively. Pressure loss and heat transfer simulated results for 4,000 ≤ Re ≤ 50,000 are reported and compared with previously published numerical and experimental results. It was found that the flat micro pin fin overall thermal performance always exceeds that of the parallel plate counterpart (smooth channel) by a factor of as much as 2.2 for the 8.5 mm diameter pins, and by 4 for the 0.5 mm diameter pins in the investigated Reynolds number range. Further, among the six turbulence models investigated, the RNG model tends to be the best model to predict both the Nusselt number and the friction factor and capture the main feature of the flow field in MHE.

  14. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  15. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  16. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  17. The effect of ether anesthesia on fin-clipping rate

    USGS Publications Warehouse

    Eschmeyer, Paul H.

    1953-01-01

    As part of an experimental program to learn the effects of stocking lake trout (Salvelinus namaycush) in Lake Superior, 141, 392 fingerlings were marked at the Charlevoix (Michigan) Station of the U.S. Fish and Wildlife Service in October 1952. The adipose fin was removed from all fish, the right pelvic from the remainder. A random sample of 2, 417 of the fish showed an average total length of 4.0 inches (range, 2.7 to 5.4). The mean weight of all fish marked was slightly less than one-third ounce (49 fish per pound). The local women, none of whom had previous experience in the work, were employed to mark the fish. Bone-cutting forceps were used for excision of the fins, and each worker wore a bobbinet glove to facilitate handling of the fish. On alternate days the fish were anesthetized with ether before marking, to determine the effect of its use on the fin-clipping rate.

  18. Aeroservoelastic DAP missile fin development. [directionally attached piezoelectric actuator

    NASA Technical Reports Server (NTRS)

    Barrett, Ron

    1993-01-01

    The development of an active aeroservoelastic missile fin using directionally attached piezoelectric (DAP) actuator elements is detailed. Several different types of actuator elements are examined, including piezoelectric polymers, piezoelectric fiber composites, and conventionally attached piezoelectric (CAP) and DAP elements. These actuator elements are bonded to the substrate of a torque plate. The root of the torque plate is attached to a fuselage hard point or folding pivot. The tip of the plate is bonded to an aerodynamic shell which undergoes a pitch change as the plate twists. The design procedures used on the plate are discussed. A comparison of the various actuator element shows that DAP elements provide the highest deflections with the highest torsional stiffness. A torque plate was constructed from 0.2032 mm thick DAP elements bonded to a 0.127 mm thick AISI 1010 steel substrate. The torque plate produced static twist deflections in excess of +/- 3 deg. An aerodynamic shell with a modified NACA 0012 profile was added to the torque plate. This fin was tested in a wind tunnel at speeds up to 50 ms/sec. The static deflection of the fin was predicted to within 6 percent of the experimental data.

  19. Static aeroelastic analysis and tailoring of missile control fins

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Dillenius, M. F. E.

    1989-01-01

    A concept for enhancing the design of control fins for supersonic tactical missiles is described. The concept makes use of aeroelastic tailoring to create fin designs (for given planforms) that limit the variations in hinge moments that can occur during maneuvers involving high load factors and high angles of attack. It combines supersonic nonlinear aerodynamic load calculations with finite-element structural modeling, static and dynamic structural analysis, and optimization. The problem definition is illustrated. The fin is at least partly made up of a composite material. The layup is fixed, and the orientations of the material principal axes are allowed to vary; these are the design variables. The objective is the magnitude of the difference between the chordwise location of the center of pressure and its desired location, calculated for a given flight condition. Three types of constraints can be imposed: upper bounds on static displacements for a given set of load conditions, lower bounds on specified natural frequencies, and upper bounds on the critical flutter damping parameter at a given set of flight speeds and altitudes. The idea is to seek designs that reduce variations in hinge moments that would otherwise occur. The block diagram describes the operation of the computer program that accomplishes these tasks. There is an option for a single analysis in addition to the optimization.

  20. Design of fish fin actuators using shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Ono, Nagato; Kusaka, Masahiro; Taya, Minoru; Wang, Chiyuan

    2004-07-01

    The present paper considers a design of fish fin actuators based on shape memory alloy composites composed of a couple of plates with the opposite functions. Both SMA plates, whose microstructure is either martensite or austenite, are individually arranged in parallel and operated as a bias to each other. The actuation mechanism is based on change in elastic constant, from stiff to soft during austenite to martensite transformation. First, a preliminary model of the elastic and superelastic deformation is proposed for prediction of the optimum curvature of SMA plates, which enable us to control the steering of an underwater object. The analytical model provides the relationship between the bending moment and the curvature for the composite plates in each deformation range. For a given velocity of a moving fish robot, the underwater curvature and bending moment of its plates is successfully obtained. We design such a fish fin actuator made of a set of different types of SMA composite plates which are embedded in an elastometer matrix to form a fish tail fin.

  1. Identification of Genetic Suppressors of the Sin3A Knockdown Wing Phenotype

    PubMed Central

    Fox, Stephanie; Gammouh, Sarah; Pile, Lori A.

    2012-01-01

    The role of the Sin3A transcriptional corepressor in regulating the cell cycle is established in various metazoans. Little is known, however, about the signaling pathways that trigger or are triggered by Sin3A function. To discover genes that work in similar or opposing pathways to Sin3A during development, we have performed an unbiased screen of deficiencies of the Drosophila third chromosome. Additionally, we have performed a targeted loss of function screen to identify cell cycle genes that genetically interact with Sin3A. We have identified genes that encode proteins involved in regulation of gene expression, signaling pathways and cell cycle that can suppress the curved wing phenotype caused by the knockdown of Sin3A. These data indicate that Sin3A function is quite diverse and impacts a wide variety of cellular processes. PMID:23166712

  2. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    SciTech Connect

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  3. Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves.

    PubMed

    Li, Gen; Müller, Ulrike K; van Leeuwen, Johan L; Liu, Hao

    2016-03-01

    Larvae of bony fish swim in the intermediate Reynolds number (Re) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left-right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae. PMID:27009180

  4. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  5. Design optimization of pin fin geometry using particle swarm optimization algorithm.

    PubMed

    Hamadneh, Nawaf; Khan, Waqar A; Sathasivam, Saratha; Ong, Hong Choon

    2013-01-01

    Particle swarm optimization (PSO) is employed to investigate the overall performance of a pin fin.The following study will examine the effect of governing parameters on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The idea of entropy generation minimization, EGM is employed to combine the effects of thermal resistance and pressure drop within the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters. PMID:23741525

  6. A shift in anterior-posterior positional information underlies the fin-to-limb evolution.

    PubMed

    Onimaru, Koh; Kuraku, Shigehiro; Takagi, Wataru; Hyodo, Susumu; Sharpe, James; Tanaka, Mikiko

    2015-01-01

    The pectoral fins of ancestral fishes had multiple proximal elements connected to their pectoral girdles. During the fin-to-limb transition, anterior proximal elements were lost and only the most posterior one remained as the humerus. Thus, we hypothesised that an evolutionary alteration occurred in the anterior-posterior (AP) patterning system of limb buds. In this study, we examined the pectoral fin development of catshark (Scyliorhinus canicula) and revealed that the AP positional values in fin buds are shifted more posteriorly than mouse limb buds. Furthermore, examination of Gli3 function and regulation shows that catshark fins lack a specific AP patterning mechanism, which restricts its expression to an anterior domain in tetrapods. Finally, experimental perturbation of AP patterning in catshark fin buds results in an expansion of posterior values and loss of anterior skeletal elements. Together, these results suggest that a key genetic event of the fin-to-limb transformation was alteration of the AP patterning network. PMID:26283004

  7. Design Optimization of Pin Fin Geometry Using Particle Swarm Optimization Algorithm

    PubMed Central

    Hamadneh, Nawaf; Khan, Waqar A.; Sathasivam, Saratha; Ong, Hong Choon

    2013-01-01

    Particle swarm optimization (PSO) is employed to investigate the overall performance of a pin fin.The following study will examine the effect of governing parameters on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The idea of entropy generation minimization, EGM is employed to combine the effects of thermal resistance and pressure drop within the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters. PMID:23741525

  8. Pectoral Fin of the Megamouth Shark: Skeletal and Muscular Systems, Skin Histology, and Functional Morphology

    PubMed Central

    Tomita, Taketeru; Tanaka, Sho; Sato, Keiichi; Nakaya, Kazuhiro

    2014-01-01

    This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile. PMID:24465959

  9. PNS predictions for supersonic/hypersonic flows over finned missile configurations

    NASA Technical Reports Server (NTRS)

    Bhutta, Bilal A.; Lewis, Clark H.

    1992-01-01

    Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.

  10. The Influence of Culture on the International Management of Shark Finning

    NASA Astrophysics Data System (ADS)

    Dell'Apa, Andrea; Chad Smith, M.; Kaneshiro-Pineiro, Mahealani Y.

    2014-08-01

    Shark finning is prohibited in many countries, but high prices for fins from the Asian market help maintain the international black-market and poaching. Traditional shark fin bans fail to recognize that the main driver of fin exploitation is linked to cultural beliefs about sharks in traditional Chinese culture. Therefore, shark finning should be addressed considering the social science approach as part of the fishery management scheme. This paper investigates the cultural significance of sharks in traditional Chinese and Hawaiian cultures, as valuable examples of how specific differences in cultural beliefs can drive individuals' attitudes toward the property of shark finning. We suggest the use of a social science approach that can be useful in the design of successful education campaigns to help change individuals' attitudes toward shark fin consumption. Finally, alternative management strategies for commercial fishers are provided to maintain self-sustainability of local coastal communities.

  11. Experimental investigation of vortices shed by various wing fin configurations. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Iversen, J.; Moghadam, M.

    1981-01-01

    Forty-six different fins, which were members of twelve plan-form families, were tested. A two dimensional Boeing single element airfoil at an angle of attack of eight degrees and a sweepback angle of thirty-two was used to simulate a portion of the wing of a generator aircraft. Various free stream velocities were used to test any individual fin at its particular angle of attack. While the fin itself was mounted on the upper surface of the generator model, the angle of attack of each fin was varied until stall was reached and/or passed. The relative fin vortex strengths were measured in two ways. First, the maximum angular velocity of a four blade rotor placed in the fin vortex center was measured with the use of a stroboscope. Second, the maximum rolling moment on a following wing model placed in the fin vortex center was measured by a force balance.

  12. The influence of culture on the international management of shark finning.

    PubMed

    Dell'Apa, Andrea; Smith, M Chad; Kaneshiro-Pineiro, Mahealani Y

    2014-08-01

    Shark finning is prohibited in many countries, but high prices for fins from the Asian market help maintain the international black-market and poaching. Traditional shark fin bans fail to recognize that the main driver of fin exploitation is linked to cultural beliefs about sharks in traditional Chinese culture. Therefore, shark finning should be addressed considering the social science approach as part of the fishery management scheme. This paper investigates the cultural significance of sharks in traditional Chinese and Hawaiian cultures, as valuable examples of how specific differences in cultural beliefs can drive individuals' attitudes toward the property of shark finning. We suggest the use of a social science approach that can be useful in the design of successful education campaigns to help change individuals' attitudes toward shark fin consumption. Finally, alternative management strategies for commercial fishers are provided to maintain self-sustainability of local coastal communities. PMID:24828065

  13. Sin Nombre hantavirus decreases survival of male deer mice.

    PubMed

    Luis, Angela D; Douglass, Richard J; Hudson, Peter J; Mills, James N; Bjørnstad, Ottar N

    2012-06-01

    How pathogens affect their hosts is a key question in infectious disease ecology, and it can have important influences on the spread and persistence of the pathogen. Sin Nombre virus (SNV) is the etiological agent of hantavirus pulmonary syndrome (HPS) in humans. A better understanding of SNV in its reservoir host, the deer mouse, could lead to improved predictions of the circulation and persistence of the virus in the mouse reservoir, and could help identify the factors that lead to increased human risk of HPS. Using mark-recapture statistical modeling on longitudinal data collected over 15 years, we found a 13.4% decrease in the survival of male deer mice with antibodies to SNV compared to uninfected mice (both male and female). There was also an additive effect of breeding condition, with a 21.3% decrease in survival for infected mice in breeding condition compared to uninfected, non-breeding mice. The data identified that transmission was consistent with density-dependent transmission, implying that there may be a critical host density below which SNV cannot persist. The notion of a critical host density coupled with the previously overlooked disease-induced mortality reported here contribute to a better understanding of why SNV often goes extinct locally and only seems to persist at the metapopulation scale, and why human spillover is episodic and hard to predict. PMID:22218940

  14. First description of a musculoskeletal linkage in an adipose fin: innovations for active control in a primitively passive appendage.

    PubMed

    Stewart, Thomas A; Hale, Melina E

    2013-01-01

    Adipose fins are enigmatic appendages found between the dorsal and caudal fins of some teleostean fishes. Long thought to be vestigial, degenerate second dorsal fins, remnants of the primitive gnathostome condition, adipose fins have since been recognized as novel morphologies. Unique among the fins of extant fishes, adipose fins have uniformly been described as passive structures, with no associated musculature. Here we provide the first description of a musculoskeletal linkage in an adipose fin, identified in the sun catfish Horabagrus brachysoma. Modified supracarinalis posterior muscles insert from the dorsal midline anterior to the adipose fin by tendons onto the fin base. An additional pair of posterior adipose-fin muscles also inserts upon the fin base and lay posterolateral to the fin, superficial to the axial muscle. This musculoskeletal linkage is an evolutionary innovation, a novel mechanism for controlling adipose-fin movement. These muscles appear to exemplify two approaches by which fins evolve to be actively controlled. We hypothesize that the anterior muscles arose through co-option of an existing fin linkage, while the posterior muscles originated as de novo fin muscles. These findings present adipose fins as a rich system within which to explore the evolution of novel vertebrate appendages. PMID:23135670

  15. Functional subdivision of fin protractor and retractor muscles underlies pelvic fin walking in the African lungfish Protopterus annectens.

    PubMed

    Aiello, Brett R; King, Heather M; Hale, Melina E

    2014-10-01

    African lungfish Protopterus annectens can produce rotational movements around the joint between the pelvis and the pelvic fin, allowing these animals to walk across benthic substrates. In tetrapods, limb rotation at the hip joint is a common feature of substrate-based locomotion. For sprawling tetrapods, rotation can involve nine or more muscles, which are often robust and span multiple joints. In contrast, P. annectens uses a modest morphology of two fan-shaped muscles, the pelvic fin protractor and retractor, to accomplish this movement. We hypothesized that functional subdivision, coupled with their broad insertions on the femur, allows each of these muscles to pull on the limb from multiple directions and provides a mechanism for fin rotation. To test this hypothesis, we examined the muscle activity at three locations in both the protractor and the retractor muscles during walking. Electromyograms show differences in the timing of muscle activation between dorsal and ventral regions of each muscle, suggesting that each muscle is functionally subdivided once. The subdivisions demonstrate sequential onsets of muscle activity and overlap of activity between regions, which are also features of limb control in tetrapods. These data indicate that subdivisions of protractor and retractor muscles impart functional complexity to a morphologically simple system, and suggest a mechanism that allows lungfish to produce a tetrapod-like walking gait with only two muscles. As one of few extant sarcopterygian fishes, P. annectens may provide important functional data to inform interpretation of limb movement of fossil relatives. PMID:25104761

  16. Self-Heating Effects and Analog Performance Optimization of Fin-Type Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsunaki; Beppu, Nobuyasu; Chen, Kunro; Oda, Shunri; Uchida, Ken

    2013-04-01

    The self-heating effects (SHEs) of bulk and silicon-on-insulator (SOI) fin-type field-effect transistors (FinFETs) and their impacts on circuit performance have been investigated on the basis of a realistic thermal conductivity of silicon. The heat dissipation via interconnect wires and interface thermal resistance in the high-κ gate stack were incorporated in simulations. It is shown that the depth of the shallow trench isolation (STI) of bulk FinFETs cannot be decreased to less than 100 nm owing to the increase in off-state leakage current. We observed that the thermal resistance Rth of SOI FinFETs greatly decreases upon thinning the buried oxide (BOX) layer. When the BOX thickness tBOX is less than 50 nm, the Rth of SOI FinFETs is smaller than that of bulk FinFETs with an STI thickness of 100 nm, indicating a lower operation temperature of the thin-BOX SOI FinFETs than that of bulk FinFETs. The lower operation temperature of the 5-nm BOX SOI FinFET was confirmed under a practical bias condition for analog operations. In fin width, Wfin, versus Rth characteristics, a strong Wfin dependence of Rth was observed only in the bulk FinFETs, implying that fluctuations in Wfin result in the variability of the operation temperature of the bulk FinFETs. Analog performance has been analyzed by calculating the cutoff frequency fT and the maximum oscillation frequency fmax. We demonstrated that both fT and fmax can be maximized in SOI FinFETs by optimizing tBOX with regard to electrical and thermal properties. Better analog performance, and hence the optimization of tBOX, are indispensable for the device design of a FinFET-based system-on-a-chip (SoC) platform.

  17. Mapping interactions between the RNA chaperone FinO and its RNA targets

    PubMed Central

    Arthur, David C.; Tsutakawa, Susan; Tainer, John A.; Frost, Laura S.; Glover, J. N. Mark

    2011-01-01

    Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5′-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem–loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3′ single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3′-nucleotide blocks FinO binding, suggesting FinO binds the 3′-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO–SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation. PMID:21278162

  18. Estudio multifrecuencia del medio interestelar cercano a HD 192281

    NASA Astrophysics Data System (ADS)

    Arnal, E. M.; Cappa, C. E.; Cichowolski, S.; Pineault, S.; St-Louis, N.

    Una de las causas que modifica la estructura y dinámica del medio interestelar es la acción que los vientos de las estrellas de gran masa ejercen sobre el mismo. En este trabajo, mediante el uso de datos interferométricos obtenidos en la banda de radio en la transición de λ˜21-cm del hidrógeno neutro y de imágenes de la emisión de continuo en las bandas de 408 y 1420 MHz, de imágenes HIRES del satélite IRAS en 60 y 100μm, y de observaciones de continuo obtenidas con radiotelescopios de disco simple en 2695, 4850 y 8350 MHz se ha realizado un estudio multifrecuencia de los efectos que los vientos estelares de HD 192281, una estrella de tipo espectral O5,Vn((f))p, han tenido sobre el medio interestelar que rodea a la misma.

  19. Performance enhancement of fin attached ice-on-coil type thermal storage tank for different fin orientations using constrained and unconstrained simulations

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Duong, X. Q.; Chung, J. D.

    2016-07-01

    One of the drawbacks in latent thermal energy storage system is the slow charging and discharging time due to the low thermal conductivity of the phase change materials (PCM). This study numerically investigated the PCM melting process inside a finned tube to determine enhanced heat transfer performance. The influences of fin length and fin numbers were investigated. Also, two different fin orientations, a vertical and horizontal type, were examined, using two different simulation methods, constrained and unconstrained. The unconstrained simulation, which considers the density difference between the solid and liquid PCM showed approximately 40 % faster melting rate than that of constrained simulation. For a precise estimation of discharging performance, unconstrained simulation is essential. Thermal instability was found in the liquid layer below the solid PCM, which is contrary to the linear stability theory, due to the strong convection driven by heat flux from the coil wall. As the fin length increases, the area affected by the fin becomes larger, thus the discharging time becomes shorter. The discharging performance also increased as the fin number increased, but the enhancement of discharging performance by more than two fins was not discernible. The horizontal type shortened the complete melting time by approximately 10 % compared to the vertical type.

  20. An automated procedure for analyzing the effects of vortex-induced fin pressure on roll torque for a finned body of revolution.

    SciTech Connect

    Vijlee, Shazib Z.

    2004-09-01

    In flight tests, certain finned bodies of revolution firing lateral jets experience slower spin rates than expected. The primary cause for the reduced spin rate is the interaction between the lateral jets and the freestream air flowing past the body. This interaction produces vortices that interact with the fins (Vortex-Fin Interaction (VFI)) altering the pressure distribution over the fins and creating torque that counteracts the desired spin (counter torque). The current task is to develop an automated procedure for analyzing the pressures measured at an array of points on the fin surfaces of a body tested in a production-scale wind tunnel to determine the VFI-induced roll torque and compare it to the roll torque experimentally measured with an aerodynamic balance. Basic pressure, force, and torque relationships were applied to finite elements defined by the pressure measurement locations and integrated across the fin surface. The integrated fin pressures will help assess the distinct contributions of the individual fins to the counter torque and aid in correlating the counter torque with the positions and strengths of the vortices. The methodology produced comparisons of the effects of VFI for varying flow conditions such as freestream Mach number and dynamic pressure. The results show that for some cases the calculated counter torque agreed with the measured counter torque; however, the results were less consistent with increased freestream Mach numbers and dynamic pressures.

  1. Original antigenic sin with human bocaviruses 1-4.

    PubMed

    Li, Xuemeng; Kantola, Kalle; Hedman, Lea; Arku, Benedict; Hedman, Klaus; Söderlund-Venermo, Maria

    2015-10-01

    Human bocavirus (HBoV) 1 is a widespread parvovirus causing acute respiratory disease in young children. In contrast, HBoV2 occurs in the gastrointestinal tract and is potentially associated with gastroenteritis, whilst HBoV3 and -4 infections are less frequent and have not yet been linked with human disease. Due to HBoV1 DNA persistence in the nasopharynx, serology has been advocated as a better alternative for diagnosing acute infections. In constitutionally healthy children, we previously noted that pre-existing HBoV2 immunity in a subsequent HBoV1 infection typically resulted in low or non-existent HBoV1-specific antibody responses. A phenomenon describing such immunological events among related viruses has been known since the 1950s as 'original antigenic sin' (OAS). The aim of this study was to characterize this putative OAS phenomenon in a more controlled setting. Follow-up sera of 10 rabbit pairs, inoculated twice with HBoV1-4 virus-like particles (VLPs) or control antigens, in various combinations, were analysed with HBoV1-4 IgG enzyme immunoassays with and without depletion of heterotypic HBoV antibodies. There were no significant IgG boosts after the second inoculation in either the heterologously or the homologously HBoV-inoculated rabbits, but a clear increase in cross-reactivity was seen with time. We could, however, distinguish a distinct OAS pattern from plain cross-reactivity: half of the heterologously inoculated rabbits showed IgG patterns representative of the OAS hypothesis, in line with our prior results with naturally infected children. HBoVs are the first parvoviruses to show the possible existence of OAS. Our findings provide new information on HBoV1-4 immunity and emphasize the complexity of human bocavirus diagnosis. PMID:26224569

  2. Fin stress and pitch measurement using X-ray diffraction reciprocal space maps and optical scatterometry

    NASA Astrophysics Data System (ADS)

    Diebold, A. C.; Medikonda, M.; Muthinti, G. R.; Kamineni, V. K.; Fronheiser, J.; Wormington, M.; Peterson, B.; Race, J.

    2013-04-01

    Although fin metrology presents many challenges, the single crystal nature of the fins also provides opportunities to use a combination of measurement methods to determine stress and pitch. While the diffraction of light during a scatterometry measurement is well known, X-ray diffraction from a field (array) of single crystal silicon fins can also provide important information. Since some fins have Si1-xGex alloys at the top of the fin, determination of the presence of stress relaxation is another critical aspect of fin characterization. Theoretical studies predict that the bi-axially stressed crystal structure of pseudomorphic alloy films will be altered by the fin structure. For example, one expects it will be different along the length of the fin vs the width. Reciprocal space map (RSM) characterization can provide a window in the stress state of fins as well as measure pitch walking and other structural information. In this paper, we describe the fundamentals of how RSMs can be used to characterize the pitch of an array of fins as well as the stress state. We describe how this impacts the optical properties used in scatterometry measurement.

  3. An Experimental-Numerical Evaluation of Thermal Contact Conductance in Fin-Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kim, Chang Nyung; Jeong, Jin; Youn, Baek; Kil, Seong Ho

    The contact between fin collar and tube surface of a fin-tube heat exchanger is secured through mechanical expansion of tubes. However, the characteristics of heat transfer through the interfaces between the tubes and fins have not been clearly understood because the interfaces consist partially of metal-to-metal contact and partially of air. The objective of the present study is to develop a new method utilizing an experimental-numerical method for the estimation of the thermal contact resistance between the fin collar and tube surface and to evaluate the factors affecting the thermal contact resistance in a fin-tube heat exchanger. In this study, heat transfer characteristics of actual heat exchanger assemblies have been tested in a vacuum chamber using water as an internal fluid, and a finite difference numerical scheme has been employed to reduce the experimental data for the evaluation of the thermal contact conductance. The present study has been conducted for fin-tube heat exchangers of tube diameter of 7mm with different tube expansion ratios, fin spacings, and fin types. The results show, with an appropriate error analysis, that these parameters as well as hydrophilic fin coating affect notably the thermal contact conductance. It has been found out that the thermal contact resistance takes fairly large portion of the total thermal resistance in a fin-tube heat exchanger and it turns out that careful consideration is needed in a manufacturing process of heat exchangers to reduce the thermal contact resistance.

  4. Patterning challenges in advanced device architectures: FinFETs to nanowires

    NASA Astrophysics Data System (ADS)

    Horiguchi, N.; Milenin, A. P.; Tao, Z.; Hubert, H.; Altamirano-Sanchez, E.; Veloso, A.; Witters, L.; Waldron, N.; Ragnarsson, L.-Å.; Kim, M. S.; Kikuchi, Y.; Mertens, H.; Raghavan, P.; Piumi, D.; Collaert, N.; Barla, K.; Thean, A. V.

    2016-03-01

    Si FinFET scaling is getting more difficult due to extremely narrow fin width control and power dissipation. Nanowire FETs and high mobility channel are attractive options for CMOS scaling. Nanowire FETs can maintain good electrostatics with relaxed nanowire diameter. High mobility channel can provide good performance at low power operation. However their fin patterning is challenging due to fins consisted of different materials or fragile high mobility material. Controlled etch and strip are necessary for good fin cd and profile control. Fin height increase is a general trend of scaled FinFETs and nanowire FETs, which makes patterning difficult not only in fin, but also in gate, spacer and replacement metal gate. It is important that gate and spacer etch have high selectivity to fins and good cd and profile control even with high aspect ratio of fin and gate. Work function metal gate patterning in scaled replacement metal gate module needs controlled isotropic etch without damaging gate dielectric. SF6 based etch provides sharp N-P boundary and improved gate reliability.

  5. Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): explaining phylogenetic variation with geometric morphometrics.

    PubMed

    Franklin, Oliver; Palmer, Colin; Dyke, Gareth

    2014-10-01

    The diverse cartilaginous fish lineage, Batoidea (rays, skates, and allies), sister taxon to sharks, comprises a huge range of morphological diversity which to date remains unquantified and unexplained in terms of evolution or locomotor style. A recent molecular phylogeny has enabled us to confidently assess broadscale aspects of morphology across Batoidea. Geometric morphometrics quantifies the major aspects of shape variation, focusing on the enlarged pectoral fins which characterize batoids, to explore relationships between ancestry, locomotion and habitat. A database of 253 specimens, encompassing 60 of the 72 batoid genera, reveals that the majority of morphological variation across Batoidea is attributable to fin aspect-ratio and the chordwise location of fin apexes. Both aspect-ratio and apex location exhibit significant phylogenetic signal. Standardized independent linear contrast analysis reveals that fin aspect-ratio can predict locomotor style. This study provides the first evidence that low aspect-ratio fins are correlated with undulatory-style locomotion in batoids, whereas high aspect-ratio fins are correlated with oscillatory locomotion. We also show that it is phylogeny that determines locomotor style. In addition, body- and caudal fin-locomotors are shown to exhibit low aspect-ratio fins, whereas a pelagic lifestyle correlates with high aspect-ratio fins. These results emphasize the importance of phylogeny in determining batoid pectoral fin shape, however, interactions with other constraints, most notably locomotor style, are also highlighted as significant. PMID:24797832

  6. N. meningitidis 1681 is a member of the FinO family of RNA chaperones.

    SciTech Connect

    Chaulk, S.; Lu, J.; Tan, K.; Arthur, D.; Edwards, R.; Frost, L.; Joachimiak, A.; Glover, J.

    2010-11-01

    The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO-conjugation-repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5-foot and 3-foot single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.

  7. Fish Pectoral Fin Hydrodynamics; Part III: Low Dimensional Models via POD Analysis

    NASA Astrophysics Data System (ADS)

    Bozkurttas, M.; Madden, P.

    2005-11-01

    The highly complex kinematics of the pectoral fin and the resulting hydrodynamics does not lend itself easily to analysis based on simple notions of pitching/heaving/paddling kinematics or lift/drag based propulsive mechanisms. A more inventive approach is needed to dissect the fin gait and gain insight into the hydrodynamic performance of the pectoral fin. The focus of the current work is on the hydrodynamics of the pectoral fin of a bluegill sunfish in steady forward motion. The 3D, time-dependent fin kinematics is obtained via a stereo-videographic technique. We employ proper orthogonal decomposition to extract the essential features of the fin gait and then use CFD to examine the hydrodynamics of simplified gaits synthesized from the POD modes. The POD spectrum shows that the first two, three and five POD modes capture 55%, 67%, and 80% of the motion respectively. The first three modes are in particular highly distinct: Mode-1 is a ``cupping'' motion where the fin cups forward as it is abducted; Mode-2 is an ``expansion'' motion where the fin expands to present a larger area during adduction and finally Mode-3 involves a ``spanwise flick'' of the dorsal edge of the fin. Numerical simulation of flow past fin gaits synthesized from these modes lead to insights into the mechanisms of thrust production; these are discussed in detail.

  8. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  9. Optimization of fin-swim training for SCUBA divers.

    PubMed

    Wylegala, J; Schafer-Owczarzak, M; Pendergast, D R

    2007-01-01

    Underwater swimming is a unique exercise and its fitness is not accomplished by other types of training. This study compared high intensity intermittent fin-swim training (HIIT) with moderate intensity continuous (MICT). Divers (n = 20; age = 23 +/- 4 yrs; weight = 82.57 +/- 10.38 kg; height = 180 +/- 6 cm) were assigned to MICT (65%-75% heart rate max (HRmax), for 45 min) or HIIT three 10 min swims/rest cycles (77%, 83%, and 92% HRmax, respectively) for 50 min. They trained using snorkel and fins at the surface paced by an underwater light system 3 times per week for 4 weeks. Swim tests were the energy cost of swimming, VO2max and timed endurance swim (at 70%/VO2max). The VO2 was a non-significantly reduced at any velocity with either HIIT or MICT. Maximal swim velocity increased after HIIT (10%) (p < or = 0.05) but not after MICT (p > 0.05). VO2max increased 18% after HIIT and 6% after MICT (p < or = 0.05). The endurance times increased 131% after HIIT and 78% after MICT (p < or = 0.05), and in spite of this post-swim lactate was not significantly different and averaged 4.69 +/- 1.10mM (p > 0.05). Although both training methods significantly improved fin swimming performance with similar time commitments, the HIIT improved VO2max and endurance more than MICT (p < or = 0.05). As no improvements in ventilation were observed, combining HIIT with respiratory muscle training could optimize diver swim fitness. PMID:18251440

  10. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.

    PubMed

    Lauder, George V; Madden, Peter G A; Mittal, Rajat; Dong, Haibo; Bozkurttas, Meliha

    2006-12-01

    A full understanding of the mechanics of locomotion can be achieved by incorporating descriptions of (1) three-dimensional kinematics of propulsor movement, (2) material properties of the propulsor, (3) power input and control and (4) the fluid dynamics effects of propulsor motion into (5) a three-dimensional computational framework that models the complexity of propulsors that deform and change area. In addition, robotic models would allow for further experimental investigation of changes to propulsor design and for testing of hypothesized relationships between movement and force production. Such a comprehensive suite of data is not yet available for any flexible propulsor. In this paper, we summarize our research program with the goal of producing a comprehensive data set for each of the five components noted above through a study of pectoral fin locomotion in one species of fish: the bluegill sunfish Lepomis macrochirus. Many fish use pectoral fins exclusively for locomotion, and pectoral fins in most fish are integral to generating force during maneuvering. Pectoral fins are complex structures composed of jointed bony supports that are under active control via pectoral fin musculature. During propulsion in sunfish, the fin deforms considerably, has two leading edges, and sunfish can rotate the whole fin or just control individual sections to vector thrust. Fin material properties vary along the length of fin rays and among rays. Experimental fluid dynamic analysis of sunfish pectoral fin locomotion reveals that the fin generates thrust throughout the fin beat cycle, and that the upper and lower edges each produce distinct simultaneous leading edge vortices. The following companion paper provides data on the computational approach taken to understand locomotion using flexible pectoral fins. PMID:17671315