Science.gov

Sample records for meiotic recombination hotspots

  1. Meiotic recombination at the Lmp2 hotspot tolerates minor sequence divergence between homologous chromosomes

    SciTech Connect

    Yoshino, Masayasu; Sagai, Tomoko; Shiroishi, Toshihiko

    1996-06-01

    Recombination is widely considered to linearly depend on the length of the homologous sequences. An 11% mismatch decreases the rate of phage-plasmid recombination 240-fold. Two single nucleotide mismatches, which reduce the longest uninterrupted stretch of similarity from 232 base pairs (bp) to 134 bp, reduce gene conversion in mouse L cells 20-fold. The efficiency of gene targeting through homologous recombination in mouse embryonic stem cells can be increased by using an isogenic, rather than a non-isogenic, DNA construct. In this study we asked whether a high degree of sequence identity between homologous mouse chromosomes enhances meiotic recombination at a hotspot. Sites of meiotic recombination in the mouse major histocompatibility complex (MHC) class II region are not randomly distributed but are almost all clustered within short segments known as recombinational hotspots. The wm7 MHC haplotype, derived from Japanese wild mice Mus musculus molossinus, enhances meiotic recombination at a hotspot near the Lmp2 gene. Heterozygotes between the wm7 haplotype and the b or k haplotypes have yielded a high frequency of recombination (2.1%) in 1.3 kilobase kb segment of this hotspot. 20 refs., 2 figs.

  2. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    PubMed

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion. PMID:25568937

  3. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo

    PubMed Central

    Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.; Paigen, Kenneth

    2016-01-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  4. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    PubMed

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  5. Stable recombination hotspots in birds.

    PubMed

    Singhal, Sonal; Leffler, Ellen M; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M; Strand, Alva I; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N; Griffith, Simon C; McVean, Gil; Przeworski, Molly

    2015-11-20

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution. PMID:26586757

  6. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  7. Stable recombination hotspots in birds

    PubMed Central

    Singhal, Sonal; Leffler, Ellen M.; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M.; Strand, Alva I.; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N.; Griffith, Simon C.; McVean, Gil; Przeworski, Molly

    2016-01-01

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species, the zebra finch Taeniopygia guttata and the long-tailed finch Poephila acuticauda. We find that both species have hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, the two species share most hotspots, with conservation seemingly extending over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution. PMID:26586757

  8. Meiotic recombination mechanisms.

    PubMed

    Grelon, Mathilde

    2016-01-01

    Meiosis is a specialized cell division at the origin of the haploid cells that eventually develop into the gametes. It therefore lies at the heart of Mendelian heredity. Recombination and redistribution of the homologous chromosomes arising during meiosis constitute an important source of genetic diversity, conferring to meiosis a particularly important place in the evolution and the diversification of the species. Our understanding of the molecular mechanisms governing meiotic recombination has considerably progressed these last decades, benefiting from complementary approaches led on various model species. An overview of these mechanisms will be provided as well as a discussion on the implications of these recent discoveries. PMID:27180110

  9. Recombination hotspots: Models and tools for detection.

    PubMed

    Paul, Prosenjit; Nag, Debjyoti; Chakraborty, Supriyo

    2016-04-01

    Recombination hotspots are the regions within the genome where the rate, and the frequency of recombination are optimum with a size varying from 1 to 2kb. The recombination event is mediated by the double-stranded break formation, guided by the combined enzymatic action of DNA topoisomerase and Spo 11 endonuclease. These regions are distributed non-uniformly throughout the human genome and cause distortions in the genetic map. Numerous lines of evidence suggest that the number of hotspots known in humans has increased manifold in recent years. A few facts about the hotspot evolutions were also put forward, indicating the differences in the hotspot position between chimpanzees and humans. In mice, recombination hot spots were found to be clustered within the major histocompatibility complex (MHC) region. Several models, that help explain meiotic recombination has been proposed. Moreover, scientists also developed some computational tools to locate the hotspot position and estimate their recombination rate in humans is of great interest to population and medical geneticists. Here we reviewed the molecular mechanisms, models and in silico prediction techniques of hot spot residues. PMID:26991854

  10. Mechanism and regulation of meiotic recombination initiation

    PubMed Central

    Lam, Isabel; Keeney, Scott

    2015-01-01

    Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence. PMID:25324213

  11. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing

    SciTech Connect

    Hellsten, Uffe; Wright, Kevin M.; Jenkins, Jerry; Shu, Shengqiang; Yuan, Yao-Wu; Wessler, Susan R.; Schmutz, Jeremy; Willis, John H.; Rokhsar, Daniel S.

    2013-11-13

    Meiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice hotspots are largely defined by binding sites of the PRDM9 protein. To investigate the detailed recombination pattern in a flowering plant we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts. Their distribution defines some 13,000 hotspots of varying strengths, interspersed with cold regions of undetectably low recombination. Average recombination rates peak near starts of genes and fall off sharply, exhibiting polarity. Within genes, recombination tracts are more likely to terminate in exons than in introns. The general pattern is similar to that observed in yeast, as well as in PRDM9-knockout mice, suggesting that recombination initiation described here in Mimulus may reflect ancient and conserved eukaryotic mechanisms

  12. Meiotic recombination and genome evolution in plants.

    PubMed

    Melamed-Bessudo, Cathy; Shilo, Shay; Levy, Avraham A

    2016-04-01

    Homologous recombination affects genome evolution through crossover, gene conversion and point mutations. Whole genome sequencing together with a detailed epigenome analysis have shed new light on our understanding of how meiotic recombination shapes plant genes and genome structure. Crossover events are associated with DNA sequence motifs, together with an open chromatin signature (hypomethylated CpGs, low nucleosome occupancy or specific histone modifications). The crossover landscape may differ between male and female meiocytes and between species. At the gene level, crossovers occur preferentially in promoter regions in Arabidopsis. In recent years, there is rising support suggesting that biased mismatch repair during meiotic recombination may increase GC content genome-wide and may be responsible for the GC content gradient found in many plant genes. PMID:26939088

  13. A Glance at Recombination Hotspots in the Domestic Cat.

    PubMed

    Alhaddad, Hasan; Zhang, Chi; Rannala, Bruce; Lyons, Leslie A

    2016-01-01

    Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i) infer the population-scaled recombination rate (ρ), and (ii) identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701) were genotyped in twenty-two East Asian feral cats (random bred). The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X) with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements. PMID:26859385

  14. A Glance at Recombination Hotspots in the Domestic Cat

    PubMed Central

    Alhaddad, Hasan; Zhang, Chi; Rannala, Bruce; Lyons, Leslie A.

    2016-01-01

    Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i) infer the population-scaled recombination rate (ρ), and (ii) identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701) were genotyped in twenty-two East Asian feral cats (random bred). The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X) with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements. PMID:26859385

  15. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  16. A coalescent model of recombination hotspots.

    PubMed Central

    Wiuf, Carsten; Posada, David

    2003-01-01

    Recent experimental findings suggest that the assumption of a homogeneous recombination rate along the human genome is too naive. These findings point to block-structured recombination rates; certain regions (called hotspots) are more prone than other regions to recombination. In this report a coalescent model incorporating hotspot or block-structured recombination is developed and investigated analytically as well as by simulation. Our main results can be summarized as follows: (1) The expected number of recombination events is much lower in a model with pure hotspot recombination than in a model with pure homogeneous recombination, (2) hotspots give rise to large variation in recombination rates along the genome as well as in the number of historical recombination events, and (3) the size of a (nonrecombining) block in the hotspot model is likely to be overestimated grossly when estimated from SNP data. The results are discussed with reference to the current debate about block-structured recombination and, in addition, the results are compared to genome-wide variation in recombination rates. A number of new analytical results about the model are derived. PMID:12750351

  17. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates

    PubMed Central

    Ehmsen, Kirk T.

    2009-01-01

    Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs. PMID:20098639

  18. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    PubMed Central

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  19. Properties of natural double-strand-break sites at a recombination hotspot in Saccharomyces cerevisiae.

    PubMed Central

    Haring, Stuart J; Halley, George R; Jones, Alex J; Malone, Robert E

    2003-01-01

    This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3'-to-5' conversion gradient, and two DSB sites located approximately 550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation. PMID:14504220

  20. Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans.

    PubMed

    Yu, Zhouliang; Kim, Yumi; Dernburg, Abby F

    2016-06-01

    During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs. PMID:27013114

  1. Active and Inactive Transplacement of the M26 Recombination Hotspot in Schizosaccharomyces Pombe

    PubMed Central

    Virgin, J. B.; Metzger, J.; Smith, G. R.

    1995-01-01

    The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity. PMID:8536980

  2. Yeast meiotic mutants proficient for the induction of ectopic recombination.

    PubMed Central

    Engebrecht, J; Masse, S; Davis, L; Rose, K; Kessel, T

    1998-01-01

    A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination. PMID:9504908

  3. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair. PMID:26520106

  4. DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature.

    PubMed

    Hyppa, Randy W; Fowler, Kyle R; Cipak, Lubos; Gregan, Juraj; Smith, Gerald R

    2014-01-01

    Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination. PMID:24089141

  5. DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature

    PubMed Central

    Hyppa, Randy W.; Fowler, Kyle R.; Cipak, Lubos; Gregan, Juraj; Smith, Gerald R.

    2014-01-01

    Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination. PMID:24089141

  6. Meiotic Segregation and Male Recombination in Interspecific Hybrids of Drosophila

    PubMed Central

    Coyne, Jerry A.

    1986-01-01

    Male hybrids between three pairs of Drosophila species show no substantial distortion of Mendelian segregation and no appreciable male recombination. These results do not support the theories that meiotic drive alleles of large effect are often fixed within species and that transposable genetic elements cause speciation. PMID:3021573

  7. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  8. Replication Origin Selection Regulates the Distribution of Meiotic Recombination

    PubMed Central

    Wu, Pei-Yun Jenny; Nurse, Paul

    2014-01-01

    Summary The program of DNA replication, defined by the temporal and spatial pattern of origin activation, is altered during development and in cancers. However, whether changes in origin usage play a role in regulating specific biological processes remains unknown. We investigated the consequences of modifying origin selection on meiosis in fission yeast. Genome-wide changes in the replication program of premeiotic S phase do not affect meiotic progression, indicating that meiosis neither activates nor requires a particular origin pattern. In contrast, local changes in origin efficiencies between different replication programs lead to changes in Rad51 recombination factor binding and recombination frequencies in these domains. We observed similar results for Rad51 when changes in efficiencies were generated by directly targeting expression of the Cdc45 replication factor. We conclude that origin selection is a key determinant for organizing meiotic recombination, providing evidence that genome-wide modifications in replication program can modulate cellular physiology. PMID:24560273

  9. An Examination of the Relationship between Hotspots and Recombination Associated with Chromosome 21 Nondisjunction

    PubMed Central

    Tinker, Stuart W.; Allen, Emily Graves; Bean, Lora J. H.; Begum, Ferdouse; Feingold, Eleanor; Chowdhury, Reshmi; Cheung, Vivian; Sherman, Stephanie L.

    2014-01-01

    Trisomy 21, resulting in Down Syndrome (DS), is the most common autosomal trisomy among live-born infants and is caused mainly by nondisjunction of chromosome 21 within oocytes. Risk factors for nondisjunction depend on the parental origin and type of meiotic error. For errors in the oocyte, increased maternal age and altered patterns of recombination are highly associated with nondisjunction. Studies of normal meiotic events in humans have shown that recombination clusters in regions referred to as hotspots. In addition, GC content, CpG fraction, Poly(A)/Poly(T) fraction and gene density have been found to be significant predictors of the placement of sex-averaged recombination in the human genome. These observations led us to ask whether the altered patterns of recombination associated with maternal nondisjunction of chromosome 21 could be explained by differences in the relationship between recombination placement and recombination-related genomic features (i.e., GC content, CpG fraction, Poly(A)/Poly(T) fraction or gene density) on 21q or differential hot-spot usage along the nondisjoined chromosome 21. We found several significant associations between our genomic features of interest and recombination, interestingly, these results were not consistent among recombination types (single and double proximal or distal events). We also found statistically significant relationships between the frequency of hotspots and the distribution of recombination along nondisjoined chromosomes. Collectively, these findings suggest that factors that affect the accessibility of a specific chromosome region to recombination may be altered in at least a proportion of oocytes with MI and MII errors. PMID:24926858

  10. hotspot: software to support sperm-typing for investigating recombination hotspots

    PubMed Central

    Dutheil, Julien Y.; Klötzl, Fabian; Haubold, Bernhard

    2016-01-01

    Motivation: In many organisms, including humans, recombination clusters within recombination hotspots. The standard method for de novo detection of recombinants at hotspots is sperm typing. This relies on allele-specific PCR at single nucleotide polymorphisms. Designing allele-specific primers by hand is time-consuming. We have therefore written a package to support hotspot detection and analysis. Results: hotspot consists of four programs: asp looks up SNPs and designs allele-specific primers; aso constructs allele-specific oligos for mapping recombinants; xov implements a maximum-likelihood method for estimating the crossover rate; six, finally, simulates typing data. Availability and Implementation: hotspot is written in C. Sources are freely available under the GNU General Public License from http://github.com/evolbioinf/hotspot/ Contact: haubold@evolbio.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153632

  11. Crossovers are associated with mutation and biased gene conversion at recombination hotspots.

    PubMed

    Arbeithuber, Barbara; Betancourt, Andrea J; Ebner, Thomas; Tiemann-Boege, Irene

    2015-02-17

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  12. Crossovers are associated with mutation and biased gene conversion at recombination hotspots

    PubMed Central

    Arbeithuber, Barbara; Betancourt, Andrea J.; Ebner, Thomas; Tiemann-Boege, Irene

    2015-01-01

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  13. Meiotic recombination analysis in female ducks (Anas platyrhynchos).

    PubMed

    Pigozzi, M I; Del Priore, L

    2016-06-01

    Meiotic recombination in female ducks was directly studied by immunolocalization of MLH1 protein, a mismatch repair protein of mature recombination nodules. In total, 6820 crossovers were scored along the autosomal synaptonemal complexes in 122 meiotic nuclei. From this analysis we predict that the female map length of the duck is 2845 cM, with a genome wide recombination rate of 2 cM/Mb. MLH1-focus mapping along the six largest bivalents shows regional variations of recombination frequencies that can be linked to differences in chromosome morphology. From this MLH1 mapping it can be inferred that distally located markers will appear more separated in genetic maps than physically equidistant markers located near the centromeres on bivalents 1 and 2. Instead, markers at interstitial positions on the acrocentric bivalents 3-6 will appear more tightly linked than expected on the basis of their physical distance because recombination is comparatively lower at the mid region of these chromosomes. The present results provide useful information to complement linkage mapping in ducks and extend previous knowledge about the variation of recombination rates among domestic Galloanserae. PMID:27115519

  14. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  15. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

    PubMed Central

    Laureau, Raphaëlle; Loeillet, Sophie; Salinas, Francisco; Bergström, Anders; Legoix-Né, Patricia; Liti, Gianni; Nicolas, Alain

    2016-01-01

    In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction. PMID:26828862

  16. Meiotic recombination initiated by a double-strand break in rad50{Delta} yeast cells otherwise unable to initiate meiotic recombination

    SciTech Connect

    Malkova, A.; Haber, J.E.; Dawson, D.

    1996-06-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand breaks (DSBs). We have developed a system to compare the properties of meiotic DSBs with those created by the site-specific HO endonuclease. HO endonuclease was expressed under the control of the meiotic-specific SPO13 promoter, creating a DSB at a single site on one of yeast`s 16 chromosomes. In Rad{sup +} strains the times of appearance of the HO-induced DSBs and of subsequent recombinants are coincident with those induced by normal meiotic DSBs. Physical monitoring of DNA showed that SPO13::HO induced gene conversions both in Rad{sup +} and in rad50{Delta} cells that cannot initiate normal meiotic DSBs. We find that the RAD50 gene is important, but not essential, for recombination even after a DSB has been created in a meiotic cell. In rad50{Delta} cells, some DSBs are not repaired until a broken chromosome has been packaged into a spore and is subsequently germinated. This suggests that a broken chromosome does not signal an arrest of progression through meiosis. The recombination defect in rad50{Delta} diploids is not, however, meiotic specific, as mitotic rad50 diploids, experiencing an HO-induced DSB, exhibit similar departures from wild-type recombination. 57 refs., 5 figs., 3 tabs.

  17. Repression of harmful meiotic recombination in centromeric regions.

    PubMed

    Nambiar, Mridula; Smith, Gerald R

    2016-06-01

    During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others. PMID:26849908

  18. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    PubMed

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  19. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.

    PubMed Central

    Chambers, S R; Hunter, N; Louis, E J; Borts, R H

    1996-01-01

    Efficient genetic recombination requires near-perfect homology between participating molecules. Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. The effects of chromosomal divergence in diploids of Saccharomyces cerevisiae in which one copy of chromosome III is derived from a closely related species, Saccharomyces paradoxus, have been examined. Meiotic recombination between the diverged chromosomes is decreased by 25-fold. Spore viability is reduced with an observable increase in the number of tetrads with only two or three viable spores. Asci with only two viable spores are disomic for chromosome III, consistent with meiosis I nondisjunction of the homeologs. Asci with three viable spores are highly enriched for recombinants relative to tetrads with four viable spores. In 96% of the class with three viable spores, only one spore possesses a recombinant chromosome III, suggesting that the recombination process itself contributes to meiotic death. This phenomenon is dependent on the activities of the mismatch repair genes PMS1 and MSH2. A model of mismatch-stimulated chromosome loss is proposed to account for this observation. As expected, crossing over is increased in pms1 and msh2 mutants. Furthermore, genetic exchange in pms1 msh2 double mutants is affected to a greater extent than in either mutant alone, suggesting that the two proteins act independently to inhibit homeologous recombination. All mismatch repair-deficient strains exhibited reductions in the rate of chromosome III nondisjunction. PMID:8887641

  20. INVESTIGATION OF POSSIBLE AGE EFFECTS ON MEIOTIC CHROMOSOMAL RECOMBINATION AND SEGREGATION IN ARMENIAN HAMSTER SPERMATOCYTES

    EPA Science Inventory

    Male Armenian hamsters (Cricetulus migratorius; 2N:22) were evaluated for age effects upon meiotic recombination and aneuploidy incidence. Primary spermatocytes from young and old animals revealed similar chiasma frequencies. The incidence of terminal-type chiasmata in sex bivale...

  1. Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination.

    PubMed Central

    Grishchuk, A L; Kohli, J

    2003-01-01

    The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. PMID:14668362

  2. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium

    PubMed Central

    Wall, Jeffrey D.; Stevison, Laurie S.

    2016-01-01

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. PMID:27226166

  3. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium.

    PubMed

    Wall, Jeffrey D; Stevison, Laurie S

    2016-01-01

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. PMID:27226166

  4. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex.

    PubMed

    Hamer, Geert; Wang, Hong; Bolcun-Filas, Ewelina; Cooke, Howard J; Benavente, Ricardo; Höög, Christer

    2008-08-01

    The synaptonemal complex is an elaborate meiosis-specific supramolecular protein assembly that promotes chromosome synapsis and meiotic recombination. We inactivated the meiosis-specific gene Tex12 and found that TEX12 is essential for progression of meiosis in both male and female germ cells. Structural analysis of the synaptonemal complex in Tex12-/- meiocytes revealed a disrupted central element structure, a dense structure residing between the synapsed homologous chromosomes. Chromosome synapsis is initiated at multiple positions along the paired homologous chromosomes in Tex12-/- meiotic cells, but fails to propagate along the chromosomes. Furthermore, although meiotic recombination is initiated in Tex12-/- meiotic cells, these early recombination events do not develop into meiotic crossovers. Hence, the mere initiation of synapsis is not sufficient to support meiotic crossing-over. Our results show that TEX12 is a component of the central element structure of the synaptonemal complex required for propagation of synapsis along the paired homologous chromosomes and maturation of early recombination events into crossovers. PMID:18611960

  5. Analysis of Yeast Sporulation Efficiency, Spore Viability, and Meiotic Recombination on Solid Medium.

    PubMed

    Börner, G Valentin; Cha, Rita S

    2015-11-01

    Under conditions of nutrient deprivation, yeast cells initiate a differentiation program in which meiosis is induced and spores are formed. During meiosis, one round of genome duplication is followed by two rounds of chromosome segregation (meiosis I and meiosis II) to generate four haploid nuclei. Meiotic recombination occurs during prophase I. During sporogenesis, each nucleus becomes surrounded by an individual spore wall, and all four haploid spores become contained as a tetrad within an ascus. Important insights into the meiotic function(s) of a gene of interest can be gained by observing the effects of gene mutations on spore viability and viability patterns among tetrads. Moreover, recombination frequencies among viable spores can reveal potential involvement of the gene during meiotic exchange between homologous chromosomes. Here, we describe methods for inducing spore formation on solid medium, determining spore viability, and measuring, via tetrad analysis, frequencies of crossing over and gene conversion as indicators of meiotic chromosome exchange. PMID:26527763

  6. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Kee, Kehkooi; Keeney, Scott

    2002-01-01

    In Saccharomyces cerevisiae, formation of the DNA double-strand breaks (DSBs) that initiate meiotic recombination requires the products of at least 10 genes. Spo11p is thought to be the catalytic subunit of the DNA cleaving activity, but the roles of the other proteins, and the interactions among them, are not well understood. This study demonstrates genetic and physical interactions between the products of SPO11 and another early meiotic gene required for DSB formation, REC102. We found that epitope-tagged versions of SPO11 and REC102 that by themselves were capable of supporting normal or nearly normal levels of meiotic recombination conferred a severe synthetic cold-sensitive phenotype when combined in the same cells. DSB formation, meiotic gene conversion, and spore viability were drastically reduced in the doubly tagged strain at a nonpermissive temperature. This conditional defect could be partially rescued by expression of untagged SPO11, but not by expression of untagged REC102, indicating that tagged REC102 is fully dominant for this synthetic phenotype. Both tagged and wild-type Spo11p co-immunoprecipitated with tagged Rec102p from meiotic cell extracts, indicating that these proteins are present in a common complex in vivo. Tagged Rec102p localized to the nucleus in whole cells and to chromatin on spread meiotic chromosomes. Our results are consistent with the idea that a multiprotein complex that includes Spo11p and Rec102p promotes meiotic DSB formation. PMID:11805049

  7. Regional differences in recombination hotspots between two chicken populations

    PubMed Central

    2010-01-01

    Background Although several genetic linkage maps of the chicken genome have been published, the resolution of these maps is limited and does not allow the precise identification of recombination hotspots. The availability of more than 3.2 million SNPs in the chicken genome and the recent advances in high throughput genotyping techniques enabled us to increase marker density for the construction of a high-resolution linkage map of the chicken genome. This high-resolution linkage map allowed us to study recombination hotspots across the genome between two chicken populations: a purebred broiler line and a broiler × broiler cross. In total, 1,619 animals from the two different broiler populations were genotyped with 17,790 SNPs. Results The resulting linkage map comprises 13,340 SNPs. Although 360 polymorphic SNPs that had not been assigned to a known chromosome on chicken genome build WASHUC2 were included in this study, no new linkage groups were found. The resulting linkage map is composed of 31 linkage groups, with a total length of 3,054 cM for the sex-average map of the combined population. The sex-average linkage map of the purebred broiler line is 686 cM smaller than the linkage map of the broiler × broiler cross. Conclusions In this study, we present a linkage map of the chicken genome at a substantially higher resolution than previously published linkage maps. Regional differences in recombination hotspots between the two mapping populations were observed in several chromosomes near the telomere of the p arm; the sex-specific analysis revealed that these regional differences were mainly caused by female-specific recombination hotspots in the broiler × broiler cross. PMID:20141624

  8. MEIOB Targets Single-Strand DNA and Is Necessary for Meiotic Recombination

    PubMed Central

    Hervé, Roxane; Finsterbusch, Friederike; Tourpin, Sophie; Le Bouffant, Ronan; Duquenne, Clotilde; Messiaen, Sébastien; Martini, Emmanuelle; Bernardino-Sgherri, Jacqueline; Toth, Attila; Habert, René; Livera, Gabriel

    2013-01-01

    Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB). This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 −/− spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob −/− meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination. PMID:24068956

  9. Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Hong, Soogil; Kim, Keun Pil

    2013-01-01

    Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of “partner choice” in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most double-strand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias. PMID:24213600

  10. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain

    2002-01-01

    In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452

  11. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination.

    PubMed Central

    Thompson, D A; Stahl, F W

    1999-01-01

    Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange. PMID:10511544

  12. The Rec102 Mutant of Yeast Is Defective in Meiotic Recombination and Chromosome Synapsis

    PubMed Central

    Bhargava, J.; Engebrecht, J. A.; Roeder, G. S.

    1992-01-01

    A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11. PMID:1732169

  13. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans.

    PubMed

    Sun, Sheng; Billmyre, R Blake; Mieczkowski, Piotr A; Heitman, Joseph

    2014-12-01

    In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results

  14. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations.

    PubMed

    Tempest, Helen G

    2011-02-01

    Since the early 1990s male infertility has successfully been treated by intracytoplasmic sperm injection (ICSI), nevertheless concerns have been raised regarding the genetic risk of ICSI. Chromosome aneuploidy (the presence of extra or missing chromosomes) is the leading cause of pregnancy loss and mental retardation in humans. While the majority of chromosome aneuploidies are maternal in origin, the paternal contribution to aneuploidy is clinically relevant particularly for the sex chromosomes. Given that it is difficult to study female gametes investigations are predominantly conducted in male meiotic recombination and sperm aneuploidy. Research suggests that infertile men have increased levels of sperm aneuploidy and that this is likely due to increased errors in meiotic recombination and chromosome synapsis within these individuals. It is perhaps counterintuitive but there appears to be no selection against chromosomally aneuploid sperm at fertilization. In fact the frequency of aneuploidy in sperm appears to be mirrored in conceptions. Given this information this review will cover our current understanding of errors in meiotic recombination and chromosome synapsis and how these may contribute to increased sperm aneuploidy. Frequencies of sperm aneuploidy in infertile men and individuals with constitutional karyotypic abnormalities are reviewed, and based on these findings, indications for clinical testing of sperm aneuploidy are discussed. In addition, the application of single nucleotide arrays for the analysis of meiotic recombination and identification of parental origin of aneuploidy are considered. PMID:21204593

  15. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination

    PubMed Central

    Zamudio, Natasha; Barau, Joan; Teissandier, Aurélie; Walter, Marius; Borsos, Maté; Servant, Nicolas; Bourc'his, Déborah

    2015-01-01

    DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L−/− meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events. PMID:26109049

  16. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize

    PubMed Central

    Li, Xiang; Li, Lin; Yan, Jianbing

    2015-01-01

    Meiotic recombination drives eukaryotic sexual reproduction and the generation of genome diversity. Tetrad analysis, which examines the four chromatids resulting from a single meiosis, is an ideal method to study the mechanisms of homologous recombination. Here we develop a method to isolate the four microspores from a single tetrad in maize for the purpose of whole-genome sequencing. A high-resolution recombination map reveals that crossovers are unevenly distributed across the genome and are more likely to occur in the genic than intergenic regions, especially common in the 5′- and 3′-end regions of annotated genes. The direct detection of genomic exchanges suggests that conversions likely occur in most crossover tracts. Negative crossover interference and weak chromatid interference are observed at the population level. Overall, our findings further our understanding of meiotic recombination with implications for both basic and applied research. PMID:25800954

  17. Meiotic recombination counteracts male-biased mutation (male-driven evolution).

    PubMed

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-27

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations. PMID:26791621

  18. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  19. Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes.

    PubMed

    Wang, Hong; Höög, Christer

    2006-05-22

    Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3(-)(/)(-) females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3(-)(/)(-) oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3(-)(/)(-) oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual gammaH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes. PMID:16717125

  20. A Chromosomal Rearrangement Hotspot Can Be Identified from Population Genetic Variation and Is Coincident with a Hotspot for Allelic Recombination

    PubMed Central

    Lindsay, Sarah J.; Khajavi, Mehrdad; Lupski, James R.; Hurles, Matthew E.

    2006-01-01

    Insights into the origins of structural variation and the mutational mechanisms underlying genomic disorders would be greatly improved by a genomewide map of hotspots of nonallelic homologous recombination (NAHR). Moreover, our understanding of sequence variation within the duplicated sequences that are substrates for NAHR lags far behind that of sequence variation within the single-copy portion of the genome. Perhaps the best-characterized NAHR hotspot lies within the 24-kb-long Charcot-Marie-Tooth disease type 1A (CMT1A)–repeats (REPs) that sponsor deletions and duplications that cause peripheral neuropathies. We investigated structural and sequence diversity within the CMT1A-REPs, both within and between species. We discovered a high frequency of retroelement insertions, accelerated sequence evolution after duplication, extensive paralogous gene conversion, and a greater than twofold enrichment of SNPs in humans relative to the genome average. We identified an allelic recombination hotspot underlying the known NAHR hotspot, which suggests that the two processes are intimately related. Finally, we used our data to develop a novel method for inferring the location of an NAHR hotspot from sequence variation within segmental duplications and applied it to identify a putative NAHR hotspot within the LCR22 repeats that sponsor velocardiofacial syndrome deletions. We propose that a large-scale project to map sequence variation within segmental duplications would reveal a wealth of novel chromosomal-rearrangement hotspots. PMID:17033965

  1. Activation-Induced Cytidine Deaminase Does Not Impact Murine Meiotic Recombination

    PubMed Central

    Cortesao, Catarina S.; Freitas, Raquel F.; Barreto, Vasco M.

    2013-01-01

    Activation-induced cytidine deaminase (AID) was first described as the triggering enzyme of the B-cell−specific reactions that edit the immunoglobulin genes, namely somatic hypermutation, gene conversion, and class switch recombination. Over the years, AID was also detected in cells other than lymphocytes, and it has been assigned additional roles in the innate defense against transforming retroviruses, in retrotransposition restriction and in DNA demethylation. Notably, AID expression was found in germline tissues, and in heterologous systems it can induce the double-strand breaks required for the initiation of meiotic recombination and proper gamete formation. However, because AID-deficient mice are fully fertile, the molecule is not essential for meiosis. Thus, the remaining question that we addressed here is whether AID influences the frequency of meiotic recombination in mice. We measured the recombination events in the meiosis of male and female mice F1 hybrids of C57BL/6J and BALB/c, in Aicda+/+ and Aicda−/− background by using a panel of single-nucleotide polymorphisms that distinguishes C57BL/6J from BALB/c genome across the 19 autosomes. In agreement with the literature, we found that the frequency of recombination in the female germline was greater than in male germline, both in the Aicda+/+ and Aicda−/− backgrounds. No statistical difference was found in the average recombination events between Aicda+/+ and Aidca−/− animals, either in females or males. In addition, the recombination frequencies between single-nucleotide polymorphisms flanking the immunoglobulin heavy and immunoglobulin kappa loci was also not different. We conclude that AID has a minor impact, if any, on the overall frequency of meiotic recombination. PMID:23550130

  2. Meiotic recombination in normal and cloned bulls and their offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homologous chromosome pairing and recombination are essential components of meiosis and sexual reproduction. The reshuffling of genetic material through breakage and reunion of chromatids ensure proper segregation of homologous chromosomes in reduction division and genetic diversity in the progeny....

  3. How Hot Are Drosophila Hotspots? Examining Recombination Rate Variation and Associations with Nucleotide Diversity, Divergence, and Maternal Age in Drosophila pseudoobscura

    PubMed Central

    Manzano-Winkler, Brenda; McGaugh, Suzanne E.; Noor, Mohamed A. F.

    2013-01-01

    Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10–100x the background rate) called “hotspots.” Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample. PMID:23967224

  4. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  5. Modulating Mek1 kinase alters outcomes of meiotic recombination and the stringency of the recombination checkpoint response

    PubMed Central

    Hsin-Yen, Wu; Hsuan-Chung, Ho; Burgess, Sean M.

    2010-01-01

    Summary Background During meiosis, recombination between homologous chromosomes promotes their proper segregation. In budding yeast, programmed double-strand breaks (DSBs) promote recombination between homologs versus sister chromatids by dimerizing and activating Mek1, a chromosome axis-associated kinase. Mek1 is also a proposed effector kinase in the recombination checkpoint that arrests exit from pachytene in response to aberrant DNA/axis structures. Elucidating a role for Mek1 in the recombination checkpoint has been difficult since in mek1 loss-of-function mutants DSBs are rapidly repaired using a sister chromatid thereby bypassing formation of checkpoint-activating lesions. Here we tested the hypothesis that a MEK1 gain-of-function allele would enhance interhomolog bias and the recombination checkpoint response. Results When Mek1 activation was artificially maintained through GST-mediated dimerization, there was an enhanced skew toward interhomolog recombination and reduction of intersister events including multi-chromatid joint molecules. Increased interhomolog events were specifically repaired as noncrossovers rather than crossovers. Ectopic Mek1 dimerization was also sufficient to impose interhomolog bias in the absence of recombination checkpoint functions, thereby uncoupling these two processes. Finally, the stringency of the recombination checkpoint was enhanced in weak meiotic recombination mutants by blocking prophase exit in a subset of cells where arrest is not absolute. Conclusions We propose that Mek1 plays dual roles during meiotic prophase I by phosphorylating targets directly involved in the recombination checkpoint as well as targets involved in sister chromatid recombination. We discuss how regulation of pachytene exit by Mek1 or similar kinases could influence checkpoint stringency, which may differ among species and between sexes. PMID:20888230

  6. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    PubMed Central

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  7. Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways

    PubMed Central

    Keeney, Scott; Lange, Julian; Mohibullah, Neeman

    2015-01-01

    Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error-correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system. PMID:25421598

  8. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination.

    PubMed

    Stacey, Nicola J; Kuromori, Takashi; Azumi, Yoshitaka; Roberts, Gethin; Breuer, Christian; Wada, Takuji; Maxwell, Anthony; Roberts, Keith; Sugimoto-Shirasu, Keiko

    2006-10-01

    The Spo11 protein is a eukaryotic homologue of the archaeal DNA topoisomerase VIA subunit (topo VIA). In archaea it is involved, together with its B subunit (topo VIB), in DNA replication. However, most eukaryotes, including yeasts, insects and vertebrates, instead have a single gene for Spo11/topo VIA and no homologues for topo VIB. In these organisms, Spo11 mediates DNA double-strand breaks that initiate meiotic recombination. Many plant species, in contrast to other eukaryotes, have three homologues for Spo11/topo VIA and one for topo VIB. The homologues in Arabidopsis, AtSPO11-1, AtSPO11-2 and AtSPO11-3, all share 20-30% sequence similarity with other Spo11/topo VIA proteins, but their functional relationship during meiosis or other processes is not well understood. Previous genetic evidence suggests that AtSPO11-1 is a true orthologue of Spo11 in other eukaryotes and is required for meiotic recombination, whereas AtSPO11-3 is involved in DNA endo-reduplication as a part of the topo VI complex. In this study, we show that plants homozygous for atspo11-2 exhibit a severe sterility phenotype. Both male and female meiosis are severely disrupted in the atspo11-2 mutant, and this is associated with severe defects in synapsis during the first meiotic division and reduced meiotic recombination. Further genetic analysis revealed that AtSPO11-1 and AtSPO11-2 genetically interact, i.e. plants heterozygous for both atspo11-1 and atspo11-2 are also sterile, suggesting that AtSPO11-1 and AtSPO11-2 have largely overlapping functions. Thus, the three Arabidopsis Spo11 homologues appear to function in two discrete processes, i.e. AtSPO11-1 and AtSPO11-2 in meiotic recombination and AtSPO11-3 in DNA replication. PMID:17018031

  9. Meiotic recombination and male infertility: from basic science to clinical reality?

    PubMed

    Hann, Michael C; Lau, Patricio E; Tempest, Helen G

    2011-03-01

    Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine. PMID:21297654

  10. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis

    PubMed Central

    Yelina, Nataliya E.; Lambing, Christophe; Hardcastle, Thomas J.; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R.

    2015-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes. PMID:26494791

  11. Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots.

    PubMed Central

    Fearnhead, Paul; Harding, Rosalind M; Schneider, Julie A; Myers, Simon; Donnelly, Peter

    2004-01-01

    There has been considerable recent interest in understanding the way in which recombination rates vary over small physical distances, and the extent of recombination hotspots, in various genomes. Here we adapt, apply, and assess the power of recently developed coalescent-based approaches to estimating recombination rates from sequence polymorphism data. We apply full-likelihood estimation to study rate variation in and around a well-characterized recombination hotspot in humans, in the beta-globin gene cluster, and show that it provides similar estimates, consistent with those from sperm studies, from two populations deliberately chosen to have different demographic and selectional histories. We also demonstrate how approximate-likelihood methods can be used to detect local recombination hotspots from genomic-scale SNP data. In a simulation study based on 80 100-kb regions, these methods detect 43 out of 60 hotspots (ranging from 1 to 2 kb in size), with only two false positives out of 2000 subregions that were tested for the presence of a hotspot. Our study suggests that new computational tools for sophisticated analysis of population diversity data are valuable for hotspot detection and fine-scale mapping of local recombination rates. PMID:15342541

  12. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    PubMed

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome. PMID:26999777

  13. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics

    PubMed Central

    Cole, Francesca; Baudat, Frédéric; Grey, Corinne; Keeney, Scott; de Massy, Bernard; Jasin, Maria

    2014-01-01

    The ability to examine all chromatids from a single meiosis in yeast tetrads has been indispensable for defining mechanisms of homologous recombination initiated by DNA double-strand breaks (DSBs). Using a broadly applicable strategy for the analysis of chromatids from a single meiosis at two recombination hotspots in mouse oocytes and spermatocytes, we demonstrate here the unidirectional transfer of information — gene conversion — in both crossovers and noncrossovers. Whereas gene conversion in crossovers is associated with reciprocal exchange, the unbroken chromatid is not altered in noncrossover gene conversions, providing strong evidence that noncrossovers arise from a distinct pathway. Gene conversion frequently spares the binding site of the hotspot-specifying protein PRDM9 with the result that erosion of the hotspot is slowed. Thus, mouse tetrad analysis demonstrates how unique aspects of mammalian recombination mechanisms shape hotspot evolutionary dynamics. PMID:25151354

  14. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation

    PubMed Central

    de Vries, Femke A.T.; de Boer, Esther; van den Bosch, Mike; Baarends, Willy M.; Ooms, Marja; Yuan, Li; Liu, Jian-Guo; van Zeeland, Albert A.; Heyting, Christa; Pastink, Albert

    2005-01-01

    In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, γH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete γH2AX domains along each chromosome, whereas γH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies. PMID:15937223

  15. Mouse Pachytene Checkpoint 2 (Trip13) Is Required for Completing Meiotic Recombination but Not Synapsis

    PubMed Central

    Li, Xin; Schimenti, John C

    2007-01-01

    In mammalian meiosis, homologous chromosome synapsis is coupled with recombination. As in most eukaryotes, mammalian meiocytes have checkpoints that monitor the fidelity of these processes. We report that the mouse ortholog (Trip13) of pachytene checkpoint 2 (PCH2), an essential component of the synapsis checkpoint in Saccharomyces cerevisiae and Caenorhabditis elegans, is required for completion of meiosis in both sexes. TRIP13-deficient mice exhibit spermatocyte death in pachynema and loss of oocytes around birth. The chromosomes of mutant spermatocytes synapse fully, yet retain several markers of recombination intermediates, including RAD51, BLM, and RPA. These chromosomes also exhibited the chiasmata markers MLH1 and MLH3, and okadaic acid treatment of mutant spermatocytes caused progression to metaphase I with bivalent chromosomes. Double mutant analysis demonstrated that the recombination and synapsis genes Spo11, Mei1, Rec8, and Dmc1 are all epistatic to Trip13, suggesting that TRIP13 does not have meiotic checkpoint function in mice. Our data indicate that TRIP13 is required after strand invasion for completing a subset of recombination events, but possibly not those destined to be crossovers. To our knowledge, this is the first model to separate recombination defects from asynapsis in mammalian meiosis, and provides the first evidence that unrepaired DNA damage alone can trigger the pachytene checkpoint response in mice. PMID:17696610

  16. Fine-Structure Mapping of Meiosis-Specific Double-Strand DNA Breaks at a Recombination Hotspot Associated with an Insertion of Telomeric Sequences Upstream of the His4 Locus in Yeast

    PubMed Central

    Xu, F.; Petes, T. D.

    1996-01-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand DNA breaks (DSBs). Using two approaches, we mapped the position of DSBs associated with a recombination hotspot created by insertion of telomeric sequences into the region upstream of HIS4. We found that the breaks have no obvious sequence specificity and localize to a region of ~50 bp adjacent to the telomeric insertion. By mapping the breaks and by studies of the exonuclease III sensitivity of the broken ends, we conclude that most of the broken DNA molecules have blunt ends with 3'-hydroxyl groups. PMID:8807286

  17. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes.

    PubMed Central

    Storlazzi, A; Xu, L; Schwacha, A; Kleckner, N

    1996-01-01

    Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8799151

  18. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination

    PubMed Central

    Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A.; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J.; Suja, José A.; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H.

    2015-01-01

    CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63 deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63 deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination. PMID:26158450

  19. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes.

    PubMed

    Norman, Paul J; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A; Moesta, Achim K; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L; Guethlein, Lisbeth A; Carrington, Christine V F; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M; Ramdath, D Dan; Shiau, Ming-Yuh; Stephens, Henry A F; Struik, Siske; Tyan, Dolly; Verity, David H; Vaughan, Robert W; Davis, Ronald W; Fraser, Patricia A; Riley, Eleanor M; Ronaghi, Mostafa; Parham, Peter

    2009-05-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric "half" was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  20. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  1. Phylogenetic Mapping of Recombination Hotspots in Human Immunodeficiency Virus via Spatially Smoothed Change-Point Processes

    PubMed Central

    Minin, Vladimir N.; Dorman, Karin S.; Fang, Fang; Suchard, Marc A.

    2007-01-01

    We present a Bayesian framework for inferring spatial preferences of recombination from multiple putative recombinant nucleotide sequences. Phylogenetic recombination detection has been an active area of research for the last 15 years. However, only recently attempts to summarize information from several instances of recombination have been made. We propose a hierarchical model that allows for simultaneous inference of recombination breakpoint locations and spatial variation in recombination frequency. The dual multiple change-point model for phylogenetic recombination detection resides at the lowest level of our hierarchy under the umbrella of a common prior on breakpoint locations. The hierarchical prior allows for information about spatial preferences of recombination to be shared among individual data sets. To overcome the sparseness of breakpoint data, dictated by the modest number of available recombinant sequences, we a priori impose a biologically relevant correlation structure on recombination location log odds via a Gaussian Markov random field hyperprior. To examine the capabilities of our model to recover spatial variation in recombination frequency, we simulate recombination from a predefined distribution of breakpoint locations. We then proceed with the analysis of 42 human immunodeficiency virus (HIV) intersubtype gag recombinants and identify a putative recombination hotspot. PMID:17194781

  2. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels.

    PubMed

    Joshi, Neeraj; Brown, M Scott; Bishop, Douglas K; Börner, G Valentin

    2015-03-01

    During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome. PMID:25661491

  3. Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter![W

    PubMed Central

    Grandont, Laurie; Cuñado, Nieves; Coriton, Olivier; Huteau, Virgine; Eber, Frédérique; Chèvre, Anne Marie; Grelon, Mathilde; Chelysheva, Liudmila; Jenczewski, Eric

    2014-01-01

    Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus. PMID:24737673

  4. A Wd Repeat Protein, Rec14, Essential for Meiotic Recombination in Schizosaccharomyces Pombe

    PubMed Central

    Evans, D. H.; Li, Y. F.; Fox, M. E.; Smith, C. R.

    1997-01-01

    Mutations in the Schizosaccharomyces pombe rec14 gene reduce meiotic recombination by as much as a factor of 1000 in the three intervals tested on chromosomes I and III. A DNA clone complementing the rec14 mutation was shown by genetic and physical analysis to contain the rec14 gene, which was functional in plasmid-borne inserts as small as 1.4 kb. The rec14 gene contains two exons separated by a 53-bp intron, which was confirmed by analysis of rec14 transcripts. The spliced transcript encodes a protein product of 302 amino acids, which contains six WD repeat motifs found in the G-beta transducin family of proteins and other proteins, including the Saccharomyces cerevisiae Ski8 (Rec103) protein. Although the rec14 transcripts were present in mitotically dividing cells, rec14 mutations had no detectable effect on mitotic recombination. The pattern of expression of rec14 differs from that of previously analyzed S. pombe rec genes. Based upon mutant phenotypes and amino acid sequence similarities, we propose that S. pombe Rec14 is a functional homologue of S. cerevisiae Rec103. PMID:9258671

  5. Germinal Excisions of the Maize Transposon Activator Do Not Stimulate Meiotic Recombination or Homology-Dependent Repair at the Bz Locus

    PubMed Central

    Dooner, H. K.; Martinez-Ferez, I. M.

    1997-01-01

    Double-strand breaks have been implicated both in the initiation of meiotic recombination in yeast and as intermediates in the transposition process of nonreplicative transposons. Some transposons of this class, notably P of Drosophila and Tc1 of Caenorhabditis elegans, promote a form of homology-dependent premeiotic gene conversion upon excision. In this work, we have looked for evidence of an interaction between Ac transposition and meiotic recombination at the bz locus in maize. We find that the frequency of meiotic recombination between homologues is not enhanced by the presence of Ac in one of the bz heteroalleles and, conversely, that the presence of a homologous sequence in either trans (homologous chromosome) or cis (tandem duplication) does not promote conversion of the Ac insertion site. However, a tandem duplication of the bz locus may be destabilized by the insertion of Ac. We discuss possible reasons for the lack of interaction between Ac excision and homologous meiotic recombination in maize. PMID:9409847

  6. Distribution of Recombination Hotspots in the Human Genome – A Comparison of Computer Simulations with Real Data

    PubMed Central

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar. PMID:23776462

  7. Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.).

    PubMed

    van Baarlen, P; van Dijk, P J; Hoekstra, R F; de Jong, J H

    2000-10-01

    Taraxacum officinale L. (dandelion) is a vigorous weed in Europe with diploid sexual populations in the southern regions and partially overlapping populations of diploid sexuals and triploid or tetraploid apomicts in the central and northern regions. Previous studies have demonstrated unexpectedly high levels of genetic variation in the apomictic populations, suggesting the occurrence of genetic segregation in the apomicts and (or) hybridization between sexual and apomictic individuals. In this study we analysed meiosis in both sexual diploid and apomictic triploid plants to find mechanisms that could account for the high levels of genetic variation in the apomicts. Microscopic study of microsporocytes in the triploid apomicts revealed that the levels of chromosome pairing and chiasma formation at meiotic prophase I were lower than in that of the sexual diploids, but still sufficient to assume recombination between the homologues. Nomarski DIC (differential interference contrast) microscopy of optically cleared megasporocytes in the apomicts demonstrated incidental formation of tetrads, which suggests that hybridization can occur in triploid apomicts. PMID:11081973

  8. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice

    PubMed Central

    Gruhn, Jennifer R.; Al-Asmar, Nasser; Fasnacht, Rachael; Maylor-Hagen, Heather; Peinado, Vanessa; Rubio, Carmen; Broman, Karl W.; Hunt, Patricia A.; Hassold, Terry

    2016-01-01

    Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them. PMID:26749305

  9. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants.

    PubMed

    Knoll, Alexander; Puchta, Holger

    2011-03-01

    DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1. PMID:21081662

  10. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila

    PubMed Central

    Lake, Cathleen M; Nielsen, Rachel J; Guo, Fengli; Unruh, Jay R; Slaughter, Brian D; Hawley, R Scott

    2015-01-01

    Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with the DSB accessory protein Mei-P22, and localizes to those DSB sites that will mature into crossovers. In early pachytene Vilya localizes along the central region of the synaptonemal complex and to discrete foci. The accumulation of Vilya at foci is dependent on DSB formation. Immuno-electron microscopy demonstrates that Vilya is a component of recombination nodules, which mark the sites of crossover formation. Thus Vilya links the mechanism of DSB formation to either the selection of those DSBs that will become crossovers or to the actual process of crossing over. DOI: http://dx.doi.org/10.7554/eLife.08287.001 PMID:26452093

  11. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation

    PubMed Central

    Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl

    2015-01-01

    Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here. PMID:25993311

  12. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    PubMed

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton

    2016-03-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650

  13. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis

    PubMed Central

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J. Julian; Gartner, Anton

    2016-01-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650

  14. A torrid zone on mouse chromosome 1 containing a cluster of recombinational hotspots.

    PubMed

    Kelmenson, Peter M; Petkov, Petko; Wang, Xiaosong; Higgins, David C; Paigen, Beverly J; Paigen, Kenneth

    2005-02-01

    Within the 2.38-Mb Ath1 region of mouse chromosome 1, 42 of 45 genetic crossovers from crosses between C57BL/6J (B6) and either C3H/HeJ (H) or Mus spretus (SPRET) occurred in four zones (A-D); zone A, 100 kb long, contained a cluster of at least four recombination hotspots. F1 sperm assays indicate that within this "torrid zone" the most active hotspot (A3) can initiate recombination on H and SPRET but not B6 chromosomes. The A3 DNA sequence contains a (G/C)TTT repeat, long stretches of A or T, and a cyclic variation in AT content. Recombination was drastically reduced in a cross between B6 and a B6.SPRET Ath1 congenic strain, but was unaffected in a B6 x B6.H Ath1 congenic cross. Similar nonrandom clustering of hotspots has been observed in yeast and the major histocompatibility complexes of human and mouse. To the extent that torrid zones are a general feature of mammalian genomes, they have considerable implications for genetic mapping strategies in both human populations and mouse crosses. PMID:15489519

  15. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus

    PubMed Central

    Everitt, Richard G.; Didelot, Xavier; Batty, Elizabeth M.; Miller, Ruth R; Knox, Kyle; Young, Bernadette C.; Bowden, Rory; Auton, Adam; Votintseva, Antonina; Larner-Svensson, Hanna; Charlesworth, Jane; Golubchik, Tanya; Ip, Camilla L. C.; Godwin, Heather; Fung, Rowena; Peto, Tim E. A.; Walker, A. Sarah; Crook, Derrick W.; Wilson, Daniel J.

    2014-01-01

    Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping. PMID:24853639

  16. Etiology of Down Syndrome: Evidence for Consistent Association among Altered Meiotic Recombination, Nondisjunction and Maternal Age Across Populations

    PubMed Central

    Ghosh, Sujoy; Feingold, Eleanor; Dey, Subrata kumar

    2009-01-01

    Down syndrome caused by meiotic nondisjunction of chromosome 21 in humans, is well known to be associated with advanced maternal age, but success in identifying and understanding other risk factors has been limited. Recently published work in a U.S. population suggested intriguing interactions between the maternal age effect and altered recombination patterns during meiosis, but some of the results were counter-intuitive. We have tested these hypotheses in a population sample from India, and found that essentially all of the results of the U.S. study are replicated even in our ethnically very different population. We examined meiotic recombination patterns in a total of 138 families from the eastern part of India, each with a single free trisomy 21 child. We genotyped each family with a set of STR markers using PCR and characterized the stage of origin of nondisjunction and the recombination pattern of maternal chromosome 21 during oogenesis. Our sample contains 107 maternal meiosis I errors and 31 maternal meiosis II errors and we subsequently stratified them with respect to maternal age and the number of detectable crossover events. We observed an association between meiosis I nondisjuncion and recombination in the telomeric 5.1 Mb of chromosome 21. By contrast, in meiosis II cases we observed preferential peri-centromeric exchanges covering the proximal 5.7 Mb region, with interaction between maternal age and the location of the crossover. Overall reduction of recombination irrespective of maternal age is also evident in meiosis I cases. Our findings are very consistent with previously reported data in a U.S. population and our results are the first independent confirmation of those previous reports. This not only provides much needed confirmation of previous results, but it suggests that the genetic etiology underlying the occurrence of trisomy 21 may be similar across human populations. PMID:19533770

  17. Activation of an Alternative, Rec12 (Spo11)-Independent Pathway of Fission Yeast Meiotic Recombination in the Absence of a DNA Flap Endonuclease

    PubMed Central

    Farah, Joseph A.; Cromie, Gareth; Davis, Luther; Steiner, Walter W.; Smith, Gerald R.

    2005-01-01

    Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Δ mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Δ rec12Δ strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms. PMID:16118186

  18. The Red Queen Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human Genomes

    PubMed Central

    Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent

    2014-01-01

    Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution. PMID:25393762

  19. The red queen model of recombination hotspots evolution in the light of archaic and modern human genomes.

    PubMed

    Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent

    2014-11-01

    Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution. PMID:25393762

  20. Swi6, a Gene Required for Mating-Type Switching, Prohibits Meiotic Recombination in the Mat2-Mat3 ``cold Spot'' of Fission Yeast

    PubMed Central

    Klar, AJS.; Bonaduce, M. J.

    1991-01-01

    Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 ``hot spot'' for transposition should be contrasted with the ``cold spot'' of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination. PMID:1783290

  1. Isolation of Com1, a New Gene Required to Complete Meiotic Double-Strand Break-Induced Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Prinz, S.; Amon, A.; Klein, F.

    1997-01-01

    We have designed a screen to isolate mutants defective during a specific part of meiotic prophase I of the yeast Saccharomyces cerevisiae. Genes required for the repair of meiotic double-strand breaks or for the separation of recombined chromosomes are targets of this mutant hunt. The specificity is achieved by selecting for mutants that produce viable spores when recombination and reductional segregation are prevented by mutations in SPO11 and SPO13 genes, but fail to yield viable spores during a normal Rec(+) meiosis. We have identified and characterized a mutation com1-1, which blocks processing of meiotic double-strand breaks and which interferes with synaptonemal complex formation, homologous pairing and, as a consequence, spore viability after induction of meiotic recombination. The COM1/SAE2 gene was cloned by complementation, and the deletion mutant has a phenotype similar to com1-1. com1/sae2 mutants closely resemble the phenotype of rad50S, as assayed by phase-contrast microscopy for spore formation, physical and genetic analysis of recombination, fluorescence in situ hybridization to quantify homologous pairing and immunofluorescence and electron microscopy to determine the capability to synapse axial elements. PMID:9215887

  2. Novel Attributes of Hed1 Affect Dynamics and Activity of the Rad51 Presynaptic Filament during Meiotic Recombination*

    PubMed Central

    Busygina, Valeria; Saro, Dorina; Williams, Gareth; Leung, Wing-Kit; Say, Amanda F.; Sehorn, Michael G.; Sung, Patrick; Tsubouchi, Hideo

    2012-01-01

    During meiosis, recombination events that occur between homologous chromosomes help prepare the chromosome pairs for proper disjunction in meiosis I. The concurrent action of the Rad51 and Dmc1 recombinases is necessary for an interhomolog bias. Notably, the activity of Rad51 is tightly controlled, so as to minimize the use of the sister chromatid as recombination partner. We demonstrated recently that Hed1, a meiosis-specific protein in Saccharomyces cerevisiae, restricts the access of the recombinase accessory factor Rad54 to presynaptic filaments of Rad51. We now show that Hed1 undergoes self-association in a Rad51-dependent manner and binds ssDNA. We also find a strong stabilizing effect of Hed1 on the Rad51 presynaptic filament. Biochemical and genetic analyses of mutants indicate that these Hed1 attributes are germane for its recombination regulatory and Rad51 presynaptic filament stabilization functions. Our results shed light on the mechanism of action of Hed1 in meiotic recombination control. PMID:22115747

  3. Solution Structure and DNA-binding Properties of the Winged Helix Domain of the Meiotic Recombination HOP2 Protein*

    PubMed Central

    Moktan, Hem; Guiraldelli, Michel F.; Eyster, Craig A.; Zhao, Weixing; Lee, Chih-Ying; Mather, Timothy; Camerini-Otero, R. Daniel; Sung, Patrick; Zhou, Donghua H.; Pezza, Roberto J.

    2014-01-01

    The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination. PMID:24711446

  4. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    PubMed

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes. PMID:19799187

  5. Enhancement of spontaneous mitotic recombination by the meiotic mutant spo11-1 in Saccharomyces cerevisiae

    SciTech Connect

    Bruschi, C.V.; Esposito, M.S.

    1983-12-01

    Both nonreciprocal and reciprocal mitotic recombination are enhanced by the recessive mutant spo11-1, which was previously shown to affect meiosis by decreasing recombination and increasing nondisjunction. The mitotic effects are not distributed equally in all chromosomal regions. The genotypes of mitotic recombinants in spo11-1/spo11-1 diploid cells provide further evidence that widely spaced chromosomal markers undergo coincident conversion in mitosis.

  6. Evidence for human meiotic recombination interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19

    SciTech Connect

    Weber, J.L.; Wang, Z.; Hansen, K.; Stephenson, M.; Kappel, C.; Salzman, S.; Wilkie, P.J. ); Keats, B. ); Dracopoli, N.C. ); Brandriff, B.F.; Olsen, A.S. )

    1993-11-01

    An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)[sub n] tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP [open quotes]gene[close quotes] conversion without recombination was calculated as 3 [times] 10[sup [minus]4]/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality. 61 refs., 2 figs., 5 tabs.

  7. Meiotic recombination is suppressed near the histone-defined border of euchromatin and heterochromatin on chromosome 2L of Drosophila melanogaster.

    PubMed

    Coulthard, Alistair B; Taylor-Kamall, Rhodri W; Hallson, Graham; Axentiev, Anna; Sinclair, Don A; Honda, Barry M; Hilliker, Arthur J

    2016-04-01

    In Drosophila melanogaster, the borders between pericentric heterochromatin and euchromatin on the major chromosome arms have been defined in various ways, including chromatin-specific histone modifications, the binding patterns of heterochromatin-enriched chromosomal proteins, and various cytogenetic techniques. Elucidation of the genetic properties that independently define the different chromatin states associated with heterochromatin and euchromatin should help refine the boundary. Since meiotic recombination is present in euchromatin, but absent in heterochromatin, it constitutes a key genetic property that can be observed transitioning between chromatin states. Using P element insertion lines marked with a su(Hw) insulated mini-white gene, meiotic recombination was found to transition in a region consistent with the H3K9me2 transition observed in ovaries. PMID:27031007

  8. Meiotic Mutants That Cause a Polar Decrease in Recombination on the X Chromosome in Caenorhabditis Elegans

    PubMed Central

    Broverman, S. A.; Meneely, P. M.

    1994-01-01

    Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or elevated levels of recombination occur at the end of the X chromosome hypothesized to contain the pairing region (the left end), with recombination levels decreasing in regions approaching the right end. Thus, both the number and the distribution of X chromosome exchange events are altered in these mutants. As a result, the genetic map of the X chromosome in the him mutants exhibits a clustering of genes due to reduced recombination, a feature characteristic of the genetic map of the autosomes in non-mutant animals. We hypothesize that these him genes are needed for some processive event that initiates near the left end of the X chromosome. PMID:8138150

  9. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans.

    PubMed

    Broverman, S A; Meneely, P M

    1994-01-01

    Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or elevated levels of recombination occur at the end of the X chromosome hypothesized to contain the pairing region (the left end), with recombination levels decreasing in regions approaching the right end. Thus, both the number and the distribution of X chromosome exchange events are altered in these mutants. As a result, the genetic map of the X chromosome in the him mutants exhibits a clustering of genes due to reduced recombination, a feature characteristic of the genetic map of the autosomes in non-mutant animals. We hypothesize that these him genes are needed for some processive event that initiates near the left end of the X chromosome. PMID:8138150

  10. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  11. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs

    PubMed Central

    2010-01-01

    Background Variations in recombination fraction (θ) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F1 females from two large-scale resource populations (Large White ♂ × Chinese Meishan ♀, and White Duroc ♂ × Chinese Erhualian ♀), we were able to evaluate the heterogeneity in θ for a specific interval among individual F1 females. Results Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of ~1.27 cM/Mb. However, almost no recombination occurred in a large region of ~31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in θ among F1 females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval UMNP71-SW1943, or more precisely in the subinterval UMNP891-UMNP93. The individual variation in θ over this subinterval was found associated with F1 females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The θ between UMNP891 and UMNP93 for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%). Conclusions This study reveals marked

  12. Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination

    PubMed Central

    Kang, Hyun-Ah; Shin, Ho-Chul; Kalantzi, Alexandra-Styliani; Toseland, Christopher P.; Kim, Hyun-Min; Gruber, Stephan; Peraro, Matteo Dal; Oh, Byung-Ha

    2015-01-01

    In meiotic DNA recombination, the Hop2−Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2−Mnd1 reveals that it forms a curved rod-like structure consisting of three leucine zippers and two kinked junctions. One end of the rod is linked to two juxtaposed winged-helix domains, and the other end is capped by extra α-helices to form a helical bundle-like structure. Deletion analysis shows that the helical bundle-like structure is sufficient for interacting with the Dmc1-ssDNA nucleofilament, and molecular modeling suggests that the curved rod could be accommodated into the helical groove of the nucleofilament. Remarkably, the winged-helix domains are juxtaposed at fixed relative orientation, and their binding to DNA is likely to perturb the base pairing according to molecular simulations. These findings allow us to propose a model explaining how Hop2−Mnd1 juxtaposes Dmc1-bound ssDNA with distorted recipient double-stranded DNA and thus facilitates strand invasion. PMID:25740648

  13. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements

    PubMed Central

    Mary, Nicolas; Barasc, Harmonie; Ferchaud, Stéphane; Priet, Aurélia; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Bonnet, Nathalie; Yerle, Martine; Ducos, Alain; Pinton, Alain

    2016-01-01

    Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms. PMID:27124413

  14. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    SciTech Connect

    Shashi, V.; Allinson, P.S.; Golden, W.L.; Kelly, T.E.

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational event causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.

  15. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays.

    PubMed

    Zheng, Linlin; McMullen, Michael D; Bauer, Eva; Schön, Chris-Carolin; Gierl, Alfons; Frey, Monika

    2015-07-01

    Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription. PMID:25969552

  16. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays

    PubMed Central

    Zheng, Linlin; McMullen, Michael D.; Bauer, Eva; Schön, Chris-Carolin; Gierl, Alfons; Frey, Monika

    2015-01-01

    Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription. PMID:25969552

  17. Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination

    PubMed Central

    Gilhooly, Neville S.; Carrasco, Carolina; Gollnick, Benjamin; Wilkinson, Martin; Wigley, Dale B.; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2016-01-01

    In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition. PMID:26762979

  18. Recombination hotspots attenuate the coupled ATPase and translocase activities of an AddAB-type helicase–nuclease

    PubMed Central

    Gilhooly, Neville S.; Dillingham, Mark S.

    2014-01-01

    In all domains of life, the resection of double-stranded DNA breaks to form long 3′-ssDNA overhangs in preparation for recombinational repair is catalyzed by the coordinated activities of DNA helicases and nucleases. In bacterial cells, this resection reaction is modulated by the recombination hotspot sequence Chi. The Chi sequence is recognized in cis by translocating helicase–nuclease complexes such as the Bacillus subtilis AddAB complex. Binding of Chi to AddAB results in the attenuation of nuclease activity on the 3′-terminated strand, thereby promoting recombination. In this work, we used stopped-flow methods to monitor the coupling of adenosine triphosphate (ATP) hydrolysis and DNA translocation and how this is affected by Chi recognition. We show that in the absence of Chi sequences, AddAB translocates processively on DNA at ∼2000 bp s−1 and hydrolyses approximately 1 ATP molecule per base pair travelled. The recognition of recombination hotspots results in a sustained decrease in the translocation rate which is accompanied by a decrease in the ATP hydrolysis rate, such that the coupling between these activities and the net efficiency of DNA translocation is largely unchanged by Chi. PMID:24682829

  19. Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts

    PubMed Central

    Peoples, Tamara L.; Dean, Eric; Gonzalez, Oscar; Lambourne, Lindsey; Burgess, Sean M.

    2002-01-01

    A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC. PMID:12101126

  20. Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus

    SciTech Connect

    Cullen, M.; Carrington, M.; Erlich, H.

    1995-06-01

    Recombination across the HLA class II region is not randomly distributed, as indicated by both strong linkage disequilibrium within the 100 kb encompassing the DRB1-DQA1-DQB1 loci and complete equilibrium between TAP1 and TAP2, the closest variant sites of which are <15 kb. In an attempt to explain these observations, 39 novel polymorphic markers in a region encompassing the TAP, LMP, and DOB genes were used to delineate the site of crossover in 11 class II recombinant chromosomes. SSCP demonstrated that two recombination events occurred within an 850-bp interval in the second intron of TAP2, which separates the variant sites of TAP1 and TAP2. These data indicate the presence of a recombination hotspot, the first to be identified from the analysis of familial transmission in the human major histocompatibility complex. The region of crossover was cloned and sequenced from one of the recombinants, further defining the crossover site to a 138-bp segment nested within the 850-bp region. This represents the most precisely defined region of recombination in the human genome. 44 refs., 3 figs., 2 tabs.

  1. Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination.

    PubMed

    Cheng, Zhihong; Liu, Yuying; Wang, Chernhoe; Parker, Roy; Song, Haiwei

    2004-10-01

    Ski8p is a WD-repeat protein with an essential role for the Ski complex assembly in an exosome-dependent 3'-to-5' mRNA decay. In addition, Ski8p is involved in meiotic recombination by interacting with Spo11p protein. We have determined the crystal structure of Ski8p from Saccharomyces cerevisiae at 2.2 A resolution. The structure reveals that Ski8p folds into a seven-bladed beta propeller. Mapping sequence conservation and hydrophobicities of amino acids on the molecular surface of Ski8p reveals a prominent site on the top surface of the beta propeller, which is most likely involved in mediating interactions of Ski8p with Ski3p and Spo11p. Mutagenesis combined with yeast two-hybrid and GST pull-down assays identified the top surface of the beta propeller as being required for Ski8p binding to Ski3p and Spo11p. The functional implications for Ski8p function in both mRNA decay and meiotic recombination are discussed. PMID:15340168

  2. Genetic Variants in REC8, RNF212, and PRDM9 Influence Male Recombination in Cattle

    PubMed Central

    Coppieters, Wouter; Druet, Tom; Charlier, Carole; Georges, Michel

    2012-01-01

    We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage. PMID:22844258

  3. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation.

    PubMed

    He, Yan; Wang, Minghui; Sun, Qi; Pawlowski, Wojciech P

    2016-01-01

    Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi. PMID:27511175

  4. Pair-wise linkage disequilibrium decay among linked loci suggests meiotic recombination in natural populations of Sclerotinia sclerotiorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both clonal and recombining population structures have been reported in Sclerotinia sclerotiorum populations around the world. Association of independent and putatively unlinked markers indicates clonal population structure, whereas random association of the markers suggests recombination and outcro...

  5. Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants.

    PubMed Central

    King, T R; Dove, W F; Herrmann, B; Moser, A R; Shedlovsky, A

    1989-01-01

    We describe a meiotic fine-structure mapping strategy for achieving molecular access to developmental mutations in the mouse. The induction of lethal point mutations with the potent germ-line mutagen N-ethyl-N-nitrosourea has been reported. One lethal mutation of prime interest is an allele at the quaking locus on chromosome 17. To map this mutation, quaking(lethal-1), we have intercrossed hybrid mice that carry distinct alleles at many classical and DNA marker loci on proximal chromosome 17. From this cross we have obtained 337 animals recombinant in the T to H-2 region. This number of crossovers provides a mapping resolution in the size range of single mammalian genes if recombinational hot spots are absent. DNA samples obtained from these recombinant animals can be used retrospectively to map any restriction fragment length polymorphism in the region. This set of DNA samples has been used to map the molecular marker D17RP17 just distal of quaking(lethal-1). With the nested set of crossover DNA samples and appropriate cloning techniques, this tightly linked marker can be used to clone the quaking locus. Images PMID:2911572

  6. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    PubMed

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  7. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    PubMed Central

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  8. Region-Specific Cis- and Trans-Acting Factors Contribute to Genetic Variability in Meiotic Recombination in Maize

    PubMed Central

    Timmermans, MCP.; Das, O. P.; Bradeen, J. M.; Messing, J.

    1997-01-01

    Understanding the genetic basis for variability in recombination rates is important for general genetic studies and plant-breeding efforts. Earlier studies had suggested increased recombination frequencies in particular F(2) populations derived from the maize inbred A188. A detailed phenotypic and molecular analysis was undertaken to extend these observations and dissect the responsible factors. A heritable increase in recombination in the sh1-bz1 interval was observed in these populations. A factor causing an approximate twofold increase mapped to the A188 Sh1-Bz1 region, behaved as a dominant, cis-acting factor, affected recombination equally in male and female sporogenesis and did not reduce the wellstudied complete interference in the adjacent bz1-wx interval. This factor also did not increase recombination frequencies in the c1-sh1 and bz1-wx intervals, demonstrating independent control of recombination in adjacent intervals. Additional phenotypic analysis of recombination in the c1-sh1 and bz1-wx intervals and RFLP analysis of recombination along chromosomes 7 and 5 suggested that heritable factors controlling recombination in these intervals act largely independently and in trans. Our results show that recombination in these populations, and possibly maize in general, is controlled by both cis- and transacting factors that affect specific chromosomal regions. PMID:9215911

  9. Analysis of four microsatellite markers on the long arm of chromosome 9 by meiotic recombination in flow-sorted single sperm

    SciTech Connect

    Furlong, R.A.; Goudie, D.R.; Carter, N.P.; Lyall, J.E.W.; Affara, N.A.; Ferguson-Smith, M.A. )

    1993-06-01

    Meiotic recombination in flow-sorted single sperm was used to analyze four highly polymorphic microsatellite markers on the long arm of chromosome 9. The microsatellites comprised three tightly linked markers: 9CMP1 (D9S109), 9CMP2 (D9S127), and D9S53, which map to 9q31, and a reference marker, ASS, which is located in 9q34.1. Haplotypes of single sperm were assessed by using PCR in a single-step multiplex reaction to amplify each locus. Recombinant haplotypes were identified by their relative infrequency and were analyzed using THREELOC, a maximum-likelihood-analysis program, and an adaptation of CRI-MAP. The most likely order of these markers was cen-D9S109-D9S127-D9S53-ASS-tel with D9S109, D9S127, and D9S53 being separated by a genetic distance of approximately 3%. The order of the latter three markers did not however achieve statistical significance using the THREELOC program. 21 refs., 2 figs., 4 tabs.

  10. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  11. High-resolution linkage map for two honeybee chromosomes: the hotspot quest.

    PubMed

    Mougel, Florence; Poursat, Marie-Anne; Beaume, Nicolas; Vautrin, Dominique; Solignac, Michel

    2014-02-01

    Meiotic recombination is a fundamental process ensuring proper disjunction of homologous chromosomes and allele shuffling in successive generations. In many species, this cellular mechanism occurs heterogeneously along chromosomes and mostly concentrates in tiny fragments called recombination hotspots. Specific DNA motifs have been shown to initiate recombination in these hotspots in mammals, fission yeast and drosophila. The aim of this study was to check whether recombination also occurs in a heterogeneous fashion in the highly recombinogenic honeybee genome and whether this heterogeneity can be connected with specific DNA motifs. We completed a previous picture drawn from a routine genetic map built with an average resolution of 93 kb. We focused on the two smallest honeybee chromosomes to increase the resolution and even zoomed at very high resolution (3.6 kb) on a fragment of 300 kb. Recombination rates measured in these fragments were placed in relation with occurrence of 30 previously described motifs through a Poisson regression model. A selection procedure suitable for correlated variables was applied to keep significant motifs. These fine and ultra-fine mappings show that recombination rate is significantly heterogeneous although poorly contrasted between high and low recombination rate, contrarily to most model species. We show that recombination rate is probably associated with the DNA methylation state. Moreover, three motifs (CGCA, GCCGC and CCAAT) are good candidates of signals promoting recombination. Their influence is however moderate, doubling at most the recombination rate. This discovery extends the way to recombination dissection in insects. PMID:24162559

  12. Smc5/6 Coordinates Formation and Resolution of Joint Molecules with Chromosome Morphology to Ensure Meiotic Divisions

    PubMed Central

    Blitzblau, Hannah G.; Newcombe, Sonya; Chan, Andrew Chi-ho; Newnham, Louise; Li, Zhaobo; Gray, Stephen; Herbert, Alex D.; Arumugam, Prakash; Hochwagen, Andreas; Hunter, Neil; Hoffmann, Eva

    2013-01-01

    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe. PMID:24385939

  13. Cytological mapping of the human glucose-6-phosphate dehydrogenase gene distal to the fragile-X site suggests a high rate of meiotic recombination across this site.

    PubMed

    Szabo, P; Purrello, M; Rocchi, M; Archidiacono, N; Alhadeff, B; Filippi, G; Toniolo, D; Martini, G; Luzzatto, L; Siniscalco, M

    1984-12-01

    The human gene for glucose-6-phosphate dehydrogenase (G6PD) has been subregionally mapped to band Xq28 by segregation analysis in rodent-human somatic cell hybrids [Pai, G. S., Sprinkel, J. A., Do, T. T., Mareni, C. E. & Migeon, B. R. (1980) Proc. Natl. Acad. Sci. USA 77, 2810-2813]. We have previously reported a common type of X-linked mental retardation associated with an inducible fragile site at Xq27-Xq28 segregates in a close linkage relationship with a G6PD variant, but the relative position of G6PD with respect to the fragile site has not yet been established. This fragile-X syndrome has been shown to be closely linked also to a Taq I restriction fragment length polymorphism detected by a cDNA probe for factor IX, and the latter locus has been mapped to the subtelomeric region Xq26-Xq28 [Camerino, G., Mattei, M. G., Mattei, G. F., Jaye, B. & Mandel, J. L. (1983) Nature (London) 306, 701-704]. The in situ hybridization studies reported here provide strong evidence that G6PD is located on the Xq telomeric fragment distal to the fragile site. These observations and the well-established knowledge that the genes for Deutan and Protan colorblindness are closely linked to G6PD, but segregate independently of factor IX deficiency, suggest that the fragile site associated with this type of X-linked mental retardation occurs in a region prone to high frequency of meiotic recombination. PMID:6595664

  14. Cytological mapping of the human glucose-6-phosphate dehydrogenase gene distal to the fragile-X site suggests a high rate of meiotic recombination across this site.

    PubMed Central

    Szabo, P; Purrello, M; Rocchi, M; Archidiacono, N; Alhadeff, B; Filippi, G; Toniolo, D; Martini, G; Luzzatto, L; Siniscalco, M

    1984-01-01

    The human gene for glucose-6-phosphate dehydrogenase (G6PD) has been subregionally mapped to band Xq28 by segregation analysis in rodent-human somatic cell hybrids [Pai, G. S., Sprinkel, J. A., Do, T. T., Mareni, C. E. & Migeon, B. R. (1980) Proc. Natl. Acad. Sci. USA 77, 2810-2813]. We have previously reported a common type of X-linked mental retardation associated with an inducible fragile site at Xq27-Xq28 segregates in a close linkage relationship with a G6PD variant, but the relative position of G6PD with respect to the fragile site has not yet been established. This fragile-X syndrome has been shown to be closely linked also to a Taq I restriction fragment length polymorphism detected by a cDNA probe for factor IX, and the latter locus has been mapped to the subtelomeric region Xq26-Xq28 [Camerino, G., Mattei, M. G., Mattei, G. F., Jaye, B. & Mandel, J. L. (1983) Nature (London) 306, 701-704]. The in situ hybridization studies reported here provide strong evidence that G6PD is located on the Xq telomeric fragment distal to the fragile site. These observations and the well-established knowledge that the genes for Deutan and Protan colorblindness are closely linked to G6PD, but segregate independently of factor IX deficiency, suggest that the fragile site associated with this type of X-linked mental retardation occurs in a region prone to high frequency of meiotic recombination. Images PMID:6595664

  15. Meiotic process and aneuploidy

    SciTech Connect

    Grell, R.F.

    1985-01-01

    The process of meiosis is analyzed by dissecting it into its component parts using the early oocyte of Drosophila as a model. Entrance of the oocytes into premeiotic interphase signals initiation of DNA replication which continues for 30 h. Coincidentally, extensive synaptonemal complexes appear, averaging 50 ..mu..m (132 h), peaking at 75 ..mu..m (144 h) and continuing into early vitellarial stages. Recombinational response to heat, evidenced by enhancement or induction of exchange, is limited to the S-phase with a peak at 144 h coinciding with maximal extension of the SC. Coincidence of synapsis and recombination response with S at premeiotic interphase is contrary to their conventional localization at meiotic prophase. The interrelationship between exchange and nondisjunction has been clarified by the Distributive Pairing Model of meiosis. Originally revealed through high frequencies of nonrandom assortment of nonhomologous chromosomes, distributive pairing has been shown to follow and to be noncompetitive with exchange, to be based on size-recognition, not homology, and as a raison d'etre, to provide a segregational mechanism for noncrossover homologues. Rearrangements, recombination mutants and aneuploids may contribute noncrossover chromosomes to the distributive pool and so promote the nonhomologous associations responsible for nondisjunction of homologues and regular segregation of nonhomologues. 38 references, 15 figures. (ACR)

  16. Recombination in diverse maize is stable, predictable, and associated with genetic load

    PubMed Central

    Rodgers-Melnick, Eli; Bradbury, Peter J.; Elshire, Robert J.; Glaubitz, Jeffrey C.; Acharya, Charlotte B.; Mitchell, Sharon E.; Li, Chunhui; Li, Yongxiang; Buckler, Edward S.

    2015-01-01

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide. PMID:25775595

  17. Genome-wide copy number variation analysis of a Branchio-Oto-Renal syndrome cohort identifies a recombination hotspot and implicates new candidate genes

    PubMed Central

    Brophy, Patrick D.; Alasti, Fatemeh; Darbro, Benjamin W.; Clarke, Jason; Nishimura, Carla; Cobb, Bryan; Smith, Richard J.; Manak, J. Robert

    2013-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial arch anomalies, hearing loss and renal dysmorphology. Although haploinsufficiency of EYA1 and SIX1 are known to cause BOR, copy number variation analysis has only been performed on a limited number of BOR patients. In this study, we used high-resolution array-based comparative genomic hybridization (aCGH) on 32 BOR probands negative for coding-sequence and splice-site mutations in known BOR-causing genes to identify potential disease-causing genomic rearrangements. Of the >1,000 rare and novel copy number variants (CNVs) we identified, four were heterozygous deletions of EYA1 and several downstream genes that had nearly identical breakpoints associated with retroviral sequence blocks, suggesting that non-allelic homologous recombination seeded by this recombination hotspot is important in the pathogenesis of BOR. A different heterozygous deletion removing the last exon of EYA1 was identified in an additional proband. Thus in total 5 probands (14%) had deletions of all or part of EYA1. Using a novel disease-gene prioritization strategy that includes network analysis of genes associated with other deletions suggests that SHARPIN (Sipl1), FGF3 and the HOXA gene cluster may contribute to the pathogenesis of BOR. PMID:23851940

  18. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  19. Female Meiotic Sex Chromosome Inactivation in Chicken

    PubMed Central

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W.; Laven, Joop S. E.; Grootegoed, J. Anton; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, γH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of γH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses γH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  20. Mammalian meiotic silencing exhibits sexually dimorphic features.

    PubMed

    Cloutier, J M; Mahadevaiah, S K; ElInati, E; Tóth, A; Turner, James

    2016-06-01

    During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis. PMID:26712235

  1. The role of chromatin modifications in progression through mouse meiotic prophase.

    PubMed

    Crichton, James H; Playfoot, Christopher J; Adams, Ian R

    2014-03-20

    Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA physically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals. PMID:24656230

  2. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis.

    PubMed

    Malik, Shehre-Banoo; Pightling, Arthur W; Stefaniak, Lauren M; Schurko, Andrew M; Logsdon, John M

    2008-01-01

    Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery. PMID:18663385

  3. A Link between Meiotic Prophase Progression and CrossoverControl

    SciTech Connect

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  4. A Link between Meiotic Prophase Progression and Crossover Control

    PubMed Central

    Carlton, Peter M; Farruggio, Alfonso P; Dernburg, Abby F

    2006-01-01

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency. PMID:16462941

  5. A new light on the meiotic DSB catalytic complex.

    PubMed

    Robert, Thomas; Vrielynck, Nathalie; Mézard, Christine; de Massy, Bernard; Grelon, Mathilde

    2016-06-01

    Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation. PMID:26995551

  6. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination.

    PubMed

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C

    2014-12-16

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  7. Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells.

    PubMed

    Hamer, G; Novak, I; Kouznetsova, A; Höög, C

    2008-02-01

    During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related. PMID:17997150

  8. Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation

    PubMed Central

    Huang, Jiyue; Cheng, Zhihao; Wang, Cong; Hong, Yue; Su, Hang; Wang, Jun; Copenhaver, Gregory P.; Ma, Hong; Wang, Yingxiang

    2015-01-01

    Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show that Arabidopsis POL2A, the homolog of the yeast DNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations in POL2A cause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests that pol2a mutants likely delay progression of meiotic recombination. In addition, the residual COs in pol2a have reduced CO interference, and the double mutant of pol2a with mus81, which affects type II COs, displayed more severe defects than either single mutant, indicating that POL2A functions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways. PMID:26392549

  9. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans.

    PubMed

    Wagner, Cynthia R; Kuervers, Lynnette; Baillie, David L; Yanowitz, Judith L

    2010-10-14

    Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization. Chromosomes show different frequencies of nondisjunction (NDJ), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation. PMID:20944745

  10. xnd-1 Regulates the Global Recombination Landscape in C. elegans

    PubMed Central

    Wagner, Cynthia R.; Kuervers, Lynnette; Baillie, David; Yanowitz, Judith L.

    2010-01-01

    Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots1-3 and significant variation in hotspot usage exists between and among individuals4. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization1, 5-9. Chromosomes show different frequencies of nondisjunction (NDJ)10, reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally-enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation. PMID:20944745

  11. The Many Landscapes of Recombination in Drosophila melanogaster

    PubMed Central

    Comeron, Josep M.; Ratnappan, Ramesh; Bailin, Samuel

    2012-01-01

    Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should

  12. Meiotic Crossing over between Nonhomologous Chromosomes Affects Chromosome Segregation in Yeast

    PubMed Central

    Jinks-Robertson, S.; Sayeed, S.; Murphy, T.

    1997-01-01

    Meiotic recombination between artificial repeats positioned on nonhomologous chromosomes occurs efficiently in the yeast Saccharomyces cerevisiae. Both gene conversion and crossover events have been observed, with crossovers yielding reciprocal translocations. In the current study, 5.5-kb ura3 repeats positioned on chromosomes V and XV were used to examine the effect of ectopic recombination on meiotic chromosome segregation. Ura(+) random spores were selected and gene conversion vs. crossover events were distinguished by Southern blot analysis. Approximately 15% of the crossover events between chromosomes V and XV were associated with missegregation of one of these chromosomes. The missegregation was manifest as hyperploid spores containing either both translocations plus a normal chromosome, or both normal chromosomes plus one of the translocations. In those cases where it could be analyzed, missegregation occurred at the first meiotic division. These data are discussed in terms of a model in which ectopic crossovers compete efficiently with normal allelic crossovers in directing meiotic chromosome segregation. PMID:9136001

  13. Primate evolution of the recombination regulator PRDM9

    PubMed Central

    Schwartz, Jerrod J.; Roach, David J.; Thomas, James H.; Shendure, Jay

    2014-01-01

    The PRDM9 gene encodes a protein with a highly variable tandem-repeat zinc finger (ZF) DNA-binding domain that plays a key role in determining sequence-specific hotspots of meiotic recombination genome-wide. Here we survey the diversity of the PRDM9 ZF domain by sequencing this region in 64 primates from 18 species, revealing 68 unique alleles across all groups. We report ubiquitous positive selection at nucleotide positions corresponding to DNA contact residues and the expansion of ZFs within clades, which confirms the rapid evolution of the ZF domain throughout the primate lineage. Alignment of Neanderthal and Denisovan sequences suggests that PRDM9 in archaic hominins was closely related to present-day human alleles that are rare and specific to African populations. In the context of its role in reproduction, our results are consistent with variation in PRDM9 contributing to speciation events in primates. PMID:25001002

  14. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Lin, Hao; Chou, Kuo-Chen

    2013-04-01

    Meiotic recombination is an important biological process. As a main driving force of evolution, recombination provides natural new combinations of genetic variations. Rather than randomly occurring across a genome, meiotic recombination takes place in some genomic regions (the so-called 'hotspots') with higher frequencies, and in the other regions (the so-called 'coldspots') with lower frequencies. Therefore, the information of the hotspots and coldspots would provide useful insights for in-depth studying of the mechanism of recombination and the genome evolution process as well. So far, the recombination regions have been mainly determined by experiments, which are both expensive and time-consuming. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the recombination regions. In this study, a predictor, called 'iRSpot-PseDNC', was developed for identifying the recombination hotspots and coldspots. In the new predictor, the samples of DNA sequences are formulated by a novel feature vector, the so-called 'pseudo dinucleotide composition' (PseDNC), into which six local DNA structural properties, i.e. three angular parameters (twist, tilt and roll) and three translational parameters (shift, slide and rise), are incorporated. It was observed by the rigorous jackknife test that the overall success rate achieved by iRSpot-PseDNC was >82% in identifying recombination spots in Saccharomyces cerevisiae, indicating the new predictor is promising or at least may become a complementary tool to the existing methods in this area. Although the benchmark data set used to train and test the current method was from S. cerevisiae, the basic approaches can also be extended to deal with all the other genomes. Particularly, it has not escaped our notice that the PseDNC approach can be also used to study many other DNA-related problems. As a user-friendly web-server, i

  15. Fine characterisation of a recombination hotspot at the DPY19L2 locus and resolution of the paradoxical excess of duplications over deletions in the general population.

    PubMed

    Coutton, Charles; Abada, Farid; Karaouzene, Thomas; Sanlaville, Damien; Satre, Véronique; Lunardi, Joël; Jouk, Pierre-Simon; Arnoult, Christophe; Thierry-Mieg, Nicolas; Ray, Pierre F

    2013-03-01

    We demonstrated previously that 75% of infertile men with round, acrosomeless spermatozoa (globozoospermia) had a homozygous 200-Kb deletion removing the totality of DPY19L2. We showed that this deletion occurred by Non-Allelic Homologous Recombination (NAHR) between two homologous 28-Kb Low Copy Repeats (LCRs) located on each side of the gene. The accepted NAHR model predicts that inter-chromatid and inter-chromosome NAHR create a deleted and a duplicated recombined allele, while intra-chromatid events only generate deletions. Therefore more deletions are expected to be produced de novo. Surprisingly, array CGH data show that, in the general population, DPY19L2 duplicated alleles are approximately three times as frequent as deleted alleles. In order to shed light on this paradox, we developed a sperm-based assay to measure the de novo rates of deletions and duplications at this locus. As predicted by the NAHR model, we identified an excess of de novo deletions over duplications. We calculated that the excess of de novo deletion was compensated by evolutionary loss, whereas duplications, not subjected to selection, increased gradually. Purifying selection against sterile, homozygous deleted men may be sufficient for this compensation, but heterozygously deleted men might also suffer a small fitness penalty. The recombined alleles were sequenced to pinpoint the localisation of the breakpoints. We analysed a total of 15 homozygous deleted patients and 17 heterozygous individuals carrying either a deletion (n = 4) or a duplication (n = 13). All but two alleles fell within a 1.2-Kb region central to the 28-Kb LCR, indicating that >90% of the NAHR took place in that region. We showed that a PRDM9 13-mer recognition sequence is located right in the centre of that region. Our results therefore strengthen the link between this consensus sequence and the occurrence of NAHR. PMID:23555282

  16. Fine Characterisation of a Recombination Hotspot at the DPY19L2 Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population

    PubMed Central

    Coutton, Charles; Abada, Farid; Karaouzene, Thomas; Sanlaville, Damien; Satre, Véronique; Lunardi, Joël; Jouk, Pierre-Simon; Arnoult, Christophe; Thierry-Mieg, Nicolas; Ray, Pierre F.

    2013-01-01

    We demonstrated previously that 75% of infertile men with round, acrosomeless spermatozoa (globozoospermia) had a homozygous 200-Kb deletion removing the totality of DPY19L2. We showed that this deletion occurred by Non-Allelic Homologous Recombination (NAHR) between two homologous 28-Kb Low Copy Repeats (LCRs) located on each side of the gene. The accepted NAHR model predicts that inter-chromatid and inter-chromosome NAHR create a deleted and a duplicated recombined allele, while intra-chromatid events only generate deletions. Therefore more deletions are expected to be produced de novo. Surprisingly, array CGH data show that, in the general population, DPY19L2 duplicated alleles are approximately three times as frequent as deleted alleles. In order to shed light on this paradox, we developed a sperm-based assay to measure the de novo rates of deletions and duplications at this locus. As predicted by the NAHR model, we identified an excess of de novo deletions over duplications. We calculated that the excess of de novo deletion was compensated by evolutionary loss, whereas duplications, not subjected to selection, increased gradually. Purifying selection against sterile, homozygous deleted men may be sufficient for this compensation, but heterozygously deleted men might also suffer a small fitness penalty. The recombined alleles were sequenced to pinpoint the localisation of the breakpoints. We analysed a total of 15 homozygous deleted patients and 17 heterozygous individuals carrying either a deletion (n = 4) or a duplication (n = 13). All but two alleles fell within a 1.2-Kb region central to the 28-Kb LCR, indicating that >90% of the NAHR took place in that region. We showed that a PRDM9 13-mer recognition sequence is located right in the centre of that region. Our results therefore strengthen the link between this consensus sequence and the occurrence of NAHR. PMID:23555282

  17. Effect of sex, age, and breed on genetic recombination features in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  18. Meiotic gene-conversion rate and tract length variation in the human genome.

    PubMed

    Padhukasahasram, Badri; Rannala, Bruce

    2013-02-27

    Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30. PMID:23443031

  19. The west side story: MEFV haplotype in Spanish FMF patients and controls, and evidence of high LD and a recombination "hot-spot" at the MEFV locus.

    PubMed

    Aldea, Anna; Calafell, Francesc; Aróstegui, Juan I; Lao, Oscar; Rius, Josefa; Plaza, Susana; Masó, Montserrat; Vives, Jordi; Buades, Joan; Yagüe, Jordi

    2004-04-01

    Mutations at the MEFV gene cause, with various degrees of penetrance, familial Mediterranean fever (FMF). This disease is more prevalent in the Middle East than elsewhere, and most studies have focused on those populations. However, FMF occurs also in the Western Mediterranean and these populations should be taken into account for a complete view of FMF. We have analyzed intragenic MEFV SNPs in Spanish and Chueta (descendants of converted Jews) FMF patients and controls, and this constitutes the first systematic survey of normal MEFV SNP haplotype structure and variability. Our findings have allowed us to systematize the nomenclature of MEFV haplotypes and show that there is strong linkage disequilibrium (LD) at the MEFV locus and an intragenic recombination hot spot. The high local LD, regardless the recombination hot spot, is responsible for the limited diversity of the MEFV control haplotypes found in the Spanish population and it suggests that it may be a common feature to all Mediterranean populations. The MEFV mutation spectrum in Spain is quite diverse, and similar to those of France and Italy. On the contrary, the Chueta spectrum was poorer and closer to that of North African Jews, suggesting a direct connection with the Jewish diaspora. PMID:15024744

  20. ATM controls meiotic double-strand-break formation.

    PubMed

    Lange, Julian; Pan, Jing; Cole, Francesca; Thelen, Michael P; Jasin, Maria; Keeney, Scott

    2011-11-10

    In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation. However, improperly repaired DSBs can cause meiotic arrest or mutation; thus, having too many DSBs is probably as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse and SPO11 and its accessory factors remain abundant long after most DSB formation ceases, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signalling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least tenfold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency. PMID:22002603

  1. Hotspots for Vitamin-Steroid-Thyroid Hormone Response Elements Within Switch Regions of Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class Switch Recombination.

    PubMed

    Hurwitz, Julia L; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Partridge, Janet F; Maul, Robert W; Gearhart, Patricia J

    2016-03-01

    Vitamin A deficiencies are common throughout the world and have a significant negative influence on immune protection against viral infections. Mouse models demonstrate that the production of IgA, a first line of defense against viruses at mucosal sites, is inhibited in the context of vitamin A deficiency. In vitro, the addition of vitamin A to activated B cells can enhance IgA expression, but downregulate IgE. Previous reports have demonstrated that vitamin A modifies cytokine patterns, and in so doing may influence antibody isotype expression by an indirect mechanism. However, we have now discovered hundreds of potential response elements among Sμ, Sɛ, and Sα switch sites within immunoglobulin heavy chain loci. These hotspots appear in both mouse and human loci and include targets for vitamin receptors and related proteins (e.g., estrogen receptors) in the nuclear receptor superfamily. Full response elements with direct repeats are relatively infrequent or absent in Sγ regions although half-sites are present. Based on these results, we pose a hypothesis that nuclear receptors have a direct effect on the immunoglobulin heavy chain class switch recombination event. We propose that vitamin A may alter S site accessibility to activation-induced deaminase and nonhomologous end-joining machinery, thereby influencing the isotype switch, antibody production, and protection against viral infections at mucosal sites. PMID:26741514

  2. Genetic scrambling as a defence against meiotic drive.

    PubMed

    Haig, D; Grafen, A

    1991-12-21

    Genetic recombination has important consequences, including the familiar rules of Mendelian genetics. Here we present a new argument for the evolutionary function of recombination based on the hypothesis that meiotic drive systems continually arise to threaten the fairness of meiosis. These drive systems act at the expense of the fitness of the organism as a whole for the benefit of the genes involved. We show that genes increasing crossing over are favoured, in the process of breaking up drive systems and reducing the fitness loss to organisms. PMID:1806752

  3. BLEOMYCIN EFFECTS ON MOUSE MEIOTIC CHROMOSOMES

    EPA Science Inventory

    The effects of a radiomimetic chemical, bleomycin (BLM), on meiotic chromosomes was evaluated in mice. hromosome aberrations were analyzed at meiotic metaphase I, and damage to the synaptonemal complex was analyzed in meiotic prophase cells. n the metaphase aberration studies, an...

  4. A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary

    PubMed Central

    Gill, Mark E.; Mueller, Jacob L.; van Oudenaarden, Alexander; Page, David C.

    2015-01-01

    The chromosomal program of meiotic prophase, comprising events such as laying down of meiotic cohesins, synapsis between homologs, and homologous recombination, must be preceded and enabled by the regulated induction of meiotic prophase genes. This gene regulatory program is poorly understood, particularly in organisms with a segregated germline. We characterized the gene regulatory program of meiotic prophase as it occurs in the mouse fetal ovary. By profiling gene expression in the mouse fetal ovary in mutants with whole tissue and single-cell techniques, we identified 104 genes expressed specifically in pre-meiotic to pachytene germ cells. We characterized the regulation of these genes by 1) retinoic acid (RA), which induces meiosis, 2) Dazl, which is required for germ cell competence to respond to RA, and 3) Stra8, a downstream target of RA required for the chromosomal program of meiotic prophase. Initial induction of practically all identified meiotic prophase genes requires Dazl. In the presence of Dazl, RA induces at least two pathways: one Stra8-independent, and one Stra8-dependent. Genes vary in their induction by Stra8, spanning fully Stra8-independent, partially Stra8-independent, and fully Stra8-dependent. Thus, Stra8 regulates the entirety of the chromosomal program but plays a more nuanced role in governing the gene expression program. We propose that Stra8-independent gene expression enables the stockpiling of selected meiotic structural proteins prior to the commencement of the chromosomal program. Unexpectedly, we discovered that Stra8 is required for prompt down-regulation of itself and Rec8. Germ cells that have expressed and down-regulated Stra8 are refractory to further Stra8 expression. Negative feedback of Stra8, and subsequent resistance to further Stra8 expression, may ensure a single, restricted pulse of Stra8 expression. Collectively, our findings reveal a gene regulatory logic by which germ cells prepare for the chromosomal program of

  5. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.

    PubMed

    Vozdova, Miluse; Ruiz-Herrera, Aurora; Fernandez, Jonathan; Cernohorska, Halina; Frohlich, Jan; Sebestova, Hana; Kubickova, Svatava; Rubes, Jiri

    2016-09-01

    The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation. PMID:27136937

  6. Aging predisposes oocytes to meiotic nondisjunction when the cohesin subunit SMC1 is reduced.

    PubMed

    Subramanian, Vijayalakshmi V; Bickel, Sharon E

    2008-11-01

    In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years. PMID:19008956

  7. Aging Predisposes Oocytes to Meiotic Nondisjunction When the Cohesin Subunit SMC1 Is Reduced

    PubMed Central

    Subramanian, Vijayalakshmi V.; Bickel, Sharon E.

    2008-01-01

    In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years. PMID:19008956

  8. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse

    PubMed Central

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-01-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation. PMID:25795304

  9. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

    PubMed

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-05-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation. PMID:25795304

  10. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation.

    PubMed

    Robert, T; Nore, A; Brun, C; Maffre, C; Crimi, B; Bourbon, H-M; de Massy, B

    2016-02-26

    Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL. PMID:26917764

  11. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    PubMed Central

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body. PMID:25565522

  12. Analyzing maize meiotic chromosomes with super-resolution structured illumination microscopy.

    PubMed

    Wang, Chung-Ju Rachel

    2013-01-01

    The success of meiosis depends on intricate coordination of a series of unique cellular processes to ensure proper chromosome segregation. Many proteins involved in these cellular events are directly or indirectly associated with chromosomes, especially those required for homologous recombination. These meiotic processes have been explored extensively by conventional light microscopy. However, many features of interest, such as chromatin organization, recombination nodules, or the synaptonemal complex are beyond the resolution of conventional wide-field microscopy. Moreover, in most sample preparation techniques for light microscopy, meiotic cells are squashed, which destroys the spatial organization of the nucleus. Here, I describe a protocol to analyze maize meiotic chromosomes by three-dimensional structured illumination microscopy (3D-SIM), a recently developed high-resolution microscopy technique. This protocol can be used to examine protein localizations at a high resolution level by immunofluorescence. PMID:23559203

  13. The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    PubMed Central

    Chelysheva, Liudmila; Vezon, Daniel; Belcram, Katia; Gendrot, Ghislaine; Grelon, Mathilde

    2008-01-01

    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent. PMID:19096505

  14. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed Central

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-01-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes. PMID:10353897

  15. DNA binding specificities of the long zinc-finger recombination protein PRDM9

    PubMed Central

    2013-01-01

    Background Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed 'hotspots', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions. Results Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone. Conclusions These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex. PMID:23618393

  16. Transcription dynamically patterns the meiotic chromosome-axis interface

    PubMed Central

    Sun, Xiaoji; Huang, Lingzhi; Markowitz, Tovah E; Blitzblau, Hannah G; Chen, Doris; Klein, Franz; Hochwagen, Andreas

    2015-01-01

    Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus chromosome compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation nearby. A separate modulating mechanism that requires the conserved axial-element component Hop1 biases axis protein binding towards small chromosomes. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the axial element to promote recombination while easily adapting to changes in chromosome activity. DOI: http://dx.doi.org/10.7554/eLife.07424.001 PMID:26258962

  17. Backcrossing to increase meiotic stability in triticale.

    PubMed

    Giacomin, R M; Assis, R; Brammer, S P; Nascimento Junior, A; Da-Silva, P R

    2015-01-01

    Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability. PMID:26400358

  18. Apparent Epigenetic Meiotic Double-Strand-Break Disparity in Saccharomyces cerevisiae: A Meta-Analysis

    PubMed Central

    Stahl, Franklin W.; Rehan, Maryam Binti Mohamed; Foss, Henriette M.; Borts, Rhona H.

    2016-01-01

    Previously published, and some unpublished, tetrad data from budding yeast (Saccharomyces cerevisiae) are analyzed for disparity in gene conversion, in which one allele is more often favored than the other (conversion disparity). One such disparity, characteristic of a bias in the frequencies of meiotic double-strand DNA breaks at the hotspot near the His4 locus, is found in diploids that undergo meiosis soon after their formation, but not in diploids that have been cloned and frozen. Altered meiotic DNA breakability associated with altered metabolism-related chromatin states has been previously reported. However, the above observations imply that such differing parental chromatin states can persist through at least one chromosome replication, and probably more, in a common environment. This conclusion may have implications for interpreting changes in allele frequencies in populations. PMID:27356614

  19. Warfare in biodiversity hotspots.

    PubMed

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. PMID:19236450

  20. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  1. Meiotic chromosome mobility in fission yeast is resistant to environmental stress.

    PubMed

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  2. Meiotic chromosome mobility in fission yeast is resistant to environmental stress

    PubMed Central

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  3. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples.

    PubMed

    Kabir, Muhammad; Hayat, Maqsood

    2016-02-01

    Meiotic recombination is vital for maintaining the sequence diversity in human genome. Meiosis and recombination are considered the essential phases of cell division. In meiosis, the genome is divided into equal parts for sexual reproduction whereas in recombination, the diverse genomes are combined to form new combination of genetic variations. Recombination process does not occur randomly across the genomes, it targets specific areas called recombination "hotspots" and "coldspots". Owing to huge exploration of polygenetic sequences in data banks, it is impossible to recognize the sequences through conventional methods. Looking at the significance of recombination spots, it is indispensable to develop an accurate, fast, robust, and high-throughput automated computational model. In this model, the numerical descriptors are extracted using two sequence representation schemes namely: dinucleotide composition and trinucleotide composition. The performances of seven classification algorithms were investigated. Finally, the predicted outcomes of individual classifiers are fused to form ensemble classification, which is formed through majority voting and genetic algorithm (GA). The performance of GA-based ensemble model is quite promising compared to individual classifiers and majority voting-based ensemble model. iRSpot-GAEnsC has achieved 84.46 % accuracy. The empirical results revealed that the performance of iRSpot-GAEnsC is not only higher than the examined algorithms but also better than existing methods in the literature developed so far. It is anticipated that the proposed model might be helpful for research community, academia and for drug discovery. PMID:26319782

  4. Hotspots in Hindsight

    NASA Astrophysics Data System (ADS)

    Julian, B. R.; Foulger, G. R.; Hatfield, O.; Jackson, S.; Simpson, E.; Einbeck, J.; Moore, A.

    2014-12-01

    Torsvik et al. [2006] suggest that the original locations of large igneous provinces ("LIPs") and kimberlites, and current locations of melting anomalies (hot-spots) lie preferentially above the margins of two Large Lower-Mantle Shear Velocity Provinces" (LLSVPs), at the base of the mantle, and that the correlation has a high significance level (> 99.9999%). They conclude the LLSVP margins are Plume-Generation Zones, and deep-mantle plumes cause hotspots and LIPs. This conclusion raises questions about what physical processes could be responsible, because, for example the LLSVPs are likely dense and not abnormally hot [Trampert et al., 2004]. The supposed LIP-hotspot-LLSVP correlations probably are examples of the "Hindsight Heresy" [Acton, 1959], of basing a statistical test upon the same data sample that led to the initial formulation of a hypothesis. In doing this, many competing hypotheses will have been considered and rejected, but this fact will not be taken into account in statistical assessments. Furthermore, probabilities will be computed for many subsets and combinations of the data, and the best-correlated cases will be cited, but this fact will not be taken into account either. Tests using independent hot-spot catalogs and mantle models suggest that the actual significance levels of the correlations are two or three orders of magnitude smaller than claimed. These tests also show that hot spots correlate well with presumably shallowly rooted features such as spreading plate boundaries. Consideration of the kimberlite dataset in the context of geological setting suggests that their apparent association with the LLSVP margins results from the fact that the Kaapvaal craton, the site of most of the kimberlites considered, lies in Southern Africa. These observations raise questions about the distinction between correlation and causation and underline the necessity to take geological factors into account. Fig: Left: Cumulative distributions of distances from

  5. Whole genome approaches to identify early meiotic gene candidates in cereals.

    PubMed

    Bovill, William D; Deveshwar, Priyanka; Kapoor, Sanjay; Able, Jason A

    2009-05-01

    Early events during meiotic prophase I underpin not only viability but the variation of a species from generation to generation. Understanding and manipulating processes such as chromosome pairing and recombination are integral for improving plant breeding. This study uses comparative genetics, quantitative trait locus (QTL) analysis and a transcriptomics-based approach to identify genes that might have a role in genome-wide recombination control. Comparative genetics and the analysis of the yeast and Arabidopsis sequenced genomes has allowed the identification of early meiotic candidates that are conserved in wheat, rice and barley. Secondly, scoring recombination frequency as a phenotype for QTL analysis across wheat, rice and barley mapping populations has enabled us to identify genomic regions and candidate genes that could be involved in genome-wide recombination. Transcriptome data for candidate genes indicate that they are expressed in meiotic tissues. Candidates identified included a non-annotated expressed protein, a DNA topoisomerase 2-like candidate, RecG, RuvB and RAD54 homologues. PMID:18836753

  6. Meiotic Parthenogenesis in a Root-Knot Nematode Results in Rapid Genomic Homozygosity

    PubMed Central

    Liu, Qingli L.; Thomas, Varghese P.; Williamson, Valerie M.

    2007-01-01

    Many isolates of the plant-parasitic nematode Meloidogyne hapla reproduce by facultative meiotic parthenogenesis. Sexual crosses can occur, but, in the absence of males, the diploid state appears to be restored by reuniting sister chromosomes of a single meiosis. We have crossed inbred strains of M. hapla that differ in DNA markers and produced hybrids and F2 lines. Here we show that heterozygous M. hapla females, upon parthenogenetic reproduction, produce progeny that segregate 1:1 for the presence or absence of dominant DNA markers, as would be expected if sister chromosomes are rejoined, rather than the 3:1 ratio typical of a Mendelian cross. Codominant markers also segregate 1:1 and heterozygotes are present at low frequency (<3%). Segregation patterns and recombinant analysis indicate that a homozygous condition is prevalent for markers flanking recombination events, suggesting that recombination occurs preferentially as four-strand exchanges at similar locations between both pairs of non-sister chromatids. With this mechanism, meiotic parthenogenesis would be expected to result in rapid genomic homozygosity. This type of high negative crossover interference coupled with positive chromatid interference has not been observed in fungal or other animal systems in which it is possible to examine the sister products of a single meiosis and may indicate that meiotic recombination in this nematode has novel features. PMID:17483427

  7. Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids.

    PubMed

    Kamstra, S A; de Jong, J H; Jacobsen, E; Ramanna, M S; Kuipers, A G J

    2004-07-01

    Chromosome association and chiasma formation were studied in pollen mother cells at metaphase I of four allotriplod BC1 plants (2n=3x=24) obtained from the backcross of the hybrid Alstroemeria aurea x A. inodora with its parent A. inodora. We distinguished the chromosomes of both parental species by genomic in situ hybridization (GISH), whereas the individual chromosomes were identified on the basis of their multicolour FISH banding patterns obtained after a second hybridization with two species-specific satellite repeats as probes. All the four BC1 plants possessed two genomes of A. inodora and one of A. aurea. Variable numbers of recombinant chromosomes, resulting from meiotic recombination in the interspecific hybrid, were present in these plants. The homologous A. inodora chromosomes generally formed bivalents, leaving the homoeologous A. aurea chromosomes unassociated. High frequencies of trivalents were observed for the chromosome sets that contained recombinant chromosomes, even when the recombinant segments were small. Chromosome associations in the trivalents were restricted to homologous segments. The implications of the absence of homoeologous chromosome pairing on gamete constitution and prospects for introgression in Alstroemeria are discussed. PMID:15100711

  8. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  9. Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome

    PubMed Central

    Adrian, Andrew B.; Corchado, Johnny Cruz; Comeron, Josep M.

    2016-01-01

    In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non‐randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses. PMID:27492232

  10. Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome.

    PubMed

    Adrian, Andrew B; Corchado, Johnny Cruz; Comeron, Josep M

    2016-01-01

    In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non-randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses. PMID:27492232

  11. Self-organization of dynein motors generates meiotic nuclear oscillations.

    PubMed

    Vogel, Sven K; Pavin, Nenad; Maghelli, Nicola; Jülicher, Frank; Tolić-Nørrelykke, Iva M

    2009-04-21

    Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell. PMID:19385717

  12. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  13. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation.

    PubMed

    Polakova, Silvia; Molnarova, Lucia; Hyppa, Randy W; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R; Gregan, Juraj

    2016-06-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  14. Presence of an extra chromosome alters meiotic double-stranded break repair dynamics and MLH1 foci distribution in human oocytes.

    PubMed

    Robles, P; Roig, I; Garcia, R; Brieño-Enríquez, M; Martin, M; Cabero, Ll; Toran, N; Garcia Caldés, M

    2013-03-01

    Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes. PMID:23283390

  15. The evolution of meiotic sex and its alternatives.

    PubMed

    Mirzaghaderi, Ghader; Hörandl, Elvira

    2016-09-14

    Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination. PMID:27605505

  16. Rejuvenation of Meiotic Cohesion in Oocytes during Prophase I Is Required for Chiasma Maintenance and Accurate Chromosome Segregation

    PubMed Central

    Weng, Katherine A.; Jeffreys, Charlotte A.; Bickel, Sharon E.

    2014-01-01

    Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages

  17. MS5 Mediates Early Meiotic Progression and Its Natural Variants May Have Applications for Hybrid Production in Brassica napus.

    PubMed

    Xin, Qiang; Shen, Yi; Li, Xi; Lu, Wei; Wang, Xiang; Han, Xue; Dong, Faming; Wan, Lili; Yang, Guangsheng; Hong, Dengfeng; Cheng, Zhukuan

    2016-06-01

    During meiotic prophase I, chromatin undergoes dynamic changes to establish a structural basis for essential meiotic events. However, the mechanism that coordinates chromosome structure and meiotic progression remains poorly understood in plants. Here, we characterized a spontaneous sterile mutant MS5(b)MS5(b) in oilseed rape (Brassica napus) and found its meiotic chromosomes were arrested at leptotene. MS5 is preferentially expressed in reproductive organs and encodes a Brassica-specific protein carrying conserved coiled-coil and DUF626 domains with unknown function. MS5 is essential for pairing of homologs in meiosis, but not necessary for the initiation of DNA double-strand breaks. The distribution of the axis element-associated protein ASY1 occurs independently of MS5, but localization of the meiotic cohesion subunit SYN1 requires functional MS5. Furthermore, both the central element of the synaptonemal complex and the recombination element do not properly form in MS5(b)MS5(b) mutants. Our results demonstrate that MS5 participates in progression of meiosis during early prophase I and its allelic variants lead to differences in fertility, which may provide a promising strategy for pollination control for heterosis breeding. PMID:27194707

  18. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes

    PubMed Central

    Severson, Aaron F; Meyer, Barbara J

    2014-01-01

    We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins. DOI: http://dx.doi.org/10.7554/eLife.03467.001 PMID:25171895

  19. Cyclin B-cdk activity stimulates meiotic rereplication in budding yeast.

    PubMed Central

    Strich, Randy; Mallory, Michael J; Jarnik, Michal; Cooper, Katrina F

    2004-01-01

    Haploidization of gametes during meiosis requires a single round of premeiotic DNA replication (meiS) followed by two successive nuclear divisions. This study demonstrates that ectopic activation of cyclin B/cyclin-dependent kinase in budding yeast recruits up to 30% of meiotic cells to execute one to three additional rounds of meiS. Rereplication occurs prior to the meiotic nuclear divisions, indicating that this process is different from the postmeiotic mitoses observed in other fungi. The cells with overreplicated DNA produced asci containing up to 20 spores that were viable and haploid and demonstrated Mendelian marker segregation. Genetic tests indicated that these cells executed the meiosis I reductional division and possessed a spindle checkpoint. Finally, interfering with normal synaptonemal complex formation or recombination increased the efficiency of rereplication. These studies indicate that the block to rereplication is very different in meiotic and mitotic cells and suggest a negative role for the recombination machinery in allowing rereplication. Moreover, the production of haploids, regardless of the genome content, suggests that the cell counts replication cycles, not chromosomes, in determining the number of nuclear divisions to execute. PMID:15342503

  20. The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis.

    PubMed

    Serber, Daniel W; Runge, John S; Menon, Debashish U; Magnuson, Terry

    2016-01-01

    The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination. PMID:26607718

  1. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana

    PubMed Central

    Wijnker, Erik; Velikkakam James, Geo; Ding, Jia; Becker, Frank; Klasen, Jonas R; Rawat, Vimal; Rowan, Beth A; de Jong, Daniël F; de Snoo, C Bastiaan; Zapata, Luis; Huettel, Bruno; de Jong, Hans; Ossowski, Stephan; Weigel, Detlef; Koornneef, Maarten; Keurentjes, Joost JB; Schneeberger, Korbinian

    2013-01-01

    Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001 PMID:24347547

  2. SISTER CHROMATID EXCHANGES IN MAMMALIAN MEIOTIC CHROMOSOMES

    EPA Science Inventory

    Very little is known about sister chromatid exchanges (SCEs) in meiotic cells--only that they occur (1) and reveal frequency and distribution patterns apparently unaffected by cross-over (CO) exchange conditions in those cells; (2) unfortunately, the number of studies from which ...

  3. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes

    PubMed Central

    Lee, Chih-Ying; Horn, Henning F.; Stewart, Colin L.; Burke, Brian; Bolcun-Filas, Ewelina; Schimenti, John C.; Dresser, Michael E.; Pezza, Roberto J.

    2015-01-01

    SUMMARY Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using four-dimensional fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks which are apparently continuous with the cytoskeletal network, and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein but not actin were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs. PMID:25892231

  4. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes.

    PubMed

    Lee, Chih-Ying; Horn, Henning F; Stewart, Colin L; Burke, Brian; Bolcun-Filas, Ewelina; Schimenti, John C; Dresser, Michael E; Pezza, Roberto J

    2015-04-28

    Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using 4D fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks that are apparently continuous with the cytoskeletal network and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein, but not actin, were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs. PMID:25892231

  5. Nondisjunction of chromosome 15: Origin and recombination

    SciTech Connect

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. ); Langlois, S. ); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  6. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    SciTech Connect

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  7. High-resolution mapping of meiotic crossovers and noncrossovers in yeast

    PubMed Central

    Mancera, Eugenio; Bourgon, Richard; Brozzi, Alessandro; Huber, Wolfgang; Steinmetz, Lars M.

    2009-01-01

    Meiotic recombination plays a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover (CO) and noncrossover (NCO), increase genetic diversity, but have the potential to homogenize alleles by gene conversion. While CO rates are known to vary considerably across the genome, NCOs and gene conversions have only been identified in a handful of loci. To examine recombination genome-wide and at high spatial resolution, we generated maps of COs, CO-associated gene conversion and NCO gene conversion using dense genetic marker data collected from all four products of 56 yeast meioses. Our maps reveal differences in the distributions of COs and NCOs, showing more regions where either COs or NCOs are favoured than expected by chance. Furthermore, we detect evidence for interference between COs and NCOs, a phenomenon previously only known to occur between COs. Up to 1% of the genome of each meiotic product is subject to gene conversion in a single meiosis, with detectable bias towards GC nucleotides. The maps represent the first high-resolution, genome-wide characterization of the multiple outcomes of recombination in any organism. In addition, because NCO hot spots create holes of reduced linkage within haplotype blocks, our results stress the need to incorporate NCOs into genetic linkage analysis. PMID:18615017

  8. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  9. Models for the hotspot distribution

    SciTech Connect

    Jurdy, D.M. ); Stefanick, M. )

    1990-10-01

    Published hotspot catalogues all show a hemispheric concentration beyond what can be expected by chance. Cumulative distributions about the center of concentration are described by a power law with a fractal dimension closer to 1 than 2. Random sets of the corresponding sizes do not show this effect. A simple shift of the random sets away from a point would produce distributions similar to those of hotspot sets. The possible relation of the hotspots to the locations of ridges and subduction zones is tested using large sets of randomly-generated points to estimate areas within given distances of the plate boundaries. The probability of finding the observed number of hotspots within 10 of the ridges is about what is expected.

  10. Mature cystic teratomas arise from meiotic oocytes, but not from pre-meiotic oogonia.

    PubMed

    Kaku, Hiroshi; Usui, Hirokazu; Qu, Jia; Shozu, Makio

    2016-04-01

    Mature cystic teratomas (MCTs) in the ovaries have been thought to originate from germ cells from all developmental stages, i.e., from pre-meiotic oogonia through meiotic oocytes to mature post-meiotic ova. This view was based on research on MCTs by classical methods, including those involving centromeric heteromorphisms in karyotypes, enzyme polymorphisms, and DNA polymorphisms. However, insufficient genomic information was obtained in those studies. The current study aimed to confirm the cytogenetic origin of ovarian MCTs by using short tandem repeat (STR) polymorphism analysis to obtain sufficient genomic information, especially in connection with centromeric loci. Tissue samples of MCTs (57 ovaries from 51 patients, 91 MCTs, 156 specimens in total) obtained from cystectomies or oophorectomies were used. We categorized the specimens into two groups: i) solid components of MCTs and ii) cyst walls. The numbers of solid components of MCTs from pre-meiotic oogonia, primary oocytes, secondary oocytes, and ova were 0, 33, 16, and 15, respectively. There were no pre-meiotic oogonia in this series of solid-component specimens. We propose a hypothesis for the tumorigenesis of ovarian MCTs: the precursors of ovarian MCTs are not functional oocytes or ova, but are primary oocytes that have escaped from meiotic arrest. This hypothesis could satisfactorily explain the lack of pre-meiotic teratomas observed in this study and the nearly equal distribution of teratomas originating from primary oocytes, secondary oocytes, and ova in previous studies. Furthermore, this hypothesis could provide a starting point for determining the mechanism underlying tumorigenesis of ovarian MCTs. © 2016 Wiley Periodicals, Inc. PMID:26791142

  11. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  12. Yellowstone Hotspot Geodynamics

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.

    2012-12-01

    The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS

  13. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein

    PubMed Central

    Azumi, Yoshitaka; Liu, Dehua; Zhao, Dazhong; Li, Wuxing; Wang, Guanfang; Hu, Yi; Ma, Hong

    2002-01-01

    Interactions between homologs in meiotic prophase I, such as recombination and synapsis, are critical for proper homolog segregation and involve the coordination of several parallel events. However, few regulatory genes have been identified; in particular, it is not clear what roles the proteins similar to the mitotic cell cycle regulators might play during meiotic prophase I. We describe here the isolation and characterization of a new Arabidopsis mutant called solo dancers that exhibits a severe defect in homolog synapsis, recombination and bivalent formation in meiotic prophase I, subsequently resulting in seemingly random chromosome distribution and formation of abnormal meiotic products. We further demonstrate that the mutation affects a meiosis-specific gene encoding a novel protein of 578 amino acid residues with up to 31% amino acid sequence identity to known cyclins in the C-terminal portion. These results argue strongly that homolog interactions during meiotic prophase I require a novel meiosis-specific cyclin in Arabidopsis. PMID:12065421

  14. Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect

    PubMed Central

    Miller, Danny E.; Smith, Clarissa B.; Kazemi, Nazanin Yeganeh; Cockrell, Alexandria J.; Arvanitakis, Alexandra V.; Blumenstiel, Justin P.; Jaspersen, Sue L.; Hawley, R. Scott

    2016-01-01

    A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability. PMID:26944917

  15. Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect.

    PubMed

    Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh; Cockrell, Alexandria J; Arvanitakas, Alexandra V; Blumenstiel, Justin P; Jaspersen, Sue L; Hawley, R Scott

    2016-05-01

    A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability. PMID:26944917

  16. The BOY NAMED SUE Quantitative Trait Locus Confers Increased Meiotic Stability to an Adapted Natural Allopolyploid of Arabidopsis[C][W][OPEN

    PubMed Central

    Henry, Isabelle M.; Dilkes, Brian P.; Tyagi, Anand; Gao, Jian; Christensen, Brian; Comai, Luca

    2014-01-01

    Whole-genome duplication resulting from polyploidy is ubiquitous in the evolutionary history of plant species. Yet, polyploids must overcome the meiotic challenge of pairing, recombining, and segregating more than two sets of chromosomes. Using genomic sequencing of synthetic and natural allopolyploids of Arabidopsis thaliana and Arabidopsis arenosa, we determined that dosage variation and chromosomal translocations consistent with homoeologous pairing were more frequent in the synthetic allopolyploids. To test the role of structural chromosomal differentiation versus genetic regulation of meiotic pairing, we performed sequenced-based, high-density genetic mapping in F2 hybrids between synthetic and natural lines. This F2 population displayed frequent dosage variation and deleterious homoeologous recombination. The genetic map derived from this population provided no indication of structural evolution of the genome of the natural allopolyploid Arabidopsis suecica, compared with its predicted parents. The F2 population displayed variation in meiotic regularity and pollen viability that correlated with a single quantitative trait locus, which we named BOY NAMED SUE, and whose beneficial allele was contributed by A. suecica. This demonstrates that an additive, gain-of-function allele contributes to meiotic stability and fertility in a recently established allopolyploid and provides an Arabidopsis system to decipher evolutionary and molecular mechanisms of meiotic regularity in polyploids. PMID:24464296

  17. The telomere bouquet regulates meiotic centromere assembly.

    PubMed

    Klutstein, Michael; Fennell, Alex; Fernández-Álvarez, Alfonso; Cooper, Julia Promisel

    2015-04-01

    The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres. PMID:25774833

  18. The meiotic transcriptome architecture of plants

    PubMed Central

    Dukowic-Schulze, Stefanie; Chen, Changbin

    2014-01-01

    Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next. PMID:24926296

  19. HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity.

    PubMed

    Kogo, Hiroshi; Tsutsumi, Makiko; Inagaki, Hidehito; Ohye, Tamae; Kiyonari, Hiroshi; Kurahashi, Hiroki

    2012-11-01

    Meiotic chromosome segregation requires homologous pairing, synapsis and crossover recombination during meiotic prophase. The checkpoint kinase ATR has been proposed to be involved in the quality surveillance of these processes, although the underlying mechanisms remain largely unknown. In our present study, we generated mice lacking HORMAD2, a protein that localizes to unsynapsed meiotic chromosomes. We show that this Hormad2 deficiency hampers the proper recruitment of ATR activity to unsynapsed chromosomes. Male Hormad2-deficient mice are infertile due to spermatocyte loss as a result of characteristic impairment of sex body formation; an ATR- and γH2AX-enriched repressive chromatin domain is formed, but is partially dissociated from the elongated sex chromosome axes. In contrast to males, Hormad2-deficient females are fertile. However, our analysis of Hormad2/Spo11 double-mutant females shows that the oocyte number is negatively correlated with the frequency of pseudo-sex body formation in a Hormad2 gene dosage-dependent manner. This result suggests that the elimination of Spo11-deficient asynaptic oocytes is associated with the HORMAD2-dependent pseudo-sex body formation that is likely initiated by local concentration of ATR activity in the absence of double-strand breaks. Our results thus show a HORMAD2-dependent quality control mechanism that recognizes unsynapsis and recruits ATR activity during mammalian meiosis. PMID:23039116

  20. A molecular model for the role of SYCP3 in meiotic chromosome organisation

    PubMed Central

    Syrjänen, Johanna Liinamaria; Pellegrini, Luca; Davies, Owen Richard

    2014-01-01

    The synaptonemal complex (SC) is an evolutionarily-conserved protein assembly that holds together homologous chromosomes during prophase of the first meiotic division. Whilst essential for meiosis and fertility, the molecular structure of the SC has proved resistant to elucidation. The SC protein SYCP3 has a crucial but poorly understood role in establishing the architecture of the meiotic chromosome. Here we show that human SYCP3 forms a highly-elongated helical tetramer of 20 nm length. N-terminal sequences extending from each end of the rod-like structure bind double-stranded DNA, enabling SYCP3 to link distant sites along the sister chromatid. We further find that SYCP3 self-assembles into regular filamentous structures that resemble the known morphology of the SC lateral element. Together, our data form the basis for a model in which SYCP3 binding and assembly on meiotic chromosomes leads to their organisation into compact structures compatible with recombination and crossover formation. DOI: http://dx.doi.org/10.7554/eLife.02963.001 PMID:24950965

  1. A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression

    PubMed Central

    Barbosa, Vitor; Kimm, Naomi; Lehmann, Ruth

    2007-01-01

    Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFα-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis. PMID:17507684

  2. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair

    PubMed Central

    Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas

    2016-01-01

    Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961

  3. Homologue pairing, recombination and segregation in Caenorhabditis elegans.

    PubMed

    Zetka, M

    2009-01-01

    Meiosis in the free-living, hermaphroditic nematode Caenorhabditis elegans is marked by the same highly conserved features observed in other sexually reproducing systems. Accurate chromosome segregation at the meiotic divisions depends on earlier landmark events of meiotic prophase, including the pairing of homologous chromosomes, synapsis between them, and the formation of crossovers. Dissection of these processes has revealed a unique simplification of meiotic mechanisms that impact the interpretation of meiotic chromosome behaviour in more complex systems. Chromosome sites required for chromosome pairing are consolidated to one end of each chromosome, the many sites of recombination initiation are resolved into a single crossover for each chromosome pair, and the diffuse (holocentric) kinetic activity that extends along the length of the mitotic chromosomes is reduced to a single end of each meiotic chromosome. Consequently, studies from the nematode have illuminated and challenged long-standing concepts of homologue pairing mechanisms, crossover interference, and kinetochore structure. Because chromosome pairing, synapsis, and recombination can proceed independently of one another, C. elegans has provided a simplified system for studying these processes and the mechanisms mediating their coordination during meiosis. This review covers the major features of C. elegans meiosis with emphasis on its contributions to understanding essential meiotic processes. PMID:18948706

  4. Meiotic drive of chromosomal knobs reshaped the maize genome.

    PubMed Central

    Buckler, E S; Phelps-Durr, T L; Buckler, C S; Dawe, R K; Doebley, J F; Holtsford, T P

    1999-01-01

    Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods. PMID:10471723

  5. A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement.

    PubMed

    Harvey, Austin M; Rehard, David G; Groskreutz, Katie M; Kuntz, Danielle R; Sharp, Kevin J; Shiu, Patrick K T; Hammond, Thomas M

    2014-08-01

    Neurospora fungi harbor a group of meiotic drive elements known as Spore killers (Sk). Spore killer-2 (Sk-2) and Spore killer-3 (Sk-3) are two Sk elements that map to a region of suppressed recombination. Although this recombination block is limited to crosses between Sk and Sk-sensitive (Sk(S)) strains, its existence has hindered Sk characterization. Here we report the circumvention of this obstacle by combining a classical genetic screen with next-generation sequencing technology and three-point crossing assays. This approach has allowed us to identify a novel locus called rfk-1, mutation of which disrupts spore killing by Sk-2. We have mapped rfk-1 to a 45-kb region near the right border of the Sk-2 element, a location that also harbors an 11-kb insertion (Sk-2(INS1)) and part of a >220-kb inversion (Sk-2(INV1)). These are the first two chromosome rearrangements to be formally identified in a Neurospora Sk element, providing evidence that they are at least partially responsible for Sk-based recombination suppression. Additionally, the proximity of these chromosome rearrangements to rfk-1 (a critical component of the spore-killing mechanism) suggests that they have played a key role in the evolution of meiotic drive in Neurospora. PMID:24931406

  6. Meiotically Induced Rec7 and Rec8 Genes of Schizosaccharomyces Pombe

    PubMed Central

    Lin, Y.; Larson, K. L.; Dorer, R.; Smith, G. R.

    1992-01-01

    The Schizosaccharomyces pombe rec7 and rec8 genes, which are required for meiotic intragenic recombination but not for mitotic recombination, have been cloned and their DNA sequences determined. Genetic and physical analyses demonstrated that the cloned fragments contained the rec genes rather than rec mutation suppressors. A 1.6-kb DNA fragment contained a functional rec7 gene, and a 2.1-kb fragment contained a functional rec8 gene. The nucleotide sequences of these fragments revealed open reading frames predicting 249 amino acids for the rec7 gene product and 393 amino acids for the rec8 gene product. Northern hybridization analysis showed that both rec gene mRNAs were detectable only at 2-3 hr after induction of meiosis. The absence of these mRNAs in mitosis and their disappearance at 4 hr and later in meiosis suggest that the rec7 and rec8 gene products may be involved primarily in the early steps of meiotic recombination in S. pombe. PMID:1339382

  7. Unequal Exchange and Meiotic Instability of Disease-Resistance Genes in the Rp1 Region of Maize

    PubMed Central

    Sudupak, M. A.; Bennetzen, J. L.; Hulbert, S. H.

    1993-01-01

    The Rp1 region of maize was originally characterized as a complex locus which conditions resistance to the fungus Puccinia sorghi, the causal organism in the common rust disease. Some alleles of Rp1 are meiotically unstable, but the mechanism of instability is not known. We have studied the role of recombination in meiotic instability in maize lines homozygous for either Rp1-J or Rp1-G. Test cross progenies derived from a line that was homozygous for Rp1-J, but heterozygous at flanking markers, were screened for susceptible individuals. Five susceptible individuals were derived from 9772 progeny. All five had nonparental combinations of flanking markers; three had one combination of recombinant flanking markers while the other two had the opposite pair. In an identical study with Rp1-G, 20 susceptible seedlings were detected out of 5874 test cross progeny. Nineteen of these were associated with flanking marker exchange, 11 and 8 of each recombinant marker combination. Our results indicate that unequal exchange is the primary mechanism of meiotic instability of Rp1-J and Rp1-G. PMID:8417982

  8. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize.

    PubMed

    Sudupak, M A; Bennetzen, J L; Hulbert, S H

    1993-01-01

    The Rp1 region of maize was originally characterized as a complex locus which conditions resistance to the fungus Puccinia sorghi, the causal organism in the common rust disease. Some alleles of Rp1 are meiotically unstable, but the mechanism of instability is not known. We have studied the role of recombination in meiotic instability in maize lines homozygous for either Rp1-J or Rp1-G. Test cross progenies derived from a line that was homozygous for Rp1-J, but heterozygous at flanking markers, were screened for susceptible individuals. Five susceptible individuals were derived from 9772 progeny. All five had nonparental combinations of flanking markers; three had one combination of recombinant flanking markers while the other two had the opposite pair. In an identical study with Rp1-G, 20 susceptible seedlings were detected out of 5874 test cross progeny. Nineteen of these were associated with flanking marker exchange, 11 and 8 of each recombinant marker combination. Our results indicate that unequal exchange is the primary mechanism of meiotic instability of Rp1-J and Rp1-G. PMID:8417982

  9. Reversible inactivation of the Escherichia coli RecBCD enzyme by the recombination hotspot chi in vitro: evidence for functional inactivation or loss of the RecD subunit.

    PubMed Central

    Dixon, D A; Churchill, J J; Kowalczykowski, S C

    1994-01-01

    Genetic recombination in Escherichia coli is stimulated by a RecBCD enzyme-mediated event at DNA sequences known as Chi (chi) sites (5'-GCTGGTGG-3'). Previously, it was shown that chi acts to regulate the nuclease activity of RecBCD; here, we demonstrate that, under appropriate conditions, interaction with chi sites can also result in an inactivation of helicase activity of RecBCD. The unwinding of double-stranded DNA-containing chi sites, under conditions of limiting Mg2+ ion, results in the reversible inactivation of RecBCD; addition of excess Mg2+ to the reaction reactivates all activities of RecBCD. Inactivation is the consequence of a chi-dependent modification of RecBCD that appears to result from an inability of the chi-modified RecBCD to reinitiate unwinding of intact DNA molecules. This characteristic behavior of RecBCD and chi is displayed by the reconstituted RecBC (i.e., without the RecD subunit), except that it is not dependent on chi interaction. This biochemical similarity between the chi-modified RecBCD and RecBC enzymes implies that recognition of chi results in a dissociation or functional inactivation of RecD subunit and lends support to the hypothesis that interaction with chi results in ejection of the RecD subunit. Images PMID:8159691

  10. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes

    PubMed Central

    Crawley, Oliver; Barroso, Consuelo; Testori, Sarah; Ferrandiz, Nuria; Silva, Nicola; Castellano-Pozo, Maikel; Jaso-Tamame, Angel Luis; Martinez-Perez, Enrique

    2016-01-01

    Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10851.001 PMID:26841696

  11. Dmc1 Functions in a Saccharomyces Cerevisiae Meiotic Pathway That Is Largely Independent of the Rad51 Pathway

    PubMed Central

    Dresser, M. E.; Ewing, D. J.; Conrad, M. N.; Dominguez, A. M.; Barstead, R.; Jiang, H.; Kodadek, T.

    1997-01-01

    Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains. PMID:9335591

  12. Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation.

    PubMed

    Kakui, Yasutaka; Sato, Masamitsu

    2016-06-01

    Meiosis is a specialised cell division process for generating gametes. In contrast to mitosis, meiosis involves recombination followed by two consecutive rounds of cell division, meiosis I and II. A vast field of research has been devoted to understanding the differences between mitotic and meiotic cell divisions from the viewpoint of chromosome behaviour. For faithful inheritance of paternal and maternal genetic information to offspring, two events are indispensable: meiotic recombination, which generates a physical link between homologous chromosomes, and reductional segregation, in which homologous chromosomes move towards opposite poles, thereby halving the ploidy. The cytoskeleton and its regulators play specialised roles in meiosis to accomplish these divisions. Recent studies have shown that microtubule-associated proteins (MAPs), including tumour overexpressed gene (TOG), play unique roles during meiosis. Furthermore, the conserved mitotic protein kinase Polo modulates MAP localisation in meiosis I. As Polo is a well-known regulator of reductional segregation in meiosis, the evidence suggests that Polo constitutes a plausible link between meiosis-specific MAP functions and reductional segregation. Here, we review the latest findings on how the localisation and regulation of MAPs in meiosis differ from those in mitosis, and we discuss conservation of the system between yeast and higher eukaryotes. PMID:26383111

  13. Budding Yeast SLX4 Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis

    PubMed Central

    Higashide, Mika; Shinohara, Miki

    2016-01-01

    The number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107. Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres. We observed an increase in uncontrolled CO formation only in a region near the centromere in the slx4∆ mutant. Interestingly, this phenomenon was not observed in the slx1∆, rad1∆, or rtt107∆ mutants. In addition, we observed a reduced number of DNA double-strand breaks (DSBs) and altered meiotic DSB distribution on chromosomes in the slx4∆ mutant. This suggests that the multi-functional Slx4 is required for proper CO formation and meiotic DSB formation. PMID:27172214

  14. Budding Yeast SLX4 Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis.

    PubMed

    Higashide, Mika; Shinohara, Miki

    2016-01-01

    The number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107 Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres. We observed an increase in uncontrolled CO formation only in a region near the centromere in the slx4∆ mutant. Interestingly, this phenomenon was not observed in the slx1∆, rad1∆, or rtt107∆ mutants. In addition, we observed a reduced number of DNA double-strand breaks (DSBs) and altered meiotic DSB distribution on chromosomes in the slx4∆ mutant. This suggests that the multi-functional Slx4 is required for proper CO formation and meiotic DSB formation. PMID:27172214

  15. The Mouse Cohesin-Associated Protein PDS5B Is Expressed in Testicular Cells and Is Associated with the Meiotic Chromosome Axes.

    PubMed

    Fukuda, Tomoyuki; Hoog, Christer

    2010-01-01

    During the first meiotic prophase, the cohesin complex is localized to the chromosome axis and contributes to chromosome organization, pairing, synapsis, and recombination. The PDS5 protein, an accessory factor of the cohesin complex, is known to be a component of meiotic chromosome cores in fungi and to be implicated in meiotic chromosome structure and function. We found by immunoblotting experiments that a mammalian PDS5 protein, PDS5B, is abundantly expressed in mouse testis compared to other tissues. Immunofluorescence labeling experiments revealed that PDS5B is highly expressed in spermatogonia and that most PDS5B is depleted from chromatin as cells enter meiosis. During the first meiotic prophase, PDS5B associates with the axial cores of chromosomes. The axial association of PDS5B was observed also in the absence of synaptonemal complex proteins, such as SYCP1 and SYCP3, suggesting that PDS5B is an integral part of the chromosome axis as defined by the cohesin complex. These results suggest that PDS5B modulates cohesin functions in spermatocytes as well as in spermatogonia, contributing to meiotic chromosome structure and function. PMID:24710098

  16. The Mouse Cohesin-Associated Protein PDS5B Is Expressed in Testicular Cells and Is Associated with the Meiotic Chromosome Axes

    PubMed Central

    Fukuda, Tomoyuki; Hoog, Christer

    2010-01-01

    During the first meiotic prophase, the cohesin complex is localized to the chromosome axis and contributes to chromosome organization, pairing, synapsis, and recombination. The PDS5 protein, an accessory factor of the cohesin complex, is known to be a component of meiotic chromosome cores in fungi and to be implicated in meiotic chromosome structure and function. We found by immunoblotting experiments that a mammalian PDS5 protein, PDS5B, is abundantly expressed in mouse testis compared to other tissues. Immunofluorescence labeling experiments revealed that PDS5B is highly expressed in spermatogonia and that most PDS5B is depleted from chromatin as cells enter meiosis. During the first meiotic prophase, PDS5B associates with the axial cores of chromosomes. The axial association of PDS5B was observed also in the absence of synaptonemal complex proteins, such as SYCP1 and SYCP3, suggesting that PDS5B is an integral part of the chromosome axis as defined by the cohesin complex. These results suggest that PDS5B modulates cohesin functions in spermatocytes as well as in spermatogonia, contributing to meiotic chromosome structure and function. PMID:24710098

  17. ``sex Ratio'' Meiotic Drive in Drosophila Testacea

    PubMed Central

    James, A. C.; Jaenike, J.

    1990-01-01

    We document the occurrence of ``sex ratio'' meiotic drive in natural populations of Drosophila testacea. ``Sex ratio'' males sire >95% female offspring. Genetic analysis reveals that this effect is due to a meiotically driven X chromosome, as in other species of Drosophila in which ``sex ratio'' has been found. In contrast to other drosophilids, the ``sex ratio'' and standard chromosomes of D. testacea do not differ in gene arrangement, implying that the effect may be due to a single genetic factor in this species. In all likelihood, the ``sex ratio'' condition has evolved independently in D. testacea and in the Drosophila obscura species group, as the loci responsible for the effect occur on different chromosomal elements. An important ecological consequence of ``sex ratio'' is that natural populations of D. testacea exhibit a strong female bias. Because D. testacea mates, oviposits, and feeds as adults and larvae on mushrooms, this species provides an excellent opportunity to study the selective factors in nature that prevent ``sex ratio'' chromosomes from increasing to fixation and causing the extinction of the species. PMID:2249763

  18. Functional Redundancy in the Maize Meiotic Kinetochore

    PubMed Central

    Yu, Hong-Guo; Dawe, R. Kelly

    2000-01-01

    Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit three- and four-dimensional light microscopy and the maize meiotic mutant absence of first division 1 (afd1) to investigate the properties of single kinetochores. As an outcome of premature sister kinetochore separation in afd1 meiocytes, all of the chromosomes at meiosis II carry single kinetochores. Approximately 60% of the single kinetochore chromosomes align at the spindle equator during prometaphase/metaphase II, whereas acentric fragments, also generated by afd1, fail to align at the equator. Immunocytochemistry suggests that the plateward movement occurs in part because the single kinetochores separate into half kinetochore units. Single kinetochores stain positive for spindle checkpoint proteins during prometaphase, but lose their staining as tension is applied to the half kinetochores. At anaphase, ∼6% of the kinetochores develop stable interactions with microtubules (kinetochore fibers) from both spindle poles. Our data indicate that maize meiotic kinetochores are plastic, redundant structures that can carry out each of their major functions in duplicate. PMID:11018059

  19. Accounting for false negatives in hotspot detection

    SciTech Connect

    Sego, Landon H.; Wilson, John E.

    2007-08-28

    Hotspot sampling designs are used in environmental sampling to identify the location of one (or more) contiguous regions of elevated contamination. These regions are known as hotspots. The problem of how to calculate the probability of detecting an elliptical hotspot using a rectangular or triangular grid of sampling points was addressed by Singer and Wickman in 1969. This approach presumed that any sample which coincided with a hotspot would detect the hotspot without error. However, for many sampling methodologies, there is a chance that the hotspot will not be detected even though it has been sampled directly--a false negative. We present a mathematical solution and a numerical algorithm which account for false negatives when calculating the probability of detecting hotspots that are circular in shape.

  20. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells

    SciTech Connect

    Geoffroy-Siraudin, Cendrine; Perrard, Marie-Hélène; Ghalamoun-Slaimi, Rahma; Ali, Sazan; Chaspoul, Florence; Lanteaume, André; Achard, Vincent; Gallice, Philippe; Durand, Philippe; and others

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2‐week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the “motheaten” SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied. -- Highlights: ► Cadmium induces ex-vivo severe time- and dose-dependent germ cell abnormalities. ► Cadmium at very low concentration (0.1 µg/l) induces synaptonemal complex abnormalities. ► The lowest concentration inducing adverse effect varied with the cell parameter studied. ► Cadmium alters proteins involved in pairing and recombination. ► Cadmium leads to achiasmate univalents and

  1. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1)

    PubMed Central

    Dray, Eloïse; Dunlop, Myun Hwa; Kauppi, Liisa; Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2011-01-01

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination. PMID:21307306

  2. Interchromosomal recombination is suppressed in mammalian somatic cells.

    PubMed Central

    Shulman, M J; Collins, C; Connor, A; Read, L R; Baker, M D

    1995-01-01

    Homologous recombination occurs intrachromosomally as well as interchromosomally, both in mitotic (somatic) cells as well as meiotically in the germline. These different processes can serve very different purposes in maintaining the integrity of the organism and in enhancing diversity in the species. As shown here, comparison of the frequencies of intra- and interchromosomal recombination in meiotic and mitotic cells of both mouse and yeast argues that interchromosomal recombination is particularly low in mitotic cells of metazoan organisms. This result in turn suggests that the recombination machinery of metazoa might be organized to avoid the deleterious effects of homozygotization in somatic cells while still deriving the benefits of species diversification and of DNA repair. Images PMID:7664750

  3. Evidence for meiotic sex in bdelloid rotifers.

    PubMed

    Signorovitch, Ana; Hur, Jae; Gladyshev, Eugene; Meselson, Matthew

    2016-08-22

    In their study of genetic exchange in the bdelloid rotifer Adineta vaga, Debortoli et al. [1] conclude that the patchwork pattern of allele sharing among three individuals in the genomic regions they examined is "…unlikely to arise in cases of PTH (Oenothera-like) meiosis since haplotypes are transferred as entire blocks…" and therefore that "Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex." This assumes without justification that horizontal gene transfer (HGT) in bdelloids precludes the sexual transmission of entire haplotypes, for which we have reported evidence in the bdelloid Macrotrachela quadricornifera[2]. And it does not consider the contribution to such a patchwork pattern that would result from conversion and subsequent outcrossing, even in Oenothera-like systems. PMID:27554650

  4. The influence of recombination on human genetic diversity.

    PubMed

    Spencer, Chris C A; Deloukas, Panos; Hunt, Sarah; Mullikin, Jim; Myers, Simon; Silverman, Bernard; Donnelly, Peter; Bentley, David; McVean, Gil

    2006-09-22

    In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution. PMID:17044736

  5. Coevolutionary dynamics of polyandry and sex-linked meiotic drive.

    PubMed

    Holman, Luke; Price, Thomas A R; Wedell, Nina; Kokko, Hanna

    2015-03-01

    Segregation distorters located on sex chromosomes are predicted to sweep to fixation and cause extinction via a shortage of one sex, but in nature they are often found at low, stable frequencies. One potential resolution to this longstanding puzzle involves female multiple mating (polyandry). Because many meiotic drivers severely reduce the sperm competitive ability of their male carriers, females are predicted to evolve more frequent polyandry and thereby promote sperm competition when a meiotic driver invades. Consequently, the driving chromosome's relative fitness should decline, halting or reversing its spread. We used formal modeling to show that this initially appealing hypothesis cannot resolve the puzzle alone: other selective pressures (e.g., low fitness of drive homozygotes) are required to establish a stable meiotic drive polymorphism. However, polyandry and meiotic drive can strongly affect one another's frequency, and polyandrous populations may be resistant to the invasion of rare drive mutants. PMID:25565579

  6. Recombination Suppression by Heterozygous Robertsonian Chromosomes in the Mouse

    PubMed Central

    Davisson, M. T.; Akeson, E. C.

    1993-01-01

    Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16. PMID:8454207

  7. Complex elaboration: making sense of meiotic cohesin dynamics

    PubMed Central

    Rankin, Susannah

    2015-01-01

    In mitotically dividing cells, the cohesin complex tethers sister chromatids, the products of DNA replication, together from the time they are generated during S phase until anaphase. Cohesion between sister chromatids ensures accurate chromosome segregation, and promotes normal gene regulation and certain kinds of DNA repair. In somatic cells, the core cohesin complex is composed of four subunits: Smc1, Smc3, Rad21 and an SA subunit. During meiotic cell divisions meiosis-specific isoforms of several of the cohesin subunits are also expressed and incorporated into distinct meiotic cohesin complexes. The relative contributions of these meiosis-specific forms of cohesin to chromosome dynamics during meiotic progression have not been fully worked out. However, the localization of these proteins during chromosome pairing and synapsis, and their unique loss-of-function phenotypes, suggest non-overlapping roles in controlling meiotic chromosome behavior. Many of the proteins that regulate cohesin function during mitosis also appear to regulate cohesin during meiosis. Here we review how cohesin contributes to meiotic chromosome dynamics, and explore similarities and differences between cohesin regulation during the mitotic cell cycle and meiotic progression. A deeper understanding of the regulation and function of cohesin in meiosis will provide important new insights into how the cohesin complex is able to promote distinct kinds of chromosome interactions under diverse conditions. PMID:25895170

  8. Control of Oocyte Growth and Meiotic Maturation in C. elegans

    PubMed Central

    Kim, Seongseop; Spike, Caroline; Greenstein, David

    2013-01-01

    In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. C. elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gαs-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition. PMID:22872481

  9. The Rate of Nonallelic Homologous Recombination in Males Is Highly Variable, Correlated between Monozygotic Twins and Independent of Age

    PubMed Central

    MacArthur, Jacqueline A. L.; Spector, Timothy D.; Lindsay, Sarah J.; Mangino, Massimo; Gill, Raj; Small, Kerrin S.; Hurles, Matthew E.

    2014-01-01

    Nonallelic homologous recombination (NAHR) between highly similar duplicated sequences generates chromosomal deletions, duplications and inversions, which can cause diverse genetic disorders. Little is known about interindividual variation in NAHR rates and the factors that influence this. We estimated the rate of deletion at the CMT1A-REP NAHR hotspot in sperm DNA from 34 male donors, including 16 monozygotic (MZ) co-twins (8 twin pairs) aged 24 to 67 years old. The average NAHR rate was 3.5×10−5 with a seven-fold variation across individuals. Despite good statistical power to detect even a subtle correlation, we observed no relationship between age of unrelated individuals and the rate of NAHR in their sperm, likely reflecting the meiotic-specific origin of these events. We then estimated the heritability of deletion rate by calculating the intraclass correlation (ICC) within MZ co-twins, revealing a significant correlation between MZ co-twins (ICC = 0.784, p = 0.0039), with MZ co-twins being significantly more correlated than unrelated pairs. We showed that this heritability cannot be explained by variation in PRDM9, a known regulator of NAHR, or variation within the NAHR hotspot itself. We also did not detect any correlation between Body Mass Index (BMI), smoking status or alcohol intake and rate of NAHR. Our results suggest that other, as yet unidentified, genetic or environmental factors play a significant role in the regulation of NAHR and are responsible for the extensive variation in the population for the probability of fathering a child with a genomic disorder resulting from a pathogenic deletion. PMID:24603440

  10. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution.

    PubMed

    Blackmon, Heath; Demuth, Jeffery P

    2015-09-01

    Loss of the Y-chromosome is a common feature of species with chromosomal sex determination. However, our understanding of why some lineages frequently lose Y-chromosomes while others do not is limited. The fragile Y hypothesis proposes that in species with chiasmatic meiosis the rate of Y-chromosome aneuploidy and the size of the recombining region have a negative correlation. The fragile Y hypothesis provides a number of novel insights not possible under traditional models. Specifically, increased rates of Y aneuploidy may impose positive selection for (i) gene movement off the Y; (ii) translocations and fusions which expand the recombining region; and (iii) alternative meiotic segregation mechanisms (achiasmatic or asynaptic). These insights as well as existing evidence for the frequency of Y-chromosome aneuploidy raise doubt about the prospects for long-term retention of the human Y-chromosome despite recent evidence for stable gene content in older non-recombining regions. PMID:26200104

  11. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity.

    PubMed

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-08-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. PMID:27494704

  12. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity

    PubMed Central

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-01-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. PMID:27494704

  13. High Resolution Analysis of Meiotic Chromosome Structure and Behaviour in Barley (Hordeum vulgare L.)

    PubMed Central

    Phillips, Dylan; Nibau, Candida; Wnetrzak, Joanna; Jenkins, Glyn

    2012-01-01

    Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM). PMID:22761818

  14. Genetic linkage between a sexually selected trait and X chromosome meiotic drive

    PubMed Central

    Johns, Philip M; Wolfenbarger, L. LaReesa; Wilkinson, Gerald S

    2005-01-01

    Previous studies on the stalk-eyed fly, Cyrtodiopsis dalmanni, have shown that males with long eye-stalks win contests and are preferred by females, and artificial selection on male relative eye span alters brood sex-ratios. Subsequent theory proposes that X-linked meiotic drive can catalyse the evolution of mate preferences when drive is linked to ornament genes. Here we test this prediction by mapping meiotic drive and quantitative trait loci (QTL) for eye span. To map QTL we genotyped 24 microsatellite loci using 1228 F2 flies from two crosses between lines selected for long or short eye span. The crosses differed by presence or absence of a drive X chromosome, XD, in the parental male. Linkage analysis reveals that XD dramatically reduces recombination between X and XD chromosomes. In the XD cross, half of the F2 males carried the drive haplotype, produced partially elongated spermatids and female-biased broods, and had shorter eye span. The largest QTL mapped 1.3 cM from drive on the X chromosome and explained 36% of the variation in male eye span while another QTL mapped to an autosomal region that suppresses drive. These results indicate that selfish genetic elements that distort the sex-ratio can influence the evolution of exaggerated traits. PMID:16191622

  15. Dis1: A Yeast Gene Required for Proper Meiotic Chromosome Disjunction

    PubMed Central

    Rockmill, B.; Fogel, S.

    1988-01-01

    Mutants at a newly identified locus, DIS1 (disjunction), were detected by screening for mutants that generate aneuploid spores (chromosome VIII disomes) at an increased frequency. Strains carrying the partially dominant alleles, DIS1-1 or DIS1-2, generate disomes at rates up to 100 times the background level. Mitotic nondisjunction is also increased 10- to 50-fold over background. Half-tetrad analysis of disomes for a marked interval on chromosome VIII yields wild-type map distances, indicating that a general recombination deficiency is not the cause of nondisjuction. Meiotic nondisjunction in DIS1 mutants is not chromosome specific; 5% of the spores disomic for chromosome VIII are also disomic for chromosome III. Although only one disomic spore is found per exceptional ascus most of the disomes appear to be generated in the first meiotic division because recovered chromosome VIII disomes contain mostly nonsister chromosomes. We propose that disome generation in the DIS1 mutants results from precocious separation of sister centromeres. PMID:3294101

  16. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  17. Transient Structure Associated with the Spindle Pole Body Directs Meiotic Microtubule Reorganization in S. pombe

    PubMed Central

    Funaya, Charlotta; Samarasinghe, Shivanthi; Pruggnaller, Sabine; Ohta, Midori; Connolly, Yvonne; Müller, Jan; Murakami, Hiroshi; Grallert, Agnes; Yamamoto, Masayuki; Smith, Duncan; Antony, Claude; Tanaka, Kayoko

    2012-01-01

    Summary Background Vigorous chromosome movements driven by cytoskeletal assemblies are a widely conserved feature of sexual differentiation to facilitate meiotic recombination. In fission yeast, this process involves the dramatic conversion of arrays of cytoplasmic microtubules (MTs), generated from multiple MT organizing centers (MTOCs), into a single radial MT (rMT) array associated with the spindle pole body (SPB), the major MTOC during meiotic prophase. The rMT is then dissolved upon the onset of meiosis I when a bipolar spindle emerges to conduct chromosome segregation. Structural features and molecular mechanisms that govern these dynamic MT rearrangements are poorly understood. Results Electron tomography of the SPBs showed that the rMT emanates from a newly recognized amorphous structure, which we term the rMTOC. The rMTOC, which resides at the cytoplasmic side of the SPB, is highly enriched in γ-tubulin reminiscent of the pericentriolar material of higher eukaryotic centrosomes. Formation of the rMTOC depends on Hrs1/Mcp6, a meiosis-specific SPB component that is located at the rMTOC. At the onset of meiosis I, Hrs1/Mcp6 is subject to strict downregulation by both proteasome-dependent degradation and phosphorylation leading to complete inactivation of the rMTOC. This ensures rMT dissolution and bipolar spindle formation. Conclusions Our study reveals the molecular basis for the transient generation of a novel MTOC, which triggers a program of MT rearrangement that is required for meiotic differentiation. PMID:22425159

  18. Estimating Meiotic Gene Conversion Rates From Population Genetic Data

    PubMed Central

    Gay, J.; Myers, S.; McVean, G.

    2007-01-01

    Gene conversion plays an important part in shaping genetic diversity in populations, yet estimating the rate at which it occurs is difficult because of the short lengths of DNA involved. We have developed a new statistical approach to estimating gene conversion rates from genetic variation, by extending an existing model for haplotype data in the presence of crossover events. We show, by simulation, that when the rate of gene conversion events is at least comparable to the rate of crossover events, the method provides a powerful approach to the detection of gene conversion and estimation of its rate. Application of the method to data from the telomeric X chromosome of Drosophila melanogaster, in which crossover activity is suppressed, indicates that gene conversion occurs ∼400 times more often than crossover events. We also extend the method to estimating variable crossover and gene conversion rates and estimate the rate of gene conversion to be ∼1.5 times higher than the crossover rate in a region of human chromosome 1 with known recombination hotspots. PMID:17660532

  19. Meiotic Gene Conversion Mutants in SACCHAROMYCES CEREVISIAE . I. Isolation and Characterization of pms1-1 and pms1-2

    PubMed Central

    Williamson, Marsha S.; Game, John C.; Fogel, Seymour

    1985-01-01

    The pms1 mutants, isolated on the basis of sharply elevated meiotic prototroph frequencies for two closely linked his4 alleles, display pleiotropic phenotypes in meiotic and mitotic cells. Two isolates carrying recessive mutations in PMS1 were characterized. They identify a function required to maintain low postmeiotic segregation (PMS) frequencies at many heterozygous sites. In addition, they are mitotic mutators. In mutant diploids, spore viability is reduced, and among survivors, gene conversion and postmeiotic segregation frequencies are increased, but reciprocal exchange frequencies are not affected. The conversion event pattern is also dramatically changed in multiply marked regions in pms1 homozygotes. The PMS1 locus maps near MET4 on chromosome XIV. The PMS1 gene may identify an excision-resynthesis long patch mismatch correction function or a function that facilitates correction tract elongation. The PMS1 gene product may also play an important role in spontaneous mitotic mutation avoidance and correction of mismatches in heteroduplex DNA formed during spontaneous and UV-induced mitotic recombination. Based on meiotic recombination models emphasizing mismatch correction in heteroduplex DNA intermediates, this interpretation is favored, but alternative interpretations involving longer recombination intermediates in the mutants are also considered. PMID:3896926

  20. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  1. HotSpot Software Test Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Test Plan (STP) describes the procedures used to verify and validate that the HotSpot Health Physics Codes meet the requirements of its user base, which includes: (1) Users of the PC version of HotSpot conducting consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling. This plan is intended to meet Critical Recommendation 2 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  2. Unfertilized frog eggs die by apoptosis following meiotic exit

    PubMed Central

    2011-01-01

    Background A characteristic feature of frog reproduction is external fertilization accomplished outside the female's body. Mature fertilization-competent frog eggs are arrested at the meiotic metaphase II with high activity of the key meiotic regulators, maturation promoting factor (MPF) and cytostatic factor (CSF), awaiting fertilization. If the eggs are not fertilized within several hours of ovulation, they deteriorate and ultimately die by as yet unknown mechanism. Results Here, we report that the vast majority of naturally laid unfertilized eggs of the African clawed frog Xenopus laevis spontaneously exit metaphase arrest under various environmental conditions and degrade by a well-defined apoptotic process within 48 hours after ovulation. The main features of this process include cytochrome c release, caspase activation, ATP depletion, increase of ADP/ATP ratio, apoptotic nuclear morphology, progressive intracellular acidification, and egg swelling. Meiotic exit seems to be a prerequisite for execution of the apoptotic program, since (i) it precedes apoptosis, (ii) apoptotic events cannot be observed in the eggs maintaining high activity of MPF and CSF, and (iii) apoptosis in unfertilized frog eggs is accelerated upon early meiotic exit. The apoptotic features cannot be observed in the immature prophase-arrested oocytes, however, the maturation-inducing hormone progesterone renders oocytes susceptible to apoptosis. Conclusions The study reveals that naturally laid intact frog eggs die by apoptosis if they are not fertilized. A maternal apoptotic program is evoked in frog oocytes upon maturation and executed after meiotic exit in unfertilized eggs. The meiotic exit is required for execution of the apoptotic program in eggs. The emerging anti-apoptotic role of meiotic metaphase arrest needs further investigation. PMID:22195698

  3. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  4. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.).

    PubMed

    Kale, Sandip M; Jaganathan, Deepa; Ruperao, Pradeep; Chen, Charles; Punna, Ramu; Kudapa, Himabindu; Thudi, Mahendar; Roorkiwal, Manish; Katta, Mohan A V S K; Doddamani, Dadakhalandar; Garg, Vanika; Kishor, P B Kavi; Gaur, Pooran M; Nguyen, Henry T; Batley, Jacqueline; Edwards, David; Sutton, Tim; Varshney, Rajeev K

    2015-01-01

    A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the "QTL-hotspot" region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1-5 seasons and 1-5 locations split the "QTL-hotspot" region into two subregions namely "QTL-hotspot_a" (15 genes) and "QTL-hotspot_b" (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined "QTL-hotspot" region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of "QTL-hotspot" for drought tolerance in chickpea. PMID:26478518

  5. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    PubMed Central

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  6. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    PubMed

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  7. Analysis of meiotic segregation, using single-sperm typing: meiotic drive at the myotonic dystrophy locus.

    PubMed Central

    Leeflang, E. P.; McPeek, M. S.; Arnheim, N.

    1996-01-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. PMID:8808606

  8. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.

  9. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  10. Meiotic Drive Impacts Expression and Evolution of X-Linked Genes in Stalk-Eyed Flies

    PubMed Central

    Reinhardt, Josephine A.; Brand, Cara L.; Paczolt, Kimberly A.; Johns, Philip M.; Baker, Richard H.; Wilkinson, Gerald S.

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species. PMID:24832132

  11. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome

    PubMed Central

    Axelsson, Erik; Webster, Matthew T.; Ratnakumar, Abhirami; Ponting, Chris P.; Lindblad-Toh, Kerstin

    2012-01-01

    Analysis of diverse eukaryotes has revealed that recombination events cluster in discrete genomic locations known as hotspots. In humans, a zinc-finger protein, PRDM9, is believed to initiate recombination in >40% of hotspots by binding to a specific DNA sequence motif. However, the PRDM9 coding sequence is disrupted in the dog genome assembly, raising questions regarding the nature and control of recombination in dogs. By analyzing the sequences of PRDM9 orthologs in a number of dog breeds and several carnivores, we show here that this gene was inactivated early in canid evolution. We next use patterns of linkage disequilibrium using more than 170,000 SNP markers typed in almost 500 dogs to estimate the recombination rates in the dog genome using a coalescent-based approach. Broad-scale recombination rates show good correspondence with an existing linkage-based map. Significant variation in recombination rate is observed on the fine scale, and we are able to detect over 4000 recombination hotspots with high confidence. In contrast to human hotspots, 40% of canine hotspots are characterized by a distinct peak in GC content. A comparative genomic analysis indicates that these peaks are present also as weaker peaks in the panda, suggesting that the hotspots have been continually reinforced by accelerated and strongly GC biased nucleotide substitutions, consistent with the long-term action of biased gene conversion on the dog lineage. These results are consistent with the loss of PRDM9 in canids, resulting in a greater evolutionary stability of recombination hotspots. The genetic determinants of recombination hotspots in the dog genome may thus reflect a fundamental process of relevance to diverse animal species. PMID:22006216

  12. Revisiting Hotspots and Mantle Plumes: Some Phenomenology

    NASA Astrophysics Data System (ADS)

    King, S. D.; White-Gaynor, A. L.

    2012-12-01

    Sleep (1990) used gravity, topography and heat flow from 37 hotspots to ``constrain the mechanism for swell uplift and to obtain fluxes and excess temperatures of mantle plumes,'' complementing a previous analysis by Davies (1988). We repeat that analysis for the same 37 hotspots using gravity from EGM2008 and topography from ETOPO1 (Amante and Eakins, 2009). EGM2008 is complete to spherical harmonic degree and order 2159, or roughly 20 km spatial resolution (Pavlis et al., 2012). The vertical accuracy of ETOPO1 is on the order of 10 meters. With these new models we hope to improve the uplift and subsidence rates along all 37 hotspot tracks--one of the major limitations the previous work. For example, of the 37 hotspots considered Sleep ranked only 7 with good reliability while 14 were fair and 16 were poor. With this new information we can compare and contrast hotspots with various other groupings of hotspots based on tomographic images of mantle structure (Montelli et al, 2003), primary versus secondary hotspots (Courtillot et al., 2003) or relationship to cratonic boundaries (King, 2008). One encounters some puzzles when attempting to reconcile buoyancy fluxes with other groupings of hotspots and/or observations. For example, Coutillot et al.'s seven primary hotspots include: Afar, Easter, Hawaii, Iceland, Louisville, Réunion, and Tristan. Sleep (1990) categorized the reliability of the buoyancy flux calculated by from Afar, Hawaii, Iceland, and Réunion as good, while Tristan and Easter were fair and Louisville was poor. The calculated buoyancy fluxes from Macdonald and Marqueses (both listed as fair) are twice as large as those from Iceland, Tristan, and Réunion. While we recognize that these observations cannot uniquely constrain the origin of these anomalies, better observations should help test various hypotheses.

  13. Patterns of volcanism at oceanic intraplate hotspots

    NASA Astrophysics Data System (ADS)

    Kundargi, R.; Hall, P. S.

    2013-12-01

    One of the defining characteristics of plume-fed hotspots is the formation of a linear chain of age-progressive volcanoes [Wilson, 1963; Morgan, 1972; Courtillot et al, 2003]. However, in detail, the spatial distribution of volcanoes at oceanic hotspots is often complex and rarely takes the form of a simple linear array. Volcanoes at Hawaii, the archetype of plume-fed hotspots, have long been recognized to form two separate linear arrays, known as the Loa and Kea trends [Jackson, 1972]. Recent studies have suggested that volcanism at several additional hotspots, including the Samoa [Workman et al., 2004], Marquesas [Chauvel et al., 2009; Huang et al., 2011], and Society [Payne et al., 2012] hotspots, may also be loosely organized into sub-parallel trends. We have undertaken a systemic characterization of the spatial distribution of recent (3 Ma - present) magmatism, as reflected in bathymetry and topography, at a number of oceanic intraplate hotspots. We find that the average across-track (i.e., perpendicular to plate motion) bathymetric profile shows a distinct dual peak pattern at many hotspots. Characteristic spacing between peaks ranges from ~20 - 60 km and does not correlate with the age of the plate, as would be expected if the distribution of volcanism was being controlled by the elastic thickness of the plate [ten Brink, 1991]. Likewise, peak spacing does not appear to correlate with plate speed in the HS3 reference frame [Gripp and Gordon, 2002]. Spacing at individual hotspots does, however, correlate well with calculated plume buoyancy flux. This suggests that the time-averaged pattern, of dual-chain volcanism at the surface is reflects a bifurcated distribution of melting in the mantle rather than melt transport processes through the lithosphere. We propose that the dual-chain pattern of volcanism at hotspots results from the creation of a highly viscous plug of buoyant, dehydrated residuum that extends downwards from the base of the lithosphere

  14. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae.

    PubMed

    Conrad, Michael N; Lee, Chih-Ying; Wilkerson, Joseph L; Dresser, Michael E

    2007-05-22

    In meiotic prophase, telomeres associate with the nuclear envelope and accumulate adjacent to the centrosome/spindle pole to form the chromosome bouquet, a well conserved event that in Saccharomyces cerevisiae requires the meiotic telomere protein Ndj1p. Ndj1p interacts with Mps3p, a nuclear envelope SUN domain protein that is required for spindle pole body duplication and for sister chromatid cohesion. Removal of the Ndj1p-interaction domain from MPS3 creates an ndj1 Delta-like separation-of-function allele, and Ndj1p and Mps3p are codependent for stable association with the telomeres. SUN domain proteins are found in the nuclear envelope across phyla and are implicated in mediating interactions between the interior of the nucleus and the cytoskeleton. Our observations indicate a general mechanism for meiotic telomere movements. PMID:17495028

  15. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM.

    PubMed

    Séguéla-Arnaud, Mathilde; Crismani, Wayne; Larchevêque, Cécile; Mazel, Julien; Froger, Nicole; Choinard, Sandrine; Lemhemdi, Afef; Macaisne, Nicolas; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Chelysheva, Liudmilla; Mercier, Raphael

    2015-04-14

    Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases--the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs--as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs. PMID:25825745

  16. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM

    PubMed Central

    Séguéla-Arnaud, Mathilde; Crismani, Wayne; Larchevêque, Cécile; Mazel, Julien; Froger, Nicole; Choinard, Sandrine; Lemhemdi, Afef; Macaisne, Nicolas; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Chelysheva, Liudmilla; Mercier, Raphael

    2015-01-01

    Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases—the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs—as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs. PMID:25825745

  17. Analysis of intragenic recombination at wx in rice: correlation between the molecular and genetic maps within the locus.

    PubMed

    Inukai, T; Sako, A; Hirano, H Y; Sano, Y

    2000-08-01

    In plant genomes as well as other eukaryotic genomes, meiotic recombination does not occur uniformly. At the level of the gene, high recombination frequencies are often observed within genetic loci in maize, but this feature of intragenic recombination is not seen at the csr1 locus in Arabidopsis. These observations suggest that meiotic recombination in plant genomes varies considerably among species. In the present study we investigated meiotic recombination at the wx locus in rice. The mutation sites of wx mutants induced by ethyl methanesulfonate (EMS) treatment or gamma-ray irradiation and a spontaneous wx mutant were physically characterized, and the genetic distances between those wx mutation sites were estimated by pollen analysis. Based on these results, the recombination frequency at the wx locus in rice was estimated as 27.3 kb/cM, which was about 10 times higher than the average for the genome, suggesting that there was a radically different rate of meiotic recombination for intra- and intergenic regions in the rice genome. PMID:10984169

  18. Changes in chromatin structure at recombination initiation sites during yeast meiosis.

    PubMed Central

    Ohta, K; Shibata, T; Nicolas, A

    1994-01-01

    Transient double-strand breaks (DSBs) occur during Saccharomyces cerevisiae meiosis at recombination hot spots and are thought to initiate most, if not all, homologous recombination between chromosomes. To uncover the regulatory mechanisms active in DSB formation, we have monitored the change in local chromatin structure at the ARG4 and CYS3 recombination hot spots over the course of meiosis. Micrococcal nuclease (MNase) digestion of isolated meiotic chromatin followed by indirect end-labeling revealed that the DSB sites in both loci are hypersensitive to MNase and that their sensitivity increases 2- to 4-fold prior to the appearance of meiotic DSBs and recombination products. Other sensitive sites are not significantly altered. The study of hyper- and hypo-recombinogenic constructs at the ARG4 locus, also revealed that the MNase sensitivity at the DSB site correlates with both the extent of DSBs and the rate of gene conversion. These results suggest that the local chromatin structure and its modification in early meiosis play an important role in the positioning and frequency of meiotic DSBs, leading to meiotic recombination. Images PMID:7988571

  19. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    PubMed Central

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  20. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.

    PubMed

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-07-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  1. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  2. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  3. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  4. Latitudinal Shift of the Hawaiian Hotspot: Motion Relative to Other Hotspots or True Polar Wander?

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Horner-Johnson, B. C.

    2004-12-01

    Recent results from deep sea drilling confirm a large southward drift of the Hawaiian hotspot since Campanian and Maastrichtian time (ca. 70 to 83 Ma), as was previously found from prior paleomagnetic results from drilling (Kono, 1980; Jackson et al. 1980), from skewness analysis of Pacific magnetic anomalies (Gordon 1982, Petronotis & Gordon 1989, 1999; Petronotis et al. 1992, 1994; Acton & Gordon, 1991; Vasas et al. 1994; Horner-Johnson & Gordon 2003), and from other paleomagnetic and paleolatitude data (Gordon & Cape 1981; Sager & Bleil 1987). This southward drift could have been the result of motion of the Hawaiian hotspot relative to some other hotspots, or of true polar wander, or of both. Tarduno et al. (2003) have recently presented an extreme interpretation of these results as being entirely due to southward motion of the Hawaiian hotspot through the mantle. Here we show that this extreme interpretation is not supported by available data. While the Pacific plate paleomagnetic data are sufficient to show that the Hawaiian hotspot has moved southward relative to the spin axis, alone they cannot be used to demonstrate motion relative to the mantle or relative to other hotspots. To do so, coeval paleomagnetic poles are needed from the continents bordering the Atlantic and Indian Oceans. Here we show that few, if any, of the coeval paleomagnetic poles from the continents incorporated into widely used reference paths pass minimum reliability criteria. Thus, the inference of rapid motion of the Hawaiian hotspot relative to the mantle is surely premature and probably incorrect. We further show that other earlier studies purporting to show motion between hotspots from paleomagnetic data are now invalid because of revisions to paleomagnetic poles from the continents or because of flaws in analysis. Updated paleomagnetic analyses indicate that little motion has occurred between Pacific hotspots and non-Pacific hotspots. Instead, available data are consistent with the

  5. The Time Scale of Recombination Rate Evolution in Great Apes.

    PubMed

    Stevison, Laurie S; Woerner, August E; Kidd, Jeffrey M; Kelley, Joanna L; Veeramah, Krishna R; McManus, Kimberly F; Bustamante, Carlos D; Hammer, Michael F; Wall, Jeffrey D

    2016-04-01

    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  6. Sex Chromosome Meiotic Drive in Stalk-Eyed Flies

    PubMed Central

    Presgraves, D. C.; Severance, E.; Wilkinson, G. S.

    1997-01-01

    Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (X(d)). Relatively high frequencies of X(d) in C. dalmanni and C. whitei (13-17% and 29%, respectively) cause female-biased sex ratios in natural populations of both species. Sex ratio distortion is associated with spermatid degeneration in male carriers of X(d). Variation in sex ratios is caused by Y-linked and autosomal factors that decrease the intensity of meiotic drive. Y-linked polymorphism for resistance to drive exists in C. dalmanni in which a resistant Y chromosome reduces the intensity and reverses the direction of meiotic drive. When paired with X(d), modifying Y chromosomes (Y(m)) cause the transmission of predominantly Y-bearing sperm, and on average, production of 63% male progeny. The absence of sex ratio distortion in closely related monomorphic outgroup species suggests that this meiotic drive system may predate the origin of C. whitei and C. dalmanni. We discuss factors likely to be involved in the persistence of these sex-linked polymorphisms and consider the impact of X(d) on the operational sex ratio and the intensity of sexual selection in these extremely sexually dimorphic flies. PMID:9383060

  7. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  8. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  9. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice.

    PubMed

    He, Yi; Wang, Chong; Higgins, James D; Yu, Junping; Zong, Jie; Lu, Pingli; Zhang, Dabing; Liang, Wanqi

    2016-08-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  10. The GTPase SPAG-1 orchestrates meiotic program by dictating meiotic resumption and cytoskeleton architecture in mouse oocytes.

    PubMed

    Huang, Chunjie; Wu, Di; Khan, Faheem Ahmed; Jiao, Xiaofei; Guan, Kaifeng; Huo, Lijun

    2016-06-01

    In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)-elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule-free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways. PMID:27053660

  11. Cattle sex-specific recombination and genetic control from a very large pedigree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiotic recombination is an essential biological process that generates novel genetic variants and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half million genotyped animals, we extracted 186,927 three-generation families, identified ov...

  12. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots

    PubMed Central

    Bejon, Philip; Williams, Thomas N; Nyundo, Christopher; Hay, Simon I; Benz, David; Gething, Peter W; Otiende, Mark; Peshu, Judy; Bashraheil, Mahfudh; Greenhouse, Bryan; Bousema, Teun; Bauni, Evasius; Marsh, Kevin; Smith, David L; Borrmann, Steffen

    2014-01-01

    Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or ‘hotspots’ of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance. DOI: http://dx.doi.org/10.7554/eLife.02130.001 PMID:24843017

  13. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers

    PubMed Central

    West, Allan; Higgins, James D.; Copenhaver, Gregory P.; Yang, Jianhua; Armstrong, Susan J.; Mechtler, Karl; Roitinger, Elisabeth; Franklin, F. Chris H.

    2015-01-01

    Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. PMID:26182244

  14. Meiotic Instability of the R-R Complex Arising from Displaced Intragenic Exchange and Intrachromosomal Rearrangement

    PubMed Central

    Robbins, T. P.; Walker, E. L.; Kermicle, J. L.; Alleman, M.; Dellaporta, S. L.

    1991-01-01

    The R complex of Zea mays encodes a tissue-specific transcriptional activator of the anthocyanin pigment biosynthetic pathway. Certain R alleles comprise two genetically distinct components that confer the plant (P) and seed (S) aspects of the pigmentation pattern. These alleles are meiotically unstable, losing (P) or (S) function, often accompanied by exchange of flanking markers. We show that the (P) component consists of a single gene within the R-r complex, whereas the (S) component is part of a more complex arrangement of multiple R genes or gene subfragments. A third, cryptic region of the complex, termed (Q), consists of a truncated R sequence. The analysis of R-r crossover derivative alleles shows they arise from unequal exchange between the (P) gene and one of several distinct regions of the R-r complex. Restriction site polymorphisms were used to show that most of these unequal exchanges are intragenic. The frequency of displaced intragenic recombination is comparable to previous estimates for intragenic recombination in maize involving genes that are not duplicated. These exchange events have been used to determine the arrangement of components within the complex and their orientation in the chromosome. We also show that localized rearrangements in the (P) or (S) components are responsible for noncrossover derivative alleles. The organization of R-r has implications for these noncrossover derivatives and models for their origin are discussed. PMID:1682214

  15. Limited Latitudinal Motion of the Louisville Hotspot

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Yamazaki, T.; Geldmacher, J.; Gee, J. S.; Pressling, N.; Hoshi, H.

    2012-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 330 drilled five different guyots in the Louisville Seamount Trail ranging in age between 80 and 50 Ma. Two of the primary goals of this expedition were to attain high-quality estimates of the Louisville hotspot paleolatitudes using paleomagnetic measurements and to improve our knowledge of the overall age progression using high-precision 40Ar/39Ar geochronology. With these data we can provide the unique record of the paleolatitude shift (or lack thereof) of the Louisville mantle plume and compare it with the ~15° paleolatitude shift observed for seamounts in the Hawaiian-Emperor Seamount Trail over the same time period. We show that the Louisville hotspot remained within ~3° of its present-day ~51°S latitude between 70 and 50 Ma, although we cannot discount more significant southward motion since 74 Ma. Our new paleolatitude and age data suggest there has been significant inter-hotspot motion between the Hawaiian and Louisville hotspots in this time interval. We therefore conclude that the Louisville and Hawaiian hotspots moved independently and not as part of a large-scale mantle wind.

  16. Evolutionary hotspots in the Mojave Desert

    USGS Publications Warehouse

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  17. Predator diversity hotspots in the blue ocean.

    PubMed

    Worm, Boris; Lotze, Heike K; Myers, Ransom A

    2003-08-19

    Concentrations of biodiversity, or hotspots, represent conservation priorities in terrestrial ecosystems but remain largely unexplored in marine habitats. In the open ocean, many large predators such as tunas, sharks, billfishes, and sea turtles are of current conservation concern because of their vulnerability to overfishing and ecosystem role. Here we use scientific-observer records from pelagic longline fisheries in the Atlantic and Pacific Oceans to show that oceanic predators concentrate in distinct diversity hotspots. Predator diversity consistently peaks at intermediate latitudes (20-30 degrees N and S), where tropical and temperate species ranges overlap. Individual hotspots are found close to prominent habitat features such as reefs, shelf breaks, or seamounts and often coincide with zooplankton and coral reef hotspots. Closed-area models in the northwest Atlantic predict that protection of hotspots outperforms other area closures in safeguarding threatened pelagic predators from ecological extinction. We conclude that the seemingly monotonous landscape of the open ocean shows rich structure in species diversity and that these features should be used to focus future conservation efforts. PMID:12907699

  18. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  19. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  20. Plate tectonics and hotspots: the third dimension.

    PubMed

    Anderson, D L; Tanimoto, T; Zhang, Y S

    1992-06-19

    High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons. PMID:17841084

  1. The CSN/COP9 Signalosome Regulates Synaptonemal Complex Assembly during Meiotic Prophase I of Caenorhabditis elegans

    PubMed Central

    Brockway, Heather; Balukoff, Nathan; Dean, Martha; Alleva, Benjamin; Smolikove, Sarit

    2014-01-01

    The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I. PMID:25375142

  2. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    PubMed Central

    Tokmakov, Alexander A.; Stefanov, Vasily E.; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2014-01-01

    Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation. PMID:25322156

  3. Effects of clinostat rotation on mouse meiotic maturation in vitro

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  4. A computational model predicts Xenopus meiotic spindle organization

    PubMed Central

    Loughlin, Rose

    2010-01-01

    The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5–like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts. PMID:21173114

  5. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans

    PubMed Central

    Heckmann, Stefan; Jankowska, Maja; Schubert, Veit; Kumke, Katrin; Ma, Wei; Houben, Andreas

    2014-01-01

    Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a holocentric chromosome architecture and behaviour throughout meiosis, and in contrast to monopolar sister centromere orientation, the unfused holokinetic sister centromeres behave as two distinct functional units during meiosis I, resulting in sister chromatid separation. Homologous non-sister chromatids remain terminally linked after metaphase I, by satellite DNA-enriched chromatin threads, until metaphase II. They then separate at anaphase II. Thus, an inverted sequence of meiotic sister chromatid segregation occurs. This alternative meiotic process is most likely one possible adaptation to handle a holocentric chromosome architecture and behaviour during meiosis. PMID:25296379

  6. SEX-RATIO MEIOTIC DRIVE AND INTERSPECIFIC COMPETITION

    PubMed Central

    Unckless, Robert L.; Clark, Andrew G.

    2014-01-01

    It has long been known that processes occurring within a species may impact the interactions between species. For example, since competitive ability is sensitive to parameters including reproductive rate, carrying capacity and competition efficiency, the outcome of interspecific competition may be influenced by any process that alters these attributes. While several such scenarios have been discussed, the influence of selfish genetic elements within one species on competition between species has not received theoretical treatment. We show that, with strong competition, sex-ratio meiotic drive systems can result in a significant shift in community composition because the effective birth rate in the population may be increased by a female-biased sex-ratio. Using empirical data we attempt to estimate the magnitude of this effect in several Drosophila species. We infer that meiotic drive elements, selfish genetic elements within species, can provide a substantial competitive advantage to that species within a community. PMID:24835887

  7. Real-time imaging of meiotic chromosomes in S. cerevisiae

    PubMed Central

    Koszul, Romain; Weiner, Beth M.

    2016-01-01

    Important information on cellular physiology can be obtained by directly observing living cells. The nucleus and the chromatin within are of particular interest to many researchers. Monitoring the behavior of specific DNA loci in the living cell is now commonly achieved through the insertion of binding sites for fluorescently tagged proteins at the sequence of interest (e.g. reference 1). However, visualizing the behavior of full length chromosomes can only be achieved when they constitute discrete, relatively well individualized units. During meiotic mid-prophase, chromosomes of budding yeast are well-organized structures that present such characteristics, making them remarkably suited for visualization. Here we describe the optimized protocols and techniques that allow monitoring of chromosome behavior during meiotic prophase in budding yeast. PMID:19685320

  8. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts

    PubMed Central

    Abby, Emilie; Tourpin, Sophie; Ribeiro, Jonathan; Daniel, Katrin; Messiaen, Sébastien; Moison, Delphine; Guerquin, Justine; Gaillard, Jean-Charles; Armengaud, Jean; Langa, Francina; Toth, Attila; Martini, Emmanuelle; Livera, Gabriel

    2016-01-01

    Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. PMID:26742488

  9. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts.

    PubMed

    Abby, Emilie; Tourpin, Sophie; Ribeiro, Jonathan; Daniel, Katrin; Messiaen, Sébastien; Moison, Delphine; Guerquin, Justine; Gaillard, Jean-Charles; Armengaud, Jean; Langa, Francina; Toth, Attila; Martini, Emmanuelle; Livera, Gabriel

    2016-01-01

    Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. PMID:26742488

  10. In vitro follicle growth supports human oocyte meiotic maturation

    PubMed Central

    Xiao, Shuo; Zhang, Jiyang; Romero, Megan M.; Smith, Kristin N.; Shea, Lonnie D.; Woodruff, Teresa K.

    2015-01-01

    In vitro follicle growth is a potential approach to preserve fertility for young women who are facing a risk of premature ovarian failure (POF) caused by radiation or chemotherapy. Our two-step follicle culture strategy recapitulated the dynamic human follicle growth environment in vitro. Follicles developed from the preantral to antral stage, and, for the first time, produced meiotically competent metaphase II (MII) oocytes after in vitro maturation (IVM). PMID:26612176

  11. In vitro follicle growth supports human oocyte meiotic maturation.

    PubMed

    Xiao, Shuo; Zhang, Jiyang; Romero, Megan M; Smith, Kristin N; Shea, Lonnie D; Woodruff, Teresa K

    2015-01-01

    In vitro follicle growth is a potential approach to preserve fertility for young women who are facing a risk of premature ovarian failure (POF) caused by radiation or chemotherapy. Our two-step follicle culture strategy recapitulated the dynamic human follicle growth environment in vitro. Follicles developed from the preantral to antral stage, and, for the first time, produced meiotically competent metaphase II (MII) oocytes after in vitro maturation (IVM). PMID:26612176

  12. Evidence for meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Shaw, A.M.; Barnetson, R.A.; Phillips, M.F.

    1994-09-01

    Myotonic dystrophy (DM), an autosomal dominant disorder, is the most common form of adult muscular dystrophy, affecting at least 1 in 8000 of the population. It is a multisystemic disorder, primarily characterized by myotonia, muscle wasting and cataract. The molecular basis of DM is an expanded CTG repeat located within the 3{prime} untranslated region of a putative serine-threonine protein kinase on chromosome 19q13.3. DM exhibits anticipation, that is, with successive generations there is increasing disease severity and earlier age of onset. This mechanism and the fact that the origin of the disease has been attributed to one or a small number of founder chromosomes suggests that, in time, DM should die out. Meiotic drive has been described as a way in which certain alleles are transmitted to succeeding generations in preference to others: preferential transmission of large CTG alleles may account for their continued existence in the gene pool. There is evidence that a CTG allele with > 19 repeats may gradually increase in repeat number over many generations until it is sufficiently large to give a DM phenotype. We report a study of 495 transmissions from individuals heterozygous for the CTG repeat and with repeat numbers within the normal range (5-30). Alleles were simply classified as large or small relative to the other allele in an individual. Of 242 male meioses, 126 transmissions from parent to child were of the larger allele to their offspring (57.7%, p=0.014). This shows that there is strong evidence for meiotic drive favoring the transmission of the larger DM allele in unaffected individuals. Contrary to a previous report of meiotic drive in the male, we have shown that females preferentially transmit the larger DM allele. Taken together, the data suggest the occurrence of meiotic drive in both males and females in this locus.

  13. Unresolved issues in pre-meiotic anther development

    PubMed Central

    Kelliher, Timothy; Egger, Rachel L.; Zhang, Han; Walbot, Virginia

    2014-01-01

    Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been identified and cloned in model species, ordered by time of action and spatiotemporal expression, and used to propose explanatory models for critical steps in cell fate specification. Despite rapid progress, fundamental issues in anther development remain unresolved, and it is unclear if insights from one species can be applied to others. Here we construct a comparison of Arabidopsis, rice, and maize immature anthers to pinpoint distinctions in developmental pace. We analyze the mechanisms by which archesporial (pre-meiotic) cells are specified distinct from the soma, discuss what constitutes meiotic preparation, and review what is known about the secondary parietal layer and its terminal periclinal division that generates the tapetal and middle layers. Finally, roles for small RNAs are examined, focusing on the grass-specific phasiRNAs. PMID:25101101

  14. TDM1 Regulation Determines the Number of Meiotic Divisions.

    PubMed

    Cifuentes, Marta; Jolivet, Sylvie; Cromer, Laurence; Harashima, Hirofumi; Bulankova, Petra; Renne, Charlotte; Crismani, Wayne; Nomura, Yuko; Nakagami, Hirofumi; Sugimoto, Keiko; Schnittger, Arp; Riha, Karel; Mercier, Raphael

    2016-02-01

    Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. PMID:26871453

  15. TDM1 Regulation Determines the Number of Meiotic Divisions

    PubMed Central

    Cifuentes, Marta; Jolivet, Sylvie; Cromer, Laurence; Harashima, Hirofumi; Bulankova, Petra; Renne, Charlotte; Crismani, Wayne; Nomura, Yuko; Nakagami, Hirofumi; Sugimoto, Keiko; Schnittger, Arp; Riha, Karel; Mercier, Raphael

    2016-01-01

    Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. PMID:26871453

  16. Unresolved issues in pre-meiotic anther development.

    PubMed

    Kelliher, Timothy; Egger, Rachel L; Zhang, Han; Walbot, Virginia

    2014-01-01

    Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been identified and cloned in model species, ordered by time of action and spatiotemporal expression, and used to propose explanatory models for critical steps in cell fate specification. Despite rapid progress, fundamental issues in anther development remain unresolved, and it is unclear if insights from one species can be applied to others. Here we construct a comparison of Arabidopsis, rice, and maize immature anthers to pinpoint distinctions in developmental pace. We analyze the mechanisms by which archesporial (pre-meiotic) cells are specified distinct from the soma, discuss what constitutes meiotic preparation, and review what is known about the secondary parietal layer and its terminal periclinal division that generates the tapetal and middle layers. Finally, roles for small RNAs are examined, focusing on the grass-specific phasiRNAs. PMID:25101101

  17. A meiotic DNA polymerase from a mushroom, Agaricus bisporus.

    PubMed Central

    Takami, K; Matsuda, S; Sono, A; Sakaguchi, K

    1994-01-01

    A meiotic DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7], which likely has a role in meiotic DNA repair, was isolated from a mushroom, Agaricus bisporus. The purified fraction displays three bands in SDS/PAGE, at molecular masses of 72 kDa, 65 kDa and 36 kDa. Optimal activity is at pH 7.0-8.0 in the presence of 5 mM Mg2+ and 50 mM KCl and at 28-30 degrees C, which is the temperature for meiosis. This enzyme is resistant to N-ethylmaleimide and sensitive to 2',3'-dideoxythymidine 5'-triphosphate, suggesting that it is a beta-like DNA polymerase. These characteristics are similar to those of Coprinus DNA polymerase beta [Sakaguchi and Lu (1982) Mol. Cell. Biol. 2, 752-757]. In Western-blot analysis, the antiserum against the Coprinus polymerase reacts only with the 65 kDa band, which coincides with the molecular mass of the Coprinus polymerase. Western-blot analysis also showed that the antiserum could react with crude extracts not only from the Agaricales family, to which Agaricus and Coprinus belong, but also from different mushroom families and Saccharomyces. The Agaricus polymerase activity can be found only in the meiotic-cell-rich fraction, but the enzyme is also present in the somatic cells in an inactive state. Images Figure 2 Figure 5 Figure 6 PMID:8172591

  18. Characterization of Brca2-deficient plants excludes the role of NHEJ and SSA in the meiotic chromosomal defect phenotype.

    PubMed

    Dumont, Marilyn; Massot, Sophie; Doutriaux, Marie-Pascale; Gratias, Ariane

    2011-01-01

    In somatic cells, three major pathways are involved in the repair of DNA double-strand breaks (DBS): Non-Homologous End Joining (NHEJ), Single-Strand Annealing (SSA) and Homologous Recombination (HR). In somatic and meiotic HR, DNA DSB are 5' to 3' resected, producing long 3' single-stranded DNA extensions. Brca2 is essential to load the Rad51 recombinase onto these 3' overhangs. The resulting nucleofilament can thus invade a homologous DNA sequence to copy and restore the original genetic information. In Arabidopsis, the inactivation of Brca2 specifically during meiosis by an RNAi approach results in aberrant chromosome aggregates, chromosomal fragmentation and missegregation leading to a sterility phenotype. We had previously suggested that such chromosomal behaviour could be due to NHEJ. In this study, we show that knock-out plants affected in both BRCA2 genes show the same meiotic phenotype as the RNAi-inactivated plants. Moreover, it is demonstrated that during meiosis, neither NHEJ nor SSA compensate for HR deficiency in BRCA2-inactivated plants. The role of the plant-specific DNA Ligase6 is also excluded. The possible mechanism(s) involved in the formation of these aberrant chromosomal bridges in the absence of HR during meiosis are discussed. PMID:22039535

  19. Recombinant chromosome 18 resulting from a maternal pericentric inversion

    SciTech Connect

    Ayukawa, Hiroshi; Tsukahara, Masato; Fukuda, Masamichi; Kondoh, Osamu

    1994-05-01

    We report on a newborn girl with duplication of 18q12.2{yields}18 qter and deficiency of 18p11.2{yields}18pter which resulted from meiotic recombination of the maternal pericentric inversion, inv(18)(p11.2q12.2). Her clinical manifestations were compatible with those of partial trisomy 18q syndrome. We review the previously reported 9 cases in 8 families of rec(18) resulting from recombination of a parental pericentric inversion. 8 refs., 3 figs., 1 tab.

  20. Biogeographic methods identify gymnosperm biodiversity hotspots

    NASA Astrophysics Data System (ADS)

    Contreras-Medina, Raúl; Morrone, Juan J.; Luna Vega, Isolda

    2001-10-01

    A remarkable congruence among areas of endemism, panbiogeographic nodes, and refugia in western North America, Japan, south-western China, Tasmania, and New Caledonia indicates that these areas deserve special status for conservation. Here we propose that areas identified by different biogeographic methods are significant candidates for designation as hotspots.

  1. The unusual Samoan hotspot: A "hotspot highway" juxtaposed with a trench

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    Oceanic hotspots are fed by (relatively) stationary, upwelling mantle plumes that melt beneath mobile tectonic plates. This mechanism results in the generation of a linear chain of volcanoes exhibiting a clear age progression: the islands and seamounts should be increasingly older with increasing distance from the inferred location of the mantle plume. Located in the southwest Pacific, the Cook-Austral volcanic islands and seamounts were long thought to lack a clear age progression, and it has been argued that the Cook-Austral volcanic chain is an example of a hotspot not fed by a mantle plume. However, work by Chauvel et al (1997) showed that the Cook-Austral volcanoes have been generated by three distinct, co-linear mantle plumes spaced by ~1000 km, resulting in 3 overlapping hotspot tracks. Critically, the volcanoes generated by each hotspot exhibit a clear age progression that emerges from its respective plume. Using plate motion models, the reconstructed tracks of the three Cook-Austral hotspots backtrack through the region of the Pacific plate now occupied by the Samoan hotspot between 10 and 40 Ma (Konter et al., 2008). Owing to the unusual number of hotspots (Samoa is the fourth) that have been hosted in the region, we refer to this corridor of the Pacific plate as the "hotspot highway." The Samoan hotspot is burning through and thus crosscutting the trails of the older Cook-Austral hotspots. Consistent with this hypothesis, Jackson et al. (2010) reported volcanic features from the Cook-Austral hotspots in the Samoan region, including three seamounts and one atoll with geochemical affinities to the Cook-Austral hotspot. The Pacific lithosphere was likely "preconditioned" (metasomatized) by the three Cook-Australs hotspots before the arrival of the Samoan plume into the region, yet geochemical signatures associated with the Cook-Austral hotspot pedigrees are not evident in Samoan shield lavas. However, Samoan rejuvenated lavas exhibit a clear EMI (enriched

  2. Toward a marker-dense meiotic map of the potato genome: lessons from linkage group I.

    PubMed Central

    Isidore, Edwige; van Os, Hans; Andrzejewski, Sandra; Bakker, Jaap; Barrena, Imanol; Bryan, Glenn J; Caromel, Bernard; van Eck, Herman; Ghareeb, Bilal; de Jong, Walter; van Koert, Paul; Lefebvre, Véronique; Milbourne, Dan; Ritter, Enrique; van der Voort, Jeroen Rouppe; Rousselle-Bourgeois, Françoise; van Vliet, Joke; Waugh, Robbie

    2003-01-01

    Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation. PMID:14704190

  3. HOTSPOT Health Physics codes for the PC

    SciTech Connect

    Homann, S.G.

    1994-03-01

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).

  4. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-01

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. PMID:21079677

  5. Genetic evidence that synaptonemal complex axial elements govern recombination pathway choice in mice.

    PubMed

    Li, Xin Chenglin; Bolcun-Filas, Ewelina; Schimenti, John C

    2011-09-01

    Chiasmata resulting from interhomolog recombination are critical for proper chromosome segregation at meiotic metaphase I, thus preventing aneuploidy and consequent deleterious effects. Recombination in meiosis is driven by programmed induction of double strand breaks (DSBs), and the repair of these breaks occurs primarily by recombination between homologous chromosomes, not sister chromatids. Almost nothing is known about the basis for recombination partner choice in mammals. We addressed this problem using a genetic approach. Since meiotic recombination is coupled with synaptonemal complex (SC) morphogenesis, we explored the role of axial elements--precursors to the lateral element in the mature SC--in recombination partner choice, DSB repair pathways, and checkpoint control. Female mice lacking the SC axial element protein SYCP3 produce viable, but often aneuploid, oocytes. We describe genetic studies indicating that while DSB-containing Sycp3-/- oocytes can be eliminated efficiently, those that survive have completed repair before the execution of an intact DNA damage checkpoint. We find that the requirement for DMC1 and TRIP13, proteins normally essential for recombination repair of meiotic DSBs, is substantially bypassed in Sycp3 and Sycp2 mutants. This bypass requires RAD54, a functionally conserved protein that promotes intersister recombination in yeast meiosis and mammalian mitotic cells. Immunocytological and genetic studies indicated that the bypass in Sycp3-/- Dmc1-/- oocytes was linked to increased DSB repair. These experiments lead us to hypothesize that axial elements mediate the activities of recombination proteins to favor interhomolog, rather than intersister recombinational repair of genetically programmed DSBs in mice. The elimination of this activity in SYCP3- or SYCP2-deficient oocytes may underlie the aneuploidy in derivative mouse embryos and spontaneous abortions in women. PMID:21750255

  6. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion

    SciTech Connect

    Shashi, V.; Golden, W.L.; Allinson, P.S.

    1996-06-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. 50 refs., 7 figs., 1 tab.

  7. The essential role of yeast topoisomerase III in meiosis depends on recombination.

    PubMed Central

    Gangloff, S; de Massy, B; Arthur, L; Rothstein, R; Fabre, F

    1999-01-01

    Yeast cells mutant for TOP3, the gene encoding the evolutionary conserved type I-5' topoisomerase, display a wide range of phenotypes including altered cell cycle, hyper-recombination, abnormal gene expression, poor mating, chromosome instability and absence of sporulation. In this report, an analysis of the role of TOP3 in the meiotic process indicates that top3Delta mutants enter meiosis and complete the initial steps of recombination. However, reductional division does not occur. Deletion of the SPO11 gene, which prevents recombination between homologous chromosomes in meiosis I division, allows top3Delta mutants to form viable spores, indicating that Top3 is required to complete recombination successfully. A topoisomerase activity is involved in this process, since expression of bacterial TopA in yeast top3Delta mutants permits sporulation. The meiotic block is also partially suppressed by a deletion of SGS1, a gene encoding a helicase that interacts with Top3. We propose an essential role for Top3 in the processing of molecules generated during meiotic recombination. PMID:10075939

  8. Pseudosynapsis and Decreased Stringency of Meiotic Repair Pathway Choice on the Hemizygous Sex Chromosome of Caenorhabditis elegans Males

    PubMed Central

    Checchi, Paula M.; Lawrence, Katherine S.; Van, Mike V.; Larson, Braden J.; Engebrecht, JoAnne

    2014-01-01

    During meiosis, accurate chromosome segregation relies on homology to mediate chromosome pairing, synapsis, and crossover recombination. Crossovers are dependent upon formation and repair of double-strand breaks (DSBs) by homologous recombination (HR). In males of many species, sex chromosomes are largely hemizygous, yet DSBs are induced along nonhomologous regions. Here we analyzed the genetic requirements for meiotic DSB repair on the completely hemizygous X chromosome of Caenorhabditis elegans males. Our data reveal that the kinetics of DSB formation, chromosome pairing, and synapsis are tightly linked in the male germ line. Moreover, DSB induction on the X is concomitant with a brief period of pseudosynapsis that may allow X sister chromatids to masquerade as homologs. Consistent with this, neither meiotic kleisins nor the SMC-5/6 complex are essential for DSB repair on the X. Furthermore, early processing of X DSBs is dependent on the CtIP/Sae2 homolog COM-1, suggesting that as with paired chromosomes, HR is the preferred pathway. In contrast, the X chromosome is refractory to feedback mechanisms that ensure crossover formation on autosomes. Surprisingly, neither RAD-54 nor BRC-2 are essential for DSB repair on the X, suggesting that unlike autosomes, the X is competent for repair in the absence of HR. When both RAD-54 and the structure-specific nuclease XPF-1 are abrogated, X DSBs persist, suggesting that single-strand annealing is engaged in the absence of HR. Our findings indicate that alteration in sister chromatid interactions and flexibility in DSB repair pathway choice accommodate hemizygosity on sex chromosomes. PMID:24939994

  9. Intraspecific variation of recombination rate in maize

    PubMed Central

    2013-01-01

    Background In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. Results Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength. Conclusions To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms. PMID:24050704

  10. Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers.

    PubMed

    Anderson, Lorinda K; Lohmiller, Leslie D; Tang, Xiaomin; Hammond, D Boyd; Javernick, Lauren; Shearer, Lindsay; Basu-Roy, Sayantani; Martin, Olivier C; Falque, Matthieu

    2014-09-16

    Crossovers (COs) shuffle genetic information and allow balanced segregation of homologous chromosomes during the first division of meiosis. In several organisms, mutants demonstrate that two molecularly distinct pathways produce COs. One pathway produces class I COs that exhibit interference (lowered probability of nearby COs), and the other pathway produces class II COs with little or no interference. However, the relative contributions, genomic distributions, and interactions of these two pathways are essentially unknown in nonmutant organisms because marker segregation only indicates that a CO has occurred, not its class type. Here, we combine the efficiency of light microscopy for revealing cellular functions using fluorescent probes with the high resolution of electron microscopy to localize and characterize COs in the same sample of meiotic pachytene chromosomes from wild-type tomato. To our knowledge, for the first time, every CO along each chromosome can be identified by class to unveil specific characteristics of each pathway. We find that class I and II COs have different recombination profiles along chromosomes. In particular, class II COs, which represent about 18% of all COs, exhibit no interference and are disproportionately represented in pericentric heterochromatin, a feature potentially exploitable in plant breeding. Finally, our results demonstrate that the two pathways are not independent because there is interference between class I and II COs. PMID:25197066

  11. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae

    PubMed Central

    Pâques, Frédéric; Haber, James E.

    1999-01-01

    The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. PMID:10357855

  12. Paracentric inversions do not normally generate monocentric recombinant chromosomes

    SciTech Connect

    Sutherland, G.R.; Callen, D.F.; Gardner, R.J.M.

    1995-11-20

    Dr. Pettenati et al. recently reported a review of paracentric inversions in humans in which they concluded that carriers of these have a 3.8% risk of viable offspring with recombinant chromosomes. We are of the view that there are serious problems with this estimate which should be much closer to zero. The only recombinant chromosomes which can be generated by a paracentric inversion undergoing a normal meiotic division are dicentrics and acentric fragments. Only two such cases were found by Pettenati et al. Several of the alleged monocentric recombinants were originally reported as arising from parental insertions (3-break rearrangements) and it is not legitimate to include them in any analysis of paracentric inversions. Any monocentric recombinant chromosome can only arise from a paracentric inversion by some abnormal process which must involve chromatid breakage and reunion. 4 refs.

  13. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse.

    PubMed

    Kim, Jeesun; Zhao, Hongbo; Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-04-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression. PMID:27070551

  14. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse

    PubMed Central

    Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-01-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression. PMID:27070551

  15. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans

    PubMed Central

    Chung, George; Rose, Ann M.; Petalcorin, Mark I.R.; Martin, Julie S.; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P.; Yanowitz, Judith L.; Boulton, Simon J.

    2015-01-01

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. PMID:26385965

  16. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.

    PubMed

    Monroe, Nicole; Hill, Christopher P

    2016-05-01

    Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated. PMID:26555750

  17. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  18. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    PubMed

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. PMID:26720856

  19. Forecasting hotspots using predictive visual analytics approach

    SciTech Connect

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  20. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  1. The history, hotspots, and trends of electrocardiogram.

    PubMed

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-07-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622

  2. The history, hotspots, and trends of electrocardiogram

    PubMed Central

    Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua

    2015-01-01

    The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622

  3. Chromosome numbers and meiotic analysis in the pre-breeding of Brachiaria decumbens (Poaceae).

    PubMed

    Ricci, Gléia Cristina Laverde; De Souza-Kaneshima, Alice Maria; Felismino, Mariana Ferrari; Mendes-Bonato, Andrea Beatriz; Pagliarini, Maria Suely; Do Valle, Cacilda Borges

    2011-08-01

    A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions. PMID:21869477

  4. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    SciTech Connect

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  5. Evaluating the Persistence of Shoreline Change Hotspots, Northern North Carolina

    NASA Astrophysics Data System (ADS)

    List, J. H.; Farris, A. S.; Sullivan, C.

    2002-12-01

    Shoreline change hotspots are sections of coast that exhibit significantly higher rates of erosion than adjacent areas. Although hotspots may occur at a wide range of spatial and temporal scales, we consider two distinct types of hotspots that have been observed on high-energy coasts away from the influence of coastal structures: 1. hotspots related to individual storms, with an alongshore spatial scale of 2-5 km and the characteristic of being almost completely reversed by accretion within 1-2 weeks of calm conditions following the storm, and referred to here as short-term reversible hotspots, and 2. hotspots related to the long-term trend of shoreline change on a time scale of decades, with a similar spatial scale as short-term hotspots but not readily reversible during fair weather, and referred to here as long-term hotspots. Here we evaluate these hotspot types with respect to their persistence, i.e., the degree to which hotspot locations remain fixed through time. Relevant to this session, hotspots that are spatially fixed and/or recurring are more consistent with hypotheses relating hotspot formation to geologic framework controls than hotspots with variable or moving locations. Observations consist of a recently-completed three-year time series of monthly shoreline position measurements along 130 km of North Carolina's Outer Banks using SWASH, a ground-based system for surveying regional shoreline position as the mean high water datum's intersection with the beach foreshore. We identify short-term reversible hotspots through the comparison of pre-, mid-, and post-storm shoreline surveys. The pre- to mid-storm comparison typically exhibits 2-5 km wide regions of significant shoreline erosion (10-20 m) alternating with areas of little change. The mid- to post-storm accretion appears as a mirror image of the erosion pattern, almost completely reversing the storm erosion. We identify long-term hotspots through a comparison between our three-year SWASH time

  6. Axin-1 Regulates Meiotic Spindle Organization in Mouse Oocytes

    PubMed Central

    Liu, Rui; Liu, Yu; Zhang, Fei; Zhang, Zhen; Shen, Yu-Ting; Xu, Lin; Chen, Ming-Huang; Wang, Ya-Long; Xu, Bai-Hui; Yang, Xiang-Jun; Wang, Hai-Long

    2016-01-01

    Axin-1, a negative regulator of Wnt signaling, is a versatile scaffold protein involved in centrosome separation and spindle assembly in mitosis, but its function in mammalian oogenesis remains unknown. Here we examined the localization and function of Axin-1 during meiotic maturation in mouse oocytes. Immunofluorescence analysis showed that Axin-1 was localized around the spindle. Knockdown of the Axin1 gene by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in severely defective spindles, misaligned chromosomes, failure of first polar body (PB1) extrusion, and impaired pronuclear formation. However, supplementing the culture medium with the Wnt pathway activator LiCl improved spindle morphology and pronuclear formation. Downregulation of Axin1 gene expression also impaired the spindle pole localization of γ-tubulin/Nek9 and resulted in retention of the spindle assembly checkpoint protein BubR1 at kinetochores after 8.5 h of culture. Our results suggest that Axin-1 is critical for spindle organization and cell cycle progression during meiotic maturation in mouse oocytes. PMID:27284927

  7. XGef Mediates Early CPEB Phosphorylation during Xenopus Oocyte Meiotic Maturation

    PubMed Central

    Martínez, Susana E.; Yuan, Lei; Lacza, Charlemagne; Ransom, Heather; Mahon, Gwendolyn M.; Whitehead, Ian P.; Hake, Laura E.

    2005-01-01

    Polyadenylation-induced translation is an important regulatory mechanism during metazoan development. During Xenopus oocyte meiotic progression, polyadenylation-induced translation is regulated by CPEB, which is activated by phosphorylation. XGef, a guanine exchange factor, is a CPEB-interacting protein involved in the early steps of progesterone-stimulated oocyte maturation. We find that XGef influences early oocyte maturation by directly influencing CPEB function. XGef and CPEB interact during oogenesis and oocyte maturation and are present in a c-mos messenger ribonucleoprotein (mRNP). Both proteins also interact directly in vitro. XGef overexpression increases the level of CPEB phosphorylated early during oocyte maturation, and this directly correlates with increased Mos protein accumulation and acceleration of meiotic resumption. To exert this effect, XGef must retain guanine exchange activity and the interaction with CPEB. Overexpression of a guanine exchange deficient version of XGef, which interacts with CPEB, does not enhance early CPEB phosphorylation. Overexpression of a version of XGef that has significantly reduced interaction with CPEB, but retains guanine exchange activity, decreases early CPEB phosphorylation and delays oocyte maturation. Injection of XGef antibodies into oocytes blocks progesterone-induced oocyte maturation and early CPEB phosphorylation. These findings indicate that XGef is involved in early CPEB activation and implicate GTPase signaling in this process. PMID:15635100

  8. Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae

    SciTech Connect

    Loidl, J.

    1995-04-01

    Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability ({approximately}40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation. 29 refs., 6 figs., 4 tabs.

  9. The Rurutu Hotspot: Isotopic and Trace Element Evidence of HIMU Hotspot Volcanism in the Tuvalu Islands

    NASA Astrophysics Data System (ADS)

    Finlayson, V.; Konter, J. G.; Konrad, K.; Koppers, A. A. P.; Jackson, M. G.

    2014-12-01

    Current Pacific absolute plate motion (APM) models include 2 major, long-lived hotspot tracks: the ~85 Ma Hawaiian-Emperor and the ~76 Ma Louisville tracks. Prior to ~50 Ma, these two hotspot tracks show significant inter-hotspot drift, mainly due to large southern motion of the Hawaiian hotspot [1,2]. A third track would allow for a more robust evaluation of the relationship between APM models and inter-hotspot drift. We present trace element and Pb isotope evidence for a potential third long-lived Pacific hotspot trail—the Rurutu hotspot—anchored in the Cook-Austral Islands. Based on high 206Pb/204Pb ratios, 70-55 Ma volcanism in the Gilbert Ridge has been linked to the Rurutu hotspot [3]. The Gilbert Ridge may continue south into the Tuvalu Islands, where APM models predict that the Rurutu hotspot track captures the change in Pacific plate motion around 50 Ma at the intersection of Tuvalu and Samoa. Sampling of the deep submarine flanks of atolls and seamounts in Tuvalu and westernmost Samoa took place during the 2013 RR1310 (R/V Roger Revelle) expedition. We present new Pb isotope and HFSE trace element data on 28 samples that support a Rurutu origin for Tuvalu volcanism and confirm HIMU signatures previously observed in 5 Tuvalu samples (206Pb/204Pb >20.1, several >21.0; 87Sr/86Sr < 0.705). Statistical tests indicate that Tuvalu HFSE element ratios show similarities with Cook-Austral HIMU and differences with Samoa EMII volcanism. Low Hf/Nb ratios are often a predictor of HIMU samples (206Pb/204Pb > 20.8). Moderately HIMU compositions (206Pb/204Pb = 20.0) correspond to slightly higher Hf/Nb. In an effort to test if compositional agreement with the Cook-Australs is reflected in an age progression, 40Ar/39Ar ages will be presented by Konrad et al. (this volume). [1] Tarduno et al., (2003) DOI:10.1126/science.1086442 [2] Koppers et al., (2012) DOI: 10.1038/ngeo1638 [3] Konter et al., (2008) DOI: 10.1016/j.epsl.2008.08.023

  10. The landscape of recombination in African Americans.

    PubMed

    Hinch, Anjali G; Tandon, Arti; Patterson, Nick; Song, Yunli; Rohland, Nadin; Palmer, Cameron D; Chen, Gary K; Wang, Kai; Buxbaum, Sarah G; Akylbekova, Ermeg L; Aldrich, Melinda C; Ambrosone, Christine B; Amos, Christopher; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bock, Cathryn H; Boerwinkle, Eric; Cai, Qiuyin; Caporaso, Neil; Casey, Graham; Cupples, L Adrienne; Deming, Sandra L; Diver, W Ryan; Divers, Jasmin; Fornage, Myriam; Gillanders, Elizabeth M; Glessner, Joseph; Harris, Curtis C; Hu, Jennifer J; Ingles, Sue A; Isaacs, William; John, Esther M; Kao, W H Linda; Keating, Brendan; Kittles, Rick A; Kolonel, Laurence N; Larkin, Emma; Le Marchand, Loic; McNeill, Lorna H; Millikan, Robert C; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; Nyante, Sarah; Papanicolaou, George J; Press, Michael F; Psaty, Bruce M; Reiner, Alex P; Rich, Stephen S; Rodriguez-Gil, Jorge L; Rotter, Jerome I; Rybicki, Benjamin A; Schwartz, Ann G; Signorello, Lisa B; Spitz, Margaret; Strom, Sara S; Thun, Michael J; Tucker, Margaret A; Wang, Zhaoming; Wiencke, John K; Witte, John S; Wrensch, Margaret; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A; Zheng, Wei; Ziegler, Regina G; Zhu, Xiaofeng; Redline, Susan; Hirschhorn, Joel N; Henderson, Brian E; Taylor, Herman A; Price, Alkes L; Hakonarson, Hakon; Chanock, Stephen J; Haiman, Christopher A; Wilson, James G; Reich, David; Myers, Simon R

    2011-08-11

    Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10(-245)). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution. PMID:21775986

  11. The landscape of recombination in African Americans

    PubMed Central

    Hinch, Anjali G.; Tandon, Arti; Patterson, Nick; Song, Yunli; Rohland, Nadin; Palmer, Cameron D.; Chen, Gary K.; Wang, Kai; Buxbaum, Sarah G.; Akylbekova, Meggie; Aldrich, Melinda C.; Ambrosone, Christine B.; Amos, Christopher; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Bock, Cathryn H.; Boerwinkle, Eric; Cai, Qiuyin; Caporaso, Neil; Casey, Graham; Cupples, L. Adrienne; Deming, Sandra L.; Diver, W. Ryan; Divers, Jasmin; Fornage, Myriam; Gillanders, Elizabeth M.; Glessner, Joseph; Harris, Curtis C.; Hu, Jennifer J.; Ingles, Sue A.; Isaacs, Williams; John, Esther M.; Kao, W. H. Linda; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Larkin, Emma; Le Marchand, Loic; McNeill, Lorna H.; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; Nyante, Sarah; Papanicolaou, George J.; Press, Michael F.; Psaty, Bruce M.; Reiner, Alex P.; Rich, Stephen S.; Rodriguez-Gil, Jorge L.; Rotter, Jerome I.; Rybicki, Benjamin A.; Schwartz, Ann G.; Signorello, Lisa B.; Spitz, Margaret; Strom, Sara S.; Thun, Michael J.; Tucker, Margaret A.; Wang, Zhaoming; Wiencke, John K.; Witte, John S.; Wrensch, Margaret; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A.; Zheng, Wei; Ziegler, Regina G.; Zhu, Xiaofeng; Redline, Susan; Hirschhorn, Joel N.; Henderson, Brian E.; Taylor, Herman A.; Price, Alkes L.; Hakonarson, Hakon; Chanock, Stephen J.; Haiman, Christopher A.; Wilson, James G.; Reich, David; Myers, Simon R.

    2011-01-01

    Recombination, together with mutation, is the ultimate source of genetic variation in populations. We leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing-over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P<10−245). We identify a 17 base pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of African-enriched alleles of PRDM9. PMID:21775986

  12. Molecular architecture of transcription factor hotspots in early adipogenesis.

    PubMed

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh; Nielsen, Ronni; Traynor, Sofie; Clark, Nicholas; Sandelin, Albin; Jensen, Ole N; Sung, Myong-Hee; Hager, Gordon L; Mandrup, Susanne

    2014-06-12

    Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate that these alternative binding events are functionally important for hotspot formation and activity. Taken together, these findings provide a framework for understanding transcription factor cooperativity in hotspots. PMID:24857666

  13. Fas expression correlates with human germ cell degeneration in meiotic and post-meiotic arrest of spermatogenesis.

    PubMed

    Francavilla, Sandro; D'Abrizio, Piera; Cordeschi, Giuliana; Pelliccione, Fiore; Necozione, Stefano; Ulisse, Salvatore; Properzi, Giuliana; Francavilla, Felice

    2002-03-01

    Degeneration of human male germ cells was analysed by means of light (LM) and transmission electron (TEM) microscopy. The frequency of degenerating cells was correlated with that of Fas-expressing germ cells in human testes with normal spermatogenesis (n = 10), complete early maturation arrest (EMA) (n = 10) or incomplete late maturation arrest (LMA; n = 10) of spermatogenesis. LM analysis of testis sections with normal spermatogenesis indicated that degenerating germ cells were localized in the adluminal compartment of the seminiferous epithelium. TEM showed that apoptotic cells were mostly primary spermatocytes and, to a lesser extent, round or early elongating spermatids. Apoptotic germ cells appeared to be eliminated either in the seminiferous lumen or by Sertoli cell phagocytosis. An increased number of degenerating cells was observed in testes with LMA as compared with normal testes and testes with EMA of spermatogenesis (P < 0.001, Wilcoxon's rank sum test). Comparison of these results with those obtained from immunohistochemistry experiments demonstrated a tight correlation between the number of apoptotic cells and the number of Fas-expressing germ cells (P = 0.001, Spearman's rank = 0.69). These findings suggest that altered meiotic and post-meiotic germ cell maturation might be associated with an up-regulation of Fas gene expression capable of triggering apoptotic elimination of defective germ cells. PMID:11870228

  14. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster.

    PubMed

    Krishnan, Badri; Thomas, Sharon E; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B; McKee, Bruce D

    2014-11-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  15. Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe.

    PubMed

    Ding, Da-Qiao; Matsuda, Atsushi; Okamasa, Kasumi; Nagahama, Yuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-06-01

    Chromosome structure is dramatically altered upon entering meiosis to establish chromosomal architectures necessary for the successful progression of meiosis-specific events. An early meiotic event involves the replacement of the non-SMC mitotic cohesins with their meiotic equivalents in most part of the chromosome, forming an axis on meiotic chromosomes. We previously demonstrated that the meiotic cohesin complex is required for chromosome compaction during meiotic prophase in the fission yeast Schizosaccharomyces pombe. These studies revealed that chromosomes are elongated in the absence of the meiotic cohesin subunit Rec8 and shortened in the absence of the cohesin-associated protein Pds5. In this study, using super-resolution structured illumination microscopy, we found that Rec8 forms a linear axis on chromosomes, which is required for the organized axial structure of chromatin during meiotic prophase. In the absence of Pds5, the Rec8 axis is shortened whereas chromosomes are widened. In rec8 or pds5 mutants, the frequency of homologous chromosome pairing is reduced. Thus, Rec8 and Pds5 play an essential role in building a platform to support the chromosome architecture necessary for the spatial alignment of homologous chromosomes. PMID:26511279

  16. The functional role of oxytocin in the induction of oocyte meiotic resumption in cattle.

    PubMed

    De Cesaro, M P; Trois, R L; Gutierrez, K; Siqueira, L; Rigo, M L; Glanzner, W G; Oliveira, J F; Gonçalves, P B

    2013-10-01

    The aim of the present study was to examine the role of oxytocin (OT) in the progesterone (P4) and prostaglandins (PGs) pathway to induce oocyte meiotic resumption. Cumulus-oocyte complexes were co-cultured with follicular hemisections for 15 h to determine the effects of different doses of OT or atosiban (ATO; oxytocin receptor antagonist) on oocyte meiotic resumption. In another experiment, we examined the effect of the interaction between P4, OT and PGs on the regulatory cascade of the oocyte meiotic resumption. Oxytocin at 1 μm was effective in inducing meiotic resumption in oocytes co-cultured with follicular cells (84.0%), not differing from the positive control group (74.4%). Atosiban inhibited in a dose-dependent manner the positive effect of OT on the meiotic resumption (27.6% metaphase I with 10 μm of ATO, which did not differ from the 25.5% of the negative control group). Furthermore, a third experiment showed that P4 was able to induce oocyte meiotic resumption, which was inhibited by ATO. However, the OT positive effect was not blocked by mifepristone (P4 antagonist), but was inhibited by indomethacin (a non-selective PTGS2 inhibitor). Collectively, these data suggest a sequential role of P4, OT and PGs in the induction of oocyte meiotic resumption. PMID:23691948

  17. Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster

    PubMed Central

    Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.

    2014-01-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  18. The role of AtMSH2 in homologous recombination in Arabidopsis thaliana

    PubMed Central

    Emmanuel, Eyal; Yehuda, Elizabeth; Melamed-Bessudo, Cathy; Avivi-Ragolsky, Naomi; Levy, Avraham A

    2006-01-01

    During homologous recombination (HR), a heteroduplex DNA is formed as a consequence of strand invasion. When the two homologous strands differ in sequence, a mismatch is generated. Earlier studies showed that mismatched heteroduplex often triggers abortion of recombination and that a pivotal component of this pathway is the mismatch repair Msh2 protein. In this study, we analysed the roles of AtMSH2 in suppression of recombination in Arabidopsis. We report that AtMSH2 has a broad range of anti-recombination effects: it suppresses recombination between divergent direct repeats in somatic cells or between homologues from different ecotypes during meiosis. This is the first example of a plant gene that affects HR as a function of sequence divergence and that has an anti-recombination meiotic effect. We discuss the implications of these results for plant improvement by gene transfer across species. PMID:16311517

  19. Venus: Mantle convection, hotspots, and tectonics

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1989-01-01

    The putative paradigm that planets of the same size and mass have the same tectonic style led to the adaptation of the mechanisms of terrestrial plate tectonics as the a priori model of the way Venus should behave. Data acquired over the last decade by Pioneer Venus, Venera, and ground-based radar have modified this view sharply and have illuminated the lack of detailed understanding of the plate tectonic mechanism. For reference, terrestrial mechanisms are briefly reviewed. Venusian lithospheric divergence, hotspot model, and horizontal deformation theories are proposed and examined.

  20. Where are the lightning hotspots on Earth?

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.

    2015-12-01

    The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM

  1. Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Wong, Wan Yan

    2008-11-01

    In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.

  2. Identification and Manipulation of the Molecular Determinants Influencing Poliovirus Recombination

    PubMed Central

    Runckel, Charles; Westesson, Oscar; Andino, Raul; DeRisi, Joseph L.

    2013-01-01

    The control and prevention of communicable disease is directly impacted by the genetic mutability of the underlying etiological agents. In the case of RNA viruses, genetic recombination may impact public health by facilitating the generation of new viral strains with altered phenotypes and by compromising the genetic stability of live attenuated vaccines. The landscape of homologous recombination within a given RNA viral genome is thought to be influenced by several factors; however, a complete understanding of the genetic determinants of recombination is lacking. Here, we utilize gene synthesis and deep sequencing to create a detailed recombination map of the poliovirus 1 coding region. We identified over 50 thousand breakpoints throughout the genome, and we show the majority of breakpoints to be concentrated in a small number of specific “hotspots,” including those associated with known or predicted RNA secondary structures. Nucleotide base composition was also found to be associated with recombination frequency, suggesting that recombination is modulated across the genome by predictable and alterable motifs. We tested the predictive utility of the nucleotide base composition association by generating an artificial hotspot in the poliovirus genome. Our results imply that modification of these motifs could be extended to whole genome re-designs for the development of recombination-deficient, genetically stable live vaccine strains. PMID:23408891

  3. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  4. Accelerated follicle growth during the culture of isolated caprine preantral follicles is detrimental to follicular survival and oocyte meiotic resumption.

    PubMed

    Apolloni, Livia Brunetti; Bruno, Jamily Bezerra; Alves, Benner Geraldo; Ferreira, Anna Clara Accioly; Paes, Victor Macêdo; Moreno, Jesus de Los Reyes Cadenas; de Aguiar, Francisco Léo Nascimento; Brandão, Felipe Zandonadi; Smitz, Johan; Apgar, Gary; de Figueiredo, José Ricardo

    2016-10-01

    This study investigated the effect of androstenedione (A4) alone or in association with different concentrations of bovine recombinant FSH on the IVC of isolated goat preantral follicles. Follicles were mechanically isolated from ovarian tissue and cultured for 18 days in α-minimum essential medium supplemented or not with A4 (10 ng/mL) alone or in association with fixed (A4 + FixFSH: 100 ng/mL) or sequential (A4 + SeqFSH: Day 0, 100 ng/mL; Day 6, 500 ng/mL; Day 12, 1000 ng/mL) concentrations of FSH. After 18 days, the oocytes were recovered for IVM and fluorescence analysis. At Day 18 of culture, only A4 + SeqFSH treatment showed a lower (P < 0.05) rate of intact follicles, survival probability, and meiotic resumption, as well as higher (P < 0.05) percentage of degeneration and/or extrusion after antrum formation. Taken together, these results reported a positive correlation between fast-growing follicles and follicles that degenerated and/or extruded after antrum formation. When compared with control, the addition of A4 alone or in association of FSH did not increase (P > 0.05) the estradiol production or androstenedione levels on Day 6. However, on Day 18, the androstenedione levels were significantly lower in A4 + SeqFSH treatment when compared with A4 alone or to A4 + FixFSH treatments, whereas the estradiol production did not differ (P > 0.05). In summary, this study found that accelerated follicle growth negatively impacted the morphology of caprine preantral follicle cultured in vitro. In addition, the association of androstenedione with increasing concentration of FSH was detrimental to follicular survival and oocyte meiotic resumption. PMID:27371972

  5. Contrasted patterns of hyperdiversification in Mediterranean hotspots.

    PubMed

    Sauquet, Hervé; Weston, Peter H; Anderson, Cajsa Lisa; Barker, Nigel P; Cantrill, David J; Mast, Austin R; Savolainen, Vincent

    2009-01-01

    Dating the Tree of Life has now become central to relating patterns of biodiversity to key processes in Earth history such as plate tectonics and climate change. Regions with a Mediterranean climate have long been noted for their exceptional species richness and high endemism. How and when these biota assembled can only be answered with a good understanding of the sequence of divergence times for each of their components. A critical aspect of dating by using molecular sequence divergence is the incorporation of multiple suitable age constraints. Here, we show that only rigorous phylogenetic analysis of fossil taxa can lead to solid calibration and, in turn, stable age estimates, regardless of which of 3 relaxed clock-dating methods is used. We find that Proteaceae, a model plant group for the Mediterranean hotspots of the Southern Hemisphere with a very rich pollen fossil record, diversified under higher rates in the Cape Floristic Region and Southwest Australia than in any other area of their total distribution. Our results highlight key differences between Mediterranean hotspots and indicate that Southwest Australian biota are the most phylogenetically diverse but include numerous lineages with low diversification rates. PMID:19116275

  6. Upscaling methane emission hotspots in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Fabio; Runkle, Benjamin R. K.; Brücher, Tim; Kleinen, Thomas; Brovkin, Victor

    2016-03-01

    Upscaling the properties and effects of small-scale surface heterogeneities to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of the water table pattern generated by the Hummock-Hollow model, a micro-topography resolving model for peatland hydrology. We introduce this parameterization of methane hotspots in a global model-like version of the Hummock-Hollow model that underestimates methane emissions. We tested the robustness of the parameterization by simulating methane emissions for the next century, forcing the model with three different RCP scenarios. The Hotspot parameterization, despite being calibrated for the 1976-2005 climatology, mimics the output of the micro-topography resolving model for all the simulated scenarios. The new approach bridges the scale gap of methane emissions between this version of the model and the configuration explicitly resolving micro-topography.

  7. Upscaling methane emission hotspots in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, F.; Runkle, B. R. K.; Brücher, T.; Kleinen, T.; Brovkin, V.

    2015-10-01

    Upscaling the properties and the effects of small-scale surface heterogeneities to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape-scale. We based this new parameterization on the analysis of the water table pattern generated by the Hummock-Hollow model, a micro-topography resolving model for peatland hydrology. We introduce this parameterization of methane hotspots in a global model-like version of the Hummock-Hollow model, that underestimates methane emissions. We tested the robustness of the parameterization by simulating methane emissions for the next century forcing the model with three different RCP scenarios. The Hotspot parameterization, despite being calibrated for the 1976-2005 climatology, mimics the output of the micro-topography resolving model for all the simulated scenarios. The new approach bridges the scale gap of methane emissions between this version of the model and the configuration explicitly resolving micro-topography.

  8. Cytological Studies of Human Meiosis: Sex-Specific Differences in Recombination Originate at, or Prior to, Establishment of Double-Strand Breaks

    PubMed Central

    Gruhn, Jennifer R.; Rubio, Carmen; Broman, Karl W.; Hunt, Patricia A.; Hassold, Terry

    2013-01-01

    Meiotic recombination is sexually dimorphic in most mammalian species, including humans, but the basis for the male:female differences remains unclear. In the present study, we used cytological methodology to directly compare recombination levels between human males and females, and to examine possible sex-specific differences in upstream events of double-strand break (DSB) formation and synaptic initiation. Specifically, we utilized the DNA mismatch repair protein MLH1 as a marker of recombination events, the RecA homologue RAD51 as a surrogate for DSBs, and the synaptonemal complex proteins SYCP3 and/or SYCP1 to examine synapsis between homologs. Consistent with linkage studies, genome-wide recombination levels were higher in females than in males, and the placement of exchanges varied between the sexes. Subsequent analyses of DSBs and synaptic initiation sites indicated similar male:female differences, providing strong evidence that sex-specific differences in recombination rates are established at or before the formation of meiotic DSBs. We then asked whether these differences might be linked to variation in the organization of the meiotic axis and/or axis-associated DNA and, indeed, we observed striking male:female differences in synaptonemal complex (SC) length and DNA loop size. Taken together, our observations suggest that sex specific differences in recombination in humans may derive from chromatin differences established prior to the onset of the recombination pathway. PMID:24376867

  9. Direct visualization reveals kinetics of meiotic chromosome synapsis

    SciTech Connect

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step in homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.

  10. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    SciTech Connect

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  11. The Ecology and Evolutionary Dynamics of Meiotic Drive.

    PubMed

    Lindholm, Anna K; Dyer, Kelly A; Firman, Renée C; Fishman, Lila; Forstmeier, Wolfgang; Holman, Luke; Johannesson, Hanna; Knief, Ulrich; Kokko, Hanna; Larracuente, Amanda M; Manser, Andri; Montchamp-Moreau, Catherine; Petrosyan, Varos G; Pomiankowski, Andrew; Presgraves, Daven C; Safronova, Larisa D; Sutter, Andreas; Unckless, Robert L; Verspoor, Rudi L; Wedell, Nina; Wilkinson, Gerald S; Price, Tom A R

    2016-04-01

    Meiotic drivers are genetic variants that selfishly manipulate the production of gametes to increase their own rate of transmission, often to the detriment of the rest of the genome and the individual that carries them. This genomic conflict potentially occurs whenever a diploid organism produces a haploid stage, and can have profound evolutionary impacts on gametogenesis, fertility, individual behaviour, mating system, population survival, and reproductive isolation. Multiple research teams are developing artificial drive systems for pest control, utilising the transmission advantage of drive to alter or exterminate target species. Here, we review current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion. PMID:26920473

  12. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis

    PubMed Central

    Tang, Shangming; Wu, Michelle Ka Yan; Zhang, Ruoxi; Hunter, Neil

    2015-01-01

    Summary The Bloom’s helicase ortholog, Sgs1, plays central roles to coordinate the formation and resolution of joint molecule intermediates (JMs) during meiotic recombination in budding yeast. Sgs1 can associate with type-I topoisomerase Top3 and its accessory factor Rmi1 to form a conserved complex best known for its unique ability to decatenate double-Holliday junctions. Contrary to expectations, we show that the strand-passage activity of Top3-Rmi1 is required for all known functions of Sgs1 in meiotic recombination, including channeling JMs into physiological crossover and noncrossover pathways, and suppression of non-allelic recombination. We infer that Sgs1 always functions in the context of the Sgs1-Top3-Rmi1 complex to regulate meiotic recombination. In addition, we reveal a distinct late role for Top3-Rmi1 in resolving recombination-dependent chromosome entanglements to allow segregation at anaphase. Surprisingly, Sgs1 does not share this essential role of Top3-Rmi1. These data reveal an essential and unexpectedly pervasive role for the Top3-Rmi1 decatenase during meiosis. PMID:25699709

  13. Yellowstone hotspot-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Jean, Marlon M.; Hanan, Barry B.; Shervais, John W.

    2014-03-01

    The Snake River Plain represents 17 m.y. of volcanic activity that took place as the North American continent migrated over a relatively fixed magma source, or hotspot. We present new Pb, Sr, and Nd data for a suite of 25 basalts collected from Western and Central Snake River Plain (SRP). The new isotope data, combined with previously published data from the SRP, provide a traverse of the Wyoming craton margin, from the 87Sr/86Sr = 0.706 line boundary of western SRP with Phanerozoic accreted terranes, east through the central and eastern SRP, to the Yellowstone Plateau. Low-K basalts from the western SRP, overlain by high-K basalts, provide a temporal record of regional source variation from ∼16.8 to 0.2 Ma. Principal Component Analysis (PCA) of the new and previously published SRP basalt Pb isotopes reveals that >97% of the total variability is accounted for by mixing between three end-members and is consistent with a sublithospheric Yellowstone hotspot mantle source with a radiogenic isotope composition similar to the mantle source of the early Columbia River Basalt Group (CRBG) and two continental lithosphere end-members, heterogeneous in age and composition. We use the SRP Pb, Sr, and Nd isotope data to model the Yellowstone Hotspot-continental lithosphere interaction by three component mixing between two continental lithospheric components, Archean lithosphere (CL1) that represents older lithosphere underlying the Yellowstone Plateau in the east, and Paleoproterozoic lithosphere (CL2) representing the younger lithosphere underlying the SRP in the west near the craton margin, and a sublithospheric end-member, representing the Yellowstone hotspot (PL). The results suggest a continuous flow of PL material westward as the NA continental lithosphere migrated over the upwelling hotspot along a shoaling gradient in the sub-continental mantle lithosphere. The model shows a decrease in Total Lithosphere end-members (CL1 + CL2) and the Lithosphere Ratio (CL1/CL2

  14. Med1 regulates meiotic progression during spermatogenesis in mice

    PubMed Central

    Huszar, Jessica M.; Jia, Yuzhi; Reddy, Janardan K.; Payne, Christopher J.

    2015-01-01

    Spermatogenesis is a highly coordinated process. Signaling from nuclear hormone receptors, like those for retinoic acid, is important for normal spermatogenesis. However, the mechanisms regulating these signals are poorly understood. Mediator complex subunit 1 (MED1) is a transcriptional enhancer that directly modulates transcription from nuclear hormone receptors. MED1 is present in male germ cells throughout mammalian development, but its function during spermatogenesis is unknown. To determine its role, we generated mice lacking Med1 specifically in their germ cells beginning just before birth. Conditional Med1 knockout males are fertile, exhibiting normal testis weights and siring ordinary numbers of offspring. Retinoic acid-responsive gene products Stimulated by retinoic acid gene 8 (STRA8) and Synaptonemal complex protein 3 (SYCP3) are first detected in knockout spermatogonia at the expected time points during the first wave of spermatogenesis and persist with normal patterns of cellular distribution in adult knockout testes. Meiotic progression, however, is altered in the absence of Med1. At postnatal day 7 (P7), zygotene-stage knockout spermatocytes are already detected, unlike in control testes, with fewer pre-leptotene-stage cells and more leptotene spermatocytes observed in the knockouts. At P9, Med1 knockout spermatocytes prematurely enter pachynema. Once formed, greater numbers of knockout spermatocytes remain in pachynema relative to the other stages of meiosis throughout testis development and its maintenance in the adult. Meiotic exit is not inhibited. We conclude that MED1 regulates the temporal progression of primary spermatocytes through meiosis, with its absence resulting in abbreviated pre-leptotene, leptotene and zygotene stages, and a prolonged pachytene stage. PMID:25778538

  15. Role of AtMSH7 in UV-B-induced DNA damage recognition and recombination.

    PubMed

    Lario, Luciana Daniela; Botta, Pablo; Casati, Paula; Spampinato, Claudia Patricia

    2015-06-01

    The mismatch repair (MMR) system maintains genome integrity by correcting replication-associated errors and inhibiting recombination between divergent DNA sequences. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in this DNA repair system vary among organisms. Plants have an extra mismatch recognition protein, MutSγ, which is a heterodimer: MSH2-MSH7. To further understand the role of MSH7 in vivo, we present data from this protein in Arabidopsis thaliana. First, we generated transgenic plants that express β-glucuronidase (GUS) under the control of the MSH7 promoter. Histochemical staining of the transgenic plants indicated that MSH7 is preferentially expressed in proliferating tissues. Then, we identified msh7 T-DNA insertion mutants. Plants deficient in MSH7 show increased levels of UV-B-induced cyclobutane pyrimidine dimers relative to wild-type (WT) plants. Consistent with the patterns of MSH7 expression, we next analysed the role of the protein during somatic and meiotic recombination. The frequency of somatic recombination between homologous or homeologous repeats (divergence level of 1.6%) was monitored using a previously described GUS recombination reporter assay. Disruption of MSH7 has no effect on the rates of somatic homologous or homeologous recombination under control conditions or after UV-B exposure. However, the rate of meiotic recombination between two genetically linked seed-specific fluorescent markers was 97% higher in msh7 than in WT plants. Taken together, these results suggest that MSH7 is involved in UV-B-induced DNA damage recognition and in controlling meiotic recombination. PMID:25465032

  16. Down Syndrome: Parental Origin, Recombination, and Maternal Age

    PubMed Central

    Vraneković, Jadranka; Božović, Ivana Babić; Grubić, Zorana; Wagner, Jasenka; Pavlinić, Dinko; Dahoun, Sophie; Bena, Frédérique; Čulić, Vida

    2012-01-01

    The aims of the present study were to assess (1) the parental origin of trisomy 21 and the stage in which nondisjunction occurs and (2) the relationship between altered genetic recombination and maternal age as risk factors for trisomy 21. The study included 102 cases with Down syndrome from the Croatian population. Genotyping analyses were performed by polymerase chain reaction using 11 short tandem repeat markers along chromosome 21q. The vast majority of trisomy 21 was of maternal origin (93%), followed by paternal (5%) and mitotic origin (2%). The frequencies of maternal meiotic I (MI) and meiotic II errors were 86% and 14%, respectively. The highest proportion of cases with zero recombination was observed among those with maternal MI derived trisomy 21. A higher proportion of telomeric exchanges were presented in cases with maternal MI errors and cases with young mothers, although these findings were not statistically significant. The present study is the first report examining parental origin and altered genetic recombination as a risk factor for trisomy 21 in a Croatian population. The results support that trisomy 21 has a universal genetic etiology across different human populations. PMID:21861707

  17. Down syndrome: parental origin, recombination, and maternal age.

    PubMed

    Vraneković, Jadranka; Božović, Ivana Babić; Grubić, Zorana; Wagner, Jasenka; Pavlinić, Dinko; Dahoun, Sophie; Bena, Frédérique; Culić, Vida; Brajenović-Milić, Bojana

    2012-01-01

    The aims of the present study were to assess (1) the parental origin of trisomy 21 and the stage in which nondisjunction occurs and (2) the relationship between altered genetic recombination and maternal age as risk factors for trisomy 21. The study included 102 cases with Down syndrome from the Croatian population. Genotyping analyses were performed by polymerase chain reaction using 11 short tandem repeat markers along chromosome 21q. The vast majority of trisomy 21 was of maternal origin (93%), followed by paternal (5%) and mitotic origin (2%). The frequencies of maternal meiotic I (MI) and meiotic II errors were 86% and 14%, respectively. The highest proportion of cases with zero recombination was observed among those with maternal MI derived trisomy 21. A higher proportion of telomeric exchanges were presented in cases with maternal MI errors and cases with young mothers, although these findings were not statistically significant. The present study is the first report examining parental origin and altered genetic recombination as a risk factor for trisomy 21 in a Croatian population. The results support that trisomy 21 has a universal genetic etiology across different human populations. PMID:21861707

  18. Meiotic Spindle Assessment in Mouse Oocytes by siRNA-mediated Silencing.

    PubMed

    Baumann, Claudia; Viveiros, Maria M

    2015-01-01

    Errors in chromosome segregation during meiotic division in gametes can lead to aneuploidy that is subsequently transmitted to the embryo upon fertilization. The resulting aneuploidy in developing embryos is recognized as a major cause of pregnancy loss and congenital birth defects such as Down's syndrome. Accurate chromosome segregation is critically dependent on the formation of the microtubule spindle apparatus, yet this process remains poorly understood in mammalian oocytes. Intriguingly, meiotic spindle assembly differs from mitosis and is regulated, at least in part, by unique microtubule organizing centers (MTOCs). Assessment of MTOC-associated proteins can provide valuable insight into the regulatory mechanisms that govern meiotic spindle formation and organization. Here, we describe methods to isolate mouse oocytes and deplete MTOC-associated proteins using a siRNA-mediated approach to test function. In addition, we describe oocyte fixation and immunofluorescence analysis conditions to evaluate meiotic spindle formation and organization. PMID:26485537

  19. Novel Meiotic miRNAs and Indications for a Role of PhasiRNAs in Meiosis

    PubMed Central

    Dukowic-Schulze, Stefanie; Sundararajan, Anitha; Ramaraj, Thiruvarangan; Kianian, Shahryar; Pawlowski, Wojciech P.; Mudge, Joann; Chen, Changbin

    2016-01-01

    Small RNAs (sRNA) add additional layers to the regulation of gene expression, with siRNAs directing gene silencing at the DNA level by RdDM (RNA-directed DNA methylation), and micro RNAs (miRNAs) directing post-transcriptional regulation of specific target genes, mostly by mRNA cleavage. We used manually isolated male meiocytes from maize (Zea mays) to investigate sRNA and DNA methylation landscapes during zygotene, an early stage of meiosis during which steps of meiotic recombination and synapsis of paired homologous chromosomes take place. We discovered two novel miRNAs from meiocytes, zma-MIR11969 and zma-MIR11970, and identified putative target genes. Furthermore, we detected abundant phasiRNAs of 21 and 24 nt length. PhasiRNAs are phased small RNAs which occur in 21 or 24 nt intervals, at a few hundred loci, specifically in male reproductive tissues in grasses. So far, the function of phasiRNAs remained elusive. Data from isolated meiocytes now revealed elevated DNA methylation at phasiRNA loci, especially in the CHH context, suggesting a role for phasiRNAs in cis DNA methylation. In addition, we consider a role of these phasiRNAs in chromatin remodeling/dynamics during meiosis. However, this is not well supported yet and will need more additional data. Here, we only lay out the idea due to other relevant literature and our additional observation of a peculiar GC content pattern at phasiRNA loci. Chromatin remodeling is also indicated by the discovery that histone genes were enriched for sRNA of 22 nt length. Taken together, we gained clues that lead us to hypothesize sRNA-driven DNA methylation and possibly chromatin remodeling during male meiosis in the monocot maize which is in line with and extends previous knowledge. PMID:27313591

  20. Characteristics of suicide hotspots on the Belgian railway network.

    PubMed

    Debbaut, Kevin; Krysinska, Karolina; Andriessen, Karl

    2014-01-01

    In 2004, railway suicide accounted for 5.3% of all suicides in Belgium. In 2008, Infrabel (Manager of the Belgian Railway Infrastructure) introduced a railway suicide prevention programme, including identification of suicide hotspots, i.e., areas of the railway network with an elevated incidence of suicide. The study presents an analysis of 43 suicide hotspots based on Infrabel data collected during field visits and semi-structured interviews conducted in mental health facilities in the vicinity of the hotspots. Three major characteristics of the hotspots were accessibility, anonymity, and vicinity of a mental health institution. The interviews identified several risk and protective factors for railway suicide, including the training of staff, introduction of a suicide prevention policy, and the role of the media. In conclusion, a comprehensive railway suicide prevention programme should continuously safeguard and monitor hotspots, and should be embedded in a comprehensive suicide prevention programme in the community. PMID:24020492

  1. The Manihiki Plateau - a key to missing hotspot tracks?

    NASA Astrophysics Data System (ADS)

    Pietsch, R.; Uenzelmann-Neben, G.

    2016-04-01

    A Neogene magmatic reactivation of the Manihiki Plateau, a Large Igneous Province (LIP) in the central Pacific, is studied using seismic reflection data. Igneous diapirs have been identified exclusively within a narrow WNW-ESE striking corridor in the southern High Plateau (HP), which is parallel to the Neogene Pacific Plate motion and overlaps with an extrapolation of the Society Islands Hotspot path. The igneous diapirs are characterized by a narrow width (>5 km), penetration of the Neogene sediments, and they become progressively younger towards the East (23-10 Ma). The magmatic source appears to be of small lateral extent, which leads to the conclusion that the diapirs represent Neogene hotspot volcanism within a LIP, and thus may be an older, previously unknown extension of the Society Islands Hotspot track (>4.5 Ma). Comparing hotspot volcanism within oceanic and continental lithosphere, we further conclude that hotspot volcanism within LIP crust has similarities to tectonically faulted continental crust.

  2. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis.

    PubMed

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W; Tucker, James F; Fishman, Emily S; Bray, Andrew S; Zhang, Ke

    2016-09-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. PMID:27365210

  3. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis

    PubMed Central

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W.; Tucker, James F.; Fishman, Emily S.; Bray, Andrew S.; Zhang, Ke

    2016-01-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3′–5′ exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe. In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. PMID:27365210

  4. Aurora B inhibitor barasertib prevents meiotic maturation and subsequent embryo development in pig oocytes.

    PubMed

    Ju, Shiqiang; Peng, Xu; Yang, Xiaoliu; Sozar, Sparksi; Muneri, Caroline W; Xu, Yaping; Chen, Changchao; Cui, Panpan; Xu, Weichao; Rui, Rong

    2016-07-15

    Barasertib, a highly selective Aurora B inhibitor, has been widely used in a variety of cells to investigate the role of Aurora B kinase, which has been implicated in various functions in the mitotic process. However, effects of barasertib on the meiotic maturation process are not fully understood, particularly in porcine oocyte meiotic maturation. In the present study, the effects of barasertib on the meiotic maturation and developmental competence of pig oocytes were investigated, and the possible roles of Aurora B were also evaluated in porcine oocytes undergoing meiosis. Initially, we examined the expression and subcellular localization of Aurora B using Western blot analysis and immunofluorescent staining. Aurora B was found to express and exhibit specific dynamic intracellular localization during porcine oocyte meiotic maturation. Aurora B was observed around the chromosomes after germinal vesicle breakdown. Then it was transferred to the spindle region after metaphase I stage, and was particularly concentrated at the central spindles at telophase I stage. barasertib treatment resulted in the failure of polar body extrusion in pig oocytes, with a larger percentage of barasertib-treated oocytes remaining at the pro-metaphase I stage. Additional results reported that barasertib treatment had no effect on chromosome condensation but resulted in a significantly higher percentage of the treated oocytes with aberrant spindles and misaligned chromosomes during the first meiotic division. In addition, inhibition of Aurora B with lower concentrations of barasertib during pig oocyte meiotic maturation decreased the subsequent embryo developmental competence. Thus, these results illustrate that barasertib has significant effects on porcine oocyte meiotic maturation and subsequent development through Aurora B inhibition, and this regulation is related to its effects on spindle formation and chromosome alignment during the first meiotic division in porcine oocytes. PMID

  5. Male eyespan size is associated with meiotic drive in wild stalk-eyed flies (Teleopsis dalmanni).

    PubMed

    Cotton, A J; Földvári, M; Cotton, S; Pomiankowski, A

    2014-04-01

    This study provides the first direct evidence from wild populations of stalk-eyed flies to support the hypothesis that male eyespan is a signal of meiotic drive. Several stalk-eyed fly species are known to exhibit X-linked meiotic drive. A recent quantitative trait locus analysis in Teleopsis dalmanni found a potential link between variation in male eyespan, a sexually selected ornamental trait, and the presence of meiotic drive. This was based on laboratory populations subject to artificial selection for male eyespan. In this study, we examined the association between microsatellite markers and levels of sex ratio bias (meiotic drive) in 12 wild T. dalmanni populations. We collected two data sets: (a) brood sex ratios of wild-caught males mated to standard laboratory females and (b) variation in a range of phenotypic traits associated with reproductive success of wild-caught males and females. In each case, we typed individuals for eight X-linked microsatellite markers, including several that previously were shown to be associated with male eyespan and meiotic drive. We found that one microsatellite marker was very strongly associated with meiotic drive, whereas a second showed a weaker association. We also found that, using both independent data sets, meiotic drive was strongly associated with male eyespan, with smaller eyespan males being associated with more female-biased broods. These results suggest that mate preference for exaggerated male eyespan allows females to avoid mating with males carrying the meiotic drive gene and is thus a potential mechanism for the maintenance and evolution of female mate preference. PMID:24398884

  6. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  7. Improving Trastuzumab's Stability Profile by Removing the Two Degradation Hotspots.

    PubMed

    Yang, Yuemei; Zhao, Jian; Geng, Shusheng; Hou, Chunmei; Li, Xingyin; Lang, Xiaoling; Qiao, Chunxia; Li, Yan; Feng, Jiannan; Lv, Ming; Shen, Beifen; Zhang, Boyan

    2015-06-01

    Stability of recombinant monoclonal antibodies (mAbs) is essential for their clinical application. The presence of the two degradation hotspots, namely, LC-Asn30 and HC-Asp102, in its complementary determinant regions prevents trastuzumab (Herceptin®) from being supplied in a drug product format of liquid formulation. To improve the stability, a new antibody was created by replacing the two residues with chemically similar amino acids of LC-Gln30 and HC-Glu102. This new mAb, named as T-mAb2, exhibited a simple and more uniform charge heterogeneity profile than T-mAb1, which is trastuzumab made in our laboratory, as displayed by the difference between their main peak area percentages (82.9% for T-mAb2 vs. 60.5% for T-mAb1). Computer modeling results, physicochemical and biological characterization, and stability profiling studies on T-mAb2 and T-mAb1 demonstrated that stability of T-mAb2 was significantly improved. In comparison with T-mAb1, although its in vitro human epidermal growth factor receptor 2 (HER2)-target binding activities were reduced slightly, in vivo tumor growth inhibiting activity was not affected, as demonstrated by the study results using the SKOV3 xenograft mouse model. Hence, a new anti-HER2 antibody was generated with improved stability that could be used to produce the drug product in liquid formulation for cost saving and more convenient usage. PMID:25820189

  8. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  9. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  10. Recombination can partially substitute for SPO13 in regulating meiosis I in budding yeast.

    PubMed Central

    Rutkowski, L H; Esposito, R E

    2000-01-01

    Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absence of SPO13 leads to single-division meiosis where reductional segregation is largely eliminated, but other meiotic events occur relatively normally. This phenotype allows haploids to produce viable meiotic products. Spo13p is thought to act by delaying nuclear division until sister centromeres/chromatids undergo proper cohesion for segregation to the same pole at MI. In the present study, a search for new spo13-like mutations that allow haploid meiosis recovered only new spo13 alleles. Unexpectedly, an unusual reduced-expression allele (spo13-23) was recovered that behaves similarly to a null mutant in haploids but to a wild-type allele in diploids, dependent on the presence of recombining homologs rather than on a diploid genome. This finding demonstrates that in addition to promoting accurate homolog disjunction, recombination can also function to partially substitute for SPO13 in promoting sister cohesion. Analysis of various recombination-defective mutants indicates that this contribution of recombination to reductional segregation requires full levels of crossing over. The implications of these results regarding SPO13 function are discussed. PMID:10924460

  11. Are Hotspots Always Hotspots? The Relationship between Diversity, Resource and Ecosystem Functions in the Arctic

    PubMed Central

    Link, Heike; Piepenburg, Dieter; Archambault, Philippe

    2013-01-01

    The diversity-ecosystem function relationship is an important topic in ecology but has not received much attention in Arctic environments, and has rarely been tested for its stability in time. We studied the temporal variability of benthic ecosystem functioning at hotspots (sites with high benthic boundary fluxes) and coldspots (sites with lower fluxes) across two years in the Canadian Arctic. Benthic remineralisation function was measured as fluxes of oxygen, silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition we determined sediment pigment concentration and taxonomic and functional macrobenthic diversity. To separate temporal from spatial variability, we sampled the same nine sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or fall) in 2008 and 2009. We observed that temporal variability of benthic remineralisation function at hotspots is higher than at coldspots and that taxonomic and functional macrobenthic diversity did not change significantly between years. Temporal variability of food availability (i.e., sediment surface pigment concentration) seemed higher at coldspot than at hotspot areas. Sediment chlorophyll a (Chl a) concentration, taxonomic richness, total abundance, water depth and abundance of the largest gallery-burrowing polychaete Lumbrineristetraura together explained 42% of the total variation in fluxes. Food supply proxies (i.e., sediment Chl a and depth) split hot- from coldspot stations and explained variation on the axis of temporal variability, and macrofaunal community parameters explained variation mostly along the axis separating eastern from western sites with hot- or coldspot regimes. We conclude that variability in benthic remineralisation function, food supply and diversity will react to climate change on different time scales, and that their interactive effects may hide the detection of progressive change, particularly at hotspots. Time-series of benthic functions and

  12. Future hotspots of terrestrial mammal loss.

    PubMed

    Visconti, Piero; Pressey, Robert L; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-09-27

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  13. Future hotspots of terrestrial mammal loss

    PubMed Central

    Visconti, Piero; Pressey, Robert L.; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-01-01

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  14. Hotspots of land use change in Europe

    NASA Astrophysics Data System (ADS)

    Kuemmerle, Tobias; Levers, Christian; Erb, Karlheinz; Estel, Stephan; Jepsen, Martin R.; Müller, Daniel; Plutzar, Christoph; Stürck, Julia; Verkerk, Pieter J.; Verburg, Peter H.; Reenberg, Anette

    2016-06-01

    Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.

  15. Upscaling methane emission hotspots in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Fabio; Runkle, Benjamin R. K.; Bruecher, Tim; Kleinen, Thomas; Brovkin, Victor

    2016-04-01

    Small-scale surface heterogeneities can influence land-atmosphere fluxes and therefore carbon, water and energy budgets on a larger scale. This effect is of particular relevance for high-latitude ecosystems, because of the great amount of carbon stored in their soils. Upscaling such small-scale surface heterogeneities and their effects to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape-scale. We based this parameterization on the analysis of the water table pattern generated by the Hummock-Hollow model (Cresto Aleina et al., 2015), a micro-topography resolving model for peatland hydrology and methane emissions. By computing the water table at the micro-topographic scale, the Hummock-Hollow model is able to describe the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We introduce the new parameterization of methane hotspots in a global model-like version of the Hummock-Hollow model. This latter version underestimates methane emissions because of the lack of representation of micro-topographic controls on peatland hydrology. We tested the robustness of the parameterization by simulating methane emissions for the present day and for the next century, forcing the model with three different RCP scenarios. The Hotspot parameterization, despite being calibrated for the 1976-2005 climatology, mimics the output of the micro-topography resolving model for all the simulated scenarios. The new approach bridges the scale gap of methane emissions between this version of the model and the configuration explicitly resolving micro-topography.

  16. Methane Hotspots in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Lai, C.; Kort, E. A.; Blake, D. R.

    2013-12-01

    Airborne observations show that Los Angeles (LA) is a large source of methane to the atmosphere, yet the sources of excess methane from the urban area are poorly constrained. We used a mobile laboratory, a Ford Transit van equipped with cavity ring down spectrometers (Picarro, Inc.), to measure greenhouse gases (CH4, CO2, and CO) mole fractions in LA. On-road surveys across the LA Basin were conducted seasonally to determine patterns of CH4 enrichment in space and over time, with a focus on quantifying methane leaks from known sources. We found fugitive leaks and elevated CH4 concentrations throughout the LA Basin. Some were associated with known sources, such as landfills, wastewater treatment, and oil and gas infrastructure, while others had an unknown origin. Urban CH4 enrichment varied over the course of the year, largely due to seasonal changes in meteorological conditions. Nevertheless, our mobile surveys revealed CH4 hotspots (>200 ppb elevated with respect to background levels) that persisted among seasons. High CH4 concentrations were most easily predicted by proximity to methane sources, particularly near the coast, while elevated CH4 levels were more evenly dispersed in inland areas. CH4 hotspots had a disproportionate impact on excess methane relative to the area they accounted for, typically providing more than a quarter of excess methane measured on a transect. These data improve estimates of the relative roles of specific leaks and emission sectors to LA's excess methane. Depending on the cost of reducing these CH4 leaks, a focus on CH4 emissions may prove an effective way to reduce LA's greenhouse gas emissions in the near term.

  17. Hotspots within hotspots? Hammerhead shark movements around Wolf Island, Galapagos Marine Reserve.

    PubMed

    Hearn, Alex; Ketchum, James; Klimley, A Peter; Espinoza, Eduardo; Peñaherrera, Cesar

    2010-01-01

    Are pelagic species such as sharks and tuna distributed homogenously or heterogeneously in the oceans? Large assemblages of these species have been observed at seamounts and offshore islands in the eastern tropical Pacific, which are considered hotspots of pelagic biodiversity. Is the species distribution uniform at these hotspots or do species aggregate at a finer spatial scale at these sites? We employed three techniques to demonstrate that the aggregations of scalloped hammerhead sharks, Sphyrna lewini, and other pelagic species were confined to the southeastern corner of Wolf Island in the Galapagos Marine Reserve. Coded ultrasonic transmitters were placed on individuals at this site and at another aggregation site at Darwin Island, separated from Wolf by 40 km, and they were detected by monitors moored at the southeastern corner of Wolf Island and rarely by monitors deployed at other sites around the island. Hammerhead sharks, carrying depth-sensing continual transmitters, were tracked for two-day periods in a vessel and shown to reside a disproportionately large fraction of their time at the southeastern corner. Visual censuses were carried out seasonally at the eight monitor sites at Wolf Island, recording the abundance of one species of tuna, four species of jacks, and a number of other species. The highest diversity and abundance of these species occurred in the southeastern corner of the island. Our results support the use of hammerhead sharks as indicator and umbrella species for pelagic hotspots on a fine scale. PMID:24391250

  18. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods

    PubMed Central

    Celik, Onder; Celik, Nilufer; Gungor, Sami; Haberal, Esra Tustas; Aydin, Suleyman

    2015-01-01

    Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence

  19. Modelling Hotspots for Invasive Alien Plants in India.

    PubMed

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species. PMID:26230513

  20. Modelling Hotspots for Invasive Alien Plants in India

    PubMed Central

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species. PMID:26230513

  1. High efficiency of meiotic gynogenesis in sea lamprey Petromyzon marinus

    USGS Publications Warehouse

    Rinchard, J.; Dabrowski, K.; Garcia-Abiado, M. -A.

    2006-01-01

    Induction of androgenesis and gynogenesis by applying a pressure (PS) or heat shock (HS) to double the haploid chromosomal set results in progenies possessing only chromosomes from a single parent. This has never been accomplished in representatives of Agnatha. The objective of this study was to induce gynogenesis and androgenesis in sea lamprey Petromyzon marinus. For gynogenesis experiments, ultraviolet (UV)-irradiated sperm was used to activate sea lamprey eggs and HS or PS were applied to inhibit the second meiotic division and consequently induce diploidy in the embryos. The UV irradiation of immobilized sperm was performed for 1 min at 1,719 J m-2. HS of 35 ?? 1??C for 2 min and PS of 9,000 psi for 4 min were applied at different times after egg activation (8, 12, 20, and 24 min or 8, 16, and 24 min for HS or PS, respectively). Regardless of the induction time of the HS, survivals at pre-hatching stage were similar. In contrast, PS applied 8 min after activation appears to increase survival rate of pre-hatched embryos in comparison to 16 and 24 min after activation. In control groups, without shock treatment (no diploidization), there were no survivors. All deformed, gynogenetic embryos were confirmed to be haploids and died prior to burying themselves in the sand. We confirmed by flow cytometry that progenies produced using both shock methods surviving to the next stage, burying in the substrate, were diploid gynogenetic. For the androgenesis experiments, UV-irradiated eggs (1,719 J m-2 for 1 min) were fertilized with non-treated sperm and HS was applied to restore diploidy of the eggs. Several attempts have been made to optimize the parameters used. HS of 35 ?? 1??C was applied 110, 140, 170, 200, and 230 min after activation for 2 min. Low yields of androgens were obtained and all animals died within a week after hatching. These techniques will allow to establish meiotic gynogenetic lines of sea lamprey for determining sex differentiation in this species

  2. Recombinational Landscape and Population Genomics of Caenorhabditis elegans

    PubMed Central

    Rockman, Matthew V.; Kruglyak, Leonid

    2009-01-01

    Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains. PMID:19283065

  3. Direct visualization reveals kinetics of meiotic chromosome synapsis

    DOE PAGESBeta

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step inmore » homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.« less

  4. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    PubMed Central

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  5. On the origin of sex chromosomes from meiotic drive.

    PubMed

    Úbeda, Francisco; Patten, Manus M; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  6. Central Indian Ridge and Reunion Hotspot in Rodrigues Area : Another Type of Ridge - Hotspot Interaction ?

    NASA Astrophysics Data System (ADS)

    DYMENT, J.; HEMOND, C.; GUILLOU, H.; MAIA, M.; BRIAIS, A.; GENTE, P.

    2001-12-01

    The Rodrigues Ridge is an E-W volcanic structure which extends at 19° S from the Mascarene Plateau (59° 30'E) to 100 km East of Rodrigues Island (64° 30'E). It is neither parallel to seafloor spreading flow-lines nor to the "absolute" motion of Africa in the hotspot reference frame. 39Ar-40Ar dating of dredged samples has shown that the whole ridge formed at 8-10 Ma, suggesting a rather rapid emplacement between the former position of the Reunion hotspot and the nearest segment of the CIR at 10-8 Ma. This rules out the hypothesis that the Rodrigues Ridge was progressively built near the CIR axis, at the end of a "channeled" asthenospheric flow originating from Reunion hotspot. Sr, Nd and Pb isotopes show gradual fading of the Reunion hotspot influence with increasing distance from the Mascarene Plateau. Signs for a more recent activity are the Rodrigues Island, dated about 1 Ma, and a set of recently discovered en-echelon volcanic ridges, the Three Magi and Gasitao Ridges. They extend the Rodrigues Ridge up to the CIR axis. These ridges display a clear sigmoid shape and align along an E-W direction at 19° 40'S. Another parallel, less prominent volcanic alignment is observed about 30 km north, at 19° 25'S. K-Ar dating (Cassignol method) provides ages of 0.4 and 1.8 Ma for the easternmost Gasitao Ridge. This second age is slightly younger than that of the underlying crust given by the magnetic anomalies. Isotopic compositions are intermediate between those measured on Rodrigues Ridge and the CIR axis. The lack of conjugate bathymetric feature and the age measured on the Gasitao Ridge demonstrate that it was built off axis, in the close vicinity of the CIR. The sigmoid morphology and en-echelon alignment of Three Magi and Gasitao Ridges suggest that they correspond to tension cracks filled by magmas resulting from decompression melting of underlying mantle. Repetition of such magmatic events results in increasing volume as ridges get older, in agreement with the

  7. Hot-spot durability testing of amorphous cells and modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles; Jetter, Elizabeth

    1985-01-01

    This paper discusses the results of a study to determine the hot-spot susceptibility of amorphous-silicon (a-Si) cells and modules, and to provide guidelines for reducing that susceptibility. Amorphous-Si cells are shown to have hot-spot susceptibility levels similar to crystalline-silicon (C-Si) cells. This premise leads to the fact that the same general guidelines must apply to protecting a-Si cells from hot-spot stressing that apply to C-Si cells. Recommendations are made on ways of reducing a-Si module hot-spot susceptibility including the traditional method of using bypass diodes and a new method unique to thin-film cells, limiting the string current by limiting cell area.

  8. The Manihiki Plateau—a key to missing hotspot tracks?

    NASA Astrophysics Data System (ADS)

    Pietsch, R.; Uenzelmann-Neben, G.

    2016-08-01

    A Neogene magmatic reactivation of the Manihiki Plateau, a large igneous province (LIP) in the central Pacific, is studied using seismic reflection data. Igneous diapirs have been identified exclusively within a narrow WNW-ESE striking corridor in the southern High Plateau (HP), which is parallel to the Neogene Pacific Plate motion and overlaps with an extrapolation of the Society Islands Hotspot (SIH) path. The igneous diapirs are characterized by a narrow width (>5 km), penetration of the Neogene sediments, and they become progressively younger towards the East (23-10 Ma). The magmatic source appears to be of small lateral extent, which leads to the conclusion that the diapirs represent Neogene hotspot volcanism within a LIP, and thus may be an older, previously unknown extension of the SIH track (>4.5 Ma). Comparing hotspot volcanism within oceanic and continental lithosphere, we further conclude that hotspot volcanism within LIP crust has similarities to tectonically faulted continental crust.

  9. The evolutionary turnover of recombination hot spots contributes to speciation in mice.

    PubMed

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R Daniel; Petukhova, Galina V

    2016-02-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728

  10. The evolutionary turnover of recombination hot spots contributes to speciation in mice

    PubMed Central

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R. Daniel; Petukhova, Galina V.

    2016-01-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728

  11. Evolution of midplate hotspot swells: Numerical solutions

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    The evolution of midplate hotspot swells on an oceanic plate moving over a hot, upwelling mantle plume is numerically simulated. The plume supplies a Gaussian-shaped thermal perturbation and thermally-induced dynamic support. The lithosphere is treated as a thermal boundary layer with a strongly temperature-dependent viscosity. The two fundamental mechanisms of transferring heat, conduction and convection, during the interaction of the lithosphere with the mantle plume are considered. The transient heat transfer equations, with boundary conditions varying in both time and space, are solved in cylindrical coordinates using the finite difference ADI (alternating direction implicit) method on a 100 x 100 grid. The topography, geoid anomaly, and heat flow anomaly of the Hawaiian swell and the Bermuda rise are used to constrain the models. Results confirm the conclusion of previous works that the Hawaiian swell can not be explained by conductive heating alone, even if extremely high thermal perturbation is allowed. On the other hand, the model of convective thinning predicts successfully the topography, geoid anomaly, and the heat flow anomaly around the Hawaiian islands, as well as the changes in the topography and anomalous heat flow along the Hawaiian volcanic chain.

  12. Linking the Galapagos hotspot and the Caribbean Plateau

    NASA Astrophysics Data System (ADS)

    Nerlich, Rainer; Clark, Stuart R.; Bunge, Hans-Peter

    2014-05-01

    Wide agreement exists that the Caribbean plate has a Pacific origin and that parts of it depict an igneous Plateau of up to 20 km thick crust. However, the origin of this thickened crust remains debated. One of the first suggestions for its origin was the arrival of a plume, whose remnant might be the Galapagos hotspot. More recently, it has been argued that reconstruction models predicted the Galapagos hotspot a thousand or more kilometres away from the Caribbean plate at the time of Plateau formation (~88 ?? 94 Ma). These authors primarily relied on the Caribbean Plateau moving into its present position relative to the Americas only in the last few million years. Secondarily, the authors assumed that the hotspot was fixed in an Indian-Atlantic hotspot reference frame. Here, we explore the idea that the Plateau moved into position around the time of the initiation of convergence between the North and South America, about 54.5 Ma. In addition, we adopt a fixed Pacific hotspot reference frame and compare our results to the recently developed Global Moving Hotspot Reference Frame. We show that both frames lead to good correlations between the paleo-positions of the Caribbean Plate and the Galapagos hotspot. As this result is consistent with abundant geochemical evidence that lends support for both a plume origin as well as the similarity between the Galapagos hotspot and rocks from the Plateau itself, we argue that alternative mechanisms to explain the thickened crust of the Caribbean Plateau are unnecessary. Additionally, based on our new plate reconstruction model, we present an age distribution of the lithosphere underneath the thickened crust of the Caribbean Plateau that has remained speculative until now.

  13. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    PubMed Central

    Gaidet, Nicolas; Ould El Mamy, Ahmed B.; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S.; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi; Diawara, Yelli; Hurtado, Renata; Newman, Scott H.; Dodman, Tim; Balança, Gilles

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered. PMID:23029383

  14. Fish-derived nutrient hotspots shape coral reef benthic communities.

    PubMed

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  15. Recombination patterns in maize reveal limits to crossover homeostasis

    PubMed Central

    Sidhu, Gaganpreet K.; Fang, Celestia; Olson, Mischa A.; Falque, Matthieu; Martin, Olivier C.; Pawlowski, Wojciech P.

    2015-01-01

    During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non–crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation. Their formation is tightly controlled so that there is at least one CO per pair of homologous chromosomes whereas the maximum number of COs per chromosome pair is fairly limited. One of the main mechanisms controlling the number of recombination events per meiosis is CO homeostasis, which maintains a stable CO number even when the DSB number is dramatically altered. The existence of CO homeostasis has been reported in several species, including mouse, yeast, and Caenorhabditis elegans. However, it is not known whether homeostasis exists in the same form in all species. In addition, the studies of homeostasis have been conducted using mutants and/or transgenic lines exhibiting fairly severe meiotic phenotypes, and it is unclear how important homeostasis is under normal physiological conditions. We found that, in maize, CO control is robust only to ensure one CO per chromosome pair. However, once this limit is reached, the CO number is linearly related to the DSB number. We propose that CO control is a multifaceted process whose different aspects have a varying degree of importance in different species. PMID:26668366

  16. Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    PubMed Central

    Shakes, Diane C.; Wu, Jui-ching; Sadler, Penny L.; LaPrade, Kristen; Moore, Landon L.; Noritake, Alana; Chu, Diana S.

    2009-01-01

    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex. PMID:19696886

  17. Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast

    PubMed Central

    Hiriart, Edwige; Vavasseur, Aurélia; Touat-Todeschini, Leila; Yamashita, Akira; Gilquin, Benoit; Lambert, Emeline; Perot, Jonathan; Shichino, Yuichi; Nazaret, Nicolas; Boyault, Cyril; Lachuer, Joel; Perazza, Daniel; Yamamoto, Masayuki; Verdel, André

    2012-01-01

    RNA interference (RNAi) silences gene expression by acting both at the transcriptional and post-transcriptional levels in a broad range of eukaryotes. In the fission yeast Schizosaccharomyces pombe the RNA-Induced Transcriptional Silencing (RITS) RNAi complex mediates heterochromatin formation at non-coding and repetitive DNA. However, the targeting and role of RITS at other genomic regions, including protein-coding genes, remain unknown. Here we show that RITS localizes to specific meiotic genes and mRNAs. Remarkably, RITS is guided to these meiotic targets by the RNA-binding protein Mmi1 and its associated RNA surveillance machinery that together degrade selective meiotic mRNAs during vegetative growth. Upon sexual differentiation, RITS localization to the meiotic genes and mRNAs is lost. Large-scale identification of Mmi1 RNA targets reveals that RITS subunit Chp1 associates with the vast majority of them. In addition, loss of RNAi affects the effective repression of sexual differentiation mediated by the Mmi1 RNA surveillance machinery. These findings uncover a new mechanism for recruiting RNAi to specific meiotic genes and suggest that RNAi participates in the control of sexual differentiation in fission yeast. PMID:22522705

  18. A measurement concept for hot-spot BRDFs from space

    SciTech Connect

    Gerstl, S.A.W.

    1996-09-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  19. The ATM Signaling Cascade Promotes Recombination-Dependent Pachytene Arrest in Mouse Spermatocytes

    PubMed Central

    Lange, Julian; Jasin, Maria; Keeney, Scott; Roig, Ignasi

    2015-01-01

    Most mutations that compromise meiotic recombination or synapsis in mouse spermatocytes result in arrest and apoptosis at the pachytene stage of the first meiotic prophase. Two main mechanisms are thought to trigger arrest: one independent of the double-strand breaks (DSBs) that initiate meiotic recombination, and another activated by persistent recombination intermediates. Mechanisms underlying the recombination-dependent arrest response are not well understood, so we sought to identify factors involved by examining mutants deficient for TRIP13, a conserved AAA+ ATPase required for the completion of meiotic DSB repair. We find that spermatocytes with a hypomorphic Trip13 mutation (Trip13mod/mod) arrest with features characteristic of early pachynema in wild type, namely, fully synapsed chromosomes without incorporation of the histone variant H1t into chromatin. These cells then undergo apoptosis, possibly in response to the arrest or in response to a defect in sex body formation. However, TRIP13-deficient cells that additionally lack the DSB-responsive kinase ATM progress further, reaching an H1t-positive stage (i.e., similar to mid/late pachynema in wild type) despite the presence of unrepaired DSBs. TRIP13-deficient spermatocytes also progress to an H1t-positive stage if ATM activity is attenuated by hypomorphic mutations in Mre11 or Nbs1 or by elimination of the ATM-effector kinase CHK2. These mutant backgrounds nonetheless experience an apoptotic block to further spermatogenic progression, most likely caused by failure to form a sex body. DSB numbers are elevated in Mre11 and Nbs1 hypomorphs but not Chk2 mutants, thus delineating genetic requirements for the ATM-dependent negative feedback loop that regulates DSB numbers. The findings demonstrate for the first time that ATM-dependent signaling enforces the normal pachytene response to persistent recombination intermediates. Our work supports the conclusion that recombination defects trigger spermatocyte arrest

  20. Insights into epigenetic landscape of recombination-free regions.

    PubMed

    Termolino, Pasquale; Cremona, Gaetana; Consiglio, Maria Federica; Conicella, Clara

    2016-06-01

    Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution. PMID:26801812

  1. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast

    SciTech Connect

    Game, J.C. ); Sitney, K.C.; Cook, V.E.; Mortimer, R.K. )

    1989-12-01

    The authors describe a system that uses pulsed-field gels for the physical detection of recombinant DNA molecules, double-strand DNA breaks (DSB) and sister-chromatid exchange in the yeast Saccharomyces cerevisiae. The system makes use of a circular variant of chromosome II (Chr. III). Meiotic recombination between this ring chromosome and a linear homolog produces new molecules of sizes distinguishable on gels from either parental molecule. They demonstrate that these recombinant molecules are not present either in strains with two linear Chr. III molecules or in rad50 mutants, which are defective in meiotic recombination. In conjunction with the molecular endpoints. They present data on the timing of commitment to meiotic recombination scored genetically. They have used x-rays to linearize circular Chr. III, both to develop a sensitive method for measuring frequency of DSB and as a means of detecting double-size circles originating in part from sister-chromatid exchange, which they find to be frequent during meiosis.

  2. Use of a Ring Chromosome and Pulsed-Field Gels to Study Interhomolog Recombination, Double-Strand DNA Breaks and Sister-Chromatid Exchange in Yeast

    PubMed Central

    Game, J. C.; Sitney, K. C.; Cook, V. E.; Mortimer, R. K.

    1989-01-01

    We describe a system that uses pulsed-field gels for the physical detection of recombinant DNA molecules, double-strand DNA breaks (DSB) and sister-chromatid exchange in the yeast Saccharomyces cerevisiae. The system makes use of a circular variant of chromosome III (Chr. III). Meiotic recombination between this ring chromosome and a linear homolog produces new molecules of sizes distinguishable on gels from either parental molecule. We demonstrate that these recombinant molecules are not present either in strains with two linear Chr. III molecules or in rad50 mutants, which are defective in meiotic recombination. In conjunction with the molecular endpoints, we present data on the timing of commitment to meiotic recombination scored genetically. We have used x-rays to linearize circular Chr. III, both to develop a sensitive method for measuring frequency of DSB and as a means of detecting double-sized circles originating in part from sister-chromatid exchange, which we find to be frequent during meiosis. PMID:2693206

  3. Mei-1, a Gene Required for Meiotic Spindle Formation in Caenorhabditis Elegans, Is a Member of a Family of ATPases

    PubMed Central

    Clark-Maguire, S.; Mains, P. E.

    1994-01-01

    Meiotic spindle formation in the female germline of Caenorhabditis elegans requires expression of the gene mei-1. We have cloned mei-1 by transformation rescue and found that it resides near a hot spot for recombination, in an area of high gene density. The highest levels of mei-1 mRNA accumulate in the female germline of adult hermaphrodites as well as in fertilized embryos. The message persists for several hours after the protein functions in embryos, implying the need for post-transcriptional regulation. Two alternatively spliced messages are made that would result in proteins that differ internally by three amino acids; the larger of the two mRNAs is preferentially enriched in the female germline. The sequence of mei-1 shows that it is a member of a newly described family of ATPases that share a highly conserved nucleotide-binding site; four dominant-negative mutations of mei-1 are found at or near this region. Divergent roles ascribed to this family include membrane function, proteolysis, transcription and cell cycle regulation. PMID:8150281

  4. Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance

    PubMed Central

    Jagut, Marlène; Hamminger, Patricia; Woglar, Alexander; Millonigg, Sophia; Paulin, Luis; Mikl, Martin; Dello Stritto, Maria Rosaria; Tang, Lois; Habacher, Cornelia; Tam, Angela; Gallach, Miguel; von Haeseler, Arndt; Villeneuve, Anne M.; Jantsch, Verena

    2016-01-01

    During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions. PMID:27011106

  5. A meiotic drive element in the maize pathogen Fusarium verticillioides is located within a 102-kb region of chromosome V

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny f...

  6. Mutations in TUBB8 and Human Oocyte Meiotic Arrest.

    PubMed

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; Sun, Xiaoxi; Yan, Zheng; Zhang, Shaozhen; Shi, Juanzi; Tian, Guoling; Luchniak, Anna; Fukuda, Yusuke; Li, Bin; Yu, Min; Chen, Junling; Xu, Yao; Guo, Luo; Qu, Ronggui; Wang, Xueqian; Sun, Zhaogui; Liu, Miao; Shi, Huijuan; Wang, Hongyan; Feng, Yi; Shao, Ruijin; Chai, Renjie; Li, Qiaoli; Xing, Qinghe; Zhang, Rui; Nogales, Eva; Jin, Li; He, Lin; Gupta, Mohan L; Cowan, Nicholas J; Wang, Lei

    2016-01-21

    Background Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. Methods We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. Results We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. Conclusions TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.). PMID:26789871

  7. Mutations in TUBB8 cause human oocyte meiotic arrest

    PubMed Central

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; Sun, Xiaoxi; Yan, Zheng; Zhang, Shaozhen; Shi, Juanzi; Tian, Guoling; Luchniak, Anna; Fukuda, Yusuke; Li, Bin; Yu, Min; Chen, Junling; Xu, Yao; Guo, Luo; Qu, Ronggui; Wang, Xueqian; Sun, Zhaogui; Liu, Miao; Shi, Huijuan; Wang, Hongyan; Feng, Yi; Shao, Ruijin; Chai, Renjie; Li, Qiaoli; Xing, Qinghe; Zhang, Rui; Nogales, Eva; Jin, Li; He, Lin; Gupta, Mohan L.; Cowan, Nicholas J.; Wang, Lei

    2016-01-01

    Background Successful human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to human oocyte maturation arrest are unknown. Methods We recruited a rare four-generation family with female infertility as a consequence of oocyte meiosis I arrest. We applied whole-exome and direct Sanger sequencing to an additional 23 patients following identification of mutations in a candidate gene, TUBB8. Expression of TUBB8 and all other β-tubulin isotypes was measured in human oocytes, early embryos, sperm cells and several somatic tissues by qRT-PCR. The effect of the TUBB8 mutations was assessed on α/β tubulin heterodimer assembly in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes via microinjection of the corresponding cRNAs. Results We identified seven mutations in the primate-specific gene TUBB8 that are responsible for human oocyte meiosis I arrest in seven families. TUBB8 expression is unique to oocytes and the early embryo, where this gene accounts for almost all of the expressed β-tubulin. The mutations affect the chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, induce microtubule chaos upon expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle assembly defects and maturation arrest upon expression in mouse and human oocytes. Conclusions TUBB8 mutations function via dominant negative effects that massively disrupt proper microtubule behavior. TUBB8 is a key gene involved in human oocyte meiotic spindle assembly and maturation. PMID:26789871

  8. Centromere mapping functions for aneuploid meiotic products: Analysis of rec8, rec10 and rec11 mutants of the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Krawchuk, M D; Wahls, W P

    1999-01-01

    Recent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapping functions were tested in a study of the rec8, rec10, and rec11 mutants of fission yeast. In each mutant we monitored each of the three chromosome pairs. Between 38 and 100% of the chromosome segregation errors in the rec8 mutants were due to meiosis I nondisjunction of homologous chromosomes. The remaining segregation errors were likely the result of precocious separation of sister chromatids, a previously described defect in the rec8 mutants. Between 47 and 100% of segregation errors in the rec10 and rec11 mutants were due to nondisjunction of sister chromatids during meiosis II. In addition, centromere-proximal recombination was reduced as much as 14-fold or more on chromosomes that had experienced nondisjunction. These results demonstrate the utility of the new mapping functions and support models in which sister chromatid cohesion and crossover position are important determinants for proper chromosome segregation in each meiotic division. PMID:10471699

  9. Meiotic origin of triploidy in the frog detected by genetic analysis of enzyme polymorphisms.

    PubMed

    Wright, D A; Huang, C P; Chuoke, B D

    1976-10-01

    A female frog heterozygous at two unlinked loci, specifying electrophoretic forms of mannosephosphate isomerase (MPI) and malate dehydrogenase (MDH) was crossed to male frogs homozygous for different alleles at each locus. In the offspring approximately ten percent proved to be triploid according to nucleolar and chromosome counts of tail tip cells. Most of these triploids had both maternal alleles at the MDH and MPI loci suggesting that the first meiotic division was repressed. Others seemed to represent a repressed second meiotic division and one animal, a pentaploid, could only have resulted from inhibition of both meiotic divisions of the egg. Densitometer tracings of starch gels stained for 6 phosphogluconate and isocitrate dehydrogenases, expected to be heterozygous in a particular cross, demonstrated that the triploids had twice as much maternal as paternal gene product for each locus, similar to patterns found in triploids produced by nuclear transplantation. PMID:1087260

  10. Evolution of a MCM complex in flies promoting meiotic crossovers by blocking BLM helicase

    PubMed Central

    Kohl, Kathryn P.; Jones, Corbin D.; Sekelsky, Jeff

    2013-01-01

    Generation of meiotic crossovers in many eukaryotes requires the elimination of anti-crossover activities by utilizing the Msh4–Msh5 heterodimer to block helicases. Msh4 and Msh5 have been lost from the flies Drosophila and Glossina but we identified a complex of mini-chromosome maintenance (MCM) proteins that functionally replace Msh4–Msh5. REC, an ortholog of MCM8 that evolved under strong positive selection in flies, interacts with MEI-217 and MEI-218, which arose from a previously undescribed metazoan-specific MCM protein. Meiotic crossovers are reduced in Drosophila rec, mei-217, and mei-218 mutants; however, removal of the Bloom syndrome helicase ortholog restores crossovers. Thus, MCMs were co-opted into a novel complex that replaces the meiotic pro-crossover function of Msh4–Msh5 in flies. PMID:23224558

  11. HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis

    PubMed Central

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2015-01-01

    SUMMARY The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient. PMID:16360035

  12. Nek11 regulates asymmetric cell division during mouse oocyte meiotic maturation.

    PubMed

    Guo, Lei; Wang, Zhen-Bo; Wang, Hong-Hui; Zhang, Teng; Qi, Shu-Tao; Ouyang, Ying-Chun; Hou, Yi; Sun, Qing-Yuan

    2016-06-10

    Nek11, a member of the never in mitosis gene A (NIMA) family, is activated in somatic cells associated with G1/S or G2/M arrest. However, its function in meiosis is unknown. In this research, the expression, localization and functions of NEK11 in the mouse oocyte meiotic maturation were examined. Western blotting indicated that NEK11S was the major NEK11 protein in mouse oocyte. MYC-tagged Nek11 mRNA microinjection and immunofluorescent staining showed that NEK11 was localized to the meiotic spindles at MI and MII stage. Knockdown of Nek11 by microinjection of siRNA did not affect germinal vesicle breakdown (GVBD) and the first polar body extrusion, but caused formation of 2-cell-like eggs. These results demonstrate that Nek11 regulates asymmetric cell division during oocyte meiotic maturation. PMID:27150633

  13. Plume and plate controlled hotspot trails in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John; Jokat, Wilfried; le Roex, Anton; Class, Cornelia; Wijbrans, Jan; Keßling, Stefanie; Kuiper, Klaudia; Nebel, Oliver

    2013-04-01

    Discovering if hotspots observed on the Earth's surface are explained by underlying plumes rising from the deep mantle or by shallow plate-driven processes continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of age-progressive volcanic trails recording past plate motion relative to surface hotspots and their causal plumes. Using the icebreaker RV Polarstern, we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth's two largest and deepest regions of slower-than-average seismic wave speed - the Africa Low Shear Wave Velocity Province - caused by a massive thermo-chemical 'pile' on the core-mantle boundary. We showed recently using Ar/Ar isotopic ages - and crustal structure and seafloor ages - that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O'Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. If the distribution of hotspot trails reflects where plume melts could or could not penetrate the continental or oceanic lithosphere then plumes could have been active for significantly longer than indicated by their volcanic chains. This provides a mechanism for extended late stage interplay between deep mantle

  14. Recombination in the Human Pseudoautosomal Region PAR1

    PubMed Central

    Hinch, Anjali G.; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R.

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  15. Recombination in the human Pseudoautosomal region PAR1.

    PubMed

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  16. The Hawaiian Archipelago: a microbial diversity hotspot.

    PubMed

    Donachie, S P; Hou, S; Lee, K S; Riley, C W; Pikina, A; Belisle, C; Kempe, S; Gregory, T S; Bossuyt, A; Boerema, J; Liu, J; Freitas, T A; Malahoff, A; Alam, M

    2004-11-01

    The Hawaiian Archipelago is a "biodiversity hotspot" where significant endemism among eukaryotes has evolved through geographic isolation and local topography. To address the absence of corresponding region-wide data on Hawaii's microbiota, we compiled the first 16S SSU rDNA clone libraries and cultivated bacteria from five Hawaiian lakes, an anchialine pool, and the Lō'ihi submarine volcano. These sites offer diverse niches over approximately 5000 m elevation and approximately 1150 nautical miles. Each site hosted a distinct prokaryotic community dominated by Bacteria. Cloned sequences fell into 158 groups from 18 Bacteria phyla, while seven were unassigned and two belonged in the Euryarchaeota. Only seven operational taxonomic units (each OTU comprised sequences that shared > or =97% sequence identity) occurred in more than one site. Pure bacterial cultures from all sites fell into 155 groups (each group comprised pure cultures that shared > or =97% 16S SSU rDNA sequence identity) from 10 Bacteria phyla; 15 Proteobacteria and Firmicutes were cultivated from more than one site. One hundred OTUs (60%) and 52 (33.3%) cultures shared <97% 16S SSU rDNA sequence identity with published sequences. Community structure reflected habitat chemistry; most delta-Proteobacteria occurred in anoxic and sulfidic waters of one lake, while beta-Proteobacteria were cultivated exclusively from fresh or brackish waters. Novel sequences that affiliate with an Antarctic-specific clade of Deinococci, and Candidate Divisions TM7 and BRC1, extend the geographic ranges of these phyla. Globally and locally remote, as well as physically and chemically diverse, Hawaiian aquatic habitats provide unique niches for the evolution of novel communities and microorganisms. PMID:15696384

  17. Hybridization Hotspots at Bat Swarming Sites

    PubMed Central

    Bogdanowicz, Wiesław; Piksa, Krzysztof; Tereba, Anna

    2012-01-01

    During late summer and early autumn in temperate zones of the Northern Hemisphere, thousands of bats gather at caves, mainly for the purpose of mating. We demonstrated that this swarming behavior most probably leads not only to breeding among bats of the same species but also interbreeding between different species. Using 14 nuclear microsatellites and three different methods (the Bayesian assignment approaches of STRUCTURE and NEWHYBRIDS and a principal coordinate analysis of pairwise genetic distances), we analyzed 375 individuals belonging to three species of whiskered bats (genus Myotis) at swarming sites across their sympatric range in southern Poland. The overall hybridization rate varied from 3.2 to 7.2%. At the species level, depending on the method used, these values ranged from 2.1–4.6% in M. mystacinus and 3.0–3.7% in M. brandtii to 6.5–30.4% in M. alcathoe. Hybrids occurred in about half of the caves we studied. In all three species, the sex ratio of hybrids was biased towards males but the observed differences did not differ statistically from those noted at the population level. In our opinion, factors leading to the formation of these admixed individuals and their relatively high frequency are: i) swarming behaviour at swarming sites, where high numbers of bats belonging to several species meet; ii) male-biased sex ratio during the swarming period; iii) the fact that all these bats are generally polygynous. The highly different population sizes of different species at swarming sites may also play some role. Swarming sites may represent unique hybrid hotspots, which, as there are at least 2,000 caves in the Polish Carpathians alone, may occur on a massive scale not previously observed for any group of mammal species in the wild. Evidently, these sites should be treated as focal points for the conservation of biodiversity and evolutionary processes. PMID:23300912

  18. Juniper Pollen Hotspots in the Southwest

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; VandeWater, P.; Luvall, J.; Levetin, E.

    2013-01-01

    Rationale: Juniperus pollen is a major allergen in Texas, Oklahoma, and New Mexico. While the bulk of pollen may be released in rural areas, large amounts of pollen can be transported to urban areas. Major juniper species in the region include: Juniperus ashei, J. virginiana, J. pinchotii, and J. monosperma. Pollen release is virtually continuous beginning in late September with J. pinchotii and ending in May with J. monosperma. Urban areas in the region were evaluated for the potential of overlapping seasons in order to inform sensitive individuals. Methods: Burkard volumetric pollen traps were established for two consecutive spring seasons at 6 sites in northern New Mexico and 6 sites for two consecutive winter and fall seasons in Texas and Oklahoma Standard methods were used in the preparation and analysis of slides. Results: The Dallas-Fort Worth Metroplex is home to over 6 million people. It is adjacent to populations of J. pinchotii, J. virginiana, and J. ashei. Peak concentration near Dallas for J. ashei in 2011 was 5891 pollen grains/m3 in January 7th. The peak date for J. pinchotii at an upwind sampling location in San Marcos, TX was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was February 20, 2011. Amarillo, TX is adjacent to J. pinchotii, J. ashei, and J. monosperma populations and may be subject to juniper pollen from September through May. Conclusions: Considering the overlapping distributions of juniper trees and the overlapping temporal release of pollen, sensitive patients may benefit from avoiding hotspots.

  19. Analyses of the involvement of PKA regulation mechanism in meiotic incompetence of porcine growing oocytes.

    PubMed

    Nishimura, Takanori; Fujii, Wataru; Kano, Kiyoshi; Sugiura, Koji; Naito, Kunihiko

    2012-09-01

    Mammalian growing oocytes (GOs) lack the ability to resume meiosis, although the molecular mechanism of this limitation is not fully understood. In the present study, we cloned cDNAs of cAMP-dependent protein-kinase (PKA) subunits from porcine oocytes and analyzed the involvement of the PKA regulation mechanism in the meiotic incompetence of GOs at the molecular level. We found a cAMP-independent high PKA activity in GOs throughout the in vitro culture using a porcine PKA assay system we established, and inhibition of the activity by injection of the antisense RNA of the PKA catalytic subunit (PKA-C) induced meiotic resumption in GOs. Then we examined the possibility that the amount of the PKA regulatory subunit (PKA-R), which can bind and inhibit PKA-C, was insufficient to suppress PKA activity in GOs because of the overexpression of two PKA-Rs, PRKAR1A and PRKAR2A. We found that neither of them affected PKA activity and induced meiotic resumption in GO although PRKAR2A could inhibit PKA activity and induce meiosis in cAMP-treated full-grown oocytes (FGOs). Finally, we analyzed the subcellular localization of PKA subunits and found that all the subunits were localized in the cytoplasm during meiotic arrest and that PKA-C and PRKAR2A, but not PRKAR1A, entered into the nucleus just before meiotic resumption in FGOs, whereas all of them remained in the cytoplasm in GOs throughout the culture period. Our findings suggest that the continuous high PKA activity is a primary cause of the meiotic incompetence of porcine GOs and that this PKA activity is not simply caused by an insufficient expression level of PKA-R, but can be attributed to more complex spatial-temporal regulation mechanisms. PMID:22674394

  20. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    SciTech Connect

    Sickles, Dale W. . E-mail: dsickles@mcg.edu; Sperry, Ann O. . E-mail: sperrya@ecu.edu; Testino, Angie; Friedman, Marvin

    2007-07-01

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.

  1. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    PubMed Central

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-01-01

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1. PMID:16990250

  2. Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    PubMed Central

    Bessoltane, Nadia; Toffano-Nioche, Claire; Solignac, Michel; Mougel, Florence

    2012-01-01

    Background Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. Methodology We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. Conclusions Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals. PMID:22567142

  3. Hotspots on Io During the Ganymede 2 Encounter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 6 September 1996. This image shows, on the right, Io as seen by NIMS, centered on 150 W longitude. The image on the left shows the same view point from Voyager data (from the encounters in 1979 and 1980). The NIMS image can be compared to the NIMS hotspot image from the G1 orbit (June 1996) to monitor changes on Io. The most dramatic feature of the G2 image is the hotspot at Malik Patera. Preliminary analysis of the data yields a temperature of at least 1000 K (727 C) for this hotspot, an increase of more than 300 K from the G1 encounter. In the overlap area of the G1 and G2 images all the hotspots seen during the G1 encounter are also seen in the G2 image. Other hotspots were seen, including one at the Pele plume origin site. This image is at the 4 micron band to best view the Malik hotspot. Most of the other hotspots are best seen at longer wavelengths. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  4. Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy

    PubMed Central

    King, Matthew; Petry, Sabine

    2016-01-01

    Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved. PMID:27193844

  5. Live Imaging of Intracellular Dynamics During Meiotic Maturation in Mouse Oocytes.

    PubMed

    Yoshida, Shuhei; Sakakibara, Yogo; Kitajima, Tomoya S

    2016-01-01

    Fluorescence live imaging is a powerful approach to study intracellular dynamics during cellular events such as cell division. By applying automated confocal live imaging to mouse oocytes, in which meiotic maturation can be induced in vitro after the introduction of fluorescent proteins through microinjection, the meiotic dynamics of intracellular structures, such as chromosomes, can be monitored at high resolution. A combination of this method with approaches for the perturbation of specific proteins opens up opportunities for understanding the molecular and intracellular basis of mammalian meiosis. PMID:27557586

  6. High coverage of litho hotspot detection by weak pattern scoring

    NASA Astrophysics Data System (ADS)

    Park, Jinho; Kim, NamJae; Kang, Jae-hyun; Paek, Seung Weon; Kwon, Steve; Shafee, Marwah; Madkour, Kareem; ElManhawy, Wael; Kwan, Joe; Brunet, Jean-Marie

    2015-03-01

    Achieving lithographic printability at advanced nodes (14nm and beyond) can impose significant restrictions on physical design, including large numbers of complex design rule checks (DRC) and compute-intensive detailed process model checking. Early identifying of yield-limiter hotspots is essential for both foundries and designers to significantly improve process maturity. A real challenge is to scan the design space to identify hotspots, and decide the proper course of action regarding each hotspot. Building a scored pattern library with real candidates for hotspots for both foundries and designers is of great value. Foundries are looking for the most used patterns to optimize their technology for and identify patterns that should be forbidden, while designers are looking for the patterns that are sensitive to their neighboring context to perform lithographic simulation with their context to decide if they are hotspots or not.[1] In this paper we propose a framework to data mine designs to obtain set of representative patterns of each design, our aim is to sample the designs at locations that can be potential yield limiting. Though our aim is to keep the total number of patterns as small as possible to limit the complexity, still the designer is free to generate layouts results in several million of patterns that define the whole design space. In order to handle the large number of patterns that represent the design building block constructs, we need to prioritize the patterns according to their importance. The proposed pattern classification methodology depends on giving scores to each pattern according to the severity of hotspots they cause, the probability of their presence in the design and the likelihood of causing a hotspot. The paper also shows how the scoring scheme helps foundries to optimize their master pattern libraries and priorities their efforts in 14nm technology and beyond. Moreover, the paper demonstrates how the hotspot scoring helps in

  7. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    SciTech Connect

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, ..gamma..-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No ..gamma..-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and ..gamma..-ray-induced mitotic recombination and mitotic recombination.

  8. Dynamically supported geoid highs over hotspots - Observation and theory

    NASA Technical Reports Server (NTRS)

    Richards, Mark A.; Hager, Bradford H.; Sleep, Norman H.

    1988-01-01

    Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.

  9. Distribution, congruence, and hotspots of higher plants in China

    PubMed Central

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-01

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China’s Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region’s specific conditions. PMID:26750244

  10. Dynamically supported geoid highs over hotspots: Observation and theory

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Hager, B. H.; Sleep, N. H.

    1986-01-01

    Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.

  11. Study of hotspot repair using cellular automata method

    NASA Astrophysics Data System (ADS)

    Nagase, Norimasa; Takeuchi, Kanji; Sakurai, Mitsuo; Itoh, Takahisa; Okada, Tomoyuki

    2014-07-01

    In advanced semiconductor manufacturing, model-based optical proximity correction is commonly used to compensate for image errors. The final pattern is generated using correction values determined by lithography simulation. Image errors such as patterns with insufficient correction or patterns with excessive correction can be generated. These patterns with errors are called hotspots. Such errors are conventionally detected by lithography simulation of OPC patterns. When a hotspot is detected by lithography simulation, it has to be repaired manually or by repeated use of OPC tool. However, it is difficult to obtain correct pattern for a complicated shape, and the correction procedure may require a significant amount of additional processing. In order to solve this issue, we examine application of cellular automata (CA) method for hotspot correction. It is known that CA method can be used for weather or traffic analysis and prediction. In this report, we studied the CA method for deriving simple hotspot repair rule based on lattice cell-like models for light intensity distribution and OPC patterns. We will report on the results of hotspot correction technique with the OPC pattern using CA method.

  12. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    PubMed

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project. PMID:27043011

  13. Distribution, congruence, and hotspots of higher plants in China.

    PubMed

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-01

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China's Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region's specific conditions. PMID:26750244

  14. Distribution, congruence, and hotspots of higher plants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-01

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China’s Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region’s specific conditions.

  15. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  16. Constraining nitrogen cycling hotspots in contaminated aquifers

    NASA Astrophysics Data System (ADS)

    Wells, Naomi; Knoeller, Kay

    2014-05-01

    Accurate assessments of the fate of inorganic nitrogen (N) in groundwater are needed in order to mitigate the threat that ammonium (NH4+) and nitrate (NO3-) pose to water quality and the long-term health of down-gradient ecosystems. However, such assessments are currently limited by difficulties in measuring the biological attenuation (via either denitrification or anaerobic ammonia oxidation (anammox)) of these reactive species in-situ. Based on the knowledge that both of these processes can create unique fractionation patterns in the residual N pools, the objective of this research was to build a template for identifying and quantifying N removal hotspots within complex aquifers using isofluxes. The variations in concentration and isotopic abundance of multiple dissolved inorganic N species (δ15N of NH4+, and δ15N and δ18O of NO2- and NO3-) were measured in 100 wells across two contaminated megasites in Western Europe. The sampling locations were selected span the NH4+ (the dominant N form in both sites) concentration gradient (0 to 900 mg NH4+-N l-1) over depth and distance, which coincided with gradients in co-contaminants BTEX and sulphate of 0 to 5 mg l-1 4 to 11000 mg l-1, respectively. Although NO2- is a key component of both anaerobic and aerobic ammonium oxidation, it is rarely detected in groundwater. Yet, by analysing for it on-site, we found that NO2- concentrations reached up to 0.7 mg NO2-N l-1 and had a highly sensitive isotopic composition (mean of -5 ±23o (δ15N) and +11 ±12o (δ18O)). The largest NO2- concentrations coincided with those of NH4+ levels, meaning that attenuation fluxes could be partitioned between anammox and denitrification using simple isotope mass balance calculations based on Rayleigh type isotope fractionation and established nitrate (δ15N and δ18O) isotope dynamics during denitrification. The constraints on N attenuation within these complex hydrological and chemical setting created by overlaying isoflux maps for each

  17. Hydrothermal Manganese Mineralization Near the Samoan Hotspot

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Staudigel, H.; Koppers, A.; Hart, S. R.; Dunham, R.

    2006-12-01

    The thickest beds of hydrothermal manganese oxides recovered to date from the global ocean were collected from a volcanic cone in the south Pacific. In April 2005, samples were dredged aboard the R.V. Kilo Moana from a volcanic cone on the lower flank of Tulaga seamount (about 2,700 m water depth; 14° 39.222' S; 170° 1.730' W), located 115 km SW of Vailulu'u, the volcanically and hydrothermally active center of the Samoan hotspot. Additional hydrothermal manganese samples were collected off Ofu Island (dredge Alia 107), 72 km to the WSW of Vailulu'u. Manganese-oxide beds up to 9 cm thick are composed of birnessite and 10 Å manganates. Some layers consist of Mn-oxide columnar structures 4 cm long and 1 cm wide, which have not been described previously. The mean Mn and Fe contents of 18 samples are 51 weight percent and 0.76 weight percent, respectively. Elevated concentrations of Li (mean 0.11 wt. percent) are indicators of a hydrothermal origin, and distinguishes these samples, along with the high Mn and low Fe contents, from hydrogenetic Fe-Mn crusts. Other enriched elements include Ba (mean 0.14 percent), Cu (249 ppm), Mo (451 ppm), Ni (400 ppm), Zn (394 ppm), V (214 ppm), and W (132 ppm). Chondrite-normalized REE patterns show large negative Ce anomalies and LREE enrichments, both characteristic of hydrothermal Mn deposits. Small negative Eu anomalies are not typical of hydrothermal deposits and can be explained either by the absence of leaching of plagioclase by the hydrothermal fluids or by the precipitation of Eu-rich minerals, such as barite and anhydrite, at depth. The high base-metal contents indicate that sulfides are not forming deeper in the hydrothermal system or that such deposits are being leached by the ascending fluids. Textures of the thickest Mn deposits indicate that the Mn oxides formed below the seabed from ascending fluids during multiple phases of waxing and waning hydrothermal pulses. The deposits were later exposed at the seafloor by

  18. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    PubMed

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. PMID:26494844

  19. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-01-01

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis. PMID:27425629

  20. Recombination locations and rates in beef cattle assessed from parent-offspring pairs

    PubMed Central

    2014-01-01

    Background Recombination events tend to occur in hotspots and vary in number among individuals. The presence of recombination influences the accuracy of haplotype phasing and the imputation of missing genotypes. Genes that influence genome-wide recombination rate have been discovered in mammals, yeast, and plants. Our aim was to investigate the influence of recombination on haplotype phasing, locate recombination hotspots, scan the genome for Quantitative Trait Loci (QTL) and identify candidate genes that influence recombination, and quantify the impact of recombination on the accuracy of genotype imputation in beef cattle. Methods 2775 Angus and 1485 Limousin parent-verified sire/offspring pairs were genotyped with the Illumina BovineSNP50 chip. Haplotype phasing was performed with DAGPHASE and BEAGLE using UMD3.1 assembly SNP (single nucleotide polymorphism) coordinates. Recombination events were detected by comparing the two reconstructed chromosomal haplotypes inherited by each offspring with those of their sires. Expected crossover probabilities were estimated assuming no interference and a binomial distribution for the frequency of crossovers. The BayesB approach for genome-wide association analysis implemented in the GenSel software was used to identify genomic regions harboring QTL with large effects on recombination. BEAGLE was used to impute Angus genotypes from a 7K subset to the 50K chip. Results DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from relatives can improve its accuracy. The estimated genetic length of the 29 bovine autosomes was 3097 cM, with a genome-wide recombination distance averaging 1.23 cM/Mb. 427 and 348 windows containing recombination hotspots were detected in Angus and Limousin, respectively, of which 166 were in common. Several significant SNPs and candidate genes, which influence genome-wide recombination were localized in QTL regions detected in the two breeds. High-recombination

  1. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Abb, Martina; Wang, Yudong; de Groot, C. H.; Muskens, Otto L.

    2014-09-01

    Plasmonic devices have a unique ability to concentrate and convert optical energy into a small volume. There is a tremendous interest in achieving active control of plasmon resonances, which would enable switchable hotspots for applications such as surface-enhanced spectroscopy and single molecule emission. The small footprint and strong-field confinement of plasmonic nanoantennas also holds great potential for achieving transistor-type devices for nanoscale-integrated circuits. To achieve such a functionality, new methods for nonlinear modulation are required, which are able to precisely tune the nonlinear interactions between resonant antenna elements. Here we demonstrate that resonant pumping of a nonlinear medium in a plasmonic hotspot produces an efficient transfer of optical Kerr nonlinearity between different elements of a