Science.gov

Sample records for medium energy x-rays

  1. Centaurus X-3 - New low- and medium-energy X-ray observations

    NASA Technical Reports Server (NTRS)

    Long, K.; Agrawal, P. C.; Garmire, G.

    1975-01-01

    Low- and medium-energy X-ray observations of Cen X-3 during two pointed sounding-rocket experiments are discussed. The lack of low-energy emission from Cen X-3 is consistent with the identification of Krzeminski's star as the optical counterpart of Cen X-3 and normal reddening, in contrast to an earlier measurement by Bleeker et al (1973).

  2. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  3. Comparison of the NIST and BIPM Medium-Energy X-Ray Air-Kerma Measurements

    PubMed Central

    Burns, D. T.; O’Brien, M.; Lamperti, P.; Boutillon, M.

    2003-01-01

    The air-kerma standards used for the measurement of medium-energy x rays were compared at the National Institute of Standards and Technology (NIST) and at the Bureau International des Poids et Mesures (BIPM). The comparison involved a series of measurements at the BIPM and the NIST using the air-kerma standards and two NIST reference-class transfer ionization standards. Reference beam qualities in the range from 60 kV to 300 kV were used. The results show the standards to be in agreement within the combined standard uncertainty of the comparison of 0.35 %.

  4. Relative response of the alanine dosimeter to medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Anton, M.; Büermann, L.

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation. Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series. Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series. For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  5. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication. PMID:26216572

  6. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    SciTech Connect

    Chica, U.; Anguiano, M.; Lallena, A. M.; Vilches, M.

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  7. Development of observational and instrumental techniques in hard X-ray and medium energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Pelling, M.

    1985-01-01

    The technical activities, scientific results, related space hardware projects and personnel of the high energy astrophysics program are reported. The development of observational and instrumental techniques in hard X-ray (0.001 to 100 keV) and medium energy gamma-ray (0.1 to 10 MeV) astronomy are examined. Many of these techniques were developed explicitly for use on high altitude balloons where most of the scientific results were obtained. The extensive observational activity using balloons are tabulated. Virtually every research activity will eventually result in a major space hardware development effort.

  8. Comparison of photocurrent enhancement and upset enhancement in CMOS devices in a medium-energy x-ray environment

    SciTech Connect

    Beutler, D.E.; Beezhold, W.; Browning, J.S.; Fleetwood, D.M.; Counts, N.E. ); Knott, D.P. ); Freshman, C.L.; Conners, M.P. )

    1990-08-01

    Radiation-induced upset levels in SA3001 static random access memories (SRAM's) and SA 3246 clock integrated circuits (IC's) have been measured in a medium-energy flash X-ray environment (average photon energy {approximately}100 keV) where dose-enhancing effects are very important. By comparing device responses using a non-dose-enhancing ceramic package lid and a dose-enhancing Kovar/gold lid, dose-enhancement factors for photocurrent and upset were generated. The observed upset enhancement factors of 3.0 {plus minus} 0.5 (SRAM) and 2.2 {plus minus} 0.2 (clock IC) are in excellent agreement with measurements of photocurrent enhancement factors (2.5 {plus minus} 0.5) in diodes processed with the same diffusions as the complementary metal-oxide-semiconductor (CMOS) IC's irradiated in a steady-state X-ray environment. These results indicate that upset is dominated by the radiation-induced transient supply current in these IC's, and that steady-state diode photocurrent measurements are a good predictor of both photocurrent and upset enhancement for IC's made with this technology.

  9. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  10. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; ODell, S.; Ramsey, B.; Romaine, S.; Swartz. D/; Weisskopf, M.; Hasinger, G.; Predehl, P.; Grigorovich, S.; Litvin, D.; Meidinger, N.; Strueder, L. W.

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  11. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  12. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    NASA Astrophysics Data System (ADS)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  13. X-ray constraints on the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Aldcroft, Thomas; Elvis, Martin; Mcdowell, Jonathan; Fiore, Fabrizio

    1994-01-01

    We use ROSAT Position Sensitive Proportional Counter (PSPC) spectra of z approximately equal 3 quasars to constrain the density and temperature of the intergalactic medium (IGM). Strong low-energy cutoffs in PSPC spectra of high-redshift quasars are common. However, the absence of absorption toward some high-redshift quasars can be used to put limits on the possible cosmological density, Omega(sub G), of a hot diffuse intergalactic medium (IGM), via an X-ray Gunn-Peterson test using edge and line opacity in the soft X-rays. The K-edges of oxygen, neon, and carbon and the L-edge of iron produce most of the absorption which is spread out by the redshift of the source. We assume an isotropic, isothermal, nonevolving model of the IGM and calculate the optical depth of this absorption. We find that this test can constrain an enriched IGM at temperatures near 10(exp 5) - 10(exp 6) K, intermediate between the hot IGM ruled out by COBE, and the cold IGM ruled out by the traditional Ly alpha Gunn -Peterson test. Photoionization if the IGM by the ultraviolet and X-ray background has a large effect. We give results for three z approximately equal 3 quasars and discuss how the various trade-offs among temperature, abundance, and backgroud radiation strength affect the limits on Omega (sub G). In addition to the high-redshift case, we discuss techniques for constraining the IGM using X-ray spectra of low-redhift quasars (z approximately equal 0.1 - 0.3). Currently available X-ray spectral data have insufficient energy resolution to constrain the IGM umambiguously, and so expected detection limits for future high-resolution spectrometers are presented. We find that with a large effective area (approximately 2000 sq cm), it is possible to substantially constrain or detect the IGM at the densities which are typically predicted.

  14. KEY COMPARISON: APMP/TCRI key comparison report of measurement of air kerma for medium-energy x-rays (APMP.RI(I)-K3)

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hwang, W. S.; Kotler, L. H.; Webb, D. V.; Büermann, L.; Burns, D. T.; Takeyeddin, M.; Shaha, V. V.; Srimanoroth, S.; Meghzifene, A.; Hah, S. H.; Chun, K. J.; Kadni, T. B.; Takata, N.; Msimang, Z.

    2008-01-01

    The APMP/TCRI Dosimetry Working Group performed the APMP.RI(I)-K3 key comparison of measurement of air kerma for medium-energy x-rays (100 kV to 250 kV) between 2000 and 2003. In total, 11 institutes took part in the comparison, among which 8 were APMP member laboratories. Two commercial cavity ionization chambers were used as transfer instruments and circulated among the participants. All the participants established the 100 kV, 135 kV, 180 kV and 250 kV x-ray beam qualities equivalent to those of the BIPM. The results showed that the maximum difference between the participants and the BIPM in the medium-energy x ray range, evaluated using the comparison data of the linking laboratories ARPANSA and PTB, is less than 1.4%. The degrees of equivalence between the participants are presented and this comparison confirms the calibration capabilities of the participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  15. Thimble ionization chambers in medium-energy x-ray beams and the role of constructive details of the central electrode: Monte Carlo simulations and measurements

    NASA Astrophysics Data System (ADS)

    Ubrich, F.; Wulff, J.; Kranzer, R.; Zink, K.

    2008-09-01

    This paper presents investigations of thimble ionization chamber response in medium-energy kilovoltage x-ray beams (70-280 kVp, 0.09-3.40 mm Cu HVL). Two thimble ionization chambers (PTW30015 and PTW30016) were investigated, regarding the influence of the central electrode dimensions made of aluminum. Measurements were carried out in photon fields of different beam quality. Corresponding Monte Carlo simulations employing the EGSnrc Monte Carlo code system were performed. The simulations included the modelling of the x-ray tube and measurement setup for generation of x-ray spectra. These spectra were subsequently used to calculate the absorbed energy in the air cavity of the two thimble ionization chamber models and the air kerma at the reference point of the chambers. Measurements and simulations revealed an optimal diameter of the central electrode, concerning an almost energy-independent response of the ionizaton chamber. The Monte Carlo simulations are in good agreement with the measured values, expressed in beam quality correction factors kQ. The agreement was generally within 0.6% but could only be achieved with an accurate model of the central electrode including its exact shape. Otherwise, deviations up to 8.5% resulted, decreasing with higher photon energies, which can be addressed to the high yield of the photoelectric effect in the electrode material aluminum at low photon energies.

  16. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  17. The interstellar medium and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    1996-01-01

    The soft X-ray background (SXRB) surface brightness provides data to study the approximately 10(exp 6) K plasma of the local interstellar medium of our Galaxy. Various studies were carried out in order to search for negative correlation, or shadowing, of the SXRB, and were coupled with interstellar medium absorption line studies. The purpose was to determine whether the distances to the shadowing material will lead to a three dimensional mapping of the X-ray emitting, and X-ray absorbing components.

  18. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  19. Ultrasoft X-ray background observations of the Local Interstellar Medium

    SciTech Connect

    Sanders, W.T.; Snowden, S.L.; Bloch, J.J.; Juda, M.; Jahoda, K.M.; Mccammon, D.

    1984-11-01

    Preliminary results from a May 8, 1984 sounding rocket survey of the soft X-ray background are presented. The X-ray detectors are sensitive to X-rays in three soft X-ray bandpasses: 80 to 110 eV, 90 to 188 eV, and 284 to 532 eV (at 20% of peak response). The lowest energy X-rays in this range have a mean free path of order 10 to the 19th power/sq cm and provide information about the Local Interstellar Medium. The count rate in the 80 to 110 eV energy band (the Be band) tracks the 90 to 188 (eV band (the B band) very well, indicating that the same approx. 1 million degree gas that is responsible for the B band emission may be responsible for the bulk of the Be band X-rays as well.

  20. Ultrasoft X-ray Background Observations of the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Snowden, S. L.; Bloch, J. J.; Juda, M.; Jahoda, K. M.; Mccammon, D.

    1984-01-01

    Preliminary results from a May 8, 1984 sounding rocket survey of the soft X-ray background are presented. The X-ray detectors are sensitive to X-rays in three soft X-ray bandpasses: 80 to 110 eV, 90 to 188 eV, and 284 to 532 eV (at 20% of peak response). The lowest energy X-rays in this range have a mean free path of order 10 to the 19th power/sq cm and provide information about the local interstellar medium. The count rate in the 80 to 110 eV energy band (the Be band) tracks the 90 to 188 (eV band (the B band) very well, indicating that the same approx. 1 million degree gas that is responsible for the B band emission may be responsible for the bulk of the Be band X-rays as well.

  1. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NMIJ, Japan and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Tanaka, T.; Kurosawa, T.; Saito, N.

    2016-01-01

    A key comparison has been made between the air-kerma standards of the NMIJ, Japan and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.1 parts in 103. A trend is evident in the results for the different radiation qualities. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NRC, Canada and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Mainegra-Hing, E.; Shen, H.; McEwen, M. R.

    2016-01-01

    A key comparison has been made between the air-kerma standards of the NRC, Canada and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.3 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  4. Low Energy X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodruff, Wayne R.

    1981-10-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d=9.95Å) crystal. To preclude higher order (n≳1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than ˜1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surfaced photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminum light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any UV generated on or scattered by the crystal from illuminating the detector. High spectral enegy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα1,2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy X-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable.

  5. Energy resolved X-ray grating interferometry

    SciTech Connect

    Thuering, T.; Stampanoni, M.; Barber, W. C.; Iwanczyk, J. S.; Seo, Y.; Alhassen, F.

    2013-05-13

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  6. X-Ray Transition Energies Database

    National Institute of Standards and Technology Data Gateway

    SRD 128 X-Ray Transition Energies Database (Web, free access)   This X-ray transition table provides the energies and wavelengths for the K and L transitions connecting energy levels having principal quantum numbers n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium. There are two unique features of this data base: (1) a serious attempt to have all experimental values on a scale consistent with the International System of measurement (the SI) and (2) inclusion of accurate theoretical estimates for all transitions.

  7. Energy Scales in X-Ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Tillotson, W. A.; Boyce, K. R.; Brown, G. V.; Cottam, J.; Figueroa, E.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.

    2003-01-01

    Microcalorimeter pulse shape characteristics, such as pulse height, decay time and rise time, are dependent on the detector temperature and bias as well as the photon energy and flux. We examine the nature of the temperature dependency by illuminating the ASTRO-E2 X-ray Spectrometer (XRS) microcalorimeter array with X-rays generated by electron impact on a range of foil targets. The resulting pulses are collected for a range of detector temperatures. We observe and model the temperature dependence of the pulse shape characteristics by fitting the data with non-linear pulse models. Our aim is to determine a robust method for correcting the energy scale obtained in ground calibration for slight differences in the operating conditions while in orbit.

  8. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: timothy.r.kallman@nasa.gov

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  9. Oxygen, neon, and iron X-ray absorption in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; García, Javier A.; Kallman, Timothy R.; Mendoza, Claudio

    2016-04-01

    Aims: We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods: By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results: We have determined the absorbing material distribution as a function of source distance and galactic latitude-longitude. Conclusions: Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  10. ISMabs: A Comprehensive X-Ray Absorption Model for the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2015-02-01

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  11. A new X-ray Absorption Model for the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; Kallman, T.; García, J.; Gorczyca, T.; Mendoza, C.

    2014-07-01

    Absorption from the interstellar medium (ISM) affects every X-ray observation. Its effects are usually removed or studied using models which assume that the gas is neutral. However, spectra show that ions are present in most or many lines of sight. We present a model for interstellar X-ray absorption, which we call ismabs, that includes both ions and neutral elements and which uses the most accurate atomic data available for abundant elements. We have benchmarked ismabs using high-resolution spectra from X-ray binary sources obtained with the High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-ray observatory. The oxygen and neon K edge absorption regions as well as the iron L edge absorption region have been studied in detail. Although the neutral component is dominant in these spectra, the inclusion of ions leads to better fits to observed data, compared with previous work which only included neutral elements. The use of ismabs allows the determination of column densities of abundant elements, and their mean ionization states. Ismabs is fast and has relatively few free parameters. It has been developed for use with common X-ray spectral fitting packages such as XSPEC or ISIS.

  12. Techniques of absolute low energy x-ray calibration

    SciTech Connect

    Day, R.H.

    1986-01-01

    Recent advances in pulsed plasma research, materials science, and astrophysics have required many new diagnostic instruments for use in the low energy x-ray regime. The characterization of these instruments has provided a challenge to instrument designers and provided the momentum to improve x-ray sources and dosimetry techniques. In this paper, the present state-of-the-art in low energy x-ray characterization techniques is reviewed. A summary is given of low energy x-ray generator technology and dosimetry techniques including a discussion of thin window proportional counters and ionization chambers. A review is included of the widely used x-ray data bases and a sample of ultrasoft x-ray measuring procedures, chopped x-ray source generators, phase sensitive detection of ultralow currents, and angular divergence measurements.

  13. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  14. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  15. High energy-resolution inelastic x-ray scattering

    SciTech Connect

    Hastings, J.B.; Moncton, D.E.; Fujii

    1984-01-01

    A brief review is presented of various aspects of high energy-resolution inelastic x-ray scattering based on synchrotron sources. We show what kinematical advantages are provided by the photon probe and propose mirror and monochromator designs to achieve an optically efficient beam line for inelastic x-ray scattering.

  16. Comparison of X-ray techniques and energies

    NASA Astrophysics Data System (ADS)

    Moore, John F.; Harris, Lowell D.

    1988-12-01

    Examples are given of objects scanned with a variety of X-ray techniques: digital radiography, laminography, backscatter imaging, and computed tomography. Several comparisons are made where an assembly or composite material is scanned at several energies or resolutions. An image made using an isotope source and photon counting is compared to an image using integrated signals from an X-ray source.

  17. Two facets of the x-ray microanalysis at low voltage: The secondary fluorescence x-rays emission and the microcalorimeter energy-dispersive spectrometer

    NASA Astrophysics Data System (ADS)

    Demers, Hendrix

    The best spatial resolution, for a microanalysis with a scanning electron microscope (SEND, is achieved by using a low voltage electron beam. But the x-ray microanalysis was developed for high electron beam energy (greater than 10 keV). Also, the specimen will often contain light and medium elements and the analyst will have to use a mixture of K, L, and sometime M x-ray peaks for the x-ray microanalysis. With a mixture of family lines, it will be common to have secondary fluorescence x-rays emission by K--L and L--K interactions. The accuracy of the fluorescence correction models presently used by the analyst are not well known for these interactions. This work shows that the modified secondary fluorescence x-rays emission correction models can improve the accuracy of the microanalysis for K--L and L--K interactions. The general equation derived in this work allows the identification of three factors which influence the secondary fluorescence x-rays emission. The fluorescence production factor epsilonƒ can be used to predict the importance of the secondary fluorescence x-rays emission. A large value of epsilonƒ indicates that a fluorescence correction is needed. Another disadvantage of using a low voltage is that there are more frequent occurrences of x-ray peaks overlap. A new microanalysis instruments that combines the high-spatial resolution and high-energy resolution for x-ray detection is needed. The microcalorimeter energy-dispersive spectrometer (muEDS) should improve the low voltage microanalysis, but the maturity of this technology has to be evaluated first. One of the first commercial muEDS for x-ray microanalysis in a SEM is studied and analyzed in this work. This commercial muEDS has an excellent energy resolution (˜ 15 eV) and can detect x-rays of low energy. This x-ray detector can be used as a high-spatial resolution and high-energy resolution microanalysis instrument. There are still hurdles that this technology must overcome before its

  18. X-ray characterization by energy-resolved powder diffraction

    NASA Astrophysics Data System (ADS)

    Cheung, G.; Hooker, S. M.

    2016-08-01

    A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  19. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.

  20. EFFECT OF METALLICITY ON X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM

    SciTech Connect

    Ursino, E.; Galeazzi, M.; Roncarelli, M.

    2010-09-20

    Hydrodynamic simulations predict that a significant fraction of the gas in the current universe is in the form of high temperature, highly ionized plasma emitting and absorbing primarily in the soft X-ray and UV bands, dubbed the warm-hot intergalactic medium (WHIM). Its signature should be observable in redshifted emission and absorption lines from highly ionized elements. To determine the expected WHIM emission in the soft X-ray band we used the output of a large scale smoothed particle hydrodynamic simulation to generate images and spectra with angular resolution of 14'' and energy resolution of 1 eV. The current biggest limit of any hydrodynamic simulation in predicting the X-ray emission comes from metal diffusion. In our investigation, by using four different models for the WHIM metallicity we have found a strong dependence of the emission on the model used, with differences up to almost an order of magnitude. For each model, we have investigated the redshift distribution and angular scale of the emission, confirming that most photons come from redshift z < 1.2 and that the emission has a typical angular scale of less than a few arcminutes. We also compared our simulations with the few currently available observations and found that, within the variation of the metallicity models, our predictions are in good agreement with current constraints on the WHIM emission, and at this time the weak experimental constraints on the WHIM emission are not sufficient to exclude any of the models used.

  1. The X-Ray Zurich Environmental Study (X-ZENS). II. X-Ray Observations of the Diffuse Intragroup Medium in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Finoguenov, Alexis; Silverman, John D.; Carollo, Marcella; Cibinel, Anna; Lilly, Simon J.; Schawinski, Kevin

    2016-03-01

    We present the results of a pilot XMM-Newton and Chandra program aimed at studying the diffuse intragroup medium (IGM) of optically selected nearby groups from the Zurich ENvironmental Study (ZENS) catalog. The groups are in a narrow mass range about {10}13 {M}⊙ , a mass scale at which the interplay between the IGM and the group member galaxies is still largely unprobed. X-ray emission from the IGM is detected in the energy band 0.5-2 keV with flux ≤slant {10}-13 erg s-1 cm-2, which is one order of magnitude fainter than for typical ROSAT groups (RASS). For many groups, we set upper limits on the X-ray luminosity, indicating that the detections are likely probing the upper envelope of the X-ray emitting groups. We find that weighting the group halo mass by the fraction of the total stellar mass locked in the bulge galaxy components might reduce the bias of mass estimates based on the total optical luminosity with respect to the X-ray mass estimates, (consistent with Andreon, at larger mass scales). We measure a stellar mass fraction with a median value of about 1%, with a contribution from the most massive galaxies between 30% and 50%. Optical and X-ray data often give complementary answers concerning the dynamical state of the groups, and are essential for a complete picture of the group system. Extending this pilot program to a larger sample of groups is necessary to unveil any imprint of interaction between member galaxies and IGM in halo potentials of key importance for environmentally driven galactic evolution.

  2. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  3. Development of a low debris x-ray backlighter source via laser irradiation of a cluster gas medium

    NASA Astrophysics Data System (ADS)

    Lowe, Hazel; Patankar, Siddarth; Giltrap, Samuel; Stuart, Nicholas; Robinson, Timothy; Gumbrell, Edward; Smith, Roland; Imperial College Team; AWE Collaboration

    2015-11-01

    X-ray backlighter sources, typically based on laser irradiated solid targets, are of great importance for radiography of transient plasmas produced in high power laser-target interactions. Here we report on the development of an atomic cluster gas based x-ray source and assess its viability for x-ray point projection imaging motivated by the debris free, high repetition rate nature of laser-cluster gas interactions. The dependence on cluster size and atomic number of the anisotropic radial x-ray distribution, 100 μm x-ray source size and multi-keV free electron temperatures produced by the interaction of a 1TW short pulse (500fs), high contrast laser system operating at 1054nm with high density Ar, Kr and Xe cluster gas media have been investigated. Previously, when propagated through a large (10mm) volume cluster gas medium at 1017 atoms/cc, >95% of the laser energy contained in a short pulse was absorbed launching a strong, radiative cylindrical blast wave. At 1019 atoms/cc, the absorption of the laser energy by the cluster gas medium was high (>85%). However, optical probing at 2 ω showed that the laser energy was predominantly absorbed at the edge of the gas volume where the energy absorbed per unit length rapidly changed over a scale length of 2mm launching a radiative, elliptical blast wave.

  4. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  5. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  6. Dual-energy flash x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Takahashi, Kei; Shikoda, Arimitsu; Oizumi, Teiji; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu; Yanagisawa, Toru; Fujiwara, Akihiro; Mitoya, Kanji

    1995-05-01

    The fundamental studies on a dual-energy flash x-ray generator for performing the energy-selective two-direction radiography are described. This generator consisted of the following components: a negative high- voltage power supply, a polarity-inversion-type high-voltage pulser having a 5 nF combined ceramic condenser, a turbo molecular pump, and two flash x-ray tubes. The condenser in the pulser was charged from -60 to -80 kV, and the electric charges in the condenser were discharged to two x-ray tubes. The maximum output voltage from the pulser was about -1.5 times the charged voltage because the cable transmission line was employed. Using a tube, the maximum tube voltage was about 110 kV. The maximum tube current and the x-ray intensity were less than 3 kA and 5 (mu) C/kg at 0.5 m per pulse, respectively. In contrast, the tube current and the intensity has approximately half the above values when two tubes were employed. The pulse widths were less than 200 ns, and two shots of flash x rays were obtained simultaneously. Each photon energy of flash x rays can be changed by controlling the space between the anode and cathode electrodes.

  7. Comprehensive x-ray spectral code for high energy astrophysics

    SciTech Connect

    Liedahl, D A; Fournier, K B; Mauche, C W

    2000-08-18

    The aim of this project has been to develop a spectral analysis tool with a level of quality and completeness commensurate to that expected in data from the current generation of X-ray observatories. The code is called LXSS (Livermore X-Ray Spectral Synthesizer). X-ray-emitting astrophysical plasmas are rarely, if ever, in LTE, so they have adopted the detailed level accounting approach, in which rates for processes that populate or depopulate atomic energy levels are treated explicitly. This entails the generation of a large quantity of atomic data, most of which is calculated using ''in-house'' computer codes. Calculations are benchmarked against laboratory data, and spectral models have been used to provide first-time interpretations of astrophysical X-ray spectra. The design of a versatile graphical user interface that allows access to and manipulation of the atomic database comprises the second major part of the project.

  8. Deeply X-raying the high-energy sky

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco

    2016-05-01

    All-sky explorations by Fermi-LAT have revolutionized our view of the gamma-ray Universe. While its ongoing all-sky survey counts thousands of sources, essential issues related to the nature of unassociated sources call for more sensitive all-sky surveys at hard X-ray energies that allow for their identification. This latter energy band encodes the hard-tail of the thermal emission and the soft-tail of non-thermal emission thereby bridging the non-thermal and thermal emission mechanisms of gamma-ray sources. All-sky surveys at hard X-rays are best performed by current coded-mask telescopes Swift/BAT and INTEGRAL/IBIS. To boost the hard X-ray all-sky sensitivity, we have developed an ad hoc technique by combining photons from independent observations of BAT and IBIS. The resulting Swift-INTEGRAL X-ray (SIX) survey has an improved source-number density. This improvement is essential to enhance the positive hard X-ray - gamma-ray source matches. We present the results from the scientific link between the neighboring gamma-ray and hard X-ray bands in the context of galactic and extragalactic source classes of the second catalog Fermi Gamma-ray LAT (2FGL).

  9. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  10. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  11. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-01-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  12. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  13. Radiation processing with high-energy X-rays

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Stichelbaut, Frédéric

    2013-03-01

    The radiation processing of materials and commercial products with high-energy X-rays, which are also identified by the German term bremsstrahlung, can produce beneficial changes that are similar to those obtained by irradiation with nuclear gamma rays emitted by cobalt-60 sources. Both X-rays and gamma rays are electromagnetic radiations with short wavelengths and high photon energies that can stimulate chemical reactions by creating ions and free radicals in irradiated materials. Nevertheless, there are some physical differences in these energy sources that can influence the choice for practical applications. The English translation of bremsstrahlung is braking radiatiorn or deceleration radiation. It is produced when energetic electrons are deflected by the strong electric field near an atomic nucleus. The efficiency for producing this kind of electromagnetic energy increases with the kinetic energy of the electrons and the atomic number of the target material. The energy spectrum of the emitted X-ray photons is very broad and extends up to the maximum energy of the incident electrons. In contrast, a cobalt-60 nucleus emits two gamma rays simultaneously, which have well-defined energies. Another significant difference is the angular distribution of the radiation. Nuclear gamma rays are emitted in all directions, but high-energy bremsstrahlung photons are concentrated in the direction of the incident electrons when they strike the target material. This property enables an X-ray processing facility to be more compact than a gamma-ray processing facility with similar throughput capacity, and it increases the penetration and the efficiency for absorbing the emitted X-ray energy in the irradiated material. Recent increases in the electron energy and the electron beam power from modern industrial accelerators have increased the throughput rates in X-ray processing facilities, so that this irradiation method is now economically competitive with large cobalt-60

  14. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis. PMID:26979685

  15. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  16. Tentative study on high-photon-energy quasi-x-ray laser generator by forming plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Ichimaru, Toshio; Mori, Hidezo; Tanaka, Etsuro; Ojima, Hidenori; Takayama, Kazuyoshi; Usuki, Tatsumi; Sato, Koetsu; Sakamaki, Kimio; Tamakawa, Yoshiharu

    2001-04-01

    Tentative study on high-photon-energy quasi-x-ray-laser generator by forming plasma x-ray source is described. The generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the copper target by the electric field in the tube, the plasma x- ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was much higher than the initial charging voltage of the main condenser, and the peak current was about 25 kA with a charging voltage of 60 kV. When the charging voltage was increased, the plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. When the plate target was employed, we observed high-intensity characteristic x-rays from the axial direction of the linear plasma x-ray source. In the case where the rod target was employed, we detected higher-intensity characteristic x-rays.

  17. Single atom identification by energy dispersive x-ray spectroscopy

    SciTech Connect

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  18. A dynamic synchrotron X-ray imaging study of effective temperature in a vibrated granular medium.

    PubMed

    Cao, Yixin; Zhang, Xiaodan; Kou, Binquan; Li, Xiangting; Xiao, Xianghui; Fezzaa, Kamel; Wang, Yujie

    2014-08-01

    We present a dynamic synchrotron X-ray imaging study of the effective temperature Teff in a vibrated granular medium. By tracking the directed motion and the fluctuation dynamics of the tracers inside, we obtained Teff of the system using the Einstein relationship. We found that as the system unjams with increasing vibration intensities Γ, the structural relaxation time τ increases substantially which can be fitted by an Arrhenius law using Teff. And the characteristic energy scale of structural relaxation yielded by the Arrhenius fitting is E = 0.20 ± 0.02pd(3), where p is the pressure and d is the background particle diameter, which is consistent with those from hard sphere simulations in which the structural relaxation happens via the opening up of free volume against pressure. PMID:24930865

  19. Simultaneous dual-energy X-ray stereo imaging

    PubMed Central

    Mokso, Rajmund; Oberta, Peter

    2015-01-01

    Dual-energy or K-edge imaging is used to enhance contrast between two or more materials in an object and is routinely realised by acquiring two separate X-ray images each at different X-ray wavelength. On a broadband synchrotron source an imaging system to acquire the two images simultaneously was realised. The single-shot approach allows dual-energy and stereo imaging to be applied to dynamic systems. Using a Laue–Bragg crystal splitting scheme, the X-ray beam was split into two and the two beam branches could be easily tuned to either the same or to two different wavelengths. Due to the crystals’ mutual position, the two beam branches intercept each other under a non-zero angle and create a stereoscopic setup. PMID:26134814

  20. X-ray and Sunyaev-Zel'Dovich properties of the warm-hot intergalactic medium

    SciTech Connect

    Ursino, E.; Galeazzi, M.; Huffenberger, K.

    2014-07-01

    We use numerical simulations to predict the soft X-ray ([0.4-0.6] keV) and Sunyaev-Zel'dovich (SZ) signal (at 150 GHz) from a large-scale structure in the universe and then compute two-point statistics to study the spatial distribution and time evolution of the signals. The average X-ray signal predicted for the warm-hot intergalactic medium (WHIM) is in good agreement with observational constraints that set it at about 10% of the total diffuse X-ray background. The characteristic angle computed with the autocorrelation function is of the order of some arcminutes and becomes smaller at higher redshift. The power spectrum peak of the SZ due to the WHIM is at l ∼ 10,000 and has an amplitude of ∼0.2 μK{sup 2}, about one order of magnitude below the signal measured with telescopes like Planck, Atacama Cosmology Telescope, and South Pole Telescope. Even if the high-redshift WHIM signal is too weak to be detected using X-rays only, the small-scale correlation between X-ray and SZ maps is dominated by the high-redshift WHIM. This makes the analysis of the SZ signal in support of X-rays a promising tool to study the early time WHIM.

  1. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  2. Energy-selective filtration of dental x-ray beams

    SciTech Connect

    Gelskey, D.E.; Baker, C.G.

    1981-11-01

    Samarium is known for its ability to filter simultaneously low- and high-energy x-ray photons from an x-ray beam that are not useful in producing a diagnostic radiograph. This study was undertaken to determine the optimum thickness of samarium required to minimize patient exposure and exposure time. The results indicate that use of a filter thickness of 0.16 mm. minimized patient radiation exposure and permitted the use of an exposure time sufficiently short to minimize motion unsharpness. The incorporation of a 0.16 mm. samarium filter in the x-ray beam reduced exposure by about 40 percent as compared to a 2.5 mm. aluminum filter; the exposure time must be increased approximately twice to obtain optical densities equivalent to those produced with aluminum filtration.

  3. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  4. Phase contrast imaging with coherent high energy X-rays

    SciTech Connect

    Snigireva, I.

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  5. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.

  6. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  7. High-Energy X-Ray Timing Experiment Detections of Hard X-Ray Tails in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    D'Amico, Flavio; Heindl, William A.; Rothschild, Richard E.; Gruber, Duane E.

    2001-02-01

    We report the detection of a nonthermal hard X-ray component from Sco X-1 based on the analysis of 20-220 keV spectra obtained with the High-Energy X-Ray Timing Experiment on board the Rossi X-Ray Timing Explorer satellite. We find that the addition of a power-law component to a thermal bremsstrahlung model is required to achieve a good fit in five of 16 observations analyzed. Using Proportional Counter Array data, we were able to track the movement of the source along the Z diagram, and we found that the presence of the hard X-ray tail is not confined to a specific Z position. However, we do observe an indication that the power-law index hardens with increasing M, as indicated from the position on the Z diagram. We find that the derived nonthermal luminosities are ~10% of that derived for the brightest of the atoll sources.

  8. X-Ray Constraints on the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. I.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. < 0.002 for 10 min < 0 < 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.

  9. ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE

    SciTech Connect

    Fragos, T.; Zezas, A.; Lehmer, B. D.; Naoz, S.; Basu-Zych, A.

    2013-10-20

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ∼ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z ∼> 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ∼4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ∼300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages ∼> 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  10. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  11. Energy Feedback from X-Ray Binaries in the Early Universe

    NASA Astrophysics Data System (ADS)

    Fragos, T.; Lehmer, B. D.; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-10-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z >~ 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages >~ 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  12. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed Central

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-01-01

    Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from −0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

  13. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    NASA Astrophysics Data System (ADS)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  14. Bursting SN 1996cr's bubble: hydrodynamic and X-ray modelling of its circumstellar medium

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dewey, D.; Bauer, F.

    2010-09-01

    SN1996cr is one of the five closest supernovae (SNe) to explode in the past 30 yr. Due to its fortuitous location in the Circinus galaxy at ~3.7 Mpc, there is a wealth of recently acquired and serendipitous archival data available to piece together its evolution over the past decade, including a recent 485-ks Chandra high-energy transmission grating spectrum. In order to interpret these data, we have explored hydrodynamic simulations, followed by computations of simulated spectra and light curves under non-equilibrium ionization conditions, and directly compared them to the observations. Our simulated spectra manage to fit both the X-ray continuum and lines at four epochs satisfactorily, while our computed light curves are in good agreement with additional flux-monitoring data sets. These calculations allow us to infer the nature and structure of the circumstellar medium (CSM), the evolution of the SN shock wave, and the abundances of the ejecta and surrounding medium. The data imply that SN 1996cr exploded in a low-density medium before interacting with a dense shell of material about 0.03 pc away from the progenitor star. We speculate that the shell could be due to the interaction of a blue supergiant or Wolf-Rayet wind with a previously existing red supergiant (RSG) wind. The shock wave has now exited the shell and is expanding in the medium exterior to it, possibly the undisturbed continuation of the dense RSG wind. The narrow lines that earned SN 1996cr its IIn designation possibly arise from dense, shocked clumps in the CSM. Although the possibility for a luminous blue variable progenitor for this Type IIn SN cannot be completely excluded, it is inconsistent with much of the data. These calculations allow us to probe the stellar mass-loss in the very last phases (<104 yr) of a massive star's life (>106 yr), and provide another means to deducing the progenitor of the SN.

  15. High energy X-ray observations of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Baity, W. A.; Gruber, D. E.; Matteson, J. L.; Knight, F. K.; Nolan, P. L.; Scheepmaker, A.; Wheaton, W. A.; Hofman, J. A.; Primini, F. A.; Lewin, W. H. G.

    1979-01-01

    Preliminary results are reported for scanning observations of the active galaxy NGC 5128 (Cen A) and the Type 1 Seyfert galaxy NGC 4151 with the low-energy detectors of the HEAO-1 A-4 hard X-ray instrument. The X-ray spectra in the energy range from 15 to 100 keV are shown to be consistent with previous observations of these galaxies. It is noted that NGC 5128 rose in intensity from 1972 to 1975, that spectral softening occurred after early 1973, and that the source has since decreased in intensity while maintaining an E to the -1.7 photon power law. The results for NGC 4151 indicate variable absorption below 10 keV and a power-law slope of about E to the -1.4 in the range from 10 keV to 10 MeV.

  16. Reanalysis of X-ray emission from M87. 2: The multiphase medium

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1994-01-01

    In a previous paper, we showed that a single-phase model for the gas around M87 simultaneously explained most available X-ray data. Total enclosed masses derived from the model, however, fell well below the determinations from optical measurements. In this paper, we consider possible solutions to the inconsistency, including two multiphase medium models for the gas and the consequences of systematic errors of the Einstein Focal Point Crystal Spectrometer (FPCS). First, we find that when constraints from optical mass determinations are not considered, the best-fit model to the X-ray data is always the single-phase model. Multiphase models or consideration of FPCS systematic errors are required only when optical mass constraints are included. We find that the cooling time model of White & Sarazin adequately explains the available X-ray data and predicts total masses which agree with optical measurements. An ad hoc power-law multiphase does not. This shows both that the existence of mass dropping out of the ambient phase is consistent with the data and that the cooling-time model gives a reasonable parameterization of the dropout rate. Our derived mass accretion rate is similar to previous determinations. The implications of this result for cluster mass determinations in general are discussed. We then consider 'self absorbing' models where we assume that material dropping out of the ambient medium goes completely into X-ray absorbing gas. The resulting internal absorption is small compared to Galactic absorption at most radii. The models are therefore indistinguishable from models with only Galactic absorption. We finally show that it is alternatively possible to simultaneously fit optical mass measurements and X-ray data with a single-phase model if some of the observed FPCS line fluxes are too high by the maximum systematic error. This possiblity can be checked with new data from satellites such as ASCA.

  17. On the detectability of CO molecules in the interstellar medium via X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Joachimi, Katerine; Gatuzz, Efraín; García, Javier A.; Kallman, Timothy R.

    2016-09-01

    We present a study of the detectability of CO molecules in the Galactic interstellar medium using high-resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. We analysed 10 bright low mass X-ray binaries (LMXBs) to study the CO contribution in their line of sights. A total of 25 observations were fitted with the ISMabs X-ray absorption model which includes photoabsorption cross-sections for O I, O II, O III and CO. We performed a Monte Carlo (MC) simulation analysis of the goodness of fit in order to estimate the significance of the CO detection. We determine that the statistical analysis prevents a significant detection of CO molecular X-ray absorption features, except for the lines of sight towards XTE J1718-330 and 4U 1636-53. In the case of XTE J1817-330, this is the first report of the presence of CO along its line of sight. Our results reinforce the conclusion that molecules have a minor contribution to the absorption features in the O K-edge spectral region. We estimate a CO column density lower limit to perform a significant detection with XMM-Newton of N(CO) > 6 × 1016 cm-2 for typical exposure times.

  18. The effects of X-rays from active galactic nuclei on the interstellar medium of the surrounding galaxy

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The effects of an active nucleus on the large-scale properties of the host galaxy are examined, focusing on the effects of X-ray heating on the host galaxy's interstellar medium. The basic properties of AGNs and several questions concerning AGNs are reviewed. The relationship between X-ray heated winds and coronae is outlined. The case of X-ray heated winds in type 2 Seyfert galaxies is discussed.

  19. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  20. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  1. Studies of dark energy with X-ray observatories.

    PubMed

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207

  2. Studies of dark energy with x-ray observatories

    PubMed Central

    Vikhlinin, Alexey

    2010-01-01

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207

  3. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  4. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  5. X-ray scatter correction for dual-energy x-ray absorptiometry: compensation of patient's lean/fat composition

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Darboux, Michel; Bordy, Thomas; Robert-Coutant, Christine; Gonon, Georges

    2004-05-01

    At CEA-LETI, a DEXA approach for systems using a digital 2D radiographic detector has been developed. It relies on an original X-rays scatter management method, based on a combined use of an analytical model and of scatter calibration data acquired through different thicknesses of Lucite slabs. Since Lucite X-rays interaction properties are equivalent to fat, the approach leads to a scatter flux map representative of a 100% fat region. However, patients" soft tissues are composed of lean and fat. Therefore, the obtained scatter map has to be refined in order to take into account the various fat ratios that can present patients. This refinement consists in establishing a formula relating the fat ratio to the thicknesses of Low and High Energy Lucite slabs leading to same signal level. This proportion is then used to compute, on the basis of X-rays/matter interaction equations, correction factors to apply to Lucite equivalent X-rays scatter map. Influence of fat ratio correction has been evaluated, on a digital 2D bone densitometer, with phantoms composed of a PVC step (simulating bone) and different Lucite/water thicknesses as well as on patients. The results show that our X-rays scatter determination approach can take into account variations of body composition.

  6. Low dose, limited energy spectroscopic x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nelson Weker, Johanna; Li, Yiyang; Chueh, William C.

    2015-09-01

    In order to achieve high quality in situ spectroscopic X-ray microscopy of complex systems far from equilibrium, such as lithium ion batteries under standard electrochemical cycling, careful consideration of the total number of energy points is required. Enough energy points are need to accurately determine the per pixel chemical information; however, total radiation dose needs to be limited to avoid damaging the system which would produce misleading results. Here we consider the number of energy points need to accurately reproduce the state of charge maps of a LiFePO2 electrode recorded during electrochemical cycling. We observe very good per pixel agreement using only 13 energy points. Additionally, we find the quality of the agreement is heavily dependent on the number of energy points used in the post edge fit during normalization of the spectra rather than the total number of energies used. Finally, we suggest a straightforward protocol for determining the minimum number of energy points needed prior to initiating any in situ spectroscopic X-ray microscopy experiment.

  7. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications. PMID:25789488

  8. A Versatile Medium-Resolution X-ray Emission Spectrometer for Diamond Anvil Cell Applications

    SciTech Connect

    Mortensen, Devon R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y. M.; Boman, G.; Bowden, Mark E.

    2013-08-28

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to a backscattering so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically-bent crystal analyzer.

  9. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    SciTech Connect

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-15

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  10. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  11. Measuring Performance of Energy-Dispersive X-ray Systems.

    PubMed

    Statham

    1998-11-01

    : As Si(Li) detector technology has matured, many of the fundamental problems have been addressed in the competition among manufacturers and there is now an expectation, implied by many textbooks, that all energy-dispersive X-ray (EDX) detectors are made and will perform in the same way. Although there has been some convergence in Si(Li) systems and these are still the most common, manufacturing recipes still differ and there are many alternative EDX devices, such as microcalorimeters and room temperature detectors, that have both advantages and disadvantages over Si(Li). Rather than emphasizing differences in technologies, performance measures should reveal benefits relevant to the intended application. The instrument is inevitably going to be a "black box" of integrated components; this article reviews some of the methods that have been applied and introduces some new techniques that can be used to assess performance without resorting to complex software or sophisticated mathematical algorithms. Sensitivity, resolution, artefacts, and stability are discussed with particular application to compositional analysis using electron beam excitation of X-rays in the 100-eV to 10-keV energy region. PMID:10087283

  12. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.; Sivkov, D. V.

    2015-03-01

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green's function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  13. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    SciTech Connect

    Punegov, V. I. Sivkov, D. V.

    2015-03-15

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green’s function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  14. Carbon and oxygen X-ray line emission from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1982-01-01

    A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.

  15. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    NASA Astrophysics Data System (ADS)

    Manso, M.; Valadas, S.; Pessanha, S.; Guilherme, A.; Queralt, I.; Candeias, A. E.; Carvalho, M. L.

    2010-04-01

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  16. A medium sensitivity X-ray survey using the Einstein Observatory - The log N-log S relation for extragalactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Zamorani, G.; Feigelson, E. D.; Fener, M.; Giacconi, R.; Griffiths, R. E.; Murray, S. S.; Stocke, J.; Liebert, J.

    1982-01-01

    The paper presents results of an X-ray survey of about 50 sq deg of the high galactic latitude sky at sensitivities in the range of 7 x 10 to the -14 to 5 x 10 to the -12 ergs/sq cm/s. The number-flux relation is derived for the extragalactic population to yield a best-fit power-law slope of 1.53 + or - 0.16, and the content of the sample is analyzed in terms of types of sources, appearing to be significantly different from the content of similar samples selected at higher fluxes. The medium sensitivity sample of extragalactic sources is dominated by active galactic nuclei, while samples selected at higher fluxes and higher energies are dominated by clusters of galaxies. Thus, the number-flux relation for extragalactic sources may be interpreted to a first approximation as the sum of the two different distributions with flatter and steeper slopes describing clusters and AGNs, respectively.

  17. Detecting the Warm-Hot Intergalactic Medium through X-Ray Absorption Lines

    NASA Astrophysics Data System (ADS)

    Yao, Yangsen; Shull, J. Michael; Wang, Q. Daniel; Cash, Webster

    2012-02-01

    The warm-hot intergalactic medium (WHIM) at temperatures 105-107 K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance (lsim 3σ) and/or controversial. In this work, we aim to establish the detection limits of current X-ray observatories and explore requirements for next-generation X-ray telescopes for studying the WHIM through X-ray absorption lines. We analyze all available grating observations of Mrk 421 and obtain spectra with signal-to-noise ratios (S/Ns) of ~90 and 190 per 50 mÅ spectral bin from Chandra and XMM-Newton observations, respectively. Although these spectra are two of the best ever collected with Chandra and XMM-Newton, we cannot confirm the two WHIM systems reported by Nicastro et al. in 2005. Our bootstrap simulations indicate that spectra with such high S/N cannot constrain the WHIM with O VII column densities N_{O VII}≈ 10^{15} cm^{-2} (corresponding to an equivalent width of 2.5 mÅ for a Doppler velocity of 50 km s-1) at >~ 3σ significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N_{OVII} at >=4σ from a spectrum of a background QSO with flux of ~0.2 mCrab (1 Crab = 2 × 10-8 erg s-1 cm-2 at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R ~ 4000 and effective area A >= 100 cm2 to accomplish the similar constraints with an exposure time of ~2 Ms and would require ~11 Ms to survey the 15 QSOs with flux >~ 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  18. 30-Lens interferometer for high-energy X-rays.

    PubMed

    Lyubomirskiy, Mikhail; Snigireva, Irina; Kohn, Victor; Kuznetsov, Sergey; Yunkin, Vyacheslav; Vaughan, Gavin; Snigirev, Anatoly

    2016-09-01

    A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics. PMID:27577763

  19. High energy X-ray phase and dark-field imaging using a random absorption mask

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  20. Dual-energy X-ray absorptiometry and body composition.

    PubMed

    Laskey, M A

    1996-01-01

    This review describes the advantages and limitations of dual-energy absorptiometry (DXA), a technique that is widely used clinically to assess a patient's risk of osteoporosis and to monitor the effects of therapy. DXA is also increasingly used to measure body composition in terms of fat and fat-free mass. There are three commercial manufacturers of DXA instruments: Lunar, Hologic, and Norland. All systems generate X-rays at two different energies and make use of the differential attenuation of the X-ray beam at these two energies to calculate the bone mineral content and soft tissue composition in the scanned region. Most DXA instruments measure bone mineral in the clinically important sites of the spine, hip, and forearm. More specialized systems also perform whole-body scans and can be used to determine the bone and soft tissue composition of the whole body and subregions such as arms, legs, and trunk. The effective dose incurred during DXA scanning is very small, and, consequently, DXA is a simple and safe technique that can be used for children and the old and frail. Precision of all DXA measurements is excellent but varies with the region under investigation. Precision is best for young healthy subjects (coefficient of variation is about 1% for the spine and whole body bone measurements) but is less good for osteoporotic and obese subjects. The accuracy of DXA measurements, however, can be problematic. Marked systematic differences in bone and soft tissue values are found between the three commercial systems due to differences in calibration, bone edge detection, and other factors. In addition, differences in reference data provided by each manufacturer can lead to an individual appearing normal on one machine but at risk of osteoporosis on another. At present, DXA cannot be regarded as a "gold standard" for body composition. However, the continuing development of DXA and the introduction of new software is greatly improving the performance of this

  1. X-ray selected galaxy clusters in the Pan-STARRS Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Price, P. A.; Tonry, J. L.

    2013-06-01

    We present the results of a pilot study for the extended Massive Cluster Survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z > 0.5. Our pilot study applies the eMACS concept to the 71 deg2 area extended by the 10 fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g, r, i and z bands in a 5 × 5 arcmin2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS data base, i.e. all RASS sources listed in the Bright and Faint Source Catalogues (BSC and FSC) that fall within the MDS footprint. We apply no additional constraints regarding X-ray flux, spectral hardness ratio or photon statistics and lower the redshift threshold to z > 0.3 to extend the probed luminosity range to poorer systems. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z > 0.3. In order to assess and quantify the degree of point source contamination of the observed RASS fluxes, we examine archival Chandra data obtained in targeted and serendipitous observations of six of the 11 clusters found. As expected, the diffuse emission from all six systems is contaminated by point sources to some degree, and for half of them active galactic nucleus emission dominates. X-ray follow-up observations will thus be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20 000 deg2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z ≳ 0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging

  2. High-Energy X-Ray Diffraction Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore » and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  3. High-Energy X-Ray Diffraction Analysis Tool

    SciTech Connect

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modular and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.

  4. Improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    SciTech Connect

    Smith, R; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V; Rocca, J; Hunter, J; Shepherd, R; Booth, R; Marconi, M

    2004-10-05

    We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser ({approx} 3 {micro}m/ps) towards the target surface.

  5. Feasibility of kilovoltage x-ray energy modulation by gaseous media and its application in contrast-enhanced radiotherapy

    SciTech Connect

    Facundo-Flores, E. L.; Garnica-Garza, H. M.

    2013-09-15

    Purpose: To present a method to modulate the energy contents of a kilovoltage x-ray beam that makes use of a gas as the modulating medium. The method is capable of producing arbitrary x-ray spectra by varying the pressure of the modulating gas and the peak kilovoltage (kVp) of the x-ray beams whose energy is being modulated.Methods: An aluminum chamber was machined with a 0.5 cm wall thickness, designed to withstand pressures of more than 80 atm. A pressure sensor and electrovalves were used to monitor and regulate the gas pressure. Argon was used as the modulating gas. A CdTe spectrometer was used to measure x-ray spectra for different combinations of kVp and gas pressure, thus obtaining a set of basis x-ray functions. An arbitrary x-ray spectrum can then be formed by the linear combination of such basis functions. In order to show one possible application of the modulation method, a contrast-enhanced radiotherapy prostate treatment was optimized with respect to the x-ray beam energy, without restrictions on the possible shape of the resultant x-ray spectra.Results: The x-ray spectra basis functions obtained display a smooth and gradual variation of their average energy as a function of the gas pressure for a given kVp, sometimes in the order of 1 or 2 keV. This gradual variation would be difficult to obtain with a conventional aluminum or copper filters, as the change in thickness necessary to reproduce the data presented would be in the order of micrometers, making necessary the use of a large number of such filters. Using the modulation method presented here, the authors were able to reconstruct the optimized x-ray spectra from the measured basis functions, for different optimization objectives.Conclusions: A method has been developed that allows for the controlled modulation of the energy contents of kilovoltage x-ray spectra. The method has been shown to be able to reproduce spectra of arbitrary shape, such as those obtained from the optimization of contrast

  6. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    PubMed

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV. PMID:27131669

  7. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>1013 photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  8. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  9. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  10. The Diffuse EUV and X-Ray Background as a Probe of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lieu, Richard

    2001-01-01

    We have used the Deep Survey telescope of the Extreme Ultraviolet Explorer to investigate shadows in the diffuse EUV/soft X-ray background that are cast by clouds in the interstellar medium. We confirm the existence of a shadow previously reported and provide evidence for two new shadows. We used IRAS data to identify the clouds producing these shadows and to determine their optical depth to EUV radiation. The EUV-absorbing clouds are optically thick in the EUV, and all EUV emission detected in the direction of these shadows must be produced from material in front of the clouds. We obtained new optical data to determine the distance to these clouds. We use a new differential cloud technique to obtain the pressure of the interstellar medium. These results do not depend on any zero-level calibration of the data. Our results provide evidence that the pressure of the hot interstellar gas is the same in three different directions in the local interstellar medium and is at least 8 times higher than that derived for the Local Cloud surrounding our Sun. This provides new evidence for large thermal pressure imbalances in the local ISM and directly contradicts the basic assumption of thermal pressure equilibrium used in almost all present models of the interstellar medium.

  11. Dual energy iodine contrast CT with monochromatic x-rays

    SciTech Connect

    Dilmanian, F.A.; Wu, X.Y.; Kress, J.

    1995-12-31

    Computed tomography (CT) with monochromatic x-ray beams was used to image phantoms and a live rabbit using the preclinical Multiple Energy Computed Tomography (MECT) system at the National Synchrotron Light Source. MECT has a horizontal fan beam with a subject apparatus rotating about a vertical axis. Images were obtained at 43 keV for single-energy studies, and at energies immediately below and above the 33.17 keV iodine K-edge for dual-energy subtraction CT. Two CdWO{sub 4}-photodiode array detectors were used. The high-resolution detector (0.5 mm pitch, uncollimated) provided 14 line pair/cm in-plane spatial resolution, with lower image noise than conventional CT. Images with the low-resolution detector (1.844-mm pitch, collimated to 0.922 mm detector elements) had a sensitivity for iodine of {approx} 60 {micro}g/cc in 11-mm channels inside a 135 mm-diameter acrylic cylindrical phantom for a slice height of 2.5 mm and a surface does of {approx} 4 cGy. The image noise was {approx} 1 Hounsfield Unit (HU); it was {approx} 3 HU for the same phantom imaged with conventional CT at approximately the same dose, slice height, and spatial resolution ({approx} 7 lp/cm). These results show the potential advantage of MECT, despite present technical limitations.

  12. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are

  13. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    SciTech Connect

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion of the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.

  14. Real-time contrast medium detection in x-ray images by mathematical morphology operators

    NASA Astrophysics Data System (ADS)

    Ly, Dieu Sang; Beucher, Serge; Bilodeau, Michel

    2015-11-01

    This paper proposes a solution to contrast agent (CA) detection in angiograms by considering x-ray images as intensity images and applying mathematical morphology operators. We present two detection approaches, one based on the intensity infimum and the other based on the dual reconstruction. The evaluation using several data sets shows that both techniques are able to detect the presence of the contrast medium volume. Moreover, the dual reconstruction-based method is proven to be faster in processing time and more effective than the intensity infimum-based method in distinguishing the intensity change at the same location from the displacement of the same region. In addition, we show how to track the CA passage through a region of interest by observing the intensity evolution in successive submasks.

  15. Tailored density profile of heterogeneous underdense medium of a multi-foil assembly for multi-keV x-ray sources optimization

    NASA Astrophysics Data System (ADS)

    Primout, Michel; Babonneau, Daniele; Videau, Laurent; Jacquet, Laurent; CEA, DAM, DIF Team

    2015-11-01

    We studied multi-keV x-ray source made of titanium foils assembly. The purpose of this heterogeneous structure is to create a medium with the same hydroradiative properties as an efficient -but yet non existing- pure metallic-like underdense homogeneous medium. We can mimic the multi-keV x-ray emission of an equivalent underdense medium of any density between 5 and 40 mg /cc . For both cases, the highest multi-keV x-ray conversion efficiency has been found at density around 20 mg/cc. This optimum is best realized by assembly of a set of 0.1 μm titanium foils separated by 20 μm of vacuum. Note that the concept can be easily extended to higher Z materials like iron, copper or germanium at higher x-ray emission energy. This approach allows us to build any non uniform homogeneous underdense medium with tailored density profiles : increasing or decreasing ones, both longitudinally and transversally to the laser incident direction. This is a very promising method provided that we can design any foils assembly with thickness as low as 0.1 μm , what has been proved feasible in recent studies of the reference [Shao-yong Tu et al. in PoP, 21, 043107, 2014]. Each configuration has been simulated by the 2D rad-hydro code FCI2 with Arbitrary Eulerian-Lagrangian rezoning option.

  16. An edge-on charge-transfer design for energy-resolved x-ray detection

    NASA Astrophysics Data System (ADS)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  17. An edge-on charge-transfer design for energy-resolved x-ray detection.

    PubMed

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology. PMID:27192190

  18. An energy and intensity monitor for X-ray absorption near-edge structure measurements

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Paterson, David; McNulty, Ian; Rau, Christoph; Brandes, Jay A.; Ingall, Ellery

    2010-07-01

    An in-line X-ray beam energy and intensity monitor has been developed for use in focussed X-ray absorption near-edge spectroscopy (XANES) measurements. The monitor uses only the X-ray intensity that would otherwise bypass our zone-plate focussing optic and relies on a measurement of photoemission current. The monitor is inexpensive, easy to align, and provides valuable feedback about the X-ray energy. Operation of the monitor is demonstrated for measurements of phosphorus XANES. The precision of the energy determination is around 0.5 eV.

  19. Coasting External Shock in Wind Medium: An Origin for the X-ray Plateau Decay Component in Swift GRB Afterglows

    NASA Astrophysics Data System (ADS)

    Shen, Rongfeng; Matzner, C. D.

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a ρ r-2, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blastwave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, Γ0 ≤ 46 (ɛe/0.1)-0.24 (ɛB/0.01)0.17 the isotropic equivalent total ejecta energy is Eiso 1053 (ɛe/0.1)-1.3 (ɛB/0.01)-0.09 (tb/104 s) erg, where ɛe and ɛB are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and tb is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-Γ0 ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  20. Energy discriminating x-ray camera utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-07-01

    An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.

  1. Primeval gas clouds and the low-energy X-ray background. [galactic cluster formation

    NASA Technical Reports Server (NTRS)

    Kellogg, E. M.

    1977-01-01

    A model for the appearance of the all-sky low-energy X-ray background on a fine angular scale is presented which is based on primeval hot gas clouds associated with the formation of clusters of galaxies according to the Sunyaev-Zel'dovich (1972) model. It is noted that the background could have both granular and diffuse components if it is due to such gas clouds. The observed appearance of the granular component is predicted along with the observable characteristics of collapsing protoclusters. The effects of distant X-ray-emitting QSOs, radio galaxies, and normal galaxies on the observations are considered, and these sources are shown not to interfere with the possibility of observing the protoclusters. It is concluded that if sufficient heating occurred in an intracluster medium within some clusters of galaxies at the protocluster epoch, the ensemble properties of protoclusters could be observed with an X-ray telescope, and the time at which protoclusters formed could perhaps be estimated.

  2. Interferometric phase detection at x-ray energies via Fano resonance control.

    PubMed

    Heeg, K P; Ott, C; Schumacher, D; Wille, H-C; Röhlsberger, R; Pfeifer, T; Evers, J

    2015-05-22

    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x rays. Our results form a first step towards x-ray quantum state tomography and provide new avenues for structure determination and precision metrology via x-ray Fano interference. PMID:26047250

  3. Multi-energy Soft X-ray diagnostic for NSTX

    NASA Astrophysics Data System (ADS)

    Tritz, Kevin; Stutman, Dan; Finkenthal, Michael; Kumar, Deepak; Clayton, Daniel

    2010-11-01

    A high resolution, ``multi-energy'' soft X-ray (ME-SXR) diagnostic is being developed for the NSTX edge plasma. The system will measure with spatial resolution of <=1cm and with ˜10 kHz bandwidth the XUV and SXR emission from the outer NSTX regions, including the pedestal, and will serve for studies of edge particle and electron transport, of ELM dynamics, and other edge phenomena. The system comprises five tangential AXUV diode arrays, viewing the plasma between 0.5

  4. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  5. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOEpatents

    Gleason, Shaun S [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Mullens, James A [Knoxville, TN

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  6. Interferometric X-Ray Imaging of Breast Cancer Specimens at 51 keV X-Ray Energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet Thet; Aiyoshi, Yuji; Zeniya, Tsutomu; Hyodo, Kazuyuki; Ueno, Ei

    2004-08-01

    The feasibility of the interferometric X-ray imaging technique is examined for revealing the features of breast cancer specimens. The interferometric X-ray imaging system consisted of an asymmetrically cut silicon crystal, a monolithic X-ray interferometer, a phase-shifter, an object cell, and an X-ray CCD camera. Ten 10-mm-thick formalin-fixed breast cancer specimens were imaged at 51 keV, and these images were compared with absorption-contrast X-ray images obtained at 18 keV monochromatic synchrotron X-ray. The interferometric X-ray images clearly depicted the essential features of the breast cancer such as microcalcification down to a size of 0.036 mm, spiculation, and detailed inner soft tissue structures closely matched with histopathological morphology, while the absorption-contrast X-ray images obtained using nearly the same X-ray dose only resolved microcalcification down to a size of 0.108 mm and spiculation. The interferometric X-ray imaging technique can be considered to be an innovative technique for the early and accurate diagnosis of breast cancer using an extremely low X-ray dose.

  7. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  8. DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts

  9. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  10. Laser-driven hard-x-ray generation based on ultrafast selected energy x-ray absorption spectroscopy measurements of Ni compounds

    SciTech Connect

    Shan Fang; Carter, Josh D.; Ng, Vicky; Guo Ting

    2005-02-01

    Three Ni compounds were studied by ultrafast selected energy x-ray absorption spectroscopy using a laser-driven electron x-ray source with a tungsten target. The measured K edges of these Ni compounds using this self-referencing method were made identical to those measured with synchrotron x-ray sources. This enabled us to determine the absolute peak positions of tungsten L{alpha}{sub 1} and L{alpha}{sub 2} emitted from this source to be within 1 eV of those from the neutral tungsten atoms, which strongly suggested that the x rays were emitted from high energy electrons interacting with tungsten atoms in the solid target. This is the best evidence to date that directly supports the cold atom x-ray generation theory.

  11. Technology development for high-energy x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Kester, Thomas; Speegle, Chet

    2006-06-01

    We are developing hard-x-ray optics using an electroformed-nickel-replication process off superpolished mandrels. To date, we have fabricated over 100 shells for our HERO balloon payload with typical angular resolutions in the 13-15 arcsec range. This paper discusses the factors currently limiting this resolution and various developments geared towards the production of higher-resolution optics.

  12. An X-ray image of the violent interstellar medium in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Helfand, D. J.

    1991-01-01

    A detailed analysis of the X-ray emission from the largest H II region complex in the Local Group, 30 Dor, is presented. Applying a new maximum entropy deconvolution algorithm to the Einstein Observatory data, reveals striking correlations among the X-ray, radio, and optical morphologies of the region, with X-ray-emitting bubbles filling cavities surrounded by H-alpha shells and coextensive diffuse X-ray and radio continuum emission from throughout the region. The total X-ray luminosity in the 0.16-3.5 keV band from an area within 160 pc of the central cluster R136 is about 2 x 10 to the 37th ergs/sec.

  13. An X-ray image of the violent interstellar medium in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Helfand, D. J.

    1991-04-01

    A detailed analysis of the X-ray emission from the largest H II region complex in the Local Group, 30 Dor, is presented. Applying a new maximum entropy deconvolution algorithm to the Einstein Observatory data, reveals striking correlations among the X-ray, radio, and optical morphologies of the region, with X-ray-emitting bubbles filling cavities surrounded by H-alpha shells and coextensive diffuse X-ray and radio continuum emission from throughout the region. The total X-ray luminosity in the 0.16-3.5 keV band from an area within 160 pc of the central cluster R136 is about 2 x 10 to the 37th ergs/sec.

  14. Studying X-Ray Binaries with High Energy Frequency Quasi-Periodic Oscillations

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; West, Donald K. (Technical Monitor)

    2002-01-01

    The goal of this investigation is to further our understanding of the dynamics of secreting neutron stars and black holes in the hope of using these systems as probes of the physics of strong gravitational fetus. The main focus of this work has been a multi-year program of simultaneous millisecond X-ray timing and spectral observations carried out with the Rossi X-Ray Timing Explorer (RXTE) to perform the X-ray timing and one of the satellites Asca, BeppoSAX, or Chandra to perform X-ray spectral measurements. With the advent of Chandra, we have extended our work to incLude extragalactic X-ray binaries. We conducted a comprehensive study of the X-ray and radio behavior of the Black Hole Candidate (BHC) X-ray transient XTE J1550-564 using RXTE, Chandra, and the Australian Telescope Compact Array (ATCA). We showed that strong radio emission is associated with major X-ray outbursts involving an X-ray state transition, while a compact radio jet is seen in the low/hard X-ray state found in the outburst decay. Interesting, the total energy required to produce the compact jet may be a substantial fraction of the total accretion energy of the system in that state. We also performed a detailed study of the spectral and timing properties of the decay. In joint RXTE/BeppoSAX observations of the neutron-star X-ray binary Cyg X-2, we discovered a correlation between the timing properties (the frequency of the horizontal branch oscillations) and the properties of a soft, thermal component of the X-ray spectrum. d e showed that more detX- ray from accreting neutron stars. We have completed analysis of RXTE observations of the X-ray transient SAX J1750.8-2900 made after detection of X-ray bursts from the source with the BeppoSAX Wide-Field Camera. We discovered millisecond oscillations in both the persistent emission and in the X-ray bursts.

  15. Research Into Characteristics of X-Ray Emission Laser Beams from Solid-State Cathode Medium of High-Current Glow Discharge

    NASA Astrophysics Data System (ADS)

    Karabut, Alexander B.

    2006-02-01

    X-ray emissions ranging 1.2-3.0 keV with dose rate up to 1.0 Gy/s have been registered in experiments with high-current Glow Discharge. The emissions energy and intensity depend on the cathode material, the kind of plasma-forming gas, and the discharge parameters. The experiments were carried out on the high-current glow discharge device using D2, H2, Kr, and Xe at pressure up to 10 Torr, as well as cathode samples made from Al, Sc, Ti, Ni, Nb, Zr, Mo, Pd, Ta, W, Pt, at current up to 500 mA, and discharge voltage of 500-2500 V. Two emission modes were revealed under the experiments: (1) Diffusion X-rays was observed as separate X-ray bursts (up to 5 × 105 bursts a second and up to 106 X-ray quanta in a burst), (2) X-rays in the form of laser microbeams (up to 104 beams a second and up to 1010 X-ray of quanta in a beam, angular divergence was up to 10-4, the duration of the separate laser beams must be τ = 3 × 10-13-3 × 10-14 s, the separate beam power must be 107-108 W). The emission of the X-ray laser beams occurred when the discharge occurred and within 100 ms after turning off the current. The results of experimental research into the characteristics of secondary penetrating radiation occurring when interacting primary X-ray beams from a solid-state cathode medium with targets made of various materials are reported. It was shown that the secondary radiation consisted of fast electrons. Secondary radiation of two types was observed: (1) The emission with a continuous temporal spectrum in the form of separate bursts with intensity up to 106 fast electrons a burst. (2) The emission with a discrete temporal spectrum and emission rate up to 1010 fast electrons a burst. A third type of the penetrating radiation was observed as well. This type was recorded directly by the photomultiplier placed behind of the target without the scintillator. The abnormal high penetrating ability of this radiation type requires additional research to explain. The obtained results

  16. ENERGY-DISPERSIVE, X-RAY REFLECTIVITY DENSITY MEASUREMENTS OF POROUS SIO2 XEROGELS

    EPA Science Inventory

    X-ray reflectivity has been used to nondestructively measure the density of thin, porous, SiO2-based xerogels. Critical angle, defined by total external reflection, was measured for multiple x-ray energies to correct for sample misalignment error in me determination of the densit...

  17. The high energy X-ray spectrum of the Crab Nebula observed from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, L. J.; Dennis, B. R.; Orwig, L. E.; Maurer, G. S.; Frost, K. J.

    1977-01-01

    The X-ray spectrum of the Crab Nebula was measured with the scintillation spectrometer on board the OSO-8 satellite. The total emission of the X-ray source shows no long term variability. The spectrum itself can be described by a single power law out to energies of at least 500 keV.

  18. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region. PMID:26589210

  19. Evaluation of resolution performance of high energy x-ray CT

    NASA Astrophysics Data System (ADS)

    Abe, Makoto; Fujimoto, Hiroyuki; Sato, Osamu; Sato, Katsutoshi; Takatsuji, Toshiyuki

    2015-07-01

    Dimensional X-ray CT has attracted production industry due to its nature [1] enabling not only external dimensional measurement but also internal dimensional measurement which has been difficult for pre-existing dimensional measurement instruments. However, because the reconstruction process of three dimensional volume image may be affected by various kinds of error sources of the hardware and also the software, performance evaluation of dimensional X-ray CT has become one of the major issues [2], especially for X-ray CT system with higher energy such as several MeV. Resolution performance of high energy X-ray CT was evaluated by using a series of phantoms which equip regular line-and-space structures with various pitch sizes down to 100 micrometer. These phantoms were prototyped in the identical pitch sizes with three different materials. These phantoms were practically measured by a high energy X-ray CT. Results and perspective of the resolution performance is presented.

  20. Removal of the iodinated X-ray contrast medium diatrizoate by anaerobic transformation.

    PubMed

    Redeker, Maria; Wick, Arne; Meermann, Björn; Ternes, Thomas A

    2014-09-01

    The iodinated X-ray contrast medium diatrizoate is known to be very persistent in current wastewater treatment as well as in environmental compartments. In this study, the potential of anaerobic processes in soils, sediments, and during wastewater treatment to remove and transform diatrizoate was investigated. In anaerobic batch experiments with soil and sediment seven biologically formed transformation products (TPs) as well as the corresponding transformation pathway were identified. The TPs resulted from successive deiodinations and deacetylations. The final TP 3,5-diaminobenzoic acid (DABA) was stable under anaerobic conditions. However, DABA was further transformed under air atmosphere, indicating the potential for the mineralization of diatrizoate by combining anaerobic and aerobic conditions. With the development of a methodology using complementary liquid chromatography-electrospray ionization-tandem mass spectrometry and liquid chromatography-inductively coupled plasma-mass spectrometry techniques, all identified TPs were quantified and the mass balance could be closed without having authentic standards for four of the TPs available. The detection and quantification of diatrizoate TPs in groundwater, in technical wetlands with anaerobic zones, and in a pilot wastewater treatment plant established for anaerobic treatment highlights the transferability and up-scaling of the results attained by laboratory experiments to environmental conditions. PMID:25140788

  1. A Chandra X-Ray Investigation of the Violent Interstellar Medium: From Dwarf Starbursts to Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Grimes, J. P.; Heckman, T.; Strickland, D.; Ptak, A.

    2005-07-01

    We have analyzed observations with the Chandra X-Ray Observatory of the diffuse emission by hot gas in seven dwarf starburst galaxies, six edge-on starburst galaxies, and nine ultraluminous infrared galaxies. These systems cover ranges of ~104 in X-ray luminosity, and several thousand in star formation rate and K-band luminosity (a proxy for stellar mass). Despite this range in fundamental parameters, we find that the properties of the diffuse X-ray emission are very similar in all three classes of starburst galaxies. The spectrum of the diffuse emission is well fitted by thermal emission from gas with kT~0.25-0.8 keV and with several times solar abundance ratios of α-elements to Fe. The ratio of the thermal X-ray to far-infrared luminosity is roughly constant, as is the characteristic surface brightness of the diffuse X-ray emission. The size of the diffuse X-ray source increases systematically with both far-infrared and K-band luminosity. All three classes show strong morphological relationships between the regions of hot gas probed by the diffuse X-ray emission and the warm gas probed by optical line emission. These findings suggest that the same physical mechanism is producing the diffuse X-ray emission in the three types of starbursts. These results are consistent with that mechanism being shocks driven by a galactic ``superwind,'' which is powered by the kinetic energy collectively supplied by stellar winds and supernovae in the starburst.

  2. The Einstein Observatory Medium Sensitivity Survey - Optical identifications for a complete sample of X-ray sources

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Gioia, I. M.; Maccacaro, T.; Griffiths, R. E.; Danziger, I. J.; Kunth, D.; Lub, J.

    1983-01-01

    It is suggested that virtually all the X-ray sources in the Einstein Observatory's Medium Sensitivity Survey flux range can be identified with objects visible on the POSS, on the basis of the complete identification of all sources north of -25 deg declination. There is no evidence for a significant population of 'blank field' X-ray sources at this flux level, and therefore no evidence for any new X-ray source class with very high L(x)/L(v). Most of the quasars detected in the present survey are spectroscopically similar to optical or radio-selected quasars. About 25 percent of the quasar sample, however, had reddish colors, and permitted lines dominated by a narrow-line component. These objects form a second sequence of active galactic nuclei, distinct in their optical properties from the broad line objects.

  3. The interstellar medium in the direction of the Crab Nebula - Reconciling soft X-ray and radio observations

    NASA Technical Reports Server (NTRS)

    Ride, S. K.; Walker, A. B. C., Jr.

    1977-01-01

    The total soft X-ray photoabsorption cross section of the interstellar medium (ISM) in the direction of the Crab Nebula is computed on the basis of a two-phase model of the ISM. This cross section is used to reanalyze Copernicus data on the X-ray spectrum of the Crab between 0.7 and 1.5 keV. The total hydrogen column density along the line of sight to that nebula is found to be approximately 2.6 by 10 to the 21st power H atoms/sq cm. This result is evaluated in light of the two-phase model of the ISM, and the predictions based on the X-ray data are compared with results of radio and UV observations. A discrepancy between the radio and X-ray measurements of the hydrogen column density is resolved by noting that 21-cm absorption measurements sample only the neutral hydrogen in clouds while X-ray measurements are sensitive to all forms of hydrogen in both cloud and intercloud regions. It is suggested that roughly 50% of the hydrogen in the direction of the Crab Nebula is in clouds and that 85% of this hydrogen is neutral and atomic.

  4. Single photon energy dispersive x-ray diffraction

    SciTech Connect

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  5. Black Holes, Dark Matter, and Dark Energy: Measuring the Invisible through X Rays

    NASA Astrophysics Data System (ADS)

    Jones, Christine

    2009-05-01

    X-ray telescopes allow us to ``see'' the high energy radiation from objects that cannot be seen at other wavelengths including black holes and the very hot gas in galaxies and clusters of galaxies. Since soft X-rays are absorbed by our atmosphere, X-ray detectors must be flown above most of the Earth's atmosphere. The first orbiting X-ray telescope flew on Skylab in the early 1970's and recorded images of the Sun on film. Observing fainter X-ray sources required both the development of large, high-incidence mirrors and the development of electronic detectors capable of measuring the arrival of an X-ray photon in two dimensions. This talk will review the development of X-ray observatories from the early Einstein observatory through the current Chandra, SWIFT and XMM-Newton missions. While X-ray observations have changed our views in many areas of astronomy from stars to quasars, this talk will focus on the advances in our knowledge of supermassive black holes, dark matter and dark energy.

  6. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  7. High-energy x-ray diffraction study of pure amorphous silicon

    SciTech Connect

    Laaziri, K.; Kycia, S.; Roorda, S.; Chicoine, M.; Robertson, J.L.; Wang, J.; Moss, S.C.

    1999-11-01

    Medium and high-energy x-ray diffraction has been used to study the atomic structure of pure amorphous Si prepared by MeV Si implantation into crystalline silicon. Both as-implanted and annealed samples were studied. The inelastically scattered x rays were removed by fitting the energy spectrum for the scattered x rays. The atomic scattering factor of silicon, previously known reliably up to 20 {Angstrom}{sup {minus}1}, has been extended to 55 {Angstrom}{sup {minus}1}. The radial distribution function of amorphous Si, before and after annealing, has been determined through an unbiased Fourier transformation of the normalized scattering data. Gaussian fits to the first neighbor peak in these functions shows that scattering data out to at least 40 {Angstrom}{sup {minus}1} is required to reliably determine the radial distribution function. The first-shell coordination number increases from 3.79 to 3.88 upon thermal annealing at 600{degree}C, whereas that of crystalline Si determined from similar measurements on a Si powder analyzed using the same technique is 4.0. Amorphous Si is therefore under coordinated relative to crystalline Si. Noise in the distribution function, caused by statistical variations in the scattering data at high-momentum transfer, has been reduced without affecting the experimental resolution through filtering of the interference function after subtracting the contribution of the first-neighbor peak. The difference induced by thermal annealing in the remainder of the radial distribution functions, thus revealed, is much smaller than previously believed. {copyright} {ital 1999} {ital The American Physical Society}

  8. Tunable narrow-photon-energy x-ray source using a silicon single crystal

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Izumisawa, Mitsuru; Shozushima, Masanori; Takahashi, Kiyomi; Sato, Shigehiro; Ichimaru, Toshio; Takayama, Kazuyoshi

    2007-09-01

    A preliminary experiment for producing narrow-photon-energy cone-beam x-rays using a silicon single crystal is described. In order to produce low-photon-energy x-rays, a 100-µm-focus x-ray generator in conjunction with a (111) plane silicon crystal is employed. The x-ray beams from the source are confined by an x-y diaphragm, and monochromatic cone beams are formed by the crystal and three lead plates. The x-ray generator consists of a main controller and a unit with a high-voltage circuit and a 100-µm-focus x-ray tube. In this experiment, the maximum tube voltage and current were 35 kV and 0.50 mA, respectively, and the x-ray intensity of the microfocus generator was 343 μGy/s at 1.0 m from the source with a tube voltage of 30 kV and a current of 0.50 mA. The effective photon energy is determined by Bragg's angle, and the photon-energy width is regulated by the angle delta. Using this generator in conjunction with a computed radiography system, quasi-monochromatic radiography was performed using a cone beam with an effective energy of approximately 15.5 keV.

  9. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    SciTech Connect

    Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q.

    2012-10-10

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  10. High Energy Astronomy Observatory (HEAO)-2 in the X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  11. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  12. High energy X-ray phase and dark-field imaging using a random absorption mask

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  13. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  14. NuSTAR Detection of High-energy X-Ray Emission and Rapid Variability from Sagittarius Asstarf Flares

    NASA Astrophysics Data System (ADS)

    Barrière, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Dexter, Jason; Grefenstette, Brian; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Mori, Kaya; Stern, Daniel; Zhang, William W.; Zhang, Shuo; Zoglauer, Andreas

    2014-05-01

    Sagittarius Asstarf harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius Asstarf spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius Asstarf X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (~55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ~10 Schwarzschild radii of the black hole.

  15. Dual-energy bone densitometry using a single 100 ns x-ray pulse.

    PubMed

    Seely, J F; Boyer, C N; Holland, G E

    1998-10-01

    A pulsed, portable hard x-ray source has been developed for medical imaging and flash x-ray absorptiometry. The source is powered by a Marx generator that drives a field emission x-ray tube which produces a 30-300 keV x-ray pulse of 100 ns duration. The x-ray fluence has dual-energy properties. The x-ray energy is relatively high early in the pulse and lower later in the pulse. The feasibility of using a single x-ray pulse for precision bone densitometry was analyzed. A computer simulation model was developed for the x-ray source, the filtration that enhances the dual-energy distribution, the absorption of the energy distribution by bone mineral and soft tissue, and the dual-energy detection system. It is feasible to determine the bone mineral density (BMD) of axial sites such as the lumbar spine and proximal femur with 2% precision over an area that is 15-20 mm in size, depending on the bone mineral and soft tissue thicknesses. An algorithm for determining the absolute BMD, to an accuracy of 2%, using a Plexiglas/TiO2 calibration phantom is discussed. At a distance of 50 cm from the source, the patient exposure is 3.7 mR. The average absorbed bone and tissue doses are 0.6 and 4.3 mrem, respectively. Factors that facilitate diagnostic measurements in clinical settings are the short patient observation time and the portability of the x-ray source. PMID:9800712

  16. A new approach to account for the medium-dependent effect in model-based dose calculations for kilovoltage x-rays

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jason M.; Ding, George X.

    2011-07-01

    This study presents a new approach to accurately account for the medium-dependent effect in model-based dose calculations for kilovoltage (kV) x-rays. This approach is based on the hypothesis that the correction factors needed to convert dose from model-based dose calculations to absorbed dose-to-medium depend on both the attenuation characteristics of the absorbing media and the changes to the energy spectrum of the incident x-rays as they traverse media with an effective atomic number different than that of water. Using Monte Carlo simulation techniques, we obtained empirical medium-dependent correction factors that take both effects into account. We found that the correction factors can be expressed as a function of a single quantity, called the effective bone depth, which is a measure of the amount of bone that an x-ray beam must penetrate to reach a voxel. Since the effective bone depth can be calculated from volumetric patient CT images, the medium-dependent correction factors can be obtained for model-based dose calculations based on patient CT images. We tested the accuracy of this new approach on 14 patients for the case of calculating imaging dose from kilovoltage cone-beam computed tomography used for patient setup in radiotherapy, and compared it with the Monte Carlo method, which is regarded as the 'gold standard'. For all patients studied, the new approach resulted in mean dose errors of less than 3%. This is in contrast to current available inhomogeneity corrected methods, which have been shown to result in mean errors of up to -103% for bone and 8% for soft tissue. Since there is a huge gain in the calculation speed relative to the Monte Carlo method (~two orders of magnitude) with an acceptable loss of accuracy, this approach provides an alternative accurate dose calculation method for kV x-rays.

  17. Energy-dependent Orbital Modulation of X-rays and Constraints on Emission of the Jet in Cyg X-3

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Maitra, Chandreyee; Frankowski, Adam; Skinner, Gerald K.; Misra, Ranjeev

    2012-01-01

    We study orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of the presently available data and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above 5 keV, the modulation depth decreases with the increasing energy, which is consistent with the modulation being caused by both bound-free absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below 3 keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies > 0.1 GeV in soft spectral states, is found to be minor up to 100 keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum.We also calculate phase-resolved RXTE X-ray spectra, and show the difference between the spectra corresponding to phases around the superior and inferior conjunctions can indeed be accounted for by a combined effect of bound-free absorption in an ionized medium and Compton scattering.

  18. Scintillator Evaluation for High-Energy X-Ray Diagnostics

    SciTech Connect

    S. S. Lutz; S. A. Baker

    2001-09-01

    This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm{sup -1}.

  19. Understanding Electrocatalytic Pathways in Low and Medium Temperature Fuel Cells: Synchrotron-based In Situ X-Ray Absorption Spectroscopy

    SciTech Connect

    Mukerjee, S.; Ziegelbauer, J; Arruda, T; Ramaker, D; Shyam, B

    2008-01-01

    Over the last few decades, researchers have made significant developments in producing more advanced electrocatalytic materials for power generation applications. For example, traditional fuel cell catalysts often involve high-priced precious metals such as Pt. However, in order for fuel cells to become commercially viable, there is a need to reduce or completely remove precious metal altogether. As a result, a myriad of novel, unconventional materials have been explored such as chalcogenides, porphyrins, and organic-metal-macrocycles for low/medium temperature fuel cells as well as enzymatic and microbial fuel cells. As these materials increasingly become more complex, researchers often find themselves in search of new characterization methods, especially those which are allow in situ and operando measurements with element specificity. One such method that has received much attention for analysis of electrocatalytic materials is X-ray absorption spectroscopy (XAS). XAS is an element specific, core level absorption technique which yields structural and electronic information. As a core electron method, XAS requires an extremely bright source, hence a synchrotron. The resulting intensity of synchrotron radiation allow for experiments to be conducted in situ, under electrochemically relevant conditions. Although a bulk-averaging technique requiring rigorous mathematical manipulation, XAS has the added benefit that it can probe materials which possess no long range order. This makes it ideal to characterize nano-scale electrocatalysts. XAS experiments are conducted by ramping the X-ray photon energy while measuring absorption of the incident beam the sample or by counting fluorescent photons released from a sample due to subsequent relaxation. Absorption mode XAS follows the Beer-Lambert Law, {mu}x = log(I{sub 0}/I{sub t}) (1) where {mu} is the absorption coefficient, x is the sample thickness and I{sub 0} and I{sub t} are the intensities of the incident and

  20. Event-Driven X-Ray CCD Detectors for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ricker, George R.

    2004-01-01

    A viewgraph presentation describing the Event-Driven X- Ray CCD (EDCCD) detector system for high energy astrophysics is presented. The topics include: 1) EDCCD: Description and Advantages; 2) Summary of Grant Activity Carried Out; and 3) EDCCD Test System.

  1. X-Ray Photoelectron Spectroscopy and the Role of Relaxation Energy in Understanding Chemical Shifts

    ERIC Educational Resources Information Center

    Ellison, Frank O.; White, Michael G.

    1976-01-01

    Discusses the measurement of electrons ejected from a system which is being irradiated with X-rays or ultraviolet photons, and a theoretical model for calculating core-electron ionization energies. (MLH)

  2. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    SciTech Connect

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  3. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE PAGESBeta

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  4. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    SciTech Connect

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  5. Inferring the Energy Distribution of Accelerated Electrons in Solar Flares from X-ray Observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Su, Yang

    2008-01-01

    Knowledge of the energy distribution of electrons accelerated in solar flares is important for constraining possible acceleration mechanisms and for understanding the relationships between flare X-ray sources, radio sources, and particles observed in space. Solar flare hard X-rays are primarily emitted from dense, thick-target regions in the lower atmosphere, but the electrons are understood to be accelerated higher in the corona. Various processes can distort the X-ray spectrum or the energy distribution of electrons before they reach the thick-target region. After briefly reviewing the processes that affect the X-ray spectrum and the electron distribution, I will describe recent results from a study of flare spectra from RHESSI to determine the importance of these processes in inferring the energy distribution of accelerated electrons.

  6. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    NASA Astrophysics Data System (ADS)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-07-01

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  7. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  8. Photon interference effect in x-ray absorption spectra over a wide energy range

    NASA Astrophysics Data System (ADS)

    Nishino, Y.; Ishikawa, T.; Suzuki, M.; Kawamura, N.; Kappen, P.; Korecki, P.; Haack, N.; Materlik, G.

    2002-09-01

    We consider fundamental structures in x-ray absorption spectra over a wide energy range. We formulate the elastic scattering in addition to the photoelectric absorption in recently reported photon interference x-ray absorption fine structure (πXAFS). The simulations show excellent agreement with experimental x-ray absorption spectra for platinum and tungsten powders far above and below the L absorption edges. πXAFS can be as big as in the order of 10% of XAFS, and cannot be easily neglected in detailed analysis of XAFS and related phenomena.

  9. Calibration of an imaging crystal spectrometer for low x-ray energies

    SciTech Connect

    Lee, S. G.; Bak, J. G.; Bitter, M.

    2008-01-15

    An x-ray imaging crystal spectrometer was designed for the Hanbit magnetic mirror device to observe spectra of heliumlike neon at 13.4474 A. The spectrometer consists of a spherically bent mica crystal and an x-ray sensitive vacuum charge coupled device camera. This spectrometer can provide spatially resolved spectra, making it possible to obtain profiles of the ion charge state distribution from line ratios and profiles of the plasma rotation velocity from Doppler shift measurements. The paper describes measurements of spectral resolution of this instrument for low x-ray energies.

  10. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  11. FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA

    SciTech Connect

    Power, Chris; James, Gillian; Wynn, Graham; Combet, Celine

    2013-02-10

    Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.

  12. Tunable narrow-photon-energy X-ray generator utilizing a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sugiyama, Hiroshi; Ando, Masami; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Takayama, Kazuyoshi; Onagawa, Jun; Ido, Hideaki

    2006-11-01

    A preliminary experiment for producing narrow-photon-energy cone-beam X-rays using a silicon single crystal is described. In order to produce low-photon-energy X-rays, a 100-μm-focus X-ray generator in conjunction with a (1 1 1) plane silicon crystal is employed. The X-ray generator consists of a main controller and a unit with a high-voltage circuit and a microfocus X-ray tube. The maximum tube voltage and current were 35 kV and 0.50 mA, respectively, and the X-ray intensity of the microfocus generator was 48.3 μGy/s at 1.0 m from the source with a tube voltage of 30 kV and a current of 0.50 mA. The effective photon energy is determined by Bragg's angle, and the photon-energy width is regulated by the angle delta. Using this generator in conjunction with a computed radiography system, quasi-monochromatic radiography was performed using a cone beam with an effective energy of approximately 17 keV.

  13. Low-photon-energy plasma flash x-ray generator (LPFXG-2002)

    NASA Astrophysics Data System (ADS)

    Komatsu, Makoto; Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Tanaka, Etsuro; Mori, Hidezo; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In this study, we have made a low photon energy flash x-ray generator with a titanium target and have measured the radiographic characteristics. The flash x-ray generator consists of a high-voltage power supply, a high-voltage condenser, a turbo molecular pump and a flash x-ray tube. The condenser is charged up to about 30 kV, and the electric charges in the condenser are discharged to the tube after triggering the cathode. The linear plasma x-ray source forms from the target evaporation, and then the flash x-rays are generated from the plasma in the axial direction. K-series emission of titanium has been confirmed in experiments qualitatively and characteristics of the generator have been measured. K-series x-ray of titanium had a high resolution and enable us to take radiographs of a thin rabbit's ear clearly using the CR (Computed Radiography) system. The effect of titanium on the target of the soft flash x-ray tube has been indicated accordingly.

  14. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  15. Low-energy x-ray irradiation for electrophysiological studies

    SciTech Connect

    Schauer, D.A.; Zeman, G.H.; Pellmar, T.C.

    1989-01-01

    High-dose-rate acute whole-body exposures have been the main focus of radiobiology research conducted at the Armed Forces Radiobiology Research Institute (AFRRI) for many years. Extensive quantitative studies have been conducted analyzing behavioral effects, radiation-induced syndromes, and combined injury phenomena. Tolliver and Pellmar initiated a study to evaluate radiation damage to brain neurophysiology. A 50-kVp molybdenum target/filter x-ray tube was installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy/min (17.4-keV weighted average photons) were used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application.

  16. Investigation of TLD-700 energy response to low energy x-ray encountered in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Herrati, Ammar; Bourouina, Mourad; Khalal-Kouache, Karima

    2016-05-01

    The aim of thiswork is to study the energy dependence of thermoluminescent dosimeter (TLD-700) for low energy X-ray beams encountered in conventional diagnostic radiology. In the first step, we studied some characteristics (reproducibility and linearity) of TLD-700 chips using a 137Cs source, and selected TLD chips with reproducibility better than 2.5%. Then we determined TLD-700 energy response for diagnostic radiology X-ray qualities, and investigated its influence on air kerma estimate. A maximum deviation of 60% can be obtained if TLDs are calibrated for 137Cs radiation source and used in diagnostic radiology fields. However, this deviation became less than 20% if TLDs chips are calibrated for the reference x-ray radiation quality RQR5 (recommended by the IEC 61267 standard). Consequently, we recommend calibrating this kind of TLDdetector with RQR5 diagnostic radiology X-ray quality. This method permits to obtain a good accuracy when assessing the entrance dose in diagnostic radiology procedures.

  17. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  18. Red and Dead Supergiants: what X-ray and radio observations of type IIP supernovae reveal about the interaction of shocks with the medium the star explodes in

    NASA Astrophysics Data System (ADS)

    Ray, Alak; Chakraborti, Sayan

    2015-08-01

    X-ray and radio emission from a class of supernovae that forms almost half of all core collapse supernovae, type II Plateau SNe (SNIIP) probe the interaction of the SN shock with the medium the parent star exploded in. We have carried out observations of a number of SN IIP with Chandra, EVLA and GMRT telescopes. Our Chandra observations of SN 2013ej and SN 2004dj measured the separate contributions of thermal emission from the SN shocks and the power-law nonthermal part arising out of accelerated particles undergoing inverse Compton scattering on low energy photons from the SN photosphere. The combination of radio and X-ray properties indicate the (lack of) equipartition between magnetic fields amplified by the shock and the relativistic particles accelerated by it. Since the SN shock travels through the circumstellar wind at a speed much higher than that of the wind set up by the progenitor, the X-ray observations track the long history of mass loss from the progenitor star. An interesting case is that of SN 2011ja, which suggests that a fraction of type IIP supernovae may interact with circumstellar medium set up by episodic or non-steady ejections from the progenitor.

  19. Radio and X-ray Diagnostics of Energy Release in Solar Flares

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2013-07-01

    Solar flares involve catastrophic release of magnetic energy previously stored in the Sun's corona. This dissertation focuses on studies of radio and hard X-ray emissions as diagnostics of energy release in flares. A major part of the dissertation is exploiting spatially resolved dynamic spectroscopy to study coherent radio bursts. The Frequency-Agile Solar Radiotelescope Subsystem Testbed, a three-element radio interferometer, provides the first opportunity of doing such studies on zebra-pattern bursts. The observations allow us to identify the relevant emission mechanism, enabling diagnostics of the plasma parameters in the source. With the help of coronal magnetic field extrapolations, the source is placed into a three-dimensional magnetic field configuration and its relation to the energy release is clarified. The next part of the dissertation discusses the "solar mode" commissioning of the upgraded Karl G. Jansky Very Large Array (VLA). As a general purpose telescope, special provisions should be made for the VLA to enable solar observations. Based on the test results on the VLA's hardware, solar observing and calibration strategies are developed. Now the VLA is capable of observing the Sun with simultaneous imaging and dynamic spectroscopy over a large bandwidth at high spatial, spectral, and temporal resolutions. The upgraded VLA is used to observe decimetric type III radio bursts, which are the radio signature of propagating fast electron beams produced in flares. The new observing technique allows detailed trajectories of these electron beams to be derived. Combined with multi-wavelength observations, the properties of the energy release site, electron beams, and the surrounding coronal medium are deduced. The dissertation also presents a study on coronal hard X-ray/gamma-ray sources. Rather extreme conditions are needed to account for some observed coronal hard X-ray/gamma-ray sources using the usually-assumed non-thermal bremsstrahlung emission. This

  20. The role of x-ray Swank factor in energy-resolving photon-counting imaging

    SciTech Connect

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian. A.

    2010-12-15

    Purpose: Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI{sub 2}-based detectors. Methods: For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. Results: For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Conclusions: Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  1. Simultaneous small- and wide-angle scattering at high X-ray energies.

    PubMed

    Daniels, J E; Pontoni, D; Hoo, Rui Ping; Honkimäki, V

    2010-07-01

    Combined small- and wide-angle X-ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime ( approximately 1 nm to approximately 1 microm). A set-up to apply this technique at high X-ray energies (E > 50 keV) has been developed. Hard X-rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X-ray energies (8-20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 A(-1)) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro- and nano-structured materials, and (iii) utilization of complex sample environments involving thick X-ray windows and/or samples that can be penetrated only by high-energy X-rays. Using the reported set-up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future. PMID:20567079

  2. High-Energy X-ray Absorption Diagnostics as an Experimental Combustion Technique

    NASA Astrophysics Data System (ADS)

    Dunnmon, Jared; Sobhani, Sadaf; Hinshaw, Waldo; Fahrig, Rebecca; Ihme, Matthias

    2015-11-01

    X-ray diagnostics such as X-ray Computed Tomography (XCT) have recently been utilized for measurement of scalar concentration fields in gas-phase flow phenomena. In this study, we apply high-energy X-ray absorption techniques to visualize a laboratory-scale flame via fluoroscopic measurements by using krypton as a radiodense tracer media. Advantages of X-ray absorption diagnostics in a combustion context, including application to optically inaccessible environments and lack of ambient photon interference, are demonstrated. Analysis methods and metrics for extracting physical insights from these data are presented. The accuracy of the diagnostic is assessed via comparison to known results from canonical flame configurations, and the potential for further applications is discussed. Support from the NDSEG fellowship, Bosch, and NASA are gratefully acknolwedged.

  3. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  4. ''Hybrid'' calibrations of a Dual Energy X-ray Scanner for material testing

    NASA Astrophysics Data System (ADS)

    Kröger, C.; Bartle, C. M.; West, J. G.

    2006-05-01

    Conventional x-ray tubes produce a fan-shaped x-ray beam covering a large spectrum of energies, which is why the fundamental law of x-ray attenuation is not readily applicable. As the mathematical formulation of the problem would be too cumbersome, calibrations using well-defined objects are carried out, which in turn allow the use of multienergy x-rays for measurements. Occasionally, such calibrations may not lead to the desired results. This could be for instance due to an insensitivity of x-rays towards low atomic number elements. Here we present such a case on hand the example of raw natural fibre. The DEXA parameters correlated with the fibre parameter wool base, but show distinct correlation for geographical regions of the origin of the wool. A calibration that is valid independently of geographical origin can be achieved by including independently measured parameters of the calibration body. We demonstrate a successful calibration that uses dual energy x-ray scanning technology as well as a size parameter of the fibre in the regression equation.

  5. High-energy processes in Young Stellar Objects -- the radio--X-ray (dis)connection

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Wolk, Scott; Osten, Rachel

    2009-09-01

    Low-mass young stellar objects show high levels of magnetic activity in a wide spectral range. Powerful flares have been observed from X-ray to radio wavelengths. It has been expected that radio and X-ray emission from YSOs are correlated if magnetic fields close to the star are responsible for both nonthermal radio emission (usually gyrosynchrotron radiation) and thermal hot-plasma X-ray emission (see Guedel & Benz 1994). These high-energy processes strongly influence the surroundings of the YSOs, including irradiation of their disks. A deeper understanding of these processes requires taking into account their manifestations in different spectral ranges. However, the strong variability of YSOs ideally necessitates simultaneous multi-wavelength observations or at least a large sample of sources. While a general correlation of radio and X-ray luminosities of phenomena ranging from solar flares to active stars has been found for more evolved stars, it remains unclear to what degree it applies to YSOs -- particularly their earliest evolutionary stages. Drawing from the latest simultaneous X-ray and radio observations of star-forming regions as well as on archival data from the Chandra Orion Ultra-deep project, we present an update on the question of whether and how the radio and X-ray properties of YSOs are correlated and what this tells us about high-energy processes in YSOs compared to other classes of active stars. We mostly find a very limited relation between the X-ray and radio fluxes indicating a non-magnetic origin for some of the radio or X-ray emission.

  6. A Medium-Format, Mixed-Mode Pixel Array Detector for Kilohertz X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Tate, M. W.; Chamberlain, D.; Green, K. S.; Philipp, H. T.; Purohit, P.; Strohman, C.; Gruner, S. M.

    2013-03-01

    An x-ray pixel array detector (PAD) capable of framing up to 1 kHz is described. This hybrid detector is constructed from a 3-side buttable, 128×128 pixel module based upon the mixed-mode pixel array detector (MMPAD) chip developed jointly by Cornell and Area Detector Systems Corporation (Poway, CA). The chip uses a charge integrating front end for a high instantaneous count rate yet with single photon sensitivity. In-pixel circuitry utilizing a digital overflow counter extends the per frame dynamic range to >4×107 x-rays/pixel. Results are shown from a base configuration of a 2×3 module array (256×384 pixels).

  7. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  8. Compensational scintillation detector with a flat energy response for flash X-ray measurements

    SciTech Connect

    Chen Liang; Quan Lin; Zhang Zhongbing; Ouyang Xiaoping; Liu Bin; Liu Jinliang

    2013-01-15

    To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and {gamma}-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

  9. HEAO 1 observations of high-energy X-rays from 3C273. [quasar emissions

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Cooke, B. A.; Dobson, C. A.; Howe, S. K.; Scheepmaker, A.; Wheaton, W. A.; Lewin, W. H. G.; Baity, W. A.; Gruber, D. E.; Matteson, J. L.

    1979-01-01

    The first detection of high energy (13 to 120 keV) X rays from the quasar 3C273, made by the HEAO 1 satellite, is reported. Observations were made with the 13 to 180 keV slat collimated detectors of the high energy X-ray and low energy gamma-ray (A4) experiment during December 1977-January 1978 and June-July 1978. Results are consistent with the previously observed X-ray flux variability on a scale of months. Photon count rates are presented for each of five energy bands and count rate and photon spectra for the June through July 1978 observations are derived. A comparison of the data obtained with that at lower X-ray energies and higher gamma-ray energies indicates that there is an overall spectral steepening from low to high energies and a possible break near 20 keV, which may be due to the gamma rays originating from a different region than that of the X rays.

  10. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology.

    PubMed

    Chida, Koichi; Inaba, Youhei; Masuyama, Hanako; Yanagawa, Isao; Mori, Issei; Saito, Haruo; Maruoka, Shin; Zuguchi, Masayuki

    2009-01-01

    For reducing the risk of skin injury during interventional radiology (IR) procedures, it has been suggested that physicians track patients' exposure doses. The metal-oxide semiconductor field effect transistor (MOSFET) dosimeter is designed to measure patient exposure dose during radiotherapy applications at megavoltage photon energies. Our purpose in this study was to evaluate the feasibility of using a MOSFET dosimeter (OneDose system) to measure patients' skin dose during exposure to diagnostic X-ray energies used in IR. The response of the OneDose system was almost constant at diagnostic X-ray energies, although the sensitivity was higher than that at megavoltage photon energies. We found that the angular dependence was minimal at diagnostic X-ray energies. The OneDose is almost invisible on X-ray images at diagnostic energies. Furthermore, the OneDose is easy to handle. The OneDose sensor performs well at diagnostic X-ray energies, although real-time measurements are not feasible. Thus, the OneDose system may prove useful in measuring patient exposure dose during IR. PMID:20821130

  11. Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Harris, William S., Jr.

    1997-01-01

    The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.

  12. High energy X-ray and radio studies of Scorpius X-1

    NASA Technical Reports Server (NTRS)

    Coe, M. J.; Dennis, B. R.; Dolan, J. F.; Crannell, C. J.; Maurer, G. S.; Frost, K. J.; Orwig, L. E.; Graf, W.; Price, K. M.

    1978-01-01

    The results from extended high energy X-ray observations of Scorpius XR-1 from the OSO-8 satellite are reported here. The source was observed for a total of 15 days in 1975, 1977 and 1978. Simultaneous 10.7 GHz and 4.75 GHz radio data were obtained during the 1978 observation, and low energy X-ray data during the 1975 and 1978 observations. The data reveals a lack of any correlation between the high energy X-rays and the other energy ranges. A three standard deviation upper limit of 22% was obtained for any modulation of the high energy flux with the binary period. No high energy tail was observed at any time.

  13. Characteristics of the low photon energy plasma x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Toriyabe, Hiroyuki; Sagae, Michiaki; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Ido, Hideaki; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    2001-12-01

    The tentative experiment for production low photon energy characteristic x-rays using a capillary is described. The capillary of this flash x-ray tube was improved in order to increase the x-ray intensity and to generate high-intensity characteristic x-rays by forming the linear plasma x-ray source. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2(mu) F in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and the aluminum anode and cathode electrodes are employed to produce characteristic x-rays. The diameter and the length of the capillary are 2.0 and 29 mm, respectively, and both the cathode voltage and the discharge current displayed almost the damped oscillations. The peak values of the voltage and current increased when the charging voltage was increase, and their maximum values were -9.2 kV and 4.6 kA, respectively. The x-ray durations detected by a 1.6 micrometers aluminum filter were less than 10microsecond(s) , and we observe the intensity of aluminum characteristic x-rays.

  14. Plasma Diagnostic Calibration and Characterizations with High Energy X-rays

    SciTech Connect

    Zaheer Ali

    2009-06-05

    National Security Technologies’ High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^5–10^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facility’s Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

  15. Energy calibration of the pixels of spectral X-ray detectors.

    PubMed

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors. PMID:25051546

  16. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  17. The 20 element HgI2 energy dispersive x ray array detector system

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. A.; Dorri, N.; Wang, M.; Szczebiot, R. W.; Dabrowski, A. J.; Hedman, B.; Hodgson, K. O.; Patt, B. E.

    1991-11-01

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K(sub a)) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  18. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  19. Volumetric measurement of residual stress using high energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Whitesell, R.; McKenna, A.; Wendt, S.; Gray, J.

    2016-02-01

    We present results and recent developments from our laboratory, bench-top high energy x-ray diffraction system (HEXRD), between diffraction energies 50 and 150 KeV, to measure internal strain of moderately sized objects. Traditional x-ray strain measurements are limited to a few microns depth due to the use of Cu Kα1 Mo Kα1 radiation. The use of high energy x-rays for volumetric measurements of strain is typically the domain of synchrotron sources. We discuss the use of industrial 320kVp tube sources to generate a brighter x-ray beam along with a method using the intrinsic 43 eV width of the Kα1 characteristic peak of tungsten to measure volumetric strains in a number of industrially relevant materials. We will present volumetric strain measurements from two examples, first, additive manufacturing (AM) parts with various build configurations and, secondly, residual strain depth profiles from shot peened surface treatments. The spatial resolution of these depth profiles is ˜75 microns. The development of a faster method as compared to energy dispersive or θ-2θ scans is based on the intensity variation measurement of the strain using the aforementioned 43 eV characteristic tungsten kα line. We will present recent results on the development of this new tool and on x-ray diffraction measurements at high energy.

  20. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    PubMed

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors. PMID:23744671

  1. X-ray ionization yields and energy spectra in liquid argon

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Shekhtman, L.; Sokolov, A.

    2016-04-01

    The main purpose of this work is to provide reference data on X-ray ionization yields and energy spectra in liquid Ar to the studies in the field of Cryogenic Avalanche Detectors (CRADs) for rare-event and other experiments, based on liquid Ar detectors. We present the results of two related researches. First, the X-ray recombination coefficients in the energy range of 10-1000 keV and ionization yields at different electric fields, between 0.6 and 2.3 kV/cm, are determined in liquid Ar based on the results of a dedicated experiment. Second, the energy spectra of pulsed X-rays in liquid Ar in the energy range of 15-40 keV, obtained in given experiments including that with the two-phase CRAD, are interpreted and compared to those calculated using a computer program, to correctly determine the absorbed X-ray energy. The X-ray recombination coefficients and ionization yields have for the first time been presented for liquid Ar in systematic way.

  2. X-ray grating interferometry at photon energies over 180 keV

    NASA Astrophysics Data System (ADS)

    Ruiz-Yaniz, M.; Koch, F.; Zanette, I.; Rack, A.; Meyer, P.; Kunka, D.; Hipp, A.; Mohr, J.; Pfeiffer, F.

    2015-04-01

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater height of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.

  3. Room-temperature mercuric iodide spectrometry for low-energy X-rays

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.; Barton, J. B.; Huth, G. C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1982-01-01

    A discussion of the limits of energy resolution in different energy ranges is given. The energy resolution of a spectrometer is analyzed in terms of the parameters characterizing the crystal, the detector, and the amplification electronics. A high-resolution room-temperature HgI2 spectrometry system was used to measure low-energy X-ray fluorescence spectra. For the MgK-alpha X-ray line the measured resolution was 245 eV (fwhm); the electronic noise linewidth of the system was 225 eV. Alpha-particles were used to excite X-ray fluorescence from low-Z elements separately or in combination. The shape of the photopeaks in the spectra is discussed.

  4. Quantitative simulation and density reconstruction in high-energy X-ray radiograph

    NASA Astrophysics Data System (ADS)

    Tang, Li; Xu, Haibo

    2014-03-01

    Numerical radiograph using Monte Carlo method is used to study fidelity of density reconstruction in high-energy X-ray radiography. A density reconstruction method for a polyenergetic X-ray source and an object composed of different materials is proposed. The method includes energy spectrum, angular spectrum and spot size of photon source. And it includes mass absorption coefficients explicitly in density reconstruction as well. A constrained conjugate gradient algorithm and variation regularization are applied to determine material edges and density reconstruction of a French test object. It shows that the method is valid for density reconstruction and energy spectrum of imaging photons is important in obtaining accurate material densities in high-energy X-ray radiograph.

  5. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Loos, Jennifer L.; /San Jose State U. /SLAC

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  6. X-ray grating interferometry at photon energies over 180 keV

    SciTech Connect

    Ruiz-Yaniz, M.; Koch, F.; Meyer, P.; Kunka, D.; Mohr, J.; Zanette, I.; Rack, A.; Hipp, A.; Pfeiffer, F.

    2015-04-13

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater height of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.

  7. Strain Measurements using High Energy White X-rays at SPring-8

    NASA Astrophysics Data System (ADS)

    Shobu, T.; Kaneko, H.; Mizuki, J.; Konishi, H.; Shibano, J.; Hirata, T.; Suzuki, K.

    2007-01-01

    The strain in the bulk of a material was evaluated using high energy white X-rays from a synchrotron radiation source at SPring-8. The specimen, which was a 5 mm thick austenitic stainless steel sample (JIS-SUS304L), was subjected to bending. The internal strain was measured using white X-rays, which ranged in energy from 60 keV to 125 keV. Highly accurate internal strain measurements were accomplished by simultaneously using strain data from several lattice planes of α -Fe. Furthermore, utilizing diffracted beams with a high energy, a high peak count, and a profile similar to a Gaussian distribution decreased the error of the strain measurement The results indicated that high energy white X-rays can effectively measure the internal strain at a millimeter depth.

  8. Probing X-Ray Absorption and Optical Extinction in the Interstellar Medium Using Chandra Observations of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Foight, Dillon R.; Güver, Tolga; Özel, Feryal; Slane, Patrick O.

    2016-07-01

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N H = (2.87 ± 0.12) × 1021 A V cm‑2, which is significantly higher than the previous measurements.

  9. X-RAY SEARCHES FOR EMISSION FROM THE WHIM IN THE GALACTIC HALO AND THE INTERGALACTIC MEDIUM

    SciTech Connect

    Bregman, Joel N.; Otte, Birgit; Irwin, Jimmy A.; Putman, Mary E.; Lloyd-Davies, Edward J.; Bruens, Christian E-mail: otteb@umich.edu E-mail: mputman@astro.columbia.edu E-mail: cbruens@astro.uni-bonn.de

    2009-07-10

    At least 50% of the baryons in the local universe are undetected and predicted to be in a hot dilute phase (10{sup 5}-10{sup 7} K) in low and moderate overdensity environments. We searched for the predicted diffuse faint emission through shadowing observations whereby cool foreground gas absorbs more distant diffuse emission. Observations were obtained with Chandra and XMM-Newton. Using the cold gas in two galaxies, NGC 891 and NGC 5907, shadows were not detected and a newer observation of NGC 891 fails to confirm a previously reported X-ray shadow. Our upper limits lie above model predictions. For Local Group studies, we used a cloud in the Magellanic Stream and a compact high-velocity cloud to search for a shadow. Instead of a shadow, the X-ray emission was brighter toward the Magellanic Stream cloud and there is a less significant brightness enhancement toward the other cloud also. The brightness enhancement toward the Magellanic Stream cloud is probably due to an interaction with a hot ambient medium that surrounds the Milky Way. We suggest that this interaction drives a shock into the cloud, heating the gas to X-ray emitting temperatures.

  10. The extended medium sensitivity survey distant cluster sample - X-ray data and interpretation of the luminosity evolution

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Gioia, I. M.; Maccacaro, T.; Morris, S. L.; Stocke, J. T.; Wolter, A.

    1992-01-01

    The X-ray properties of a cluster of galaxies subsample of the Einstein Extended Medium Sensitivity Survey is described. A summary of this sample and its implication has been presented previously; this paper gives the full details. The cluster subsample is 98.4 percent identified and contains 93 X-ray-selected clusters to a redshift of 0.58. The cluster X-ray luminosity function at three cosmic epochs is derived. While the present luminosity function agrees with previous determinations at the lowest redshifts, it is found that the volume density of high-luminosity clusters is greater now than it was in the past. The normalization, shape, and time dependence of the luminosity function can be described by a simple hierarchical formation model with parameters which also describe the temperature function of an independent sample of low-redshift clusters. In this model the comoving hot gas density remains constant with time at least to redshifts of order 0.35.

  11. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    NASA Astrophysics Data System (ADS)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  12. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  13. X-Ray Lines Close to Kll Auger Electron Energies from Iron, Cobalt, Nickel, and Copper Monocrystals

    NASA Astrophysics Data System (ADS)

    Koo, Yeon Deog

    1990-01-01

    By x-ray bombardment of metal monocrystals (Fe, Co, Ni, and Cu), x-rays of KLL radiative Auger electrons (KLL RAE) can be observed on the low energy side of the Kalpha lines. The energies of the x-rays of the KLL RAE of each monocrystal are the same for different lattice planes and when different kinds of x-ray tubes (Mo, W, and Cu) are used. Therefore, the peak energies detected within the KLL Auger electron energy limit are interpreted as KLL RAE x-rays. The measured intensity ratios of KLL/Kalpha are about 0.3%. Additionally, the ratio of I(Kbeta )/I(Kalpha) and I(Si escape peak)/I(Kalpha) are measured. All of these values agree well with theoretical values. The beam shapes of KLL RAE x-rays are studied by taking pictures of x-ray films. The intensity distribution for Ni and Cu are measured by changing the crystal angle with respect to the incident x-ray beam near the Bragg angles of KLL RAE x-rays. It is shown that the KLL RAE x-rays are very sharp and stimulated when the crystal is set at the Bragg angle of the KLL RAE with respect to the incident beam, which contains both the pumping radiation and Bremsstrahlung of the frequencies in the KLL RAE range in which the KLL x-rays stimulation is achieved.

  14. Z-pinches as intense x-ray sources for high energy density physics application

    SciTech Connect

    Matzen, M.K.

    1997-02-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/{mu}s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{+-}10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory.

  15. Application of dual-energy x-ray techniques for automated food container inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  16. Combination of Raman, Infrared, and X-Ray Energy-Dispersion Spectroscopies and X-Ray Diffraction to Study a Fossilization Process

    NASA Astrophysics Data System (ADS)

    de Sousa Filho, Francisco Eduardo; da Silva, João Hermínio; Feitosa Saraiva, Antônio Álamo; Brito, Deyvid Dennys S.; Viana, Bartolomeu Cruz; de Oliveira Abagaro, Bruno Tavares; de Tarso Cavalcante Freire, Paulo

    2011-12-01

    X-ray diffraction was combined with X-ray energy-dispersion, Fourier-transform infrared, and Raman spectroscopies to study the fossilization of a Cretaceous specimen of the plant Brachyphyllum castilhoi, a fossil from the Ipubi Formation, in the Araripe Sedimentary Basin, Northeastern Brazil. Among the possible fossilization processes, which could involve pyrite, silicon oxide, calcium oxide, or other minerals, we were able to single out pyritization as the central mechanism producing the fossil, more than 100 million years ago. In addition to expanding the knowledge of the Ipubi Formation, this study shows that, when combined with other experimental techniques, Raman spectroscopy is a valuable tool at the paleontologist's disposal.

  17. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  18. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Spanne, P. ); Rivers, M.L.; Sutton, S.R. )

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

  19. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer.

    PubMed

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-01

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%. PMID:19044359

  20. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer

    SciTech Connect

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-15

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.

  1. Catalytic Adventures in Space and Time Using High Energy X-rays

    SciTech Connect

    Newton, Mark A.; Di Michiel, Marco; Ferri, Davide; Fernàndez-Garcia, Marcos; Beale, Andrew M.; Jacques, Simon D. M.; Chupas, Peter J.; Chapman, Karena W.

    2014-09-16

    Very high energy X-rays have long offered great promise in providing great insight into the inner workings of catalysts; insights that may complement the array of techniques available to researchers in catalysis either in the laboratory or at more conventional X-ray wavelengths. This contribution aims to critically assess the diverse possibilities now available in the high energy domain as a result of the maturation of third generation synchrotron facilities and to look forward to the potential that forthcoming developments in synchrotron source technology may offer the world of catalysis in the near future.

  2. High energy X-ray observations of the 38-second pulsar

    NASA Technical Reports Server (NTRS)

    Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.

    1981-01-01

    The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.

  3. X-ray measurements at high-power lasers. Relative conversion efficiencies of short pulse laser light into K X-ray radiation in medium to high Z elements

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Indelicato, P.; Gumberidze, A.; Holland, G. E.; Seely, J. F.; Hudson, L. T.; Henins, A.; Audebert, P.; Bastiani-Ceccotti, S.; Tabakhoff, E.; Brambrink, E.

    2009-03-01

    Conversion efficiencies of laser light into K x-ray radiation are used to characterize laser-solid interactions e.g. in measurements with back-lighter targets in Inertial Confinement Fusion research or in ultra short x-ray science where ultra short laser pulses are used to create x-rays for investigation of dynamic processes. In our measurements we observed high energy (few tens of keV) K x-ray radiation of element pairs created upon impact of a 1 ps, 100 J laser pulse on the target surface. The high-energy electrons created in this interaction ionise and excite the target material. We have used high purity alloy foils of Pd and Ag, as well as In and Sn and crystals of CsI and rare earth molybdates as target materials. Both constituents of these targets were simultaneously excited in one shot. The K x-ray radiation was dispersed and detected with the LCS (LULI Crystal Spectrometer), a Cauchois-type cylindrically bent transmission-crystal spectrometer. Measuring ratios in the x-ray spectra permits determination of relative conversion efficiencies for pairs of elements under identical laser-target interaction conditions.

  4. Energy dependence of power-spectral noise in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Stiele, Holger; Yu, Wenfei

    2014-08-01

    Black hole and neutron star X-ray binaries show variability on time-scales ranging from milliseconds to years. In the last two decades a detailed phenomenological picture of short-term variability in low-mass X-ray binaries has emerged mainly based on RXTE observations that cover energies above 3 keV. This picture comprises periodic or quasi-periodic variability, seen as spikes or humps in power density spectra, that are superposed on broad noise components. The overall shape of the noise components as well as the occurrence of quasi-periodic oscillations is known to vary with the state of the X-ray binary. We are accomplishing a comprehensive study of archival XMM-Newton observations in timing or burst mode of more than ten black hole and more than thirty neutron star low-mass X-ray binaries to investigate the variability properties of these sources at softer energies where the thermal disk component starts to emerge.Here we present some results of the energy dependence of the noise component in power density spectra: a discussion of the energy dependence of the power spectral state that we found in the “plateau” state of GRS 1915+105 and the intermediate state of 4U 1630-47; the dependence of the break-frequency of the band-limited noise component as well as the quasi-periodic oscillations on the studied energy band in several X-ray binaries like GX 339-4 or Swift J1753.5-0127. We will discuss the implications of these findings for the picture of the accretion geometry in black hole X-ray binaries.

  5. Tentative experiment for generating low-photon-energy quasi-x-ray lasers using a capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Toriyabe, Hiroyuki; Awaji, Wataru; Hayasi, Yasuomi; Ichimaru, Toshio; Usuki, Tatsumi; Sato, Koetsu; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    2001-04-01

    The tentative experiment for producing low-photon-energy quasi-x-ray laser using a capillary is described. This flash x-ray generator was improved in order to increase the x-ray intensity and to produce high-intensity characteristic x-rays by forming the linear plasma x-ray source. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 (mu) F in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. In the present work, the chamber is evacuated by the pump with a pressure of about 1 mPa, and the carbon anode and cathode electrodes are employed to produce K(alpha) characteristic x-rays. The diameter and the length of the ferrite capillary are 2.0 and 29 mm, respectively, and both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -9.9 kV and 4.4 kA, respectively. The pulse durations of the x-rays were nearly equivalent to those of the damped oscillations in the voltage and current, and their values were less than 20 microseconds. In the spectrum measurement, we observed the carbon K(alpha) line.

  6. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    ERIC Educational Resources Information Center

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  7. Time-delayed beam splitting with energy separation of x-ray channels

    SciTech Connect

    Stetsko, Yuri P.; Shvyd'ko, Yuri V.; Brian Stephenson, G.

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  8. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  9. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Struminsky, A.; Gan, W.

    2015-08-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV γ-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these γ-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and π0-decay γ-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X- ray >100 keV were not found during time intervals, when prolonged hard y-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated during the impulsive phase of the flare and subsequently trapped by some magnetic structure. In-situ energetic particle measurements by GOES and STEREO (High Energy Telescope, HET) shows that five of these y-events were not accompanied by SEP events at 1 AU, even when multi-point measurements including STEREO are taken into account. Therefore accelerated protons are not always released into the heliosphere. A longer delay between the maximum temperature and the maximum emission measure characterises flares with prolonged high energy γ-emission and solar proton events.

  10. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    PubMed

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam. PMID:26330215

  11. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment

    SciTech Connect

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi; Inubushi, Yuichi

    2010-10-15

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

  12. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K. D.; Tischler, J. Z.; Larson, B. C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements.

  13. Effects of High-Energy X-Ray Radiation on MoS2 FETs

    NASA Astrophysics Data System (ADS)

    Rai, Amritesh; Thoutam, Laxman; Zhang, Wei; Kovi, Kiran; Banerjee, Sanjay; Das, Saptarshi

    FETs based on semiconducting MoS2 nanosheets are currently being extensively explored for various nanoelectronic device applications. In real-life, several of these applications mandate the exposure of devices to X-ray radiation. In this study, we investigate the effects of high-energy X-ray radiation on few-layer MoS2 transistors. Back-gated MoS2 FETs on SiO2 substrates were fabricated and exposed to X-ray radiation in an enclosed X-ray tube utilizing tungsten as the X-ray source. The devices were exposed to successive radiation doses up to a cumulative dose of 1500 kilorads (Krads). Even after high radiation doses, the devices maintained acceptable electrical performance with high ION/IOFF ratios and good current saturation. The subthreshold swing remained similar to initial values. There was, however, a slight reduction in the ON-currents after each successive radiation, concomitant with a positive threshold voltage shift that can be attributed to the formation of negative-fixed charges in the substrate. Moreover, the maximum transconductance (gm) of the devices decreased slightly with increasing radiation dose. Finally, Raman spectroscopy revealed practically no change in the in-plane and out-of-plane Raman modes of MoS2 after radiation.

  14. Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range

    NASA Astrophysics Data System (ADS)

    Nambiar, Shruti; Osei, Ernest K.; Yeow, John T. W.

    2015-03-01

    The increased use of diagnostic x-rays, especially in the field of medical radiology, has necessitated a significant demand for high resolution, real-time radiation detectors. In this regard, the photoresponse of bismuth sulfide (Bi2S3), an n-type semiconducting metal chalcogenide, to low energy x-rays has been investigated in this study. In recent years, several types of nanomaterials of Bi2S3 have been widely studied for optoelectronic and thermoelectric applications. However, photoresponse of Bi2S3 nanomaterials for dosimetric applications has not yet been reported. The photosensitivity of Bi2S3 with nanoscale ``flower-like'' structures was characterized under x-ray tube-potentials typically used in mammographic procedures. Both dark current and photocurrent were measured under varying x-ray doses, field sizes, and bias voltages for each of the tube potentials - 20, 23, 26 and 30 kV. Results show that the Bi2S3 nanoflowers instantaneously responded to even minor changes in the dose delivered. The photoresponse was found to be relatively high (few nA) at bias voltage as low as +1 V, and fairly repeatable for both short and long exposures to mammographic x-rays with minimal or no loss in sensitivity. The overall dose-sensitivity of the Bi2S3 nanoflowers was found to be similar to that of a micro-ionization chamber.

  15. Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range

    PubMed Central

    Nambiar, Shruti; Osei, Ernest K.; Yeow, John T. W.

    2015-01-01

    The increased use of diagnostic x-rays, especially in the field of medical radiology, has necessitated a significant demand for high resolution, real-time radiation detectors. In this regard, the photoresponse of bismuth sulfide (Bi2S3), an n-type semiconducting metal chalcogenide, to low energy x-rays has been investigated in this study. In recent years, several types of nanomaterials of Bi2S3 have been widely studied for optoelectronic and thermoelectric applications. However, photoresponse of Bi2S3 nanomaterials for dosimetric applications has not yet been reported. The photosensitivity of Bi2S3 with nanoscale “flower-like” structures was characterized under x-ray tube-potentials typically used in mammographic procedures. Both dark current and photocurrent were measured under varying x-ray doses, field sizes, and bias voltages for each of the tube potentials – 20, 23, 26 and 30 kV. Results show that the Bi2S3 nanoflowers instantaneously responded to even minor changes in the dose delivered. The photoresponse was found to be relatively high (few nA) at bias voltage as low as +1 V, and fairly repeatable for both short and long exposures to mammographic x-rays with minimal or no loss in sensitivity. The overall dose-sensitivity of the Bi2S3 nanoflowers was found to be similar to that of a micro-ionization chamber. PMID:25801531

  16. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  17. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography.

    PubMed

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-08-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented. PMID:27239987

  18. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  19. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  20. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%. PMID:26628136

  1. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  2. Improvements in the Low Energy Collection Efficiency of Si(Li) X-ray Detectors

    SciTech Connect

    Cox,C.; Fischer, D.; Schwartz, W.; Song, Y.

    2005-01-01

    Soft X-ray beam-line applications are of fundamental importance to material research, and commonly employ high-resolution Si(Li) detectors for energy dispersive spectroscopy. However, the measurement of X-rays below 1 keV is compromised by absorption in the material layers in front of the active crystal and a dead layer at the crystal surface. Various Schottky barrier type contacts were investigated resulting in a 40% reduction of the dead-layer thickness and a factor of two increased sensitivity at carbon K{sub {alpha}} compared to the standard Si(Li) detector. Si(Li) detectors were tested on the U7A soft X-ray beam-line at the National Synchrotron Light Source and on a scanning electron microscope (SEM).

  3. Modification of Layer Structures of Superconducting Tunnel Junctions to Improve X-ray Energy Resolution

    NASA Astrophysics Data System (ADS)

    Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    The layer structure of a Nb/Al-based superconducting tunnel junction (STJ) X-ray detector was modified to improve the energy resolution (Δ E) of STJ X-ray detectors by suppressing the recombination of excited quasiparticles in the electrodes. A 100-pixel array of 100 × 100 \\upmu m STJs with a symmetric layer structure of Nb (300 nm)/Al-AlOx(70 nm)/Al (70 nm)/Nb (300 nm) was fabricated. Fabrication yields of the 100 pixels were more than 90 %. The average leak current of the STJ array was 8 nA. The mean Δ E of the STJ array was 6.7 ± 1.0 eV for 400 eV X-rays. This Δ E is the best value reported for Nb/Al STJs.

  4. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect

    MacDonald, M. J. Gamboa, E. J.; Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P.; Montgomery, D. S.; Biener, M. M.; Fournier, K. B.; Streit, J.

    2014-11-15

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  5. The high energy X-ray detector on the Ariel-5 satellite

    NASA Technical Reports Server (NTRS)

    Engel, A. R.; Coe, M. J.

    1977-01-01

    The Imperial College hard X-ray detector which is used to make spectral measurements in the 26 keV to 1.2 MeV energy range on celestial X-ray sources from the Ariel-5 satellite is described. Details are given of the design, calibration and in-orbit performance of the detector. A modulation process is used to detect weak signals against a background and we give details of the spectrum unfolding techniques used to convert the measured spectra into corrected incident spectra.

  6. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  7. Characterization of detection efficiency as function of energy for soft x-ray detectorsa)

    NASA Astrophysics Data System (ADS)

    Pacella, D.; Mazon, D.; Romano, A.; Malard, P.; Pizzicaroli, G.

    2008-10-01

    A new technique has been especially developed for determining the detection efficiency of the silicon surface barrier diodes used for tomography reconstructions at Tore Supra, as function of the energy of the x-ray photons, in the range of 4-25keV. The response of these diodes has been studied for different bias voltages (0-120V), with a portable x-ray electronic tube and a cooled Si-p-i-n diode, working in photon counting mode, for the absolute calibration.

  8. CMOS-sensors for energy-resolved X-ray imaging

    NASA Astrophysics Data System (ADS)

    Doering, D.; Amar-Youcef, S.; Baudot, J.; Deveaux, M.; Dulinski, W.; Kachel, M.; Linnik, B.; Müntz, C.; Stroth, Joachim

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ``color sensitive" X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors.

  9. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  10. Preliminary research on dual-energy X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  11. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  12. Inelastic x-ray scattering at modest energy resolution

    SciTech Connect

    Finkelstein, K.D.; Larson, B.C.

    1997-07-01

    We report results from the development of an inelastic scattering spectrometer designed to take advantage of high energy synchrotron radiation available at CHESS. The device allows a large increase of the effective scattering volume in the sample by permitting measurements to be made in an energy range up to 25 KeV. The highest useable energy appears limited by the efficiency of the analyzers under consideration. At 20 KeV a novel 4-bounce, sagittal focusing monochromator passes 10e11 photons/second with Darwin width limited energy resolution. In the scattering plane, the monochromator images the electron beam producing a small scattering source for the analyzing optics. Analyzer systems under study include a cooled mosaic crystal in para-focusing geometry, and an adjustable spherically bent silicon crystal respectively for parallel and point-by-point collection of the energy loss spectrum. This paper discusses the optical configurations presents results from our early measurements and suggests directions for improvements. {copyright} {ital 1997 American Institute of Physics.}

  13. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  14. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  15. Investigation of pulsed X-ray radiation of a plasma focus in a broad energy range

    SciTech Connect

    Savelov, A. S. Salakhutdinov, G. Kh.; Koltunov, M. V.; Lemeshko, B. D.; Yurkov, D. I.; Sidorov, P. P.

    2011-12-15

    The results of the experimental investigations of the spectral composition of plasma focus X-ray radiation in the photon energy range of 1.5 keV-400 keV are presented. Three regions in the radiation spectrum where the latter is of a quasi-thermal nature with a corresponding effective temperature are distinguished.

  16. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  17. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  18. COnstrain Dark Energy with X-ray (CODEX) clusters

    NASA Astrophysics Data System (ADS)

    Finoguenov, Alexis; SDSS Team; Cfht Team; Carma Team

    2012-09-01

    We describe the construction and follow-up observations of the most massive clusters in the Universe, selected in the SDSS-III survey using RASS data down to an unprecedented flux limit of -13 dex. In application to the cosmology studies, we demonstrate that we will achieve a 3% constraint on the dark energy equation of state, and in a combination with BOSS BAO measurement reach a FoM of 160.

  19. Energy resolution and high count rate performance of superconducting tunnel junction x-ray spectrometers

    SciTech Connect

    Frank, M.; Hiller, L.J.; le Grand, J.B.; Mears, C.A.; Labov, S.E.; Lindeman, M.A.; Netel, H.; Chow, D.; Barfknecht, A.

    1998-01-01

    We present experimental results obtained with a cryogenically cooled, high-resolution x-ray spectrometer based on a 141{mu}m{times}141{mu}m Nb-Al-Al{sub 2}O{sub 3}-Al-Nb superconducting tunnel junction (STJ) detector in a demonstration experiment. Using monochromatized synchrotron radiation we studied the energy resolution of this energy-dispersive spectrometer for soft x rays with energies between 70 and 700 eV and investigated its performance at count rates up to nearly 60000 cps. At count rates of several 100 cps we achieved an energy resolution of 5.9 eV (FWHM) and an electronic noise of 4.5 eV for 277 eV x rays (the energy corresponding to C K). Increasing the count rate, the resolution 277 eV remained below 10 eV for count rates up to {approximately}10000cps and then degraded to 13 eV at 23000 cps and 20 eV at 50000 cps. These results were achieved using a commercially available spectroscopy amplifier with a baseline restorer. No pile-up rejection was applied in these measurements. Our results show that STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft x rays. Thus STJ detectors may prove very useful in microanalysis, synchrotron x-ray fluorescence (XRF) applications, and XRF analysis of light elements (K lines) and transition elements (L lines). {copyright} {ital 1998 American Institute of Physics.}

  20. Method for obtaining silver nanoparticle concentrations within a porous medium via synchrotron X-ray computed microtomography.

    PubMed

    Molnar, Ian L; Willson, Clinton S; O'Carroll, Denis M; Rivers, Mark L; Gerhard, Jason I

    2014-01-21

    Attempts at understanding nanoparticle fate and transport in the subsurface environment are currently hindered by an inability to quantify nanoparticle behavior at the pore scale (within and between pores) within realistic pore networks. This paper is the first to present a method for high resolution quantification of silver nanoparticle (nAg) concentrations within porous media under controlled experimental conditions. This method makes it possible to extract silver nanoparticle concentrations within individual pores in static and quasi-dynamic (i.e., transport) systems. Quantification is achieved by employing absorption-edge synchrotron X-ray computed microtomography (SXCMT) and an extension of the Beer-Lambert law. Three-dimensional maps of X-ray mass linear attenuation are converted to SXCMT-determined nAg concentration and are found to closely match the concentrations determined by ICP analysis. In addition, factors affecting the quality of the SXCMT-determined results are investigated: 1) The acquisition of an additional above-edge data set reduced the standard deviation of SXCMT-determined concentrations; 2) X-ray refraction at the grain/water interface artificially depresses the SXCMT-determined concentrations within 18.1 μm of a grain surface; 3) By treating the approximately 20 × 10(6) voxels within each data set statistically (i.e., averaging), a high level of confidence in the SXCMT-determined mean concentrations can be obtained. This novel method provides the means to examine a wide range of properties related to nanoparticle transport in controlled laboratory porous medium experiments. PMID:24354304

  1. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    NASA Astrophysics Data System (ADS)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  2. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOEpatents

    Rosen, Mordecai D.; Matthews, Dennis L.

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  3. Universal profiles of the intracluster medium from Suzaku X-ray and Subaru weak-lensing observations*

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Umetsu, Keiichi; Tamura, Takayuki; Fujita, Yutaka; Takizawa, Motokazu; Zhang, Yu-Ying; Matsushita, Kyoko; Hamana, Takashi; Fukazawa, Yasushi; Futamase, Tasushi; Kawaharada, Madoka; Miyazaki, Satoshi; Mochizuki, Yukiko; Nakazawa, Kazuhiro; Ohashi, Takaya; Ota, Naomi; Sasaki, Toru; Sato, Kosuke; Tam, Sutieng

    2014-10-01

    We conduct a joint X-ray and weak-lensing study of four relaxed galaxy clusters (Hydra A, A 478, A 1689, and A 1835) observed by both Suzaku and Subaru out to virial radii, with the aim of understanding recently discovered unexpected features of the intracluster medium (ICM) in cluster outskirts. We show that the average hydrostatic-to-lensing total mass ratio for the four clusters decreases from ˜ 70% to ˜ 40% as the overdensity contrast decreases from 500 to the virial value. The average gas mass fraction from lensing total mass estimates increases with cluster radius and agrees with the cosmic mean baryon fraction within the virial radius, whereas the X-ray-based gas fraction considerably exceeds the cosmic values due to underestimation of the hydrostatic mass. We also develop a new advanced method for determining normalized cluster radial profiles for multiple X-ray observables by simultaneously taking into account both their radial dependence and multivariate scaling relations with weak-lensing masses. Although the four clusters span a range of halo mass, concentration, X-ray luminosity, and redshift, we find that the gas entropy, pressure, temperature, and density profiles are all remarkably self-similar when scaled with the weak-lensing M200 mass and r200 radius. The entropy monotonically increases out to ˜ 0.5 r200 ˜ r1000 following the accretion shock heating model K(r) ∝ r1.1, and flattens at ≳ 0.5 r200. The universality of the scaled entropy profiles indicates that the thermalization mechanism over the entire cluster region (> 0.1 r200) is controlled by gravitation in a common way for all clusters, although the heating efficiency in the outskirts needs to be modified from the standard r1.1 law. The bivariate scaling functions of the gas density and temperature reveal that the flattening of the outskirts entropy profile is caused by the steepening of the temperature, rather than the flattening of the gas density.

  4. The SLcam: a full-field energy dispersive X-ray camera

    NASA Astrophysics Data System (ADS)

    Bjeoumikhov, A.; Buzanich, G.; Langhoff, N.; Ordavo, I.; Radtke, M.; Reinholz, U.; Riesemeier, H.; Scharf, O.; Soltau, H.; Wedell, R.

    2012-11-01

    The color X-ray camera (SLcam®) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 μm and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 μm. We present a measurement with a laboratory source showing the camera capability to perform fast full-field X-ray Fluorescence (FF-XRF) imaging with an easy, portable and modular setup.

  5. High-Energy Density science with an ultra-bright x-ray laser

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  6. Response of large area avalanche photodiodes to low energy x rays

    SciTech Connect

    Gentile, T. R.; Bales, M.; Arp, U.; Dong, B.; Farrell, R.

    2012-05-15

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  7. A first look at the distant high energy X-ray population with NuSTAR

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.; the NuSTAR Team

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, is opening the high energy X-ray sky for sensitive study for the first time. NuSTAR focusing X-ray optics are resolving the sources contributing to the peak of the X-ray background at >10 keV. To provide a sensitive census of this population, NuSTAR is performing an extragalactic survey, using a 3 tier approach: a very deep 200 ks, pencil-beam survey of the Extended Chandra Deep Field-South (ECDFS), a moderate depth 50 ks survey of the COSMOS field, and a shallow survey suing serendipitous sources detected in target local bright sources. In this talk, I will report on the first results from this survey, including now about 200 sources in the three fields combined. The NuSTAR sources are approximately 100 times fainter than those previously detected at >10 keV by Swift/BAT and have a very broad range in redshift and luminosity (z=0.02-3). The sources are characterized on the basis of their X-ray properties (hardness ratio and luminosity), optical spectroscopy and optical to mid -infrared spectral energy distributions.

  8. CT dual-energy decomposition into x-ray signatures ρe and Ze

    NASA Astrophysics Data System (ADS)

    Martz, Harry E.; Seetho, Issac M.; Champley, Kyle E.; Smith, Jerel A.; Azevedo, Stephen G.

    2016-05-01

    In a recent journal article [IEEE Trans. Nuc. Sci., 63(1), 341-350, 2016], we introduced a novel method that decomposes dual-energy X-ray CT (DECT) data into electron density (ρe) and a new effective-atomic-number called Ze in pursuit of system-independent characterization of materials. The Ze of a material, unlike the traditional Zeff, is defined relative to the actual X-ray absorption properties of the constituent atoms in the material, which are based on published X-ray cross sections. Our DECT method, called SIRZ (System-Independent ρe, Ze), uses a set of well-known reference materials and an understanding of the system spectral response to produce accurate and precise estimates of the X-ray-relevant basis variables (ρe, Ze) regardless of scanner or spectra in diagnostic energy ranges (30 to 200 keV). Potentially, SIRZ can account for and correct spectral changes in a scanner over time and, because the system spectral response is included in the technique, additional beam-hardening correction is not needed. Results show accuracy (<3%) and precision (<2%) values that are much better than prior methods on a wide range of spectra. In this paper, we will describe how to convert DECT system output into (ρe, Ze) features and we present our latest SIRZ results compared with ground truth for a set of materials.

  9. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content. PMID:25321502

  10. Robust x-ray based material identification using multi-energy sinogram decomposition

    NASA Astrophysics Data System (ADS)

    Yuan, Yaoshen; Tracey, Brian; Miller, Eric

    2016-05-01

    There is growing interest in developing X-ray computed tomography (CT) imaging systems with improved ability to discriminate material types, going beyond the attenuation imaging provided by most current systems. Dual- energy CT (DECT) systems can partially address this problem by estimating Compton and photoelectric (PE) coefficients of the materials being imaged, but DECT is greatly degraded by the presence of metal or other materials with high attenuation. Here we explore the advantages of multi-energy CT (MECT) systems based on photon-counting detectors. The utility of MECT has been demonstrated in medical applications where photon- counting detectors allow for the resolution of absorption K-edges. Our primary concern is aviation security applications where K-edges are rare. We simulate phantoms with differing amounts of metal (high, medium and low attenuation), both for switched-source DECT and for MECT systems, and include a realistic model of detector energy 0 resolution. We extend the DECT sinogram decomposition method of Ying et al. to MECT, allowing estimation of separate Compton and photoelectric sinograms. We furthermore introduce a weighting based on a quadratic approximation to the Poisson likelihood function that deemphasizes energy bins with low signal. Simulation results show that the proposed approach succeeds in estimating material properties even in high-attenuation scenarios where the DECT method fails, improving the signal to noise ratio of reconstructions by over 20 dB for the high-attenuation phantom. Our work demonstrates the potential of using photon counting detectors for stably recovering material properties even when high attenuation is present, thus enabling the development of improved scanning systems.

  11. The energy spectrum of X-rays from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Dwyer, J. R.; Cramer, E. S.; Grove, J. E.; Gwon, C.; Hill, J. D.; Jordan, D. M.; Lucia, R. J.; Vodopiyanov, I. B.; Uman, M. A.; Rassoul, H. K.

    2015-10-01

    Although the production of X-rays from natural and rocket-triggered lightning leaders have been studied in detail over the last 10 years, the energy spectrum of the X-rays has never been well measured because the X-rays are emitted in very short but intense bursts that result in pulse pileup in the detectors. The energy spectrum is important because it provides information about the source mechanism for producing the energetic runaway electrons and about the electric fields that they traverse. We have recently developed and operated the first spectrometer for the energetic radiation from lightning. The instrument is part of the Atmospheric Radiation Imagery and Spectroscopy (ARIS) project and will be referred to as ARIS-S (ARIS Spectrometer). It consists of seven 3'' NaI(Tl)/photomultiplier tube scintillation detectors with different thicknesses of attenuators, ranging from no attenuator to more than 1'' of lead placed over the detector (all the detectors are in a 1/8'' thick aluminum box). Using X-ray pulses preceding 48 return strokes in 8 rocket-triggered lightnings, we found that the spectrum of X-rays from leaders is too soft to be consistent with Relativistic Runaway Electron Avalanche. It has a power law dependence on the energies of the photons, and the power index, λ, is between 2.5 and 3.5. We present the details of the design of the instrument and the results of the analysis of the lightning data acquired during the summer of 2012.

  12. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    NASA Astrophysics Data System (ADS)

    Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.

    2015-08-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.

  13. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  14. Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy

    SciTech Connect

    Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke; Woods, Kaley; Boucher, Salime

    2014-04-15

    Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans

  15. Measurement of electron energy distribution from X-rays diagnostics - foil techniques used with the hard X-ray camera on PBX-M

    SciTech Connect

    Goeler, S. von; Bell, R.; Bernabei, S.; Davis, W.; Ignat, D.

    1995-12-31

    A half-screen foil technique is used with the Hard X-ray Camera on the PBX-M tokamak to determine the energy distribution of the suprathermal electrons generated during lower hybrid current drive. The ratio of perpendicular to parallel temperature of the suprathermal electrons is deduced from the anisotropy of the bremsstrahlung emission utilizing Abel inversion techniques. Results from lower hybrid current drive discharges are discussed.

  16. High Energy Neutrino Flash From Far-UV/X-Ray Flares of Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2006-04-25

    The recent observations of bright optical and X-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-UV/X-ray flares under the late internal shock model. Since the efficiency of pion production in the highest energy is higher than that of the prompt bursts, such neutrino flashes from flares can give comparable or larger contributions to a diffuse very high energy neutrino background if the total energy input into flares is comparable to the radiated energy of the prompt bursts. These signals are very important because they have possibility to probe the nature of flares (baryonic or magnetic, the photon field, the magnetic field, and so on).

  17. The high-energy detector of the New Hard X-ray Mission (NHXM): design concept

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Brez, A.; Minuti, M.; Pinchera, M.; Spandre, G.; Argan, A.; Catalano, O.; Costa, E.; Fiorini, C.; Malaguti, G.; Pareschi, G.; Tagliaferri, G.; Uslenghi, M.

    2010-07-01

    The New Hard X-ray Mission (NHXM) is conceived to extend the grazing-angle reflection imaging capability up to 80 keV energy. The payload of the mission consists of four telescopes: three of the them having at their focal plane an identical spectral-imaging camera operating between 0.2 and 80 keV, while the fourth one is equipped with a X-ray imaging polarimeter. The three cameras consist of two detection layers: a Low Energy Detector (LED) and a High Energy Detector (HED) surrounded by an Anti Coincidence (AC) system. Here we present the preliminary design and the solutions that we are currently studying to meet the requirements for the high energy detectors. These detectors will be based on Cadmium Telluride (CdTe) pixel sensors coupled to pixel read-out electronics using custom CMOS ASICs.

  18. Energy-dependent effects of scattering atmospheres on X-ray pulsar pulse profiles

    NASA Technical Reports Server (NTRS)

    Sturner, Steven J.; Dermer, Charles D.

    1994-01-01

    We propose that radiation-supported scattering atmospheres near accreting X-ray pulsars (XRPs) can explain energy-dependent features observed in the pulse profiles of 4U 1626-67, 4U 1538-52, 4U 1907+09 and Vela X-1. These atmospheres provide a physical model for the phenomenological annular emitting regions employed by Leahy to fit X-ray pulsar pulse profiles. We examine the effects of the scattering atmospheres under the assumptions that stable, optically thick atmospheres exist in a region where the optically thin resonant radiation force exceeds the force of gravity on ionized hydrogen. We predict that less complex pulse profiles will be observed at higher photon energies because the scattering atmospheres, which are supported by resonant Compton radiation pressure, become transparent to photons with energies greater than the cyclotron energy at the neutron star surface.

  19. Talbot-Lau X-ray Moiré deflectometry Diagnostic for High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2013-10-01

    A Talbot-Lau (TL) x-ray interferometer measures beam angular deviations due to refraction index gradients within objects along its path. By tilting one of the gratings in the interferometer by small angles, Moiré patterns which enable the detection of density gradients in low-Z matter are obtained. In addition to the detection of both sharp and smooth density gradients this technique makes also possible the identification of micro structures within an object. The sensitivity and spatial resolution is adequate to characterize High Energy Density Laboratory Plasmas (HEDLP). The technique allows for the simultaneous acquisition of x-ray attenuation, refraction, and scatter information from a single x-ray image. Experimental and simulated results acquired show a clear advantage of the TL Moiré single image based phase-retrieval technique over the attenuation and propagation methods. Additionally, the method makes use of extended, polychromatic, incoherent, line and continuum x-ray sources, thus allowing for less demanding backlighters than those typically used in HEDLP radiography. Work supported by U.S. DOE/NNSA grant DENA0001835.

  20. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    SciTech Connect

    Harrison, Fiona A.; Cook, W. Rick; Forster, Karl; Grefenstette, Brian W.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Craig, William W.; Pivovaroff, Michael J.; Christensen, Finn E.; Hailey, Charles J.; Koglin, Jason E.; Mori, Kaya; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Kim, Yunjin; Giommi, Paolo; Perri, Matteo; and others

    2013-06-20

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the {approx}10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z {approx}< 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element {sup 44}Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 Degree-Sign inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an

  1. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Kim, Yunjin; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Mori, Kaya; Perri, Matteo; Markwardt, Craig B.; Wik, Daniel R.; Hornschemeier, Anne E.; Ptak, Andrew; Rigby, Jane R.

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  2. In Situ Soft X-ray Spectroscopy Characterization of Interfacial Phenomena in Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Liu, Yi-Sheng; Kapilashrami, Mukes; Glans, Per-Anders; Bora, Debajeet; Braun, Artur; Velasco Vélez, Juan Jesús; Salmeron, Miquel; ALS/LBNL Team; EMPA, MSD/LBNL Collaboration

    2015-03-01

    Advanced energy technology arises from the understanding in basic science, thus rest in large on in-situ/operando characterization tools for observing the physical and chemical interfacial processes, which has been largely limited in a framework of thermodynamic and kinetic concepts or atomic and nanoscale. In many important energy systems such as energy conversion, energy storage and catalysis, advanced materials and functionality in devices are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy conversion and energy storage applications calls for in-situ/operando characterization tools. Soft X-ray spectroscopy offers a number of very unique features. We will present our development of the in-situ/operando soft X-ray spectroscopic tools of catalytic and electrochemical reactions in recent years, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. In this presentation a number of examples are given, including the nanocatalysts and the recent experiment performed for studying the hole generation in a specifically designed photoelectrochemical cell under operando conditions. The ALS is supported by the the U.S. Department of Energy.

  3. Low-energy x-ray response of photographic films. I. Mathematical models

    SciTech Connect

    Henke, B.L.; Kwok, S.L.; Uejio, J.Y.; Yamada, H.T.; Young, G.C.

    1984-12-01

    Relatively simple mathematical models are developed to determine the optical density as a function of the x-ray intensity, its angle of incidence, and its photon energy in the 100--10,000-eV region for monolayer and emulsion types of photographic films. Semiempirical relations are applied to characterize a monolayer film (Kodak 101-07) and an emilsion-type film (Kodak RAR 2497); these relations fit calibration data at nine photon energies well within typical experimental error.

  4. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  5. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  6. Quasar energy distributions. I - Soft X-ray spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Elvis, Martin

    1987-01-01

    As the initial stage of a study of quasar energy distributions (QEDs), Einstein IPC spectra of 24 quasars are presented. These are combined with previously reported IPC spectra to form a sample of 33 quasars with well-determined soft X-ray slopes. A correlation analysis shows that radio loudness, rather than redshift or luminosity, is fundamentally related to the X-ray slope. This correlation is not followed by higher energy spectra of active galaxies. Two components are required to explain both sets of results. The best-fit column densities are systematically smaller than the Galactic values. The same effect is not present in a sample of BL Lac objects, implying that the effect is intrinsic to the quasars and is caused by a low-energy turnup in the quasar spectra.

  7. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  8. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how

  9. The medium sensitivity survey - A new sample of X-ray sources with optical identifications and the revised extragalactic log N-log S

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Stocke, J. T.; Liebert, J. W.; Danziger, I. J.; Kunth, D.; Lub, J.

    1984-01-01

    Maccacaro et al. (1982) surveyed approximately 50 sq deg in different regions of the sky at medium sensitivity flux levels intermediate between the Uhuru/Ariel V limit and the Einstein deep survey limit. This 'first' medium sensitivity survey (MSS 1) was primarily aimed at the analysis of the source-count relation for extragalactic X-ray sources. The present investigation is concerned with an extension of the MSS 1 on the basis of an analysis of new fields obtained with the aid of the Imaging Proportional Counter (IPC) on board the Einstein Observatory. A parallel optical program to identify all the new sources was also undertaken. X-ray and optical data are presented for this 'second' complete sample of medium sensitivity survey X-ray sources (MSS 2). The log N-log S relation is derived and discussed.

  10. Coasting External Shock in Wind Medium: An Origin for the X-Ray Plateau Decay Component in Swift Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Shen, Rongfeng; Matzner, Christopher D.

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a ρvpropr -2, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, Γ0 <= 46(epsilon e /0.1)-0.24(epsilon B /0.01)0.17; the isotropic equivalent total ejecta energy is E iso ~ 1053(epsilon e /0.1)-1.3(epsilon B /0.01)-0.09(tb /104 s) erg, where epsilon e and epsilon B are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and tb is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-Γ0 ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  11. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    SciTech Connect

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung; Raymond, John C.; Reeves, Katharine K.

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  12. Gigavolt-Energy Electrons and Femtosecond-Duration Hard X-Rays Driven by Extreme Light

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2012-06-01

    The interactions of high-peak power laser light focused to extremely high intensity, or ``extreme light,'' is at the core of high-energy laser-driven electron accelerators, and novel laser-synchrotron x-ray light sources. The hallmark of extreme light is its ability to cause the instantaneous electron quiver motion to become relativistic. We discuss recent progress in understanding the physics of extreme light, and the advanced electron and x-ray technologies that it drives. Through the mechanism of relativistic self-guiding, focused light from our 100-TW Diocles laser was propagated in plasma at relativistic intensity for distance of 1 cm [corresponding to over 15 vacuum diffraction (Rayleigh) ranges]. As a result of this extended propagation length, electrons were accelerated by a laser-wakefield to near GeV energy in a well-collimated beam. The electron beam was measured to be tunable over a wide energy range, 100 -- 800 MeV, with 5-- 25% energy spread, and 1-- 4-mrad divergence angle. The experimental results were found to be in reasonable agreement with the results of numerical simulation, which predict even higher electron energy (multi-GeV) with our recently upgraded peak laser power (>0.5 PW). These characteristics, along with their lack of any measurable amount of dark-current, make these electron beams good candidates for driving synchrotron x-ray sources. The development of one such x-ray source will also be discussed, one driven by inverse Compton scattering of laser light by laser-accelerated electrons. Its small radiation source size (˜ 10 microns) and low angular beam divergence (< 10 mrad) make it quite promising for applications in radiology. By virtue of its ultra-short pulse duration (< 10 fs) and wide energy tunability (10 keV -- 10 MeV), it can also be used to probe matter with atomic-scale spatial and temporal resolution---simultaneously.

  13. The HEAO 1 A-4 catalog of high-energy X-ray sources

    NASA Technical Reports Server (NTRS)

    Levine, A. M.; Lang, F. L.; Lewin, W. H. G.; Primini, F. A.; Dobson, C. A.; Doty, J. P.; Hoffman, J. A.; Howe, S. K.; Scheepmaker, A.; Wheaton, W. A.

    1984-01-01

    Results are reported from an all-sky survey carried out at high X-ray energies (13-180 keV) from August 1977 until January 1979 using data obtained with the UCSD/MIT Hard X-Ray and Low-Energy Gamma-Ray Instrument on the HEAO 1 satellite. Visual displays are presented which indicate qualitatively the location, intensities, and time variability of the detected high-energy X-ray sources. A model-dependent procedure for the quantitative analysis of the sky survey data is described. The results of this procedure are presented in tabular form and include fitted count rates in four broad energy bands for about 70 sources. All sources which were detected at a level of statistical significance of not less than about 6 sigma were clearly evident in the visual displays of sky survey data. The survey is therefore complete, except in regions of source confusion, down to an intensity level of about 1/75 of the Crab Nebula in the 13-80 keV band. Forty-four sources were detected in the 40-80 keV energy band, and 14 were detected in the 80-180 keV band. Although most of the detected sources are galactic, seven are extragalactic.

  14. Dual-energy tissue cancellation in mammography with quasi-monochromatic x-rays

    NASA Astrophysics Data System (ADS)

    Marziani, M.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.

    2002-01-01

    Dual-energy radiography has not evolved into a routine clinical examination yet due to intrinsic limitations of both dual-kVp imaging and single-exposure imaging with conventional x-ray sources. The recent introduction of novel quasi-monochromatic x-ray sources and detectors could lead to interesting improvements, especially in mammography where the complex structure of healthy tissues often masks the detectability of lesions. A dual-energy radiography technique based on a tissue cancellation algorithm has been developed for mammography, with the aim of maximizing the low intrinsic contrast of pathologic tissues while being able to minimize or cancel the contrast between glandular and fat tissues. Several images of a plastic test object containing various tissue equivalent inserts were acquired in the energy range 17-36 keV using a quasi-monochromatic x-ray source and a scintillator-coated CCD detector. Images acquired at high and low energies were non-linearly combined to generate two energy-independent basis images. Suitable linear combinations of these two basis images result in the elimination of the contrast of a given material with respect to another. This makes it possible to selectively cancel certain details in the processed image.

  15. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  16. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    SciTech Connect

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-12-15

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  17. The Application of Monochromatic Energies to Investigate Multiphase Porous Media Systems using Synchrotron X-ray Tomography

    SciTech Connect

    Ham, Kyungmin; Willson, Clinton S.

    2006-01-31

    X-ray computed tomography (CT) is becoming a useful tool for nondestructive imaging of many geoenvironmental and geotechnical systems. Conventional X-ray CT systems typically utilize a polychromatic X-ray beam. While providing a high throughput of photons, the use of polychromatic energy can make quantifying material concentrations, densities or composition very difficult or impossible without appropriate standards. Synchrotron X-rays have an extremely small angular divergence, thus permitting spatial resolution that is only limited by the optical components of the system. In addition, the ability to tune to a monochromatic X-ray energy allows better phase contrast by reducing beam hardening and allowing for elemental discrimination. In this work we will show how monochromatic energy can be used to provide high-quality images allowing for phase separation several different porous media systems thus improving our ability to quantify a range of processes and phenomena.

  18. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  19. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  20. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  1. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  2. Transient structure in the high-energy X-ray light curve of NP 0532

    NASA Technical Reports Server (NTRS)

    Ryckman, S. G.; Ricker, G. R.; Scheepmaker, A.; Ballintine, J. E.; Doty, J. P.; Downey, P. M.; Lewin, W. H. G.

    1977-01-01

    The paper reports the observation of pulsed fractions in the primary and secondary peaks, as well as in the interpulse region, of the high-energy X-ray light curve of NP 0532. A statistical analysis of light-curve data is performed, and a similar analysis is carried out using simulated data. It is concluded that a previously reported third peak in the light curve was transient in nature.

  3. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays.

    PubMed

    Borkiewicz, Olaf J; Chapman, Karena W; Chupas, Peter J

    2013-06-14

    The spatial distribution of a reaction through a lithium-ion battery electrode has been resolved using micro-beam high-energy X-ray scattering measurements coupled with Pair Distribution Function (PDF) analysis. The electrochemical reaction was most advanced at the interface between the electrode and electrolyte-soaked separator, with linear variation in reaction progress with distance from this interface. PMID:23598687

  4. AAS HIGH-ENERGY ASTROPHYSICS DIVISION: X-rays Hit the Spot for Astrophysicists.

    PubMed

    Irion, R

    2000-12-01

    About 500 astronomers flocked to Waikiki Beach from 6 to 10 November for a meeting of the American Astronomical Society's High-Energy Astrophysics Division. Looking splendid in their complimentary aloha shirts, speakers told tales of intense radiation from deep space, including x-rays from baby stars and from quasars, which could help refine estimates of how quickly the universe is expanding. PMID:17742051

  5. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  6. The energy relation between hard X-ray and O V emission in solar flares

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Orwig, L. E.; Mariska, J. T.; Auer, L. H.; Nakatsuka, R.

    1984-01-01

    The relationship between energy emitted in hard X-rays and the ultraviolet during the impulsive phase of solar flares provides an important diagnostic for understanding the energy flow from nonthermal to thermal. Many flares were observed from the Solar Maximum Mission satellite simultaneously in hard X-rays and the O V line at 1371 A formed at 250,000 K, providing information relevant to this problem. Previous work has shown that short time scale peaks in emission of these two types of radiation coincide in time to within 1 s. In this work the energy relation between the two types of emission is investigated and it is found that for any given flare there is a definite relation between hard X-ray and O V emissions throughout the flare, but from one flare to the next this relation varies markedly. These differences are attributed to the initial conditions in the flaring loops and some exploratory model calculations are presented to support this hypothesis.

  7. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    SciTech Connect

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-05-19

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.

  8. Calcium measurements with electron probe X-ray and electron energy loss analysis.

    PubMed Central

    LeFurgey, A; Ingram, P

    1990-01-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in

  9. X-Ray Energy Spectra of the Supersoft X-Ray Sources CAL 87 and RX J0925.7-4758 Observed with ASCA

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Mukai, Koji; Kotani, Taro; Asai, Kazumi; Dotani, Tadayasu; Nagase, Fumiaki; Hartmann, H. W.; Heise, J.; Kahabka, P.; van Teeseling, A.

    2001-04-01

    We report observation results of the supersoft X-ray sources CAL 87 and RX J0925.7-4758 with the X-ray CCD cameras (Solid-State Imaging Spectrometers [SISs]) on board ASCA. Because of the superior energy resolution of the SIS (ΔE/E~10% at 1 keV) relative to previous instruments, we could study detailed X-ray spectral structures of these sources for the first time. We have applied theoretical spectral models to CAL 87 and constrained the white dwarf mass and intrinsic luminosity as 0.8-1.2 Msolar and 4×1037-1.2×1038 ergs s-1, respectively. However, we have found the observed luminosity is an order of magnitude smaller than the theoretical estimate, which indicates that the white dwarf is permanently blocked by the accretion disk, and we are observing a scattering emission by a fully ionized accretion disk corona (ADC) whose column density is ~1.5×1023 cm-2. Through simulation we have shown that the orbital eclipse can be explained by the ADC model, such that a part of the extended X-ray emission from the ADC is blocked by the companion star filling its Roche lobe. We have found that very high surface gravity and temperature, ~1010 cm s-2 and ~100 eV, respectively, as well as a strong absorption edge at ~1.02 keV, are required to explain the X-ray energy spectrum of RX J0925.7-4758. These values are only possible for an extremely heavy white dwarf near the Chandrasekhar limit. Although the supersoft source luminosity should be ~1038 ergs s-1 at the Chandrasekhar limit, the observed luminosity of RX J0925.7-4758 is nearly 2 orders of magnitude smaller, even assuming an extreme distance of ~10 kpc. To explain the luminosity discrepancy, we propose a model in which very thick matter that was previously ejected from the system, as a form of jets, intervenes the line of sight and reduces the luminosity significantly because of Thomson scattering.

  10. Spectral formation in accreting X-ray pulsars: bimodal variation of the cyclotron energy with luminosity

    NASA Astrophysics Data System (ADS)

    Becker, P. A.; Klochkov, D.; Schönherr, G.; Nishimura, O.; Ferrigno, C.; Caballero, I.; Kretschmar, P.; Wolff, M. T.; Wilms, J.; Staubert, R.

    2012-08-01

    Context. Accretion-powered X-ray pulsars exhibit significant variability of the cyclotron resonance scattering feature (CRSF) centroid energy on pulse-to-pulse timescales, and also on much longer timescales. Two types of spectral variability are observed. For sources in group 1, the CRSF energy is negatively correlated with the variable source luminosity, and for sources in group 2, the opposite behavior is observed. The physical basis for this bimodal behavior is currently not well understood. Aims: We explore the hypothesis that the accretion dynamics in the group 1 sources is dominated by radiation pressure near the stellar surface, and that Coulomb interactions decelerate the gas to rest in the group 2 sources. Methods: We derive a new expression for the critical luminosity, Lcrit, such that radiation pressure decelerates the matter to rest in sources with X-ray luminosity LX > Lcrit. The formula for Lcrit is based on a simple physical model for the structure of the accretion column in luminous X-ray pulsars that takes into account radiative deceleration, the energy dependence of the cyclotron cross section, the thermodynamics of the accreting gas, the dipole structure of the pulsar magnetosphere, and the diffusive escape of radiation through the column walls. We show that for typical neutron star parameters, Lcrit = 1.5 × 1037 B1216/15 erg s-1, where B12 is the surface magnetic field strength in units of 1012 G. Results: The formula for the critical luminosity is evaluated for five sources, using the maximum value of the CRSF centroid energy to estimate the surface magnetic field strength B12. The results confirm that the group 1 sources are supercritical (LX > Lcrit) and the group 2 sources are subcritical (LX < Lcrit), although the situation is less clear for those highly variable sources that cross over the line LX = Lcrit. We also explain the variation of the CRSF energy with luminosity as a consequence of the variation of the characteristic emission

  11. Bone calcium/phosphorus ratio determination using dual energy X-ray method.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2015-05-01

    Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphorous (Ca/P) mass ratio, as a bone quality index. The optimized irradiation parameters were assessed by performing analytical model simulations. X-ray tube output, filter material and thickness were used as input parameters. A single exposure technique, combined with K-edge filtering, was applied. The optimal X-ray spectra were selected according to the resulted precision and accuracy values. Experimental evaluation was performed on an XRDE system incorporating a Cadmium Telluride (CdTe) photon counting detector and three bone phantoms with different nominal mass Ca/P ratios. Additionally, the phantoms' mass Ca/P ratios were validated with energy-dispersive X-ray spectroscopy (EDX). Simulation results showed that the optimum filter atomic number (Z) ranges between 57 and 70. The optimum spectrum was obtained at 100 kVp, filtered with Cerium (Ce), with a surface density of 0.88 g/cm(2). All Ca/P ratio measurements were found to be accurate to within 1.6% of the nominal values, while the precision ranged between 0.91 and 1.37%. The accuracy and precision values of the proposed non-invasive method contributes to the assessment of the bone quality state through the mass Ca/P ratio determination. PMID:25726476

  12. Nonthermal X-ray Spectral Flattening toward Low Energies in Early Impulsive Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2007-01-01

    The determination of the low-energy cutoff to nonthermal electron distributions is critical to the calculation of the nonthermal energy in solar flares. The most direct evidence for low-energy cutoffs is flattening of the power-law, nontherma1 X-ray spectra at low energies. However, because of the plasma preheating often seen in flares, the thermal emissions at low energies may hide such spectral flattening of the nonthermal component. We select a category of flares, which we call "early impulsive flares", in which the > 25 keV hard X-ray (HXR) flux increase is delayed by less than 30 s after the flux increase at lower energies. Thus, the plasma preheating in these flares is minimal, so the nonthermal spectrum can be determined to lower energies than in flares with significant preheating. Out of a sample of 33 early impulsive flares observed by the Ramaty High Energy Solar Spectroscopy Imager (RHESSI), 9 showed spectral flattening toward low energies. In these events, the break energy of the double power-law fit to the HXR spectra lies in the range of 10-50 keV, significantly lower than the value we have seen for other flares that do not show such early impulsive emissions. In particular, it correlates with the HXR flux. After correcting the spatially-integrated spectra for albedo from isotropically emitted X-rays and using RHESSI imaging spectroscopy to exclude the extended albedo halo, we find that albedo associated with isotropic or nearly isotropic electrons can only account for the spectral flattening in 3 flares near Sun center. The spectral flattening in the remaining 6 flares is found to be consistent with the existence of a low-energy cutoff in the electron spectrum, falling in the range of 15-50 keV, which also correlates with the HXR flux.

  13. Star Factory Near Galactic Center Bathed In High-Energy X-Rays

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Near the crowded core of the Milky Way galaxy, where stars shine so brightly and plentifully that planets there would never experience nighttime, astronomers have found a new phenomenon: a cauldron of 60-million-degree gas enveloping a cluster of young stars. Professor Farhad Zadeh of Northwestern University and his collaborators used NASA's Chandra X-ray Observatory to trace the gas around the Arches cluster, a well-studied region of star formation that is home to some of our Galaxy's largest and youngest stars. "This is the first time we have seen a young cluster of stars surrounded by such a halo of high-energy X-rays," said Zadeh in a press conference at the American Astronomical Society in Pasadena, CA. "This supports theoretical predictions that stellar winds from massive stars can collide with each other and generate very hot gas." Massive stars, newborn stars, and stellar winds have long been known to emit X-rays. The Chandra results are significant because they identify this new type of mechanism of colliding winds to generate X-rays as energetic as those seen in distant starburst galaxies, which are known for their furious pace of star production. The Arches cluster is about 26,000 light years from Earth and only about 1 to 2 million years old. It is also less than 100 light years from what is thought to be a supermassive black hole in the center of our Galaxy. The cluster contains 150 hot, young stars, known as "O" stars, concentrated within a diameter of one light year, making it the most compact cluster known in the Milky Way galaxy. The density of stars makes the region in and around the Arches cluster a microcosm of what is likely occurring in starburst galaxies. "The Arches cluster is one of the best 'local' analogues of starburst galaxies-- the most prodigious stellar nurseries known," said Casey Law of the Harvard-Smithsonian Center for Astrophysics. "Yet the Arches cluster is in our backyard, not millions of light years away." The Arches Cluster

  14. High contrast Kr gas jet Kα x-ray source for high energy density physics experimentsa)

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Neumayer, P.; Döppner, T.; Chung, H.-K.; Constantin, C. G.; Girard, F.; Glenzer, S. H.; Kemp, A.; Niemann, C.

    2008-10-01

    A high contrast 12.6keV Kr Kα source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (Kα to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10-5. Filtered shadowgraphy indicates that the Kr Kα and Kβ x rays are emitted from a roughly 1×2mm2 emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70eV (i.e., mean ionization state 13-16), based on the observed ratio of Kα to Kβ. Kr gas jets provide a debris-free high energy Kα source for time-resolved diagnosis of dense matter.

  15. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  16. Microstructures for high-energy x-ray and particle-imaging applications

    SciTech Connect

    Ceglio, N.M.; Stone, G.F.; Hawryluk, A.M.

    1981-05-01

    Coded imaging techniques using thick, micro-Fresnel zone plates as coded apertures have been used to image x-ray emissions (2-20 keV) and 3.5 MeV Alpha particle emissions from laser driven micro-implosions. Image resolution in these experiments was 3-8 ..mu..m. Extension of this coded imaging capability to higher energy x-rays (approx. 100 keV) and more penetrating charged particles (e.g. approx. 15 MeV protons) requires the fabrication of very thick (50-200 ..mu..m), high aspect ratio (10:1), gold Fresnel zone plates with narrow linewidths (5-25 ..mu..m) for use as coded aperatures. A reactive ion etch technique in oxygen has been used to produce thick zone plate patterns in polymer films. The polymer patterns serve as electroplating molds for the subsequent fabrication of the free-standing gold zone plate structures.

  17. High-energy gamma-rays from GRB X-ray flares

    SciTech Connect

    Wang, X. Y.; Li, Z.; Meszaros, P.

    2007-07-12

    The recent detection of X-ray flares during the afterglow phase of gamma-ray bursts (GRBs) suggests an inner-engine origin, at radii inside the forward shock. There must be inverse Compton (IC) emission arising from such flare photons scattered by forward shock afterglow electrons when they are passing through the forward shock. We find that this IC emission produces high energy gamma-ray flares, which may be detected by AGILE, GLAST and ground-based TeV telescopes. The anisotropic IC scattering between flare photons and forward shock electrons does not affect the total IC component intensity, but cause a time delay of the IC component peak relative to the flare peak. We speculate that this IC component may already have been detected by EGRET from a very strong burst--GRB940217. Future observations by GLAST may help to distinguish whether X-ray flares originate from late central engine activity or from external shocks.

  18. Gas Scintillation Proportional Counters for High-Energy X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2003-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a balloon-borne hard-x-ray telescope is under development at the Marshall Space Flight Center. These detectors have an active area of approx. 20 sq cm, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approx. 500 microns. The detector s energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Full details of the instrument and its performance will be provided.

  19. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  20. Energy weighting in grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Pelzer, Georg; Weber, Thomas; Anton, Gisela; Ballabriga Sune, Rafael; Bayer, Florian; Campbell, Michael; Haas, Wilhelm; Horn, Florian; Llopart Cudie, Xavi; Michel, Norbert; Mollenbauer, Uwe; Rieger, Jens; Ritter, André; Ritter, Ina; Wölfel, Stefan; Wong, Winnie S.; Zang, Andrea; Michel, Thilo

    2014-03-01

    With energy-resolving photon-counting detectors in grating-based x-ray phase-contrast imaging it is possible to reduce the dose needed and optimize the imaging chain towards better performance. The advantage of photon- counting detector's linear energy response and absence of electronic noise in attenuation based imaging is known. The access to the energy information of the photons counted provides even further potential for optimization by applying energy weighting factors. We have evaluated energy weighting for grating-based phase-contrast imaging. Measurements with the hybrid photon-counting detector Dosepix were performed. The concept of energy binning implemented in the pixel electronics allows individual storing of the energy information of the incoming photons in 16 energy bins for each pixel. With this technique the full spectral information can be obtained pixel wise from one single acquisition. On the differential phase-contrast data taken, we applied different types of energy weighting factors. The results presented in this contribution demonstrate the advantages of energy-resolved photon-counting in differential phase-contrast imaging. Using a x-ray spectrum centred significantly above the interferometers design energy leads to poor image quality. But with the proposed method and detector the quality was enhanced by 2.8 times in signal-to-noise ratio squared. As this is proportional to dose, energy- resolved photon-counting might be valuable especially for medical applications.

  1. Large-aperture prism-array lens for high-energy X-ray focusing.

    PubMed

    Zhang, Weiwei; Liu, Jing; Chang, Guangcai; Shi, Zhan; Li, Ming; Ren, Yuqi; Zhang, Xiaowei; Yi, Futing; Liu, Peng; Sheng, Weifan

    2016-09-01

    A new prism-array lens for high-energy X-ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin-lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife-edge scan method at the X-ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X-ray energy of 50 keV. PMID:27577761

  2. Radiological safety of food irradiation with high energy X-rays: theoretical expectations and experimental evidence

    NASA Astrophysics Data System (ADS)

    Grégoire, O.; Cleland, M. R.; Mittendorfer, J.; Dababneh, S.; Ehlermann, D. A. E.; Fan, X.; Käppeler, F.; Logar, J.; Meissner, J.; Mullier, B.; Stichelbaut, F.; Thayer, D. W.

    2003-06-01

    The radiological safety of red meat irradiated with 7.5 MeV X-rays (bremsstrahlung) has been investigated theoretically and verified by dedicated experiments. Samples of meat and meat ash were located in a large volume of fresh meat at the position of the highest photoneutron fluence and irradiated to an X-ray dose of 15 kGy, twice the maximum dose allowed by the US FDA for meat irradiation. In order to evaluate the safety of treatment with any kind of electron accelerators, two experiments have been performed with different accelerators delivering electrons with a narrow and a broad energy spread. The measured activities and theoretical estimates are of the same order of magnitude. An evaluation of the corresponding radiation exposure from ingestion of the irradiated product has been compared to natural background radiation. The paper concludes that the risk to individuals from intake of food irradiated with X-rays from 7.5 MeV electrons, even with a broad energy spectrum, would be trivial.

  3. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    NASA Astrophysics Data System (ADS)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  4. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  5. Experimental wavefunction and energy of the azide ion from x-ray data

    SciTech Connect

    Snyder, J.A.; Stevens, E.D.

    1996-12-31

    Experimental electron density distributions of crystalline solids may be obtained from accurate, high-resolution x-ray diffraction measurements. Elements of the density matrix, P, can be regarded as variables, along with atomic positional and thermal parameters, in a least-squares refinement of the x-ray data. If the molecular wavefunction is restricted to the form of a single Slater determinant, N-representability of the wavefunction can be imposed by constraining the fitted density matrix to be idempotent, P{sup 2}=P. This constraint reduces the number of independent parameters to N (M-N), where N is the number of basis orbitals and M is the number of occupied molecular orbitals. The use of symmetry adapted basis orbitals reduces the density matrix to block diagonal form, further reducing the number of parameters in P. The method has been applied to obtain an experimental density matrix for the azide ion from x-ray data collected on a single crystal of KN{sub 3}. A wavefunction derived from the density matrix yields on energy only slightly higher than the HF-SCF energy calculated with the same basis set.

  6. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  7. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  8. The Effects of Low- and High-Energy Cutoffs on Solar Flare Microwave and Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Oegerle, William (Technical Monitor)

    2002-01-01

    Microwave and hard x-ray spectra provide crucial information about energetic electrons and their environment in solar flares. These spectra are becoming better determined with the Owens Valley Solar Array (OVSA) and the recent launch of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The proposed Frequency Agile Solar Radiotelescope (FASR) promises even greater advances in radio observations of solar flares. Both microwave and hard x-ray spectra are sensitive to cutoffs in the electron distribution function. The determination of the high-energy cutoff from these spectra establishes the highest electron energies produced by the acceleration mechanism, while determination of the low-energy cutoff is crucial to establishing the total energy in accelerated electrons. This paper will show computations of the effects of both high- and low-energy cutoffs on microwave and hard x-ray spectra. The optically thick portion of a microwave spectrum is enhanced and smoothed by a low-energy cutoff, while a hard x-ray spectrum is flattened below the cutoff energy. A high-energy cutoff steepens the microwave spectrum and increases the wavelength at which the spectrum peaks, while the hard x-ray spectrum begins to steepen at photon energies roughly an order of magnitude below the electron cutoff energy. This work discusses how flare microwave and hard x-ray spectra can be analyzed together to determine these electron cutoff energies. This work is supported in part by the NASA Sun-Earth Connection Program.

  9. MILO, a mirror reflectivity code for low-energy x-rays

    SciTech Connect

    Kissel, L.

    1982-09-01

    MILO (MIrror reflectivity code, LOw energy) is an interactive fault-tolerant user-oriented code which calculates low-energy x-ray mirror reflectivity. The code combines user input with previously calculated, complex, atomic scattering factors to produce the unpolarized mirror reflectivity at various values of mirror angle and photon energy. The code can calculate the reflectivity of mirrors composed of pure elements and of homogeneous mixtures of elements. MILO is written in standard, high-machine-independent, FORTRAN 77 (ANSI X3.9-1978).

  10. Efficiency of energy and protein deposition in swine measured by dual energy X-ray absorptiometry (DXA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of studies were conducted using dual energy X-ray absorptiometry (DXA) to measure energy and protein deposition in pigs. In an initial validation study DXA was compared directly with slaughter analysis as a method for measuring body composition and energy deposition in pigs. Mean values fo...

  11. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  12. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  13. High energy X-ray spectra of cygnus XR-1 observed from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    X-ray spectra of Cygnus XR-1 were measured with the scintillation spectrometer on board the OSO-8 satellite during a period of one and one-half to three weeks in each of the years from 1975 to 1977. Observations were made when the source was both in a high state and in a low state. Typical spectra of the source between 15 and 250 keV are presented. The observed pivoting effect is consistent with two temperature accretion disk models of the X-ray emitting region. No significant break in the spectrum occurred at energies up to 150 keV. The high state as defined in the 3 to 6 keV bandwidth was found to be the higher luminosity state of the X-ray source. One transition from a low to a high state occurred during observations. The time of occurrence of this and other transitions is consistent with the hypothesis that all intensity transitions occur near periastron of the binary system, and that such transitions are caused by changes in the mass transfer rate between the primary and the accretion disk around the secondary.

  14. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  15. X-ray Spectroscopy for Chemical and Energy Sciences. the Case of Heterogeneous Catalysis

    SciTech Connect

    Frenkel, A. I.; van Bokhoven, J. A.

    2014-09-01

    Heterogeneous catalysis is the enabling technology for much of the current and future processes relevant for energy conversion and chemicals synthesis. The development of new materials and processes is greatly helped by the understanding of the catalytic process at the molecular level on the macro/micro-kinetic time scale and on that of the actual bond breaking and bond making. The performance of heterogeneous catalysts is inherently the average over the ensemble of active sites. Much development aims at unravelling the structure of the active site; however, in general, these methods yield the ensemble-average structure. A benefit of X-ray-based methods is the large penetration depth of the X-rays, enabling in situ and operando measurements. Furthermore, the potential of X-ray absorption and emission spectroscopy methods (XANES, EXAFS, HERFD, RIXS and HEROS) to directly measure the structure of the catalytically active site at the single nanoparticle level using nanometer beams at diffraction-limited storage ring sources is highlighted. Use of pump-probe schemes coupled with single-shot experiments will extend the time range from the micro/macro-kinetic time domain to the time scale of bond breaking and making.

  16. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.

    SciTech Connect

    Stock, S.R.; Yuan, F.; Brinson, L.C.; Almer, J.D.

    2011-01-01

    High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 {micro}{var_epsilon} on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 {micro}{var_epsilon} are present initially, and strain rises to approximately 4500 {micro}{var_epsilon} at 95 MPa applied stress (about 1000 {micro}{var_epsilon} above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.

  17. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  18. NuSTAR Detection of High-Energy X-Ray Emission and Rapid Variability from Sagittarius A(star) Flares

    NASA Technical Reports Server (NTRS)

    Barriere, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Dexter, Jason; Grefenstette, Brian; Hailey, Charles J.; Zhang, William W.

    2014-01-01

    Sagittarius A(star) harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A(star) spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A(star) X-ray flares extends to high energy, with no evidence for a cut off. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (approx. 55 times quiescence in the 2- 10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse-Compton models. One flare exhibits large and rapid (less than 100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within approx. 10 Schwarzschild radii of the black hole.

  19. NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A{sup *} flares

    SciTech Connect

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas; Baganoff, Frederick K.; Christensen, Finn E.; Dexter, Jason; Grefenstette, Brian; Harrison, Fiona A.; Madsen, Kristin K.; Hailey, Charles J.; Mori, Kaya; Zhang, Shuo; Stern, Daniel; Zhang, William W.

    2014-05-01

    Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.

  20. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  1. Effects of the variability of the nucleus of NGC 1275 on X-ray observations of the surrounding intracluster medium

    NASA Astrophysics Data System (ADS)

    Fabian, A. C.; Walker, S. A.; Pinto, C.; Russell, H. R.; Edge, A. C.

    2015-08-01

    The active galaxy NGC 1275 lies at the centre of the Perseus cluster of galaxies, which is the X-ray brightest cluster in the Sky. The nucleus shows large variability over the past few decades. We compile a light curve of its X-ray emission covering about 40 years and show that the bright phase around 1980 explains why the inner X-ray bubbles were not seen in the images taken with the Einstein Observatory. The flux had dropped considerably by 1992 when images with the ROSAT HRI led to their discovery. The nucleus is showing a slow X-ray rise since the first Chandra images in 2000. If it brightens back to the pre-1990 level, then X-ray absorption spectroscopy by ASTRO-H can reveal the velocity structure of the shocked gas surrounding the inner bubbles.

  2. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  3. Common features of particle beams and x-rays generated in a low energy dense plasma focus device

    SciTech Connect

    Behbahani, R. A.; Xiao, C.

    2015-02-15

    Features of energetic charged particle beams and x-ray emission in a low energy (1–2 kJ) plasma focus (DPF) device are described and the possible mechanism are explained based on circuit analyses and energy balance in the DPF system. In particular, the resistance and the voltage across the plasma column are estimated to explain the mechanisms of the generation of particle beams and hard x-ray. The analysis shows that the total inductance of a DPF might have played a role for enhancement of the particle beams and x-ray emissions during the phase of anomalous resistance.

  4. Energy-filtered X-ray photoemission electron microscopy and its applications to surface and organic materials

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Tetsuya; Miyamoto, Takeshi; Niimi, Hironobu; Kitajima, Yoshinori; Sakai, Yuji; Kato, Makoto; Naito, Toshio; Asakura, Kiyotaka

    2007-10-01

    Energy-filtered X-ray photoemission electron microscopy (EXPEEM) is a new surface chemical imaging method that combines X-ray photoelectron spectroscopy (XPS) and photoemission electron microscopy (PEEM). We have developed a collinear type EXPEEM system using a Wien-filter-type electron energy analyzer. The collinear arrangement has the advantage of carrying out an easy alignment of the electron optical axis. We have measured EXPEEM images, μ-X-ray absorption near edge structure (μ-XANES) and μ-XPS of Au on Ta and Ag(DM) 2. We discuss the advantage of EXPEEM and future applications to organic devices.

  5. Advanced Solid State Pixel Detectors for Future High Energy X-ray Missions

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    We propose to advance the state of the art in solid state high energy X-ray pixel detectors for astrophysics. This program builds on advanced readout technology developed for suborbital and the NuSTAR space mission, and combines newly-developed CdTe PIN sensors and materials characterization techniques to achieve detectors broad band (1 - 200 keV), sub-keV energy resolution, and 300 micron spatial resolution. The low-noise readout technology will also be taken to the next generation with reduced pixel size, lower noise and significantly reduced dead time.

  6. Flare onsets in hard and soft X-rays. [magnetic energy conversion in sun

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Orwig, Larry E.; Antonucci, Ester

    1986-01-01

    It is shown that the onset of solar flares, within about 2 min or less before the impulsive peaks, is characterized by an increase in high-energy emission at E less than 100 keV, and strong broadening of soft X-ray lines characteristic of the 10-million-K plasma already present at this stage. The observations are interpreted in terms of the early signature of energy release, during a phase preceding the instability that leads to strong particle acceleration.

  7. Formation, disruption and energy output of Population III X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba

    2016-02-01

    The first astrophysical objects shaped the cosmic environment by reionizing and heating the intergalactic medium (IGM). Particularly, X-rays are very efficient at heating the IGM before reionization is complete. High-mass X-ray binaries (HMXBs) in early stellar populations are prime candidates for driving the thermal evolution of the IGM at redshifts z ≳ 20; however, their formation efficiency is not well understood. Using N-body simulations, we estimate the HMXB formation rate via mutual gravitational interactions of nascent, small groups of the Population III stars. We run two sets of calculations: (i) stars formed in small groups of five in nearly Keplerian initial orbits and (ii) collision of two such groups (an expected outcome of mergers of host protogalaxies). We find that HMXBs form at a rate of one per ≳ 104 M⊙ in newly born stars, and that they emit with a power of ˜1041 erg s-1 in the 2-10 keV band per star formation rate. This value is a factor of ˜102 larger than what is observed in star-forming galaxies at lower redshifts; the X-ray production from early HMXBs would have been even more copious, if they also formed in situ or via migration in protostellar discs. Combining our results with earlier studies suggests that early HMXBs were highly effective at heating the IGM and leaving a strong 21-cm signature. We discuss broader implications of our results, such as the rate of long gamma-ray bursts from Population III stars and the direct collapse channel for massive black hole formation.

  8. High energy resolution x-ray spectrometer for high count rate XRF applications

    SciTech Connect

    Rossington, C.S.; Madden, N.W.; Chapman, K.

    1993-08-01

    A new x-ray spectrometer has been constructed which incorporates a novel large area, low capacitance Si(Li) detector and a low noise JFET (junction field effect transistor) pr- eamplifier. The spectrometer operates at high count rates without the conventional compromise in energy resolution. For example, at an amplifier peaking time of 1 {mu}sec and a throughput count rate of 145,000 counts sec{sup {minus}1}, the energy resolution at 5.9 key is 220 eV FWHM. Commercially available spectrometers utilizing conventional geometry Si(Li) detectors with areas equivalent to the new detector have resolutions on the order of 540 eV under the same conditions. Conventional x-ray spectrometers offering high energy resolution must employ detectors with areas one-tenth the size of the new LBL detector (20 mm{sup 2} compared with 200 mm{sup 2}). However, even with the use of the smaller area detectors, the energy resolution of a commercial system is typically limited to approximately 300 eV (again, at 1 {mu}sec and 5.9 keV) due to the noise of the commercially available JFET`S. The new large area detector is useful in high count rate applications, but is also useful in the detection of weak photon signals, in which it is desirable to subtend as large an angle of the available photon flux as possible, while still maintaining excellent energy resolution. X-ray fluorescence data from the new spectrometer is shown in comparison to a commercially available system in the analysis of a dilute multi-element material, and also in conjunction with high count rate synchrotron EXAMS applications.

  9. On filtration for high-energy phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Riess, Christian; Mohamed, Ashraf; Hinshaw, Waldo; Fahrig, Rebecca

    2015-03-01

    Phase-sensitive x-ray imaging promises unprecedented soft-tissue contrast and resolution. However, several practical challenges have to be overcome when using the setup in a clinical environment. The system design that is currently closest to clinical use is the grating-based Talbot-Lau interferometer (GBI).1-3 The requirements for patient imaging are low patient dose, fast imaging time, and high image quality. For GBI, these requirements can be met most successfully with a narrow energy width, high- ux spectrum. Additionally, to penetrate a human-sized object, the design energy of the system has to be well above 40 keV. To our knowledge, little research has been done so far to investigate optimal GBI filtration at such high x-ray energies. In this paper, we study different filtration strategies and their impact on high-energy GBI. Specifically, we compare copper filtration at low peak voltage with equal-absorption, equal-imaging time K-edge filtration of spectra with higher peak voltage under clinically realistic boundary conditions. We specifically focus on a design energy of 59 keV and investigate combinations of tube current, peak voltage, and filtration that lead to equal patient absorption. Theoretical considerations suggest that the K edge of tantalum might provide a transmission pocket at around 59 keV, yielding a well-shaped spectrum. Although one can observe a slight visibility benefit when using tungsten or tantalum filtration, experimental results indicate that visibility benefits most from a low x-ray tube peak voltage.

  10. Extended X-Ray Jet in Nearby Galaxy Reveals Energy Source

    NASA Astrophysics Data System (ADS)

    1999-10-01

    NASA's Chandra X-ray Observatory has made an extraordinary image of Centaurus A, a nearby galaxy noted for its explosive activity. The image shows X-ray jets erupting from the center of the galaxy over a distance of 25,000 light years. Also detected are a group of X-ray sources clustered around the nucleus, which is believed to harbor a supermassive black hole. The X-ray jets and the cluster of sources may be a byproduct of a titanic collision between galaxies several hundred million years ago. "This image is great," said Dr. Ethan Schreier of the Space Telescope Science Institute, "For twenty years we have been trying to understand what produced the X rays seen in the Centaurus A jet. Now we at last know that the X-ray emission is produced by extremely high-energy electrons spiraling around a magnetic field." Schreier explained that the length and shape of the X-ray jet pinned down the source of the radiation. The entire length of the X-ray jet is comparable to the diameter of the Milky Way Galaxy. Other features of the image excite scientists. "Besides the jets, one of the first things I noticed about the image was the new population of sources in the center of the galaxy," said Dr. Christine Jones from the Harvard-Smithsonian Center for Astrophysics . "They are grouped in a sphere around the nucleus, which must be telling us something very fundamental about how the galaxy, and the supermassive black hole in the center, were formed." Astronomers have accumulated evidence with optical and infrared telescopes that Centaurus A collided with a small spiral galaxy several hundred million years ago. This collision is believed to have triggered a burst of star formation and supplied gas to fuel the activity of the central black hole. more - According to Dr. Giuseppina Fabbiano, of Harvard-Smithsonian, "The Chandra image is like having a whole new laboratory to work in. Now we can see the main jet, the counter jet, and the extension of the jets beyond the galaxy. It is

  11. X-ray Emission of Low-Energy-Peaked BL Lacertae Objects

    SciTech Connect

    Randall, Jill M.; Perlman, Eric S.

    2009-12-18

    Presented here is an analysis of X-ray observations of the following seven low-energy-peaked BL Lacertae objects: BL Lacertae, S5 0716+71, W Comae, 3C 66A, S4 0954+65, OJ 287, and AO 0235+16. The spectral data for these objects were taken from observations by the XMM-Newton and/or Chandra X-ray observatories. These objects are being analyzed in an effort to reanalyze all XMM-Newton and Chandra data of low-energy BL Lacs, similar to the efforts of Perlman et al.[4] for high energy BL Lacs. The objects were studied in an effort to understand the nature of the X-ray and multi-waveband emissions in these objects, study the shape of the spectra, and compare the observations of low-energy-peaked BL Lacs to previous observations of these objects and also to observations of high-energy-peaked BL Lacs. Light curves and spectra were analyzed to look for evidence of spectral variability in the objects and as a comparison to previous research on these objects. Most data shows both synchrotron and Inverse-Compton emission, though only little correlation was seen between the emission strength and the spectral slope. Our data is generally well-fitted to a broken power law model with distinct bimodality seen in the first spectral index (six observations with {Gamma}{sub 1{approx}}0.4 and four observations with {Gamma}{sub 1{approx}}3.0), a break in energy between 0.6 and 1.4 keV, and a second spectral index {Gamma}{sub 2{approx}}2.0. None of the observations showed spectral lines, which is consistent with past results. For S5 0716+71 the XMM-Newton X-ray and optical data, along with radio data obtained from the University of Michigan Radio Astronomy Observatory (UMRAO), a spectral energy distribution was created and peak frequencies were estimated.

  12. X-ray evidence of low-energy photon therapy for cervical lordosis restoration and radial head spur healing

    NASA Astrophysics Data System (ADS)

    Fitz-Ritson, Donald; Filonenko, Natalia; Salansky, Norman M.

    1994-09-01

    X rays were used for low energy photon therapy (LEPT) efficacy assessment for cervical lordosis restoration and radial head spur healing. Two cases, their evaluation, and treatment are discussed along with the follow-up results.

  13. Radio and Hard X-Ray Images of High-Energy Electrons in an X-Class Solar Flare

    NASA Technical Reports Server (NTRS)

    White, S. M.; Krucker, S.; Shibasaki, K.; Yokoyama, T.; Shimojo, M.; Kundu, Mukul R.

    2003-01-01

    We present the first comparison between radio images of high-energy electrons accelerated by a solar flare and images of hard X-rays produced by the same electrons at photon energies above 100 keV. The images indicate that the high-energy X-rays originate at the footpoints of the loops dominating the radio emission. The radio and hard X-ray light curves match each other well and are quantitatively consistent with an origin in a single population of nonthermal electrons with a power-law index of around 4.5-5. The high-frequency radio spectral index suggests a flatter energy spectrum, but this is ruled out by the X-ray spectrum up to 8 MeV.

  14. Streaked spectrometry using multilayer x-ray-interference mirrors to investigate energy transport in laser-plasma applications

    SciTech Connect

    Stradling, G.L.; Barbee, T.W. Jr.; Henke, B.L.; Campbell, E.M.; Mead, W.C.

    1981-08-01

    Transport of energy in laser-produced plasmas is scrutinized by devising spectrally and temporally identifiable characteristics in the x-ray emission history which identify the heat-front position at various times in the heating process. Measurements of the relative turn-on times of these characteristics show the rate of energy transport between various points. These measurements can in turn constrain models of energy transport phenomena. We are time-resolving spectrally distinguishable subkilovolt x-ray emissions from different layers of a disk target to examine the transport rate of energy into the target. A similar technique is used to measure the lateral expansion rate of the plasma spot. A soft x-ray streak camera with 15-psec temporal resolution is used to make the temporal measurements. Spectral discrimination of the incident signal is provided by multilayer x-ray interference mirrors.

  15. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    SciTech Connect

    Benson, Stephen; Douglas, David; Dowell, David; Hernandez-Garcia, Carlos; Kayran, D; Krafft, Geoffrey; Legg, Robert; Moog, E; Obina, T; Rimmer, Robert; Yakimenko, V

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15- 17, 2009. A rst iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of ve to ten years.

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  17. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  18. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  19. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    SciTech Connect

    Geoffrey Krafft, Stephen Benson, Michael Borland, David Douglas, David Dowell, Carlos Hernandez-Garcia, Dmitry Kayran, Robert Legg, Elizabeth Moog, Takashi Obina, Robert Rimmer, Vitaly Yakimenko

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersberg, Maryland on September 15-17, 2009. A first iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of reasonably short duration.

  20. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0). PMID:27515566

  1. Thermoluminescent response and relative efficiency of TLD-100 exposed to low-energy x-rays

    NASA Astrophysics Data System (ADS)

    Gamboa-de Buen, I.; Buenfil, A. E.; Ruiz, C. G.; Rodríguez-Villafuerte, M.; Flores, A.; Brandan, M. E.

    1998-08-01

    The dose-response of LiF:Mg,Ti (TLD-100) exposed to 15 and 35 kVp ( and keV effective energy respectively) x-rays and -rays has been measured in the dose interval from (1.2-5.4) Gy for x-rays, and from 0.14 to 850 Gy for -rays. In both cases the total TL signal and glow curve peaks 3 to 9 show supralinearity. The supralinearity function f(D) is similar for both x-ray beams, except for peak 8, where a 30% difference is observed. The maxima of f(D) for the total TL signal and peaks 5 to 8 are 2.1, 1.7, 6.4, 3.3 and 7.5 respectively for 8.1 keV x-rays and 3.7, 3.1, 13.6, 9.9 and 11.0 for -rays. The measured relative efficiencies for x-rays with respect to , for the total TL signal and peaks 5 and 7, were 1.04, 0.97 and 3.2 respectively.

  2. SU-C-18C-03: Dual-Energy X-Ray Fluoroscopy Imaging System

    SciTech Connect

    Virshup, G; Richmond, M; Mostafavi, H; Ganguly, A; Fu, D

    2014-06-01

    Purpose: This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. Methods: Twenty subjects who were undergoing RT for lung cancer were recruited following institutional review board approval. The subjects had a range of tumor sizes, locations in the lungs, and body sizes. An x-ray imaging system was setup with the following components: (a) x-ray tube (Varian G-242, Varian Medical Systems (VMS), CA) (b) flat panel detector (4030CB, VMS, CA) and (c) x-ray generator (EPS 50RF, EMD, Canada). Firmware and software modifications were made to the generator to allow 10 x-ray pulse pairs with alternating low/high kV, 100 ms apart for ∼4s (one breathing cycle). Images were obtained at 4 angles: 0°, 45°, 90° and 135°. Weighted subtraction of a kV-pair image set was used to create a “bone-free” image of the lungs. The 2D tumor-shift in each subtracted image and the 3D shift during a breathing cycle was calculated using all views. Results: The subjects enrolled had the following statistics: average age 62.3±7.1 years, 5 female/15 male, 11 had tumors on the right and 9 on the left and the average tumor size was ∼31.4±10.8 mm. X-ray imaging conditions for the pulse pairs were: 70/120 kVp, 280/221 mA and 65/8 ms. For views where these parameters were insufficient 80/130 kVp, 280/221 mA and 60/12 ms was used. Tumor visibility improved for 0°, 45°, 90° and 135° in 100%, 55%, 75% and 80% of the cases respectively. Tumor shift during a breathing cycle was: 2.4±1.0 mm AP, 2.7±1.4 mm LR and 7.6±4.8 mm IS. Conclusion: DE subtraction fluoroscopy allowed improved visualization and quantification of movement of tumors in the lungs during a breathing cycle. This study was entirely funded by Varian Medical Systems.

  3. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics

    SciTech Connect

    Dizière, A.; Pelka, A.; Ravasio, A.; Yurchak, R.; Loupias, B.; Falize, E.; Kuramitsu, Y.; Sakawa, Y.; Morita, T.; Pikuz, S.; Koenig, M.

    2015-01-15

    In this paper, we present experimental results obtained on the LULI2000 laser facility regarding structure and dynamics of astrophysical jets propagating in interstellar medium. The jets, generated by using a cone-shaped target, propagate in a nitrogen gas that mimics the interstellar medium. X-ray radiography as well as optical diagnostics were used to probe both high and low density regions. In this paper, we show how collimation of the jets evolves with the gas density.

  4. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  5. Energy dependence of the band-limited noise in black hole X-ray binaries★

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2015-10-01

    Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.

  6. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    SciTech Connect

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele; Mucollari, Irena; Pupillo, Gaia; Sisini, Francesco; Taibi, Angelo; Gambaccini, Mauro

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult with traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.

  7. The correlation of x-ray emission with pinch energy in a 1.5 kJ plasma focus

    NASA Astrophysics Data System (ADS)

    Hussain, S. S.; Ahmad, S.; Lee, S.; Zakaullah, M.

    2007-08-01

    Correlation of x-ray emission with pinch energy from a 1.5 kJ Mather-type plasma focus device for Ag and Sn inserts at the Cu tapered anode tip is reported. The space and time resolved x-ray emission characteristics are investigated by using a simple pinhole camera with appropriate filters and a multichannel pin-diode spectrometer. High voltage probe and Rogowski coil signals are used to estimate the pinch energy. At optimum conditions, the maximum x-ray yield in 4π-geometry is found to be 9 and 8 J/shot with efficiency of 0.6% and 0.5% for Sn and Ag inserted anodes. This is despite the fact that input energy converted to pinch energy is lower at 8% for Sn insert compared with 15% for the Ag insert. An increase in x-ray yield with an increase in pinch energy is observed for Sn as well as Ag. Pinhole images reveal that x-rays of energy less than 5 keV are emitted from the focus region and the high-energy x-rays are emanated from the anode tip.

  8. What X-ray images and CCD energy resolution can tell us about the physics of ICM

    NASA Astrophysics Data System (ADS)

    Churazov, E.

    2016-06-01

    X-ray images and moderate-resolution energy spectra provide us with a wealth of data on the global properties of galaxy clusters. Additional information is recored in small scale surface brightness and spectral perturbations. We argue that statistical analysis of many small fluctuations in different X-ray energy bands offers a convenient way of characterizing the nature of perturbations and reveals important clues on the ICM physics and on the AGN feedback process.

  9. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  10. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  11. 5 to 160 keV continuous-wave x-ray spectral energy distribution and energy flux density measurements

    SciTech Connect

    Tallon, R.W.; Koller, D.C.; Pelzl, R.M.; Pugh, R.D.; Bellem, R.D. . Microelectronics and Photonics Research Branch)

    1994-12-01

    In 1991, the USAF Phillips Laboratory Microelectronics and Photonics Research Branch installed a low energy x-ray facility (LEXR) for use in microelectronics radiation-effects analysis and research. Techniques developed for measuring the x-ray spectral energy distribution (differential intensity) from a tungsten-target bremsstrahlung x-ray source are reported. Spectra with end-point energies ranging from 20 to 160 keV were recorded. A separate effort to calibrate the dosimetry for the Phillips Laboratory low-energy x-ray facility established a need to know the spectral energy distributions at some point within the facility (previous calibration efforts had relies on spectra obtained from computer simulations). It was discovered that the primary discrepancy between the simulated and measured spectra was in the L- K-line data. The associated intensity (energy flux density) of the measured distributions was found to be up to 30% higher. Based on the measured distributions, predicted device responses were within 10% of the measured response as compared to about 30% accuracy obtained with simulated distributions.

  12. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  13. Dual energy X-ray absorptiometry (DXA): can it detect acute scaphoid fractures?

    PubMed

    Stephen, A B; Pye, D; Lyons, A R; Oni, J A; Davis, T R C

    2005-02-01

    This prospective study investigated whether dual energy X-ray absorptiometry (DXA) could detect acute scaphoid fractures. We blindly compared 10 normal and 10 fractured scaphoid images produced with a new technique of DXA scan analysis. This measured and plotted the density of the scaphoid throughout its length, producing a linear graph of the scaphoids' density instead of a single area (g/cm2) measurement of bone density. These new plots only detected six of the 10 fractures and suggested that four of the normal controls were fractured. Thus, this technique of DXA scan analysis is neither sensitive nor specific for the detection of acute scaphoid fractures. PMID:15620498

  14. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  15. Characterization of a free air ionization chamber for low energy X-rays

    NASA Astrophysics Data System (ADS)

    Silva, N. F.; Xavier, M.; Vivolo, V.; Caldas, L. V. E.

    2016-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition.

  16. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  17. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  18. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  19. UCSD High Energy X-ray Timing Experiment magnetic shield design and test results

    NASA Technical Reports Server (NTRS)

    Rothschild, Richard E.; Pelling, Michael R.; Hink, Paul L.

    1991-01-01

    Results are reported from an effort to define a passive magnetic field concept for the High Energy X-ray Timing Experiment (HEXTE), in the interest of reducing the detector-gain variations due to 0.5-1.0-sec timescale magnetic field variations. This will allow a sensitivity of the order of 1 percent of the HEXTE background. While aperture modulation and automatic gain control will minimize effects on timescales of tens of seconds and longer, passive magnetic shielding of the photomultiplier tubes will address 1-sec timescale variations due to aperture motions.

  20. Distinction between entrance and exit wounds by energy dispersive X-ray fluorescence spectrometry.

    PubMed

    Tanaka, Naoko; Kinoshita, Hiroshi; Takakura, Ayaka; Jamal, Mostofa; Ito, Asuka; Kumihashi, Mitsuru; Tsutsui, Kunihiko; Kimura, Shoji; Ameno, Kiyoshi

    2016-09-01

    We investigated gunshot wounds in two autopsy cases using energy dispersive X-ray spectrometry (EDX). Lead and copper were detected in the entrance wound of one case and lead, antimony, and copper were detected in that of the other case. In the exit wounds of both cases, lead, antimony, and copper were below detection limits. These findings indicate that the detection of metallic elements, such as lead, antimony, and copper, which are found in bullets, may be useful for differentiating entrance from exit wounds using EDX. PMID:27591531

  1. Dual-source multi-energy CT with triple or quadruple x-ray beams

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Li, Zhoubo; Leng, Shuai; McCollough, Cynthia H.

    2016-03-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using both tri-beam and quadruple-beam configurations. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  2. High energy X-ray observations of Sco-like sources with Ariel V

    NASA Technical Reports Server (NTRS)

    Greenhill, J. G.; Coe, M. J.; Burnell, S. J. B.; Strong, K. T.; Carpenter, G. F.

    1979-01-01

    Results are reported for observations of Sco X-1 and the similar sources 4U 1702-36 (GX 349+2, Sco X-2), 4U 1813-14 (GX 17+2), and 4U 1758-25 (GX 5-1) by several of the X-ray telescopes aboard the Ariel 5 satellite over the energy range from 2 to approximately 100 keV. The results confirm the existence of a high-energy tail in the spectrum of Sco X-1, demonstrate that 4U 1702-36 has a similar spectrum, and provide evidence for a variation of the 26-56-keV flux from 4U 1702-36 by more than a factor of four with no related change in the 2.9-7.6-keV flux. The high-energy emission from Sco X-1 is found to be one to two orders of magnitude above the extrapolated low-energy emission. Observed X-ray, radio, and optical properties of these four sources, as well as two additional Sco-like sources, are summarized.

  3. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams

    PubMed Central

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2016-01-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a “Twin Beam” design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector. PMID:27330237

  4. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    NASA Astrophysics Data System (ADS)

    Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNRtc) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNRtc/MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection.

  5. Rock porosity quantification by dual-energy X-ray computed microtomography.

    PubMed

    Teles, A P; Lima, I; Lopes, R T

    2016-04-01

    Porous media investigation by X-ray microtomography allows obtaining valuable quantitative and qualitative information, while preserving sample integrity. Modern X-ray nanotomography or Synchrotron radiation systems may distinguish structures sized only hundreds of nanometers. However, pores sized less than a few microns (microporosity) may be undetectable due to the system's spatial resolution and noise in microfocus sources, compromising the quality of the measurement. In this study a dual-energy methodology was developed to generate density-based images from two scans made at two different voltages (80kV and 130KV) with a microfocus bench-top microtomography system. The images obtained were quantized in 256 gray levels, where the lowest value (zero) corresponded to voids and the highest value (255) corresponded to the densest regions mapped. From density images and single energy images, porosity was evaluated and compared. Results indicate that density images present better results than single energy images when both are compared with porosity obtained by the helium injection method. In addition, images acquired in dual-energy show good agreement with the sample's real density values. PMID:26897589

  6. Analysis of Fast Electron Energy Distribution by Measuring Hard X-ray Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Daykin, Tyler; Sawada, Hiroshi; Sentoku, Yasuhiko; Bass, Anthony; Griffin, Brandon; Pandit, Rishi; Beg, Farhat; Chen, Hui; McLean, Harry; Link, Anthony; Patel, Prav; Ping, Yuan

    2015-11-01

    Characterization of intense, short-pulse laser-produced fast electrons is important for fundamental understanding and applications. We carried out an experiment to characterize the fast electron energy distribution by measuring angular-dependent high-energy bremsstrahlung x-rays. A 100 μm thick metal foil (Al, Cu, and Ag) mounted on a plastic backing was irradiated by the 0.35 ps, 15 J Leopard Laser at the Nevada Terawatt Facility. The bremsstrahlung x-rays and the escaping electrons from the target were recorded using differential filter stack spectrometers at 22° and 45° off laser axis and a magnet-based electron spectrometer along the laser axis. The electron spectrum inferred from two different diagnostics had single slope temperature of ~ 1.5 MeV for the Cu foil. The results were compared to an analytic calculation and a 2-D Particle-in-cell code, PICLS. The analysis of the electron energy distribution and angular distribution will be presented. This work was supported by the UNR Office of the Provost and by DOE/OFES under Contract No. DE-SC0008827. This collaborative work was partially supported under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Con.

  7. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. PMID:26922394

  8. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb Zn ores

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Queralt, I.; Carvalho, M. L.; Bordalo, M.

    2003-12-01

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses ( Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass ( Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content.

  9. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  10. Probing Local Mineralogy in 3D with Dual Energy X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Gelb, J.; Yun, S.; Doerr, D.; Hunter, L.; Johnson, B.; Merkle, A.; Fahey, K.

    2013-12-01

    In recent years, 3D imaging of rock microstructures has become routine practice for determining pore-scale properties in the geosciences. X-Ray imaging techniques, such as X-Ray Microscopy (XRM), have demonstrated several unique capabilities: namely, the ability to characterize the same sample across a range of length scales and REVs (from millimeters to nanometers), and to perform these characterizations on the same sample over a range of times/treatments (e.g., to observe fluid transporting through the pore networks in a flow cell). While the XRM technique is a popular choice for structural (i.e., pore) characterization, historically it has provided little mineralogical information. This means that resulting simulations are either based on pore structure alone, or rely on correlative chemical mapping techniques for compositionally-sensitive models. Recent advancements in XRM techniques are now enabling compositional sensitivity for a variety of geological sample types. By collecting high-resolution 3D tomography data sets at two different source settings (energies), results may be mixed together to enhance the appearance (contrast) of specific materials. This approach is proving beneficial, for example, to mining applications to locate and identify precious metals, as well as for oil & gas applications to map local hydrophobicity. Here, we will introduce the technique of dual energy X-Ray microscopy, showing how it extends the capabilities of traditional XRM techniques, affording the same high resolution structural information while adding 3D compositional data. Application examples will be shown to illustrate its effectiveness at both the single to sub-micron length scale for mining applications as well as at the 150 nm length scale for shale rock analysis.

  11. REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING

    SciTech Connect

    Chartas, G.; Moore, D.; Kochanek, C. S.; Mosquera, A. M.; Blackburne, J. A.; Dai, X.

    2012-10-01

    We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-Ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-dependent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X-ray light curves of images A and D, and energy-dependent microlensing of image D. The magnification of the soft band appears to be larger than that in the hard band by a factor of {approx}1.3 when image D becomes more magnified. This can be explained by the difference between a compact, softer-spectrum corona that is producing a more extended, harder spectrum reflection component off the disk. This is supported by the evolution of the fluorescent iron line in image D over three consecutive time-averaged phases of the light curve. In the first period, an Fe line at E = 6.35{sup +0.14}{sub -0.14} keV is detected (at >99% confidence). In the second period, two Fe lines are detected, one at E = 5.50{sup +0.03}{sub -0.08} keV (detected at >99% confidence) and another at E = 6.04{sup +0.10}{sub -0.07} keV (marginally detected at >90% confidence), and in the third period, a broadened Fe line at 6.42{sup +0.16}{sub -0.14} keV is detected (at >99% confidence). This evolution of the Fe line profile during the microlensing event is consistent with the line distortion expected when a caustic passes over the inner disk where the shape of the fluorescent Fe line is distorted by general relativistic and Doppler effects.

  12. Characterization of amorphous selenium alloy detectors for x-rays and high energy nuclear radiation detection

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Mehta, Abhinav; Chaudhuri, Sandeep K.; Cui, Yunlong; Groza, Michael; Burger, Arnold

    2013-09-01

    Synthesized amorphous selenium (a-Se) alloy materials have been characterized for room temperature high-energy nuclear radiation detector and x-ray detection applications. The alloy composition has been optimized to ensure good charge transport properties and detector performance. The synthesis of a-Se (As, Cl) alloys has been carried out by thoroughly mixing zone-refined (ZR) Se (~7N) with previously synthesized a-Se(As) and a-Se(Cl) master alloys (MS). The synthesized alloys have been characterized by x-ray diffraction (XRD), glow discharge mass spectroscopy (GDMS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), and current-voltage (I-V) characteristics measurements. Raman spectroscopy demonstrated that the a-Se(As) master alloy samples were in metastable monoclinic Se8 states, in which seven vibrational modes are located at 40(41), 59(60), 77, 110, 133, 227(228) and 251(252) cm-1. However, a-Se(Cl) master alloy samples are in stable form of trigonal structure of Se8 ring, in which two modes at 142 and 234 cm-1 were found. Both Raman and energy dispersive spectroscopy (EDS) exhibited that a small amount of tellurium (Te) existed in a-Se (As, Cl) master alloy samples. DSC measurements showed that a-Se (Cl) MS and a-Se (As) MS samples have one melting point, located at ~219.6°C, whereas a-Se-As (0.52%)-Cl and Se- As(10.2%)-Cl(60 ppm) both possess two melting points, located at 221 and 220.3°C respectively. The a-Se alloy plate detectors have been fabricated and tested and the results showed high dark resistivity (1012 - 1013 Ω-cm) with good charge transport properties and cost-effective large-area scalability.

  13. Radiation decay of thaumatin crystals at three X-ray energies.

    PubMed

    Liebschner, Dorothee; Rosenbaum, Gerold; Dauter, Miroslawa; Dauter, Zbigniew

    2015-04-01

    Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Å resolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies. PMID:25849388

  14. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-11-01

    A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si3N4/SiO2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  15. Energy Reconstruction for Events Detected in TES X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  16. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  17. MCP characterization at the Cu and Mo K{sub {alpha}} x-ray energies

    SciTech Connect

    Walsh, P.J.; Evans, S.; Schappert, G.T.; Kyrala, G.A.

    1998-03-01

    The authors are investigating the usefulness of microchannel plate (MCP) intensifiers for imaging x-rays at high photon energies, specifically by using filtered X-rays from an electron bombardment source to generate the K{sub {alpha}} lines of Cu at 8.04 KeV and Mo at 17.5 KeV. These high energy lines are used to measure the resolution of an MCP based intensifier produced at Los Alamos National Laboratory. They have investigated the spot size of a fielded MCP intensifier by observing, on film, the result of single photon excitation of microchannels. Measurement of the spot size was done with visible light microscopy. They report initial results of the spot size distribution in the stripline direction. They have also begun a measurement of the azimuthal anisotropy in the spatial resolution, accentuated at these energies by the inclination of the axis of the MCP channels. They concentrate on an actual ``fielded instrument`` resolution, rather than ideal, for the purpose of analyzing image data captured at the NOVA Laser Facility.

  18. Infrared to x-ray spectral energy distributions of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    We have observed 14 quasars with z greater than 2.8 with the ROSAT-PSPC, and detected 12 of them, including the z=4.11 quasar 0000-263. We present the first x-ray spectrum of a radio quiet quasar with z greater than 3, 1946+768. Its x-ray spectrum is consistent with a power law with spectral index alpha(sub E)=1.8(sup +2.1, sub -1.4) and no evidence for absorption in excess of the galactic column (alpha(sub E)=1.00(sup +0.28, sub -0.32) assuming N(sub H)=N(sub H)(Gal)). A Position Sensitive Proportional Counter (PSPC) hardness ratio is used to constrain the x-ray spectral properties of the quasars for which there were less than 100 photons detected. For the radio quiet quasars, (alpha(sub E)) approximately equals 1.2, if one assumes that there is no absorption in excess of the galactic column. We combine the x-ray data with new ground based optical and near-IR spectrophotometry obtained at the Steward 2.3 m and Multiple Mirror Telescope, and data from the literature. The spectral energy distributions are compared to those of low redshift objects. For the radio quiet quasars with z greater than 2.5, the mean (alpha(sub ox)) is approximately 1.8. This is larger than the mean for quasars with z less than 2.5, but consistent with the expected value for quasars with the high optical luminosities of the objects in this sample. For the radio-loud quasars, (alpha(sub ox)) is approximately 1.4, independent of redshift. This is smaller than the expected value for the optically luminous, high redshift objects in this sample, if they are mostly GHz peaked radio sources and hence comparable to steep-spectrum, compact radio sources at lower redshift. Finally, we compare the spectral energy distributions of two representative objects to the predicted spectrum of a thin accretion disk in the Kerr geometry, and discuss the uncertainties in deriving black hole masses and mass accretion rates.

  19. Material separation in x-ray CT with energy resolved photon-counting detectors

    SciTech Connect

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-03-15

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  20. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Pessanha, S.; Carvalho, M. L.; dos Santos, J. M. F.; Coroado, J.

    2010-04-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (µ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial µ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 µm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of µm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  1. ROSI and GEANT4 - A comparison in the context of high energy X-ray physics

    NASA Astrophysics Data System (ADS)

    Kiunke, Markus; Stritt, Carina; Schielein, Richard; Sukowski, Frank; Hölzing, Astrid; Zabler, Simon; Hofmann, Jürgen; Flisch, Alexander; Kasperl, Stefan; Sennhauser, Urs; Hanke, Randolf

    2016-06-01

    This work compares two popular MC simulation frameworks ROSI (Roentgen Simulation) and GEANT4 (Geometry and Tracking in its fourth version) in the context of X-ray physics. The comparison will be performed with the help of a parameter study considering energy, material and length variations. While the total deposited energy as well as the contribution of Compton scattering show a good accordance between all simulated configurations, all other physical effects exhibit large deviations in a comparison of data-sets. These discrepancies between simulations are shown to originate from the different cross sectional databases used in the frameworks, whereas the overall simulation mechanics seem to not have an influence on the agreement of the simulations. A scan over energy, length and material shows that the two parameters energy and material have a significant influence on the agreement of the simulation results, while the length parameter shows no noticeable influence on the deviations between the data-sets.

  2. Development of a dual MCP framing camera for high energy x-rays

    SciTech Connect

    Izumi, N. Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M.; and others

    2014-11-15

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  3. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  4. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  5. The LCLS variable-energy hard X-ray single-shot spectrometer.

    PubMed

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS. PMID:26698039

  6. Low-energy x-ray response of photographic films. II. Experimental characterization

    SciTech Connect

    Henke, B.L.; Fujiwara, F.G.; Tester, M.A.; Dittmore, C.H.; Palmer, M.A.

    1984-12-01

    Optical density versus exposure data have been obtained at nine photon energies in the 100--2000-eV x-ray region for five spectroscopic films (Kodak films 101-07, SB-392, RAR 2492, RAR 2495, and RAR 2497). These data were determined operationally by a direct comparison of the peak absolute intensities of spectral lines, which were measured with a calibrated proportional counter, with the microdensitometer tracings of the corresponding photographically recorded spectral lines. Film-resolution limits were deduced from an analysis of contact microradiograms of linear zone plates constructed of gold bars. The relationship between the specular densities as measured here and the diffuse densities have been experimentally determined for the five films. Finally, experimental measurements of the optical density versus the angle of incidence of exposing radiation of constant intensity were obtained. These data, relating density to the x-ray intensity, its photon energy, and its angle of incidence, are shown to be fitted satisfactorily in the 100--10 000-eV region by the semiempirical mathematical model relations that were derived in Part I of this research (J. Opt. Soc. Am. B 1, 818--827 (1984)).

  7. HEAO 1 high energy X-ray observations of the Virgo cluster and A2142

    NASA Technical Reports Server (NTRS)

    Lea, S. M.; Reichert, G.; Mushotzky, R.; Baity, W. A.; Gruber, D. E.; Rothschild, R.; Primini, F. A.

    1981-01-01

    Observations are reported of the Virgo cluster and Abell 2142 in the energy range of 15-150 keV, detected by using hard X-ray and low energy gamma-ray instruments on board the HEAO-1 spacecraft, during 1977 and 1978. The Virgo cluster was detected at a mean flux of (1.3 + or - 0.3) x 10 to the 0.001 photons/sq cm-s in the 20-100 keV band, and A2142 was detected marginally at a flux of (2 + or - 0.8) x 10 to the 0.001 photons/sq cm-s in the 15-40 keV band. Inverse Compton emission was not observed in these clusters. Results are used to derive limits to the intracluster magnetic field of B approximately greater than 5 x 10 to the -7th gauss and B approximately 5 x 10 to the -8th gauss in the Virgo cluster and A1242, respectively. There is some evidence for variability in these sources, which implies that the hard X-ray emission originates in a relatively compact object or region rather than from the cluster as a whole.

  8. Low-energy x-ray emission from magnetic-fusion plasmas

    SciTech Connect

    Hill, K.W.; Bitter, M.; Eames, D.; von Goeler, S.; Goldman, M.; Sauthoff, N.R.; Silver, E.

    1982-04-01

    Complex, transient, spatially inhomogeneous tokamak plasmas require careful diagnosis. As the reactor regime is approached, soft x rays become more important as a versatile diagnostic tool and an energy-loss mechanism. Continuum emission provides a measure of electron temperature and light impurity content. Impurity lines serve as a probe for ion and electron temperature, impurity behavior, and radiative cooling. The entire spectrum yields vital information on instabilities and disruptions. The importance of impurities is illustrated by the extensive efforts toward understanding impurity production, effects, and control. Minute heavy impurity concentrations can prevent reactor ignition. Si(Li) - detector arrays give a broad overview of continuum and line x-ray emission (.3 to 50 keV) with moderate energy (200 eV) and time (50 ms) resolution. Bragg crystal and grating spectrometers provide detailed information on impurity lines with moderate to excellent (E/..delta..E = 100 to 23,000) resolving power and 1 to 50 ms time resolution. Imaging detector arrays measure rapid (approx. 10 ..mu..s) fluctuations due to MHD instabilities and probe impurity behavior and radiative cooling. Future tokamaks require more diagnostic channels to avoid spatial scanning, higher throughput for fast, single-shot diagnosis, increased spectral information per sample period via fast scanning or use of multi-element detectors with dispersive elements, and radiation shielding and hardening of detectors.

  9. Si(Li) detectors with thin dead layers for low energy x-ray detection

    SciTech Connect

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si K{alpha} absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO{sub 2} at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab.

  10. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    SciTech Connect

    Daley, T.D.; Gibson, D. )

    1990-03-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses.

  11. Enhancement of X-ray Energy Deposition via Heavy Element Sensitization in Biological Environments

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Pradhan, Anil; Nahar, Sultana; Barth, Rolf

    2015-05-01

    Energy (dose) deposition by low vs. high energy x-rays (LEX & HEX), approximately E ~ 100 keV and E > 1 MeV respectively, was studied in biological matter sensitized with heavy elements (high-Z or HZ) to improve radiation therapy of cancer. Computations and simulations show that LEX interact favorably with HZ sensitizers by depositing more dose than HEX. LEX photons effectively photoionize deep inner electronic shells and release cell-killing Auger electrons near malignant cells embedded with HZ atoms. HEX photons predominantly Compton scatter with little interaction, even with HZ elements. Monte Carlo simulations show that in comparison to unsensitized tissue, LEX irradiation of HZ-sensitized models resulted in up to a factor of 2 increase in dose deposition relative to HEX. To validate the studies, in vitro experiments were performed using 2 distinct cancer cell types treated with Pt-based sensitizers, then irradiated with a LEX 160 KV x-ray source and a HEX 6 MV LINAC employed in radiation therapy. The experiments support numerical simulations, and demonstrate several factors lower survival of HZ-sensitized cells irradiated with LEX compared with HEX.

  12. Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2004-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.

  13. X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion

    NASA Astrophysics Data System (ADS)

    King, B. W.; Landheer, K. A.; Johns, P. C.

    2011-07-01

    A key requirement for the development of the field of medical x-ray scatter imaging is accurate characterization of the differential scattering cross sections of tissues and phantom materials. The coherent x-ray scattering form factors of five tissues (fat, muscle, liver, kidney, and bone) obtained from butcher shops, four plastics (polyethylene, polystyrene, lexan (polycarbonate), nylon), and water have been measured using an energy-dispersive technique. The energy-dispersive technique has several improvements over traditional diffractometer measurements. Most notably, the form factor is measured on an absolute scale with no need for scaling factors. Form factors are reported in terms of the quantity x = λ-1sin (θ/2) over the range 0.363-9.25 nm-1. The coherent form factors of muscle, liver, and kidney resemble those of water, while fat has a narrower peak at lower x, and bone is more structured. The linear attenuation coefficients of the ten materials have also been measured over the range 30-110 keV and parameterized using the dual-material approach with the basis functions being the linear attenuation coefficients of polymethylmethacrylate and aluminum.

  14. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  15. A comparison between fine grain and epitaxial superconducting tunneling junctions for use as high energy resolution x-ray detectors

    NASA Astrophysics Data System (ADS)

    Saulnier, Gregory Gerard

    1994-01-01

    Superconducting tunneling junctions (STJ) show great promise in high energy resolution x-ray spectroscopy for use in x-ray astrophysics. An STJ is a sandwich of an insulator between two superconductors (S-I-S). Such a device has an intrinsic energy resolution an order of magnitude better than any existing semiconductor device, including the charge coupled device (CCD). The potential impact on x-ray astrophysics is enormous, with possible future use on sounding rockets and other as yet undefined satellite missions. This thesis compares two STJ's that have been fabricated using Nb/Al/Al2O3/Nb in the same ultra-high vacuum chamber with the same layer thicknesses with the only difference being that the base layers are either fine grain (polycrystalline) or epitaxial. The testing was done at temperatures between 0.4 K and 4.2 K. The comparison included subgap spectra from an Fe-55 x-ray source. The findings showed that the fine grain junction had a tunnel barrier of much higher quality and yielded higher energy resolution. It was determined that the epitaxial junction was much more sensitive to substrate events. Two peaks were found in the x-ray spectra. Each peak was attributed to x-ray interactions within one or the other superconducting films of the junction.

  16. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  17. Studying the energy dependence of intrinsic conversion efficiency of single crystal scintillators under X-ray excitation

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Valais, I.; David, S.; Michail, Ch.; Fountos, G.; Liaparinos, P.; Kandarakis, I.

    2014-05-01

    Single crystal scintilators are used in various radiation detectors applications. The efficiency of the crystal can be determined by the Detector Optical Gain (DOG) defined as the ratio of the emitted optical photon flux over the incident radiation photons flux. A parameter affecting DOG is the intrinsic conversion efficiency ( n C ) giving the percentage of the X-ray photon power converted to optical photon power. n C is considered a constant value for X-ray energies in the order of keV although a non-proportional behavior has been reported. In this work an analytical model, has been utilized to single crystals scintillators GSO:Ce, LSO:Ce and LYSO:Ce to examine whether the intrinsic conversion efficiency shows non proportional behavior under X-ray excitation. DOG was theoretically calculated as a function of the incident X-ray spectrum, the X-ray absorption efficiency, the energy of the produced optical photons and the light transmission efficiency. The theoretical DOG values were compared with experimental data obtained by irradiating the crystals with X-rays at tube voltages from 50 to 140 kV and by measuring the light energy flux emitted from the irradiated screen. An initial value for n C (calculated from literature data) was assumed for the X-ray tube voltage of 50 kV. For higher X-ray tube voltages the optical photon propagation phenomena was assumed constant and any deviations between experimental and theoretical data were associated with changes in the intrinsic conversion efficiency. The experimental errors were below 7% for each experimental setup. The behavior of n C values for LSO:Ce and LYSO:Ce were found very similar, i.e., ranging with values from 0.089 at 50 kV to 0.015 at 140 kV, while for GSO:Ce, n C demonstrated a peak at 80 kV.

  18. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  19. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    PubMed Central

    Sarapata, A.; Stayman, J. W.; Finkenthal, M.; Siewerdsen, J. H.; Pfeiffer, F.; Stutman, D.

    2014-01-01

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  20. Position-Sensitive CZT Detectors for High Energy X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Matteson, J.; Coburn, W.; Heindl, W.; Peterson, L.; Pelling, M.; Rothschild, R.; Skelton, R.; Hink, P.; Slavis, K.

    1998-05-01

    We report recent progress on CZT (Cadmium Zinc Telluride) detectors by the UCSD/WU collaboration. CZT, a room- temperature semiconductor, is a very promising detector material for high energy X-ray astronomy. It can operate from <10 keV to >200 keV, and give sub-keV energy resolution and sub-mm spatial resolution. We have developed an advanced CZT detector that uses two innovations to improve spectral response, give it 3-D localization of energy loss events, and reduce background at high altitudes and in space. The detector measures 12 x 12 x 2 mm(3) and was manufactured by eV Products. Each face has a strip readouts with 500 micron pitch electrodes. The 2 faces' strips are orthogonal, which provides x-y localization into 500 micron pixels. One innovation is "steering electrodes", which are located between the anode strips. They improve the anode charge collection and energy resolution, and tailing due to hole trapping is nearly totally eliminated. The energy resolution at 60 keV is 4 keV and the peak to valley ratio is 50. The other innovation is 3-D localization of energy losses. This is done by comparing the signals from the anode strips, cathode strips, and steering electrodes. There is a strong depth of interaction signature, which can be used to accept events which interact close to the cathode strips (where X-rays of interest are incident) and reject deeper interactions (which are likely to be background). The detector was tested in a balloon flight at 108,000 feet in October 1997. Background was reduced by passive shielding, consisting of lead graded with tin and copper. The lead thickness was changed by command during the flight, and was 7, 2, and 0 mm thick. With the 2 mm thickness the 20 - 40 keV background for the central 30 pixels was 8x10(-4) c/cm(2) -s-keV when the depth of interaction signature was used to reject background, and 7 times greater when this information was not used. The lower background is 12 times less than other workers have obtained

  1. X-ray beam design for multi-energy imaging with charge-integrating detector: A simulation study

    NASA Astrophysics Data System (ADS)

    Baek, Cheol-Ha; Kim, Daehong

    2015-11-01

    Multi-energy X-ray imaging systems have been widely used for clinical examinations. In order to enhance the imaging quality of these X-ray systems, a dual-energy system that can obtain specific information has been developed in order to discriminate different materials. Although the dual-energy system shows reliable performance for clinical applications, it is necessary to improve the method in order to minimize radiation dose, reduce projection error, and increase image contrast. The purpose of this study is to develop a triple energy technique that can discriminate three materials for the purpose of enhancing imaging quality and patient safety. The X-ray system tube voltage was varied from 40 to 90 kV, and filters (that can generate three X-ray energies) were installed, consisting of pure elemental materials in foil form (including Al, Cu, I, Ba, Ce, Gd, Er, and W). The X-ray beam was evaluated with respect to mean energy ratio, contrast variation ratio, and exposure efficiency. In order to estimate the performance of the suggested technique, Monte Carlo was conducted, and the results were compared to the photon-counting method. As a result, the density maps of iodine, aluminum, and polymethyl methacrylate (PMMA) using the X-ray beam were more accurate in comparison to that obtained with the photon-counting method. According to the results, the suggested triple energy technique can improve the accuracy of the determination of thickness of density. Moreover, the X-ray beam could reduce unnecessary patient dose.

  2. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    NASA Astrophysics Data System (ADS)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  3. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bandsa)

    NASA Astrophysics Data System (ADS)

    Romano, A.; Pacella, D.; Mazon, D.; Murtas, F.; Malard, P.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Corradi, G.

    2010-10-01

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  4. High-energy gamma-ray and hard X-ray observations of Cyg X-3

    NASA Technical Reports Server (NTRS)

    Hermsen, W.; Bloemen, J. B. G. M.; Jansen, F. A.; Bennett, K.; Buccheri, R.; Mastichiadis, A.; Mayer-Hasselwander, H. A.; Strong, A. W.; Oezel, M. E.; Pollock, A. M. T.

    1987-01-01

    COS-B viewed the Cyg X-3 region seven times between November, 1975, and February, 1982; a search for steady gamma-ray emission pulsed at the characteristic 4.8-hour period did not reveal its source. Leiden-MIT balloon experiment observations of Cyg X-3 in May, 1979 show the 4.8-hour modulation with sinusoidal light curve and modulation depth of 0.30, for energies of up to about 140 keV. The strong variability of Cyg X-3 over more than one order of magnitude at energies below 20 keV does not emerge in the data collected at hard X-ray energies.

  5. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bands

    SciTech Connect

    Romano, A.; Pacella, D.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Mazon, D.; Malard, P.

    2010-10-15

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  6. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect

    Shang Zhaohui; Li Jun; Xie Yanxia; Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J.; Wills, Beverley J.; Wills, D.; Green, Richard F.; Nemmen, Rodrigo S.; Ganguly, Rajib; Hines, Dean C.; Kriss, Gerard A.; Tang, Baitian

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  7. Solar flares X-ray polarimetry in a wide energy band

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio; Campana, Riccardo; Costa, Enrico; Muleri, Fabio; Bellazzini, Ronaldo; Soffitta, Paolo; Del Monte, Ettore; Rubini, Alda

    2012-07-01

    Polarimetry of solar flares X-ray emission is an additional tool for investigating particles dynamics within the solar atmosphere. Accelerated electrons by magnetic reconnection in the corona produce bremsstrahlung radiation as primary emission in the footpoints of a solar flare which has moreover the possibility to be Compton backscattered resulting in albedo emission. Non-thermal bremsstrahlung emission is expected to be a significant above 15 keV and highly polarized. The albedo component peaks between 20 and 50 keV, its polarization properties depend on the Compton scattering angle. Such a diffusion modifies the spectrum and the polarization of the primary bremsstrahlung emission. Hard X-ray polarimetry, spectroscopy and imaging are therefore necessary to disentangle and modeling the different components in a solar flare. We present a non imaging Compton polarimeter sensitive from 20 keV designed as a single scattering unit surrounded by absorbers of high atomic number. A photelectric polarimeter based on the Gas Pixel Detector technology sensitive in the 15-35 keV energy band can be coupled for imaging.

  8. The Next Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-Rays

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Brotherton, Michael S.; Wills, Beverley J.; Wills, D.; Cales, Sabrina L.; Dale, Daniel A.; Green, Richard F.; Runnoe, Jessie C.; Nemmen, Rodrigo S.; Gallagher, Sarah C.; Ganguly, Rajib; Hines, Dean C.; Kelly, Benjamin J.; Kriss, Gerard A.; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  9. Boundary displacement measurements using multi-energy soft x-rays

    SciTech Connect

    Tritz, K. Stutman, D.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S.

    2014-11-15

    The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (∼10 kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurements using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.

  10. First TDCR measurements at low energies using a miniature x-ray tube.

    PubMed

    Halter, E; Thiam, C; Bobin, C; Bouchard, J; Chambellan, D; Chauvenet, B; Hamel, M; Rocha, L; Trocmé, M; Woo, R

    2014-11-01

    Developed for radionuclide standardization using liquid scintillation, the Triple to Double Coincidence Ratio (TDCR) method is applied using coincidence counting obtained with a specific three-photomultiplier system. For activity determination, a statistical model of light emission is classically used to establish a relation between the detection efficiency and the experimental TDCR value. At LNE-LNHB, a stochastic approach of the TDCR modeling was developed using the Monte Carlo code Geant4. The interest of this TDCR-Geant4 model is the possibility to simulate the propagation of optical photons from their creation in the scintillation vial to the production of photoelectrons in photomultipliers. As an alternative to the use of radionuclide sources, first TDCR measurements are presented using a miniature x-ray tube closely coupled to the scintillation vial. The objective of this new set-up was to enable low-energy depositions (lower than 20 keV) in liquid scintillator in order to study the influence of both time and geometrical dependence between PMTs already observed with radioactive sources. As for the statistical TDCR model, the non-linearity of light emission is implemented in the TDCR-Geant4 model using the Birks formula which depends on the kB factor and the scintillation yield. Measurements performed with the x-ray tube are extended to the assessment of these parameters and they are tested afterwards in the TDCR-Geant4 model for activity measurements of (3)H. PMID:24685767

  11. Calibration of the NuSTAR High-energy Focusing X-ray Telescope.

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.; An, Hongjun; Grefenstette, Brian W.; Bachetti, Matteo; Miyasaka, Hiromasa; Kitaguchi, Takao; Bhalerao, Varun; Boggs, Steve; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fuerst, Felix; Hailey, Charles J.; Perri, Matteo; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Walton, Dominic J.; Jørgen Westergaard, Niels; Zhang, William W.

    2015-09-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%-10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ˜10% for all instruments with respect to NuSTAR.

  12. Material Discrimination for Treaty Verification with Multi-energy, X-ray Radiography

    SciTech Connect

    Gilbert, Andrew J.; McDonald, Benjamin S.; Robinson, Sean M.; White, Timothy A.; Jarman, Kenneth D.; Deinert, Mark

    2013-06-10

    As nuclear warhead stockpiles are reduced under current and future arms treaties, accuracy in accountancy of material stockpiles becomes increasingly important. Image-based active interrogation offers advantages to spectroscopic detection in its ability to measure the location and extent of a material, or materials, of interest from a declaration. However, the detail that imaging provides is often viewed as too intrusive due to its potential to disseminate sensitive information. In this work, we present a method for reducing multi-energy, x-ray radiography data to a few important attributes, based on declarations from behind an information barrier, which can then be used to confirm or deny a declaration. We build on previous work by improving the physics modeling; considering currently attainable, multiple-endpoint x-ray systems; and posing the problem as a nonlinear, inverse problem. Regularization is added to the problem, which smooths the solution and stabilizes an otherwise unstable solution. Here we show the ability to discriminate high-atomic–number materials from others with simulated single-view multiple-endpoint radiography data and present results from initial bench-top measurements.

  13. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  14. Low energy x-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1985-01-01

    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K/sub ..cap alpha../ at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies. 16 refs., 5 figs.

  15. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  16. Efficacy of fixed filtration for rapid kVp-switching dual energy x-ray systems

    SciTech Connect

    Yao, Yuan; Wang, Adam S.; Pelc, Norbert J.

    2014-03-15

    Purpose: Dose efficiency of dual kVp imaging can be improved if the two beams are filtered to remove photons in the common part of their spectra, thereby increasing spectral separation. While there are a number of advantages to rapid kVp-switching for dual energy, it may not be feasible to have two different filters for the two spectra. Therefore, the authors are interested in whether a fixed added filter can improve the dose efficiency of kVp-switching dual energy x-ray systems. Methods: The authors hypothesized that a K-edge filter would provide the energy selectivity needed to remove overlap of the spectra and hence increase the precision of material separation at constant dose. Preliminary simulations were done using calcium and water basis materials and 80 and 140 kVp x-ray spectra. Precision of the decomposition was evaluated based on the propagation of the Poisson noise through the decomposition function. Considering availability and cost, the authors chose a commercial Gd{sub 2}O{sub 2}S screen as the filter for their experimental validation. Experiments were conducted on a table-top system using a phantom with various thicknesses of acrylic and copper and 70 and 125 kVp x-ray spectra. The authors kept the phantom exposure roughly constant with and without filtration by adjusting the tube current. The filtered and unfiltered raw data of both low and high energy were decomposed into basis material and the variance of the decomposition for each thickness pair was calculated. To evaluate the filtration performance, the authors measured the ratio of material decomposition variance with and without filtration. Results: Simulation results show that the ideal filter material depends on the object composition and thickness, and ranges across the lanthanide series, with higher atomic number filters being preferred for more attenuating objects. Variance reduction increases with filter thickness, and substantial reductions (40%) can be achieved with a 2× loss in

  17. Stellar contribution to the galactic soft x-ray background

    SciTech Connect

    Rosner, R.; Avni, Y.; Bookbinder, J. R.,Giacconi; Golub, L.; Harnden, F.R. Jr.; Maxson, C.W.; Topka, K.; Vaiana, G.S.

    1981-10-01

    We construct log N-log S relations for stars based on medium x-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed x-ray luminosity function derived here for dM stars, and investigate the stellar contribution to the diffuse soft x-ray background. The principal results are that stars provide approx.20% of the soft x-ray background in the 0.28--1.0 keV passband and therefore contribute significantly to the soft x-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse x-ray background in the 0.15--0.28 keV passband is < or approx. =3%.

  18. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  19. Soft X-Ray Irradiation of Methanol Ice: Formation of Products as a Function of Photon Energy

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Ciaravella, A.; Muñoz Caro, G. M.; Cecchi-Pestellini, C.; Jiménez-Escobar, A.; Juang, K.-J.; Yih, T.-S.

    2013-12-01

    Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH2OH, H2CO, CH4, HCOOH, HCOCH2OH, CH3COOH, CH3OCH3, HCOOCH3, and (CH2OH)2, as well as HCO, CO, and CO2. The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH3OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.

  20. Pixellated Cd(Zn)Te high-energy X-ray instrument

    PubMed Central

    Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; Sellin, P.J.; Scuffham, J.W.; Speller, R.D.; Wilson, M.D.; Veale, M.C.

    2012-01-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications. PMID:22737179

  1. Biological effects induced by low energy x-rays: effects of nanoparticles

    NASA Astrophysics Data System (ADS)

    Liehn, S.; Le Sech, C.; Porcel, E.; Zielbauer, B.; Habib, J.; Kazamias, S.; Guilbaud, O.; Pittman, M.; Ros, D.; du Penhoat, M.-A. Hervé; Touati, A.; Remita, H.; Lacombe, S.

    2009-08-01

    Samples of plasmid DNA were irradiated with pulsed 18.9 nm radiation originating from a Mo X-ray laser (XRL) pumped in GRIP configuration at the LASERIX facility. Up to 21 000 pulses were delivered with a repetition rate of 10 Hz and average pulse energy of 200 nJ. Radiosensitization by two different platinum compounds (platinum terpyridine chloride (PtTC) and platinum nanoparticles) were investigated. SSB and DSB yields were measured using agarose gel electrophoresis. The occurrence of single and double strand breaks not present in controls having undergone the same treatment except for the XRL irradiation can be seen as a clear effect of the XRL irradiation. This confirms the role of direct effects in DNA damages as previously seen with low energy ions and electrons (1) (2). In addition we demonstrate a DNA breaks enhancement in the presence of platinum. No difference of enhancement was seen between these two radiosensitizers.

  2. Studying X-Ray Binaries with High Energy Frequency Quasi-Periodic Oscillations

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Kaaret, P.

    2003-01-01

    The goal of this investigation is to further our understanding of the dynamics of accreting neutron stars and black holes in the hope of using these systems as probes of the physics of strong gravitational fields. The main focus of this work has been a multi-year program of simultaneous millisecond x-ray timing and spectral observations carried out with the Rossi X-Ray Timing Explorer (RXTE) to perform the x-ray timing and one of the satellites Asca, BeppoSAX, or Chandra to perform x-ray spectral measurements. With the advent of Chandra, we have extended our work to include imaging of X-ray jets from binaries and the study of extragalactic X-ray binaries. Significant progress was made over the past year.

  3. Differential Effects of X-Rays and High-Energy {sup 56}Fe Ions on Human Mesenchymal Stem Cells

    SciTech Connect

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li Song; Wang Daojing

    2009-03-01

    Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) {sup 56}Fe ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and {sup 56}Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and {sup 56}Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and {sup 56}Fe ions, with more significant effects from {sup 56}Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy {sup 56}Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: {sup 56}Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation.

  4. Construction of an ionization chamber for the measurement of dose of low energy x-rays

    SciTech Connect

    Perez, Y. B. Alcantara; Jimenez, F. J. Ramirez

    2008-08-11

    We designed and constructed the prototype of an ionization chamber to measure the dose of an X-ray tube with Molybdenum anode. This X-ray tube is located in the Physics department at CINVESTAV and is used for medical physics purposes in the imaging area. The ionization chamber is designed to measure doses on biological samples exposed to X-rays and will be applied in radiation protection studies.

  5. [Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source].

    PubMed

    Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode. PMID:27400534

  6. The Prospects for Constraining Dark Energy withFuture X-ray Cluster Gas Mass Fraction Measurements

    SciTech Connect

    Rapetti, David; Allen, Steven W.

    2007-10-15

    We examine the ability of a future X-ray observatory, with capabilities similar to those planned for the Constellation-X mission, to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of {approx}500 hot (kT{approx}> 5keV), X-ray bright, dynamically relaxed clusters, to a precision of {approx}5 percent, can be used to constrain dark energy with a Dark Energy Task Force (DETF; Albrecht et al. 2006) figure of merit of 20-50. Such constraints are comparable to those predicted by the DETF for other leading, planned 'Stage IV' dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short 'snapshot' observations with the new X-ray observatory should then be able to identify a sample of {approx}500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work to be made; these surveys also show that X-ray flux contamination from point sources is likely to be small for the majority of the targets of interest. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilities the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment offers a competitive and complementary approach to the best other large, planned dark energy experiments. In particular, the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation

  7. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    PubMed

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays. PMID:11754647

  8. Evaluation of the GSO:Ce scintillator in the X-ray energy range from 40 to 140 kV for possible applications in medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Valais, I.; Kandarakis, I.; Cavouras, D.; Linardatos, D.; Sianoudis, I.; Louizi, A.; Dimitropoulos, N.; Vattis, D.; Episkopakis, A.; Nomicos, C.; Panayiotakis, G.

    2006-05-01

    The purpose of the present study was to evaluate, under X-ray medical imaging conditions, the X-ray luminescence efficiency (XLE) and the optical quantum gain (OQG) of the Gd 2SiO 5:Ce scintillator in single crystal form, suitable for tomographic applications. Intrinsic physical properties and light emission characteristics of the Gd 2SiO 5:Ce scintillator, were also studied. Both experimental and Monte Carlo techniques were used. Various X-ray tube voltages (40-140 kV), currently employed in X-ray imaging applications, were used. XLE was found to vary slowly with X-ray tube voltage from (0.021±0.003) to (0.017±0.003). OQG varied from (317±18) to (466±23) light photons per incident X-ray. These values were adequately high for imaging applications using the particular energy range. Additionally, it was found by Monte Carlo simulations that for crystal thicknesses higher than 0.5 cm both XLE and OQG reached saturation levels, indicating that higher thickness crystals are of no practical use in X-ray medical imaging.

  9. High-energy x-ray optics with silicon saw-tooth refractive lenses.

    SciTech Connect

    Shastri, S. D.; Almer, J. A.; Ribbing, C. R.; Cederstrom, B. C.; X-Ray Science Division; Uppsala Univ.; Royal Inst. of Tech.

    2007-01-01

    Silicon saw-tooth refractive lenses have been in successful use for vertical focusing and collimation of high-energy X-rays (50-100 keV) at the 1-ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration-free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single-crystal material (i.e. Si) minimizes small-angle scattering background. The focusing performance of such saw-tooth lenses, used in conjunction with the 1-ID beamline's bent double-Laue monochromator, is presented for both short ({approx}1:0.02) and long ({approx}1:0.6) focal-length geometries, giving line-foci in the 2 {micro}m-25 {micro}m width range with 81 keV X-rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short-focal-length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw-tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small-angular-acceptance high-energy-resolution post-monochromator in the 50-80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre-monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance-preserving to a very high degree.

  10. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel

  11. High energy neutrino absorption and its effects on stars in close X-ray binaries

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stecker, F. W.

    1986-01-01

    The physics and astrophysics of high energy neutrino production and interactions in close X-ray binary systems are studied. These studies were stimulated by recent observations of ultrahigh energy gamma-rays and possibly other ultrahigh energy particles coming from the directions of Cygnus X-3 and other binary systems and possessing the periodicity characteristics of these systems. Systems in which a compact object, such as a neutron star, is a strong source of high energy particles which, in turn, produce photons, neutronos and other secondary particles by interactions in the atmosphere of the companion star were considered. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to effect its structure or lead to its ultimate disruption. This neutrino heating was evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over an astronomically small timescale of the order of 10,000 years. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially, perhaps leading to quenching of high energy signals from the source. Given the cosmic ray luminosities required to produce the observed gamma rays from cygnus X-3 and LMX X-4, such a situation may occur in these sources.

  12. Harmonic Generation at Lower Electron Energies for a Hard X-ray FEL

    SciTech Connect

    Marksteiner, Quinn R.

    2011-01-01

    There are several schemes currently being investigated to pre-bunch the electron beam and step the coherent bunching up to higher harmonics, all which require modulator sections which introduce additional energy modulation. X-ray FELs operate in a regime where the FEL parameter, {rho} is equal to or less than the effective energy spread introduced from the emittance in the electron beam. Because of this large effective energy spread, the energy modulation introduced from harmonic generation schemes would seriously degrade FEL performance. This problem can be mitigated by incorporating the harmonic generation scheme at a lower electron kinetic energy than the energy at the final undulator. This will help because the effective energy spread from emittance is reduced at lower energies, and can be further reduced by making the beam transversely large. Then the beam can be squeezed down slowly enough in the subsequent accelerator sections so that geometric debunching is mitigated. The beam size inside the dispersive chicanes and in the accelerator sections must be carefully optimized to avoid debunching, and each subharmonic modulator section must generate enough energy modulation to overcome the SASE noise without significantly increasing the gain length in the final undulator. Here we show analytical results that demonstrate the feasibility of this harmonic pre-bunching scheme.

  13. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    SciTech Connect

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported.

  14. Reconsideration of the Iwasaki-Waggener iterative perturbation method for reconstructing high-energy X-ray spectra.

    PubMed

    Iwasaki, Akira; Kimura, Shigenobu; Sutoh, Kohji; Kamimura, Kazuo; Sasamori, Makoto; Seino, Morio; Komai, Fumio; Terashima, Singo; Kubota, Mamoru; Narita, Yuichiro; Hosokawa, Yoichiro; Miyazawa, Masanori

    2012-07-01

    We have reviewed applicable ranges for attenuating media and off-axis distances regarding the high-energy X-ray spectra reconstructed via the Iwasaki-Waggener iterative perturbation method for 4-20 MV X-ray beams. Sets of in-air relative transmission data used for reconstruction of spectra were calculated for low- and high-Z attenuators (acrylic and lead, respectively) by use of a functional spectral formula. More accurate sets of spectra could be reconstructed by dividing the off-axis distances of R = 0-20 cm into two series of R = 0-10 cm and R = 10-20 cm, and by taking into account the radiation attenuation and scatter in the buildup cap of the dosimeter. We also incorporated in the reconstructed spectra an adjustment factor (f (adjust) ≈ 1) that is determined by the attenuating medium, the acceleration voltage, and the set of off-axis distances. This resulted in calculated in-air relative transmission data to within ±2 % deviation for the low-Z attenuators water, acrylic, and aluminum (Al) with 0-50 cm thicknesses and R = 0-20 cm; data to within ±3 % deviation were obtained for high-Z attenuators such as iron (Fe), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), gold (Au), lead (Pb), thorium (Th), and uranium (U) having thicknesses of 0-10 cm and R = 0-20 cm. By taking into account the radiation attenuation and scatter in the buildup cap, we could analyze the in-air chamber response along a line perpendicular to the isocenter axis. PMID:22696171

  15. High transmission Ni compound refractive lens for high energy X-rays

    NASA Astrophysics Data System (ADS)

    Brancewicz, M.; Itou, M.; Sakurai, Y.; Andrejczuk, A.; Chiba, S.; Kayahara, Y.; Inoue, T.; Nagamine, M.

    2016-08-01

    We present a new planar Ni compound refractive lens for high energy X-rays (116 keV). The lens is composed of identical plano-concave elements with longitudinal parabolic grooves manufactured by a punch technique. In order to increase the lens transmission, the thickness of the single lens at the parabolic groove vertex was reduced to less than 5 μm and the radius of curvature was reduced to about 20 μm. The small radius of curvature allowed us to reduce the number of single elements needed to get the focal length of 3 m to 54 single lenses. The gain parameter has been significantly improved compared to the previous lenses due to higher transmission, but the focused beam size and its gain are not as good as expected, mostly due to the aberrations caused by the lens shape imperfections.

  16. High transmission Ni compound refractive lens for high energy X-rays.

    PubMed

    Brancewicz, M; Itou, M; Sakurai, Y; Andrejczuk, A; Chiba, S; Kayahara, Y; Inoue, T; Nagamine, M

    2016-08-01

    We present a new planar Ni compound refractive lens for high energy X-rays (116 keV). The lens is composed of identical plano-concave elements with longitudinal parabolic grooves manufactured by a punch technique. In order to increase the lens transmission, the thickness of the single lens at the parabolic groove vertex was reduced to less than 5 μm and the radius of curvature was reduced to about 20 μm. The small radius of curvature allowed us to reduce the number of single elements needed to get the focal length of 3 m to 54 single lenses. The gain parameter has been significantly improved compared to the previous lenses due to higher transmission, but the focused beam size and its gain are not as good as expected, mostly due to the aberrations caused by the lens shape imperfections. PMID:27587159

  17. In situ energy dispersive x-ray reflectometry measurements on organic solar cells upon working

    NASA Astrophysics Data System (ADS)

    Paci, B.; Generosi, A.; Albertini, V. Rossi; Perfetti, P.; de Bettignies, R.; Firon, M.; Leroy, J.; Sentein, C.

    2005-11-01

    The change in the morphology of plastic solar cells was studied by means of time-resolved energy dispersive x-ray reflectivity (XRR). This unconventional application of the XRR technique allowed the follow up of in situ morphological evolution of an organic photovoltaic device upon working. The study consisted of three steps: A preliminary set of XRR measurements on various samples representing the intermediate stages of cell construction, which provided accurate data regarding the electronic densities of the different layers; the verification of the morphological stability of the device under ambient condition; a real-time collection of XRR patterns, both in the dark and during 15h in artificial light conditions which allowed the changes in the system morphology at the electrode-active layer interface to be monitored. In this way, a progressive thickening of this interface, responsible for a reduction in the performances of the device, was observed directly.

  18. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    PubMed Central

    2016-01-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  19. Soil characterization by energy dispersive X-ray fluorescence: sampling strategy for in situ analysis.

    PubMed

    Custo, Graciela; Boeykens, Susana; Dawidowski, L; Fox, L; Gómez, D; Luna, F; Vázquez, Cristina

    2005-07-01

    This work describes a sampling strategy that will allow the use of portable EDXRF (energy dispersive X-ray fluorescence) instruments for "in situ" soil analysis. The methodology covers a general approach to planning field investigations for any type of environmental studies and it was applied for a soil characterization study in the zone of Campana, Argentina, by evaluating data coming from an EDXRF spectrometer with a radioisotope excitation source. Simulating non-treated sampled as "in situ" samples and a soil characterization for Campana area was intended. "In situ" EDXRF methodology is a powerful analytical modality with the advantage of providing data immediately, allowing a fast general screening of the soil composition. PMID:16038489

  20. Energy dispersive x-ray diffraction of charge density waves via chemical filtering

    SciTech Connect

    Feng Yejun; Somayazulu, M. S.; Jaramillo, R.; Rosenbaum, T.F.; Isaacs, E.D.; Hu Jingzhu; Mao Hokwang

    2005-06-15

    Pressure tuning of phase transitions is a powerful tool in condensed matter physics, permitting high-resolution studies while preserving fundamental symmetries. At the highest pressures, energy dispersive x-ray diffraction (EDXD) has been a critical method for geometrically confined diamond anvil cell experiments. We develop a chemical filter technique complementary to EDXD that permits the study of satellite peaks as weak as 10{sup -4} of the crystal Bragg diffraction. In particular, we map out the temperature dependence of the incommensurate charge density wave diffraction from single-crystal, elemental chromium. This technique provides the potential for future GPa pressure studies of many-body effects in a broad range of solid state systems.

  1. Performance of bent-crystal x-ray microscopes for high energy density physics research

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Geissel, M.; Shores, J. E.; Smith, I. C.; Porter, J. L.

    2015-11-01

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. The analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. This enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  2. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    NASA Astrophysics Data System (ADS)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  3. Direct structural observation of a molecular junction by high-energy x-ray reflectometry

    PubMed Central

    Lefenfeld, Michael; Baumert, Julian; Sloutskin, Eli; Kuzmenko, Ivan; Pershan, Peter; Deutsch, Moshe; Nuckolls, Colin; Ocko, Benjamin M.

    2006-01-01

    We report a direct angstrom resolution measurement of the structure of a molecular-size electronic junction comprising a single (or a double) layer of alkyl-thiol and alkyl-silane molecules at the buried interface between solid silicon and liquid mercury. The high-energy synchrotron x-ray measurements reveal densely packed layers comprising roughly interface-normal molecules. The monolayer’s thickness is found to be 3–4 Å larger than that of similar layers at the free surfaces of both mercury and silicon. The origins of this and the other unusual features detected are discussed in this article. Measurements of the bilayer junction with an applied potential did not show visible changes in the surface normal structure. PMID:16467139

  4. Direct Structural Observation of a Molecular Junction by High-Energy X-ray Reflectometry

    SciTech Connect

    Lefenfeld,M.; Baumert, J.; Sloutskin, E.; Kuzmenko, I.; Pershan, P.; Deutsch, M.; Nuckolls, C.; Ocko, B.

    2006-01-01

    We report a direct angstrom resolution measurement of the structure of a molecular-size electronic junction comprising a single (or a double) layer of alkyl-thiol and alkyl-silane molecules at the buried interface between solid silicon and liquid mercury. The high-energy synchrotron x-ray measurements reveal densely packed layers comprising roughly interface-normal molecule . The monolayer's thickness is found to be 3-4 Angstroms larger than that of similar layers at the free surfaces of both mercury and silicon. The origins of this and the other unusual features detected are discussed in this article. Measurements of the bilayer junction with an applied potential did not show visible changes in the surface normal structure.

  5. Note: Characterization of a high-photon-energy X-ray imager

    SciTech Connect

    Storm, M.; Schiebel, P.; Freeman, R. R.; Akli, K. U.; Eichman, B.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Fiksel, G.; Zhong, Z.; Stephens, R. B.

    2013-10-15

    The Bragg angle, rocking curve, and reflection efficiency of a quartz crystal x-ray imager (Miller indices 234) were measured at photon energy of 15.6909 keV, corresponding to the K{sub α2} line of Zr, using the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. One flat and three spherically curved samples were tested. The peak reflectivity of the best-performing crystal was determined to be (3.6 ± 0.7) × 10{sup −4} with a rocking-curve full width at half maximum of 0.09°. The Zr K{sub α2} emission was imaged from a hot Zr plasma generated by a 10-J multiterawatt laser.

  6. Characterization of small noble metal electrodes by voltammetry and energy dispersive x ray analysis

    NASA Astrophysics Data System (ADS)

    Strein, Timothy G.; Ewing, Andrew G.

    1993-01-01

    Construction and characterization of platinum and gold electrodes with total structural diameters of 1-2 micrometers is described. These small voltammetric probes have been constructed by direct electroreduction of noble metals onto the tips of etched carbon fiber microdisk electrodes. Voltammetry, electron microscopy, energy-dispersive x-ray analysis, and pulsed amperometric detection have been used to characterize these electrodes. Dopamine concentrations have been determined over a range of 10(exp -4) to 10(exp -3) M in the biological buffer system which contains 25 mM glucose, a compound known to adsorb strongly to electrodes. Amperometric monitoring at a constant potential with these small results in signal decay of 20% to 40% in a ten minute experiment. Pulsed amperometric detection minimizes electrode fouling, resulting in 5% or less signal decay over the same ten minute period.

  7. Energy Extraction from a Black Hole and Its Influence on X-Ray Spectra

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Yin; Gong, Xiao-Long; Wang, Ding-Xiong

    2014-12-01

    Taking into account the energy and angular momentum transferred from a rotating black hole (BH) to the inner accretion disk by the magnetic connection (MC) process, we simulate the x-ray spectra from the disk-corona system with two different magnetic configurations using the Monte Carlo method. The results show that the MC process reduces the ratio of the power dissipated in the corona to the total and softens the spectrum. The influence of the MC process is stronger with a higher BH spin, a larger accretion rate, and a larger and more centralized magnetic flux threading the disk. The comparison of the model spectra with the observational data suggests that large-scale magnetic fields accumulating in the inner disk could be a candidate explanation for the hard-to-soft state evolutions in BH binaries.

  8. Energy-dispersive X-ray diffraction using an annular beam.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Greenwood, C; Godber, S X; Prokopiou, D; Stone, N; Clement, J G; Lyburn, I; Martin, R M; Zioupos, P

    2015-05-18

    We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing. PMID:26074592

  9. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  10. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE PAGESBeta

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  11. Compositional analysis of Ceramic Glaze by Laser Induced Breakdown Spectroscopy and Energy Dispersive X-Ray

    NASA Astrophysics Data System (ADS)

    Khedr, A.; Abdel-kareem, O.; Elnabi, S. H.; Harith, M. A.

    2011-09-01

    Laser induced breakdown spectroscopy (LIBS) has been applied for the analysis of Egyptian Islamic glaze ceramic sample. The sample dating back to Fatimid period (969-1169AD), and collected from Al-Fustat excavation store in Cairo. The analysis of contaminated pottery sample has been performed to draw mapping for the elemental compositions by LIBS technique. LIBS measurements have been done by the fundamental wavelength (1064 nm) of Nd: YAG laser for the elemental analysis and performing the cleaning processes of the pottery sample. In addition, complementary analyses were carried out by scanning electron microscopy linked with energy dispersive X-ray microanalysis (SEM/EDX) to obtain verification of chemical results. The morphological surfaces before and after cleaning has been done by Optical Microscopy (OM).

  12. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination.

    PubMed

    Choi, Yong Jun

    2016-03-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  13. Performance of bent-crystal x-ray microscopes for high energy density physics research

    SciTech Connect

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  14. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy.

    PubMed

    Chen, Z; Weyland, M; Sang, X; Xu, W; Dycus, J H; LeBeau, J M; D'Alfonso, A J; Allen, L J; Findlay, S D

    2016-09-01

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. PMID:27258645

  15. Precision measurement of the 3 d → 2 p x-ray energy in kaonic 4He

    NASA Astrophysics Data System (ADS)

    Okada, S.; Beer, G.; Bhang, H.; Cargnelli, M.; Chiba, J.; Choi, Seonho; Curceanu, C.; Fukuda, Y.; Hanaki, T.; Hayano, R. S.; Iio, M.; Ishikawa, T.; Ishimoto, S.; Ishiwatari, T.; Itahashi, K.; Iwai, M.; Iwasaki, M.; Juhász, B.; Kienle, P.; Marton, J.; Matsuda, Y.; Ohnishi, H.; Outa, H.; Sato, M.; Schmid, P.; Suzuki, S.; Suzuki, T.; Tatsuno, H.; Tomono, D.; Widmann, E.; Yamazaki, T.; Yim, H.; Zmeskal, J.

    2007-09-01

    We have measured the Balmer-series x-rays of kaonic 4He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy Kbar-nucleus strong interaction. The energy of the 3 d → 2 p transition was determined to be 6467 ± 3 (stat) ± 2 (syst) eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.

  16. Laboratory-based x-ray reflectometer for multilayer characterization in the 15–150 keV energy band

    SciTech Connect

    Windt, David L.

    2015-04-15

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15–150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument’s design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  17. MEASUREMENT OF THE HIGH ENERGY COMPONENT OF THE X-RAY SPECTRA INTHE VENUS ECR ION SOURCE

    SciTech Connect

    Leitner, Daniela; Benitez, Janilee Y.; Lyneis, Claude M.; Todd,Damon S.; Ropponen,Tommi; Ropponen,Janne; Koivisto, Hannu; Gammino, Santo

    2007-11-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for Nuclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental set-up to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular the collimation and background shielding can be problematic. In this paper we will discuss the experimental set-up for such a measurement, the energy calibration and background reduction, the correction for detector efficiency, the shielding of the detector and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power and heating frequency.

  18. Laboratory-based x-ray reflectometer for multilayer characterization in the 15-150 keV energy band

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  19. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  20. Capabilities of dual-energy x-ray imaging in medicine and security

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymyr D.; Grinyov, Borys V.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Lysetska, Olena K.; Voronkin, Yevheniy F.; Kostioukevitch, Serhiy A.

    2012-10-01

    The dual-energy computer tomography compared with its traditional single-energy variant ensures substantially higher contrast sensitivity. The evaluation of the signal ratio from high-energy and low-energy detectors has been carried out using a simplified model of the dual-energy detector array and accounting for the X-ray tube spectrum. We proposed to use of a dual-energy receiving-detecting circuit with a detector pair ZnSe/CsI or ZnSe/CdWO that allows efficient distinction between muscular and bone tissues, which supports our earlier theoretical assumptions that this method could be successfully used for separate detection of materials differing in their effective atomic number Zeff and local density (e.g., calcium contents in bone densitometry), so as can be turn to account for new generation instruments. A possibility of dual energy tomography use for osteoporosis diagnostics was considered. Direct image reconstruction of biological objects has been carried out, demonstrating details of bones with different density. The density of the bone depends on the calcium content, which is not more than 20 % for the narrow part and about 18,5 % in the broad part. This results obtained were in good agreement with the results of the independent chemical analysis.

  1. Image quality and dose efficiency of high energy phase sensitive x-ray imaging: Phantom studies

    PubMed Central

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2014-01-01

    The goal of this preliminary study was to perform an image quality comparison of high energy phase sensitive imaging with low energy conventional imaging at similar radiation doses. The comparison was performed with the following phantoms: American College of Radiology (ACR), contrast-detail (CD), acrylic edge and tissue-equivalent. Visual comparison of the phantom images indicated comparable or improved image quality for all phantoms. Quantitative comparisons were performed through ACR and CD observer studies, both of which indicated higher image quality in the high energy phase sensitive images. The results of this study demonstrate the ability of high energy phase sensitive imaging to overcome existing challenges with the clinical implementation of phase contrast imaging and improve the image quality for a similar radiation dose as compared to conventional imaging near typical mammography energies. In addition, the results illustrate the capability of phase sensitive imaging to sustain the image quality improvement at high x-ray energies and for – breast – simulating phantoms, both of which indicate the potential to benefit fields such as mammography. Future studies will continue to investigate the potential for dose reduction and image quality improvement provided by high energy phase sensitive contrast imaging. PMID:24865208

  2. High-energy X-ray diffraction of melts and amorphous solids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Yu, T.; Wang, Y.; Eng, P. J.; Skinner, L. B.; Stubbs, J.; Prakapenka, V.

    2015-12-01

    The structural analysis of amorphous materials, glasses and liquids at extreme conditions using X-ray diffraction is a very challenging endeavor. The samples are typically very small and surrounded by pressure vessels, which result in a huge background signal which may be orders of magnitude stronger than the actual sample signal. Furthermore, the background signal changes during compression in diamond anvil cells (DAC), making analysis of the diffraction data impossible at large pressures (>60 GPa). A key factor for obtaining high quality structural data is the maximum obtainable Q of the data collection. While at ambient conditions a maximum Q of more than 20 Å-1 has become standard, at high pressures data have been reported and analyzed with a maximum Q as low as 7 Å-1, which significantly reduces the resolution of the obtained real space data for multicomponent systems. In order to overcome those challenges, we have successfully installed a multichannel collimator (MCC) for the DAC setup at APS/GSECARS 13-IDD and for the Paris Edinburgh Press (PEP) at 13-IDC. The MCC leads to a significant increase in signal to background ratio and the background remains almost constant during compression in a DAC and removes the additional diffraction signal from the pressure media in the PEP. The combination of MCC and the high-energy X-ray optics of the 13ID beamline enables data collection of melts, glasses and amorphous materials up to 10 GPa in the PEP with a maximum Q of about 16 Å-1 and the collection of amorphous materials and glasses up to pressures above 150 GPa with a maximum Q of about 13 Å-1, thus, enabling the structural investigation of amorphous materials at much larger pressures than previously achievable. Further, we have developed several new user-friendly software packages for the analysis of X-ray diffraction data with specific data reduction and optimization algorithms for the analysis of amorphous materials at high-pressure. In order to show the

  3. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    SciTech Connect

    Tomsick, John A.; Bodaghee, Arash; Chaty, Sylvain; Rodriguez, Jerome; Halpern, Jules; Kalemci, Emrah; Oezbey Arabaci, Mehtap

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  4. Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. II. Energetics and energy partition

    NASA Astrophysics Data System (ADS)

    Warmuth, A.; Mann, G.

    2016-04-01

    Aims: We derive constraints on energy release, transport and conversion processes in solar flares based on a detailed characterization of the physical parameters of both the thermal plasma and the accelerated nonthermal electrons based on X-ray observations. In particular, we address the questions of whether the energy required to heat the thermal plasma can be supplied by nonthermal particles, and how the energetics derived from X-rays compare to the total bolometric radiated energy. Methods: Time series of spectral fits and images for 24 flares ranging from GOES class C3.4 to X17.2 were obtained using RHESSI hard X-ray observations. This has been supplemented by GOES soft X-ray fluxes. In our companion Paper I, we have used this data set to obtain the basic physical parameters for the thermal plasma (using the isothermal approximation) and the injected energetic electrons (assuming the thick-target model). Here, we used this data set to derive the flare energetics, including thermal energy, radiative and conductive energy loss, gravitational and flow energy of the plasma, and kinetic energy of the injected electrons. We studied how the thermal energies compare to the energy in nonthermal electrons, and how the various energetics and energy partition depend on flare importance. Results: All flare energetics show a good to excellent correlation with the peak GOES flux. The gravitational energy of the evaporated plasma and the kinetic energy of plasma flows can be neglected in the discussion of flare energetics. The radiative energy losses are comparable to the maximum thermal energy, while the conductive losses are considerably higher than the maximum thermal energy, especially in weaker flares. The total heating requirement of the hot plasma amounts to ≈50% of the total bolometric energy loss, with the conductive losses as a major contribution. The nonthermal energy input by energetic electrons is not sufficient to account for the total heating requirements of

  5. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, S.; Jeon, P.-H.

    2016-04-01

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.

  6. Metrology for the Development of High Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Dpeegle, Chet

    2005-01-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 sq cm effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x- ray mirror fabrication process. Comparison of surface figure and microroughness measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  7. Metrology for the development of high-energy x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Speegle, Chet; Smithers, Martin

    2005-08-01

    We are developing grazing-incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 cm2 effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroformed-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of the x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x-ray mirror fabrication process. Comparison of axial slope measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  8. Remarkable events from X ray emulsion chambers and multiple production at LHC energy

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Talai, M. C.; Attallah, R.

    The CORSIKA programme and specific Monte Carlo collision generators are employed in the interpretation of X-ray emulsion chambers data on super gamma ray families at mountain altitude (Chacaltaya, Kanbala, Pamir...) and in the stratosphere (Concorde, balloons). The consequences of measurement conditions(energy thresholds levels...) are detailed to extract common features for the neutral and charged secondaries. The vertex is approached by invariant mass method, geometry, pseudo rapidity distributions , and factors. Sorting the gamma's coupled in the maximum of invariant histograms, we evaluate the multiplicity , , inelasticity behavior up to LHC energy. Attention is given to the penetration power of EAS which levels off one energy decade around the knee and observations related with the fragmentation region (high energy hadron and gamma spectra in EAS, intensity of families with halo's). Hints of new physics are considered around the intriguing alignments registrated in the energy band between colliders and LHC. Several events (stratosphere and mountain) exhibit coplanar emission at similar visible energy, suggesting the valence diquark breaking. Such violent breaking suppressing the leading cluster recombination might come from the rupture of the string under very high tension between the two partners of the diquark.

  9. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  10. Large-angle observatory with energy resolution for synoptic x-ray studies (LOBSTER-SXS)

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2011-09-01

    The soft X-ray band hosts a larger, more diverse range of variable sources than any other region of the electromagnetic spectrum. They are stars, compact binaries, SMBH's, the X-ray components of Gamma-Ray Bursts, their X-ray afterglows, and soft X-ray flares from supernova. We describe a concept for a very wide field (~ 4 ster) modular hybrid X-ray telescope system that can measure positions of bursts and fast transients with as good as arc second accuracy, the precision required to identify fainter and increasingly more distant events. The dimensions and materials of all telescope modules are identical. All but two are part of a cylindrical lobster-eye telescope with flat double sided mirrors that focus in one dimension and utilize a coded mask for resolution in the other. Their positioning accuracy is about an arc minute. The two remaining modules are made from the same materials but configured as a Kirkpatrick-Baez telescope with longer focal length that focuses in two dimensions. When pointed it refines the hybrid telescope's arc minute positions to an arc second and provides larger effective area for spectral and temporal measurements. Above 10 keV the mirrors act as an imaging collimator with positioning capability. For short duration events this hybrid focusing/coded mask system is more sensitive and versatile than either a 2D coded mask or a 2D lobster-eye telescope. Very wide field X-ray telescopes have become feasible as the ability to fabricate large area arrays of CCD and CMOS detectors has improved. This instrument's function in the soft X-ray band is similar to that of Swift in hard X-ray band and there is a larger variety of fast transients in the soft X-ray band. An instrument with considerably more sensitivity than current wide field X-ray detectors would be compatible with a modest NASA Explorer mission.

  11. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  12. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  13. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction.

    PubMed

    Almer, J D; Stock, S R

    2005-10-01

    High-energy synchrotron X-ray diffraction was used to study internal stresses in bone under in situ compressive loading. A transverse cross-section of a 12-14 year old beagle fibula was studied with 80.7 keV radiation, and the transmission geometry was used to quantify internal strains and corresponding stresses in the mineral phase, carbonated hydroxyapatite. The diffraction patterns agreed with tabulated patterns, and the distribution of diffracted intensity around 00.2/00.4 and 22.2 diffraction rings was consistent with the imperfect 00.1 fiber texture expected along the axis of a long bone. Residual compressive stress along the bone's longitudinal axis was observed in the specimen prior to testing: for 22.2 this stress equaled -95 MPa and for 00.2/00.4 was between -160 and -240 MPa. Diffraction patterns were collected for applied compressive stresses up to -110 MPa, and, up to about -100 MPa, internal stresses rose proportionally with applied stress but at a higher rate, corresponding to stress concentration in the mineral of 2.8 times the stress applied. The widths of the 00.2 and 00.4 diffraction peaks indicated that crystallite size perpendicular to the 00.1 planes increased from t=41 nm before stress was applied to t=44 nm at -118 MPa applied stress and that rms strain epsilon(rms) rose from 2200 muepsilon before loading to 4600 muepsilon at the maximum applied stress. Small angle X-ray scattering of the unloaded sample, recorded after deformation was complete, showed a collagen D-period of 66.4 nm (along the bone axis). PMID:16183302

  14. MeV per nucleon ion irradiation of nuclear materials with high energy synchrotron X-ray characterization

    NASA Astrophysics Data System (ADS)

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; Almer, Jonathan; Bhattacharya, S.; Mohamed, Walid; Seidman, D.; Ye, Bei; Yun, D.; Xu, Ruqing; Zhu, Shaofei

    2016-04-01

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ∼10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-ray and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.

  15. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    NASA Astrophysics Data System (ADS)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  16. Inelastic scattering measurements of low energy x-ray photons by organics, soil, water, wood, and metals

    NASA Astrophysics Data System (ADS)

    Paki Amouzou, P.; Gertsenshteyn, M.; Jannson, T.; Shnitser, P.; Savant, G.

    2006-08-01

    The angular distribution of the inelastic scattering of photons at low energies (<=80 KeV) has been measured in organic material, soil, rocks, wood, steel sheet, and water. The measurements have been performed under air inside an X-ray shield cabinet using X-rays tube as a photon source and a thermoelectrically cooled CdTe detector. Measurements have been taken for both single and combined materials. The contributions of inelastic scattering of photons for the lower Z material in a given configuration have been extracted. The measured signal is primarily Compton scattering. The measured inelastic scattering contributions were compared with the calculated inelastic scattering cross sections according to the Klein-Nishina theory, updated to include a practical energy distribution of an X-ray tube beam. Relatively good agreement was found for all targets under investigation. The slight discrepancy is attributed to photoelectric effect and sample configuration. Present results may act as a guide for optimization of X-ray imaging sensors and in particular of those based on lobster eye X-ray optics suitable for cargo inspection, improvised explosives detection, non-destructive evaluation, and medical imaging.

  17. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    SciTech Connect

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A.; Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O.; Issac, R. C.; Lemos, N. R. C.; Dias, J. M.; and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  18. A rotational and axial motion system load frame insert for in situ high energy x-ray studies.

    PubMed

    Shade, Paul A; Blank, Basil; Schuren, Jay C; Turner, Todd J; Kenesei, Peter; Goetze, Kurt; Suter, Robert M; Bernier, Joel V; Li, Shiu Fai; Lind, Jonathan; Lienert, Ulrich; Almer, Jonathan

    2015-09-01

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability. PMID:26429452

  19. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    SciTech Connect

    Forslind, B.

    1988-06-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references.

  20. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    SciTech Connect

    Shade, Paul A. Schuren, Jay C.; Turner, Todd J.; Blank, Basil; Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan; Suter, Robert M.; Bernier, Joel V.; Li, Shiu Fai; Lind, Jonathan

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.